1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements PGO instrumentation using a minimum spanning tree based 10 // on the following paper: 11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points 12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, 13 // Issue 3, pp 313-322 14 // The idea of the algorithm based on the fact that for each node (except for 15 // the entry and exit), the sum of incoming edge counts equals the sum of 16 // outgoing edge counts. The count of edge on spanning tree can be derived from 17 // those edges not on the spanning tree. Knuth proves this method instruments 18 // the minimum number of edges. 19 // 20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree 21 // edges have higher frequencies (more likely to execute). The idea is to 22 // instrument those less frequently executed edges to reduce the runtime 23 // overhead of instrumented binaries. 24 // 25 // This file contains two passes: 26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge 27 // count profile, and generates the instrumentation for indirect call 28 // profiling. 29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and 30 // annotates the branch weights. It also reads the indirect call value 31 // profiling records and annotate the indirect call instructions. 32 // 33 // To get the precise counter information, These two passes need to invoke at 34 // the same compilation point (so they see the same IR). For pass 35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For 36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and 37 // the profile is opened in module level and passed to each PGOUseFunc instance. 38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put 39 // in class FuncPGOInstrumentation. 40 // 41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class 42 // BBInfo contains auxiliary information for each BB. These two classes are used 43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived 44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure 45 // used in populating profile counters. 46 // The MST implementation is in Class CFGMST (CFGMST.h). 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 51 #include "CFGMST.h" 52 #include "ValueProfileCollector.h" 53 #include "llvm/ADT/APInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/MapVector.h" 56 #include "llvm/ADT/STLExtras.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/ADT/iterator_range.h" 64 #include "llvm/Analysis/BlockFrequencyInfo.h" 65 #include "llvm/Analysis/BranchProbabilityInfo.h" 66 #include "llvm/Analysis/CFG.h" 67 #include "llvm/Analysis/EHPersonalities.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 70 #include "llvm/Analysis/ProfileSummaryInfo.h" 71 #include "llvm/IR/Attributes.h" 72 #include "llvm/IR/BasicBlock.h" 73 #include "llvm/IR/CFG.h" 74 #include "llvm/IR/Comdat.h" 75 #include "llvm/IR/Constant.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/InstVisitor.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/MDBuilder.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/ProfileSummary.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/InitializePasses.h" 98 #include "llvm/Pass.h" 99 #include "llvm/ProfileData/InstrProf.h" 100 #include "llvm/ProfileData/InstrProfReader.h" 101 #include "llvm/Support/BranchProbability.h" 102 #include "llvm/Support/CRC.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/DOTGraphTraits.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/Error.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/GraphWriter.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Transforms/Instrumentation.h" 112 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 113 #include "llvm/Transforms/Utils/ModuleUtils.h" 114 #include <algorithm> 115 #include <cassert> 116 #include <cstdint> 117 #include <memory> 118 #include <numeric> 119 #include <string> 120 #include <unordered_map> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using ProfileCount = Function::ProfileCount; 126 using VPCandidateInfo = ValueProfileCollector::CandidateInfo; 127 128 #define DEBUG_TYPE "pgo-instrumentation" 129 130 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); 131 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented."); 132 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented."); 133 STATISTIC(NumOfPGOEdge, "Number of edges."); 134 STATISTIC(NumOfPGOBB, "Number of basic-blocks."); 135 STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); 136 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); 137 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); 138 STATISTIC(NumOfPGOMissing, "Number of functions without profile."); 139 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); 140 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO."); 141 STATISTIC(NumOfCSPGOSelectInsts, 142 "Number of select instruction instrumented in CSPGO."); 143 STATISTIC(NumOfCSPGOMemIntrinsics, 144 "Number of mem intrinsics instrumented in CSPGO."); 145 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO."); 146 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO."); 147 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO."); 148 STATISTIC(NumOfCSPGOFunc, 149 "Number of functions having valid profile counts in CSPGO."); 150 STATISTIC(NumOfCSPGOMismatch, 151 "Number of functions having mismatch profile in CSPGO."); 152 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO."); 153 154 // Command line option to specify the file to read profile from. This is 155 // mainly used for testing. 156 static cl::opt<std::string> 157 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, 158 cl::value_desc("filename"), 159 cl::desc("Specify the path of profile data file. This is" 160 "mainly for test purpose.")); 161 static cl::opt<std::string> PGOTestProfileRemappingFile( 162 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden, 163 cl::value_desc("filename"), 164 cl::desc("Specify the path of profile remapping file. This is mainly for " 165 "test purpose.")); 166 167 // Command line option to disable value profiling. The default is false: 168 // i.e. value profiling is enabled by default. This is for debug purpose. 169 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false), 170 cl::Hidden, 171 cl::desc("Disable Value Profiling")); 172 173 // Command line option to set the maximum number of VP annotations to write to 174 // the metadata for a single indirect call callsite. 175 static cl::opt<unsigned> MaxNumAnnotations( 176 "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore, 177 cl::desc("Max number of annotations for a single indirect " 178 "call callsite")); 179 180 // Command line option to set the maximum number of value annotations 181 // to write to the metadata for a single memop intrinsic. 182 static cl::opt<unsigned> MaxNumMemOPAnnotations( 183 "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore, 184 cl::desc("Max number of preicise value annotations for a single memop" 185 "intrinsic")); 186 187 // Command line option to control appending FunctionHash to the name of a COMDAT 188 // function. This is to avoid the hash mismatch caused by the preinliner. 189 static cl::opt<bool> DoComdatRenaming( 190 "do-comdat-renaming", cl::init(false), cl::Hidden, 191 cl::desc("Append function hash to the name of COMDAT function to avoid " 192 "function hash mismatch due to the preinliner")); 193 194 // Command line option to enable/disable the warning about missing profile 195 // information. 196 static cl::opt<bool> 197 PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden, 198 cl::desc("Use this option to turn on/off " 199 "warnings about missing profile data for " 200 "functions.")); 201 202 namespace llvm { 203 // Command line option to enable/disable the warning about a hash mismatch in 204 // the profile data. 205 cl::opt<bool> 206 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden, 207 cl::desc("Use this option to turn off/on " 208 "warnings about profile cfg mismatch.")); 209 } // namespace llvm 210 211 // Command line option to enable/disable the warning about a hash mismatch in 212 // the profile data for Comdat functions, which often turns out to be false 213 // positive due to the pre-instrumentation inline. 214 static cl::opt<bool> 215 NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true), 216 cl::Hidden, 217 cl::desc("The option is used to turn on/off " 218 "warnings about hash mismatch for comdat " 219 "functions.")); 220 221 // Command line option to enable/disable select instruction instrumentation. 222 static cl::opt<bool> 223 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden, 224 cl::desc("Use this option to turn on/off SELECT " 225 "instruction instrumentation. ")); 226 227 // Command line option to turn on CFG dot or text dump of raw profile counts 228 static cl::opt<PGOViewCountsType> PGOViewRawCounts( 229 "pgo-view-raw-counts", cl::Hidden, 230 cl::desc("A boolean option to show CFG dag or text " 231 "with raw profile counts from " 232 "profile data. See also option " 233 "-pgo-view-counts. To limit graph " 234 "display to only one function, use " 235 "filtering option -view-bfi-func-name."), 236 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), 237 clEnumValN(PGOVCT_Graph, "graph", "show a graph."), 238 clEnumValN(PGOVCT_Text, "text", "show in text."))); 239 240 // Command line option to enable/disable memop intrinsic call.size profiling. 241 static cl::opt<bool> 242 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden, 243 cl::desc("Use this option to turn on/off " 244 "memory intrinsic size profiling.")); 245 246 // Emit branch probability as optimization remarks. 247 static cl::opt<bool> 248 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden, 249 cl::desc("When this option is on, the annotated " 250 "branch probability will be emitted as " 251 "optimization remarks: -{Rpass|" 252 "pass-remarks}=pgo-instrumentation")); 253 254 static cl::opt<bool> PGOInstrumentEntry( 255 "pgo-instrument-entry", cl::init(false), cl::Hidden, 256 cl::desc("Force to instrument function entry basicblock.")); 257 258 static cl::opt<bool> 259 PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden, 260 cl::desc("Fix function entry count in profile use.")); 261 262 static cl::opt<bool> PGOVerifyHotBFI( 263 "pgo-verify-hot-bfi", cl::init(false), cl::Hidden, 264 cl::desc("Print out the non-match BFI count if a hot raw profile count " 265 "becomes non-hot, or a cold raw profile count becomes hot. " 266 "The print is enabled under -Rpass-analysis=pgo, or " 267 "internal option -pass-remakrs-analysis=pgo.")); 268 269 static cl::opt<bool> PGOVerifyBFI( 270 "pgo-verify-bfi", cl::init(false), cl::Hidden, 271 cl::desc("Print out mismatched BFI counts after setting profile metadata " 272 "The print is enabled under -Rpass-analysis=pgo, or " 273 "internal option -pass-remakrs-analysis=pgo.")); 274 275 static cl::opt<unsigned> PGOVerifyBFIRatio( 276 "pgo-verify-bfi-ratio", cl::init(5), cl::Hidden, 277 cl::desc("Set the threshold for pgo-verify-big -- only print out " 278 "mismatched BFI if the difference percentage is greater than " 279 "this value (in percentage).")); 280 281 static cl::opt<unsigned> PGOVerifyBFICutoff( 282 "pgo-verify-bfi-cutoff", cl::init(1), cl::Hidden, 283 cl::desc("Set the threshold for pgo-verify-bfi -- skip the counts whose " 284 "profile count value is below.")); 285 286 namespace llvm { 287 // Command line option to turn on CFG dot dump after profile annotation. 288 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts 289 extern cl::opt<PGOViewCountsType> PGOViewCounts; 290 291 // Command line option to specify the name of the function for CFG dump 292 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 293 extern cl::opt<std::string> ViewBlockFreqFuncName; 294 } // namespace llvm 295 296 static cl::opt<bool> 297 PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden, 298 cl::desc("Use the old CFG function hashing")); 299 300 // Return a string describing the branch condition that can be 301 // used in static branch probability heuristics: 302 static std::string getBranchCondString(Instruction *TI) { 303 BranchInst *BI = dyn_cast<BranchInst>(TI); 304 if (!BI || !BI->isConditional()) 305 return std::string(); 306 307 Value *Cond = BI->getCondition(); 308 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 309 if (!CI) 310 return std::string(); 311 312 std::string result; 313 raw_string_ostream OS(result); 314 OS << CmpInst::getPredicateName(CI->getPredicate()) << "_"; 315 CI->getOperand(0)->getType()->print(OS, true); 316 317 Value *RHS = CI->getOperand(1); 318 ConstantInt *CV = dyn_cast<ConstantInt>(RHS); 319 if (CV) { 320 if (CV->isZero()) 321 OS << "_Zero"; 322 else if (CV->isOne()) 323 OS << "_One"; 324 else if (CV->isMinusOne()) 325 OS << "_MinusOne"; 326 else 327 OS << "_Const"; 328 } 329 OS.flush(); 330 return result; 331 } 332 333 static const char *ValueProfKindDescr[] = { 334 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr, 335 #include "llvm/ProfileData/InstrProfData.inc" 336 }; 337 338 namespace { 339 340 /// The select instruction visitor plays three roles specified 341 /// by the mode. In \c VM_counting mode, it simply counts the number of 342 /// select instructions. In \c VM_instrument mode, it inserts code to count 343 /// the number times TrueValue of select is taken. In \c VM_annotate mode, 344 /// it reads the profile data and annotate the select instruction with metadata. 345 enum VisitMode { VM_counting, VM_instrument, VM_annotate }; 346 class PGOUseFunc; 347 348 /// Instruction Visitor class to visit select instructions. 349 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> { 350 Function &F; 351 unsigned NSIs = 0; // Number of select instructions instrumented. 352 VisitMode Mode = VM_counting; // Visiting mode. 353 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index. 354 unsigned TotalNumCtrs = 0; // Total number of counters 355 GlobalVariable *FuncNameVar = nullptr; 356 uint64_t FuncHash = 0; 357 PGOUseFunc *UseFunc = nullptr; 358 359 SelectInstVisitor(Function &Func) : F(Func) {} 360 361 void countSelects(Function &Func) { 362 NSIs = 0; 363 Mode = VM_counting; 364 visit(Func); 365 } 366 367 // Visit the IR stream and instrument all select instructions. \p 368 // Ind is a pointer to the counter index variable; \p TotalNC 369 // is the total number of counters; \p FNV is the pointer to the 370 // PGO function name var; \p FHash is the function hash. 371 void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC, 372 GlobalVariable *FNV, uint64_t FHash) { 373 Mode = VM_instrument; 374 CurCtrIdx = Ind; 375 TotalNumCtrs = TotalNC; 376 FuncHash = FHash; 377 FuncNameVar = FNV; 378 visit(Func); 379 } 380 381 // Visit the IR stream and annotate all select instructions. 382 void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) { 383 Mode = VM_annotate; 384 UseFunc = UF; 385 CurCtrIdx = Ind; 386 visit(Func); 387 } 388 389 void instrumentOneSelectInst(SelectInst &SI); 390 void annotateOneSelectInst(SelectInst &SI); 391 392 // Visit \p SI instruction and perform tasks according to visit mode. 393 void visitSelectInst(SelectInst &SI); 394 395 // Return the number of select instructions. This needs be called after 396 // countSelects(). 397 unsigned getNumOfSelectInsts() const { return NSIs; } 398 }; 399 400 401 class PGOInstrumentationGenLegacyPass : public ModulePass { 402 public: 403 static char ID; 404 405 PGOInstrumentationGenLegacyPass(bool IsCS = false) 406 : ModulePass(ID), IsCS(IsCS) { 407 initializePGOInstrumentationGenLegacyPassPass( 408 *PassRegistry::getPassRegistry()); 409 } 410 411 StringRef getPassName() const override { return "PGOInstrumentationGenPass"; } 412 413 private: 414 // Is this is context-sensitive instrumentation. 415 bool IsCS; 416 bool runOnModule(Module &M) override; 417 418 void getAnalysisUsage(AnalysisUsage &AU) const override { 419 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 420 AU.addRequired<TargetLibraryInfoWrapperPass>(); 421 } 422 }; 423 424 class PGOInstrumentationUseLegacyPass : public ModulePass { 425 public: 426 static char ID; 427 428 // Provide the profile filename as the parameter. 429 PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false) 430 : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) { 431 if (!PGOTestProfileFile.empty()) 432 ProfileFileName = PGOTestProfileFile; 433 initializePGOInstrumentationUseLegacyPassPass( 434 *PassRegistry::getPassRegistry()); 435 } 436 437 StringRef getPassName() const override { return "PGOInstrumentationUsePass"; } 438 439 private: 440 std::string ProfileFileName; 441 // Is this is context-sensitive instrumentation use. 442 bool IsCS; 443 444 bool runOnModule(Module &M) override; 445 446 void getAnalysisUsage(AnalysisUsage &AU) const override { 447 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 448 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 449 AU.addRequired<TargetLibraryInfoWrapperPass>(); 450 } 451 }; 452 453 class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass { 454 public: 455 static char ID; 456 StringRef getPassName() const override { 457 return "PGOInstrumentationGenCreateVarPass"; 458 } 459 PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "") 460 : ModulePass(ID), InstrProfileOutput(CSInstrName) { 461 initializePGOInstrumentationGenCreateVarLegacyPassPass( 462 *PassRegistry::getPassRegistry()); 463 } 464 465 private: 466 bool runOnModule(Module &M) override { 467 createProfileFileNameVar(M, InstrProfileOutput); 468 // The variable in a comdat may be discarded by LTO. Ensure the 469 // declaration will be retained. 470 appendToCompilerUsed( 471 M, createIRLevelProfileFlagVar(M, /*IsCS=*/true, PGOInstrumentEntry)); 472 return false; 473 } 474 std::string InstrProfileOutput; 475 }; 476 477 } // end anonymous namespace 478 479 char PGOInstrumentationGenLegacyPass::ID = 0; 480 481 INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", 482 "PGO instrumentation.", false, false) 483 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 484 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 485 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 486 INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", 487 "PGO instrumentation.", false, false) 488 489 ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) { 490 return new PGOInstrumentationGenLegacyPass(IsCS); 491 } 492 493 char PGOInstrumentationUseLegacyPass::ID = 0; 494 495 INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use", 496 "Read PGO instrumentation profile.", false, false) 497 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 498 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 499 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 500 INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use", 501 "Read PGO instrumentation profile.", false, false) 502 503 ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename, 504 bool IsCS) { 505 return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS); 506 } 507 508 char PGOInstrumentationGenCreateVarLegacyPass::ID = 0; 509 510 INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass, 511 "pgo-instr-gen-create-var", 512 "Create PGO instrumentation version variable for CSPGO.", false, 513 false) 514 515 ModulePass * 516 llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) { 517 return new PGOInstrumentationGenCreateVarLegacyPass(std::string(CSInstrName)); 518 } 519 520 namespace { 521 522 /// An MST based instrumentation for PGO 523 /// 524 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO 525 /// in the function level. 526 struct PGOEdge { 527 // This class implements the CFG edges. Note the CFG can be a multi-graph. 528 // So there might be multiple edges with same SrcBB and DestBB. 529 const BasicBlock *SrcBB; 530 const BasicBlock *DestBB; 531 uint64_t Weight; 532 bool InMST = false; 533 bool Removed = false; 534 bool IsCritical = false; 535 536 PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) 537 : SrcBB(Src), DestBB(Dest), Weight(W) {} 538 539 // Return the information string of an edge. 540 std::string infoString() const { 541 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + 542 (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); 543 } 544 }; 545 546 // This class stores the auxiliary information for each BB. 547 struct BBInfo { 548 BBInfo *Group; 549 uint32_t Index; 550 uint32_t Rank = 0; 551 552 BBInfo(unsigned IX) : Group(this), Index(IX) {} 553 554 // Return the information string of this object. 555 std::string infoString() const { 556 return (Twine("Index=") + Twine(Index)).str(); 557 } 558 559 // Empty function -- only applicable to UseBBInfo. 560 void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} 561 562 // Empty function -- only applicable to UseBBInfo. 563 void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} 564 }; 565 566 // This class implements the CFG edges. Note the CFG can be a multi-graph. 567 template <class Edge, class BBInfo> class FuncPGOInstrumentation { 568 private: 569 Function &F; 570 571 // Is this is context-sensitive instrumentation. 572 bool IsCS; 573 574 // A map that stores the Comdat group in function F. 575 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers; 576 577 ValueProfileCollector VPC; 578 579 void computeCFGHash(); 580 void renameComdatFunction(); 581 582 public: 583 std::vector<std::vector<VPCandidateInfo>> ValueSites; 584 SelectInstVisitor SIVisitor; 585 std::string FuncName; 586 GlobalVariable *FuncNameVar; 587 588 // CFG hash value for this function. 589 uint64_t FunctionHash = 0; 590 591 // The Minimum Spanning Tree of function CFG. 592 CFGMST<Edge, BBInfo> MST; 593 594 // Collect all the BBs that will be instrumented, and store them in 595 // InstrumentBBs. 596 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs); 597 598 // Give an edge, find the BB that will be instrumented. 599 // Return nullptr if there is no BB to be instrumented. 600 BasicBlock *getInstrBB(Edge *E); 601 602 // Return the auxiliary BB information. 603 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } 604 605 // Return the auxiliary BB information if available. 606 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); } 607 608 // Dump edges and BB information. 609 void dumpInfo(std::string Str = "") const { 610 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + 611 Twine(FunctionHash) + "\t" + Str); 612 } 613 614 FuncPGOInstrumentation( 615 Function &Func, TargetLibraryInfo &TLI, 616 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, 617 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr, 618 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false, 619 bool InstrumentFuncEntry = true) 620 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI), 621 ValueSites(IPVK_Last + 1), SIVisitor(Func), 622 MST(F, InstrumentFuncEntry, BPI, BFI) { 623 // This should be done before CFG hash computation. 624 SIVisitor.countSelects(Func); 625 ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize); 626 if (!IsCS) { 627 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); 628 NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); 629 NumOfPGOBB += MST.BBInfos.size(); 630 ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget); 631 } else { 632 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); 633 NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); 634 NumOfCSPGOBB += MST.BBInfos.size(); 635 } 636 637 FuncName = getPGOFuncName(F); 638 computeCFGHash(); 639 if (!ComdatMembers.empty()) 640 renameComdatFunction(); 641 LLVM_DEBUG(dumpInfo("after CFGMST")); 642 643 for (auto &E : MST.AllEdges) { 644 if (E->Removed) 645 continue; 646 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++; 647 if (!E->InMST) 648 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++; 649 } 650 651 if (CreateGlobalVar) 652 FuncNameVar = createPGOFuncNameVar(F, FuncName); 653 } 654 }; 655 656 } // end anonymous namespace 657 658 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 659 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers 660 // of selects, indirect calls, mem ops and edges. 661 template <class Edge, class BBInfo> 662 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { 663 std::vector<uint8_t> Indexes; 664 JamCRC JC; 665 for (auto &BB : F) { 666 const Instruction *TI = BB.getTerminator(); 667 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 668 BasicBlock *Succ = TI->getSuccessor(I); 669 auto BI = findBBInfo(Succ); 670 if (BI == nullptr) 671 continue; 672 uint32_t Index = BI->Index; 673 for (int J = 0; J < 4; J++) 674 Indexes.push_back((uint8_t)(Index >> (J * 8))); 675 } 676 } 677 JC.update(Indexes); 678 679 JamCRC JCH; 680 if (PGOOldCFGHashing) { 681 // Hash format for context sensitive profile. Reserve 4 bits for other 682 // information. 683 FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 | 684 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 | 685 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 | 686 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC(); 687 } else { 688 // The higher 32 bits. 689 auto updateJCH = [&JCH](uint64_t Num) { 690 uint8_t Data[8]; 691 support::endian::write64le(Data, Num); 692 JCH.update(Data); 693 }; 694 updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts()); 695 updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size()); 696 updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size()); 697 updateJCH((uint64_t)MST.AllEdges.size()); 698 699 // Hash format for context sensitive profile. Reserve 4 bits for other 700 // information. 701 FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC(); 702 } 703 704 // Reserve bit 60-63 for other information purpose. 705 FunctionHash &= 0x0FFFFFFFFFFFFFFF; 706 if (IsCS) 707 NamedInstrProfRecord::setCSFlagInHash(FunctionHash); 708 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n" 709 << " CRC = " << JC.getCRC() 710 << ", Selects = " << SIVisitor.getNumOfSelectInsts() 711 << ", Edges = " << MST.AllEdges.size() << ", ICSites = " 712 << ValueSites[IPVK_IndirectCallTarget].size()); 713 if (!PGOOldCFGHashing) { 714 LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size() 715 << ", High32 CRC = " << JCH.getCRC()); 716 } 717 LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";); 718 } 719 720 // Check if we can safely rename this Comdat function. 721 static bool canRenameComdat( 722 Function &F, 723 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { 724 if (!DoComdatRenaming || !canRenameComdatFunc(F, true)) 725 return false; 726 727 // FIXME: Current only handle those Comdat groups that only containing one 728 // function. 729 // (1) For a Comdat group containing multiple functions, we need to have a 730 // unique postfix based on the hashes for each function. There is a 731 // non-trivial code refactoring to do this efficiently. 732 // (2) Variables can not be renamed, so we can not rename Comdat function in a 733 // group including global vars. 734 Comdat *C = F.getComdat(); 735 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { 736 assert(!isa<GlobalAlias>(CM.second)); 737 Function *FM = dyn_cast<Function>(CM.second); 738 if (FM != &F) 739 return false; 740 } 741 return true; 742 } 743 744 // Append the CFGHash to the Comdat function name. 745 template <class Edge, class BBInfo> 746 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() { 747 if (!canRenameComdat(F, ComdatMembers)) 748 return; 749 std::string OrigName = F.getName().str(); 750 std::string NewFuncName = 751 Twine(F.getName() + "." + Twine(FunctionHash)).str(); 752 F.setName(Twine(NewFuncName)); 753 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F); 754 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str(); 755 Comdat *NewComdat; 756 Module *M = F.getParent(); 757 // For AvailableExternallyLinkage functions, change the linkage to 758 // LinkOnceODR and put them into comdat. This is because after renaming, there 759 // is no backup external copy available for the function. 760 if (!F.hasComdat()) { 761 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 762 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName)); 763 F.setLinkage(GlobalValue::LinkOnceODRLinkage); 764 F.setComdat(NewComdat); 765 return; 766 } 767 768 // This function belongs to a single function Comdat group. 769 Comdat *OrigComdat = F.getComdat(); 770 std::string NewComdatName = 771 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str(); 772 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName)); 773 NewComdat->setSelectionKind(OrigComdat->getSelectionKind()); 774 775 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) { 776 // Must be a function. 777 cast<Function>(CM.second)->setComdat(NewComdat); 778 } 779 } 780 781 // Collect all the BBs that will be instruments and return them in 782 // InstrumentBBs and setup InEdges/OutEdge for UseBBInfo. 783 template <class Edge, class BBInfo> 784 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs( 785 std::vector<BasicBlock *> &InstrumentBBs) { 786 // Use a worklist as we will update the vector during the iteration. 787 std::vector<Edge *> EdgeList; 788 EdgeList.reserve(MST.AllEdges.size()); 789 for (auto &E : MST.AllEdges) 790 EdgeList.push_back(E.get()); 791 792 for (auto &E : EdgeList) { 793 BasicBlock *InstrBB = getInstrBB(E); 794 if (InstrBB) 795 InstrumentBBs.push_back(InstrBB); 796 } 797 798 // Set up InEdges/OutEdges for all BBs. 799 for (auto &E : MST.AllEdges) { 800 if (E->Removed) 801 continue; 802 const BasicBlock *SrcBB = E->SrcBB; 803 const BasicBlock *DestBB = E->DestBB; 804 BBInfo &SrcInfo = getBBInfo(SrcBB); 805 BBInfo &DestInfo = getBBInfo(DestBB); 806 SrcInfo.addOutEdge(E.get()); 807 DestInfo.addInEdge(E.get()); 808 } 809 } 810 811 // Given a CFG E to be instrumented, find which BB to place the instrumented 812 // code. The function will split the critical edge if necessary. 813 template <class Edge, class BBInfo> 814 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) { 815 if (E->InMST || E->Removed) 816 return nullptr; 817 818 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); 819 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); 820 // For a fake edge, instrument the real BB. 821 if (SrcBB == nullptr) 822 return DestBB; 823 if (DestBB == nullptr) 824 return SrcBB; 825 826 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * { 827 // There are basic blocks (such as catchswitch) cannot be instrumented. 828 // If the returned first insertion point is the end of BB, skip this BB. 829 if (BB->getFirstInsertionPt() == BB->end()) 830 return nullptr; 831 return BB; 832 }; 833 834 // Instrument the SrcBB if it has a single successor, 835 // otherwise, the DestBB if this is not a critical edge. 836 Instruction *TI = SrcBB->getTerminator(); 837 if (TI->getNumSuccessors() <= 1) 838 return canInstrument(SrcBB); 839 if (!E->IsCritical) 840 return canInstrument(DestBB); 841 842 // Some IndirectBr critical edges cannot be split by the previous 843 // SplitIndirectBrCriticalEdges call. Bail out. 844 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); 845 BasicBlock *InstrBB = 846 isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum); 847 if (!InstrBB) { 848 LLVM_DEBUG( 849 dbgs() << "Fail to split critical edge: not instrument this edge.\n"); 850 return nullptr; 851 } 852 // For a critical edge, we have to split. Instrument the newly 853 // created BB. 854 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++; 855 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index 856 << " --> " << getBBInfo(DestBB).Index << "\n"); 857 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB. 858 MST.addEdge(SrcBB, InstrBB, 0); 859 // Second one: Add new edge of InstrBB->DestBB. 860 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0); 861 NewEdge1.InMST = true; 862 E->Removed = true; 863 864 return canInstrument(InstrBB); 865 } 866 867 // When generating value profiling calls on Windows routines that make use of 868 // handler funclets for exception processing an operand bundle needs to attached 869 // to the called function. This routine will set \p OpBundles to contain the 870 // funclet information, if any is needed, that should be placed on the generated 871 // value profiling call for the value profile candidate call. 872 static void 873 populateEHOperandBundle(VPCandidateInfo &Cand, 874 DenseMap<BasicBlock *, ColorVector> &BlockColors, 875 SmallVectorImpl<OperandBundleDef> &OpBundles) { 876 auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst); 877 if (OrigCall && !isa<IntrinsicInst>(OrigCall)) { 878 // The instrumentation call should belong to the same funclet as a 879 // non-intrinsic call, so just copy the operand bundle, if any exists. 880 Optional<OperandBundleUse> ParentFunclet = 881 OrigCall->getOperandBundle(LLVMContext::OB_funclet); 882 if (ParentFunclet) 883 OpBundles.emplace_back(OperandBundleDef(*ParentFunclet)); 884 } else { 885 // Intrinsics or other instructions do not get funclet information from the 886 // front-end. Need to use the BlockColors that was computed by the routine 887 // colorEHFunclets to determine whether a funclet is needed. 888 if (!BlockColors.empty()) { 889 const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second; 890 assert(CV.size() == 1 && "non-unique color for block!"); 891 Instruction *EHPad = CV.front()->getFirstNonPHI(); 892 if (EHPad->isEHPad()) 893 OpBundles.emplace_back("funclet", EHPad); 894 } 895 } 896 } 897 898 // Visit all edge and instrument the edges not in MST, and do value profiling. 899 // Critical edges will be split. 900 static void instrumentOneFunc( 901 Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI, 902 BlockFrequencyInfo *BFI, 903 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, 904 bool IsCS) { 905 // Split indirectbr critical edges here before computing the MST rather than 906 // later in getInstrBB() to avoid invalidating it. 907 SplitIndirectBrCriticalEdges(F, BPI, BFI); 908 909 FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo( 910 F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry); 911 std::vector<BasicBlock *> InstrumentBBs; 912 FuncInfo.getInstrumentBBs(InstrumentBBs); 913 unsigned NumCounters = 914 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); 915 916 uint32_t I = 0; 917 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); 918 for (auto *InstrBB : InstrumentBBs) { 919 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); 920 assert(Builder.GetInsertPoint() != InstrBB->end() && 921 "Cannot get the Instrumentation point"); 922 Builder.CreateCall( 923 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), 924 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), 925 Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), 926 Builder.getInt32(I++)}); 927 } 928 929 // Now instrument select instructions: 930 FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar, 931 FuncInfo.FunctionHash); 932 assert(I == NumCounters); 933 934 if (DisableValueProfiling) 935 return; 936 937 NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size(); 938 939 // Intrinsic function calls do not have funclet operand bundles needed for 940 // Windows exception handling attached to them. However, if value profiling is 941 // inserted for one of these calls, then a funclet value will need to be set 942 // on the instrumentation call based on the funclet coloring. 943 DenseMap<BasicBlock *, ColorVector> BlockColors; 944 if (F.hasPersonalityFn() && 945 isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 946 BlockColors = colorEHFunclets(F); 947 948 // For each VP Kind, walk the VP candidates and instrument each one. 949 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 950 unsigned SiteIndex = 0; 951 if (Kind == IPVK_MemOPSize && !PGOInstrMemOP) 952 continue; 953 954 for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) { 955 LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind] 956 << " site: CallSite Index = " << SiteIndex << "\n"); 957 958 IRBuilder<> Builder(Cand.InsertPt); 959 assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() && 960 "Cannot get the Instrumentation point"); 961 962 Value *ToProfile = nullptr; 963 if (Cand.V->getType()->isIntegerTy()) 964 ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty()); 965 else if (Cand.V->getType()->isPointerTy()) 966 ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty()); 967 assert(ToProfile && "value profiling Value is of unexpected type"); 968 969 SmallVector<OperandBundleDef, 1> OpBundles; 970 populateEHOperandBundle(Cand, BlockColors, OpBundles); 971 Builder.CreateCall( 972 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), 973 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), 974 Builder.getInt64(FuncInfo.FunctionHash), ToProfile, 975 Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)}, 976 OpBundles); 977 } 978 } // IPVK_First <= Kind <= IPVK_Last 979 } 980 981 namespace { 982 983 // This class represents a CFG edge in profile use compilation. 984 struct PGOUseEdge : public PGOEdge { 985 bool CountValid = false; 986 uint64_t CountValue = 0; 987 988 PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) 989 : PGOEdge(Src, Dest, W) {} 990 991 // Set edge count value 992 void setEdgeCount(uint64_t Value) { 993 CountValue = Value; 994 CountValid = true; 995 } 996 997 // Return the information string for this object. 998 std::string infoString() const { 999 if (!CountValid) 1000 return PGOEdge::infoString(); 1001 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) 1002 .str(); 1003 } 1004 }; 1005 1006 using DirectEdges = SmallVector<PGOUseEdge *, 2>; 1007 1008 // This class stores the auxiliary information for each BB. 1009 struct UseBBInfo : public BBInfo { 1010 uint64_t CountValue = 0; 1011 bool CountValid; 1012 int32_t UnknownCountInEdge = 0; 1013 int32_t UnknownCountOutEdge = 0; 1014 DirectEdges InEdges; 1015 DirectEdges OutEdges; 1016 1017 UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {} 1018 1019 UseBBInfo(unsigned IX, uint64_t C) 1020 : BBInfo(IX), CountValue(C), CountValid(true) {} 1021 1022 // Set the profile count value for this BB. 1023 void setBBInfoCount(uint64_t Value) { 1024 CountValue = Value; 1025 CountValid = true; 1026 } 1027 1028 // Return the information string of this object. 1029 std::string infoString() const { 1030 if (!CountValid) 1031 return BBInfo::infoString(); 1032 return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); 1033 } 1034 1035 // Add an OutEdge and update the edge count. 1036 void addOutEdge(PGOUseEdge *E) { 1037 OutEdges.push_back(E); 1038 UnknownCountOutEdge++; 1039 } 1040 1041 // Add an InEdge and update the edge count. 1042 void addInEdge(PGOUseEdge *E) { 1043 InEdges.push_back(E); 1044 UnknownCountInEdge++; 1045 } 1046 }; 1047 1048 } // end anonymous namespace 1049 1050 // Sum up the count values for all the edges. 1051 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) { 1052 uint64_t Total = 0; 1053 for (auto &E : Edges) { 1054 if (E->Removed) 1055 continue; 1056 Total += E->CountValue; 1057 } 1058 return Total; 1059 } 1060 1061 namespace { 1062 1063 class PGOUseFunc { 1064 public: 1065 PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI, 1066 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, 1067 BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin, 1068 ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry) 1069 : F(Func), M(Modu), BFI(BFIin), PSI(PSI), 1070 FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS, 1071 InstrumentFuncEntry), 1072 FreqAttr(FFA_Normal), IsCS(IsCS) {} 1073 1074 // Read counts for the instrumented BB from profile. 1075 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, 1076 bool &AllMinusOnes); 1077 1078 // Populate the counts for all BBs. 1079 void populateCounters(); 1080 1081 // Set the branch weights based on the count values. 1082 void setBranchWeights(); 1083 1084 // Annotate the value profile call sites for all value kind. 1085 void annotateValueSites(); 1086 1087 // Annotate the value profile call sites for one value kind. 1088 void annotateValueSites(uint32_t Kind); 1089 1090 // Annotate the irreducible loop header weights. 1091 void annotateIrrLoopHeaderWeights(); 1092 1093 // The hotness of the function from the profile count. 1094 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; 1095 1096 // Return the function hotness from the profile. 1097 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } 1098 1099 // Return the function hash. 1100 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; } 1101 1102 // Return the profile record for this function; 1103 InstrProfRecord &getProfileRecord() { return ProfileRecord; } 1104 1105 // Return the auxiliary BB information. 1106 UseBBInfo &getBBInfo(const BasicBlock *BB) const { 1107 return FuncInfo.getBBInfo(BB); 1108 } 1109 1110 // Return the auxiliary BB information if available. 1111 UseBBInfo *findBBInfo(const BasicBlock *BB) const { 1112 return FuncInfo.findBBInfo(BB); 1113 } 1114 1115 Function &getFunc() const { return F; } 1116 1117 void dumpInfo(std::string Str = "") const { 1118 FuncInfo.dumpInfo(Str); 1119 } 1120 1121 uint64_t getProgramMaxCount() const { return ProgramMaxCount; } 1122 private: 1123 Function &F; 1124 Module *M; 1125 BlockFrequencyInfo *BFI; 1126 ProfileSummaryInfo *PSI; 1127 1128 // This member stores the shared information with class PGOGenFunc. 1129 FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo; 1130 1131 // The maximum count value in the profile. This is only used in PGO use 1132 // compilation. 1133 uint64_t ProgramMaxCount; 1134 1135 // Position of counter that remains to be read. 1136 uint32_t CountPosition = 0; 1137 1138 // Total size of the profile count for this function. 1139 uint32_t ProfileCountSize = 0; 1140 1141 // ProfileRecord for this function. 1142 InstrProfRecord ProfileRecord; 1143 1144 // Function hotness info derived from profile. 1145 FuncFreqAttr FreqAttr; 1146 1147 // Is to use the context sensitive profile. 1148 bool IsCS; 1149 1150 // Find the Instrumented BB and set the value. Return false on error. 1151 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile); 1152 1153 // Set the edge counter value for the unknown edge -- there should be only 1154 // one unknown edge. 1155 void setEdgeCount(DirectEdges &Edges, uint64_t Value); 1156 1157 // Return FuncName string; 1158 std::string getFuncName() const { return FuncInfo.FuncName; } 1159 1160 // Set the hot/cold inline hints based on the count values. 1161 // FIXME: This function should be removed once the functionality in 1162 // the inliner is implemented. 1163 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { 1164 if (PSI->isHotCount(EntryCount)) 1165 FreqAttr = FFA_Hot; 1166 else if (PSI->isColdCount(MaxCount)) 1167 FreqAttr = FFA_Cold; 1168 } 1169 }; 1170 1171 } // end anonymous namespace 1172 1173 // Visit all the edges and assign the count value for the instrumented 1174 // edges and the BB. Return false on error. 1175 bool PGOUseFunc::setInstrumentedCounts( 1176 const std::vector<uint64_t> &CountFromProfile) { 1177 1178 std::vector<BasicBlock *> InstrumentBBs; 1179 FuncInfo.getInstrumentBBs(InstrumentBBs); 1180 unsigned NumCounters = 1181 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); 1182 // The number of counters here should match the number of counters 1183 // in profile. Return if they mismatch. 1184 if (NumCounters != CountFromProfile.size()) { 1185 return false; 1186 } 1187 auto *FuncEntry = &*F.begin(); 1188 1189 // Set the profile count to the Instrumented BBs. 1190 uint32_t I = 0; 1191 for (BasicBlock *InstrBB : InstrumentBBs) { 1192 uint64_t CountValue = CountFromProfile[I++]; 1193 UseBBInfo &Info = getBBInfo(InstrBB); 1194 // If we reach here, we know that we have some nonzero count 1195 // values in this function. The entry count should not be 0. 1196 // Fix it if necessary. 1197 if (InstrBB == FuncEntry && CountValue == 0) 1198 CountValue = 1; 1199 Info.setBBInfoCount(CountValue); 1200 } 1201 ProfileCountSize = CountFromProfile.size(); 1202 CountPosition = I; 1203 1204 // Set the edge count and update the count of unknown edges for BBs. 1205 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void { 1206 E->setEdgeCount(Value); 1207 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--; 1208 this->getBBInfo(E->DestBB).UnknownCountInEdge--; 1209 }; 1210 1211 // Set the profile count the Instrumented edges. There are BBs that not in 1212 // MST but not instrumented. Need to set the edge count value so that we can 1213 // populate the profile counts later. 1214 for (auto &E : FuncInfo.MST.AllEdges) { 1215 if (E->Removed || E->InMST) 1216 continue; 1217 const BasicBlock *SrcBB = E->SrcBB; 1218 UseBBInfo &SrcInfo = getBBInfo(SrcBB); 1219 1220 // If only one out-edge, the edge profile count should be the same as BB 1221 // profile count. 1222 if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1) 1223 setEdgeCount(E.get(), SrcInfo.CountValue); 1224 else { 1225 const BasicBlock *DestBB = E->DestBB; 1226 UseBBInfo &DestInfo = getBBInfo(DestBB); 1227 // If only one in-edge, the edge profile count should be the same as BB 1228 // profile count. 1229 if (DestInfo.CountValid && DestInfo.InEdges.size() == 1) 1230 setEdgeCount(E.get(), DestInfo.CountValue); 1231 } 1232 if (E->CountValid) 1233 continue; 1234 // E's count should have been set from profile. If not, this meenas E skips 1235 // the instrumentation. We set the count to 0. 1236 setEdgeCount(E.get(), 0); 1237 } 1238 return true; 1239 } 1240 1241 // Set the count value for the unknown edge. There should be one and only one 1242 // unknown edge in Edges vector. 1243 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { 1244 for (auto &E : Edges) { 1245 if (E->CountValid) 1246 continue; 1247 E->setEdgeCount(Value); 1248 1249 getBBInfo(E->SrcBB).UnknownCountOutEdge--; 1250 getBBInfo(E->DestBB).UnknownCountInEdge--; 1251 return; 1252 } 1253 llvm_unreachable("Cannot find the unknown count edge"); 1254 } 1255 1256 // Emit function metadata indicating PGO profile mismatch. 1257 static void annotateFunctionWithHashMismatch(Function &F, 1258 LLVMContext &ctx) { 1259 const char MetadataName[] = "instr_prof_hash_mismatch"; 1260 SmallVector<Metadata *, 2> Names; 1261 // If this metadata already exists, ignore. 1262 auto *Existing = F.getMetadata(LLVMContext::MD_annotation); 1263 if (Existing) { 1264 MDTuple *Tuple = cast<MDTuple>(Existing); 1265 for (auto &N : Tuple->operands()) { 1266 if (cast<MDString>(N.get())->getString() == MetadataName) 1267 return; 1268 Names.push_back(N.get()); 1269 } 1270 } 1271 1272 MDBuilder MDB(ctx); 1273 Names.push_back(MDB.createString(MetadataName)); 1274 MDNode *MD = MDTuple::get(ctx, Names); 1275 F.setMetadata(LLVMContext::MD_annotation, MD); 1276 } 1277 1278 // Read the profile from ProfileFileName and assign the value to the 1279 // instrumented BB and the edges. This function also updates ProgramMaxCount. 1280 // Return true if the profile are successfully read, and false on errors. 1281 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, 1282 bool &AllMinusOnes) { 1283 auto &Ctx = M->getContext(); 1284 Expected<InstrProfRecord> Result = 1285 PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); 1286 if (Error E = Result.takeError()) { 1287 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 1288 auto Err = IPE.get(); 1289 bool SkipWarning = false; 1290 LLVM_DEBUG(dbgs() << "Error in reading profile for Func " 1291 << FuncInfo.FuncName << ": "); 1292 if (Err == instrprof_error::unknown_function) { 1293 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++; 1294 SkipWarning = !PGOWarnMissing; 1295 LLVM_DEBUG(dbgs() << "unknown function"); 1296 } else if (Err == instrprof_error::hash_mismatch || 1297 Err == instrprof_error::malformed) { 1298 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++; 1299 SkipWarning = 1300 NoPGOWarnMismatch || 1301 (NoPGOWarnMismatchComdat && 1302 (F.hasComdat() || 1303 F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); 1304 LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")"); 1305 // Emit function metadata indicating PGO profile mismatch. 1306 annotateFunctionWithHashMismatch(F, M->getContext()); 1307 } 1308 1309 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n"); 1310 if (SkipWarning) 1311 return; 1312 1313 std::string Msg = IPE.message() + std::string(" ") + F.getName().str() + 1314 std::string(" Hash = ") + 1315 std::to_string(FuncInfo.FunctionHash); 1316 1317 Ctx.diagnose( 1318 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); 1319 }); 1320 return false; 1321 } 1322 ProfileRecord = std::move(Result.get()); 1323 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts; 1324 1325 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++; 1326 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); 1327 AllMinusOnes = (CountFromProfile.size() > 0); 1328 uint64_t ValueSum = 0; 1329 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { 1330 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); 1331 ValueSum += CountFromProfile[I]; 1332 if (CountFromProfile[I] != (uint64_t)-1) 1333 AllMinusOnes = false; 1334 } 1335 AllZeros = (ValueSum == 0); 1336 1337 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); 1338 1339 getBBInfo(nullptr).UnknownCountOutEdge = 2; 1340 getBBInfo(nullptr).UnknownCountInEdge = 2; 1341 1342 if (!setInstrumentedCounts(CountFromProfile)) { 1343 LLVM_DEBUG( 1344 dbgs() << "Inconsistent number of counts, skipping this function"); 1345 Ctx.diagnose(DiagnosticInfoPGOProfile( 1346 M->getName().data(), 1347 Twine("Inconsistent number of counts in ") + F.getName().str() 1348 + Twine(": the profile may be stale or there is a function name collision."), 1349 DS_Warning)); 1350 return false; 1351 } 1352 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS); 1353 return true; 1354 } 1355 1356 // Populate the counters from instrumented BBs to all BBs. 1357 // In the end of this operation, all BBs should have a valid count value. 1358 void PGOUseFunc::populateCounters() { 1359 bool Changes = true; 1360 unsigned NumPasses = 0; 1361 while (Changes) { 1362 NumPasses++; 1363 Changes = false; 1364 1365 // For efficient traversal, it's better to start from the end as most 1366 // of the instrumented edges are at the end. 1367 for (auto &BB : reverse(F)) { 1368 UseBBInfo *Count = findBBInfo(&BB); 1369 if (Count == nullptr) 1370 continue; 1371 if (!Count->CountValid) { 1372 if (Count->UnknownCountOutEdge == 0) { 1373 Count->CountValue = sumEdgeCount(Count->OutEdges); 1374 Count->CountValid = true; 1375 Changes = true; 1376 } else if (Count->UnknownCountInEdge == 0) { 1377 Count->CountValue = sumEdgeCount(Count->InEdges); 1378 Count->CountValid = true; 1379 Changes = true; 1380 } 1381 } 1382 if (Count->CountValid) { 1383 if (Count->UnknownCountOutEdge == 1) { 1384 uint64_t Total = 0; 1385 uint64_t OutSum = sumEdgeCount(Count->OutEdges); 1386 // If the one of the successor block can early terminate (no-return), 1387 // we can end up with situation where out edge sum count is larger as 1388 // the source BB's count is collected by a post-dominated block. 1389 if (Count->CountValue > OutSum) 1390 Total = Count->CountValue - OutSum; 1391 setEdgeCount(Count->OutEdges, Total); 1392 Changes = true; 1393 } 1394 if (Count->UnknownCountInEdge == 1) { 1395 uint64_t Total = 0; 1396 uint64_t InSum = sumEdgeCount(Count->InEdges); 1397 if (Count->CountValue > InSum) 1398 Total = Count->CountValue - InSum; 1399 setEdgeCount(Count->InEdges, Total); 1400 Changes = true; 1401 } 1402 } 1403 } 1404 } 1405 1406 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); 1407 #ifndef NDEBUG 1408 // Assert every BB has a valid counter. 1409 for (auto &BB : F) { 1410 auto BI = findBBInfo(&BB); 1411 if (BI == nullptr) 1412 continue; 1413 assert(BI->CountValid && "BB count is not valid"); 1414 } 1415 #endif 1416 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; 1417 uint64_t FuncMaxCount = FuncEntryCount; 1418 for (auto &BB : F) { 1419 auto BI = findBBInfo(&BB); 1420 if (BI == nullptr) 1421 continue; 1422 FuncMaxCount = std::max(FuncMaxCount, BI->CountValue); 1423 } 1424 1425 // Fix the obviously inconsistent entry count. 1426 if (FuncMaxCount > 0 && FuncEntryCount == 0) 1427 FuncEntryCount = 1; 1428 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real)); 1429 markFunctionAttributes(FuncEntryCount, FuncMaxCount); 1430 1431 // Now annotate select instructions 1432 FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition); 1433 assert(CountPosition == ProfileCountSize); 1434 1435 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile.")); 1436 } 1437 1438 // Assign the scaled count values to the BB with multiple out edges. 1439 void PGOUseFunc::setBranchWeights() { 1440 // Generate MD_prof metadata for every branch instruction. 1441 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName() 1442 << " IsCS=" << IsCS << "\n"); 1443 for (auto &BB : F) { 1444 Instruction *TI = BB.getTerminator(); 1445 if (TI->getNumSuccessors() < 2) 1446 continue; 1447 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || 1448 isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI))) 1449 continue; 1450 1451 if (getBBInfo(&BB).CountValue == 0) 1452 continue; 1453 1454 // We have a non-zero Branch BB. 1455 const UseBBInfo &BBCountInfo = getBBInfo(&BB); 1456 unsigned Size = BBCountInfo.OutEdges.size(); 1457 SmallVector<uint64_t, 2> EdgeCounts(Size, 0); 1458 uint64_t MaxCount = 0; 1459 for (unsigned s = 0; s < Size; s++) { 1460 const PGOUseEdge *E = BBCountInfo.OutEdges[s]; 1461 const BasicBlock *SrcBB = E->SrcBB; 1462 const BasicBlock *DestBB = E->DestBB; 1463 if (DestBB == nullptr) 1464 continue; 1465 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); 1466 uint64_t EdgeCount = E->CountValue; 1467 if (EdgeCount > MaxCount) 1468 MaxCount = EdgeCount; 1469 EdgeCounts[SuccNum] = EdgeCount; 1470 } 1471 setProfMetadata(M, TI, EdgeCounts, MaxCount); 1472 } 1473 } 1474 1475 static bool isIndirectBrTarget(BasicBlock *BB) { 1476 for (BasicBlock *Pred : predecessors(BB)) { 1477 if (isa<IndirectBrInst>(Pred->getTerminator())) 1478 return true; 1479 } 1480 return false; 1481 } 1482 1483 void PGOUseFunc::annotateIrrLoopHeaderWeights() { 1484 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n"); 1485 // Find irr loop headers 1486 for (auto &BB : F) { 1487 // As a heuristic also annotate indrectbr targets as they have a high chance 1488 // to become an irreducible loop header after the indirectbr tail 1489 // duplication. 1490 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) { 1491 Instruction *TI = BB.getTerminator(); 1492 const UseBBInfo &BBCountInfo = getBBInfo(&BB); 1493 setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue); 1494 } 1495 } 1496 } 1497 1498 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) { 1499 Module *M = F.getParent(); 1500 IRBuilder<> Builder(&SI); 1501 Type *Int64Ty = Builder.getInt64Ty(); 1502 Type *I8PtrTy = Builder.getInt8PtrTy(); 1503 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty); 1504 Builder.CreateCall( 1505 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step), 1506 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), 1507 Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs), 1508 Builder.getInt32(*CurCtrIdx), Step}); 1509 ++(*CurCtrIdx); 1510 } 1511 1512 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) { 1513 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts; 1514 assert(*CurCtrIdx < CountFromProfile.size() && 1515 "Out of bound access of counters"); 1516 uint64_t SCounts[2]; 1517 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count 1518 ++(*CurCtrIdx); 1519 uint64_t TotalCount = 0; 1520 auto BI = UseFunc->findBBInfo(SI.getParent()); 1521 if (BI != nullptr) 1522 TotalCount = BI->CountValue; 1523 // False Count 1524 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0); 1525 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]); 1526 if (MaxCount) 1527 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount); 1528 } 1529 1530 void SelectInstVisitor::visitSelectInst(SelectInst &SI) { 1531 if (!PGOInstrSelect) 1532 return; 1533 // FIXME: do not handle this yet. 1534 if (SI.getCondition()->getType()->isVectorTy()) 1535 return; 1536 1537 switch (Mode) { 1538 case VM_counting: 1539 NSIs++; 1540 return; 1541 case VM_instrument: 1542 instrumentOneSelectInst(SI); 1543 return; 1544 case VM_annotate: 1545 annotateOneSelectInst(SI); 1546 return; 1547 } 1548 1549 llvm_unreachable("Unknown visiting mode"); 1550 } 1551 1552 // Traverse all valuesites and annotate the instructions for all value kind. 1553 void PGOUseFunc::annotateValueSites() { 1554 if (DisableValueProfiling) 1555 return; 1556 1557 // Create the PGOFuncName meta data. 1558 createPGOFuncNameMetadata(F, FuncInfo.FuncName); 1559 1560 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1561 annotateValueSites(Kind); 1562 } 1563 1564 // Annotate the instructions for a specific value kind. 1565 void PGOUseFunc::annotateValueSites(uint32_t Kind) { 1566 assert(Kind <= IPVK_Last); 1567 unsigned ValueSiteIndex = 0; 1568 auto &ValueSites = FuncInfo.ValueSites[Kind]; 1569 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind); 1570 if (NumValueSites != ValueSites.size()) { 1571 auto &Ctx = M->getContext(); 1572 Ctx.diagnose(DiagnosticInfoPGOProfile( 1573 M->getName().data(), 1574 Twine("Inconsistent number of value sites for ") + 1575 Twine(ValueProfKindDescr[Kind]) + 1576 Twine(" profiling in \"") + F.getName().str() + 1577 Twine("\", possibly due to the use of a stale profile."), 1578 DS_Warning)); 1579 return; 1580 } 1581 1582 for (VPCandidateInfo &I : ValueSites) { 1583 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind 1584 << "): Index = " << ValueSiteIndex << " out of " 1585 << NumValueSites << "\n"); 1586 annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord, 1587 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex, 1588 Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations 1589 : MaxNumAnnotations); 1590 ValueSiteIndex++; 1591 } 1592 } 1593 1594 // Collect the set of members for each Comdat in module M and store 1595 // in ComdatMembers. 1596 static void collectComdatMembers( 1597 Module &M, 1598 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { 1599 if (!DoComdatRenaming) 1600 return; 1601 for (Function &F : M) 1602 if (Comdat *C = F.getComdat()) 1603 ComdatMembers.insert(std::make_pair(C, &F)); 1604 for (GlobalVariable &GV : M.globals()) 1605 if (Comdat *C = GV.getComdat()) 1606 ComdatMembers.insert(std::make_pair(C, &GV)); 1607 for (GlobalAlias &GA : M.aliases()) 1608 if (Comdat *C = GA.getComdat()) 1609 ComdatMembers.insert(std::make_pair(C, &GA)); 1610 } 1611 1612 static bool InstrumentAllFunctions( 1613 Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI, 1614 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, 1615 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) { 1616 // For the context-sensitve instrumentation, we should have a separated pass 1617 // (before LTO/ThinLTO linking) to create these variables. 1618 if (!IsCS) 1619 createIRLevelProfileFlagVar(M, /*IsCS=*/false, PGOInstrumentEntry); 1620 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; 1621 collectComdatMembers(M, ComdatMembers); 1622 1623 for (auto &F : M) { 1624 if (F.isDeclaration()) 1625 continue; 1626 if (F.hasFnAttribute(llvm::Attribute::NoProfile)) 1627 continue; 1628 auto &TLI = LookupTLI(F); 1629 auto *BPI = LookupBPI(F); 1630 auto *BFI = LookupBFI(F); 1631 instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS); 1632 } 1633 return true; 1634 } 1635 1636 PreservedAnalyses 1637 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) { 1638 createProfileFileNameVar(M, CSInstrName); 1639 // The variable in a comdat may be discarded by LTO. Ensure the declaration 1640 // will be retained. 1641 appendToCompilerUsed( 1642 M, createIRLevelProfileFlagVar(M, /*IsCS=*/true, PGOInstrumentEntry)); 1643 return PreservedAnalyses::all(); 1644 } 1645 1646 bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) { 1647 if (skipModule(M)) 1648 return false; 1649 1650 auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { 1651 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1652 }; 1653 auto LookupBPI = [this](Function &F) { 1654 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); 1655 }; 1656 auto LookupBFI = [this](Function &F) { 1657 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 1658 }; 1659 return InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS); 1660 } 1661 1662 PreservedAnalyses PGOInstrumentationGen::run(Module &M, 1663 ModuleAnalysisManager &AM) { 1664 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1665 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1666 return FAM.getResult<TargetLibraryAnalysis>(F); 1667 }; 1668 auto LookupBPI = [&FAM](Function &F) { 1669 return &FAM.getResult<BranchProbabilityAnalysis>(F); 1670 }; 1671 auto LookupBFI = [&FAM](Function &F) { 1672 return &FAM.getResult<BlockFrequencyAnalysis>(F); 1673 }; 1674 1675 if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS)) 1676 return PreservedAnalyses::all(); 1677 1678 return PreservedAnalyses::none(); 1679 } 1680 1681 // Using the ratio b/w sums of profile count values and BFI count values to 1682 // adjust the func entry count. 1683 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI, 1684 BranchProbabilityInfo &NBPI) { 1685 Function &F = Func.getFunc(); 1686 BlockFrequencyInfo NBFI(F, NBPI, LI); 1687 #ifndef NDEBUG 1688 auto BFIEntryCount = F.getEntryCount(); 1689 assert(BFIEntryCount.hasValue() && (BFIEntryCount->getCount() > 0) && 1690 "Invalid BFI Entrycount"); 1691 #endif 1692 auto SumCount = APFloat::getZero(APFloat::IEEEdouble()); 1693 auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble()); 1694 for (auto &BBI : F) { 1695 uint64_t CountValue = 0; 1696 uint64_t BFICountValue = 0; 1697 if (!Func.findBBInfo(&BBI)) 1698 continue; 1699 auto BFICount = NBFI.getBlockProfileCount(&BBI); 1700 CountValue = Func.getBBInfo(&BBI).CountValue; 1701 BFICountValue = BFICount.getValue(); 1702 SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven); 1703 SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven); 1704 } 1705 if (SumCount.isZero()) 1706 return; 1707 1708 assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan && 1709 "Incorrect sum of BFI counts"); 1710 if (SumBFICount.compare(SumCount) == APFloat::cmpEqual) 1711 return; 1712 double Scale = (SumCount / SumBFICount).convertToDouble(); 1713 if (Scale < 1.001 && Scale > 0.999) 1714 return; 1715 1716 uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue; 1717 uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale; 1718 if (NewEntryCount == 0) 1719 NewEntryCount = 1; 1720 if (NewEntryCount != FuncEntryCount) { 1721 F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real)); 1722 LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName() 1723 << ", entry_count " << FuncEntryCount << " --> " 1724 << NewEntryCount << "\n"); 1725 } 1726 } 1727 1728 // Compare the profile count values with BFI count values, and print out 1729 // the non-matching ones. 1730 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI, 1731 BranchProbabilityInfo &NBPI, 1732 uint64_t HotCountThreshold, 1733 uint64_t ColdCountThreshold) { 1734 Function &F = Func.getFunc(); 1735 BlockFrequencyInfo NBFI(F, NBPI, LI); 1736 // bool PrintFunc = false; 1737 bool HotBBOnly = PGOVerifyHotBFI; 1738 std::string Msg; 1739 OptimizationRemarkEmitter ORE(&F); 1740 1741 unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0; 1742 for (auto &BBI : F) { 1743 uint64_t CountValue = 0; 1744 uint64_t BFICountValue = 0; 1745 1746 if (Func.getBBInfo(&BBI).CountValid) 1747 CountValue = Func.getBBInfo(&BBI).CountValue; 1748 1749 BBNum++; 1750 if (CountValue) 1751 NonZeroBBNum++; 1752 auto BFICount = NBFI.getBlockProfileCount(&BBI); 1753 if (BFICount) 1754 BFICountValue = BFICount.getValue(); 1755 1756 if (HotBBOnly) { 1757 bool rawIsHot = CountValue >= HotCountThreshold; 1758 bool BFIIsHot = BFICountValue >= HotCountThreshold; 1759 bool rawIsCold = CountValue <= ColdCountThreshold; 1760 bool ShowCount = false; 1761 if (rawIsHot && !BFIIsHot) { 1762 Msg = "raw-Hot to BFI-nonHot"; 1763 ShowCount = true; 1764 } else if (rawIsCold && BFIIsHot) { 1765 Msg = "raw-Cold to BFI-Hot"; 1766 ShowCount = true; 1767 } 1768 if (!ShowCount) 1769 continue; 1770 } else { 1771 if ((CountValue < PGOVerifyBFICutoff) && 1772 (BFICountValue < PGOVerifyBFICutoff)) 1773 continue; 1774 uint64_t Diff = (BFICountValue >= CountValue) 1775 ? BFICountValue - CountValue 1776 : CountValue - BFICountValue; 1777 if (Diff < CountValue / 100 * PGOVerifyBFIRatio) 1778 continue; 1779 } 1780 BBMisMatchNum++; 1781 1782 ORE.emit([&]() { 1783 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify", 1784 F.getSubprogram(), &BBI); 1785 Remark << "BB " << ore::NV("Block", BBI.getName()) 1786 << " Count=" << ore::NV("Count", CountValue) 1787 << " BFI_Count=" << ore::NV("Count", BFICountValue); 1788 if (!Msg.empty()) 1789 Remark << " (" << Msg << ")"; 1790 return Remark; 1791 }); 1792 } 1793 if (BBMisMatchNum) 1794 ORE.emit([&]() { 1795 return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify", 1796 F.getSubprogram(), &F.getEntryBlock()) 1797 << "In Func " << ore::NV("Function", F.getName()) 1798 << ": Num_of_BB=" << ore::NV("Count", BBNum) 1799 << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum) 1800 << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum); 1801 }); 1802 } 1803 1804 static bool annotateAllFunctions( 1805 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName, 1806 function_ref<TargetLibraryInfo &(Function &)> LookupTLI, 1807 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, 1808 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, 1809 ProfileSummaryInfo *PSI, bool IsCS) { 1810 LLVM_DEBUG(dbgs() << "Read in profile counters: "); 1811 auto &Ctx = M.getContext(); 1812 // Read the counter array from file. 1813 auto ReaderOrErr = 1814 IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName); 1815 if (Error E = ReaderOrErr.takeError()) { 1816 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { 1817 Ctx.diagnose( 1818 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); 1819 }); 1820 return false; 1821 } 1822 1823 std::unique_ptr<IndexedInstrProfReader> PGOReader = 1824 std::move(ReaderOrErr.get()); 1825 if (!PGOReader) { 1826 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), 1827 StringRef("Cannot get PGOReader"))); 1828 return false; 1829 } 1830 if (!PGOReader->hasCSIRLevelProfile() && IsCS) 1831 return false; 1832 1833 // TODO: might need to change the warning once the clang option is finalized. 1834 if (!PGOReader->isIRLevelProfile()) { 1835 Ctx.diagnose(DiagnosticInfoPGOProfile( 1836 ProfileFileName.data(), "Not an IR level instrumentation profile")); 1837 return false; 1838 } 1839 1840 // Add the profile summary (read from the header of the indexed summary) here 1841 // so that we can use it below when reading counters (which checks if the 1842 // function should be marked with a cold or inlinehint attribute). 1843 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()), 1844 IsCS ? ProfileSummary::PSK_CSInstr 1845 : ProfileSummary::PSK_Instr); 1846 PSI->refresh(); 1847 1848 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; 1849 collectComdatMembers(M, ComdatMembers); 1850 std::vector<Function *> HotFunctions; 1851 std::vector<Function *> ColdFunctions; 1852 1853 // If the profile marked as always instrument the entry BB, do the 1854 // same. Note this can be overwritten by the internal option in CFGMST.h 1855 bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled(); 1856 if (PGOInstrumentEntry.getNumOccurrences() > 0) 1857 InstrumentFuncEntry = PGOInstrumentEntry; 1858 for (auto &F : M) { 1859 if (F.isDeclaration()) 1860 continue; 1861 auto &TLI = LookupTLI(F); 1862 auto *BPI = LookupBPI(F); 1863 auto *BFI = LookupBFI(F); 1864 // Split indirectbr critical edges here before computing the MST rather than 1865 // later in getInstrBB() to avoid invalidating it. 1866 SplitIndirectBrCriticalEdges(F, BPI, BFI); 1867 PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS, 1868 InstrumentFuncEntry); 1869 // When AllMinusOnes is true, it means the profile for the function 1870 // is unrepresentative and this function is actually hot. Set the 1871 // entry count of the function to be multiple times of hot threshold 1872 // and drop all its internal counters. 1873 bool AllMinusOnes = false; 1874 bool AllZeros = false; 1875 if (!Func.readCounters(PGOReader.get(), AllZeros, AllMinusOnes)) 1876 continue; 1877 if (AllZeros) { 1878 F.setEntryCount(ProfileCount(0, Function::PCT_Real)); 1879 if (Func.getProgramMaxCount() != 0) 1880 ColdFunctions.push_back(&F); 1881 continue; 1882 } 1883 const unsigned MultiplyFactor = 3; 1884 if (AllMinusOnes) { 1885 uint64_t HotThreshold = PSI->getHotCountThreshold(); 1886 if (HotThreshold) 1887 F.setEntryCount( 1888 ProfileCount(HotThreshold * MultiplyFactor, Function::PCT_Real)); 1889 HotFunctions.push_back(&F); 1890 continue; 1891 } 1892 Func.populateCounters(); 1893 Func.setBranchWeights(); 1894 Func.annotateValueSites(); 1895 Func.annotateIrrLoopHeaderWeights(); 1896 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); 1897 if (FreqAttr == PGOUseFunc::FFA_Cold) 1898 ColdFunctions.push_back(&F); 1899 else if (FreqAttr == PGOUseFunc::FFA_Hot) 1900 HotFunctions.push_back(&F); 1901 if (PGOViewCounts != PGOVCT_None && 1902 (ViewBlockFreqFuncName.empty() || 1903 F.getName().equals(ViewBlockFreqFuncName))) { 1904 LoopInfo LI{DominatorTree(F)}; 1905 std::unique_ptr<BranchProbabilityInfo> NewBPI = 1906 std::make_unique<BranchProbabilityInfo>(F, LI); 1907 std::unique_ptr<BlockFrequencyInfo> NewBFI = 1908 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI); 1909 if (PGOViewCounts == PGOVCT_Graph) 1910 NewBFI->view(); 1911 else if (PGOViewCounts == PGOVCT_Text) { 1912 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n"; 1913 NewBFI->print(dbgs()); 1914 } 1915 } 1916 if (PGOViewRawCounts != PGOVCT_None && 1917 (ViewBlockFreqFuncName.empty() || 1918 F.getName().equals(ViewBlockFreqFuncName))) { 1919 if (PGOViewRawCounts == PGOVCT_Graph) 1920 if (ViewBlockFreqFuncName.empty()) 1921 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); 1922 else 1923 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); 1924 else if (PGOViewRawCounts == PGOVCT_Text) { 1925 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n"; 1926 Func.dumpInfo(); 1927 } 1928 } 1929 1930 if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) { 1931 LoopInfo LI{DominatorTree(F)}; 1932 BranchProbabilityInfo NBPI(F, LI); 1933 1934 // Fix func entry count. 1935 if (PGOFixEntryCount) 1936 fixFuncEntryCount(Func, LI, NBPI); 1937 1938 // Verify BlockFrequency information. 1939 uint64_t HotCountThreshold = 0, ColdCountThreshold = 0; 1940 if (PGOVerifyHotBFI) { 1941 HotCountThreshold = PSI->getOrCompHotCountThreshold(); 1942 ColdCountThreshold = PSI->getOrCompColdCountThreshold(); 1943 } 1944 verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold); 1945 } 1946 } 1947 1948 // Set function hotness attribute from the profile. 1949 // We have to apply these attributes at the end because their presence 1950 // can affect the BranchProbabilityInfo of any callers, resulting in an 1951 // inconsistent MST between prof-gen and prof-use. 1952 for (auto &F : HotFunctions) { 1953 F->addFnAttr(Attribute::InlineHint); 1954 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() 1955 << "\n"); 1956 } 1957 for (auto &F : ColdFunctions) { 1958 // Only set when there is no Attribute::Hot set by the user. For Hot 1959 // attribute, user's annotation has the precedence over the profile. 1960 if (F->hasFnAttribute(Attribute::Hot)) { 1961 auto &Ctx = M.getContext(); 1962 std::string Msg = std::string("Function ") + F->getName().str() + 1963 std::string(" is annotated as a hot function but" 1964 " the profile is cold"); 1965 Ctx.diagnose( 1966 DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning)); 1967 continue; 1968 } 1969 F->addFnAttr(Attribute::Cold); 1970 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() 1971 << "\n"); 1972 } 1973 return true; 1974 } 1975 1976 PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename, 1977 std::string RemappingFilename, 1978 bool IsCS) 1979 : ProfileFileName(std::move(Filename)), 1980 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) { 1981 if (!PGOTestProfileFile.empty()) 1982 ProfileFileName = PGOTestProfileFile; 1983 if (!PGOTestProfileRemappingFile.empty()) 1984 ProfileRemappingFileName = PGOTestProfileRemappingFile; 1985 } 1986 1987 PreservedAnalyses PGOInstrumentationUse::run(Module &M, 1988 ModuleAnalysisManager &AM) { 1989 1990 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1991 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1992 return FAM.getResult<TargetLibraryAnalysis>(F); 1993 }; 1994 auto LookupBPI = [&FAM](Function &F) { 1995 return &FAM.getResult<BranchProbabilityAnalysis>(F); 1996 }; 1997 auto LookupBFI = [&FAM](Function &F) { 1998 return &FAM.getResult<BlockFrequencyAnalysis>(F); 1999 }; 2000 2001 auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2002 2003 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, 2004 LookupTLI, LookupBPI, LookupBFI, PSI, IsCS)) 2005 return PreservedAnalyses::all(); 2006 2007 return PreservedAnalyses::none(); 2008 } 2009 2010 bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) { 2011 if (skipModule(M)) 2012 return false; 2013 2014 auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { 2015 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2016 }; 2017 auto LookupBPI = [this](Function &F) { 2018 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); 2019 }; 2020 auto LookupBFI = [this](Function &F) { 2021 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2022 }; 2023 2024 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2025 return annotateAllFunctions(M, ProfileFileName, "", LookupTLI, LookupBPI, 2026 LookupBFI, PSI, IsCS); 2027 } 2028 2029 static std::string getSimpleNodeName(const BasicBlock *Node) { 2030 if (!Node->getName().empty()) 2031 return std::string(Node->getName()); 2032 2033 std::string SimpleNodeName; 2034 raw_string_ostream OS(SimpleNodeName); 2035 Node->printAsOperand(OS, false); 2036 return OS.str(); 2037 } 2038 2039 void llvm::setProfMetadata(Module *M, Instruction *TI, 2040 ArrayRef<uint64_t> EdgeCounts, 2041 uint64_t MaxCount) { 2042 MDBuilder MDB(M->getContext()); 2043 assert(MaxCount > 0 && "Bad max count"); 2044 uint64_t Scale = calculateCountScale(MaxCount); 2045 SmallVector<unsigned, 4> Weights; 2046 for (const auto &ECI : EdgeCounts) 2047 Weights.push_back(scaleBranchCount(ECI, Scale)); 2048 2049 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W 2050 : Weights) { 2051 dbgs() << W << " "; 2052 } dbgs() << "\n";); 2053 2054 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 2055 if (EmitBranchProbability) { 2056 std::string BrCondStr = getBranchCondString(TI); 2057 if (BrCondStr.empty()) 2058 return; 2059 2060 uint64_t WSum = 2061 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0, 2062 [](uint64_t w1, uint64_t w2) { return w1 + w2; }); 2063 uint64_t TotalCount = 2064 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0, 2065 [](uint64_t c1, uint64_t c2) { return c1 + c2; }); 2066 Scale = calculateCountScale(WSum); 2067 BranchProbability BP(scaleBranchCount(Weights[0], Scale), 2068 scaleBranchCount(WSum, Scale)); 2069 std::string BranchProbStr; 2070 raw_string_ostream OS(BranchProbStr); 2071 OS << BP; 2072 OS << " (total count : " << TotalCount << ")"; 2073 OS.flush(); 2074 Function *F = TI->getParent()->getParent(); 2075 OptimizationRemarkEmitter ORE(F); 2076 ORE.emit([&]() { 2077 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI) 2078 << BrCondStr << " is true with probability : " << BranchProbStr; 2079 }); 2080 } 2081 } 2082 2083 namespace llvm { 2084 2085 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) { 2086 MDBuilder MDB(M->getContext()); 2087 TI->setMetadata(llvm::LLVMContext::MD_irr_loop, 2088 MDB.createIrrLoopHeaderWeight(Count)); 2089 } 2090 2091 template <> struct GraphTraits<PGOUseFunc *> { 2092 using NodeRef = const BasicBlock *; 2093 using ChildIteratorType = const_succ_iterator; 2094 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2095 2096 static NodeRef getEntryNode(const PGOUseFunc *G) { 2097 return &G->getFunc().front(); 2098 } 2099 2100 static ChildIteratorType child_begin(const NodeRef N) { 2101 return succ_begin(N); 2102 } 2103 2104 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } 2105 2106 static nodes_iterator nodes_begin(const PGOUseFunc *G) { 2107 return nodes_iterator(G->getFunc().begin()); 2108 } 2109 2110 static nodes_iterator nodes_end(const PGOUseFunc *G) { 2111 return nodes_iterator(G->getFunc().end()); 2112 } 2113 }; 2114 2115 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits { 2116 explicit DOTGraphTraits(bool isSimple = false) 2117 : DefaultDOTGraphTraits(isSimple) {} 2118 2119 static std::string getGraphName(const PGOUseFunc *G) { 2120 return std::string(G->getFunc().getName()); 2121 } 2122 2123 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) { 2124 std::string Result; 2125 raw_string_ostream OS(Result); 2126 2127 OS << getSimpleNodeName(Node) << ":\\l"; 2128 UseBBInfo *BI = Graph->findBBInfo(Node); 2129 OS << "Count : "; 2130 if (BI && BI->CountValid) 2131 OS << BI->CountValue << "\\l"; 2132 else 2133 OS << "Unknown\\l"; 2134 2135 if (!PGOInstrSelect) 2136 return Result; 2137 2138 for (const Instruction &I : *Node) { 2139 if (!isa<SelectInst>(&I)) 2140 continue; 2141 // Display scaled counts for SELECT instruction: 2142 OS << "SELECT : { T = "; 2143 uint64_t TC, FC; 2144 bool HasProf = I.extractProfMetadata(TC, FC); 2145 if (!HasProf) 2146 OS << "Unknown, F = Unknown }\\l"; 2147 else 2148 OS << TC << ", F = " << FC << " }\\l"; 2149 } 2150 return Result; 2151 } 2152 }; 2153 2154 } // end namespace llvm 2155