1e8d8bef9SDimitry Andric //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2e8d8bef9SDimitry Andric // 3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e8d8bef9SDimitry Andric // 7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 8e8d8bef9SDimitry Andric // 9e8d8bef9SDimitry Andric // Eliminate conditions based on constraints collected from dominating 10e8d8bef9SDimitry Andric // conditions. 11e8d8bef9SDimitry Andric // 12e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===// 13e8d8bef9SDimitry Andric 14e8d8bef9SDimitry Andric #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15e8d8bef9SDimitry Andric #include "llvm/ADT/STLExtras.h" 16fe6060f1SDimitry Andric #include "llvm/ADT/ScopeExit.h" 17e8d8bef9SDimitry Andric #include "llvm/ADT/SmallVector.h" 18e8d8bef9SDimitry Andric #include "llvm/ADT/Statistic.h" 19e8d8bef9SDimitry Andric #include "llvm/Analysis/ConstraintSystem.h" 20e8d8bef9SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h" 21*5f757f3fSDimitry Andric #include "llvm/Analysis/LoopInfo.h" 2206c3fb27SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23*5f757f3fSDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 24*5f757f3fSDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25349cc55cSDimitry Andric #include "llvm/Analysis/ValueTracking.h" 26bdd1243dSDimitry Andric #include "llvm/IR/DataLayout.h" 27e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 28e8d8bef9SDimitry Andric #include "llvm/IR/Function.h" 2981ad6265SDimitry Andric #include "llvm/IR/IRBuilder.h" 30*5f757f3fSDimitry Andric #include "llvm/IR/InstrTypes.h" 31e8d8bef9SDimitry Andric #include "llvm/IR/Instructions.h" 32e8d8bef9SDimitry Andric #include "llvm/IR/PatternMatch.h" 3306c3fb27SDimitry Andric #include "llvm/IR/Verifier.h" 34e8d8bef9SDimitry Andric #include "llvm/Pass.h" 35bdd1243dSDimitry Andric #include "llvm/Support/CommandLine.h" 36e8d8bef9SDimitry Andric #include "llvm/Support/Debug.h" 37e8d8bef9SDimitry Andric #include "llvm/Support/DebugCounter.h" 3881ad6265SDimitry Andric #include "llvm/Support/MathExtras.h" 3906c3fb27SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h" 4006c3fb27SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h" 41e8d8bef9SDimitry Andric 42bdd1243dSDimitry Andric #include <cmath> 4306c3fb27SDimitry Andric #include <optional> 44fe6060f1SDimitry Andric #include <string> 45fe6060f1SDimitry Andric 46e8d8bef9SDimitry Andric using namespace llvm; 47e8d8bef9SDimitry Andric using namespace PatternMatch; 48e8d8bef9SDimitry Andric 49e8d8bef9SDimitry Andric #define DEBUG_TYPE "constraint-elimination" 50e8d8bef9SDimitry Andric 51e8d8bef9SDimitry Andric STATISTIC(NumCondsRemoved, "Number of instructions removed"); 52e8d8bef9SDimitry Andric DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 53e8d8bef9SDimitry Andric "Controls which conditions are eliminated"); 54e8d8bef9SDimitry Andric 55bdd1243dSDimitry Andric static cl::opt<unsigned> 56bdd1243dSDimitry Andric MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 57bdd1243dSDimitry Andric cl::desc("Maximum number of rows to keep in constraint system")); 58bdd1243dSDimitry Andric 5906c3fb27SDimitry Andric static cl::opt<bool> DumpReproducers( 6006c3fb27SDimitry Andric "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 6106c3fb27SDimitry Andric cl::desc("Dump IR to reproduce successful transformations.")); 6206c3fb27SDimitry Andric 63e8d8bef9SDimitry Andric static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 6481ad6265SDimitry Andric static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 65e8d8bef9SDimitry Andric 66bdd1243dSDimitry Andric // A helper to multiply 2 signed integers where overflowing is allowed. 67bdd1243dSDimitry Andric static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 68bdd1243dSDimitry Andric int64_t Result; 69bdd1243dSDimitry Andric MulOverflow(A, B, Result); 70bdd1243dSDimitry Andric return Result; 71bdd1243dSDimitry Andric } 72bdd1243dSDimitry Andric 73bdd1243dSDimitry Andric // A helper to add 2 signed integers where overflowing is allowed. 74bdd1243dSDimitry Andric static int64_t addWithOverflow(int64_t A, int64_t B) { 75bdd1243dSDimitry Andric int64_t Result; 76bdd1243dSDimitry Andric AddOverflow(A, B, Result); 77bdd1243dSDimitry Andric return Result; 78bdd1243dSDimitry Andric } 79bdd1243dSDimitry Andric 8006c3fb27SDimitry Andric static Instruction *getContextInstForUse(Use &U) { 8106c3fb27SDimitry Andric Instruction *UserI = cast<Instruction>(U.getUser()); 8206c3fb27SDimitry Andric if (auto *Phi = dyn_cast<PHINode>(UserI)) 8306c3fb27SDimitry Andric UserI = Phi->getIncomingBlock(U)->getTerminator(); 8406c3fb27SDimitry Andric return UserI; 8506c3fb27SDimitry Andric } 8606c3fb27SDimitry Andric 8704eeddc0SDimitry Andric namespace { 88*5f757f3fSDimitry Andric /// Struct to express a condition of the form %Op0 Pred %Op1. 89*5f757f3fSDimitry Andric struct ConditionTy { 90*5f757f3fSDimitry Andric CmpInst::Predicate Pred; 91*5f757f3fSDimitry Andric Value *Op0; 92*5f757f3fSDimitry Andric Value *Op1; 93*5f757f3fSDimitry Andric 94*5f757f3fSDimitry Andric ConditionTy() 95*5f757f3fSDimitry Andric : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 96*5f757f3fSDimitry Andric ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 97*5f757f3fSDimitry Andric : Pred(Pred), Op0(Op0), Op1(Op1) {} 98*5f757f3fSDimitry Andric }; 99*5f757f3fSDimitry Andric 10006c3fb27SDimitry Andric /// Represents either 101*5f757f3fSDimitry Andric /// * a condition that holds on entry to a block (=condition fact) 10206c3fb27SDimitry Andric /// * an assume (=assume fact) 10306c3fb27SDimitry Andric /// * a use of a compare instruction to simplify. 10406c3fb27SDimitry Andric /// It also tracks the Dominator DFS in and out numbers for each entry. 10506c3fb27SDimitry Andric struct FactOrCheck { 106*5f757f3fSDimitry Andric enum class EntryTy { 107*5f757f3fSDimitry Andric ConditionFact, /// A condition that holds on entry to a block. 108*5f757f3fSDimitry Andric InstFact, /// A fact that holds after Inst executed (e.g. an assume or 109*5f757f3fSDimitry Andric /// min/mix intrinsic. 110*5f757f3fSDimitry Andric InstCheck, /// An instruction to simplify (e.g. an overflow math 111*5f757f3fSDimitry Andric /// intrinsics). 112*5f757f3fSDimitry Andric UseCheck /// An use of a compare instruction to simplify. 113*5f757f3fSDimitry Andric }; 114*5f757f3fSDimitry Andric 11506c3fb27SDimitry Andric union { 11606c3fb27SDimitry Andric Instruction *Inst; 11706c3fb27SDimitry Andric Use *U; 118*5f757f3fSDimitry Andric ConditionTy Cond; 11906c3fb27SDimitry Andric }; 120*5f757f3fSDimitry Andric 121*5f757f3fSDimitry Andric /// A pre-condition that must hold for the current fact to be added to the 122*5f757f3fSDimitry Andric /// system. 123*5f757f3fSDimitry Andric ConditionTy DoesHold; 124*5f757f3fSDimitry Andric 12506c3fb27SDimitry Andric unsigned NumIn; 12606c3fb27SDimitry Andric unsigned NumOut; 127*5f757f3fSDimitry Andric EntryTy Ty; 12806c3fb27SDimitry Andric 129*5f757f3fSDimitry Andric FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 13006c3fb27SDimitry Andric : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 131*5f757f3fSDimitry Andric Ty(Ty) {} 13206c3fb27SDimitry Andric 13306c3fb27SDimitry Andric FactOrCheck(DomTreeNode *DTN, Use *U) 134*5f757f3fSDimitry Andric : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 135*5f757f3fSDimitry Andric NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 136*5f757f3fSDimitry Andric Ty(EntryTy::UseCheck) {} 13706c3fb27SDimitry Andric 138*5f757f3fSDimitry Andric FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 139*5f757f3fSDimitry Andric ConditionTy Precond = ConditionTy()) 140*5f757f3fSDimitry Andric : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 141*5f757f3fSDimitry Andric NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 142*5f757f3fSDimitry Andric 143*5f757f3fSDimitry Andric static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 144*5f757f3fSDimitry Andric Value *Op0, Value *Op1, 145*5f757f3fSDimitry Andric ConditionTy Precond = ConditionTy()) { 146*5f757f3fSDimitry Andric return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 147*5f757f3fSDimitry Andric } 148*5f757f3fSDimitry Andric 149*5f757f3fSDimitry Andric static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 150*5f757f3fSDimitry Andric return FactOrCheck(EntryTy::InstFact, DTN, Inst); 15106c3fb27SDimitry Andric } 15206c3fb27SDimitry Andric 15306c3fb27SDimitry Andric static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 15406c3fb27SDimitry Andric return FactOrCheck(DTN, U); 15506c3fb27SDimitry Andric } 15606c3fb27SDimitry Andric 15706c3fb27SDimitry Andric static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 158*5f757f3fSDimitry Andric return FactOrCheck(EntryTy::InstCheck, DTN, CI); 15906c3fb27SDimitry Andric } 16006c3fb27SDimitry Andric 16106c3fb27SDimitry Andric bool isCheck() const { 162*5f757f3fSDimitry Andric return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 16306c3fb27SDimitry Andric } 16406c3fb27SDimitry Andric 16506c3fb27SDimitry Andric Instruction *getContextInst() const { 166*5f757f3fSDimitry Andric if (Ty == EntryTy::UseCheck) 16706c3fb27SDimitry Andric return getContextInstForUse(*U); 168*5f757f3fSDimitry Andric return Inst; 16906c3fb27SDimitry Andric } 170*5f757f3fSDimitry Andric 17106c3fb27SDimitry Andric Instruction *getInstructionToSimplify() const { 17206c3fb27SDimitry Andric assert(isCheck()); 173*5f757f3fSDimitry Andric if (Ty == EntryTy::InstCheck) 17406c3fb27SDimitry Andric return Inst; 17506c3fb27SDimitry Andric // The use may have been simplified to a constant already. 17606c3fb27SDimitry Andric return dyn_cast<Instruction>(*U); 17706c3fb27SDimitry Andric } 178*5f757f3fSDimitry Andric 179*5f757f3fSDimitry Andric bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 18006c3fb27SDimitry Andric }; 18106c3fb27SDimitry Andric 18206c3fb27SDimitry Andric /// Keep state required to build worklist. 18306c3fb27SDimitry Andric struct State { 18406c3fb27SDimitry Andric DominatorTree &DT; 185*5f757f3fSDimitry Andric LoopInfo &LI; 186*5f757f3fSDimitry Andric ScalarEvolution &SE; 18706c3fb27SDimitry Andric SmallVector<FactOrCheck, 64> WorkList; 18806c3fb27SDimitry Andric 189*5f757f3fSDimitry Andric State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 190*5f757f3fSDimitry Andric : DT(DT), LI(LI), SE(SE) {} 19106c3fb27SDimitry Andric 19206c3fb27SDimitry Andric /// Process block \p BB and add known facts to work-list. 19306c3fb27SDimitry Andric void addInfoFor(BasicBlock &BB); 19406c3fb27SDimitry Andric 195*5f757f3fSDimitry Andric /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 196*5f757f3fSDimitry Andric /// controlling the loop header. 197*5f757f3fSDimitry Andric void addInfoForInductions(BasicBlock &BB); 198*5f757f3fSDimitry Andric 19906c3fb27SDimitry Andric /// Returns true if we can add a known condition from BB to its successor 20006c3fb27SDimitry Andric /// block Succ. 20106c3fb27SDimitry Andric bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 20206c3fb27SDimitry Andric return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 20306c3fb27SDimitry Andric } 20406c3fb27SDimitry Andric }; 20504eeddc0SDimitry Andric 20681ad6265SDimitry Andric class ConstraintInfo; 20704eeddc0SDimitry Andric 20881ad6265SDimitry Andric struct StackEntry { 20981ad6265SDimitry Andric unsigned NumIn; 21081ad6265SDimitry Andric unsigned NumOut; 21181ad6265SDimitry Andric bool IsSigned = false; 21281ad6265SDimitry Andric /// Variables that can be removed from the system once the stack entry gets 21381ad6265SDimitry Andric /// removed. 21481ad6265SDimitry Andric SmallVector<Value *, 2> ValuesToRelease; 21581ad6265SDimitry Andric 216bdd1243dSDimitry Andric StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 21781ad6265SDimitry Andric SmallVector<Value *, 2> ValuesToRelease) 218bdd1243dSDimitry Andric : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 21981ad6265SDimitry Andric ValuesToRelease(ValuesToRelease) {} 22004eeddc0SDimitry Andric }; 22104eeddc0SDimitry Andric 22281ad6265SDimitry Andric struct ConstraintTy { 22381ad6265SDimitry Andric SmallVector<int64_t, 8> Coefficients; 224*5f757f3fSDimitry Andric SmallVector<ConditionTy, 2> Preconditions; 22504eeddc0SDimitry Andric 226bdd1243dSDimitry Andric SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 227bdd1243dSDimitry Andric 22881ad6265SDimitry Andric bool IsSigned = false; 22904eeddc0SDimitry Andric 23081ad6265SDimitry Andric ConstraintTy() = default; 23104eeddc0SDimitry Andric 23206c3fb27SDimitry Andric ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 23306c3fb27SDimitry Andric bool IsNe) 23406c3fb27SDimitry Andric : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 23506c3fb27SDimitry Andric } 23681ad6265SDimitry Andric 23781ad6265SDimitry Andric unsigned size() const { return Coefficients.size(); } 23881ad6265SDimitry Andric 23981ad6265SDimitry Andric unsigned empty() const { return Coefficients.empty(); } 24004eeddc0SDimitry Andric 24181ad6265SDimitry Andric /// Returns true if all preconditions for this list of constraints are 24281ad6265SDimitry Andric /// satisfied given \p CS and the corresponding \p Value2Index mapping. 24381ad6265SDimitry Andric bool isValid(const ConstraintInfo &Info) const; 24406c3fb27SDimitry Andric 24506c3fb27SDimitry Andric bool isEq() const { return IsEq; } 24606c3fb27SDimitry Andric 24706c3fb27SDimitry Andric bool isNe() const { return IsNe; } 24806c3fb27SDimitry Andric 24906c3fb27SDimitry Andric /// Check if the current constraint is implied by the given ConstraintSystem. 25006c3fb27SDimitry Andric /// 25106c3fb27SDimitry Andric /// \return true or false if the constraint is proven to be respectively true, 25206c3fb27SDimitry Andric /// or false. When the constraint cannot be proven to be either true or false, 25306c3fb27SDimitry Andric /// std::nullopt is returned. 25406c3fb27SDimitry Andric std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 25506c3fb27SDimitry Andric 25606c3fb27SDimitry Andric private: 25706c3fb27SDimitry Andric bool IsEq = false; 25806c3fb27SDimitry Andric bool IsNe = false; 25981ad6265SDimitry Andric }; 26081ad6265SDimitry Andric 26181ad6265SDimitry Andric /// Wrapper encapsulating separate constraint systems and corresponding value 26281ad6265SDimitry Andric /// mappings for both unsigned and signed information. Facts are added to and 26381ad6265SDimitry Andric /// conditions are checked against the corresponding system depending on the 26481ad6265SDimitry Andric /// signed-ness of their predicates. While the information is kept separate 26581ad6265SDimitry Andric /// based on signed-ness, certain conditions can be transferred between the two 26681ad6265SDimitry Andric /// systems. 26781ad6265SDimitry Andric class ConstraintInfo { 26881ad6265SDimitry Andric 26981ad6265SDimitry Andric ConstraintSystem UnsignedCS; 27081ad6265SDimitry Andric ConstraintSystem SignedCS; 27181ad6265SDimitry Andric 272bdd1243dSDimitry Andric const DataLayout &DL; 273bdd1243dSDimitry Andric 27481ad6265SDimitry Andric public: 27506c3fb27SDimitry Andric ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 27606c3fb27SDimitry Andric : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 277bdd1243dSDimitry Andric 27881ad6265SDimitry Andric DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 27906c3fb27SDimitry Andric return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 28081ad6265SDimitry Andric } 28181ad6265SDimitry Andric const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 28206c3fb27SDimitry Andric return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 28381ad6265SDimitry Andric } 28481ad6265SDimitry Andric 28581ad6265SDimitry Andric ConstraintSystem &getCS(bool Signed) { 28681ad6265SDimitry Andric return Signed ? SignedCS : UnsignedCS; 28781ad6265SDimitry Andric } 28881ad6265SDimitry Andric const ConstraintSystem &getCS(bool Signed) const { 28981ad6265SDimitry Andric return Signed ? SignedCS : UnsignedCS; 29081ad6265SDimitry Andric } 29181ad6265SDimitry Andric 29281ad6265SDimitry Andric void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 29381ad6265SDimitry Andric void popLastNVariables(bool Signed, unsigned N) { 29481ad6265SDimitry Andric getCS(Signed).popLastNVariables(N); 29581ad6265SDimitry Andric } 29681ad6265SDimitry Andric 29781ad6265SDimitry Andric bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 29881ad6265SDimitry Andric 299bdd1243dSDimitry Andric void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 300bdd1243dSDimitry Andric unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 30181ad6265SDimitry Andric 30281ad6265SDimitry Andric /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 30381ad6265SDimitry Andric /// constraints, using indices from the corresponding constraint system. 304bdd1243dSDimitry Andric /// New variables that need to be added to the system are collected in 305bdd1243dSDimitry Andric /// \p NewVariables. 30681ad6265SDimitry Andric ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 307bdd1243dSDimitry Andric SmallVectorImpl<Value *> &NewVariables) const; 30881ad6265SDimitry Andric 309bdd1243dSDimitry Andric /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 310bdd1243dSDimitry Andric /// constraints using getConstraint. Returns an empty constraint if the result 311bdd1243dSDimitry Andric /// cannot be used to query the existing constraint system, e.g. because it 312bdd1243dSDimitry Andric /// would require adding new variables. Also tries to convert signed 313bdd1243dSDimitry Andric /// predicates to unsigned ones if possible to allow using the unsigned system 314bdd1243dSDimitry Andric /// which increases the effectiveness of the signed <-> unsigned transfer 315bdd1243dSDimitry Andric /// logic. 316bdd1243dSDimitry Andric ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 317bdd1243dSDimitry Andric Value *Op1) const; 31881ad6265SDimitry Andric 31981ad6265SDimitry Andric /// Try to add information from \p A \p Pred \p B to the unsigned/signed 32081ad6265SDimitry Andric /// system if \p Pred is signed/unsigned. 32181ad6265SDimitry Andric void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 322bdd1243dSDimitry Andric unsigned NumIn, unsigned NumOut, 32381ad6265SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack); 32404eeddc0SDimitry Andric }; 32504eeddc0SDimitry Andric 326bdd1243dSDimitry Andric /// Represents a (Coefficient * Variable) entry after IR decomposition. 327bdd1243dSDimitry Andric struct DecompEntry { 328bdd1243dSDimitry Andric int64_t Coefficient; 329bdd1243dSDimitry Andric Value *Variable; 330bdd1243dSDimitry Andric /// True if the variable is known positive in the current constraint. 331bdd1243dSDimitry Andric bool IsKnownNonNegative; 332bdd1243dSDimitry Andric 333bdd1243dSDimitry Andric DecompEntry(int64_t Coefficient, Value *Variable, 334bdd1243dSDimitry Andric bool IsKnownNonNegative = false) 335bdd1243dSDimitry Andric : Coefficient(Coefficient), Variable(Variable), 336bdd1243dSDimitry Andric IsKnownNonNegative(IsKnownNonNegative) {} 337bdd1243dSDimitry Andric }; 338bdd1243dSDimitry Andric 339bdd1243dSDimitry Andric /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 340bdd1243dSDimitry Andric struct Decomposition { 341bdd1243dSDimitry Andric int64_t Offset = 0; 342bdd1243dSDimitry Andric SmallVector<DecompEntry, 3> Vars; 343bdd1243dSDimitry Andric 344bdd1243dSDimitry Andric Decomposition(int64_t Offset) : Offset(Offset) {} 345bdd1243dSDimitry Andric Decomposition(Value *V, bool IsKnownNonNegative = false) { 346bdd1243dSDimitry Andric Vars.emplace_back(1, V, IsKnownNonNegative); 347bdd1243dSDimitry Andric } 348bdd1243dSDimitry Andric Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 349bdd1243dSDimitry Andric : Offset(Offset), Vars(Vars) {} 350bdd1243dSDimitry Andric 351bdd1243dSDimitry Andric void add(int64_t OtherOffset) { 352bdd1243dSDimitry Andric Offset = addWithOverflow(Offset, OtherOffset); 353bdd1243dSDimitry Andric } 354bdd1243dSDimitry Andric 355bdd1243dSDimitry Andric void add(const Decomposition &Other) { 356bdd1243dSDimitry Andric add(Other.Offset); 357bdd1243dSDimitry Andric append_range(Vars, Other.Vars); 358bdd1243dSDimitry Andric } 359bdd1243dSDimitry Andric 360bdd1243dSDimitry Andric void mul(int64_t Factor) { 361bdd1243dSDimitry Andric Offset = multiplyWithOverflow(Offset, Factor); 362bdd1243dSDimitry Andric for (auto &Var : Vars) 363bdd1243dSDimitry Andric Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 364bdd1243dSDimitry Andric } 365bdd1243dSDimitry Andric }; 366bdd1243dSDimitry Andric 367*5f757f3fSDimitry Andric // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 368*5f757f3fSDimitry Andric struct OffsetResult { 369*5f757f3fSDimitry Andric Value *BasePtr; 370*5f757f3fSDimitry Andric APInt ConstantOffset; 371*5f757f3fSDimitry Andric MapVector<Value *, APInt> VariableOffsets; 372*5f757f3fSDimitry Andric bool AllInbounds; 373*5f757f3fSDimitry Andric 374*5f757f3fSDimitry Andric OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 375*5f757f3fSDimitry Andric 376*5f757f3fSDimitry Andric OffsetResult(GEPOperator &GEP, const DataLayout &DL) 377*5f757f3fSDimitry Andric : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 378*5f757f3fSDimitry Andric ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 379*5f757f3fSDimitry Andric } 380*5f757f3fSDimitry Andric }; 38104eeddc0SDimitry Andric } // namespace 38204eeddc0SDimitry Andric 383*5f757f3fSDimitry Andric // Try to collect variable and constant offsets for \p GEP, partly traversing 384*5f757f3fSDimitry Andric // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 385*5f757f3fSDimitry Andric // the offset fails. 386*5f757f3fSDimitry Andric static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 387*5f757f3fSDimitry Andric OffsetResult Result(GEP, DL); 388*5f757f3fSDimitry Andric unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 389*5f757f3fSDimitry Andric if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 390*5f757f3fSDimitry Andric Result.ConstantOffset)) 391*5f757f3fSDimitry Andric return {}; 392*5f757f3fSDimitry Andric 393*5f757f3fSDimitry Andric // If we have a nested GEP, check if we can combine the constant offset of the 394*5f757f3fSDimitry Andric // inner GEP with the outer GEP. 395*5f757f3fSDimitry Andric if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 396*5f757f3fSDimitry Andric MapVector<Value *, APInt> VariableOffsets2; 397*5f757f3fSDimitry Andric APInt ConstantOffset2(BitWidth, 0); 398*5f757f3fSDimitry Andric bool CanCollectInner = InnerGEP->collectOffset( 399*5f757f3fSDimitry Andric DL, BitWidth, VariableOffsets2, ConstantOffset2); 400*5f757f3fSDimitry Andric // TODO: Support cases with more than 1 variable offset. 401*5f757f3fSDimitry Andric if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 402*5f757f3fSDimitry Andric VariableOffsets2.size() > 1 || 403*5f757f3fSDimitry Andric (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 404*5f757f3fSDimitry Andric // More than 1 variable index, use outer result. 405*5f757f3fSDimitry Andric return Result; 406*5f757f3fSDimitry Andric } 407*5f757f3fSDimitry Andric Result.BasePtr = InnerGEP->getPointerOperand(); 408*5f757f3fSDimitry Andric Result.ConstantOffset += ConstantOffset2; 409*5f757f3fSDimitry Andric if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 410*5f757f3fSDimitry Andric Result.VariableOffsets = VariableOffsets2; 411*5f757f3fSDimitry Andric Result.AllInbounds &= InnerGEP->isInBounds(); 412*5f757f3fSDimitry Andric } 413*5f757f3fSDimitry Andric return Result; 414*5f757f3fSDimitry Andric } 415*5f757f3fSDimitry Andric 416bdd1243dSDimitry Andric static Decomposition decompose(Value *V, 417*5f757f3fSDimitry Andric SmallVectorImpl<ConditionTy> &Preconditions, 418bdd1243dSDimitry Andric bool IsSigned, const DataLayout &DL); 41981ad6265SDimitry Andric 420bdd1243dSDimitry Andric static bool canUseSExt(ConstantInt *CI) { 42181ad6265SDimitry Andric const APInt &Val = CI->getValue(); 42281ad6265SDimitry Andric return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 423bdd1243dSDimitry Andric } 424bdd1243dSDimitry Andric 425*5f757f3fSDimitry Andric static Decomposition decomposeGEP(GEPOperator &GEP, 426*5f757f3fSDimitry Andric SmallVectorImpl<ConditionTy> &Preconditions, 42706c3fb27SDimitry Andric bool IsSigned, const DataLayout &DL) { 428bdd1243dSDimitry Andric // Do not reason about pointers where the index size is larger than 64 bits, 429bdd1243dSDimitry Andric // as the coefficients used to encode constraints are 64 bit integers. 430bdd1243dSDimitry Andric if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 431bdd1243dSDimitry Andric return &GEP; 432bdd1243dSDimitry Andric 433bdd1243dSDimitry Andric assert(!IsSigned && "The logic below only supports decomposition for " 434*5f757f3fSDimitry Andric "unsigned predicates at the moment."); 435*5f757f3fSDimitry Andric const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 436*5f757f3fSDimitry Andric collectOffsets(GEP, DL); 437*5f757f3fSDimitry Andric if (!BasePtr || !AllInbounds) 438bdd1243dSDimitry Andric return &GEP; 439bdd1243dSDimitry Andric 440*5f757f3fSDimitry Andric Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 441bdd1243dSDimitry Andric for (auto [Index, Scale] : VariableOffsets) { 442bdd1243dSDimitry Andric auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 443bdd1243dSDimitry Andric IdxResult.mul(Scale.getSExtValue()); 444bdd1243dSDimitry Andric Result.add(IdxResult); 445bdd1243dSDimitry Andric 446bdd1243dSDimitry Andric // If Op0 is signed non-negative, the GEP is increasing monotonically and 447bdd1243dSDimitry Andric // can be de-composed. 448bdd1243dSDimitry Andric if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 449bdd1243dSDimitry Andric Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 450bdd1243dSDimitry Andric ConstantInt::get(Index->getType(), 0)); 451bdd1243dSDimitry Andric } 452bdd1243dSDimitry Andric return Result; 453bdd1243dSDimitry Andric } 454bdd1243dSDimitry Andric 455bdd1243dSDimitry Andric // Decomposes \p V into a constant offset + list of pairs { Coefficient, 456bdd1243dSDimitry Andric // Variable } where Coefficient * Variable. The sum of the constant offset and 457bdd1243dSDimitry Andric // pairs equals \p V. 458bdd1243dSDimitry Andric static Decomposition decompose(Value *V, 459*5f757f3fSDimitry Andric SmallVectorImpl<ConditionTy> &Preconditions, 460bdd1243dSDimitry Andric bool IsSigned, const DataLayout &DL) { 461bdd1243dSDimitry Andric 462bdd1243dSDimitry Andric auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 463bdd1243dSDimitry Andric bool IsSignedB) { 464bdd1243dSDimitry Andric auto ResA = decompose(A, Preconditions, IsSigned, DL); 465bdd1243dSDimitry Andric auto ResB = decompose(B, Preconditions, IsSignedB, DL); 466bdd1243dSDimitry Andric ResA.add(ResB); 467bdd1243dSDimitry Andric return ResA; 46881ad6265SDimitry Andric }; 469bdd1243dSDimitry Andric 470b121cb00SDimitry Andric Type *Ty = V->getType()->getScalarType(); 471b121cb00SDimitry Andric if (Ty->isPointerTy() && !IsSigned) { 472b121cb00SDimitry Andric if (auto *GEP = dyn_cast<GEPOperator>(V)) 473b121cb00SDimitry Andric return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 474*5f757f3fSDimitry Andric if (isa<ConstantPointerNull>(V)) 475*5f757f3fSDimitry Andric return int64_t(0); 476*5f757f3fSDimitry Andric 477b121cb00SDimitry Andric return V; 478b121cb00SDimitry Andric } 479b121cb00SDimitry Andric 480b121cb00SDimitry Andric // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 481b121cb00SDimitry Andric // coefficient add/mul may wrap, while the operation in the full bit width 482b121cb00SDimitry Andric // would not. 483b121cb00SDimitry Andric if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 484b121cb00SDimitry Andric return V; 485b121cb00SDimitry Andric 48681ad6265SDimitry Andric // Decompose \p V used with a signed predicate. 48781ad6265SDimitry Andric if (IsSigned) { 488e8d8bef9SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(V)) { 489bdd1243dSDimitry Andric if (canUseSExt(CI)) 490bdd1243dSDimitry Andric return CI->getSExtValue(); 491e8d8bef9SDimitry Andric } 492bdd1243dSDimitry Andric Value *Op0; 493bdd1243dSDimitry Andric Value *Op1; 494bdd1243dSDimitry Andric if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 495bdd1243dSDimitry Andric return MergeResults(Op0, Op1, IsSigned); 49681ad6265SDimitry Andric 49706c3fb27SDimitry Andric ConstantInt *CI; 4988a4dda33SDimitry Andric if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 49906c3fb27SDimitry Andric auto Result = decompose(Op0, Preconditions, IsSigned, DL); 50006c3fb27SDimitry Andric Result.mul(CI->getSExtValue()); 50106c3fb27SDimitry Andric return Result; 50206c3fb27SDimitry Andric } 50306c3fb27SDimitry Andric 504bdd1243dSDimitry Andric return V; 50581ad6265SDimitry Andric } 50681ad6265SDimitry Andric 50781ad6265SDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(V)) { 50881ad6265SDimitry Andric if (CI->uge(MaxConstraintValue)) 509bdd1243dSDimitry Andric return V; 510bdd1243dSDimitry Andric return int64_t(CI->getZExtValue()); 511fe6060f1SDimitry Andric } 512fe6060f1SDimitry Andric 513e8d8bef9SDimitry Andric Value *Op0; 514bdd1243dSDimitry Andric bool IsKnownNonNegative = false; 515bdd1243dSDimitry Andric if (match(V, m_ZExt(m_Value(Op0)))) { 516bdd1243dSDimitry Andric IsKnownNonNegative = true; 517fe6060f1SDimitry Andric V = Op0; 518bdd1243dSDimitry Andric } 519fe6060f1SDimitry Andric 520e8d8bef9SDimitry Andric Value *Op1; 521e8d8bef9SDimitry Andric ConstantInt *CI; 522bdd1243dSDimitry Andric if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 523bdd1243dSDimitry Andric return MergeResults(Op0, Op1, IsSigned); 524bdd1243dSDimitry Andric } 525bdd1243dSDimitry Andric if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 526bdd1243dSDimitry Andric if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 527bdd1243dSDimitry Andric Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 528bdd1243dSDimitry Andric ConstantInt::get(Op0->getType(), 0)); 529bdd1243dSDimitry Andric if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 530bdd1243dSDimitry Andric Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 531bdd1243dSDimitry Andric ConstantInt::get(Op1->getType(), 0)); 532bdd1243dSDimitry Andric 533bdd1243dSDimitry Andric return MergeResults(Op0, Op1, IsSigned); 534bdd1243dSDimitry Andric } 535bdd1243dSDimitry Andric 53681ad6265SDimitry Andric if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 537bdd1243dSDimitry Andric canUseSExt(CI)) { 53881ad6265SDimitry Andric Preconditions.emplace_back( 53981ad6265SDimitry Andric CmpInst::ICMP_UGE, Op0, 54081ad6265SDimitry Andric ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 541bdd1243dSDimitry Andric return MergeResults(Op0, CI, true); 54281ad6265SDimitry Andric } 543e8d8bef9SDimitry Andric 54406c3fb27SDimitry Andric // Decompose or as an add if there are no common bits between the operands. 545*5f757f3fSDimitry Andric if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 54606c3fb27SDimitry Andric return MergeResults(Op0, CI, IsSigned); 54706c3fb27SDimitry Andric 548bdd1243dSDimitry Andric if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 54906c3fb27SDimitry Andric if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 55006c3fb27SDimitry Andric return {V, IsKnownNonNegative}; 551bdd1243dSDimitry Andric auto Result = decompose(Op1, Preconditions, IsSigned, DL); 55206c3fb27SDimitry Andric Result.mul(int64_t{1} << CI->getSExtValue()); 553bdd1243dSDimitry Andric return Result; 554bdd1243dSDimitry Andric } 555bdd1243dSDimitry Andric 556bdd1243dSDimitry Andric if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 557bdd1243dSDimitry Andric (!CI->isNegative())) { 558bdd1243dSDimitry Andric auto Result = decompose(Op1, Preconditions, IsSigned, DL); 559bdd1243dSDimitry Andric Result.mul(CI->getSExtValue()); 560bdd1243dSDimitry Andric return Result; 561bdd1243dSDimitry Andric } 562bdd1243dSDimitry Andric 563bdd1243dSDimitry Andric if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 564bdd1243dSDimitry Andric return {-1 * CI->getSExtValue(), {{1, Op0}}}; 565e8d8bef9SDimitry Andric if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 566bdd1243dSDimitry Andric return {0, {{1, Op0}, {-1, Op1}}}; 567e8d8bef9SDimitry Andric 568bdd1243dSDimitry Andric return {V, IsKnownNonNegative}; 569e8d8bef9SDimitry Andric } 570e8d8bef9SDimitry Andric 57181ad6265SDimitry Andric ConstraintTy 57281ad6265SDimitry Andric ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 573bdd1243dSDimitry Andric SmallVectorImpl<Value *> &NewVariables) const { 574bdd1243dSDimitry Andric assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 57581ad6265SDimitry Andric bool IsEq = false; 57606c3fb27SDimitry Andric bool IsNe = false; 57706c3fb27SDimitry Andric 57881ad6265SDimitry Andric // Try to convert Pred to one of ULE/SLT/SLE/SLT. 57981ad6265SDimitry Andric switch (Pred) { 58081ad6265SDimitry Andric case CmpInst::ICMP_UGT: 58181ad6265SDimitry Andric case CmpInst::ICMP_UGE: 58281ad6265SDimitry Andric case CmpInst::ICMP_SGT: 58381ad6265SDimitry Andric case CmpInst::ICMP_SGE: { 58481ad6265SDimitry Andric Pred = CmpInst::getSwappedPredicate(Pred); 58581ad6265SDimitry Andric std::swap(Op0, Op1); 58681ad6265SDimitry Andric break; 58781ad6265SDimitry Andric } 58881ad6265SDimitry Andric case CmpInst::ICMP_EQ: 58981ad6265SDimitry Andric if (match(Op1, m_Zero())) { 59081ad6265SDimitry Andric Pred = CmpInst::ICMP_ULE; 59181ad6265SDimitry Andric } else { 59281ad6265SDimitry Andric IsEq = true; 59381ad6265SDimitry Andric Pred = CmpInst::ICMP_ULE; 59481ad6265SDimitry Andric } 59581ad6265SDimitry Andric break; 59681ad6265SDimitry Andric case CmpInst::ICMP_NE: 59706c3fb27SDimitry Andric if (match(Op1, m_Zero())) { 59881ad6265SDimitry Andric Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 59981ad6265SDimitry Andric std::swap(Op0, Op1); 60006c3fb27SDimitry Andric } else { 60106c3fb27SDimitry Andric IsNe = true; 60206c3fb27SDimitry Andric Pred = CmpInst::ICMP_ULE; 60306c3fb27SDimitry Andric } 60481ad6265SDimitry Andric break; 60581ad6265SDimitry Andric default: 60681ad6265SDimitry Andric break; 60781ad6265SDimitry Andric } 60881ad6265SDimitry Andric 60981ad6265SDimitry Andric if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 61081ad6265SDimitry Andric Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 61181ad6265SDimitry Andric return {}; 61281ad6265SDimitry Andric 613*5f757f3fSDimitry Andric SmallVector<ConditionTy, 4> Preconditions; 61481ad6265SDimitry Andric bool IsSigned = CmpInst::isSigned(Pred); 61581ad6265SDimitry Andric auto &Value2Index = getValue2Index(IsSigned); 61681ad6265SDimitry Andric auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 617bdd1243dSDimitry Andric Preconditions, IsSigned, DL); 61881ad6265SDimitry Andric auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 619bdd1243dSDimitry Andric Preconditions, IsSigned, DL); 620bdd1243dSDimitry Andric int64_t Offset1 = ADec.Offset; 621bdd1243dSDimitry Andric int64_t Offset2 = BDec.Offset; 62281ad6265SDimitry Andric Offset1 *= -1; 62381ad6265SDimitry Andric 624bdd1243dSDimitry Andric auto &VariablesA = ADec.Vars; 625bdd1243dSDimitry Andric auto &VariablesB = BDec.Vars; 626e8d8bef9SDimitry Andric 627bdd1243dSDimitry Andric // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 628bdd1243dSDimitry Andric // new entry to NewVariables. 629bdd1243dSDimitry Andric DenseMap<Value *, unsigned> NewIndexMap; 630bdd1243dSDimitry Andric auto GetOrAddIndex = [&Value2Index, &NewVariables, 631bdd1243dSDimitry Andric &NewIndexMap](Value *V) -> unsigned { 632fe6060f1SDimitry Andric auto V2I = Value2Index.find(V); 633fe6060f1SDimitry Andric if (V2I != Value2Index.end()) 634fe6060f1SDimitry Andric return V2I->second; 635fe6060f1SDimitry Andric auto Insert = 636bdd1243dSDimitry Andric NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 637bdd1243dSDimitry Andric if (Insert.second) 638bdd1243dSDimitry Andric NewVariables.push_back(V); 639fe6060f1SDimitry Andric return Insert.first->second; 640e8d8bef9SDimitry Andric }; 641e8d8bef9SDimitry Andric 642bdd1243dSDimitry Andric // Make sure all variables have entries in Value2Index or NewVariables. 643bdd1243dSDimitry Andric for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 644bdd1243dSDimitry Andric GetOrAddIndex(KV.Variable); 645e8d8bef9SDimitry Andric 646e8d8bef9SDimitry Andric // Build result constraint, by first adding all coefficients from A and then 647e8d8bef9SDimitry Andric // subtracting all coefficients from B. 64881ad6265SDimitry Andric ConstraintTy Res( 649bdd1243dSDimitry Andric SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 65006c3fb27SDimitry Andric IsSigned, IsEq, IsNe); 651bdd1243dSDimitry Andric // Collect variables that are known to be positive in all uses in the 652bdd1243dSDimitry Andric // constraint. 653bdd1243dSDimitry Andric DenseMap<Value *, bool> KnownNonNegativeVariables; 65481ad6265SDimitry Andric auto &R = Res.Coefficients; 655bdd1243dSDimitry Andric for (const auto &KV : VariablesA) { 656bdd1243dSDimitry Andric R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 657bdd1243dSDimitry Andric auto I = 658bdd1243dSDimitry Andric KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 659bdd1243dSDimitry Andric I.first->second &= KV.IsKnownNonNegative; 660bdd1243dSDimitry Andric } 661e8d8bef9SDimitry Andric 662bdd1243dSDimitry Andric for (const auto &KV : VariablesB) { 66306c3fb27SDimitry Andric if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 66406c3fb27SDimitry Andric R[GetOrAddIndex(KV.Variable)])) 66506c3fb27SDimitry Andric return {}; 666bdd1243dSDimitry Andric auto I = 667bdd1243dSDimitry Andric KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 668bdd1243dSDimitry Andric I.first->second &= KV.IsKnownNonNegative; 669bdd1243dSDimitry Andric } 670e8d8bef9SDimitry Andric 67181ad6265SDimitry Andric int64_t OffsetSum; 67281ad6265SDimitry Andric if (AddOverflow(Offset1, Offset2, OffsetSum)) 67381ad6265SDimitry Andric return {}; 67481ad6265SDimitry Andric if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 67581ad6265SDimitry Andric if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 67681ad6265SDimitry Andric return {}; 67781ad6265SDimitry Andric R[0] = OffsetSum; 67881ad6265SDimitry Andric Res.Preconditions = std::move(Preconditions); 679bdd1243dSDimitry Andric 680bdd1243dSDimitry Andric // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 681bdd1243dSDimitry Andric // variables. 682bdd1243dSDimitry Andric while (!NewVariables.empty()) { 683bdd1243dSDimitry Andric int64_t Last = R.back(); 684bdd1243dSDimitry Andric if (Last != 0) 685bdd1243dSDimitry Andric break; 686bdd1243dSDimitry Andric R.pop_back(); 687bdd1243dSDimitry Andric Value *RemovedV = NewVariables.pop_back_val(); 688bdd1243dSDimitry Andric NewIndexMap.erase(RemovedV); 689bdd1243dSDimitry Andric } 690bdd1243dSDimitry Andric 691bdd1243dSDimitry Andric // Add extra constraints for variables that are known positive. 692bdd1243dSDimitry Andric for (auto &KV : KnownNonNegativeVariables) { 69306c3fb27SDimitry Andric if (!KV.second || 69406c3fb27SDimitry Andric (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 695bdd1243dSDimitry Andric continue; 696bdd1243dSDimitry Andric SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 697bdd1243dSDimitry Andric C[GetOrAddIndex(KV.first)] = -1; 698bdd1243dSDimitry Andric Res.ExtraInfo.push_back(C); 699bdd1243dSDimitry Andric } 70081ad6265SDimitry Andric return Res; 701e8d8bef9SDimitry Andric } 702e8d8bef9SDimitry Andric 703bdd1243dSDimitry Andric ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 704bdd1243dSDimitry Andric Value *Op0, 705bdd1243dSDimitry Andric Value *Op1) const { 706*5f757f3fSDimitry Andric Constant *NullC = Constant::getNullValue(Op0->getType()); 707*5f757f3fSDimitry Andric // Handle trivially true compares directly to avoid adding V UGE 0 constraints 708*5f757f3fSDimitry Andric // for all variables in the unsigned system. 709*5f757f3fSDimitry Andric if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 710*5f757f3fSDimitry Andric (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 711*5f757f3fSDimitry Andric auto &Value2Index = getValue2Index(false); 712*5f757f3fSDimitry Andric // Return constraint that's trivially true. 713*5f757f3fSDimitry Andric return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 714*5f757f3fSDimitry Andric false, false); 715*5f757f3fSDimitry Andric } 716*5f757f3fSDimitry Andric 717bdd1243dSDimitry Andric // If both operands are known to be non-negative, change signed predicates to 718bdd1243dSDimitry Andric // unsigned ones. This increases the reasoning effectiveness in combination 719bdd1243dSDimitry Andric // with the signed <-> unsigned transfer logic. 720bdd1243dSDimitry Andric if (CmpInst::isSigned(Pred) && 721bdd1243dSDimitry Andric isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 722bdd1243dSDimitry Andric isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 723bdd1243dSDimitry Andric Pred = CmpInst::getUnsignedPredicate(Pred); 724bdd1243dSDimitry Andric 725bdd1243dSDimitry Andric SmallVector<Value *> NewVariables; 726bdd1243dSDimitry Andric ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 72706c3fb27SDimitry Andric if (!NewVariables.empty()) 728bdd1243dSDimitry Andric return {}; 729bdd1243dSDimitry Andric return R; 730bdd1243dSDimitry Andric } 731bdd1243dSDimitry Andric 73281ad6265SDimitry Andric bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 73381ad6265SDimitry Andric return Coefficients.size() > 0 && 734*5f757f3fSDimitry Andric all_of(Preconditions, [&Info](const ConditionTy &C) { 73581ad6265SDimitry Andric return Info.doesHold(C.Pred, C.Op0, C.Op1); 73681ad6265SDimitry Andric }); 73781ad6265SDimitry Andric } 73881ad6265SDimitry Andric 73906c3fb27SDimitry Andric std::optional<bool> 74006c3fb27SDimitry Andric ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 74106c3fb27SDimitry Andric bool IsConditionImplied = CS.isConditionImplied(Coefficients); 74206c3fb27SDimitry Andric 74306c3fb27SDimitry Andric if (IsEq || IsNe) { 74406c3fb27SDimitry Andric auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 74506c3fb27SDimitry Andric bool IsNegatedOrEqualImplied = 74606c3fb27SDimitry Andric !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 74706c3fb27SDimitry Andric 74806c3fb27SDimitry Andric // In order to check that `%a == %b` is true (equality), both conditions `%a 74906c3fb27SDimitry Andric // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 75006c3fb27SDimitry Andric // is true), we return true if they both hold, false in the other cases. 75106c3fb27SDimitry Andric if (IsConditionImplied && IsNegatedOrEqualImplied) 75206c3fb27SDimitry Andric return IsEq; 75306c3fb27SDimitry Andric 75406c3fb27SDimitry Andric auto Negated = ConstraintSystem::negate(Coefficients); 75506c3fb27SDimitry Andric bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 75606c3fb27SDimitry Andric 75706c3fb27SDimitry Andric auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 75806c3fb27SDimitry Andric bool IsStrictLessThanImplied = 75906c3fb27SDimitry Andric !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 76006c3fb27SDimitry Andric 76106c3fb27SDimitry Andric // In order to check that `%a != %b` is true (non-equality), either 76206c3fb27SDimitry Andric // condition `%a > %b` or `%a < %b` must hold true. When checking for 76306c3fb27SDimitry Andric // non-equality (`IsNe` is true), we return true if one of the two holds, 76406c3fb27SDimitry Andric // false in the other cases. 76506c3fb27SDimitry Andric if (IsNegatedImplied || IsStrictLessThanImplied) 76606c3fb27SDimitry Andric return IsNe; 76706c3fb27SDimitry Andric 76806c3fb27SDimitry Andric return std::nullopt; 76906c3fb27SDimitry Andric } 77006c3fb27SDimitry Andric 77106c3fb27SDimitry Andric if (IsConditionImplied) 77206c3fb27SDimitry Andric return true; 77306c3fb27SDimitry Andric 77406c3fb27SDimitry Andric auto Negated = ConstraintSystem::negate(Coefficients); 77506c3fb27SDimitry Andric auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 77606c3fb27SDimitry Andric if (IsNegatedImplied) 77706c3fb27SDimitry Andric return false; 77806c3fb27SDimitry Andric 77906c3fb27SDimitry Andric // Neither the condition nor its negated holds, did not prove anything. 78006c3fb27SDimitry Andric return std::nullopt; 78106c3fb27SDimitry Andric } 78206c3fb27SDimitry Andric 78381ad6265SDimitry Andric bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 78481ad6265SDimitry Andric Value *B) const { 785bdd1243dSDimitry Andric auto R = getConstraintForSolving(Pred, A, B); 78606c3fb27SDimitry Andric return R.isValid(*this) && 787bdd1243dSDimitry Andric getCS(R.IsSigned).isConditionImplied(R.Coefficients); 78881ad6265SDimitry Andric } 78981ad6265SDimitry Andric 79081ad6265SDimitry Andric void ConstraintInfo::transferToOtherSystem( 791bdd1243dSDimitry Andric CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 79281ad6265SDimitry Andric unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 793*5f757f3fSDimitry Andric auto IsKnownNonNegative = [this](Value *V) { 794*5f757f3fSDimitry Andric return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 795*5f757f3fSDimitry Andric isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 796*5f757f3fSDimitry Andric }; 79781ad6265SDimitry Andric // Check if we can combine facts from the signed and unsigned systems to 79881ad6265SDimitry Andric // derive additional facts. 79981ad6265SDimitry Andric if (!A->getType()->isIntegerTy()) 80081ad6265SDimitry Andric return; 80181ad6265SDimitry Andric // FIXME: This currently depends on the order we add facts. Ideally we 80281ad6265SDimitry Andric // would first add all known facts and only then try to add additional 80381ad6265SDimitry Andric // facts. 80481ad6265SDimitry Andric switch (Pred) { 80581ad6265SDimitry Andric default: 80681ad6265SDimitry Andric break; 80781ad6265SDimitry Andric case CmpInst::ICMP_ULT: 808*5f757f3fSDimitry Andric case CmpInst::ICMP_ULE: 809*5f757f3fSDimitry Andric // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 810*5f757f3fSDimitry Andric if (IsKnownNonNegative(B)) { 811bdd1243dSDimitry Andric addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 812bdd1243dSDimitry Andric NumOut, DFSInStack); 813*5f757f3fSDimitry Andric addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 814*5f757f3fSDimitry Andric DFSInStack); 815*5f757f3fSDimitry Andric } 816*5f757f3fSDimitry Andric break; 817*5f757f3fSDimitry Andric case CmpInst::ICMP_UGE: 818*5f757f3fSDimitry Andric case CmpInst::ICMP_UGT: 819*5f757f3fSDimitry Andric // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 820*5f757f3fSDimitry Andric if (IsKnownNonNegative(A)) { 821*5f757f3fSDimitry Andric addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 822*5f757f3fSDimitry Andric NumOut, DFSInStack); 823*5f757f3fSDimitry Andric addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 824*5f757f3fSDimitry Andric DFSInStack); 82581ad6265SDimitry Andric } 82681ad6265SDimitry Andric break; 82781ad6265SDimitry Andric case CmpInst::ICMP_SLT: 828*5f757f3fSDimitry Andric if (IsKnownNonNegative(A)) 829bdd1243dSDimitry Andric addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 83081ad6265SDimitry Andric break; 83106c3fb27SDimitry Andric case CmpInst::ICMP_SGT: { 83281ad6265SDimitry Andric if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 833bdd1243dSDimitry Andric addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 834bdd1243dSDimitry Andric NumOut, DFSInStack); 835*5f757f3fSDimitry Andric if (IsKnownNonNegative(B)) 83606c3fb27SDimitry Andric addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 83706c3fb27SDimitry Andric 83881ad6265SDimitry Andric break; 83906c3fb27SDimitry Andric } 84081ad6265SDimitry Andric case CmpInst::ICMP_SGE: 841*5f757f3fSDimitry Andric if (IsKnownNonNegative(B)) 842bdd1243dSDimitry Andric addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 84381ad6265SDimitry Andric break; 84481ad6265SDimitry Andric } 845e8d8bef9SDimitry Andric } 846e8d8bef9SDimitry Andric 847fe6060f1SDimitry Andric #ifndef NDEBUG 84881ad6265SDimitry Andric 84906c3fb27SDimitry Andric static void dumpConstraint(ArrayRef<int64_t> C, 85006c3fb27SDimitry Andric const DenseMap<Value *, unsigned> &Value2Index) { 85106c3fb27SDimitry Andric ConstraintSystem CS(Value2Index); 85281ad6265SDimitry Andric CS.addVariableRowFill(C); 85306c3fb27SDimitry Andric CS.dump(); 85481ad6265SDimitry Andric } 855fe6060f1SDimitry Andric #endif 856fe6060f1SDimitry Andric 857*5f757f3fSDimitry Andric void State::addInfoForInductions(BasicBlock &BB) { 858*5f757f3fSDimitry Andric auto *L = LI.getLoopFor(&BB); 859*5f757f3fSDimitry Andric if (!L || L->getHeader() != &BB) 860*5f757f3fSDimitry Andric return; 861*5f757f3fSDimitry Andric 862*5f757f3fSDimitry Andric Value *A; 863*5f757f3fSDimitry Andric Value *B; 864*5f757f3fSDimitry Andric CmpInst::Predicate Pred; 865*5f757f3fSDimitry Andric 866*5f757f3fSDimitry Andric if (!match(BB.getTerminator(), 867*5f757f3fSDimitry Andric m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 868*5f757f3fSDimitry Andric return; 869*5f757f3fSDimitry Andric PHINode *PN = dyn_cast<PHINode>(A); 870*5f757f3fSDimitry Andric if (!PN) { 871*5f757f3fSDimitry Andric Pred = CmpInst::getSwappedPredicate(Pred); 872*5f757f3fSDimitry Andric std::swap(A, B); 873*5f757f3fSDimitry Andric PN = dyn_cast<PHINode>(A); 874*5f757f3fSDimitry Andric } 875*5f757f3fSDimitry Andric 876*5f757f3fSDimitry Andric if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 877*5f757f3fSDimitry Andric !SE.isSCEVable(PN->getType())) 878*5f757f3fSDimitry Andric return; 879*5f757f3fSDimitry Andric 880*5f757f3fSDimitry Andric BasicBlock *InLoopSucc = nullptr; 881*5f757f3fSDimitry Andric if (Pred == CmpInst::ICMP_NE) 882*5f757f3fSDimitry Andric InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 883*5f757f3fSDimitry Andric else if (Pred == CmpInst::ICMP_EQ) 884*5f757f3fSDimitry Andric InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 885*5f757f3fSDimitry Andric else 886*5f757f3fSDimitry Andric return; 887*5f757f3fSDimitry Andric 888*5f757f3fSDimitry Andric if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 889*5f757f3fSDimitry Andric return; 890*5f757f3fSDimitry Andric 891*5f757f3fSDimitry Andric auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 892*5f757f3fSDimitry Andric BasicBlock *LoopPred = L->getLoopPredecessor(); 893*5f757f3fSDimitry Andric if (!AR || AR->getLoop() != L || !LoopPred) 894*5f757f3fSDimitry Andric return; 895*5f757f3fSDimitry Andric 896*5f757f3fSDimitry Andric const SCEV *StartSCEV = AR->getStart(); 897*5f757f3fSDimitry Andric Value *StartValue = nullptr; 898*5f757f3fSDimitry Andric if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 899*5f757f3fSDimitry Andric StartValue = C->getValue(); 900*5f757f3fSDimitry Andric } else { 901*5f757f3fSDimitry Andric StartValue = PN->getIncomingValueForBlock(LoopPred); 902*5f757f3fSDimitry Andric assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 903*5f757f3fSDimitry Andric } 904*5f757f3fSDimitry Andric 905*5f757f3fSDimitry Andric DomTreeNode *DTN = DT.getNode(InLoopSucc); 906*5f757f3fSDimitry Andric auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 907*5f757f3fSDimitry Andric bool MonotonicallyIncreasing = 908*5f757f3fSDimitry Andric Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 909*5f757f3fSDimitry Andric if (MonotonicallyIncreasing) { 910*5f757f3fSDimitry Andric // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 911*5f757f3fSDimitry Andric // unconditionally. 912*5f757f3fSDimitry Andric WorkList.push_back( 913*5f757f3fSDimitry Andric FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 914*5f757f3fSDimitry Andric } 915*5f757f3fSDimitry Andric 916*5f757f3fSDimitry Andric APInt StepOffset; 917*5f757f3fSDimitry Andric if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 918*5f757f3fSDimitry Andric StepOffset = C->getAPInt(); 919*5f757f3fSDimitry Andric else 920*5f757f3fSDimitry Andric return; 921*5f757f3fSDimitry Andric 922*5f757f3fSDimitry Andric // Make sure the bound B is loop-invariant. 923*5f757f3fSDimitry Andric if (!L->isLoopInvariant(B)) 924*5f757f3fSDimitry Andric return; 925*5f757f3fSDimitry Andric 926*5f757f3fSDimitry Andric // Handle negative steps. 927*5f757f3fSDimitry Andric if (StepOffset.isNegative()) { 928*5f757f3fSDimitry Andric // TODO: Extend to allow steps > -1. 929*5f757f3fSDimitry Andric if (!(-StepOffset).isOne()) 930*5f757f3fSDimitry Andric return; 931*5f757f3fSDimitry Andric 932*5f757f3fSDimitry Andric // AR may wrap. 933*5f757f3fSDimitry Andric // Add StartValue >= PN conditional on B <= StartValue which guarantees that 934*5f757f3fSDimitry Andric // the loop exits before wrapping with a step of -1. 935*5f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 936*5f757f3fSDimitry Andric DTN, CmpInst::ICMP_UGE, StartValue, PN, 937*5f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 938*5f757f3fSDimitry Andric // Add PN > B conditional on B <= StartValue which guarantees that the loop 939*5f757f3fSDimitry Andric // exits when reaching B with a step of -1. 940*5f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 941*5f757f3fSDimitry Andric DTN, CmpInst::ICMP_UGT, PN, B, 942*5f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 943*5f757f3fSDimitry Andric return; 944*5f757f3fSDimitry Andric } 945*5f757f3fSDimitry Andric 946*5f757f3fSDimitry Andric // Make sure AR either steps by 1 or that the value we compare against is a 947*5f757f3fSDimitry Andric // GEP based on the same start value and all offsets are a multiple of the 948*5f757f3fSDimitry Andric // step size, to guarantee that the induction will reach the value. 949*5f757f3fSDimitry Andric if (StepOffset.isZero() || StepOffset.isNegative()) 950*5f757f3fSDimitry Andric return; 951*5f757f3fSDimitry Andric 952*5f757f3fSDimitry Andric if (!StepOffset.isOne()) { 953*5f757f3fSDimitry Andric auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 954*5f757f3fSDimitry Andric if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 955*5f757f3fSDimitry Andric !UpperGEP->isInBounds()) 956*5f757f3fSDimitry Andric return; 957*5f757f3fSDimitry Andric 958*5f757f3fSDimitry Andric MapVector<Value *, APInt> UpperVariableOffsets; 959*5f757f3fSDimitry Andric APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 960*5f757f3fSDimitry Andric const DataLayout &DL = BB.getModule()->getDataLayout(); 961*5f757f3fSDimitry Andric if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 962*5f757f3fSDimitry Andric UpperVariableOffsets, UpperConstantOffset)) 963*5f757f3fSDimitry Andric return; 964*5f757f3fSDimitry Andric // All variable offsets and the constant offset have to be a multiple of the 965*5f757f3fSDimitry Andric // step. 966*5f757f3fSDimitry Andric if (!UpperConstantOffset.urem(StepOffset).isZero() || 967*5f757f3fSDimitry Andric any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 968*5f757f3fSDimitry Andric return !P.second.urem(StepOffset).isZero(); 969*5f757f3fSDimitry Andric })) 970*5f757f3fSDimitry Andric return; 971*5f757f3fSDimitry Andric } 972*5f757f3fSDimitry Andric 973*5f757f3fSDimitry Andric // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 974*5f757f3fSDimitry Andric // guarantees that the loop exits before wrapping in combination with the 975*5f757f3fSDimitry Andric // restrictions on B and the step above. 976*5f757f3fSDimitry Andric if (!MonotonicallyIncreasing) { 977*5f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 978*5f757f3fSDimitry Andric DTN, CmpInst::ICMP_UGE, PN, StartValue, 979*5f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 980*5f757f3fSDimitry Andric } 981*5f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getConditionFact( 982*5f757f3fSDimitry Andric DTN, CmpInst::ICMP_ULT, PN, B, 983*5f757f3fSDimitry Andric ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 984*5f757f3fSDimitry Andric } 985*5f757f3fSDimitry Andric 98681ad6265SDimitry Andric void State::addInfoFor(BasicBlock &BB) { 987*5f757f3fSDimitry Andric addInfoForInductions(BB); 988*5f757f3fSDimitry Andric 989349cc55cSDimitry Andric // True as long as long as the current instruction is guaranteed to execute. 990349cc55cSDimitry Andric bool GuaranteedToExecute = true; 991bdd1243dSDimitry Andric // Queue conditions and assumes. 992349cc55cSDimitry Andric for (Instruction &I : BB) { 993bdd1243dSDimitry Andric if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 99406c3fb27SDimitry Andric for (Use &U : Cmp->uses()) { 99506c3fb27SDimitry Andric auto *UserI = getContextInstForUse(U); 99606c3fb27SDimitry Andric auto *DTN = DT.getNode(UserI->getParent()); 99706c3fb27SDimitry Andric if (!DTN) 99806c3fb27SDimitry Andric continue; 99906c3fb27SDimitry Andric WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 100006c3fb27SDimitry Andric } 1001bdd1243dSDimitry Andric continue; 1002bdd1243dSDimitry Andric } 1003bdd1243dSDimitry Andric 1004bdd1243dSDimitry Andric if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 100506c3fb27SDimitry Andric WorkList.push_back( 100606c3fb27SDimitry Andric FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 100706c3fb27SDimitry Andric continue; 100806c3fb27SDimitry Andric } 100906c3fb27SDimitry Andric 101006c3fb27SDimitry Andric if (isa<MinMaxIntrinsic>(&I)) { 1011*5f757f3fSDimitry Andric WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1012bdd1243dSDimitry Andric continue; 1013bdd1243dSDimitry Andric } 1014bdd1243dSDimitry Andric 1015*5f757f3fSDimitry Andric Value *A, *B; 1016*5f757f3fSDimitry Andric CmpInst::Predicate Pred; 1017349cc55cSDimitry Andric // For now, just handle assumes with a single compare as condition. 1018*5f757f3fSDimitry Andric if (match(&I, m_Intrinsic<Intrinsic::assume>( 1019*5f757f3fSDimitry Andric m_ICmp(Pred, m_Value(A), m_Value(B))))) { 1020349cc55cSDimitry Andric if (GuaranteedToExecute) { 1021349cc55cSDimitry Andric // The assume is guaranteed to execute when BB is entered, hence Cond 1022349cc55cSDimitry Andric // holds on entry to BB. 1023*5f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 1024*5f757f3fSDimitry Andric DT.getNode(I.getParent()), Pred, A, B)); 1025349cc55cSDimitry Andric } else { 1026bdd1243dSDimitry Andric WorkList.emplace_back( 1027*5f757f3fSDimitry Andric FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1028349cc55cSDimitry Andric } 1029349cc55cSDimitry Andric } 1030349cc55cSDimitry Andric GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1031349cc55cSDimitry Andric } 1032349cc55cSDimitry Andric 1033*5f757f3fSDimitry Andric if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1034*5f757f3fSDimitry Andric for (auto &Case : Switch->cases()) { 1035*5f757f3fSDimitry Andric BasicBlock *Succ = Case.getCaseSuccessor(); 1036*5f757f3fSDimitry Andric Value *V = Case.getCaseValue(); 1037*5f757f3fSDimitry Andric if (!canAddSuccessor(BB, Succ)) 1038*5f757f3fSDimitry Andric continue; 1039*5f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 1040*5f757f3fSDimitry Andric DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1041*5f757f3fSDimitry Andric } 1042*5f757f3fSDimitry Andric return; 1043*5f757f3fSDimitry Andric } 1044*5f757f3fSDimitry Andric 1045e8d8bef9SDimitry Andric auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1046e8d8bef9SDimitry Andric if (!Br || !Br->isConditional()) 104781ad6265SDimitry Andric return; 1048e8d8bef9SDimitry Andric 1049bdd1243dSDimitry Andric Value *Cond = Br->getCondition(); 1050e8d8bef9SDimitry Andric 1051bdd1243dSDimitry Andric // If the condition is a chain of ORs/AND and the successor only has the 1052bdd1243dSDimitry Andric // current block as predecessor, queue conditions for the successor. 1053bdd1243dSDimitry Andric Value *Op0, *Op1; 1054bdd1243dSDimitry Andric if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1055bdd1243dSDimitry Andric match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1056bdd1243dSDimitry Andric bool IsOr = match(Cond, m_LogicalOr()); 1057bdd1243dSDimitry Andric bool IsAnd = match(Cond, m_LogicalAnd()); 1058bdd1243dSDimitry Andric // If there's a select that matches both AND and OR, we need to commit to 1059bdd1243dSDimitry Andric // one of the options. Arbitrarily pick OR. 1060bdd1243dSDimitry Andric if (IsOr && IsAnd) 1061bdd1243dSDimitry Andric IsAnd = false; 1062bdd1243dSDimitry Andric 1063bdd1243dSDimitry Andric BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1064bdd1243dSDimitry Andric if (canAddSuccessor(BB, Successor)) { 1065bdd1243dSDimitry Andric SmallVector<Value *> CondWorkList; 1066bdd1243dSDimitry Andric SmallPtrSet<Value *, 8> SeenCond; 1067bdd1243dSDimitry Andric auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1068bdd1243dSDimitry Andric if (SeenCond.insert(V).second) 1069bdd1243dSDimitry Andric CondWorkList.push_back(V); 1070bdd1243dSDimitry Andric }; 1071bdd1243dSDimitry Andric QueueValue(Op1); 1072bdd1243dSDimitry Andric QueueValue(Op0); 1073bdd1243dSDimitry Andric while (!CondWorkList.empty()) { 1074bdd1243dSDimitry Andric Value *Cur = CondWorkList.pop_back_val(); 1075bdd1243dSDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1076*5f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 1077*5f757f3fSDimitry Andric DT.getNode(Successor), 1078*5f757f3fSDimitry Andric IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1079*5f757f3fSDimitry Andric : Cmp->getPredicate(), 1080*5f757f3fSDimitry Andric Cmp->getOperand(0), Cmp->getOperand(1))); 1081bdd1243dSDimitry Andric continue; 1082bdd1243dSDimitry Andric } 1083bdd1243dSDimitry Andric if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1084bdd1243dSDimitry Andric QueueValue(Op1); 1085bdd1243dSDimitry Andric QueueValue(Op0); 1086bdd1243dSDimitry Andric continue; 1087bdd1243dSDimitry Andric } 1088bdd1243dSDimitry Andric if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1089bdd1243dSDimitry Andric QueueValue(Op1); 1090bdd1243dSDimitry Andric QueueValue(Op0); 1091bdd1243dSDimitry Andric continue; 1092bdd1243dSDimitry Andric } 1093bdd1243dSDimitry Andric } 1094e8d8bef9SDimitry Andric } 109581ad6265SDimitry Andric return; 1096e8d8bef9SDimitry Andric } 1097e8d8bef9SDimitry Andric 109881ad6265SDimitry Andric auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1099e8d8bef9SDimitry Andric if (!CmpI) 110081ad6265SDimitry Andric return; 110181ad6265SDimitry Andric if (canAddSuccessor(BB, Br->getSuccessor(0))) 1102*5f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 1103*5f757f3fSDimitry Andric DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1104*5f757f3fSDimitry Andric CmpI->getOperand(0), CmpI->getOperand(1))); 110581ad6265SDimitry Andric if (canAddSuccessor(BB, Br->getSuccessor(1))) 1106*5f757f3fSDimitry Andric WorkList.emplace_back(FactOrCheck::getConditionFact( 1107*5f757f3fSDimitry Andric DT.getNode(Br->getSuccessor(1)), 1108*5f757f3fSDimitry Andric CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1109*5f757f3fSDimitry Andric CmpI->getOperand(1))); 1110bdd1243dSDimitry Andric } 1111bdd1243dSDimitry Andric 1112*5f757f3fSDimitry Andric #ifndef NDEBUG 1113*5f757f3fSDimitry Andric static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred, 1114*5f757f3fSDimitry Andric Value *LHS, Value *RHS) { 1115*5f757f3fSDimitry Andric OS << "icmp " << Pred << ' '; 1116*5f757f3fSDimitry Andric LHS->printAsOperand(OS, /*PrintType=*/true); 1117*5f757f3fSDimitry Andric OS << ", "; 1118*5f757f3fSDimitry Andric RHS->printAsOperand(OS, /*PrintType=*/false); 1119*5f757f3fSDimitry Andric } 1120*5f757f3fSDimitry Andric #endif 1121*5f757f3fSDimitry Andric 112206c3fb27SDimitry Andric namespace { 112306c3fb27SDimitry Andric /// Helper to keep track of a condition and if it should be treated as negated 112406c3fb27SDimitry Andric /// for reproducer construction. 112506c3fb27SDimitry Andric /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 112606c3fb27SDimitry Andric /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 112706c3fb27SDimitry Andric struct ReproducerEntry { 112806c3fb27SDimitry Andric ICmpInst::Predicate Pred; 112906c3fb27SDimitry Andric Value *LHS; 113006c3fb27SDimitry Andric Value *RHS; 113106c3fb27SDimitry Andric 113206c3fb27SDimitry Andric ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 113306c3fb27SDimitry Andric : Pred(Pred), LHS(LHS), RHS(RHS) {} 113406c3fb27SDimitry Andric }; 113506c3fb27SDimitry Andric } // namespace 113606c3fb27SDimitry Andric 113706c3fb27SDimitry Andric /// Helper function to generate a reproducer function for simplifying \p Cond. 113806c3fb27SDimitry Andric /// The reproducer function contains a series of @llvm.assume calls, one for 113906c3fb27SDimitry Andric /// each condition in \p Stack. For each condition, the operand instruction are 114006c3fb27SDimitry Andric /// cloned until we reach operands that have an entry in \p Value2Index. Those 114106c3fb27SDimitry Andric /// will then be added as function arguments. \p DT is used to order cloned 114206c3fb27SDimitry Andric /// instructions. The reproducer function will get added to \p M, if it is 114306c3fb27SDimitry Andric /// non-null. Otherwise no reproducer function is generated. 114406c3fb27SDimitry Andric static void generateReproducer(CmpInst *Cond, Module *M, 114506c3fb27SDimitry Andric ArrayRef<ReproducerEntry> Stack, 114606c3fb27SDimitry Andric ConstraintInfo &Info, DominatorTree &DT) { 114706c3fb27SDimitry Andric if (!M) 114806c3fb27SDimitry Andric return; 114906c3fb27SDimitry Andric 115006c3fb27SDimitry Andric LLVMContext &Ctx = Cond->getContext(); 115106c3fb27SDimitry Andric 115206c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 115306c3fb27SDimitry Andric 115406c3fb27SDimitry Andric ValueToValueMapTy Old2New; 115506c3fb27SDimitry Andric SmallVector<Value *> Args; 115606c3fb27SDimitry Andric SmallPtrSet<Value *, 8> Seen; 115706c3fb27SDimitry Andric // Traverse Cond and its operands recursively until we reach a value that's in 115806c3fb27SDimitry Andric // Value2Index or not an instruction, or not a operation that 115906c3fb27SDimitry Andric // ConstraintElimination can decompose. Such values will be considered as 116006c3fb27SDimitry Andric // external inputs to the reproducer, they are collected and added as function 116106c3fb27SDimitry Andric // arguments later. 116206c3fb27SDimitry Andric auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 116306c3fb27SDimitry Andric auto &Value2Index = Info.getValue2Index(IsSigned); 116406c3fb27SDimitry Andric SmallVector<Value *, 4> WorkList(Ops); 116506c3fb27SDimitry Andric while (!WorkList.empty()) { 116606c3fb27SDimitry Andric Value *V = WorkList.pop_back_val(); 116706c3fb27SDimitry Andric if (!Seen.insert(V).second) 116806c3fb27SDimitry Andric continue; 116906c3fb27SDimitry Andric if (Old2New.find(V) != Old2New.end()) 117006c3fb27SDimitry Andric continue; 117106c3fb27SDimitry Andric if (isa<Constant>(V)) 117206c3fb27SDimitry Andric continue; 117306c3fb27SDimitry Andric 117406c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(V); 117506c3fb27SDimitry Andric if (Value2Index.contains(V) || !I || 117606c3fb27SDimitry Andric !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 117706c3fb27SDimitry Andric Old2New[V] = V; 117806c3fb27SDimitry Andric Args.push_back(V); 117906c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 118006c3fb27SDimitry Andric } else { 118106c3fb27SDimitry Andric append_range(WorkList, I->operands()); 118206c3fb27SDimitry Andric } 118306c3fb27SDimitry Andric } 118406c3fb27SDimitry Andric }; 118506c3fb27SDimitry Andric 118606c3fb27SDimitry Andric for (auto &Entry : Stack) 118706c3fb27SDimitry Andric if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 118806c3fb27SDimitry Andric CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 118906c3fb27SDimitry Andric CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 119006c3fb27SDimitry Andric 119106c3fb27SDimitry Andric SmallVector<Type *> ParamTys; 119206c3fb27SDimitry Andric for (auto *P : Args) 119306c3fb27SDimitry Andric ParamTys.push_back(P->getType()); 119406c3fb27SDimitry Andric 119506c3fb27SDimitry Andric FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 119606c3fb27SDimitry Andric /*isVarArg=*/false); 119706c3fb27SDimitry Andric Function *F = Function::Create(FTy, Function::ExternalLinkage, 119806c3fb27SDimitry Andric Cond->getModule()->getName() + 119906c3fb27SDimitry Andric Cond->getFunction()->getName() + "repro", 120006c3fb27SDimitry Andric M); 120106c3fb27SDimitry Andric // Add arguments to the reproducer function for each external value collected. 120206c3fb27SDimitry Andric for (unsigned I = 0; I < Args.size(); ++I) { 120306c3fb27SDimitry Andric F->getArg(I)->setName(Args[I]->getName()); 120406c3fb27SDimitry Andric Old2New[Args[I]] = F->getArg(I); 120506c3fb27SDimitry Andric } 120606c3fb27SDimitry Andric 120706c3fb27SDimitry Andric BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 120806c3fb27SDimitry Andric IRBuilder<> Builder(Entry); 120906c3fb27SDimitry Andric Builder.CreateRet(Builder.getTrue()); 121006c3fb27SDimitry Andric Builder.SetInsertPoint(Entry->getTerminator()); 121106c3fb27SDimitry Andric 121206c3fb27SDimitry Andric // Clone instructions in \p Ops and their operands recursively until reaching 121306c3fb27SDimitry Andric // an value in Value2Index (external input to the reproducer). Update Old2New 121406c3fb27SDimitry Andric // mapping for the original and cloned instructions. Sort instructions to 121506c3fb27SDimitry Andric // clone by dominance, then insert the cloned instructions in the function. 121606c3fb27SDimitry Andric auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 121706c3fb27SDimitry Andric SmallVector<Value *, 4> WorkList(Ops); 121806c3fb27SDimitry Andric SmallVector<Instruction *> ToClone; 121906c3fb27SDimitry Andric auto &Value2Index = Info.getValue2Index(IsSigned); 122006c3fb27SDimitry Andric while (!WorkList.empty()) { 122106c3fb27SDimitry Andric Value *V = WorkList.pop_back_val(); 122206c3fb27SDimitry Andric if (Old2New.find(V) != Old2New.end()) 122306c3fb27SDimitry Andric continue; 122406c3fb27SDimitry Andric 122506c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(V); 122606c3fb27SDimitry Andric if (!Value2Index.contains(V) && I) { 122706c3fb27SDimitry Andric Old2New[V] = nullptr; 122806c3fb27SDimitry Andric ToClone.push_back(I); 122906c3fb27SDimitry Andric append_range(WorkList, I->operands()); 123006c3fb27SDimitry Andric } 123106c3fb27SDimitry Andric } 123206c3fb27SDimitry Andric 123306c3fb27SDimitry Andric sort(ToClone, 123406c3fb27SDimitry Andric [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 123506c3fb27SDimitry Andric for (Instruction *I : ToClone) { 123606c3fb27SDimitry Andric Instruction *Cloned = I->clone(); 123706c3fb27SDimitry Andric Old2New[I] = Cloned; 123806c3fb27SDimitry Andric Old2New[I]->setName(I->getName()); 123906c3fb27SDimitry Andric Cloned->insertBefore(&*Builder.GetInsertPoint()); 124006c3fb27SDimitry Andric Cloned->dropUnknownNonDebugMetadata(); 124106c3fb27SDimitry Andric Cloned->setDebugLoc({}); 124206c3fb27SDimitry Andric } 124306c3fb27SDimitry Andric }; 124406c3fb27SDimitry Andric 124506c3fb27SDimitry Andric // Materialize the assumptions for the reproducer using the entries in Stack. 124606c3fb27SDimitry Andric // That is, first clone the operands of the condition recursively until we 124706c3fb27SDimitry Andric // reach an external input to the reproducer and add them to the reproducer 124806c3fb27SDimitry Andric // function. Then add an ICmp for the condition (with the inverse predicate if 124906c3fb27SDimitry Andric // the entry is negated) and an assert using the ICmp. 125006c3fb27SDimitry Andric for (auto &Entry : Stack) { 125106c3fb27SDimitry Andric if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 125206c3fb27SDimitry Andric continue; 125306c3fb27SDimitry Andric 1254*5f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << " Materializing assumption "; 1255*5f757f3fSDimitry Andric dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS); 1256*5f757f3fSDimitry Andric dbgs() << "\n"); 125706c3fb27SDimitry Andric CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 125806c3fb27SDimitry Andric 125906c3fb27SDimitry Andric auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 126006c3fb27SDimitry Andric Builder.CreateAssumption(Cmp); 126106c3fb27SDimitry Andric } 126206c3fb27SDimitry Andric 126306c3fb27SDimitry Andric // Finally, clone the condition to reproduce and remap instruction operands in 126406c3fb27SDimitry Andric // the reproducer using Old2New. 126506c3fb27SDimitry Andric CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 126606c3fb27SDimitry Andric Entry->getTerminator()->setOperand(0, Cond); 126706c3fb27SDimitry Andric remapInstructionsInBlocks({Entry}, Old2New); 126806c3fb27SDimitry Andric 126906c3fb27SDimitry Andric assert(!verifyFunction(*F, &dbgs())); 127006c3fb27SDimitry Andric } 127106c3fb27SDimitry Andric 1272*5f757f3fSDimitry Andric static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A, 1273*5f757f3fSDimitry Andric Value *B, Instruction *CheckInst, 1274*5f757f3fSDimitry Andric ConstraintInfo &Info, unsigned NumIn, 1275*5f757f3fSDimitry Andric unsigned NumOut, 127606c3fb27SDimitry Andric Instruction *ContextInst) { 1277*5f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n"); 1278bdd1243dSDimitry Andric 1279bdd1243dSDimitry Andric auto R = Info.getConstraintForSolving(Pred, A, B); 1280bdd1243dSDimitry Andric if (R.empty() || !R.isValid(Info)){ 1281bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 128206c3fb27SDimitry Andric return std::nullopt; 1283bdd1243dSDimitry Andric } 1284bdd1243dSDimitry Andric 1285bdd1243dSDimitry Andric auto &CSToUse = Info.getCS(R.IsSigned); 1286bdd1243dSDimitry Andric 1287bdd1243dSDimitry Andric // If there was extra information collected during decomposition, apply 1288bdd1243dSDimitry Andric // it now and remove it immediately once we are done with reasoning 1289bdd1243dSDimitry Andric // about the constraint. 1290bdd1243dSDimitry Andric for (auto &Row : R.ExtraInfo) 1291bdd1243dSDimitry Andric CSToUse.addVariableRow(Row); 1292bdd1243dSDimitry Andric auto InfoRestorer = make_scope_exit([&]() { 1293bdd1243dSDimitry Andric for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1294bdd1243dSDimitry Andric CSToUse.popLastConstraint(); 1295bdd1243dSDimitry Andric }); 1296bdd1243dSDimitry Andric 129706c3fb27SDimitry Andric if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1298bdd1243dSDimitry Andric if (!DebugCounter::shouldExecute(EliminatedCounter)) 129906c3fb27SDimitry Andric return std::nullopt; 1300bdd1243dSDimitry Andric 1301bdd1243dSDimitry Andric LLVM_DEBUG({ 1302*5f757f3fSDimitry Andric dbgs() << "Condition "; 1303*5f757f3fSDimitry Andric dumpUnpackedICmp( 1304*5f757f3fSDimitry Andric dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred), 1305*5f757f3fSDimitry Andric A, B); 130606c3fb27SDimitry Andric dbgs() << " implied by dominating constraints\n"; 130706c3fb27SDimitry Andric CSToUse.dump(); 1308bdd1243dSDimitry Andric }); 130906c3fb27SDimitry Andric return ImpliedCondition; 131006c3fb27SDimitry Andric } 131106c3fb27SDimitry Andric 131206c3fb27SDimitry Andric return std::nullopt; 131306c3fb27SDimitry Andric } 131406c3fb27SDimitry Andric 131506c3fb27SDimitry Andric static bool checkAndReplaceCondition( 131606c3fb27SDimitry Andric CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 131706c3fb27SDimitry Andric Instruction *ContextInst, Module *ReproducerModule, 1318*5f757f3fSDimitry Andric ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1319*5f757f3fSDimitry Andric SmallVectorImpl<Instruction *> &ToRemove) { 132006c3fb27SDimitry Andric auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 132106c3fb27SDimitry Andric generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 132206c3fb27SDimitry Andric Constant *ConstantC = ConstantInt::getBool( 132306c3fb27SDimitry Andric CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 132406c3fb27SDimitry Andric Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 132506c3fb27SDimitry Andric ContextInst](Use &U) { 132606c3fb27SDimitry Andric auto *UserI = getContextInstForUse(U); 132706c3fb27SDimitry Andric auto *DTN = DT.getNode(UserI->getParent()); 132806c3fb27SDimitry Andric if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 132906c3fb27SDimitry Andric return false; 133006c3fb27SDimitry Andric if (UserI->getParent() == ContextInst->getParent() && 133106c3fb27SDimitry Andric UserI->comesBefore(ContextInst)) 133206c3fb27SDimitry Andric return false; 133306c3fb27SDimitry Andric 1334bdd1243dSDimitry Andric // Conditions in an assume trivially simplify to true. Skip uses 1335bdd1243dSDimitry Andric // in assume calls to not destroy the available information. 1336bdd1243dSDimitry Andric auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1337bdd1243dSDimitry Andric return !II || II->getIntrinsicID() != Intrinsic::assume; 1338bdd1243dSDimitry Andric }); 1339bdd1243dSDimitry Andric NumCondsRemoved++; 1340*5f757f3fSDimitry Andric if (Cmp->use_empty()) 1341*5f757f3fSDimitry Andric ToRemove.push_back(Cmp); 134206c3fb27SDimitry Andric return true; 134306c3fb27SDimitry Andric }; 134406c3fb27SDimitry Andric 1345*5f757f3fSDimitry Andric if (auto ImpliedCondition = checkCondition( 1346*5f757f3fSDimitry Andric Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), Cmp, 1347*5f757f3fSDimitry Andric Info, NumIn, NumOut, ContextInst)) 134806c3fb27SDimitry Andric return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 134906c3fb27SDimitry Andric return false; 1350bdd1243dSDimitry Andric } 135106c3fb27SDimitry Andric 135206c3fb27SDimitry Andric static void 135306c3fb27SDimitry Andric removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 135406c3fb27SDimitry Andric Module *ReproducerModule, 135506c3fb27SDimitry Andric SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 135606c3fb27SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack) { 135706c3fb27SDimitry Andric Info.popLastConstraint(E.IsSigned); 135806c3fb27SDimitry Andric // Remove variables in the system that went out of scope. 135906c3fb27SDimitry Andric auto &Mapping = Info.getValue2Index(E.IsSigned); 136006c3fb27SDimitry Andric for (Value *V : E.ValuesToRelease) 136106c3fb27SDimitry Andric Mapping.erase(V); 136206c3fb27SDimitry Andric Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 136306c3fb27SDimitry Andric DFSInStack.pop_back(); 136406c3fb27SDimitry Andric if (ReproducerModule) 136506c3fb27SDimitry Andric ReproducerCondStack.pop_back(); 136606c3fb27SDimitry Andric } 136706c3fb27SDimitry Andric 136806c3fb27SDimitry Andric /// Check if the first condition for an AND implies the second. 136906c3fb27SDimitry Andric static bool checkAndSecondOpImpliedByFirst( 137006c3fb27SDimitry Andric FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 137106c3fb27SDimitry Andric SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 137206c3fb27SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack) { 1373*5f757f3fSDimitry Andric 137406c3fb27SDimitry Andric CmpInst::Predicate Pred; 137506c3fb27SDimitry Andric Value *A, *B; 137606c3fb27SDimitry Andric Instruction *And = CB.getContextInst(); 137706c3fb27SDimitry Andric if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1378bdd1243dSDimitry Andric return false; 1379bdd1243dSDimitry Andric 138006c3fb27SDimitry Andric // Optimistically add fact from first condition. 138106c3fb27SDimitry Andric unsigned OldSize = DFSInStack.size(); 138206c3fb27SDimitry Andric Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 138306c3fb27SDimitry Andric if (OldSize == DFSInStack.size()) 138406c3fb27SDimitry Andric return false; 138506c3fb27SDimitry Andric 138606c3fb27SDimitry Andric bool Changed = false; 138706c3fb27SDimitry Andric // Check if the second condition can be simplified now. 1388*5f757f3fSDimitry Andric ICmpInst *Cmp = cast<ICmpInst>(And->getOperand(1)); 1389*5f757f3fSDimitry Andric if (auto ImpliedCondition = checkCondition( 1390*5f757f3fSDimitry Andric Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), Cmp, 1391*5f757f3fSDimitry Andric Info, CB.NumIn, CB.NumOut, CB.getContextInst())) { 139206c3fb27SDimitry Andric And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1393bdd1243dSDimitry Andric Changed = true; 1394bdd1243dSDimitry Andric } 139506c3fb27SDimitry Andric 139606c3fb27SDimitry Andric // Remove entries again. 139706c3fb27SDimitry Andric while (OldSize < DFSInStack.size()) { 139806c3fb27SDimitry Andric StackEntry E = DFSInStack.back(); 139906c3fb27SDimitry Andric removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 140006c3fb27SDimitry Andric DFSInStack); 140106c3fb27SDimitry Andric } 1402bdd1243dSDimitry Andric return Changed; 1403e8d8bef9SDimitry Andric } 1404e8d8bef9SDimitry Andric 140581ad6265SDimitry Andric void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1406bdd1243dSDimitry Andric unsigned NumIn, unsigned NumOut, 140781ad6265SDimitry Andric SmallVectorImpl<StackEntry> &DFSInStack) { 140881ad6265SDimitry Andric // If the constraint has a pre-condition, skip the constraint if it does not 140981ad6265SDimitry Andric // hold. 1410bdd1243dSDimitry Andric SmallVector<Value *> NewVariables; 1411bdd1243dSDimitry Andric auto R = getConstraint(Pred, A, B, NewVariables); 141206c3fb27SDimitry Andric 141306c3fb27SDimitry Andric // TODO: Support non-equality for facts as well. 141406c3fb27SDimitry Andric if (!R.isValid(*this) || R.isNe()) 141581ad6265SDimitry Andric return; 141681ad6265SDimitry Andric 1417*5f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B); 1418*5f757f3fSDimitry Andric dbgs() << "'\n"); 141981ad6265SDimitry Andric bool Added = false; 142081ad6265SDimitry Andric auto &CSToUse = getCS(R.IsSigned); 142181ad6265SDimitry Andric if (R.Coefficients.empty()) 142281ad6265SDimitry Andric return; 142381ad6265SDimitry Andric 142481ad6265SDimitry Andric Added |= CSToUse.addVariableRowFill(R.Coefficients); 142581ad6265SDimitry Andric 1426bdd1243dSDimitry Andric // If R has been added to the system, add the new variables and queue it for 1427bdd1243dSDimitry Andric // removal once it goes out-of-scope. 142881ad6265SDimitry Andric if (Added) { 142981ad6265SDimitry Andric SmallVector<Value *, 2> ValuesToRelease; 1430bdd1243dSDimitry Andric auto &Value2Index = getValue2Index(R.IsSigned); 1431bdd1243dSDimitry Andric for (Value *V : NewVariables) { 1432bdd1243dSDimitry Andric Value2Index.insert({V, Value2Index.size() + 1}); 1433bdd1243dSDimitry Andric ValuesToRelease.push_back(V); 143481ad6265SDimitry Andric } 143581ad6265SDimitry Andric 143681ad6265SDimitry Andric LLVM_DEBUG({ 143781ad6265SDimitry Andric dbgs() << " constraint: "; 143806c3fb27SDimitry Andric dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1439bdd1243dSDimitry Andric dbgs() << "\n"; 144081ad6265SDimitry Andric }); 144181ad6265SDimitry Andric 1442bdd1243dSDimitry Andric DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1443bdd1243dSDimitry Andric std::move(ValuesToRelease)); 144481ad6265SDimitry Andric 144506c3fb27SDimitry Andric if (R.isEq()) { 144681ad6265SDimitry Andric // Also add the inverted constraint for equality constraints. 144781ad6265SDimitry Andric for (auto &Coeff : R.Coefficients) 144881ad6265SDimitry Andric Coeff *= -1; 144981ad6265SDimitry Andric CSToUse.addVariableRowFill(R.Coefficients); 145081ad6265SDimitry Andric 1451bdd1243dSDimitry Andric DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 145281ad6265SDimitry Andric SmallVector<Value *, 2>()); 145381ad6265SDimitry Andric } 145481ad6265SDimitry Andric } 145581ad6265SDimitry Andric } 145681ad6265SDimitry Andric 1457bdd1243dSDimitry Andric static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1458bdd1243dSDimitry Andric SmallVectorImpl<Instruction *> &ToRemove) { 1459bdd1243dSDimitry Andric bool Changed = false; 1460bdd1243dSDimitry Andric IRBuilder<> Builder(II->getParent(), II->getIterator()); 1461bdd1243dSDimitry Andric Value *Sub = nullptr; 1462bdd1243dSDimitry Andric for (User *U : make_early_inc_range(II->users())) { 1463bdd1243dSDimitry Andric if (match(U, m_ExtractValue<0>(m_Value()))) { 1464bdd1243dSDimitry Andric if (!Sub) 1465bdd1243dSDimitry Andric Sub = Builder.CreateSub(A, B); 1466bdd1243dSDimitry Andric U->replaceAllUsesWith(Sub); 1467bdd1243dSDimitry Andric Changed = true; 1468bdd1243dSDimitry Andric } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1469bdd1243dSDimitry Andric U->replaceAllUsesWith(Builder.getFalse()); 1470bdd1243dSDimitry Andric Changed = true; 1471bdd1243dSDimitry Andric } else 1472bdd1243dSDimitry Andric continue; 1473bdd1243dSDimitry Andric 1474bdd1243dSDimitry Andric if (U->use_empty()) { 1475bdd1243dSDimitry Andric auto *I = cast<Instruction>(U); 1476bdd1243dSDimitry Andric ToRemove.push_back(I); 1477bdd1243dSDimitry Andric I->setOperand(0, PoisonValue::get(II->getType())); 1478bdd1243dSDimitry Andric Changed = true; 1479bdd1243dSDimitry Andric } 1480bdd1243dSDimitry Andric } 1481bdd1243dSDimitry Andric 1482bdd1243dSDimitry Andric if (II->use_empty()) { 1483bdd1243dSDimitry Andric II->eraseFromParent(); 1484bdd1243dSDimitry Andric Changed = true; 1485bdd1243dSDimitry Andric } 1486bdd1243dSDimitry Andric return Changed; 1487bdd1243dSDimitry Andric } 1488bdd1243dSDimitry Andric 1489bdd1243dSDimitry Andric static bool 149081ad6265SDimitry Andric tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 149181ad6265SDimitry Andric SmallVectorImpl<Instruction *> &ToRemove) { 149281ad6265SDimitry Andric auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 149381ad6265SDimitry Andric ConstraintInfo &Info) { 1494bdd1243dSDimitry Andric auto R = Info.getConstraintForSolving(Pred, A, B); 1495bdd1243dSDimitry Andric if (R.size() < 2 || !R.isValid(Info)) 149681ad6265SDimitry Andric return false; 149781ad6265SDimitry Andric 1498bdd1243dSDimitry Andric auto &CSToUse = Info.getCS(R.IsSigned); 149981ad6265SDimitry Andric return CSToUse.isConditionImplied(R.Coefficients); 150081ad6265SDimitry Andric }; 150181ad6265SDimitry Andric 1502bdd1243dSDimitry Andric bool Changed = false; 150381ad6265SDimitry Andric if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 150481ad6265SDimitry Andric // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 150581ad6265SDimitry Andric // can be simplified to a regular sub. 150681ad6265SDimitry Andric Value *A = II->getArgOperand(0); 150781ad6265SDimitry Andric Value *B = II->getArgOperand(1); 150881ad6265SDimitry Andric if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 150981ad6265SDimitry Andric !DoesConditionHold(CmpInst::ICMP_SGE, B, 151081ad6265SDimitry Andric ConstantInt::get(A->getType(), 0), Info)) 1511bdd1243dSDimitry Andric return false; 1512bdd1243dSDimitry Andric Changed = replaceSubOverflowUses(II, A, B, ToRemove); 151381ad6265SDimitry Andric } 1514bdd1243dSDimitry Andric return Changed; 151581ad6265SDimitry Andric } 151681ad6265SDimitry Andric 1517*5f757f3fSDimitry Andric static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1518*5f757f3fSDimitry Andric ScalarEvolution &SE, 151906c3fb27SDimitry Andric OptimizationRemarkEmitter &ORE) { 152081ad6265SDimitry Andric bool Changed = false; 152181ad6265SDimitry Andric DT.updateDFSNumbers(); 152206c3fb27SDimitry Andric SmallVector<Value *> FunctionArgs; 152306c3fb27SDimitry Andric for (Value &Arg : F.args()) 152406c3fb27SDimitry Andric FunctionArgs.push_back(&Arg); 152506c3fb27SDimitry Andric ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1526*5f757f3fSDimitry Andric State S(DT, LI, SE); 152706c3fb27SDimitry Andric std::unique_ptr<Module> ReproducerModule( 152806c3fb27SDimitry Andric DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 152981ad6265SDimitry Andric 153081ad6265SDimitry Andric // First, collect conditions implied by branches and blocks with their 153181ad6265SDimitry Andric // Dominator DFS in and out numbers. 153281ad6265SDimitry Andric for (BasicBlock &BB : F) { 153381ad6265SDimitry Andric if (!DT.getNode(&BB)) 153481ad6265SDimitry Andric continue; 153581ad6265SDimitry Andric S.addInfoFor(BB); 153681ad6265SDimitry Andric } 153781ad6265SDimitry Andric 1538bdd1243dSDimitry Andric // Next, sort worklist by dominance, so that dominating conditions to check 1539bdd1243dSDimitry Andric // and facts come before conditions and facts dominated by them. If a 1540bdd1243dSDimitry Andric // condition to check and a fact have the same numbers, conditional facts come 1541bdd1243dSDimitry Andric // first. Assume facts and checks are ordered according to their relative 1542bdd1243dSDimitry Andric // order in the containing basic block. Also make sure conditions with 1543bdd1243dSDimitry Andric // constant operands come before conditions without constant operands. This 1544bdd1243dSDimitry Andric // increases the effectiveness of the current signed <-> unsigned fact 1545bdd1243dSDimitry Andric // transfer logic. 1546bdd1243dSDimitry Andric stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1547bdd1243dSDimitry Andric auto HasNoConstOp = [](const FactOrCheck &B) { 1548*5f757f3fSDimitry Andric Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1549*5f757f3fSDimitry Andric Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1550*5f757f3fSDimitry Andric return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1551bdd1243dSDimitry Andric }; 1552bdd1243dSDimitry Andric // If both entries have the same In numbers, conditional facts come first. 1553bdd1243dSDimitry Andric // Otherwise use the relative order in the basic block. 1554bdd1243dSDimitry Andric if (A.NumIn == B.NumIn) { 1555bdd1243dSDimitry Andric if (A.isConditionFact() && B.isConditionFact()) { 1556bdd1243dSDimitry Andric bool NoConstOpA = HasNoConstOp(A); 1557bdd1243dSDimitry Andric bool NoConstOpB = HasNoConstOp(B); 1558bdd1243dSDimitry Andric return NoConstOpA < NoConstOpB; 1559bdd1243dSDimitry Andric } 1560bdd1243dSDimitry Andric if (A.isConditionFact()) 1561bdd1243dSDimitry Andric return true; 1562bdd1243dSDimitry Andric if (B.isConditionFact()) 1563bdd1243dSDimitry Andric return false; 156406c3fb27SDimitry Andric auto *InstA = A.getContextInst(); 156506c3fb27SDimitry Andric auto *InstB = B.getContextInst(); 156606c3fb27SDimitry Andric return InstA->comesBefore(InstB); 1567bdd1243dSDimitry Andric } 1568bdd1243dSDimitry Andric return A.NumIn < B.NumIn; 1569e8d8bef9SDimitry Andric }); 1570e8d8bef9SDimitry Andric 157181ad6265SDimitry Andric SmallVector<Instruction *> ToRemove; 157281ad6265SDimitry Andric 1573e8d8bef9SDimitry Andric // Finally, process ordered worklist and eliminate implied conditions. 1574e8d8bef9SDimitry Andric SmallVector<StackEntry, 16> DFSInStack; 157506c3fb27SDimitry Andric SmallVector<ReproducerEntry> ReproducerCondStack; 1576bdd1243dSDimitry Andric for (FactOrCheck &CB : S.WorkList) { 1577e8d8bef9SDimitry Andric // First, pop entries from the stack that are out-of-scope for CB. Remove 1578e8d8bef9SDimitry Andric // the corresponding entry from the constraint system. 1579e8d8bef9SDimitry Andric while (!DFSInStack.empty()) { 1580e8d8bef9SDimitry Andric auto &E = DFSInStack.back(); 1581e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1582e8d8bef9SDimitry Andric << "\n"); 1583e8d8bef9SDimitry Andric LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1584e8d8bef9SDimitry Andric assert(E.NumIn <= CB.NumIn); 1585e8d8bef9SDimitry Andric if (CB.NumOut <= E.NumOut) 1586e8d8bef9SDimitry Andric break; 158781ad6265SDimitry Andric LLVM_DEBUG({ 158881ad6265SDimitry Andric dbgs() << "Removing "; 158906c3fb27SDimitry Andric dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 159081ad6265SDimitry Andric Info.getValue2Index(E.IsSigned)); 159181ad6265SDimitry Andric dbgs() << "\n"; 159281ad6265SDimitry Andric }); 159306c3fb27SDimitry Andric removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 159406c3fb27SDimitry Andric DFSInStack); 1595e8d8bef9SDimitry Andric } 1596e8d8bef9SDimitry Andric 159706c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "Processing "); 1598e8d8bef9SDimitry Andric 1599e8d8bef9SDimitry Andric // For a block, check if any CmpInsts become known based on the current set 1600e8d8bef9SDimitry Andric // of constraints. 160106c3fb27SDimitry Andric if (CB.isCheck()) { 160206c3fb27SDimitry Andric Instruction *Inst = CB.getInstructionToSimplify(); 160306c3fb27SDimitry Andric if (!Inst) 160406c3fb27SDimitry Andric continue; 160506c3fb27SDimitry Andric LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 160606c3fb27SDimitry Andric if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1607bdd1243dSDimitry Andric Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 160806c3fb27SDimitry Andric } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 160906c3fb27SDimitry Andric bool Simplified = checkAndReplaceCondition( 161006c3fb27SDimitry Andric Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1611*5f757f3fSDimitry Andric ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 161206c3fb27SDimitry Andric if (!Simplified && match(CB.getContextInst(), 161306c3fb27SDimitry Andric m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 161406c3fb27SDimitry Andric Simplified = 161506c3fb27SDimitry Andric checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 161606c3fb27SDimitry Andric ReproducerCondStack, DFSInStack); 161706c3fb27SDimitry Andric } 161806c3fb27SDimitry Andric Changed |= Simplified; 1619e8d8bef9SDimitry Andric } 1620e8d8bef9SDimitry Andric continue; 1621e8d8bef9SDimitry Andric } 1622e8d8bef9SDimitry Andric 162306c3fb27SDimitry Andric auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1624*5f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "fact to add to the system: "; 1625*5f757f3fSDimitry Andric dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n"); 1626bdd1243dSDimitry Andric if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1627bdd1243dSDimitry Andric LLVM_DEBUG( 1628bdd1243dSDimitry Andric dbgs() 1629bdd1243dSDimitry Andric << "Skip adding constraint because system has too many rows.\n"); 163006c3fb27SDimitry Andric return; 163106c3fb27SDimitry Andric } 163206c3fb27SDimitry Andric 163306c3fb27SDimitry Andric Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 163406c3fb27SDimitry Andric if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 163506c3fb27SDimitry Andric ReproducerCondStack.emplace_back(Pred, A, B); 163606c3fb27SDimitry Andric 163706c3fb27SDimitry Andric Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 163806c3fb27SDimitry Andric if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 163906c3fb27SDimitry Andric // Add dummy entries to ReproducerCondStack to keep it in sync with 164006c3fb27SDimitry Andric // DFSInStack. 164106c3fb27SDimitry Andric for (unsigned I = 0, 164206c3fb27SDimitry Andric E = (DFSInStack.size() - ReproducerCondStack.size()); 164306c3fb27SDimitry Andric I < E; ++I) { 164406c3fb27SDimitry Andric ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 164506c3fb27SDimitry Andric nullptr, nullptr); 164606c3fb27SDimitry Andric } 164706c3fb27SDimitry Andric } 164806c3fb27SDimitry Andric }; 164906c3fb27SDimitry Andric 165006c3fb27SDimitry Andric ICmpInst::Predicate Pred; 1651*5f757f3fSDimitry Andric if (!CB.isConditionFact()) { 165206c3fb27SDimitry Andric if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 165306c3fb27SDimitry Andric Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 165406c3fb27SDimitry Andric AddFact(Pred, MinMax, MinMax->getLHS()); 165506c3fb27SDimitry Andric AddFact(Pred, MinMax, MinMax->getRHS()); 1656bdd1243dSDimitry Andric continue; 1657bdd1243dSDimitry Andric } 1658e8d8bef9SDimitry Andric } 1659*5f757f3fSDimitry Andric 1660*5f757f3fSDimitry Andric Value *A = nullptr, *B = nullptr; 1661*5f757f3fSDimitry Andric if (CB.isConditionFact()) { 1662*5f757f3fSDimitry Andric Pred = CB.Cond.Pred; 1663*5f757f3fSDimitry Andric A = CB.Cond.Op0; 1664*5f757f3fSDimitry Andric B = CB.Cond.Op1; 1665*5f757f3fSDimitry Andric if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1666*5f757f3fSDimitry Andric !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1667*5f757f3fSDimitry Andric continue; 1668*5f757f3fSDimitry Andric } else { 1669*5f757f3fSDimitry Andric bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1670*5f757f3fSDimitry Andric m_ICmp(Pred, m_Value(A), m_Value(B)))); 1671*5f757f3fSDimitry Andric (void)Matched; 1672*5f757f3fSDimitry Andric assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1673*5f757f3fSDimitry Andric } 1674*5f757f3fSDimitry Andric AddFact(Pred, A, B); 1675fe6060f1SDimitry Andric } 1676e8d8bef9SDimitry Andric 167706c3fb27SDimitry Andric if (ReproducerModule && !ReproducerModule->functions().empty()) { 167806c3fb27SDimitry Andric std::string S; 167906c3fb27SDimitry Andric raw_string_ostream StringS(S); 168006c3fb27SDimitry Andric ReproducerModule->print(StringS, nullptr); 168106c3fb27SDimitry Andric StringS.flush(); 168206c3fb27SDimitry Andric OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 168306c3fb27SDimitry Andric Rem << ore::NV("module") << S; 168406c3fb27SDimitry Andric ORE.emit(Rem); 168506c3fb27SDimitry Andric } 168606c3fb27SDimitry Andric 168781ad6265SDimitry Andric #ifndef NDEBUG 168881ad6265SDimitry Andric unsigned SignedEntries = 168981ad6265SDimitry Andric count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 169081ad6265SDimitry Andric assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1691fe6060f1SDimitry Andric "updates to CS and DFSInStack are out of sync"); 169281ad6265SDimitry Andric assert(Info.getCS(true).size() == SignedEntries && 169381ad6265SDimitry Andric "updates to CS and DFSInStack are out of sync"); 169481ad6265SDimitry Andric #endif 169581ad6265SDimitry Andric 169681ad6265SDimitry Andric for (Instruction *I : ToRemove) 169781ad6265SDimitry Andric I->eraseFromParent(); 1698e8d8bef9SDimitry Andric return Changed; 1699e8d8bef9SDimitry Andric } 1700e8d8bef9SDimitry Andric 1701e8d8bef9SDimitry Andric PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1702e8d8bef9SDimitry Andric FunctionAnalysisManager &AM) { 1703e8d8bef9SDimitry Andric auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1704*5f757f3fSDimitry Andric auto &LI = AM.getResult<LoopAnalysis>(F); 1705*5f757f3fSDimitry Andric auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 170606c3fb27SDimitry Andric auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1707*5f757f3fSDimitry Andric if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1708e8d8bef9SDimitry Andric return PreservedAnalyses::all(); 1709e8d8bef9SDimitry Andric 1710e8d8bef9SDimitry Andric PreservedAnalyses PA; 1711e8d8bef9SDimitry Andric PA.preserve<DominatorTreeAnalysis>(); 1712*5f757f3fSDimitry Andric PA.preserve<LoopAnalysis>(); 1713*5f757f3fSDimitry Andric PA.preserve<ScalarEvolutionAnalysis>(); 1714e8d8bef9SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1715e8d8bef9SDimitry Andric return PA; 1716e8d8bef9SDimitry Andric } 1717