xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34 
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <tuple>
71 #include <utility>
72 
73 using namespace llvm;
74 using namespace consthoist;
75 
76 #define DEBUG_TYPE "consthoist"
77 
78 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79 STATISTIC(NumConstantsRebased, "Number of constants rebased");
80 
81 static cl::opt<bool> ConstHoistWithBlockFrequency(
82     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83     cl::desc("Enable the use of the block frequency analysis to reduce the "
84              "chance to execute const materialization more frequently than "
85              "without hoisting."));
86 
87 static cl::opt<bool> ConstHoistGEP(
88     "consthoist-gep", cl::init(false), cl::Hidden,
89     cl::desc("Try hoisting constant gep expressions"));
90 
91 static cl::opt<unsigned>
92 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93     cl::desc("Do not rebase if number of dependent constants of a Base is less "
94              "than this number."),
95     cl::init(0), cl::Hidden);
96 
97 namespace {
98 
99 /// The constant hoisting pass.
100 class ConstantHoistingLegacyPass : public FunctionPass {
101 public:
102   static char ID; // Pass identification, replacement for typeid
103 
104   ConstantHoistingLegacyPass() : FunctionPass(ID) {
105     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106   }
107 
108   bool runOnFunction(Function &Fn) override;
109 
110   StringRef getPassName() const override { return "Constant Hoisting"; }
111 
112   void getAnalysisUsage(AnalysisUsage &AU) const override {
113     AU.setPreservesCFG();
114     if (ConstHoistWithBlockFrequency)
115       AU.addRequired<BlockFrequencyInfoWrapperPass>();
116     AU.addRequired<DominatorTreeWrapperPass>();
117     AU.addRequired<ProfileSummaryInfoWrapperPass>();
118     AU.addRequired<TargetTransformInfoWrapperPass>();
119   }
120 
121 private:
122   ConstantHoistingPass Impl;
123 };
124 
125 } // end anonymous namespace
126 
127 char ConstantHoistingLegacyPass::ID = 0;
128 
129 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130                       "Constant Hoisting", false, false)
131 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136                     "Constant Hoisting", false, false)
137 
138 FunctionPass *llvm::createConstantHoistingPass() {
139   return new ConstantHoistingLegacyPass();
140 }
141 
142 /// Perform the constant hoisting optimization for the given function.
143 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144   if (skipFunction(Fn))
145     return false;
146 
147   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149 
150   bool MadeChange =
151       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153                    ConstHoistWithBlockFrequency
154                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155                        : nullptr,
156                    Fn.getEntryBlock(),
157                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158 
159   if (MadeChange) {
160     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161                       << Fn.getName() << '\n');
162     LLVM_DEBUG(dbgs() << Fn);
163   }
164   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
165 
166   return MadeChange;
167 }
168 
169 /// Find the constant materialization insertion point.
170 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
171                                                    unsigned Idx) const {
172   // If the operand is a cast instruction, then we have to materialize the
173   // constant before the cast instruction.
174   if (Idx != ~0U) {
175     Value *Opnd = Inst->getOperand(Idx);
176     if (auto CastInst = dyn_cast<Instruction>(Opnd))
177       if (CastInst->isCast())
178         return CastInst;
179   }
180 
181   // The simple and common case. This also includes constant expressions.
182   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
183     return Inst;
184 
185   // We can't insert directly before a phi node or an eh pad. Insert before
186   // the terminator of the incoming or dominating block.
187   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
188   BasicBlock *InsertionBlock = nullptr;
189   if (Idx != ~0U && isa<PHINode>(Inst)) {
190     InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
191     if (!InsertionBlock->isEHPad()) {
192       return InsertionBlock->getTerminator();
193     }
194   } else {
195     InsertionBlock = Inst->getParent();
196   }
197 
198   // This must be an EH pad. Iterate over immediate dominators until we find a
199   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
200   // and terminators.
201   auto *IDom = DT->getNode(InsertionBlock)->getIDom();
202   while (IDom->getBlock()->isEHPad()) {
203     assert(Entry != IDom->getBlock() && "eh pad in entry block");
204     IDom = IDom->getIDom();
205   }
206 
207   return IDom->getBlock()->getTerminator();
208 }
209 
210 /// Given \p BBs as input, find another set of BBs which collectively
211 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
212 /// set found in \p BBs.
213 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
214                                  BasicBlock *Entry,
215                                  SetVector<BasicBlock *> &BBs) {
216   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
217   // Nodes on the current path to the root.
218   SmallPtrSet<BasicBlock *, 8> Path;
219   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
220   // dominated by any other blocks in set 'BBs', and all nodes in the path
221   // in the dominator tree from Entry to 'BB'.
222   SmallPtrSet<BasicBlock *, 16> Candidates;
223   for (auto BB : BBs) {
224     // Ignore unreachable basic blocks.
225     if (!DT.isReachableFromEntry(BB))
226       continue;
227     Path.clear();
228     // Walk up the dominator tree until Entry or another BB in BBs
229     // is reached. Insert the nodes on the way to the Path.
230     BasicBlock *Node = BB;
231     // The "Path" is a candidate path to be added into Candidates set.
232     bool isCandidate = false;
233     do {
234       Path.insert(Node);
235       if (Node == Entry || Candidates.count(Node)) {
236         isCandidate = true;
237         break;
238       }
239       assert(DT.getNode(Node)->getIDom() &&
240              "Entry doens't dominate current Node");
241       Node = DT.getNode(Node)->getIDom()->getBlock();
242     } while (!BBs.count(Node));
243 
244     // If isCandidate is false, Node is another Block in BBs dominating
245     // current 'BB'. Drop the nodes on the Path.
246     if (!isCandidate)
247       continue;
248 
249     // Add nodes on the Path into Candidates.
250     Candidates.insert(Path.begin(), Path.end());
251   }
252 
253   // Sort the nodes in Candidates in top-down order and save the nodes
254   // in Orders.
255   unsigned Idx = 0;
256   SmallVector<BasicBlock *, 16> Orders;
257   Orders.push_back(Entry);
258   while (Idx != Orders.size()) {
259     BasicBlock *Node = Orders[Idx++];
260     for (auto ChildDomNode : DT.getNode(Node)->children()) {
261       if (Candidates.count(ChildDomNode->getBlock()))
262         Orders.push_back(ChildDomNode->getBlock());
263     }
264   }
265 
266   // Visit Orders in bottom-up order.
267   using InsertPtsCostPair =
268       std::pair<SetVector<BasicBlock *>, BlockFrequency>;
269 
270   // InsertPtsMap is a map from a BB to the best insertion points for the
271   // subtree of BB (subtree not including the BB itself).
272   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
273   InsertPtsMap.reserve(Orders.size() + 1);
274   for (BasicBlock *Node : llvm::reverse(Orders)) {
275     bool NodeInBBs = BBs.count(Node);
276     auto &InsertPts = InsertPtsMap[Node].first;
277     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
278 
279     // Return the optimal insert points in BBs.
280     if (Node == Entry) {
281       BBs.clear();
282       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
283           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
284         BBs.insert(Entry);
285       else
286         BBs.insert(InsertPts.begin(), InsertPts.end());
287       break;
288     }
289 
290     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
291     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
292     // will update its parent's ParentInsertPts and ParentPtsFreq.
293     auto &ParentInsertPts = InsertPtsMap[Parent].first;
294     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
295     // Choose to insert in Node or in subtree of Node.
296     // Don't hoist to EHPad because we may not find a proper place to insert
297     // in EHPad.
298     // If the total frequency of InsertPts is the same as the frequency of the
299     // target Node, and InsertPts contains more than one nodes, choose hoisting
300     // to reduce code size.
301     if (NodeInBBs ||
302         (!Node->isEHPad() &&
303          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
304           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
305       ParentInsertPts.insert(Node);
306       ParentPtsFreq += BFI.getBlockFreq(Node);
307     } else {
308       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
309       ParentPtsFreq += InsertPtsFreq;
310     }
311   }
312 }
313 
314 /// Find an insertion point that dominates all uses.
315 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
316     const ConstantInfo &ConstInfo) const {
317   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
318   // Collect all basic blocks.
319   SetVector<BasicBlock *> BBs;
320   SetVector<Instruction *> InsertPts;
321   for (auto const &RCI : ConstInfo.RebasedConstants)
322     for (auto const &U : RCI.Uses)
323       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
324 
325   if (BBs.count(Entry)) {
326     InsertPts.insert(&Entry->front());
327     return InsertPts;
328   }
329 
330   if (BFI) {
331     findBestInsertionSet(*DT, *BFI, Entry, BBs);
332     for (auto BB : BBs) {
333       BasicBlock::iterator InsertPt = BB->begin();
334       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
335         ;
336       InsertPts.insert(&*InsertPt);
337     }
338     return InsertPts;
339   }
340 
341   while (BBs.size() >= 2) {
342     BasicBlock *BB, *BB1, *BB2;
343     BB1 = BBs.pop_back_val();
344     BB2 = BBs.pop_back_val();
345     BB = DT->findNearestCommonDominator(BB1, BB2);
346     if (BB == Entry) {
347       InsertPts.insert(&Entry->front());
348       return InsertPts;
349     }
350     BBs.insert(BB);
351   }
352   assert((BBs.size() == 1) && "Expected only one element.");
353   Instruction &FirstInst = (*BBs.begin())->front();
354   InsertPts.insert(findMatInsertPt(&FirstInst));
355   return InsertPts;
356 }
357 
358 /// Record constant integer ConstInt for instruction Inst at operand
359 /// index Idx.
360 ///
361 /// The operand at index Idx is not necessarily the constant integer itself. It
362 /// could also be a cast instruction or a constant expression that uses the
363 /// constant integer.
364 void ConstantHoistingPass::collectConstantCandidates(
365     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
366     ConstantInt *ConstInt) {
367   InstructionCost Cost;
368   // Ask the target about the cost of materializing the constant for the given
369   // instruction and operand index.
370   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
371     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
372                                     ConstInt->getValue(), ConstInt->getType(),
373                                     TargetTransformInfo::TCK_SizeAndLatency);
374   else
375     Cost = TTI->getIntImmCostInst(
376         Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
377         TargetTransformInfo::TCK_SizeAndLatency, Inst);
378 
379   // Ignore cheap integer constants.
380   if (Cost > TargetTransformInfo::TCC_Basic) {
381     ConstCandMapType::iterator Itr;
382     bool Inserted;
383     ConstPtrUnionType Cand = ConstInt;
384     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
385     if (Inserted) {
386       ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
387       Itr->second = ConstIntCandVec.size() - 1;
388     }
389     ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
390     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
391                    << "Collect constant " << *ConstInt << " from " << *Inst
392                    << " with cost " << Cost << '\n';
393                else dbgs() << "Collect constant " << *ConstInt
394                            << " indirectly from " << *Inst << " via "
395                            << *Inst->getOperand(Idx) << " with cost " << Cost
396                            << '\n';);
397   }
398 }
399 
400 /// Record constant GEP expression for instruction Inst at operand index Idx.
401 void ConstantHoistingPass::collectConstantCandidates(
402     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
403     ConstantExpr *ConstExpr) {
404   // TODO: Handle vector GEPs
405   if (ConstExpr->getType()->isVectorTy())
406     return;
407 
408   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
409   if (!BaseGV)
410     return;
411 
412   // Get offset from the base GV.
413   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
414   IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
415   APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
416   auto *GEPO = cast<GEPOperator>(ConstExpr);
417   if (!GEPO->accumulateConstantOffset(*DL, Offset))
418     return;
419 
420   if (!Offset.isIntN(32))
421     return;
422 
423   // A constant GEP expression that has a GlobalVariable as base pointer is
424   // usually lowered to a load from constant pool. Such operation is unlikely
425   // to be cheaper than compute it by <Base + Offset>, which can be lowered to
426   // an ADD instruction or folded into Load/Store instruction.
427   InstructionCost Cost =
428       TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
429                              TargetTransformInfo::TCK_SizeAndLatency, Inst);
430   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
431   ConstCandMapType::iterator Itr;
432   bool Inserted;
433   ConstPtrUnionType Cand = ConstExpr;
434   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
435   if (Inserted) {
436     ExprCandVec.push_back(ConstantCandidate(
437         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
438         ConstExpr));
439     Itr->second = ExprCandVec.size() - 1;
440   }
441   ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
442 }
443 
444 /// Check the operand for instruction Inst at index Idx.
445 void ConstantHoistingPass::collectConstantCandidates(
446     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
447   Value *Opnd = Inst->getOperand(Idx);
448 
449   // Visit constant integers.
450   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
451     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
452     return;
453   }
454 
455   // Visit cast instructions that have constant integers.
456   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
457     // Only visit cast instructions, which have been skipped. All other
458     // instructions should have already been visited.
459     if (!CastInst->isCast())
460       return;
461 
462     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
463       // Pretend the constant is directly used by the instruction and ignore
464       // the cast instruction.
465       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
466       return;
467     }
468   }
469 
470   // Visit constant expressions that have constant integers.
471   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
472     // Handle constant gep expressions.
473     if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
474       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
475 
476     // Only visit constant cast expressions.
477     if (!ConstExpr->isCast())
478       return;
479 
480     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
481       // Pretend the constant is directly used by the instruction and ignore
482       // the constant expression.
483       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
484       return;
485     }
486   }
487 }
488 
489 /// Scan the instruction for expensive integer constants and record them
490 /// in the constant candidate vector.
491 void ConstantHoistingPass::collectConstantCandidates(
492     ConstCandMapType &ConstCandMap, Instruction *Inst) {
493   // Skip all cast instructions. They are visited indirectly later on.
494   if (Inst->isCast())
495     return;
496 
497   // Scan all operands.
498   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
499     // The cost of materializing the constants (defined in
500     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
501     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
502     // So it's safe for us to collect constant candidates from all
503     // IntrinsicInsts.
504     if (canReplaceOperandWithVariable(Inst, Idx)) {
505       collectConstantCandidates(ConstCandMap, Inst, Idx);
506     }
507   } // end of for all operands
508 }
509 
510 /// Collect all integer constants in the function that cannot be folded
511 /// into an instruction itself.
512 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
513   ConstCandMapType ConstCandMap;
514   for (BasicBlock &BB : Fn) {
515     // Ignore unreachable basic blocks.
516     if (!DT->isReachableFromEntry(&BB))
517       continue;
518     for (Instruction &Inst : BB)
519       collectConstantCandidates(ConstCandMap, &Inst);
520   }
521 }
522 
523 // This helper function is necessary to deal with values that have different
524 // bit widths (APInt Operator- does not like that). If the value cannot be
525 // represented in uint64 we return an "empty" APInt. This is then interpreted
526 // as the value is not in range.
527 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
528   Optional<APInt> Res = None;
529   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
530                 V1.getBitWidth() : V2.getBitWidth();
531   uint64_t LimVal1 = V1.getLimitedValue();
532   uint64_t LimVal2 = V2.getLimitedValue();
533 
534   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
535     return Res;
536 
537   uint64_t Diff = LimVal1 - LimVal2;
538   return APInt(BW, Diff, true);
539 }
540 
541 // From a list of constants, one needs to picked as the base and the other
542 // constants will be transformed into an offset from that base constant. The
543 // question is which we can pick best? For example, consider these constants
544 // and their number of uses:
545 //
546 //  Constants| 2 | 4 | 12 | 42 |
547 //  NumUses  | 3 | 2 |  8 |  7 |
548 //
549 // Selecting constant 12 because it has the most uses will generate negative
550 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
551 // offsets lead to less optimal code generation, then there might be better
552 // solutions. Suppose immediates in the range of 0..35 are most optimally
553 // supported by the architecture, then selecting constant 2 is most optimal
554 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
555 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
556 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
557 // selecting the base constant the range of the offsets is a very important
558 // factor too that we take into account here. This algorithm calculates a total
559 // costs for selecting a constant as the base and substract the costs if
560 // immediates are out of range. It has quadratic complexity, so we call this
561 // function only when we're optimising for size and there are less than 100
562 // constants, we fall back to the straightforward algorithm otherwise
563 // which does not do all the offset calculations.
564 unsigned
565 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
566                                            ConstCandVecType::iterator E,
567                                            ConstCandVecType::iterator &MaxCostItr) {
568   unsigned NumUses = 0;
569 
570   bool OptForSize = Entry->getParent()->hasOptSize() ||
571                     llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
572                                                 PGSOQueryType::IRPass);
573   if (!OptForSize || std::distance(S,E) > 100) {
574     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
575       NumUses += ConstCand->Uses.size();
576       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
577         MaxCostItr = ConstCand;
578     }
579     return NumUses;
580   }
581 
582   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
583   InstructionCost MaxCost = -1;
584   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
585     auto Value = ConstCand->ConstInt->getValue();
586     Type *Ty = ConstCand->ConstInt->getType();
587     InstructionCost Cost = 0;
588     NumUses += ConstCand->Uses.size();
589     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
590                       << "\n");
591 
592     for (auto User : ConstCand->Uses) {
593       unsigned Opcode = User.Inst->getOpcode();
594       unsigned OpndIdx = User.OpndIdx;
595       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
596                                      TargetTransformInfo::TCK_SizeAndLatency);
597       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
598 
599       for (auto C2 = S; C2 != E; ++C2) {
600         Optional<APInt> Diff = calculateOffsetDiff(
601                                    C2->ConstInt->getValue(),
602                                    ConstCand->ConstInt->getValue());
603         if (Diff) {
604           const InstructionCost ImmCosts =
605               TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
606           Cost -= ImmCosts;
607           LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
608                             << "has penalty: " << ImmCosts << "\n"
609                             << "Adjusted cost: " << Cost << "\n");
610         }
611       }
612     }
613     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
614     if (Cost > MaxCost) {
615       MaxCost = Cost;
616       MaxCostItr = ConstCand;
617       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
618                         << "\n");
619     }
620   }
621   return NumUses;
622 }
623 
624 /// Find the base constant within the given range and rebase all other
625 /// constants with respect to the base constant.
626 void ConstantHoistingPass::findAndMakeBaseConstant(
627     ConstCandVecType::iterator S, ConstCandVecType::iterator E,
628     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
629   auto MaxCostItr = S;
630   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
631 
632   // Don't hoist constants that have only one use.
633   if (NumUses <= 1)
634     return;
635 
636   ConstantInt *ConstInt = MaxCostItr->ConstInt;
637   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
638   ConstantInfo ConstInfo;
639   ConstInfo.BaseInt = ConstInt;
640   ConstInfo.BaseExpr = ConstExpr;
641   Type *Ty = ConstInt->getType();
642 
643   // Rebase the constants with respect to the base constant.
644   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
645     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
646     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
647     Type *ConstTy =
648         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
649     ConstInfo.RebasedConstants.push_back(
650       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
651   }
652   ConstInfoVec.push_back(std::move(ConstInfo));
653 }
654 
655 /// Finds and combines constant candidates that can be easily
656 /// rematerialized with an add from a common base constant.
657 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
658   // If BaseGV is nullptr, find base among candidate constant integers;
659   // Otherwise find base among constant GEPs that share the same BaseGV.
660   ConstCandVecType &ConstCandVec = BaseGV ?
661       ConstGEPCandMap[BaseGV] : ConstIntCandVec;
662   ConstInfoVecType &ConstInfoVec = BaseGV ?
663       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
664 
665   // Sort the constants by value and type. This invalidates the mapping!
666   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
667                                      const ConstantCandidate &RHS) {
668     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
669       return LHS.ConstInt->getType()->getBitWidth() <
670              RHS.ConstInt->getType()->getBitWidth();
671     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
672   });
673 
674   // Simple linear scan through the sorted constant candidate vector for viable
675   // merge candidates.
676   auto MinValItr = ConstCandVec.begin();
677   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
678        CC != E; ++CC) {
679     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
680       Type *MemUseValTy = nullptr;
681       for (auto &U : CC->Uses) {
682         auto *UI = U.Inst;
683         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
684           MemUseValTy = LI->getType();
685           break;
686         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
687           // Make sure the constant is used as pointer operand of the StoreInst.
688           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
689             MemUseValTy = SI->getValueOperand()->getType();
690             break;
691           }
692         }
693       }
694 
695       // Check if the constant is in range of an add with immediate.
696       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
697       if ((Diff.getBitWidth() <= 64) &&
698           TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
699           // Check if Diff can be used as offset in addressing mode of the user
700           // memory instruction.
701           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
702            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
703            /*HasBaseReg*/true, /*Scale*/0)))
704         continue;
705     }
706     // We either have now a different constant type or the constant is not in
707     // range of an add with immediate anymore.
708     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
709     // Start a new base constant search.
710     MinValItr = CC;
711   }
712   // Finalize the last base constant search.
713   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
714 }
715 
716 /// Updates the operand at Idx in instruction Inst with the result of
717 ///        instruction Mat. If the instruction is a PHI node then special
718 ///        handling for duplicate values form the same incoming basic block is
719 ///        required.
720 /// \return The update will always succeed, but the return value indicated if
721 ///         Mat was used for the update or not.
722 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
723   if (auto PHI = dyn_cast<PHINode>(Inst)) {
724     // Check if any previous operand of the PHI node has the same incoming basic
725     // block. This is a very odd case that happens when the incoming basic block
726     // has a switch statement. In this case use the same value as the previous
727     // operand(s), otherwise we will fail verification due to different values.
728     // The values are actually the same, but the variable names are different
729     // and the verifier doesn't like that.
730     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
731     for (unsigned i = 0; i < Idx; ++i) {
732       if (PHI->getIncomingBlock(i) == IncomingBB) {
733         Value *IncomingVal = PHI->getIncomingValue(i);
734         Inst->setOperand(Idx, IncomingVal);
735         return false;
736       }
737     }
738   }
739 
740   Inst->setOperand(Idx, Mat);
741   return true;
742 }
743 
744 /// Emit materialization code for all rebased constants and update their
745 /// users.
746 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
747                                              Constant *Offset,
748                                              Type *Ty,
749                                              const ConstantUser &ConstUser) {
750   Instruction *Mat = Base;
751 
752   // The same offset can be dereferenced to different types in nested struct.
753   if (!Offset && Ty && Ty != Base->getType())
754     Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
755 
756   if (Offset) {
757     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
758                                                ConstUser.OpndIdx);
759     if (Ty) {
760       // Constant being rebased is a ConstantExpr.
761       PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
762           cast<PointerType>(Ty)->getAddressSpace());
763       Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
764       Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base,
765           Offset, "mat_gep", InsertionPt);
766       Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
767     } else
768       // Constant being rebased is a ConstantInt.
769       Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
770                                  "const_mat", InsertionPt);
771 
772     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
773                       << " + " << *Offset << ") in BB "
774                       << Mat->getParent()->getName() << '\n'
775                       << *Mat << '\n');
776     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
777   }
778   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
779 
780   // Visit constant integer.
781   if (isa<ConstantInt>(Opnd)) {
782     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
783     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
784       Mat->eraseFromParent();
785     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
786     return;
787   }
788 
789   // Visit cast instruction.
790   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
791     assert(CastInst->isCast() && "Expected an cast instruction!");
792     // Check if we already have visited this cast instruction before to avoid
793     // unnecessary cloning.
794     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
795     if (!ClonedCastInst) {
796       ClonedCastInst = CastInst->clone();
797       ClonedCastInst->setOperand(0, Mat);
798       ClonedCastInst->insertAfter(CastInst);
799       // Use the same debug location as the original cast instruction.
800       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
801       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
802                         << "To               : " << *ClonedCastInst << '\n');
803     }
804 
805     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
806     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
807     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
808     return;
809   }
810 
811   // Visit constant expression.
812   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
813     if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
814       // Operand is a ConstantGEP, replace it.
815       updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
816       return;
817     }
818 
819     // Aside from constant GEPs, only constant cast expressions are collected.
820     assert(ConstExpr->isCast() && "ConstExpr should be a cast");
821     Instruction *ConstExprInst = ConstExpr->getAsInstruction(
822         findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx));
823     ConstExprInst->setOperand(0, Mat);
824 
825     // Use the same debug location as the instruction we are about to update.
826     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
827 
828     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
829                       << "From              : " << *ConstExpr << '\n');
830     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
831     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
832       ConstExprInst->eraseFromParent();
833       if (Offset)
834         Mat->eraseFromParent();
835     }
836     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
837     return;
838   }
839 }
840 
841 /// Hoist and hide the base constant behind a bitcast and emit
842 /// materialization code for derived constants.
843 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
844   bool MadeChange = false;
845   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
846       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
847   for (auto const &ConstInfo : ConstInfoVec) {
848     SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
849     // We can have an empty set if the function contains unreachable blocks.
850     if (IPSet.empty())
851       continue;
852 
853     unsigned UsesNum = 0;
854     unsigned ReBasesNum = 0;
855     unsigned NotRebasedNum = 0;
856     for (Instruction *IP : IPSet) {
857       // First, collect constants depending on this IP of the base.
858       unsigned Uses = 0;
859       using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
860       SmallVector<RebasedUse, 4> ToBeRebased;
861       for (auto const &RCI : ConstInfo.RebasedConstants) {
862         for (auto const &U : RCI.Uses) {
863           Uses++;
864           BasicBlock *OrigMatInsertBB =
865               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
866           // If Base constant is to be inserted in multiple places,
867           // generate rebase for U using the Base dominating U.
868           if (IPSet.size() == 1 ||
869               DT->dominates(IP->getParent(), OrigMatInsertBB))
870             ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
871         }
872       }
873       UsesNum = Uses;
874 
875       // If only few constants depend on this IP of base, skip rebasing,
876       // assuming the base and the rebased have the same materialization cost.
877       if (ToBeRebased.size() < MinNumOfDependentToRebase) {
878         NotRebasedNum += ToBeRebased.size();
879         continue;
880       }
881 
882       // Emit an instance of the base at this IP.
883       Instruction *Base = nullptr;
884       // Hoist and hide the base constant behind a bitcast.
885       if (ConstInfo.BaseExpr) {
886         assert(BaseGV && "A base constant expression must have an base GV");
887         Type *Ty = ConstInfo.BaseExpr->getType();
888         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
889       } else {
890         IntegerType *Ty = ConstInfo.BaseInt->getType();
891         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
892       }
893 
894       Base->setDebugLoc(IP->getDebugLoc());
895 
896       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
897                         << ") to BB " << IP->getParent()->getName() << '\n'
898                         << *Base << '\n');
899 
900       // Emit materialization code for rebased constants depending on this IP.
901       for (auto const &R : ToBeRebased) {
902         Constant *Off = std::get<0>(R);
903         Type *Ty = std::get<1>(R);
904         ConstantUser U = std::get<2>(R);
905         emitBaseConstants(Base, Off, Ty, U);
906         ReBasesNum++;
907         // Use the same debug location as the last user of the constant.
908         Base->setDebugLoc(DILocation::getMergedLocation(
909             Base->getDebugLoc(), U.Inst->getDebugLoc()));
910       }
911       assert(!Base->use_empty() && "The use list is empty!?");
912       assert(isa<Instruction>(Base->user_back()) &&
913              "All uses should be instructions.");
914     }
915     (void)UsesNum;
916     (void)ReBasesNum;
917     (void)NotRebasedNum;
918     // Expect all uses are rebased after rebase is done.
919     assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
920            "Not all uses are rebased");
921 
922     NumConstantsHoisted++;
923 
924     // Base constant is also included in ConstInfo.RebasedConstants, so
925     // deduct 1 from ConstInfo.RebasedConstants.size().
926     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
927 
928     MadeChange = true;
929   }
930   return MadeChange;
931 }
932 
933 /// Check all cast instructions we made a copy of and remove them if they
934 /// have no more users.
935 void ConstantHoistingPass::deleteDeadCastInst() const {
936   for (auto const &I : ClonedCastMap)
937     if (I.first->use_empty())
938       I.first->eraseFromParent();
939 }
940 
941 /// Optimize expensive integer constants in the given function.
942 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
943                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
944                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) {
945   this->TTI = &TTI;
946   this->DT = &DT;
947   this->BFI = BFI;
948   this->DL = &Fn.getParent()->getDataLayout();
949   this->Ctx = &Fn.getContext();
950   this->Entry = &Entry;
951   this->PSI = PSI;
952   // Collect all constant candidates.
953   collectConstantCandidates(Fn);
954 
955   // Combine constants that can be easily materialized with an add from a common
956   // base constant.
957   if (!ConstIntCandVec.empty())
958     findBaseConstants(nullptr);
959   for (const auto &MapEntry : ConstGEPCandMap)
960     if (!MapEntry.second.empty())
961       findBaseConstants(MapEntry.first);
962 
963   // Finally hoist the base constant and emit materialization code for dependent
964   // constants.
965   bool MadeChange = false;
966   if (!ConstIntInfoVec.empty())
967     MadeChange = emitBaseConstants(nullptr);
968   for (const auto &MapEntry : ConstGEPInfoMap)
969     if (!MapEntry.second.empty())
970       MadeChange |= emitBaseConstants(MapEntry.first);
971 
972 
973   // Cleanup dead instructions.
974   deleteDeadCastInst();
975 
976   cleanup();
977 
978   return MadeChange;
979 }
980 
981 PreservedAnalyses ConstantHoistingPass::run(Function &F,
982                                             FunctionAnalysisManager &AM) {
983   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
984   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
985   auto BFI = ConstHoistWithBlockFrequency
986                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
987                  : nullptr;
988   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
989   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
990   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
991     return PreservedAnalyses::all();
992 
993   PreservedAnalyses PA;
994   PA.preserveSet<CFGAnalyses>();
995   return PA;
996 }
997