1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies expensive constants to hoist and coalesces them to 10 // better prepare it for SelectionDAG-based code generation. This works around 11 // the limitations of the basic-block-at-a-time approach. 12 // 13 // First it scans all instructions for integer constants and calculates its 14 // cost. If the constant can be folded into the instruction (the cost is 15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 16 // consider it expensive and leave it alone. This is the default behavior and 17 // the default implementation of getIntImmCostInst will always return TCC_Free. 18 // 19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 20 // into the instruction and it might be beneficial to hoist the constant. 21 // Similar constants are coalesced to reduce register pressure and 22 // materialization code. 23 // 24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 25 // be live-out of the basic block. Otherwise the constant would be just 26 // duplicated and each basic block would have its own copy in the SelectionDAG. 27 // The SelectionDAG recognizes such constants as opaque and doesn't perform 28 // certain transformations on them, which would create a new expensive constant. 29 // 30 // This optimization is only applied to integer constants in instructions and 31 // simple (this means not nested) constant cast expressions. For example: 32 // %0 = load i64* inttoptr (i64 big_constant to i64*) 33 //===----------------------------------------------------------------------===// 34 35 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/None.h" 39 #include "llvm/ADT/Optional.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/BlockFrequencyInfo.h" 44 #include "llvm/Analysis/ProfileSummaryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/SizeOpts.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <tuple> 71 #include <utility> 72 73 using namespace llvm; 74 using namespace consthoist; 75 76 #define DEBUG_TYPE "consthoist" 77 78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 79 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 80 81 static cl::opt<bool> ConstHoistWithBlockFrequency( 82 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 83 cl::desc("Enable the use of the block frequency analysis to reduce the " 84 "chance to execute const materialization more frequently than " 85 "without hoisting.")); 86 87 static cl::opt<bool> ConstHoistGEP( 88 "consthoist-gep", cl::init(false), cl::Hidden, 89 cl::desc("Try hoisting constant gep expressions")); 90 91 static cl::opt<unsigned> 92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 93 cl::desc("Do not rebase if number of dependent constants of a Base is less " 94 "than this number."), 95 cl::init(0), cl::Hidden); 96 97 namespace { 98 99 /// The constant hoisting pass. 100 class ConstantHoistingLegacyPass : public FunctionPass { 101 public: 102 static char ID; // Pass identification, replacement for typeid 103 104 ConstantHoistingLegacyPass() : FunctionPass(ID) { 105 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnFunction(Function &Fn) override; 109 110 StringRef getPassName() const override { return "Constant Hoisting"; } 111 112 void getAnalysisUsage(AnalysisUsage &AU) const override { 113 AU.setPreservesCFG(); 114 if (ConstHoistWithBlockFrequency) 115 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 116 AU.addRequired<DominatorTreeWrapperPass>(); 117 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 118 AU.addRequired<TargetTransformInfoWrapperPass>(); 119 } 120 121 private: 122 ConstantHoistingPass Impl; 123 }; 124 125 } // end anonymous namespace 126 127 char ConstantHoistingLegacyPass::ID = 0; 128 129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 130 "Constant Hoisting", false, false) 131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 136 "Constant Hoisting", false, false) 137 138 FunctionPass *llvm::createConstantHoistingPass() { 139 return new ConstantHoistingLegacyPass(); 140 } 141 142 /// Perform the constant hoisting optimization for the given function. 143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 144 if (skipFunction(Fn)) 145 return false; 146 147 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 148 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 149 150 bool MadeChange = 151 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 152 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 153 ConstHoistWithBlockFrequency 154 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 155 : nullptr, 156 Fn.getEntryBlock(), 157 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 158 159 if (MadeChange) { 160 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " 161 << Fn.getName() << '\n'); 162 LLVM_DEBUG(dbgs() << Fn); 163 } 164 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 165 166 return MadeChange; 167 } 168 169 /// Find the constant materialization insertion point. 170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 171 unsigned Idx) const { 172 // If the operand is a cast instruction, then we have to materialize the 173 // constant before the cast instruction. 174 if (Idx != ~0U) { 175 Value *Opnd = Inst->getOperand(Idx); 176 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 177 if (CastInst->isCast()) 178 return CastInst; 179 } 180 181 // The simple and common case. This also includes constant expressions. 182 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 183 return Inst; 184 185 // We can't insert directly before a phi node or an eh pad. Insert before 186 // the terminator of the incoming or dominating block. 187 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 188 BasicBlock *InsertionBlock = nullptr; 189 if (Idx != ~0U && isa<PHINode>(Inst)) { 190 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx); 191 if (!InsertionBlock->isEHPad()) { 192 return InsertionBlock->getTerminator(); 193 } 194 } else { 195 InsertionBlock = Inst->getParent(); 196 } 197 198 // This must be an EH pad. Iterate over immediate dominators until we find a 199 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 200 // and terminators. 201 auto *IDom = DT->getNode(InsertionBlock)->getIDom(); 202 while (IDom->getBlock()->isEHPad()) { 203 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 204 IDom = IDom->getIDom(); 205 } 206 207 return IDom->getBlock()->getTerminator(); 208 } 209 210 /// Given \p BBs as input, find another set of BBs which collectively 211 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 212 /// set found in \p BBs. 213 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 214 BasicBlock *Entry, 215 SetVector<BasicBlock *> &BBs) { 216 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 217 // Nodes on the current path to the root. 218 SmallPtrSet<BasicBlock *, 8> Path; 219 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 220 // dominated by any other blocks in set 'BBs', and all nodes in the path 221 // in the dominator tree from Entry to 'BB'. 222 SmallPtrSet<BasicBlock *, 16> Candidates; 223 for (auto BB : BBs) { 224 // Ignore unreachable basic blocks. 225 if (!DT.isReachableFromEntry(BB)) 226 continue; 227 Path.clear(); 228 // Walk up the dominator tree until Entry or another BB in BBs 229 // is reached. Insert the nodes on the way to the Path. 230 BasicBlock *Node = BB; 231 // The "Path" is a candidate path to be added into Candidates set. 232 bool isCandidate = false; 233 do { 234 Path.insert(Node); 235 if (Node == Entry || Candidates.count(Node)) { 236 isCandidate = true; 237 break; 238 } 239 assert(DT.getNode(Node)->getIDom() && 240 "Entry doens't dominate current Node"); 241 Node = DT.getNode(Node)->getIDom()->getBlock(); 242 } while (!BBs.count(Node)); 243 244 // If isCandidate is false, Node is another Block in BBs dominating 245 // current 'BB'. Drop the nodes on the Path. 246 if (!isCandidate) 247 continue; 248 249 // Add nodes on the Path into Candidates. 250 Candidates.insert(Path.begin(), Path.end()); 251 } 252 253 // Sort the nodes in Candidates in top-down order and save the nodes 254 // in Orders. 255 unsigned Idx = 0; 256 SmallVector<BasicBlock *, 16> Orders; 257 Orders.push_back(Entry); 258 while (Idx != Orders.size()) { 259 BasicBlock *Node = Orders[Idx++]; 260 for (auto ChildDomNode : DT.getNode(Node)->children()) { 261 if (Candidates.count(ChildDomNode->getBlock())) 262 Orders.push_back(ChildDomNode->getBlock()); 263 } 264 } 265 266 // Visit Orders in bottom-up order. 267 using InsertPtsCostPair = 268 std::pair<SetVector<BasicBlock *>, BlockFrequency>; 269 270 // InsertPtsMap is a map from a BB to the best insertion points for the 271 // subtree of BB (subtree not including the BB itself). 272 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 273 InsertPtsMap.reserve(Orders.size() + 1); 274 for (BasicBlock *Node : llvm::reverse(Orders)) { 275 bool NodeInBBs = BBs.count(Node); 276 auto &InsertPts = InsertPtsMap[Node].first; 277 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 278 279 // Return the optimal insert points in BBs. 280 if (Node == Entry) { 281 BBs.clear(); 282 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 283 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 284 BBs.insert(Entry); 285 else 286 BBs.insert(InsertPts.begin(), InsertPts.end()); 287 break; 288 } 289 290 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 291 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 292 // will update its parent's ParentInsertPts and ParentPtsFreq. 293 auto &ParentInsertPts = InsertPtsMap[Parent].first; 294 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 295 // Choose to insert in Node or in subtree of Node. 296 // Don't hoist to EHPad because we may not find a proper place to insert 297 // in EHPad. 298 // If the total frequency of InsertPts is the same as the frequency of the 299 // target Node, and InsertPts contains more than one nodes, choose hoisting 300 // to reduce code size. 301 if (NodeInBBs || 302 (!Node->isEHPad() && 303 (InsertPtsFreq > BFI.getBlockFreq(Node) || 304 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 305 ParentInsertPts.insert(Node); 306 ParentPtsFreq += BFI.getBlockFreq(Node); 307 } else { 308 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 309 ParentPtsFreq += InsertPtsFreq; 310 } 311 } 312 } 313 314 /// Find an insertion point that dominates all uses. 315 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( 316 const ConstantInfo &ConstInfo) const { 317 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 318 // Collect all basic blocks. 319 SetVector<BasicBlock *> BBs; 320 SetVector<Instruction *> InsertPts; 321 for (auto const &RCI : ConstInfo.RebasedConstants) 322 for (auto const &U : RCI.Uses) 323 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); 324 325 if (BBs.count(Entry)) { 326 InsertPts.insert(&Entry->front()); 327 return InsertPts; 328 } 329 330 if (BFI) { 331 findBestInsertionSet(*DT, *BFI, Entry, BBs); 332 for (auto BB : BBs) { 333 BasicBlock::iterator InsertPt = BB->begin(); 334 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 335 ; 336 InsertPts.insert(&*InsertPt); 337 } 338 return InsertPts; 339 } 340 341 while (BBs.size() >= 2) { 342 BasicBlock *BB, *BB1, *BB2; 343 BB1 = BBs.pop_back_val(); 344 BB2 = BBs.pop_back_val(); 345 BB = DT->findNearestCommonDominator(BB1, BB2); 346 if (BB == Entry) { 347 InsertPts.insert(&Entry->front()); 348 return InsertPts; 349 } 350 BBs.insert(BB); 351 } 352 assert((BBs.size() == 1) && "Expected only one element."); 353 Instruction &FirstInst = (*BBs.begin())->front(); 354 InsertPts.insert(findMatInsertPt(&FirstInst)); 355 return InsertPts; 356 } 357 358 /// Record constant integer ConstInt for instruction Inst at operand 359 /// index Idx. 360 /// 361 /// The operand at index Idx is not necessarily the constant integer itself. It 362 /// could also be a cast instruction or a constant expression that uses the 363 /// constant integer. 364 void ConstantHoistingPass::collectConstantCandidates( 365 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 366 ConstantInt *ConstInt) { 367 InstructionCost Cost; 368 // Ask the target about the cost of materializing the constant for the given 369 // instruction and operand index. 370 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 371 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, 372 ConstInt->getValue(), ConstInt->getType(), 373 TargetTransformInfo::TCK_SizeAndLatency); 374 else 375 Cost = TTI->getIntImmCostInst( 376 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), 377 TargetTransformInfo::TCK_SizeAndLatency, Inst); 378 379 // Ignore cheap integer constants. 380 if (Cost > TargetTransformInfo::TCC_Basic) { 381 ConstCandMapType::iterator Itr; 382 bool Inserted; 383 ConstPtrUnionType Cand = ConstInt; 384 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 385 if (Inserted) { 386 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 387 Itr->second = ConstIntCandVec.size() - 1; 388 } 389 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 390 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 391 << "Collect constant " << *ConstInt << " from " << *Inst 392 << " with cost " << Cost << '\n'; 393 else dbgs() << "Collect constant " << *ConstInt 394 << " indirectly from " << *Inst << " via " 395 << *Inst->getOperand(Idx) << " with cost " << Cost 396 << '\n';); 397 } 398 } 399 400 /// Record constant GEP expression for instruction Inst at operand index Idx. 401 void ConstantHoistingPass::collectConstantCandidates( 402 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 403 ConstantExpr *ConstExpr) { 404 // TODO: Handle vector GEPs 405 if (ConstExpr->getType()->isVectorTy()) 406 return; 407 408 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 409 if (!BaseGV) 410 return; 411 412 // Get offset from the base GV. 413 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); 414 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); 415 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); 416 auto *GEPO = cast<GEPOperator>(ConstExpr); 417 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 418 return; 419 420 if (!Offset.isIntN(32)) 421 return; 422 423 // A constant GEP expression that has a GlobalVariable as base pointer is 424 // usually lowered to a load from constant pool. Such operation is unlikely 425 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 426 // an ADD instruction or folded into Load/Store instruction. 427 InstructionCost Cost = 428 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy, 429 TargetTransformInfo::TCK_SizeAndLatency, Inst); 430 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 431 ConstCandMapType::iterator Itr; 432 bool Inserted; 433 ConstPtrUnionType Cand = ConstExpr; 434 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 435 if (Inserted) { 436 ExprCandVec.push_back(ConstantCandidate( 437 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 438 ConstExpr)); 439 Itr->second = ExprCandVec.size() - 1; 440 } 441 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 442 } 443 444 /// Check the operand for instruction Inst at index Idx. 445 void ConstantHoistingPass::collectConstantCandidates( 446 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 447 Value *Opnd = Inst->getOperand(Idx); 448 449 // Visit constant integers. 450 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 451 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 452 return; 453 } 454 455 // Visit cast instructions that have constant integers. 456 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 457 // Only visit cast instructions, which have been skipped. All other 458 // instructions should have already been visited. 459 if (!CastInst->isCast()) 460 return; 461 462 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 463 // Pretend the constant is directly used by the instruction and ignore 464 // the cast instruction. 465 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 466 return; 467 } 468 } 469 470 // Visit constant expressions that have constant integers. 471 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 472 // Handle constant gep expressions. 473 if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) 474 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 475 476 // Only visit constant cast expressions. 477 if (!ConstExpr->isCast()) 478 return; 479 480 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 481 // Pretend the constant is directly used by the instruction and ignore 482 // the constant expression. 483 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 484 return; 485 } 486 } 487 } 488 489 /// Scan the instruction for expensive integer constants and record them 490 /// in the constant candidate vector. 491 void ConstantHoistingPass::collectConstantCandidates( 492 ConstCandMapType &ConstCandMap, Instruction *Inst) { 493 // Skip all cast instructions. They are visited indirectly later on. 494 if (Inst->isCast()) 495 return; 496 497 // Scan all operands. 498 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 499 // The cost of materializing the constants (defined in 500 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only 501 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. 502 // So it's safe for us to collect constant candidates from all 503 // IntrinsicInsts. 504 if (canReplaceOperandWithVariable(Inst, Idx)) { 505 collectConstantCandidates(ConstCandMap, Inst, Idx); 506 } 507 } // end of for all operands 508 } 509 510 /// Collect all integer constants in the function that cannot be folded 511 /// into an instruction itself. 512 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 513 ConstCandMapType ConstCandMap; 514 for (BasicBlock &BB : Fn) { 515 // Ignore unreachable basic blocks. 516 if (!DT->isReachableFromEntry(&BB)) 517 continue; 518 for (Instruction &Inst : BB) 519 collectConstantCandidates(ConstCandMap, &Inst); 520 } 521 } 522 523 // This helper function is necessary to deal with values that have different 524 // bit widths (APInt Operator- does not like that). If the value cannot be 525 // represented in uint64 we return an "empty" APInt. This is then interpreted 526 // as the value is not in range. 527 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { 528 Optional<APInt> Res = None; 529 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? 530 V1.getBitWidth() : V2.getBitWidth(); 531 uint64_t LimVal1 = V1.getLimitedValue(); 532 uint64_t LimVal2 = V2.getLimitedValue(); 533 534 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) 535 return Res; 536 537 uint64_t Diff = LimVal1 - LimVal2; 538 return APInt(BW, Diff, true); 539 } 540 541 // From a list of constants, one needs to picked as the base and the other 542 // constants will be transformed into an offset from that base constant. The 543 // question is which we can pick best? For example, consider these constants 544 // and their number of uses: 545 // 546 // Constants| 2 | 4 | 12 | 42 | 547 // NumUses | 3 | 2 | 8 | 7 | 548 // 549 // Selecting constant 12 because it has the most uses will generate negative 550 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 551 // offsets lead to less optimal code generation, then there might be better 552 // solutions. Suppose immediates in the range of 0..35 are most optimally 553 // supported by the architecture, then selecting constant 2 is most optimal 554 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 555 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 556 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 557 // selecting the base constant the range of the offsets is a very important 558 // factor too that we take into account here. This algorithm calculates a total 559 // costs for selecting a constant as the base and substract the costs if 560 // immediates are out of range. It has quadratic complexity, so we call this 561 // function only when we're optimising for size and there are less than 100 562 // constants, we fall back to the straightforward algorithm otherwise 563 // which does not do all the offset calculations. 564 unsigned 565 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 566 ConstCandVecType::iterator E, 567 ConstCandVecType::iterator &MaxCostItr) { 568 unsigned NumUses = 0; 569 570 bool OptForSize = Entry->getParent()->hasOptSize() || 571 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI, 572 PGSOQueryType::IRPass); 573 if (!OptForSize || std::distance(S,E) > 100) { 574 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 575 NumUses += ConstCand->Uses.size(); 576 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 577 MaxCostItr = ConstCand; 578 } 579 return NumUses; 580 } 581 582 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 583 InstructionCost MaxCost = -1; 584 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 585 auto Value = ConstCand->ConstInt->getValue(); 586 Type *Ty = ConstCand->ConstInt->getType(); 587 InstructionCost Cost = 0; 588 NumUses += ConstCand->Uses.size(); 589 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 590 << "\n"); 591 592 for (auto User : ConstCand->Uses) { 593 unsigned Opcode = User.Inst->getOpcode(); 594 unsigned OpndIdx = User.OpndIdx; 595 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, 596 TargetTransformInfo::TCK_SizeAndLatency); 597 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 598 599 for (auto C2 = S; C2 != E; ++C2) { 600 Optional<APInt> Diff = calculateOffsetDiff( 601 C2->ConstInt->getValue(), 602 ConstCand->ConstInt->getValue()); 603 if (Diff) { 604 const InstructionCost ImmCosts = 605 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); 606 Cost -= ImmCosts; 607 LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " 608 << "has penalty: " << ImmCosts << "\n" 609 << "Adjusted cost: " << Cost << "\n"); 610 } 611 } 612 } 613 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 614 if (Cost > MaxCost) { 615 MaxCost = Cost; 616 MaxCostItr = ConstCand; 617 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 618 << "\n"); 619 } 620 } 621 return NumUses; 622 } 623 624 /// Find the base constant within the given range and rebase all other 625 /// constants with respect to the base constant. 626 void ConstantHoistingPass::findAndMakeBaseConstant( 627 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 628 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 629 auto MaxCostItr = S; 630 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 631 632 // Don't hoist constants that have only one use. 633 if (NumUses <= 1) 634 return; 635 636 ConstantInt *ConstInt = MaxCostItr->ConstInt; 637 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 638 ConstantInfo ConstInfo; 639 ConstInfo.BaseInt = ConstInt; 640 ConstInfo.BaseExpr = ConstExpr; 641 Type *Ty = ConstInt->getType(); 642 643 // Rebase the constants with respect to the base constant. 644 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 645 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 646 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 647 Type *ConstTy = 648 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 649 ConstInfo.RebasedConstants.push_back( 650 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 651 } 652 ConstInfoVec.push_back(std::move(ConstInfo)); 653 } 654 655 /// Finds and combines constant candidates that can be easily 656 /// rematerialized with an add from a common base constant. 657 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 658 // If BaseGV is nullptr, find base among candidate constant integers; 659 // Otherwise find base among constant GEPs that share the same BaseGV. 660 ConstCandVecType &ConstCandVec = BaseGV ? 661 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 662 ConstInfoVecType &ConstInfoVec = BaseGV ? 663 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 664 665 // Sort the constants by value and type. This invalidates the mapping! 666 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, 667 const ConstantCandidate &RHS) { 668 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 669 return LHS.ConstInt->getType()->getBitWidth() < 670 RHS.ConstInt->getType()->getBitWidth(); 671 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 672 }); 673 674 // Simple linear scan through the sorted constant candidate vector for viable 675 // merge candidates. 676 auto MinValItr = ConstCandVec.begin(); 677 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 678 CC != E; ++CC) { 679 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 680 Type *MemUseValTy = nullptr; 681 for (auto &U : CC->Uses) { 682 auto *UI = U.Inst; 683 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 684 MemUseValTy = LI->getType(); 685 break; 686 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 687 // Make sure the constant is used as pointer operand of the StoreInst. 688 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 689 MemUseValTy = SI->getValueOperand()->getType(); 690 break; 691 } 692 } 693 } 694 695 // Check if the constant is in range of an add with immediate. 696 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 697 if ((Diff.getBitWidth() <= 64) && 698 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 699 // Check if Diff can be used as offset in addressing mode of the user 700 // memory instruction. 701 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 702 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 703 /*HasBaseReg*/true, /*Scale*/0))) 704 continue; 705 } 706 // We either have now a different constant type or the constant is not in 707 // range of an add with immediate anymore. 708 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 709 // Start a new base constant search. 710 MinValItr = CC; 711 } 712 // Finalize the last base constant search. 713 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 714 } 715 716 /// Updates the operand at Idx in instruction Inst with the result of 717 /// instruction Mat. If the instruction is a PHI node then special 718 /// handling for duplicate values form the same incoming basic block is 719 /// required. 720 /// \return The update will always succeed, but the return value indicated if 721 /// Mat was used for the update or not. 722 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 723 if (auto PHI = dyn_cast<PHINode>(Inst)) { 724 // Check if any previous operand of the PHI node has the same incoming basic 725 // block. This is a very odd case that happens when the incoming basic block 726 // has a switch statement. In this case use the same value as the previous 727 // operand(s), otherwise we will fail verification due to different values. 728 // The values are actually the same, but the variable names are different 729 // and the verifier doesn't like that. 730 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 731 for (unsigned i = 0; i < Idx; ++i) { 732 if (PHI->getIncomingBlock(i) == IncomingBB) { 733 Value *IncomingVal = PHI->getIncomingValue(i); 734 Inst->setOperand(Idx, IncomingVal); 735 return false; 736 } 737 } 738 } 739 740 Inst->setOperand(Idx, Mat); 741 return true; 742 } 743 744 /// Emit materialization code for all rebased constants and update their 745 /// users. 746 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 747 Constant *Offset, 748 Type *Ty, 749 const ConstantUser &ConstUser) { 750 Instruction *Mat = Base; 751 752 // The same offset can be dereferenced to different types in nested struct. 753 if (!Offset && Ty && Ty != Base->getType()) 754 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 755 756 if (Offset) { 757 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, 758 ConstUser.OpndIdx); 759 if (Ty) { 760 // Constant being rebased is a ConstantExpr. 761 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, 762 cast<PointerType>(Ty)->getAddressSpace()); 763 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); 764 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, 765 Offset, "mat_gep", InsertionPt); 766 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); 767 } else 768 // Constant being rebased is a ConstantInt. 769 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, 770 "const_mat", InsertionPt); 771 772 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 773 << " + " << *Offset << ") in BB " 774 << Mat->getParent()->getName() << '\n' 775 << *Mat << '\n'); 776 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); 777 } 778 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); 779 780 // Visit constant integer. 781 if (isa<ConstantInt>(Opnd)) { 782 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 783 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) 784 Mat->eraseFromParent(); 785 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 786 return; 787 } 788 789 // Visit cast instruction. 790 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 791 assert(CastInst->isCast() && "Expected an cast instruction!"); 792 // Check if we already have visited this cast instruction before to avoid 793 // unnecessary cloning. 794 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 795 if (!ClonedCastInst) { 796 ClonedCastInst = CastInst->clone(); 797 ClonedCastInst->setOperand(0, Mat); 798 ClonedCastInst->insertAfter(CastInst); 799 // Use the same debug location as the original cast instruction. 800 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 801 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 802 << "To : " << *ClonedCastInst << '\n'); 803 } 804 805 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 806 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); 807 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 808 return; 809 } 810 811 // Visit constant expression. 812 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 813 if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { 814 // Operand is a ConstantGEP, replace it. 815 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); 816 return; 817 } 818 819 // Aside from constant GEPs, only constant cast expressions are collected. 820 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 821 Instruction *ConstExprInst = ConstExpr->getAsInstruction( 822 findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx)); 823 ConstExprInst->setOperand(0, Mat); 824 825 // Use the same debug location as the instruction we are about to update. 826 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); 827 828 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 829 << "From : " << *ConstExpr << '\n'); 830 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 831 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { 832 ConstExprInst->eraseFromParent(); 833 if (Offset) 834 Mat->eraseFromParent(); 835 } 836 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 837 return; 838 } 839 } 840 841 /// Hoist and hide the base constant behind a bitcast and emit 842 /// materialization code for derived constants. 843 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 844 bool MadeChange = false; 845 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 846 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 847 for (auto const &ConstInfo : ConstInfoVec) { 848 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo); 849 // We can have an empty set if the function contains unreachable blocks. 850 if (IPSet.empty()) 851 continue; 852 853 unsigned UsesNum = 0; 854 unsigned ReBasesNum = 0; 855 unsigned NotRebasedNum = 0; 856 for (Instruction *IP : IPSet) { 857 // First, collect constants depending on this IP of the base. 858 unsigned Uses = 0; 859 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; 860 SmallVector<RebasedUse, 4> ToBeRebased; 861 for (auto const &RCI : ConstInfo.RebasedConstants) { 862 for (auto const &U : RCI.Uses) { 863 Uses++; 864 BasicBlock *OrigMatInsertBB = 865 findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); 866 // If Base constant is to be inserted in multiple places, 867 // generate rebase for U using the Base dominating U. 868 if (IPSet.size() == 1 || 869 DT->dominates(IP->getParent(), OrigMatInsertBB)) 870 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); 871 } 872 } 873 UsesNum = Uses; 874 875 // If only few constants depend on this IP of base, skip rebasing, 876 // assuming the base and the rebased have the same materialization cost. 877 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 878 NotRebasedNum += ToBeRebased.size(); 879 continue; 880 } 881 882 // Emit an instance of the base at this IP. 883 Instruction *Base = nullptr; 884 // Hoist and hide the base constant behind a bitcast. 885 if (ConstInfo.BaseExpr) { 886 assert(BaseGV && "A base constant expression must have an base GV"); 887 Type *Ty = ConstInfo.BaseExpr->getType(); 888 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 889 } else { 890 IntegerType *Ty = ConstInfo.BaseInt->getType(); 891 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 892 } 893 894 Base->setDebugLoc(IP->getDebugLoc()); 895 896 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 897 << ") to BB " << IP->getParent()->getName() << '\n' 898 << *Base << '\n'); 899 900 // Emit materialization code for rebased constants depending on this IP. 901 for (auto const &R : ToBeRebased) { 902 Constant *Off = std::get<0>(R); 903 Type *Ty = std::get<1>(R); 904 ConstantUser U = std::get<2>(R); 905 emitBaseConstants(Base, Off, Ty, U); 906 ReBasesNum++; 907 // Use the same debug location as the last user of the constant. 908 Base->setDebugLoc(DILocation::getMergedLocation( 909 Base->getDebugLoc(), U.Inst->getDebugLoc())); 910 } 911 assert(!Base->use_empty() && "The use list is empty!?"); 912 assert(isa<Instruction>(Base->user_back()) && 913 "All uses should be instructions."); 914 } 915 (void)UsesNum; 916 (void)ReBasesNum; 917 (void)NotRebasedNum; 918 // Expect all uses are rebased after rebase is done. 919 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 920 "Not all uses are rebased"); 921 922 NumConstantsHoisted++; 923 924 // Base constant is also included in ConstInfo.RebasedConstants, so 925 // deduct 1 from ConstInfo.RebasedConstants.size(). 926 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 927 928 MadeChange = true; 929 } 930 return MadeChange; 931 } 932 933 /// Check all cast instructions we made a copy of and remove them if they 934 /// have no more users. 935 void ConstantHoistingPass::deleteDeadCastInst() const { 936 for (auto const &I : ClonedCastMap) 937 if (I.first->use_empty()) 938 I.first->eraseFromParent(); 939 } 940 941 /// Optimize expensive integer constants in the given function. 942 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 943 DominatorTree &DT, BlockFrequencyInfo *BFI, 944 BasicBlock &Entry, ProfileSummaryInfo *PSI) { 945 this->TTI = &TTI; 946 this->DT = &DT; 947 this->BFI = BFI; 948 this->DL = &Fn.getParent()->getDataLayout(); 949 this->Ctx = &Fn.getContext(); 950 this->Entry = &Entry; 951 this->PSI = PSI; 952 // Collect all constant candidates. 953 collectConstantCandidates(Fn); 954 955 // Combine constants that can be easily materialized with an add from a common 956 // base constant. 957 if (!ConstIntCandVec.empty()) 958 findBaseConstants(nullptr); 959 for (const auto &MapEntry : ConstGEPCandMap) 960 if (!MapEntry.second.empty()) 961 findBaseConstants(MapEntry.first); 962 963 // Finally hoist the base constant and emit materialization code for dependent 964 // constants. 965 bool MadeChange = false; 966 if (!ConstIntInfoVec.empty()) 967 MadeChange = emitBaseConstants(nullptr); 968 for (const auto &MapEntry : ConstGEPInfoMap) 969 if (!MapEntry.second.empty()) 970 MadeChange |= emitBaseConstants(MapEntry.first); 971 972 973 // Cleanup dead instructions. 974 deleteDeadCastInst(); 975 976 cleanup(); 977 978 return MadeChange; 979 } 980 981 PreservedAnalyses ConstantHoistingPass::run(Function &F, 982 FunctionAnalysisManager &AM) { 983 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 984 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 985 auto BFI = ConstHoistWithBlockFrequency 986 ? &AM.getResult<BlockFrequencyAnalysis>(F) 987 : nullptr; 988 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 989 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 990 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) 991 return PreservedAnalyses::all(); 992 993 PreservedAnalyses PA; 994 PA.preserveSet<CFGAnalyses>(); 995 return PA; 996 } 997