1e8d8bef9SDimitry Andric //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // Eliminate conditions based on constraints collected from dominating 10e8d8bef9SDimitry Andric // conditions. 11e8d8bef9SDimitry Andric // 12e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 13e8d8bef9SDimitry Andric 14e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15e8d8bef9SDimitry Andric #include "llvm/ADT/STLExtras.h" 16fe6060f1SDimitry Andric #include "llvm/ADT/ScopeExit.h" 17e8d8bef9SDimitry Andric #include "llvm/ADT/SmallVector.h" 18e8d8bef9SDimitry Andric #include "llvm/ADT/Statistic.h" 19e8d8bef9SDimitry Andric #include "llvm/Analysis/ConstraintSystem.h" 20e8d8bef9SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h" 215f757f3fSDimitry Andric #include "llvm/Analysis/LoopInfo.h" 2206c3fb27SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 235f757f3fSDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 245f757f3fSDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25349cc55cSDimitry Andric #include "llvm/Analysis/ValueTracking.h" 26bdd1243dSDimitry Andric #include "llvm/IR/DataLayout.h" 27e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 28e8d8bef9SDimitry Andric #include "llvm/IR/Function.h" 2981ad6265SDimitry Andric #include "llvm/IR/IRBuilder.h" 305f757f3fSDimitry Andric #include "llvm/IR/InstrTypes.h" 31e8d8bef9SDimitry Andric #include "llvm/IR/Instructions.h" 32e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h" 3306c3fb27SDimitry Andric #include "llvm/IR/Verifier.h" 34e8d8bef9SDimitry Andric #include "llvm/Pass.h" 35bdd1243dSDimitry Andric #include "llvm/Support/CommandLine.h" 36e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h" 37e8d8bef9SDimitry Andric #include "llvm/Support/DebugCounter.h" 3881ad6265SDimitry Andric #include "llvm/Support/MathExtras.h" 3906c3fb27SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h" 4006c3fb27SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h" 41e8d8bef9SDimitry Andric 42bdd1243dSDimitry Andric #include <cmath> 4306c3fb27SDimitry Andric #include <optional> 44fe6060f1SDimitry Andric #include <string> 45fe6060f1SDimitry Andric 46e8d8bef9SDimitry Andric using namespace llvm; 47e8d8bef9SDimitry Andric using namespace PatternMatch; 48e8d8bef9SDimitry Andric 49e8d8bef9SDimitry Andric #define DEBUG_TYPE "constraint-elimination" 50e8d8bef9SDimitry Andric 51e8d8bef9SDimitry Andric STATISTIC(NumCondsRemoved, "Number of instructions removed"); 52e8d8bef9SDimitry Andric DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 53e8d8bef9SDimitry Andric "Controls which conditions are eliminated"); 54e8d8bef9SDimitry Andric 55bdd1243dSDimitry Andric static cl::opt<unsigned> 56bdd1243dSDimitry Andric MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 57bdd1243dSDimitry Andric cl::desc("Maximum number of rows to keep in constraint system")); 58bdd1243dSDimitry Andric 5906c3fb27SDimitry Andric static cl::opt<bool> DumpReproducers( 6006c3fb27SDimitry Andric "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 6106c3fb27SDimitry Andric cl::desc("Dump IR to reproduce successful transformations.")); 6206c3fb27SDimitry Andric 63e8d8bef9SDimitry Andric static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 6481ad6265SDimitry Andric static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 65e8d8bef9SDimitry Andric 66bdd1243dSDimitry Andric // A helper to multiply 2 signed integers where overflowing is allowed. 67bdd1243dSDimitry Andric static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 68bdd1243dSDimitry Andric int64_t Result; 69bdd1243dSDimitry Andric MulOverflow(A, B, Result); 70bdd1243dSDimitry Andric return Result; 71bdd1243dSDimitry Andric } 72bdd1243dSDimitry Andric 73bdd1243dSDimitry Andric // A helper to add 2 signed integers where overflowing is allowed. 74bdd1243dSDimitry Andric static int64_t addWithOverflow(int64_t A, int64_t B) { 75bdd1243dSDimitry Andric int64_t Result; 76bdd1243dSDimitry Andric AddOverflow(A, B, Result); 77bdd1243dSDimitry Andric return Result; 78bdd1243dSDimitry Andric } 79bdd1243dSDimitry Andric 8006c3fb27SDimitry Andric static Instruction *getContextInstForUse(Use &U) { 8106c3fb27SDimitry Andric Instruction *UserI = cast<Instruction>(U.getUser()); 8206c3fb27SDimitry Andric if (auto *Phi = dyn_cast<PHINode>(UserI)) 8306c3fb27SDimitry Andric UserI = Phi->getIncomingBlock(U)->getTerminator(); 8406c3fb27SDimitry Andric return UserI; 8506c3fb27SDimitry Andric } 8606c3fb27SDimitry Andric 8704eeddc0SDimitry Andric namespace { 885f757f3fSDimitry Andric /// Struct to express a condition of the form %Op0 Pred %Op1. 895f757f3fSDimitry Andric struct ConditionTy { 905f757f3fSDimitry Andric CmpInst::Predicate Pred; 915f757f3fSDimitry Andric Value *Op0; 925f757f3fSDimitry Andric Value *Op1; 935f757f3fSDimitry Andric 945f757f3fSDimitry Andric ConditionTy() 955f757f3fSDimitry Andric : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 965f757f3fSDimitry Andric ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 975f757f3fSDimitry Andric : Pred(Pred), Op0(Op0), Op1(Op1) {} 985f757f3fSDimitry Andric }; 995f757f3fSDimitry Andric 10006c3fb27SDimitry Andric /// Represents either 1015f757f3fSDimitry Andric /// * a condition that holds on entry to a block (=condition fact) 10206c3fb27SDimitry Andric /// * an assume (=assume fact) 10306c3fb27SDimitry Andric /// * a use of a compare instruction to simplify. 10406c3fb27SDimitry Andric /// It also tracks the Dominator DFS in and out numbers for each entry. 10506c3fb27SDimitry Andric struct FactOrCheck { 1065f757f3fSDimitry Andric enum class EntryTy { 1075f757f3fSDimitry Andric ConditionFact, /// A condition that holds on entry to a block. 1085f757f3fSDimitry Andric InstFact, /// A fact that holds after Inst executed (e.g. an assume or 1095f757f3fSDimitry Andric /// min/mix intrinsic. 1105f757f3fSDimitry Andric InstCheck, /// An instruction to simplify (e.g. an overflow math 1115f757f3fSDimitry Andric /// intrinsics). 1125f757f3fSDimitry Andric UseCheck /// An use of a compare instruction to simplify. 1135f757f3fSDimitry Andric }; 1145f757f3fSDimitry Andric 11506c3fb27SDimitry Andric union { 11606c3fb27SDimitry Andric Instruction *Inst; 11706c3fb27SDimitry Andric Use *U; 1185f757f3fSDimitry Andric ConditionTy Cond; 11906c3fb27SDimitry Andric }; 1205f757f3fSDimitry Andric 1215f757f3fSDimitry Andric /// A pre-condition that must hold for the current fact to be added to the 1225f757f3fSDimitry Andric /// system. 1235f757f3fSDimitry Andric ConditionTy DoesHold; 1245f757f3fSDimitry Andric 12506c3fb27SDimitry Andric unsigned NumIn; 12606c3fb27SDimitry Andric unsigned NumOut; 1275f757f3fSDimitry Andric EntryTy Ty; 12806c3fb27SDimitry Andric 1295f757f3fSDimitry Andric FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 13006c3fb27SDimitry Andric : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 1315f757f3fSDimitry Andric Ty(Ty) {} 13206c3fb27SDimitry Andric 13306c3fb27SDimitry Andric FactOrCheck(DomTreeNode *DTN, Use *U) 1345f757f3fSDimitry Andric : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 1355f757f3fSDimitry Andric NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 1365f757f3fSDimitry Andric Ty(EntryTy::UseCheck) {} 13706c3fb27SDimitry Andric 1385f757f3fSDimitry Andric FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 1395f757f3fSDimitry Andric ConditionTy Precond = ConditionTy()) 1405f757f3fSDimitry Andric : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 1415f757f3fSDimitry Andric NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 1425f757f3fSDimitry Andric 1435f757f3fSDimitry Andric static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 1445f757f3fSDimitry Andric Value *Op0, Value *Op1, 1455f757f3fSDimitry Andric ConditionTy Precond = ConditionTy()) { 1465f757f3fSDimitry Andric return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 1475f757f3fSDimitry Andric } 1485f757f3fSDimitry Andric 1495f757f3fSDimitry Andric static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 1505f757f3fSDimitry Andric return FactOrCheck(EntryTy::InstFact, DTN, Inst); 15106c3fb27SDimitry Andric } 15206c3fb27SDimitry Andric 15306c3fb27SDimitry Andric static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 15406c3fb27SDimitry Andric return FactOrCheck(DTN, U); 15506c3fb27SDimitry Andric } 15606c3fb27SDimitry Andric 15706c3fb27SDimitry Andric static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 1585f757f3fSDimitry Andric return FactOrCheck(EntryTy::InstCheck, DTN, CI); 15906c3fb27SDimitry Andric } 16006c3fb27SDimitry Andric 16106c3fb27SDimitry Andric bool isCheck() const { 1625f757f3fSDimitry Andric return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 16306c3fb27SDimitry Andric } 16406c3fb27SDimitry Andric 16506c3fb27SDimitry Andric Instruction *getContextInst() const { 1665f757f3fSDimitry Andric if (Ty == EntryTy::UseCheck) 16706c3fb27SDimitry Andric return getContextInstForUse(*U); 1685f757f3fSDimitry Andric return Inst; 16906c3fb27SDimitry Andric } 1705f757f3fSDimitry Andric 17106c3fb27SDimitry Andric Instruction *getInstructionToSimplify() const { 17206c3fb27SDimitry Andric assert(isCheck()); 1735f757f3fSDimitry Andric if (Ty == EntryTy::InstCheck) 17406c3fb27SDimitry Andric return Inst; 17506c3fb27SDimitry Andric // The use may have been simplified to a constant already. 17606c3fb27SDimitry Andric return dyn_cast<Instruction>(*U); 17706c3fb27SDimitry Andric } 1785f757f3fSDimitry Andric 1795f757f3fSDimitry Andric bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 18006c3fb27SDimitry Andric }; 18106c3fb27SDimitry Andric 18206c3fb27SDimitry Andric /// Keep state required to build worklist. 18306c3fb27SDimitry Andric struct State { 18406c3fb27SDimitry Andric DominatorTree &DT; 1855f757f3fSDimitry Andric LoopInfo &LI; 1865f757f3fSDimitry Andric ScalarEvolution &SE; 18706c3fb27SDimitry Andric SmallVector<FactOrCheck, 64> WorkList; 18806c3fb27SDimitry Andric 1895f757f3fSDimitry Andric State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 1905f757f3fSDimitry Andric : DT(DT), LI(LI), SE(SE) {} 19106c3fb27SDimitry Andric 19206c3fb27SDimitry Andric /// Process block \p BB and add known facts to work-list. 19306c3fb27SDimitry Andric void addInfoFor(BasicBlock &BB); 19406c3fb27SDimitry Andric 1955f757f3fSDimitry Andric /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 1965f757f3fSDimitry Andric /// controlling the loop header. 1975f757f3fSDimitry Andric void addInfoForInductions(BasicBlock &BB); 1985f757f3fSDimitry Andric 19906c3fb27SDimitry Andric /// Returns true if we can add a known condition from BB to its successor 20006c3fb27SDimitry Andric /// block Succ. 20106c3fb27SDimitry Andric bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 20206c3fb27SDimitry Andric return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 20306c3fb27SDimitry Andric } 20406c3fb27SDimitry Andric }; 20504eeddc0SDimitry Andric 20681ad6265SDimitry Andric class ConstraintInfo; 20704eeddc0SDimitry Andric 20881ad6265SDimitry Andric struct StackEntry { 20981ad6265SDimitry Andric unsigned NumIn; 21081ad6265SDimitry Andric unsigned NumOut; 21181ad6265SDimitry Andric bool IsSigned = false; 21281ad6265SDimitry Andric /// Variables that can be removed from the system once the stack entry gets 21381ad6265SDimitry Andric /// removed. 21481ad6265SDimitry Andric SmallVector<Value *, 2> ValuesToRelease; 21581ad6265SDimitry Andric 216bdd1243dSDimitry Andric StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 21781ad6265SDimitry Andric SmallVector<Value *, 2> ValuesToRelease) 218bdd1243dSDimitry Andric : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 21981ad6265SDimitry Andric ValuesToRelease(ValuesToRelease) {} 22004eeddc0SDimitry Andric }; 22104eeddc0SDimitry Andric 22281ad6265SDimitry Andric struct ConstraintTy { 22381ad6265SDimitry Andric SmallVector<int64_t, 8> Coefficients; 2245f757f3fSDimitry Andric SmallVector<ConditionTy, 2> Preconditions; 22504eeddc0SDimitry Andric 226bdd1243dSDimitry Andric SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 227bdd1243dSDimitry Andric 22881ad6265SDimitry Andric bool IsSigned = false; 22904eeddc0SDimitry Andric 23081ad6265SDimitry Andric ConstraintTy() = default; 23104eeddc0SDimitry Andric 23206c3fb27SDimitry Andric ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 23306c3fb27SDimitry Andric bool IsNe) 23406c3fb27SDimitry Andric : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 23506c3fb27SDimitry Andric } 23681ad6265SDimitry Andric 23781ad6265SDimitry Andric unsigned size() const { return Coefficients.size(); } 23881ad6265SDimitry Andric 23981ad6265SDimitry Andric unsigned empty() const { return Coefficients.empty(); } 24004eeddc0SDimitry Andric 24181ad6265SDimitry Andric /// Returns true if all preconditions for this list of constraints are 24281ad6265SDimitry Andric /// satisfied given \p CS and the corresponding \p Value2Index mapping. 24381ad6265SDimitry Andric bool isValid(const ConstraintInfo &Info) const; 24406c3fb27SDimitry Andric 24506c3fb27SDimitry Andric bool isEq() const { return IsEq; } 24606c3fb27SDimitry Andric 24706c3fb27SDimitry Andric bool isNe() const { return IsNe; } 24806c3fb27SDimitry Andric 24906c3fb27SDimitry Andric /// Check if the current constraint is implied by the given ConstraintSystem. 25006c3fb27SDimitry Andric /// 25106c3fb27SDimitry Andric /// \return true or false if the constraint is proven to be respectively true, 25206c3fb27SDimitry Andric /// or false. When the constraint cannot be proven to be either true or false, 25306c3fb27SDimitry Andric /// std::nullopt is returned. 25406c3fb27SDimitry Andric std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 25506c3fb27SDimitry Andric 25606c3fb27SDimitry Andric private: 25706c3fb27SDimitry Andric bool IsEq = false; 25806c3fb27SDimitry Andric bool IsNe = false; 25981ad6265SDimitry Andric }; 26081ad6265SDimitry Andric 26181ad6265SDimitry Andric /// Wrapper encapsulating separate constraint systems and corresponding value 26281ad6265SDimitry Andric /// mappings for both unsigned and signed information. Facts are added to and 26381ad6265SDimitry Andric /// conditions are checked against the corresponding system depending on the 26481ad6265SDimitry Andric /// signed-ness of their predicates. While the information is kept separate 26581ad6265SDimitry Andric /// based on signed-ness, certain conditions can be transferred between the two 26681ad6265SDimitry Andric /// systems. 26781ad6265SDimitry Andric class ConstraintInfo { 26881ad6265SDimitry Andric 26981ad6265SDimitry Andric ConstraintSystem UnsignedCS; 27081ad6265SDimitry Andric ConstraintSystem SignedCS; 27181ad6265SDimitry Andric 272bdd1243dSDimitry Andric const DataLayout &DL; 273bdd1243dSDimitry Andric 27481ad6265SDimitry Andric public: 27506c3fb27SDimitry Andric ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 276cb14a3feSDimitry Andric : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) { 277cb14a3feSDimitry Andric auto &Value2Index = getValue2Index(false); 278cb14a3feSDimitry Andric // Add Arg > -1 constraints to unsigned system for all function arguments. 279cb14a3feSDimitry Andric for (Value *Arg : FunctionArgs) { 280cb14a3feSDimitry Andric ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 281cb14a3feSDimitry Andric false, false, false); 282cb14a3feSDimitry Andric VarPos.Coefficients[Value2Index[Arg]] = -1; 283cb14a3feSDimitry Andric UnsignedCS.addVariableRow(VarPos.Coefficients); 284cb14a3feSDimitry Andric } 285cb14a3feSDimitry Andric } 286bdd1243dSDimitry Andric 28781ad6265SDimitry Andric DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 28806c3fb27SDimitry Andric return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 28981ad6265SDimitry Andric } 29081ad6265SDimitry Andric const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 29106c3fb27SDimitry Andric return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 29281ad6265SDimitry Andric } 29381ad6265SDimitry Andric 29481ad6265SDimitry Andric ConstraintSystem &getCS(bool Signed) { 29581ad6265SDimitry Andric return Signed ? SignedCS : UnsignedCS; 29681ad6265SDimitry Andric } 29781ad6265SDimitry Andric const ConstraintSystem &getCS(bool Signed) const { 29881ad6265SDimitry Andric return Signed ? SignedCS : UnsignedCS; 29981ad6265SDimitry Andric } 30081ad6265SDimitry Andric 30181ad6265SDimitry Andric void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 30281ad6265SDimitry Andric void popLastNVariables(bool Signed, unsigned N) { 30381ad6265SDimitry Andric getCS(Signed).popLastNVariables(N); 30481ad6265SDimitry Andric } 30581ad6265SDimitry Andric 30681ad6265SDimitry Andric bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 30781ad6265SDimitry Andric 308bdd1243dSDimitry Andric void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 309bdd1243dSDimitry Andric unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 31081ad6265SDimitry Andric 31181ad6265SDimitry Andric /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 31281ad6265SDimitry Andric /// constraints, using indices from the corresponding constraint system. 313bdd1243dSDimitry Andric /// New variables that need to be added to the system are collected in 314bdd1243dSDimitry Andric /// \p NewVariables. 31581ad6265SDimitry Andric ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 316bdd1243dSDimitry Andric SmallVectorImpl<Value *> &NewVariables) const; 31781ad6265SDimitry Andric 318bdd1243dSDimitry Andric /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 319bdd1243dSDimitry Andric /// constraints using getConstraint. Returns an empty constraint if the result 320bdd1243dSDimitry Andric /// cannot be used to query the existing constraint system, e.g. because it 321bdd1243dSDimitry Andric /// would require adding new variables. Also tries to convert signed 322bdd1243dSDimitry Andric /// predicates to unsigned ones if possible to allow using the unsigned system 323bdd1243dSDimitry Andric /// which increases the effectiveness of the signed <-> unsigned transfer 324bdd1243dSDimitry Andric /// logic. 325bdd1243dSDimitry Andric ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 326bdd1243dSDimitry Andric Value *Op1) const; 32781ad6265SDimitry Andric 32881ad6265SDimitry Andric /// Try to add information from \p A \p Pred \p B to the unsigned/signed 32981ad6265SDimitry Andric /// system if \p Pred is signed/unsigned. 33081ad6265SDimitry Andric void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 331bdd1243dSDimitry Andric unsigned NumIn, unsigned NumOut, 33281ad6265SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack); 33304eeddc0SDimitry Andric }; 33404eeddc0SDimitry Andric 335bdd1243dSDimitry Andric /// Represents a (Coefficient * Variable) entry after IR decomposition. 336bdd1243dSDimitry Andric struct DecompEntry { 337bdd1243dSDimitry Andric int64_t Coefficient; 338bdd1243dSDimitry Andric Value *Variable; 339bdd1243dSDimitry Andric /// True if the variable is known positive in the current constraint. 340bdd1243dSDimitry Andric bool IsKnownNonNegative; 341bdd1243dSDimitry Andric 342bdd1243dSDimitry Andric DecompEntry(int64_t Coefficient, Value *Variable, 343bdd1243dSDimitry Andric bool IsKnownNonNegative = false) 344bdd1243dSDimitry Andric : Coefficient(Coefficient), Variable(Variable), 345bdd1243dSDimitry Andric IsKnownNonNegative(IsKnownNonNegative) {} 346bdd1243dSDimitry Andric }; 347bdd1243dSDimitry Andric 348bdd1243dSDimitry Andric /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 349bdd1243dSDimitry Andric struct Decomposition { 350bdd1243dSDimitry Andric int64_t Offset = 0; 351bdd1243dSDimitry Andric SmallVector<DecompEntry, 3> Vars; 352bdd1243dSDimitry Andric 353bdd1243dSDimitry Andric Decomposition(int64_t Offset) : Offset(Offset) {} 354bdd1243dSDimitry Andric Decomposition(Value *V, bool IsKnownNonNegative = false) { 355bdd1243dSDimitry Andric Vars.emplace_back(1, V, IsKnownNonNegative); 356bdd1243dSDimitry Andric } 357bdd1243dSDimitry Andric Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 358bdd1243dSDimitry Andric : Offset(Offset), Vars(Vars) {} 359bdd1243dSDimitry Andric 360bdd1243dSDimitry Andric void add(int64_t OtherOffset) { 361bdd1243dSDimitry Andric Offset = addWithOverflow(Offset, OtherOffset); 362bdd1243dSDimitry Andric } 363bdd1243dSDimitry Andric 364bdd1243dSDimitry Andric void add(const Decomposition &Other) { 365bdd1243dSDimitry Andric add(Other.Offset); 366bdd1243dSDimitry Andric append_range(Vars, Other.Vars); 367bdd1243dSDimitry Andric } 368bdd1243dSDimitry Andric 369*647cbc5dSDimitry Andric void sub(const Decomposition &Other) { 370*647cbc5dSDimitry Andric Decomposition Tmp = Other; 371*647cbc5dSDimitry Andric Tmp.mul(-1); 372*647cbc5dSDimitry Andric add(Tmp.Offset); 373*647cbc5dSDimitry Andric append_range(Vars, Tmp.Vars); 374*647cbc5dSDimitry Andric } 375*647cbc5dSDimitry Andric 376bdd1243dSDimitry Andric void mul(int64_t Factor) { 377bdd1243dSDimitry Andric Offset = multiplyWithOverflow(Offset, Factor); 378bdd1243dSDimitry Andric for (auto &Var : Vars) 379bdd1243dSDimitry Andric Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 380bdd1243dSDimitry Andric } 381bdd1243dSDimitry Andric }; 382bdd1243dSDimitry Andric 3835f757f3fSDimitry Andric // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 3845f757f3fSDimitry Andric struct OffsetResult { 3855f757f3fSDimitry Andric Value *BasePtr; 3865f757f3fSDimitry Andric APInt ConstantOffset; 3875f757f3fSDimitry Andric MapVector<Value *, APInt> VariableOffsets; 3885f757f3fSDimitry Andric bool AllInbounds; 3895f757f3fSDimitry Andric 3905f757f3fSDimitry Andric OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 3915f757f3fSDimitry Andric 3925f757f3fSDimitry Andric OffsetResult(GEPOperator &GEP, const DataLayout &DL) 3935f757f3fSDimitry Andric : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 3945f757f3fSDimitry Andric ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 3955f757f3fSDimitry Andric } 3965f757f3fSDimitry Andric }; 39704eeddc0SDimitry Andric } // namespace 39804eeddc0SDimitry Andric 3995f757f3fSDimitry Andric // Try to collect variable and constant offsets for \p GEP, partly traversing 4005f757f3fSDimitry Andric // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 4015f757f3fSDimitry Andric // the offset fails. 4025f757f3fSDimitry Andric static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 4035f757f3fSDimitry Andric OffsetResult Result(GEP, DL); 4045f757f3fSDimitry Andric unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 4055f757f3fSDimitry Andric if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 4065f757f3fSDimitry Andric Result.ConstantOffset)) 4075f757f3fSDimitry Andric return {}; 4085f757f3fSDimitry Andric 4095f757f3fSDimitry Andric // If we have a nested GEP, check if we can combine the constant offset of the 4105f757f3fSDimitry Andric // inner GEP with the outer GEP. 4115f757f3fSDimitry Andric if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 4125f757f3fSDimitry Andric MapVector<Value *, APInt> VariableOffsets2; 4135f757f3fSDimitry Andric APInt ConstantOffset2(BitWidth, 0); 4145f757f3fSDimitry Andric bool CanCollectInner = InnerGEP->collectOffset( 4155f757f3fSDimitry Andric DL, BitWidth, VariableOffsets2, ConstantOffset2); 4165f757f3fSDimitry Andric // TODO: Support cases with more than 1 variable offset. 4175f757f3fSDimitry Andric if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 4185f757f3fSDimitry Andric VariableOffsets2.size() > 1 || 4195f757f3fSDimitry Andric (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 4205f757f3fSDimitry Andric // More than 1 variable index, use outer result. 4215f757f3fSDimitry Andric return Result; 4225f757f3fSDimitry Andric } 4235f757f3fSDimitry Andric Result.BasePtr = InnerGEP->getPointerOperand(); 4245f757f3fSDimitry Andric Result.ConstantOffset += ConstantOffset2; 4255f757f3fSDimitry Andric if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 4265f757f3fSDimitry Andric Result.VariableOffsets = VariableOffsets2; 4275f757f3fSDimitry Andric Result.AllInbounds &= InnerGEP->isInBounds(); 4285f757f3fSDimitry Andric } 4295f757f3fSDimitry Andric return Result; 4305f757f3fSDimitry Andric } 4315f757f3fSDimitry Andric 432bdd1243dSDimitry Andric static Decomposition decompose(Value *V, 4335f757f3fSDimitry Andric SmallVectorImpl<ConditionTy> &Preconditions, 434bdd1243dSDimitry Andric bool IsSigned, const DataLayout &DL); 43581ad6265SDimitry Andric 436bdd1243dSDimitry Andric static bool canUseSExt(ConstantInt *CI) { 43781ad6265SDimitry Andric const APInt &Val = CI->getValue(); 43881ad6265SDimitry Andric return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 439bdd1243dSDimitry Andric } 440bdd1243dSDimitry Andric 4415f757f3fSDimitry Andric static Decomposition decomposeGEP(GEPOperator &GEP, 4425f757f3fSDimitry Andric SmallVectorImpl<ConditionTy> &Preconditions, 44306c3fb27SDimitry Andric bool IsSigned, const DataLayout &DL) { 444bdd1243dSDimitry Andric // Do not reason about pointers where the index size is larger than 64 bits, 445bdd1243dSDimitry Andric // as the coefficients used to encode constraints are 64 bit integers. 446bdd1243dSDimitry Andric if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 447bdd1243dSDimitry Andric return &GEP; 448bdd1243dSDimitry Andric 449bdd1243dSDimitry Andric assert(!IsSigned && "The logic below only supports decomposition for " 4505f757f3fSDimitry Andric "unsigned predicates at the moment."); 4515f757f3fSDimitry Andric const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 4525f757f3fSDimitry Andric collectOffsets(GEP, DL); 4535f757f3fSDimitry Andric if (!BasePtr || !AllInbounds) 454bdd1243dSDimitry Andric return &GEP; 455bdd1243dSDimitry Andric 4565f757f3fSDimitry Andric Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 457bdd1243dSDimitry Andric for (auto [Index, Scale] : VariableOffsets) { 458bdd1243dSDimitry Andric auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 459bdd1243dSDimitry Andric IdxResult.mul(Scale.getSExtValue()); 460bdd1243dSDimitry Andric Result.add(IdxResult); 461bdd1243dSDimitry Andric 462bdd1243dSDimitry Andric // If Op0 is signed non-negative, the GEP is increasing monotonically and 463bdd1243dSDimitry Andric // can be de-composed. 464bdd1243dSDimitry Andric if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 465bdd1243dSDimitry Andric Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 466bdd1243dSDimitry Andric ConstantInt::get(Index->getType(), 0)); 467bdd1243dSDimitry Andric } 468bdd1243dSDimitry Andric return Result; 469bdd1243dSDimitry Andric } 470bdd1243dSDimitry Andric 471bdd1243dSDimitry Andric // Decomposes \p V into a constant offset + list of pairs { Coefficient, 472bdd1243dSDimitry Andric // Variable } where Coefficient * Variable. The sum of the constant offset and 473bdd1243dSDimitry Andric // pairs equals \p V. 474bdd1243dSDimitry Andric static Decomposition decompose(Value *V, 4755f757f3fSDimitry Andric SmallVectorImpl<ConditionTy> &Preconditions, 476bdd1243dSDimitry Andric bool IsSigned, const DataLayout &DL) { 477bdd1243dSDimitry Andric 478bdd1243dSDimitry Andric auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 479bdd1243dSDimitry Andric bool IsSignedB) { 480bdd1243dSDimitry Andric auto ResA = decompose(A, Preconditions, IsSigned, DL); 481bdd1243dSDimitry Andric auto ResB = decompose(B, Preconditions, IsSignedB, DL); 482bdd1243dSDimitry Andric ResA.add(ResB); 483bdd1243dSDimitry Andric return ResA; 48481ad6265SDimitry Andric }; 485bdd1243dSDimitry Andric 486b121cb00SDimitry Andric Type *Ty = V->getType()->getScalarType(); 487b121cb00SDimitry Andric if (Ty->isPointerTy() && !IsSigned) { 488b121cb00SDimitry Andric if (auto *GEP = dyn_cast<GEPOperator>(V)) 489b121cb00SDimitry Andric return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 4905f757f3fSDimitry Andric if (isa<ConstantPointerNull>(V)) 4915f757f3fSDimitry Andric return int64_t(0); 4925f757f3fSDimitry Andric 493b121cb00SDimitry Andric return V; 494b121cb00SDimitry Andric } 495b121cb00SDimitry Andric 496b121cb00SDimitry Andric // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 497b121cb00SDimitry Andric // coefficient add/mul may wrap, while the operation in the full bit width 498b121cb00SDimitry Andric // would not. 499b121cb00SDimitry Andric if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 500b121cb00SDimitry Andric return V; 501b121cb00SDimitry Andric 50281ad6265SDimitry Andric // Decompose \p V used with a signed predicate. 50381ad6265SDimitry Andric if (IsSigned) { 504e8d8bef9SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(V)) { 505bdd1243dSDimitry Andric if (canUseSExt(CI)) 506bdd1243dSDimitry Andric return CI->getSExtValue(); 507e8d8bef9SDimitry Andric } 508bdd1243dSDimitry Andric Value *Op0; 509bdd1243dSDimitry Andric Value *Op1; 510bdd1243dSDimitry Andric if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 511bdd1243dSDimitry Andric return MergeResults(Op0, Op1, IsSigned); 51281ad6265SDimitry Andric 51306c3fb27SDimitry Andric ConstantInt *CI; 5148a4dda33SDimitry Andric if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 51506c3fb27SDimitry Andric auto Result = decompose(Op0, Preconditions, IsSigned, DL); 51606c3fb27SDimitry Andric Result.mul(CI->getSExtValue()); 51706c3fb27SDimitry Andric return Result; 51806c3fb27SDimitry Andric } 51906c3fb27SDimitry Andric 520bdd1243dSDimitry Andric return V; 52181ad6265SDimitry Andric } 52281ad6265SDimitry Andric 52381ad6265SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(V)) { 52481ad6265SDimitry Andric if (CI->uge(MaxConstraintValue)) 525bdd1243dSDimitry Andric return V; 526bdd1243dSDimitry Andric return int64_t(CI->getZExtValue()); 527fe6060f1SDimitry Andric } 528fe6060f1SDimitry Andric 529e8d8bef9SDimitry Andric Value *Op0; 530bdd1243dSDimitry Andric bool IsKnownNonNegative = false; 531bdd1243dSDimitry Andric if (match(V, m_ZExt(m_Value(Op0)))) { 532bdd1243dSDimitry Andric IsKnownNonNegative = true; 533fe6060f1SDimitry Andric V = Op0; 534bdd1243dSDimitry Andric } 535fe6060f1SDimitry Andric 536e8d8bef9SDimitry Andric Value *Op1; 537e8d8bef9SDimitry Andric ConstantInt *CI; 538bdd1243dSDimitry Andric if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 539bdd1243dSDimitry Andric return MergeResults(Op0, Op1, IsSigned); 540bdd1243dSDimitry Andric } 541bdd1243dSDimitry Andric if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 542bdd1243dSDimitry Andric if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 543bdd1243dSDimitry Andric Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 544bdd1243dSDimitry Andric ConstantInt::get(Op0->getType(), 0)); 545bdd1243dSDimitry Andric if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 546bdd1243dSDimitry Andric Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 547bdd1243dSDimitry Andric ConstantInt::get(Op1->getType(), 0)); 548bdd1243dSDimitry Andric 549bdd1243dSDimitry Andric return MergeResults(Op0, Op1, IsSigned); 550bdd1243dSDimitry Andric } 551bdd1243dSDimitry Andric 55281ad6265SDimitry Andric if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 553bdd1243dSDimitry Andric canUseSExt(CI)) { 55481ad6265SDimitry Andric Preconditions.emplace_back( 55581ad6265SDimitry Andric CmpInst::ICMP_UGE, Op0, 55681ad6265SDimitry Andric ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 557bdd1243dSDimitry Andric return MergeResults(Op0, CI, true); 55881ad6265SDimitry Andric } 559e8d8bef9SDimitry Andric 56006c3fb27SDimitry Andric // Decompose or as an add if there are no common bits between the operands. 5615f757f3fSDimitry Andric if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 56206c3fb27SDimitry Andric return MergeResults(Op0, CI, IsSigned); 56306c3fb27SDimitry Andric 564bdd1243dSDimitry Andric if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 56506c3fb27SDimitry Andric if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 56606c3fb27SDimitry Andric return {V, IsKnownNonNegative}; 567bdd1243dSDimitry Andric auto Result = decompose(Op1, Preconditions, IsSigned, DL); 56806c3fb27SDimitry Andric Result.mul(int64_t{1} << CI->getSExtValue()); 569bdd1243dSDimitry Andric return Result; 570bdd1243dSDimitry Andric } 571bdd1243dSDimitry Andric 572bdd1243dSDimitry Andric if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 573bdd1243dSDimitry Andric (!CI->isNegative())) { 574bdd1243dSDimitry Andric auto Result = decompose(Op1, Preconditions, IsSigned, DL); 575bdd1243dSDimitry Andric Result.mul(CI->getSExtValue()); 576bdd1243dSDimitry Andric return Result; 577bdd1243dSDimitry Andric } 578bdd1243dSDimitry Andric 579*647cbc5dSDimitry Andric if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) { 580*647cbc5dSDimitry Andric auto ResA = decompose(Op0, Preconditions, IsSigned, DL); 581*647cbc5dSDimitry Andric auto ResB = decompose(Op1, Preconditions, IsSigned, DL); 582*647cbc5dSDimitry Andric ResA.sub(ResB); 583*647cbc5dSDimitry Andric return ResA; 584*647cbc5dSDimitry Andric } 585e8d8bef9SDimitry Andric 586bdd1243dSDimitry Andric return {V, IsKnownNonNegative}; 587e8d8bef9SDimitry Andric } 588e8d8bef9SDimitry Andric 58981ad6265SDimitry Andric ConstraintTy 59081ad6265SDimitry Andric ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 591bdd1243dSDimitry Andric SmallVectorImpl<Value *> &NewVariables) const { 592bdd1243dSDimitry Andric assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 59381ad6265SDimitry Andric bool IsEq = false; 59406c3fb27SDimitry Andric bool IsNe = false; 59506c3fb27SDimitry Andric 59681ad6265SDimitry Andric // Try to convert Pred to one of ULE/SLT/SLE/SLT. 59781ad6265SDimitry Andric switch (Pred) { 59881ad6265SDimitry Andric case CmpInst::ICMP_UGT: 59981ad6265SDimitry Andric case CmpInst::ICMP_UGE: 60081ad6265SDimitry Andric case CmpInst::ICMP_SGT: 60181ad6265SDimitry Andric case CmpInst::ICMP_SGE: { 60281ad6265SDimitry Andric Pred = CmpInst::getSwappedPredicate(Pred); 60381ad6265SDimitry Andric std::swap(Op0, Op1); 60481ad6265SDimitry Andric break; 60581ad6265SDimitry Andric } 60681ad6265SDimitry Andric case CmpInst::ICMP_EQ: 60781ad6265SDimitry Andric if (match(Op1, m_Zero())) { 60881ad6265SDimitry Andric Pred = CmpInst::ICMP_ULE; 60981ad6265SDimitry Andric } else { 61081ad6265SDimitry Andric IsEq = true; 61181ad6265SDimitry Andric Pred = CmpInst::ICMP_ULE; 61281ad6265SDimitry Andric } 61381ad6265SDimitry Andric break; 61481ad6265SDimitry Andric case CmpInst::ICMP_NE: 61506c3fb27SDimitry Andric if (match(Op1, m_Zero())) { 61681ad6265SDimitry Andric Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 61781ad6265SDimitry Andric std::swap(Op0, Op1); 61806c3fb27SDimitry Andric } else { 61906c3fb27SDimitry Andric IsNe = true; 62006c3fb27SDimitry Andric Pred = CmpInst::ICMP_ULE; 62106c3fb27SDimitry Andric } 62281ad6265SDimitry Andric break; 62381ad6265SDimitry Andric default: 62481ad6265SDimitry Andric break; 62581ad6265SDimitry Andric } 62681ad6265SDimitry Andric 62781ad6265SDimitry Andric if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 62881ad6265SDimitry Andric Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 62981ad6265SDimitry Andric return {}; 63081ad6265SDimitry Andric 6315f757f3fSDimitry Andric SmallVector<ConditionTy, 4> Preconditions; 63281ad6265SDimitry Andric bool IsSigned = CmpInst::isSigned(Pred); 63381ad6265SDimitry Andric auto &Value2Index = getValue2Index(IsSigned); 63481ad6265SDimitry Andric auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 635bdd1243dSDimitry Andric Preconditions, IsSigned, DL); 63681ad6265SDimitry Andric auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 637bdd1243dSDimitry Andric Preconditions, IsSigned, DL); 638bdd1243dSDimitry Andric int64_t Offset1 = ADec.Offset; 639bdd1243dSDimitry Andric int64_t Offset2 = BDec.Offset; 64081ad6265SDimitry Andric Offset1 *= -1; 64181ad6265SDimitry Andric 642bdd1243dSDimitry Andric auto &VariablesA = ADec.Vars; 643bdd1243dSDimitry Andric auto &VariablesB = BDec.Vars; 644e8d8bef9SDimitry Andric 645bdd1243dSDimitry Andric // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 646bdd1243dSDimitry Andric // new entry to NewVariables. 647bdd1243dSDimitry Andric DenseMap<Value *, unsigned> NewIndexMap; 648bdd1243dSDimitry Andric auto GetOrAddIndex = [&Value2Index, &NewVariables, 649bdd1243dSDimitry Andric &NewIndexMap](Value *V) -> unsigned { 650fe6060f1SDimitry Andric auto V2I = Value2Index.find(V); 651fe6060f1SDimitry Andric if (V2I != Value2Index.end()) 652fe6060f1SDimitry Andric return V2I->second; 653fe6060f1SDimitry Andric auto Insert = 654bdd1243dSDimitry Andric NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 655bdd1243dSDimitry Andric if (Insert.second) 656bdd1243dSDimitry Andric NewVariables.push_back(V); 657fe6060f1SDimitry Andric return Insert.first->second; 658e8d8bef9SDimitry Andric }; 659e8d8bef9SDimitry Andric 660bdd1243dSDimitry Andric // Make sure all variables have entries in Value2Index or NewVariables. 661bdd1243dSDimitry Andric for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 662bdd1243dSDimitry Andric GetOrAddIndex(KV.Variable); 663e8d8bef9SDimitry Andric 664e8d8bef9SDimitry Andric // Build result constraint, by first adding all coefficients from A and then 665e8d8bef9SDimitry Andric // subtracting all coefficients from B. 66681ad6265SDimitry Andric ConstraintTy Res( 667bdd1243dSDimitry Andric SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 66806c3fb27SDimitry Andric IsSigned, IsEq, IsNe); 669bdd1243dSDimitry Andric // Collect variables that are known to be positive in all uses in the 670bdd1243dSDimitry Andric // constraint. 671bdd1243dSDimitry Andric DenseMap<Value *, bool> KnownNonNegativeVariables; 67281ad6265SDimitry Andric auto &R = Res.Coefficients; 673bdd1243dSDimitry Andric for (const auto &KV : VariablesA) { 674bdd1243dSDimitry Andric R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 675bdd1243dSDimitry Andric auto I = 676bdd1243dSDimitry Andric KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 677bdd1243dSDimitry Andric I.first->second &= KV.IsKnownNonNegative; 678bdd1243dSDimitry Andric } 679e8d8bef9SDimitry Andric 680bdd1243dSDimitry Andric for (const auto &KV : VariablesB) { 68106c3fb27SDimitry Andric if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 68206c3fb27SDimitry Andric R[GetOrAddIndex(KV.Variable)])) 68306c3fb27SDimitry Andric return {}; 684bdd1243dSDimitry Andric auto I = 685bdd1243dSDimitry Andric KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 686bdd1243dSDimitry Andric I.first->second &= KV.IsKnownNonNegative; 687bdd1243dSDimitry Andric } 688e8d8bef9SDimitry Andric 68981ad6265SDimitry Andric int64_t OffsetSum; 69081ad6265SDimitry Andric if (AddOverflow(Offset1, Offset2, OffsetSum)) 69181ad6265SDimitry Andric return {}; 69281ad6265SDimitry Andric if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 69381ad6265SDimitry Andric if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 69481ad6265SDimitry Andric return {}; 69581ad6265SDimitry Andric R[0] = OffsetSum; 69681ad6265SDimitry Andric Res.Preconditions = std::move(Preconditions); 697bdd1243dSDimitry Andric 698bdd1243dSDimitry Andric // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 699bdd1243dSDimitry Andric // variables. 700bdd1243dSDimitry Andric while (!NewVariables.empty()) { 701bdd1243dSDimitry Andric int64_t Last = R.back(); 702bdd1243dSDimitry Andric if (Last != 0) 703bdd1243dSDimitry Andric break; 704bdd1243dSDimitry Andric R.pop_back(); 705bdd1243dSDimitry Andric Value *RemovedV = NewVariables.pop_back_val(); 706bdd1243dSDimitry Andric NewIndexMap.erase(RemovedV); 707bdd1243dSDimitry Andric } 708bdd1243dSDimitry Andric 709bdd1243dSDimitry Andric // Add extra constraints for variables that are known positive. 710bdd1243dSDimitry Andric for (auto &KV : KnownNonNegativeVariables) { 71106c3fb27SDimitry Andric if (!KV.second || 71206c3fb27SDimitry Andric (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 713bdd1243dSDimitry Andric continue; 714bdd1243dSDimitry Andric SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 715bdd1243dSDimitry Andric C[GetOrAddIndex(KV.first)] = -1; 716bdd1243dSDimitry Andric Res.ExtraInfo.push_back(C); 717bdd1243dSDimitry Andric } 71881ad6265SDimitry Andric return Res; 719e8d8bef9SDimitry Andric } 720e8d8bef9SDimitry Andric 721bdd1243dSDimitry Andric ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 722bdd1243dSDimitry Andric Value *Op0, 723bdd1243dSDimitry Andric Value *Op1) const { 7245f757f3fSDimitry Andric Constant *NullC = Constant::getNullValue(Op0->getType()); 7255f757f3fSDimitry Andric // Handle trivially true compares directly to avoid adding V UGE 0 constraints 7265f757f3fSDimitry Andric // for all variables in the unsigned system. 7275f757f3fSDimitry Andric if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 7285f757f3fSDimitry Andric (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 7295f757f3fSDimitry Andric auto &Value2Index = getValue2Index(false); 7305f757f3fSDimitry Andric // Return constraint that's trivially true. 7315f757f3fSDimitry Andric return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 7325f757f3fSDimitry Andric false, false); 7335f757f3fSDimitry Andric } 7345f757f3fSDimitry Andric 735bdd1243dSDimitry Andric // If both operands are known to be non-negative, change signed predicates to 736bdd1243dSDimitry Andric // unsigned ones. This increases the reasoning effectiveness in combination 737bdd1243dSDimitry Andric // with the signed <-> unsigned transfer logic. 738bdd1243dSDimitry Andric if (CmpInst::isSigned(Pred) && 739bdd1243dSDimitry Andric isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 740bdd1243dSDimitry Andric isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 741bdd1243dSDimitry Andric Pred = CmpInst::getUnsignedPredicate(Pred); 742bdd1243dSDimitry Andric 743bdd1243dSDimitry Andric SmallVector<Value *> NewVariables; 744bdd1243dSDimitry Andric ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 74506c3fb27SDimitry Andric if (!NewVariables.empty()) 746bdd1243dSDimitry Andric return {}; 747bdd1243dSDimitry Andric return R; 748bdd1243dSDimitry Andric } 749bdd1243dSDimitry Andric 75081ad6265SDimitry Andric bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 75181ad6265SDimitry Andric return Coefficients.size() > 0 && 7525f757f3fSDimitry Andric all_of(Preconditions, [&Info](const ConditionTy &C) { 75381ad6265SDimitry Andric return Info.doesHold(C.Pred, C.Op0, C.Op1); 75481ad6265SDimitry Andric }); 75581ad6265SDimitry Andric } 75681ad6265SDimitry Andric 75706c3fb27SDimitry Andric std::optional<bool> 75806c3fb27SDimitry Andric ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 75906c3fb27SDimitry Andric bool IsConditionImplied = CS.isConditionImplied(Coefficients); 76006c3fb27SDimitry Andric 76106c3fb27SDimitry Andric if (IsEq || IsNe) { 76206c3fb27SDimitry Andric auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 76306c3fb27SDimitry Andric bool IsNegatedOrEqualImplied = 76406c3fb27SDimitry Andric !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 76506c3fb27SDimitry Andric 76606c3fb27SDimitry Andric // In order to check that `%a == %b` is true (equality), both conditions `%a 76706c3fb27SDimitry Andric // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 76806c3fb27SDimitry Andric // is true), we return true if they both hold, false in the other cases. 76906c3fb27SDimitry Andric if (IsConditionImplied && IsNegatedOrEqualImplied) 77006c3fb27SDimitry Andric return IsEq; 77106c3fb27SDimitry Andric 77206c3fb27SDimitry Andric auto Negated = ConstraintSystem::negate(Coefficients); 77306c3fb27SDimitry Andric bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 77406c3fb27SDimitry Andric 77506c3fb27SDimitry Andric auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 77606c3fb27SDimitry Andric bool IsStrictLessThanImplied = 77706c3fb27SDimitry Andric !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 77806c3fb27SDimitry Andric 77906c3fb27SDimitry Andric // In order to check that `%a != %b` is true (non-equality), either 78006c3fb27SDimitry Andric // condition `%a > %b` or `%a < %b` must hold true. When checking for 78106c3fb27SDimitry Andric // non-equality (`IsNe` is true), we return true if one of the two holds, 78206c3fb27SDimitry Andric // false in the other cases. 78306c3fb27SDimitry Andric if (IsNegatedImplied || IsStrictLessThanImplied) 78406c3fb27SDimitry Andric return IsNe; 78506c3fb27SDimitry Andric 78606c3fb27SDimitry Andric return std::nullopt; 78706c3fb27SDimitry Andric } 78806c3fb27SDimitry Andric 78906c3fb27SDimitry Andric if (IsConditionImplied) 79006c3fb27SDimitry Andric return true; 79106c3fb27SDimitry Andric 79206c3fb27SDimitry Andric auto Negated = ConstraintSystem::negate(Coefficients); 79306c3fb27SDimitry Andric auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 79406c3fb27SDimitry Andric if (IsNegatedImplied) 79506c3fb27SDimitry Andric return false; 79606c3fb27SDimitry Andric 79706c3fb27SDimitry Andric // Neither the condition nor its negated holds, did not prove anything. 79806c3fb27SDimitry Andric return std::nullopt; 79906c3fb27SDimitry Andric } 80006c3fb27SDimitry Andric 80181ad6265SDimitry Andric bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 80281ad6265SDimitry Andric Value *B) const { 803bdd1243dSDimitry Andric auto R = getConstraintForSolving(Pred, A, B); 80406c3fb27SDimitry Andric return R.isValid(*this) && 805bdd1243dSDimitry Andric getCS(R.IsSigned).isConditionImplied(R.Coefficients); 80681ad6265SDimitry Andric } 80781ad6265SDimitry Andric 80881ad6265SDimitry Andric void ConstraintInfo::transferToOtherSystem( 809bdd1243dSDimitry Andric CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 81081ad6265SDimitry Andric unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 8115f757f3fSDimitry Andric auto IsKnownNonNegative = [this](Value *V) { 8125f757f3fSDimitry Andric return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 8135f757f3fSDimitry Andric isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 8145f757f3fSDimitry Andric }; 81581ad6265SDimitry Andric // Check if we can combine facts from the signed and unsigned systems to 81681ad6265SDimitry Andric // derive additional facts. 81781ad6265SDimitry Andric if (!A->getType()->isIntegerTy()) 81881ad6265SDimitry Andric return; 81981ad6265SDimitry Andric // FIXME: This currently depends on the order we add facts. Ideally we 82081ad6265SDimitry Andric // would first add all known facts and only then try to add additional 82181ad6265SDimitry Andric // facts. 82281ad6265SDimitry Andric switch (Pred) { 82381ad6265SDimitry Andric default: 82481ad6265SDimitry Andric break; 82581ad6265SDimitry Andric case CmpInst::ICMP_ULT: 8265f757f3fSDimitry Andric case CmpInst::ICMP_ULE: 8275f757f3fSDimitry Andric // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 8285f757f3fSDimitry Andric if (IsKnownNonNegative(B)) { 829bdd1243dSDimitry Andric addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 830bdd1243dSDimitry Andric NumOut, DFSInStack); 8315f757f3fSDimitry Andric addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 8325f757f3fSDimitry Andric DFSInStack); 8335f757f3fSDimitry Andric } 8345f757f3fSDimitry Andric break; 8355f757f3fSDimitry Andric case CmpInst::ICMP_UGE: 8365f757f3fSDimitry Andric case CmpInst::ICMP_UGT: 8375f757f3fSDimitry Andric // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 8385f757f3fSDimitry Andric if (IsKnownNonNegative(A)) { 8395f757f3fSDimitry Andric addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 8405f757f3fSDimitry Andric NumOut, DFSInStack); 8415f757f3fSDimitry Andric addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 8425f757f3fSDimitry Andric DFSInStack); 84381ad6265SDimitry Andric } 84481ad6265SDimitry Andric break; 84581ad6265SDimitry Andric case CmpInst::ICMP_SLT: 8465f757f3fSDimitry Andric if (IsKnownNonNegative(A)) 847bdd1243dSDimitry Andric addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 84881ad6265SDimitry Andric break; 84906c3fb27SDimitry Andric case CmpInst::ICMP_SGT: { 85081ad6265SDimitry Andric if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 851bdd1243dSDimitry Andric addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 852bdd1243dSDimitry Andric NumOut, DFSInStack); 8535f757f3fSDimitry Andric if (IsKnownNonNegative(B)) 85406c3fb27SDimitry Andric addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 85506c3fb27SDimitry Andric 85681ad6265SDimitry Andric break; 85706c3fb27SDimitry Andric } 85881ad6265SDimitry Andric case CmpInst::ICMP_SGE: 8595f757f3fSDimitry Andric if (IsKnownNonNegative(B)) 860bdd1243dSDimitry Andric addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 86181ad6265SDimitry Andric break; 86281ad6265SDimitry Andric } 863e8d8bef9SDimitry Andric } 864e8d8bef9SDimitry Andric 865fe6060f1SDimitry Andric #ifndef NDEBUG 86681ad6265SDimitry Andric 86706c3fb27SDimitry Andric static void dumpConstraint(ArrayRef<int64_t> C, 86806c3fb27SDimitry Andric const DenseMap<Value *, unsigned> &Value2Index) { 86906c3fb27SDimitry Andric ConstraintSystem CS(Value2Index); 87081ad6265SDimitry Andric CS.addVariableRowFill(C); 87106c3fb27SDimitry Andric CS.dump(); 87281ad6265SDimitry Andric } 873fe6060f1SDimitry Andric #endif 874fe6060f1SDimitry Andric 8755f757f3fSDimitry Andric void State::addInfoForInductions(BasicBlock &BB) { 8765f757f3fSDimitry Andric auto *L = LI.getLoopFor(&BB); 8775f757f3fSDimitry Andric if (!L || L->getHeader() != &BB) 8785f757f3fSDimitry Andric return; 8795f757f3fSDimitry Andric 8805f757f3fSDimitry Andric Value *A; 8815f757f3fSDimitry Andric Value *B; 8825f757f3fSDimitry Andric CmpInst::Predicate Pred; 8835f757f3fSDimitry Andric 8845f757f3fSDimitry Andric if (!match(BB.getTerminator(), 8855f757f3fSDimitry Andric m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 8865f757f3fSDimitry Andric return; 8875f757f3fSDimitry Andric PHINode *PN = dyn_cast<PHINode>(A); 8885f757f3fSDimitry Andric if (!PN) { 8895f757f3fSDimitry Andric Pred = CmpInst::getSwappedPredicate(Pred); 8905f757f3fSDimitry Andric std::swap(A, B); 8915f757f3fSDimitry Andric PN = dyn_cast<PHINode>(A); 8925f757f3fSDimitry Andric } 8935f757f3fSDimitry Andric 8945f757f3fSDimitry Andric if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 8955f757f3fSDimitry Andric !SE.isSCEVable(PN->getType())) 8965f757f3fSDimitry Andric return; 8975f757f3fSDimitry Andric 8985f757f3fSDimitry Andric BasicBlock *InLoopSucc = nullptr; 8995f757f3fSDimitry Andric if (Pred == CmpInst::ICMP_NE) 9005f757f3fSDimitry Andric InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 9015f757f3fSDimitry Andric else if (Pred == CmpInst::ICMP_EQ) 9025f757f3fSDimitry Andric InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 9035f757f3fSDimitry Andric else 9045f757f3fSDimitry Andric return; 9055f757f3fSDimitry Andric 9065f757f3fSDimitry Andric if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 9075f757f3fSDimitry Andric return; 9085f757f3fSDimitry Andric 9095f757f3fSDimitry Andric auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 9105f757f3fSDimitry Andric BasicBlock *LoopPred = L->getLoopPredecessor(); 9115f757f3fSDimitry Andric if (!AR || AR->getLoop() != L || !LoopPred) 9125f757f3fSDimitry Andric return; 9135f757f3fSDimitry Andric 9145f757f3fSDimitry Andric const SCEV *StartSCEV = AR->getStart(); 9155f757f3fSDimitry Andric Value *StartValue = nullptr; 9165f757f3fSDimitry Andric if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 9175f757f3fSDimitry Andric StartValue = C->getValue(); 9185f757f3fSDimitry Andric } else { 9195f757f3fSDimitry Andric StartValue = PN->getIncomingValueForBlock(LoopPred); 9205f757f3fSDimitry Andric assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 9215f757f3fSDimitry Andric } 9225f757f3fSDimitry Andric 9235f757f3fSDimitry Andric DomTreeNode *DTN = DT.getNode(InLoopSucc); 9245f757f3fSDimitry Andric auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 9255f757f3fSDimitry Andric bool MonotonicallyIncreasing = 9265f757f3fSDimitry Andric Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 9275f757f3fSDimitry Andric if (MonotonicallyIncreasing) { 9285f757f3fSDimitry Andric // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 9295f757f3fSDimitry Andric // unconditionally. 9305f757f3fSDimitry Andric WorkList.push_back( 9315f757f3fSDimitry Andric FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 9325f757f3fSDimitry Andric } 9335f757f3fSDimitry Andric 9345f757f3fSDimitry Andric APInt StepOffset; 9355f757f3fSDimitry Andric if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 9365f757f3fSDimitry Andric StepOffset = C->getAPInt(); 9375f757f3fSDimitry Andric else 9385f757f3fSDimitry Andric return; 9395f757f3fSDimitry Andric 9405f757f3fSDimitry Andric // Make sure the bound B is loop-invariant. 9415f757f3fSDimitry Andric if (!L->isLoopInvariant(B)) 9425f757f3fSDimitry Andric return; 9435f757f3fSDimitry Andric 9445f757f3fSDimitry Andric // Handle negative steps. 9455f757f3fSDimitry Andric if (StepOffset.isNegative()) { 9465f757f3fSDimitry Andric // TODO: Extend to allow steps > -1. 9475f757f3fSDimitry Andric if (!(-StepOffset).isOne()) 9485f757f3fSDimitry Andric return; 9495f757f3fSDimitry Andric 9505f757f3fSDimitry Andric // AR may wrap. 9515f757f3fSDimitry Andric // Add StartValue >= PN conditional on B <= StartValue which guarantees that 9525f757f3fSDimitry Andric // the loop exits before wrapping with a step of -1. 9535f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 9545f757f3fSDimitry Andric DTN, CmpInst::ICMP_UGE, StartValue, PN, 9555f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 9565f757f3fSDimitry Andric // Add PN > B conditional on B <= StartValue which guarantees that the loop 9575f757f3fSDimitry Andric // exits when reaching B with a step of -1. 9585f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 9595f757f3fSDimitry Andric DTN, CmpInst::ICMP_UGT, PN, B, 9605f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 9615f757f3fSDimitry Andric return; 9625f757f3fSDimitry Andric } 9635f757f3fSDimitry Andric 9645f757f3fSDimitry Andric // Make sure AR either steps by 1 or that the value we compare against is a 9655f757f3fSDimitry Andric // GEP based on the same start value and all offsets are a multiple of the 9665f757f3fSDimitry Andric // step size, to guarantee that the induction will reach the value. 9675f757f3fSDimitry Andric if (StepOffset.isZero() || StepOffset.isNegative()) 9685f757f3fSDimitry Andric return; 9695f757f3fSDimitry Andric 9705f757f3fSDimitry Andric if (!StepOffset.isOne()) { 9715f757f3fSDimitry Andric auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 9725f757f3fSDimitry Andric if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 9735f757f3fSDimitry Andric !UpperGEP->isInBounds()) 9745f757f3fSDimitry Andric return; 9755f757f3fSDimitry Andric 9765f757f3fSDimitry Andric MapVector<Value *, APInt> UpperVariableOffsets; 9775f757f3fSDimitry Andric APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 9785f757f3fSDimitry Andric const DataLayout &DL = BB.getModule()->getDataLayout(); 9795f757f3fSDimitry Andric if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 9805f757f3fSDimitry Andric UpperVariableOffsets, UpperConstantOffset)) 9815f757f3fSDimitry Andric return; 9825f757f3fSDimitry Andric // All variable offsets and the constant offset have to be a multiple of the 9835f757f3fSDimitry Andric // step. 9845f757f3fSDimitry Andric if (!UpperConstantOffset.urem(StepOffset).isZero() || 9855f757f3fSDimitry Andric any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 9865f757f3fSDimitry Andric return !P.second.urem(StepOffset).isZero(); 9875f757f3fSDimitry Andric })) 9885f757f3fSDimitry Andric return; 9895f757f3fSDimitry Andric } 9905f757f3fSDimitry Andric 9915f757f3fSDimitry Andric // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 9925f757f3fSDimitry Andric // guarantees that the loop exits before wrapping in combination with the 9935f757f3fSDimitry Andric // restrictions on B and the step above. 9945f757f3fSDimitry Andric if (!MonotonicallyIncreasing) { 9955f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 9965f757f3fSDimitry Andric DTN, CmpInst::ICMP_UGE, PN, StartValue, 9975f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 9985f757f3fSDimitry Andric } 9995f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 10005f757f3fSDimitry Andric DTN, CmpInst::ICMP_ULT, PN, B, 10015f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 10025f757f3fSDimitry Andric } 10035f757f3fSDimitry Andric 100481ad6265SDimitry Andric void State::addInfoFor(BasicBlock &BB) { 10055f757f3fSDimitry Andric addInfoForInductions(BB); 10065f757f3fSDimitry Andric 1007349cc55cSDimitry Andric // True as long as long as the current instruction is guaranteed to execute. 1008349cc55cSDimitry Andric bool GuaranteedToExecute = true; 1009bdd1243dSDimitry Andric // Queue conditions and assumes. 1010349cc55cSDimitry Andric for (Instruction &I : BB) { 1011bdd1243dSDimitry Andric if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 101206c3fb27SDimitry Andric for (Use &U : Cmp->uses()) { 101306c3fb27SDimitry Andric auto *UserI = getContextInstForUse(U); 101406c3fb27SDimitry Andric auto *DTN = DT.getNode(UserI->getParent()); 101506c3fb27SDimitry Andric if (!DTN) 101606c3fb27SDimitry Andric continue; 101706c3fb27SDimitry Andric WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 101806c3fb27SDimitry Andric } 1019bdd1243dSDimitry Andric continue; 1020bdd1243dSDimitry Andric } 1021bdd1243dSDimitry Andric 1022*647cbc5dSDimitry Andric auto *II = dyn_cast<IntrinsicInst>(&I); 1023*647cbc5dSDimitry Andric Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic; 1024*647cbc5dSDimitry Andric switch (ID) { 1025*647cbc5dSDimitry Andric case Intrinsic::assume: { 10265f757f3fSDimitry Andric Value *A, *B; 10275f757f3fSDimitry Andric CmpInst::Predicate Pred; 1028*647cbc5dSDimitry Andric if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1029*647cbc5dSDimitry Andric break; 1030349cc55cSDimitry Andric if (GuaranteedToExecute) { 1031349cc55cSDimitry Andric // The assume is guaranteed to execute when BB is entered, hence Cond 1032349cc55cSDimitry Andric // holds on entry to BB. 10335f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 10345f757f3fSDimitry Andric DT.getNode(I.getParent()), Pred, A, B)); 1035349cc55cSDimitry Andric } else { 1036bdd1243dSDimitry Andric WorkList.emplace_back( 10375f757f3fSDimitry Andric FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1038349cc55cSDimitry Andric } 1039*647cbc5dSDimitry Andric break; 1040349cc55cSDimitry Andric } 1041*647cbc5dSDimitry Andric // Enqueue ssub_with_overflow for simplification. 1042*647cbc5dSDimitry Andric case Intrinsic::ssub_with_overflow: 1043*647cbc5dSDimitry Andric WorkList.push_back( 1044*647cbc5dSDimitry Andric FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1045*647cbc5dSDimitry Andric break; 1046*647cbc5dSDimitry Andric // Enqueue the intrinsics to add extra info. 1047*647cbc5dSDimitry Andric case Intrinsic::abs: 1048*647cbc5dSDimitry Andric case Intrinsic::umin: 1049*647cbc5dSDimitry Andric case Intrinsic::umax: 1050*647cbc5dSDimitry Andric case Intrinsic::smin: 1051*647cbc5dSDimitry Andric case Intrinsic::smax: 1052*647cbc5dSDimitry Andric WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1053*647cbc5dSDimitry Andric break; 1054*647cbc5dSDimitry Andric } 1055*647cbc5dSDimitry Andric 1056349cc55cSDimitry Andric GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1057349cc55cSDimitry Andric } 1058349cc55cSDimitry Andric 10595f757f3fSDimitry Andric if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 10605f757f3fSDimitry Andric for (auto &Case : Switch->cases()) { 10615f757f3fSDimitry Andric BasicBlock *Succ = Case.getCaseSuccessor(); 10625f757f3fSDimitry Andric Value *V = Case.getCaseValue(); 10635f757f3fSDimitry Andric if (!canAddSuccessor(BB, Succ)) 10645f757f3fSDimitry Andric continue; 10655f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 10665f757f3fSDimitry Andric DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 10675f757f3fSDimitry Andric } 10685f757f3fSDimitry Andric return; 10695f757f3fSDimitry Andric } 10705f757f3fSDimitry Andric 1071e8d8bef9SDimitry Andric auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1072e8d8bef9SDimitry Andric if (!Br || !Br->isConditional()) 107381ad6265SDimitry Andric return; 1074e8d8bef9SDimitry Andric 1075bdd1243dSDimitry Andric Value *Cond = Br->getCondition(); 1076e8d8bef9SDimitry Andric 1077bdd1243dSDimitry Andric // If the condition is a chain of ORs/AND and the successor only has the 1078bdd1243dSDimitry Andric // current block as predecessor, queue conditions for the successor. 1079bdd1243dSDimitry Andric Value *Op0, *Op1; 1080bdd1243dSDimitry Andric if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1081bdd1243dSDimitry Andric match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1082bdd1243dSDimitry Andric bool IsOr = match(Cond, m_LogicalOr()); 1083bdd1243dSDimitry Andric bool IsAnd = match(Cond, m_LogicalAnd()); 1084bdd1243dSDimitry Andric // If there's a select that matches both AND and OR, we need to commit to 1085bdd1243dSDimitry Andric // one of the options. Arbitrarily pick OR. 1086bdd1243dSDimitry Andric if (IsOr && IsAnd) 1087bdd1243dSDimitry Andric IsAnd = false; 1088bdd1243dSDimitry Andric 1089bdd1243dSDimitry Andric BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1090bdd1243dSDimitry Andric if (canAddSuccessor(BB, Successor)) { 1091bdd1243dSDimitry Andric SmallVector<Value *> CondWorkList; 1092bdd1243dSDimitry Andric SmallPtrSet<Value *, 8> SeenCond; 1093bdd1243dSDimitry Andric auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1094bdd1243dSDimitry Andric if (SeenCond.insert(V).second) 1095bdd1243dSDimitry Andric CondWorkList.push_back(V); 1096bdd1243dSDimitry Andric }; 1097bdd1243dSDimitry Andric QueueValue(Op1); 1098bdd1243dSDimitry Andric QueueValue(Op0); 1099bdd1243dSDimitry Andric while (!CondWorkList.empty()) { 1100bdd1243dSDimitry Andric Value *Cur = CondWorkList.pop_back_val(); 1101bdd1243dSDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 11025f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 11035f757f3fSDimitry Andric DT.getNode(Successor), 11045f757f3fSDimitry Andric IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 11055f757f3fSDimitry Andric : Cmp->getPredicate(), 11065f757f3fSDimitry Andric Cmp->getOperand(0), Cmp->getOperand(1))); 1107bdd1243dSDimitry Andric continue; 1108bdd1243dSDimitry Andric } 1109bdd1243dSDimitry Andric if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1110bdd1243dSDimitry Andric QueueValue(Op1); 1111bdd1243dSDimitry Andric QueueValue(Op0); 1112bdd1243dSDimitry Andric continue; 1113bdd1243dSDimitry Andric } 1114bdd1243dSDimitry Andric if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1115bdd1243dSDimitry Andric QueueValue(Op1); 1116bdd1243dSDimitry Andric QueueValue(Op0); 1117bdd1243dSDimitry Andric continue; 1118bdd1243dSDimitry Andric } 1119bdd1243dSDimitry Andric } 1120e8d8bef9SDimitry Andric } 112181ad6265SDimitry Andric return; 1122e8d8bef9SDimitry Andric } 1123e8d8bef9SDimitry Andric 112481ad6265SDimitry Andric auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1125e8d8bef9SDimitry Andric if (!CmpI) 112681ad6265SDimitry Andric return; 112781ad6265SDimitry Andric if (canAddSuccessor(BB, Br->getSuccessor(0))) 11285f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 11295f757f3fSDimitry Andric DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 11305f757f3fSDimitry Andric CmpI->getOperand(0), CmpI->getOperand(1))); 113181ad6265SDimitry Andric if (canAddSuccessor(BB, Br->getSuccessor(1))) 11325f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 11335f757f3fSDimitry Andric DT.getNode(Br->getSuccessor(1)), 11345f757f3fSDimitry Andric CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 11355f757f3fSDimitry Andric CmpI->getOperand(1))); 1136bdd1243dSDimitry Andric } 1137bdd1243dSDimitry Andric 11385f757f3fSDimitry Andric #ifndef NDEBUG 11395f757f3fSDimitry Andric static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 11405f757f3fSDimitry Andric Value *LHS, Value *RHS) { 11415f757f3fSDimitry Andric OS << "icmp " << Pred << ' '; 11425f757f3fSDimitry Andric LHS->printAsOperand(OS, /*PrintType=*/true); 11435f757f3fSDimitry Andric OS << ", "; 11445f757f3fSDimitry Andric RHS->printAsOperand(OS, /*PrintType=*/false); 11455f757f3fSDimitry Andric } 11465f757f3fSDimitry Andric #endif 11475f757f3fSDimitry Andric 114806c3fb27SDimitry Andric namespace { 114906c3fb27SDimitry Andric /// Helper to keep track of a condition and if it should be treated as negated 115006c3fb27SDimitry Andric /// for reproducer construction. 115106c3fb27SDimitry Andric /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 115206c3fb27SDimitry Andric /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 115306c3fb27SDimitry Andric struct ReproducerEntry { 115406c3fb27SDimitry Andric ICmpInst::Predicate Pred; 115506c3fb27SDimitry Andric Value *LHS; 115606c3fb27SDimitry Andric Value *RHS; 115706c3fb27SDimitry Andric 115806c3fb27SDimitry Andric ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 115906c3fb27SDimitry Andric : Pred(Pred), LHS(LHS), RHS(RHS) {} 116006c3fb27SDimitry Andric }; 116106c3fb27SDimitry Andric } // namespace 116206c3fb27SDimitry Andric 116306c3fb27SDimitry Andric /// Helper function to generate a reproducer function for simplifying \p Cond. 116406c3fb27SDimitry Andric /// The reproducer function contains a series of @llvm.assume calls, one for 116506c3fb27SDimitry Andric /// each condition in \p Stack. For each condition, the operand instruction are 116606c3fb27SDimitry Andric /// cloned until we reach operands that have an entry in \p Value2Index. Those 116706c3fb27SDimitry Andric /// will then be added as function arguments. \p DT is used to order cloned 116806c3fb27SDimitry Andric /// instructions. The reproducer function will get added to \p M, if it is 116906c3fb27SDimitry Andric /// non-null. Otherwise no reproducer function is generated. 117006c3fb27SDimitry Andric static void generateReproducer(CmpInst *Cond, Module *M, 117106c3fb27SDimitry Andric ArrayRef<ReproducerEntry> Stack, 117206c3fb27SDimitry Andric ConstraintInfo &Info, DominatorTree &DT) { 117306c3fb27SDimitry Andric if (!M) 117406c3fb27SDimitry Andric return; 117506c3fb27SDimitry Andric 117606c3fb27SDimitry Andric LLVMContext &Ctx = Cond->getContext(); 117706c3fb27SDimitry Andric 117806c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 117906c3fb27SDimitry Andric 118006c3fb27SDimitry Andric ValueToValueMapTy Old2New; 118106c3fb27SDimitry Andric SmallVector<Value *> Args; 118206c3fb27SDimitry Andric SmallPtrSet<Value *, 8> Seen; 118306c3fb27SDimitry Andric // Traverse Cond and its operands recursively until we reach a value that's in 118406c3fb27SDimitry Andric // Value2Index or not an instruction, or not a operation that 118506c3fb27SDimitry Andric // ConstraintElimination can decompose. Such values will be considered as 118606c3fb27SDimitry Andric // external inputs to the reproducer, they are collected and added as function 118706c3fb27SDimitry Andric // arguments later. 118806c3fb27SDimitry Andric auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 118906c3fb27SDimitry Andric auto &Value2Index = Info.getValue2Index(IsSigned); 119006c3fb27SDimitry Andric SmallVector<Value *, 4> WorkList(Ops); 119106c3fb27SDimitry Andric while (!WorkList.empty()) { 119206c3fb27SDimitry Andric Value *V = WorkList.pop_back_val(); 119306c3fb27SDimitry Andric if (!Seen.insert(V).second) 119406c3fb27SDimitry Andric continue; 119506c3fb27SDimitry Andric if (Old2New.find(V) != Old2New.end()) 119606c3fb27SDimitry Andric continue; 119706c3fb27SDimitry Andric if (isa<Constant>(V)) 119806c3fb27SDimitry Andric continue; 119906c3fb27SDimitry Andric 120006c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(V); 120106c3fb27SDimitry Andric if (Value2Index.contains(V) || !I || 120206c3fb27SDimitry Andric !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 120306c3fb27SDimitry Andric Old2New[V] = V; 120406c3fb27SDimitry Andric Args.push_back(V); 120506c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 120606c3fb27SDimitry Andric } else { 120706c3fb27SDimitry Andric append_range(WorkList, I->operands()); 120806c3fb27SDimitry Andric } 120906c3fb27SDimitry Andric } 121006c3fb27SDimitry Andric }; 121106c3fb27SDimitry Andric 121206c3fb27SDimitry Andric for (auto &Entry : Stack) 121306c3fb27SDimitry Andric if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 121406c3fb27SDimitry Andric CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 121506c3fb27SDimitry Andric CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 121606c3fb27SDimitry Andric 121706c3fb27SDimitry Andric SmallVector<Type *> ParamTys; 121806c3fb27SDimitry Andric for (auto *P : Args) 121906c3fb27SDimitry Andric ParamTys.push_back(P->getType()); 122006c3fb27SDimitry Andric 122106c3fb27SDimitry Andric FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 122206c3fb27SDimitry Andric /*isVarArg=*/false); 122306c3fb27SDimitry Andric Function *F = Function::Create(FTy, Function::ExternalLinkage, 122406c3fb27SDimitry Andric Cond->getModule()->getName() + 122506c3fb27SDimitry Andric Cond->getFunction()->getName() + "repro", 122606c3fb27SDimitry Andric M); 122706c3fb27SDimitry Andric // Add arguments to the reproducer function for each external value collected. 122806c3fb27SDimitry Andric for (unsigned I = 0; I < Args.size(); ++I) { 122906c3fb27SDimitry Andric F->getArg(I)->setName(Args[I]->getName()); 123006c3fb27SDimitry Andric Old2New[Args[I]] = F->getArg(I); 123106c3fb27SDimitry Andric } 123206c3fb27SDimitry Andric 123306c3fb27SDimitry Andric BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 123406c3fb27SDimitry Andric IRBuilder<> Builder(Entry); 123506c3fb27SDimitry Andric Builder.CreateRet(Builder.getTrue()); 123606c3fb27SDimitry Andric Builder.SetInsertPoint(Entry->getTerminator()); 123706c3fb27SDimitry Andric 123806c3fb27SDimitry Andric // Clone instructions in \p Ops and their operands recursively until reaching 123906c3fb27SDimitry Andric // an value in Value2Index (external input to the reproducer). Update Old2New 124006c3fb27SDimitry Andric // mapping for the original and cloned instructions. Sort instructions to 124106c3fb27SDimitry Andric // clone by dominance, then insert the cloned instructions in the function. 124206c3fb27SDimitry Andric auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 124306c3fb27SDimitry Andric SmallVector<Value *, 4> WorkList(Ops); 124406c3fb27SDimitry Andric SmallVector<Instruction *> ToClone; 124506c3fb27SDimitry Andric auto &Value2Index = Info.getValue2Index(IsSigned); 124606c3fb27SDimitry Andric while (!WorkList.empty()) { 124706c3fb27SDimitry Andric Value *V = WorkList.pop_back_val(); 124806c3fb27SDimitry Andric if (Old2New.find(V) != Old2New.end()) 124906c3fb27SDimitry Andric continue; 125006c3fb27SDimitry Andric 125106c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(V); 125206c3fb27SDimitry Andric if (!Value2Index.contains(V) && I) { 125306c3fb27SDimitry Andric Old2New[V] = nullptr; 125406c3fb27SDimitry Andric ToClone.push_back(I); 125506c3fb27SDimitry Andric append_range(WorkList, I->operands()); 125606c3fb27SDimitry Andric } 125706c3fb27SDimitry Andric } 125806c3fb27SDimitry Andric 125906c3fb27SDimitry Andric sort(ToClone, 126006c3fb27SDimitry Andric [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 126106c3fb27SDimitry Andric for (Instruction *I : ToClone) { 126206c3fb27SDimitry Andric Instruction *Cloned = I->clone(); 126306c3fb27SDimitry Andric Old2New[I] = Cloned; 126406c3fb27SDimitry Andric Old2New[I]->setName(I->getName()); 126506c3fb27SDimitry Andric Cloned->insertBefore(&*Builder.GetInsertPoint()); 126606c3fb27SDimitry Andric Cloned->dropUnknownNonDebugMetadata(); 126706c3fb27SDimitry Andric Cloned->setDebugLoc({}); 126806c3fb27SDimitry Andric } 126906c3fb27SDimitry Andric }; 127006c3fb27SDimitry Andric 127106c3fb27SDimitry Andric // Materialize the assumptions for the reproducer using the entries in Stack. 127206c3fb27SDimitry Andric // That is, first clone the operands of the condition recursively until we 127306c3fb27SDimitry Andric // reach an external input to the reproducer and add them to the reproducer 127406c3fb27SDimitry Andric // function. Then add an ICmp for the condition (with the inverse predicate if 127506c3fb27SDimitry Andric // the entry is negated) and an assert using the ICmp. 127606c3fb27SDimitry Andric for (auto &Entry : Stack) { 127706c3fb27SDimitry Andric if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 127806c3fb27SDimitry Andric continue; 127906c3fb27SDimitry Andric 12805f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << " Materializing assumption "; 12815f757f3fSDimitry Andric dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 12825f757f3fSDimitry Andric dbgs() << "\n"); 128306c3fb27SDimitry Andric CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 128406c3fb27SDimitry Andric 128506c3fb27SDimitry Andric auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 128606c3fb27SDimitry Andric Builder.CreateAssumption(Cmp); 128706c3fb27SDimitry Andric } 128806c3fb27SDimitry Andric 128906c3fb27SDimitry Andric // Finally, clone the condition to reproduce and remap instruction operands in 129006c3fb27SDimitry Andric // the reproducer using Old2New. 129106c3fb27SDimitry Andric CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 129206c3fb27SDimitry Andric Entry->getTerminator()->setOperand(0, Cond); 129306c3fb27SDimitry Andric remapInstructionsInBlocks({Entry}, Old2New); 129406c3fb27SDimitry Andric 129506c3fb27SDimitry Andric assert(!verifyFunction(*F, &dbgs())); 129606c3fb27SDimitry Andric } 129706c3fb27SDimitry Andric 12985f757f3fSDimitry Andric static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 12995f757f3fSDimitry Andric Value *B, Instruction *CheckInst, 13005f757f3fSDimitry Andric ConstraintInfo &Info, unsigned NumIn, 13015f757f3fSDimitry Andric unsigned NumOut, 130206c3fb27SDimitry Andric Instruction *ContextInst) { 13035f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1304bdd1243dSDimitry Andric 1305bdd1243dSDimitry Andric auto R = Info.getConstraintForSolving(Pred, A, B); 1306bdd1243dSDimitry Andric if (R.empty() || !R.isValid(Info)){ 1307bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 130806c3fb27SDimitry Andric return std::nullopt; 1309bdd1243dSDimitry Andric } 1310bdd1243dSDimitry Andric 1311bdd1243dSDimitry Andric auto &CSToUse = Info.getCS(R.IsSigned); 1312bdd1243dSDimitry Andric 1313bdd1243dSDimitry Andric // If there was extra information collected during decomposition, apply 1314bdd1243dSDimitry Andric // it now and remove it immediately once we are done with reasoning 1315bdd1243dSDimitry Andric // about the constraint. 1316bdd1243dSDimitry Andric for (auto &Row : R.ExtraInfo) 1317bdd1243dSDimitry Andric CSToUse.addVariableRow(Row); 1318bdd1243dSDimitry Andric auto InfoRestorer = make_scope_exit([&]() { 1319bdd1243dSDimitry Andric for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1320bdd1243dSDimitry Andric CSToUse.popLastConstraint(); 1321bdd1243dSDimitry Andric }); 1322bdd1243dSDimitry Andric 132306c3fb27SDimitry Andric if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1324bdd1243dSDimitry Andric if (!DebugCounter::shouldExecute(EliminatedCounter)) 132506c3fb27SDimitry Andric return std::nullopt; 1326bdd1243dSDimitry Andric 1327bdd1243dSDimitry Andric LLVM_DEBUG({ 13285f757f3fSDimitry Andric dbgs() << "Condition "; 13295f757f3fSDimitry Andric dumpUnpackedICmp( 13305f757f3fSDimitry Andric dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 13315f757f3fSDimitry Andric A, B); 133206c3fb27SDimitry Andric dbgs() << " implied by dominating constraints\n"; 133306c3fb27SDimitry Andric CSToUse.dump(); 1334bdd1243dSDimitry Andric }); 133506c3fb27SDimitry Andric return ImpliedCondition; 133606c3fb27SDimitry Andric } 133706c3fb27SDimitry Andric 133806c3fb27SDimitry Andric return std::nullopt; 133906c3fb27SDimitry Andric } 134006c3fb27SDimitry Andric 134106c3fb27SDimitry Andric static bool checkAndReplaceCondition( 134206c3fb27SDimitry Andric CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 134306c3fb27SDimitry Andric Instruction *ContextInst, Module *ReproducerModule, 13445f757f3fSDimitry Andric ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 13455f757f3fSDimitry Andric SmallVectorImpl<Instruction *> &ToRemove) { 134606c3fb27SDimitry Andric auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 134706c3fb27SDimitry Andric generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 134806c3fb27SDimitry Andric Constant *ConstantC = ConstantInt::getBool( 134906c3fb27SDimitry Andric CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 135006c3fb27SDimitry Andric Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 135106c3fb27SDimitry Andric ContextInst](Use &U) { 135206c3fb27SDimitry Andric auto *UserI = getContextInstForUse(U); 135306c3fb27SDimitry Andric auto *DTN = DT.getNode(UserI->getParent()); 135406c3fb27SDimitry Andric if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 135506c3fb27SDimitry Andric return false; 135606c3fb27SDimitry Andric if (UserI->getParent() == ContextInst->getParent() && 135706c3fb27SDimitry Andric UserI->comesBefore(ContextInst)) 135806c3fb27SDimitry Andric return false; 135906c3fb27SDimitry Andric 1360bdd1243dSDimitry Andric // Conditions in an assume trivially simplify to true. Skip uses 1361bdd1243dSDimitry Andric // in assume calls to not destroy the available information. 1362bdd1243dSDimitry Andric auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1363bdd1243dSDimitry Andric return !II || II->getIntrinsicID() != Intrinsic::assume; 1364bdd1243dSDimitry Andric }); 1365bdd1243dSDimitry Andric NumCondsRemoved++; 13665f757f3fSDimitry Andric if (Cmp->use_empty()) 13675f757f3fSDimitry Andric ToRemove.push_back(Cmp); 136806c3fb27SDimitry Andric return true; 136906c3fb27SDimitry Andric }; 137006c3fb27SDimitry Andric 13715f757f3fSDimitry Andric if (auto ImpliedCondition = checkCondition( 13725f757f3fSDimitry Andric Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), Cmp, 13735f757f3fSDimitry Andric Info, NumIn, NumOut, ContextInst)) 137406c3fb27SDimitry Andric return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 137506c3fb27SDimitry Andric return false; 1376bdd1243dSDimitry Andric } 137706c3fb27SDimitry Andric 137806c3fb27SDimitry Andric static void 137906c3fb27SDimitry Andric removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 138006c3fb27SDimitry Andric Module *ReproducerModule, 138106c3fb27SDimitry Andric SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 138206c3fb27SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack) { 138306c3fb27SDimitry Andric Info.popLastConstraint(E.IsSigned); 138406c3fb27SDimitry Andric // Remove variables in the system that went out of scope. 138506c3fb27SDimitry Andric auto &Mapping = Info.getValue2Index(E.IsSigned); 138606c3fb27SDimitry Andric for (Value *V : E.ValuesToRelease) 138706c3fb27SDimitry Andric Mapping.erase(V); 138806c3fb27SDimitry Andric Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 138906c3fb27SDimitry Andric DFSInStack.pop_back(); 139006c3fb27SDimitry Andric if (ReproducerModule) 139106c3fb27SDimitry Andric ReproducerCondStack.pop_back(); 139206c3fb27SDimitry Andric } 139306c3fb27SDimitry Andric 1394cb14a3feSDimitry Andric /// Check if either the first condition of an AND or OR is implied by the 1395cb14a3feSDimitry Andric /// (negated in case of OR) second condition or vice versa. 1396cb14a3feSDimitry Andric static bool checkOrAndOpImpliedByOther( 139706c3fb27SDimitry Andric FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 139806c3fb27SDimitry Andric SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 139906c3fb27SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack) { 14005f757f3fSDimitry Andric 140106c3fb27SDimitry Andric CmpInst::Predicate Pred; 140206c3fb27SDimitry Andric Value *A, *B; 1403cb14a3feSDimitry Andric Instruction *JoinOp = CB.getContextInst(); 1404cb14a3feSDimitry Andric CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify()); 1405cb14a3feSDimitry Andric unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0; 1406cb14a3feSDimitry Andric 1407cb14a3feSDimitry Andric // Don't try to simplify the first condition of a select by the second, as 1408cb14a3feSDimitry Andric // this may make the select more poisonous than the original one. 1409cb14a3feSDimitry Andric // TODO: check if the first operand may be poison. 1410cb14a3feSDimitry Andric if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp)) 1411bdd1243dSDimitry Andric return false; 1412bdd1243dSDimitry Andric 1413cb14a3feSDimitry Andric if (!match(JoinOp->getOperand(OtherOpIdx), 1414cb14a3feSDimitry Andric m_ICmp(Pred, m_Value(A), m_Value(B)))) 1415cb14a3feSDimitry Andric return false; 1416cb14a3feSDimitry Andric 1417cb14a3feSDimitry Andric // For OR, check if the negated condition implies CmpToCheck. 1418cb14a3feSDimitry Andric bool IsOr = match(JoinOp, m_LogicalOr()); 1419cb14a3feSDimitry Andric if (IsOr) 1420cb14a3feSDimitry Andric Pred = CmpInst::getInversePredicate(Pred); 1421cb14a3feSDimitry Andric 142206c3fb27SDimitry Andric // Optimistically add fact from first condition. 142306c3fb27SDimitry Andric unsigned OldSize = DFSInStack.size(); 142406c3fb27SDimitry Andric Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 142506c3fb27SDimitry Andric if (OldSize == DFSInStack.size()) 142606c3fb27SDimitry Andric return false; 142706c3fb27SDimitry Andric 142806c3fb27SDimitry Andric bool Changed = false; 142906c3fb27SDimitry Andric // Check if the second condition can be simplified now. 1430cb14a3feSDimitry Andric if (auto ImpliedCondition = 1431cb14a3feSDimitry Andric checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0), 1432cb14a3feSDimitry Andric CmpToCheck->getOperand(1), CmpToCheck, Info, CB.NumIn, 1433cb14a3feSDimitry Andric CB.NumOut, CB.getContextInst())) { 1434cb14a3feSDimitry Andric if (IsOr && isa<SelectInst>(JoinOp)) { 1435cb14a3feSDimitry Andric JoinOp->setOperand( 1436cb14a3feSDimitry Andric OtherOpIdx == 0 ? 2 : 0, 1437cb14a3feSDimitry Andric ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1438cb14a3feSDimitry Andric } else 1439cb14a3feSDimitry Andric JoinOp->setOperand( 1440cb14a3feSDimitry Andric 1 - OtherOpIdx, 1441cb14a3feSDimitry Andric ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition)); 1442cb14a3feSDimitry Andric 1443bdd1243dSDimitry Andric Changed = true; 1444bdd1243dSDimitry Andric } 144506c3fb27SDimitry Andric 144606c3fb27SDimitry Andric // Remove entries again. 144706c3fb27SDimitry Andric while (OldSize < DFSInStack.size()) { 144806c3fb27SDimitry Andric StackEntry E = DFSInStack.back(); 144906c3fb27SDimitry Andric removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 145006c3fb27SDimitry Andric DFSInStack); 145106c3fb27SDimitry Andric } 1452bdd1243dSDimitry Andric return Changed; 1453e8d8bef9SDimitry Andric } 1454e8d8bef9SDimitry Andric 145581ad6265SDimitry Andric void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1456bdd1243dSDimitry Andric unsigned NumIn, unsigned NumOut, 145781ad6265SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack) { 145881ad6265SDimitry Andric // If the constraint has a pre-condition, skip the constraint if it does not 145981ad6265SDimitry Andric // hold. 1460bdd1243dSDimitry Andric SmallVector<Value *> NewVariables; 1461bdd1243dSDimitry Andric auto R = getConstraint(Pred, A, B, NewVariables); 146206c3fb27SDimitry Andric 146306c3fb27SDimitry Andric // TODO: Support non-equality for facts as well. 146406c3fb27SDimitry Andric if (!R.isValid(*this) || R.isNe()) 146581ad6265SDimitry Andric return; 146681ad6265SDimitry Andric 14675f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 14685f757f3fSDimitry Andric dbgs() << "'\n"); 146981ad6265SDimitry Andric bool Added = false; 147081ad6265SDimitry Andric auto &CSToUse = getCS(R.IsSigned); 147181ad6265SDimitry Andric if (R.Coefficients.empty()) 147281ad6265SDimitry Andric return; 147381ad6265SDimitry Andric 147481ad6265SDimitry Andric Added |= CSToUse.addVariableRowFill(R.Coefficients); 147581ad6265SDimitry Andric 1476bdd1243dSDimitry Andric // If R has been added to the system, add the new variables and queue it for 1477bdd1243dSDimitry Andric // removal once it goes out-of-scope. 147881ad6265SDimitry Andric if (Added) { 147981ad6265SDimitry Andric SmallVector<Value *, 2> ValuesToRelease; 1480bdd1243dSDimitry Andric auto &Value2Index = getValue2Index(R.IsSigned); 1481bdd1243dSDimitry Andric for (Value *V : NewVariables) { 1482bdd1243dSDimitry Andric Value2Index.insert({V, Value2Index.size() + 1}); 1483bdd1243dSDimitry Andric ValuesToRelease.push_back(V); 148481ad6265SDimitry Andric } 148581ad6265SDimitry Andric 148681ad6265SDimitry Andric LLVM_DEBUG({ 148781ad6265SDimitry Andric dbgs() << " constraint: "; 148806c3fb27SDimitry Andric dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1489bdd1243dSDimitry Andric dbgs() << "\n"; 149081ad6265SDimitry Andric }); 149181ad6265SDimitry Andric 1492bdd1243dSDimitry Andric DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1493bdd1243dSDimitry Andric std::move(ValuesToRelease)); 149481ad6265SDimitry Andric 1495cb14a3feSDimitry Andric if (!R.IsSigned) { 1496cb14a3feSDimitry Andric for (Value *V : NewVariables) { 1497cb14a3feSDimitry Andric ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0), 1498cb14a3feSDimitry Andric false, false, false); 1499cb14a3feSDimitry Andric VarPos.Coefficients[Value2Index[V]] = -1; 1500cb14a3feSDimitry Andric CSToUse.addVariableRow(VarPos.Coefficients); 1501cb14a3feSDimitry Andric DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1502cb14a3feSDimitry Andric SmallVector<Value *, 2>()); 1503cb14a3feSDimitry Andric } 1504cb14a3feSDimitry Andric } 1505cb14a3feSDimitry Andric 150606c3fb27SDimitry Andric if (R.isEq()) { 150781ad6265SDimitry Andric // Also add the inverted constraint for equality constraints. 150881ad6265SDimitry Andric for (auto &Coeff : R.Coefficients) 150981ad6265SDimitry Andric Coeff *= -1; 151081ad6265SDimitry Andric CSToUse.addVariableRowFill(R.Coefficients); 151181ad6265SDimitry Andric 1512bdd1243dSDimitry Andric DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 151381ad6265SDimitry Andric SmallVector<Value *, 2>()); 151481ad6265SDimitry Andric } 151581ad6265SDimitry Andric } 151681ad6265SDimitry Andric } 151781ad6265SDimitry Andric 1518bdd1243dSDimitry Andric static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1519bdd1243dSDimitry Andric SmallVectorImpl<Instruction *> &ToRemove) { 1520bdd1243dSDimitry Andric bool Changed = false; 1521bdd1243dSDimitry Andric IRBuilder<> Builder(II->getParent(), II->getIterator()); 1522bdd1243dSDimitry Andric Value *Sub = nullptr; 1523bdd1243dSDimitry Andric for (User *U : make_early_inc_range(II->users())) { 1524bdd1243dSDimitry Andric if (match(U, m_ExtractValue<0>(m_Value()))) { 1525bdd1243dSDimitry Andric if (!Sub) 1526bdd1243dSDimitry Andric Sub = Builder.CreateSub(A, B); 1527bdd1243dSDimitry Andric U->replaceAllUsesWith(Sub); 1528bdd1243dSDimitry Andric Changed = true; 1529bdd1243dSDimitry Andric } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1530bdd1243dSDimitry Andric U->replaceAllUsesWith(Builder.getFalse()); 1531bdd1243dSDimitry Andric Changed = true; 1532bdd1243dSDimitry Andric } else 1533bdd1243dSDimitry Andric continue; 1534bdd1243dSDimitry Andric 1535bdd1243dSDimitry Andric if (U->use_empty()) { 1536bdd1243dSDimitry Andric auto *I = cast<Instruction>(U); 1537bdd1243dSDimitry Andric ToRemove.push_back(I); 1538bdd1243dSDimitry Andric I->setOperand(0, PoisonValue::get(II->getType())); 1539bdd1243dSDimitry Andric Changed = true; 1540bdd1243dSDimitry Andric } 1541bdd1243dSDimitry Andric } 1542bdd1243dSDimitry Andric 1543bdd1243dSDimitry Andric if (II->use_empty()) { 1544bdd1243dSDimitry Andric II->eraseFromParent(); 1545bdd1243dSDimitry Andric Changed = true; 1546bdd1243dSDimitry Andric } 1547bdd1243dSDimitry Andric return Changed; 1548bdd1243dSDimitry Andric } 1549bdd1243dSDimitry Andric 1550bdd1243dSDimitry Andric static bool 155181ad6265SDimitry Andric tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 155281ad6265SDimitry Andric SmallVectorImpl<Instruction *> &ToRemove) { 155381ad6265SDimitry Andric auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 155481ad6265SDimitry Andric ConstraintInfo &Info) { 1555bdd1243dSDimitry Andric auto R = Info.getConstraintForSolving(Pred, A, B); 1556bdd1243dSDimitry Andric if (R.size() < 2 || !R.isValid(Info)) 155781ad6265SDimitry Andric return false; 155881ad6265SDimitry Andric 1559bdd1243dSDimitry Andric auto &CSToUse = Info.getCS(R.IsSigned); 156081ad6265SDimitry Andric return CSToUse.isConditionImplied(R.Coefficients); 156181ad6265SDimitry Andric }; 156281ad6265SDimitry Andric 1563bdd1243dSDimitry Andric bool Changed = false; 156481ad6265SDimitry Andric if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 156581ad6265SDimitry Andric // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 156681ad6265SDimitry Andric // can be simplified to a regular sub. 156781ad6265SDimitry Andric Value *A = II->getArgOperand(0); 156881ad6265SDimitry Andric Value *B = II->getArgOperand(1); 156981ad6265SDimitry Andric if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 157081ad6265SDimitry Andric !DoesConditionHold(CmpInst::ICMP_SGE, B, 157181ad6265SDimitry Andric ConstantInt::get(A->getType(), 0), Info)) 1572bdd1243dSDimitry Andric return false; 1573bdd1243dSDimitry Andric Changed = replaceSubOverflowUses(II, A, B, ToRemove); 157481ad6265SDimitry Andric } 1575bdd1243dSDimitry Andric return Changed; 157681ad6265SDimitry Andric } 157781ad6265SDimitry Andric 15785f757f3fSDimitry Andric static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 15795f757f3fSDimitry Andric ScalarEvolution &SE, 158006c3fb27SDimitry Andric OptimizationRemarkEmitter &ORE) { 158181ad6265SDimitry Andric bool Changed = false; 158281ad6265SDimitry Andric DT.updateDFSNumbers(); 158306c3fb27SDimitry Andric SmallVector<Value *> FunctionArgs; 158406c3fb27SDimitry Andric for (Value &Arg : F.args()) 158506c3fb27SDimitry Andric FunctionArgs.push_back(&Arg); 158606c3fb27SDimitry Andric ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 15875f757f3fSDimitry Andric State S(DT, LI, SE); 158806c3fb27SDimitry Andric std::unique_ptr<Module> ReproducerModule( 158906c3fb27SDimitry Andric DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 159081ad6265SDimitry Andric 159181ad6265SDimitry Andric // First, collect conditions implied by branches and blocks with their 159281ad6265SDimitry Andric // Dominator DFS in and out numbers. 159381ad6265SDimitry Andric for (BasicBlock &BB : F) { 159481ad6265SDimitry Andric if (!DT.getNode(&BB)) 159581ad6265SDimitry Andric continue; 159681ad6265SDimitry Andric S.addInfoFor(BB); 159781ad6265SDimitry Andric } 159881ad6265SDimitry Andric 1599bdd1243dSDimitry Andric // Next, sort worklist by dominance, so that dominating conditions to check 1600bdd1243dSDimitry Andric // and facts come before conditions and facts dominated by them. If a 1601bdd1243dSDimitry Andric // condition to check and a fact have the same numbers, conditional facts come 1602bdd1243dSDimitry Andric // first. Assume facts and checks are ordered according to their relative 1603bdd1243dSDimitry Andric // order in the containing basic block. Also make sure conditions with 1604bdd1243dSDimitry Andric // constant operands come before conditions without constant operands. This 1605bdd1243dSDimitry Andric // increases the effectiveness of the current signed <-> unsigned fact 1606bdd1243dSDimitry Andric // transfer logic. 1607bdd1243dSDimitry Andric stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1608bdd1243dSDimitry Andric auto HasNoConstOp = [](const FactOrCheck &B) { 16095f757f3fSDimitry Andric Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 16105f757f3fSDimitry Andric Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 16115f757f3fSDimitry Andric return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1612bdd1243dSDimitry Andric }; 1613bdd1243dSDimitry Andric // If both entries have the same In numbers, conditional facts come first. 1614bdd1243dSDimitry Andric // Otherwise use the relative order in the basic block. 1615bdd1243dSDimitry Andric if (A.NumIn == B.NumIn) { 1616bdd1243dSDimitry Andric if (A.isConditionFact() && B.isConditionFact()) { 1617bdd1243dSDimitry Andric bool NoConstOpA = HasNoConstOp(A); 1618bdd1243dSDimitry Andric bool NoConstOpB = HasNoConstOp(B); 1619bdd1243dSDimitry Andric return NoConstOpA < NoConstOpB; 1620bdd1243dSDimitry Andric } 1621bdd1243dSDimitry Andric if (A.isConditionFact()) 1622bdd1243dSDimitry Andric return true; 1623bdd1243dSDimitry Andric if (B.isConditionFact()) 1624bdd1243dSDimitry Andric return false; 162506c3fb27SDimitry Andric auto *InstA = A.getContextInst(); 162606c3fb27SDimitry Andric auto *InstB = B.getContextInst(); 162706c3fb27SDimitry Andric return InstA->comesBefore(InstB); 1628bdd1243dSDimitry Andric } 1629bdd1243dSDimitry Andric return A.NumIn < B.NumIn; 1630e8d8bef9SDimitry Andric }); 1631e8d8bef9SDimitry Andric 163281ad6265SDimitry Andric SmallVector<Instruction *> ToRemove; 163381ad6265SDimitry Andric 1634e8d8bef9SDimitry Andric // Finally, process ordered worklist and eliminate implied conditions. 1635e8d8bef9SDimitry Andric SmallVector<StackEntry, 16> DFSInStack; 163606c3fb27SDimitry Andric SmallVector<ReproducerEntry> ReproducerCondStack; 1637bdd1243dSDimitry Andric for (FactOrCheck &CB : S.WorkList) { 1638e8d8bef9SDimitry Andric // First, pop entries from the stack that are out-of-scope for CB. Remove 1639e8d8bef9SDimitry Andric // the corresponding entry from the constraint system. 1640e8d8bef9SDimitry Andric while (!DFSInStack.empty()) { 1641e8d8bef9SDimitry Andric auto &E = DFSInStack.back(); 1642e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1643e8d8bef9SDimitry Andric << "\n"); 1644e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1645e8d8bef9SDimitry Andric assert(E.NumIn <= CB.NumIn); 1646e8d8bef9SDimitry Andric if (CB.NumOut <= E.NumOut) 1647e8d8bef9SDimitry Andric break; 164881ad6265SDimitry Andric LLVM_DEBUG({ 164981ad6265SDimitry Andric dbgs() << "Removing "; 165006c3fb27SDimitry Andric dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 165181ad6265SDimitry Andric Info.getValue2Index(E.IsSigned)); 165281ad6265SDimitry Andric dbgs() << "\n"; 165381ad6265SDimitry Andric }); 165406c3fb27SDimitry Andric removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 165506c3fb27SDimitry Andric DFSInStack); 1656e8d8bef9SDimitry Andric } 1657e8d8bef9SDimitry Andric 165806c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Processing "); 1659e8d8bef9SDimitry Andric 1660e8d8bef9SDimitry Andric // For a block, check if any CmpInsts become known based on the current set 1661e8d8bef9SDimitry Andric // of constraints. 166206c3fb27SDimitry Andric if (CB.isCheck()) { 166306c3fb27SDimitry Andric Instruction *Inst = CB.getInstructionToSimplify(); 166406c3fb27SDimitry Andric if (!Inst) 166506c3fb27SDimitry Andric continue; 166606c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 166706c3fb27SDimitry Andric if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1668bdd1243dSDimitry Andric Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 166906c3fb27SDimitry Andric } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 167006c3fb27SDimitry Andric bool Simplified = checkAndReplaceCondition( 167106c3fb27SDimitry Andric Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 16725f757f3fSDimitry Andric ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1673cb14a3feSDimitry Andric if (!Simplified && 1674cb14a3feSDimitry Andric match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) { 167506c3fb27SDimitry Andric Simplified = 1676cb14a3feSDimitry Andric checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(), 167706c3fb27SDimitry Andric ReproducerCondStack, DFSInStack); 167806c3fb27SDimitry Andric } 167906c3fb27SDimitry Andric Changed |= Simplified; 1680e8d8bef9SDimitry Andric } 1681e8d8bef9SDimitry Andric continue; 1682e8d8bef9SDimitry Andric } 1683e8d8bef9SDimitry Andric 168406c3fb27SDimitry Andric auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 16855f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "fact to add to the system: "; 16865f757f3fSDimitry Andric dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1687bdd1243dSDimitry Andric if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1688bdd1243dSDimitry Andric LLVM_DEBUG( 1689bdd1243dSDimitry Andric dbgs() 1690bdd1243dSDimitry Andric << "Skip adding constraint because system has too many rows.\n"); 169106c3fb27SDimitry Andric return; 169206c3fb27SDimitry Andric } 169306c3fb27SDimitry Andric 169406c3fb27SDimitry Andric Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 169506c3fb27SDimitry Andric if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 169606c3fb27SDimitry Andric ReproducerCondStack.emplace_back(Pred, A, B); 169706c3fb27SDimitry Andric 169806c3fb27SDimitry Andric Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 169906c3fb27SDimitry Andric if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 170006c3fb27SDimitry Andric // Add dummy entries to ReproducerCondStack to keep it in sync with 170106c3fb27SDimitry Andric // DFSInStack. 170206c3fb27SDimitry Andric for (unsigned I = 0, 170306c3fb27SDimitry Andric E = (DFSInStack.size() - ReproducerCondStack.size()); 170406c3fb27SDimitry Andric I < E; ++I) { 170506c3fb27SDimitry Andric ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 170606c3fb27SDimitry Andric nullptr, nullptr); 170706c3fb27SDimitry Andric } 170806c3fb27SDimitry Andric } 170906c3fb27SDimitry Andric }; 171006c3fb27SDimitry Andric 171106c3fb27SDimitry Andric ICmpInst::Predicate Pred; 17125f757f3fSDimitry Andric if (!CB.isConditionFact()) { 1713*647cbc5dSDimitry Andric Value *X; 1714*647cbc5dSDimitry Andric if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) { 1715*647cbc5dSDimitry Andric // TODO: Add CB.Inst >= 0 fact. 1716*647cbc5dSDimitry Andric AddFact(CmpInst::ICMP_SGE, CB.Inst, X); 1717*647cbc5dSDimitry Andric continue; 1718*647cbc5dSDimitry Andric } 1719*647cbc5dSDimitry Andric 172006c3fb27SDimitry Andric if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 172106c3fb27SDimitry Andric Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 172206c3fb27SDimitry Andric AddFact(Pred, MinMax, MinMax->getLHS()); 172306c3fb27SDimitry Andric AddFact(Pred, MinMax, MinMax->getRHS()); 1724bdd1243dSDimitry Andric continue; 1725bdd1243dSDimitry Andric } 1726e8d8bef9SDimitry Andric } 17275f757f3fSDimitry Andric 17285f757f3fSDimitry Andric Value *A = nullptr, *B = nullptr; 17295f757f3fSDimitry Andric if (CB.isConditionFact()) { 17305f757f3fSDimitry Andric Pred = CB.Cond.Pred; 17315f757f3fSDimitry Andric A = CB.Cond.Op0; 17325f757f3fSDimitry Andric B = CB.Cond.Op1; 17335f757f3fSDimitry Andric if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 17345f757f3fSDimitry Andric !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 17355f757f3fSDimitry Andric continue; 17365f757f3fSDimitry Andric } else { 17375f757f3fSDimitry Andric bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 17385f757f3fSDimitry Andric m_ICmp(Pred, m_Value(A), m_Value(B)))); 17395f757f3fSDimitry Andric (void)Matched; 17405f757f3fSDimitry Andric assert(Matched && "Must have an assume intrinsic with a icmp operand"); 17415f757f3fSDimitry Andric } 17425f757f3fSDimitry Andric AddFact(Pred, A, B); 1743fe6060f1SDimitry Andric } 1744e8d8bef9SDimitry Andric 174506c3fb27SDimitry Andric if (ReproducerModule && !ReproducerModule->functions().empty()) { 174606c3fb27SDimitry Andric std::string S; 174706c3fb27SDimitry Andric raw_string_ostream StringS(S); 174806c3fb27SDimitry Andric ReproducerModule->print(StringS, nullptr); 174906c3fb27SDimitry Andric StringS.flush(); 175006c3fb27SDimitry Andric OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 175106c3fb27SDimitry Andric Rem << ore::NV("module") << S; 175206c3fb27SDimitry Andric ORE.emit(Rem); 175306c3fb27SDimitry Andric } 175406c3fb27SDimitry Andric 175581ad6265SDimitry Andric #ifndef NDEBUG 175681ad6265SDimitry Andric unsigned SignedEntries = 175781ad6265SDimitry Andric count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1758cb14a3feSDimitry Andric assert(Info.getCS(false).size() - FunctionArgs.size() == 1759cb14a3feSDimitry Andric DFSInStack.size() - SignedEntries && 1760fe6060f1SDimitry Andric "updates to CS and DFSInStack are out of sync"); 176181ad6265SDimitry Andric assert(Info.getCS(true).size() == SignedEntries && 176281ad6265SDimitry Andric "updates to CS and DFSInStack are out of sync"); 176381ad6265SDimitry Andric #endif 176481ad6265SDimitry Andric 176581ad6265SDimitry Andric for (Instruction *I : ToRemove) 176681ad6265SDimitry Andric I->eraseFromParent(); 1767e8d8bef9SDimitry Andric return Changed; 1768e8d8bef9SDimitry Andric } 1769e8d8bef9SDimitry Andric 1770e8d8bef9SDimitry Andric PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1771e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 1772e8d8bef9SDimitry Andric auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 17735f757f3fSDimitry Andric auto &LI = AM.getResult<LoopAnalysis>(F); 17745f757f3fSDimitry Andric auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 177506c3fb27SDimitry Andric auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 17765f757f3fSDimitry Andric if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1777e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 1778e8d8bef9SDimitry Andric 1779e8d8bef9SDimitry Andric PreservedAnalyses PA; 1780e8d8bef9SDimitry Andric PA.preserve<DominatorTreeAnalysis>(); 17815f757f3fSDimitry Andric PA.preserve<LoopAnalysis>(); 17825f757f3fSDimitry Andric PA.preserve<ScalarEvolutionAnalysis>(); 1783e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1784e8d8bef9SDimitry Andric return PA; 1785e8d8bef9SDimitry Andric } 1786