1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements PGO instrumentation using a minimum spanning tree based 10 // on the following paper: 11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points 12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, 13 // Issue 3, pp 313-322 14 // The idea of the algorithm based on the fact that for each node (except for 15 // the entry and exit), the sum of incoming edge counts equals the sum of 16 // outgoing edge counts. The count of edge on spanning tree can be derived from 17 // those edges not on the spanning tree. Knuth proves this method instruments 18 // the minimum number of edges. 19 // 20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree 21 // edges have higher frequencies (more likely to execute). The idea is to 22 // instrument those less frequently executed edges to reduce the runtime 23 // overhead of instrumented binaries. 24 // 25 // This file contains two passes: 26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge 27 // count profile, and generates the instrumentation for indirect call 28 // profiling. 29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and 30 // annotates the branch weights. It also reads the indirect call value 31 // profiling records and annotate the indirect call instructions. 32 // 33 // To get the precise counter information, These two passes need to invoke at 34 // the same compilation point (so they see the same IR). For pass 35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For 36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and 37 // the profile is opened in module level and passed to each PGOUseFunc instance. 38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put 39 // in class FuncPGOInstrumentation. 40 // 41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class 42 // BBInfo contains auxiliary information for each BB. These two classes are used 43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived 44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure 45 // used in populating profile counters. 46 // The MST implementation is in Class CFGMST (CFGMST.h). 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 51 #include "CFGMST.h" 52 #include "ValueProfileCollector.h" 53 #include "llvm/ADT/APInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/MapVector.h" 56 #include "llvm/ADT/STLExtras.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/ADT/iterator_range.h" 64 #include "llvm/Analysis/BlockFrequencyInfo.h" 65 #include "llvm/Analysis/BranchProbabilityInfo.h" 66 #include "llvm/Analysis/CFG.h" 67 #include "llvm/Analysis/EHPersonalities.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 70 #include "llvm/Analysis/ProfileSummaryInfo.h" 71 #include "llvm/IR/Attributes.h" 72 #include "llvm/IR/BasicBlock.h" 73 #include "llvm/IR/CFG.h" 74 #include "llvm/IR/Comdat.h" 75 #include "llvm/IR/Constant.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/InstVisitor.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/MDBuilder.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/ProfileSummary.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/InitializePasses.h" 98 #include "llvm/Pass.h" 99 #include "llvm/ProfileData/InstrProf.h" 100 #include "llvm/ProfileData/InstrProfReader.h" 101 #include "llvm/Support/BranchProbability.h" 102 #include "llvm/Support/CRC.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/DOTGraphTraits.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/Error.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/GraphWriter.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Transforms/Instrumentation.h" 112 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 113 #include "llvm/Transforms/Utils/ModuleUtils.h" 114 #include <algorithm> 115 #include <cassert> 116 #include <cstdint> 117 #include <memory> 118 #include <numeric> 119 #include <string> 120 #include <unordered_map> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using ProfileCount = Function::ProfileCount; 126 using VPCandidateInfo = ValueProfileCollector::CandidateInfo; 127 128 #define DEBUG_TYPE "pgo-instrumentation" 129 130 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); 131 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented."); 132 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented."); 133 STATISTIC(NumOfPGOEdge, "Number of edges."); 134 STATISTIC(NumOfPGOBB, "Number of basic-blocks."); 135 STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); 136 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); 137 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); 138 STATISTIC(NumOfPGOMissing, "Number of functions without profile."); 139 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); 140 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO."); 141 STATISTIC(NumOfCSPGOSelectInsts, 142 "Number of select instruction instrumented in CSPGO."); 143 STATISTIC(NumOfCSPGOMemIntrinsics, 144 "Number of mem intrinsics instrumented in CSPGO."); 145 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO."); 146 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO."); 147 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO."); 148 STATISTIC(NumOfCSPGOFunc, 149 "Number of functions having valid profile counts in CSPGO."); 150 STATISTIC(NumOfCSPGOMismatch, 151 "Number of functions having mismatch profile in CSPGO."); 152 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO."); 153 154 // Command line option to specify the file to read profile from. This is 155 // mainly used for testing. 156 static cl::opt<std::string> 157 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, 158 cl::value_desc("filename"), 159 cl::desc("Specify the path of profile data file. This is" 160 "mainly for test purpose.")); 161 static cl::opt<std::string> PGOTestProfileRemappingFile( 162 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden, 163 cl::value_desc("filename"), 164 cl::desc("Specify the path of profile remapping file. This is mainly for " 165 "test purpose.")); 166 167 // Command line option to disable value profiling. The default is false: 168 // i.e. value profiling is enabled by default. This is for debug purpose. 169 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false), 170 cl::Hidden, 171 cl::desc("Disable Value Profiling")); 172 173 // Command line option to set the maximum number of VP annotations to write to 174 // the metadata for a single indirect call callsite. 175 static cl::opt<unsigned> MaxNumAnnotations( 176 "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore, 177 cl::desc("Max number of annotations for a single indirect " 178 "call callsite")); 179 180 // Command line option to set the maximum number of value annotations 181 // to write to the metadata for a single memop intrinsic. 182 static cl::opt<unsigned> MaxNumMemOPAnnotations( 183 "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore, 184 cl::desc("Max number of preicise value annotations for a single memop" 185 "intrinsic")); 186 187 // Command line option to control appending FunctionHash to the name of a COMDAT 188 // function. This is to avoid the hash mismatch caused by the preinliner. 189 static cl::opt<bool> DoComdatRenaming( 190 "do-comdat-renaming", cl::init(false), cl::Hidden, 191 cl::desc("Append function hash to the name of COMDAT function to avoid " 192 "function hash mismatch due to the preinliner")); 193 194 // Command line option to enable/disable the warning about missing profile 195 // information. 196 static cl::opt<bool> 197 PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden, 198 cl::desc("Use this option to turn on/off " 199 "warnings about missing profile data for " 200 "functions.")); 201 202 namespace llvm { 203 // Command line option to enable/disable the warning about a hash mismatch in 204 // the profile data. 205 cl::opt<bool> 206 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden, 207 cl::desc("Use this option to turn off/on " 208 "warnings about profile cfg mismatch.")); 209 } // namespace llvm 210 211 // Command line option to enable/disable the warning about a hash mismatch in 212 // the profile data for Comdat functions, which often turns out to be false 213 // positive due to the pre-instrumentation inline. 214 static cl::opt<bool> 215 NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true), 216 cl::Hidden, 217 cl::desc("The option is used to turn on/off " 218 "warnings about hash mismatch for comdat " 219 "functions.")); 220 221 // Command line option to enable/disable select instruction instrumentation. 222 static cl::opt<bool> 223 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden, 224 cl::desc("Use this option to turn on/off SELECT " 225 "instruction instrumentation. ")); 226 227 // Command line option to turn on CFG dot or text dump of raw profile counts 228 static cl::opt<PGOViewCountsType> PGOViewRawCounts( 229 "pgo-view-raw-counts", cl::Hidden, 230 cl::desc("A boolean option to show CFG dag or text " 231 "with raw profile counts from " 232 "profile data. See also option " 233 "-pgo-view-counts. To limit graph " 234 "display to only one function, use " 235 "filtering option -view-bfi-func-name."), 236 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), 237 clEnumValN(PGOVCT_Graph, "graph", "show a graph."), 238 clEnumValN(PGOVCT_Text, "text", "show in text."))); 239 240 // Command line option to enable/disable memop intrinsic call.size profiling. 241 static cl::opt<bool> 242 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden, 243 cl::desc("Use this option to turn on/off " 244 "memory intrinsic size profiling.")); 245 246 // Emit branch probability as optimization remarks. 247 static cl::opt<bool> 248 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden, 249 cl::desc("When this option is on, the annotated " 250 "branch probability will be emitted as " 251 "optimization remarks: -{Rpass|" 252 "pass-remarks}=pgo-instrumentation")); 253 254 static cl::opt<bool> PGOInstrumentEntry( 255 "pgo-instrument-entry", cl::init(false), cl::Hidden, 256 cl::desc("Force to instrument function entry basicblock.")); 257 258 static cl::opt<bool> 259 PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden, 260 cl::desc("Fix function entry count in profile use.")); 261 262 static cl::opt<bool> PGOVerifyHotBFI( 263 "pgo-verify-hot-bfi", cl::init(false), cl::Hidden, 264 cl::desc("Print out the non-match BFI count if a hot raw profile count " 265 "becomes non-hot, or a cold raw profile count becomes hot. " 266 "The print is enabled under -Rpass-analysis=pgo, or " 267 "internal option -pass-remakrs-analysis=pgo.")); 268 269 static cl::opt<bool> PGOVerifyBFI( 270 "pgo-verify-bfi", cl::init(false), cl::Hidden, 271 cl::desc("Print out mismatched BFI counts after setting profile metadata " 272 "The print is enabled under -Rpass-analysis=pgo, or " 273 "internal option -pass-remakrs-analysis=pgo.")); 274 275 static cl::opt<unsigned> PGOVerifyBFIRatio( 276 "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden, 277 cl::desc("Set the threshold for pgo-verify-bfi: only print out " 278 "mismatched BFI if the difference percentage is greater than " 279 "this value (in percentage).")); 280 281 static cl::opt<unsigned> PGOVerifyBFICutoff( 282 "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden, 283 cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose " 284 "profile count value is below.")); 285 286 namespace llvm { 287 // Command line option to turn on CFG dot dump after profile annotation. 288 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts 289 extern cl::opt<PGOViewCountsType> PGOViewCounts; 290 291 // Command line option to specify the name of the function for CFG dump 292 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 293 extern cl::opt<std::string> ViewBlockFreqFuncName; 294 295 extern cl::opt<bool> DebugInfoCorrelate; 296 } // namespace llvm 297 298 static cl::opt<bool> 299 PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden, 300 cl::desc("Use the old CFG function hashing")); 301 302 // Return a string describing the branch condition that can be 303 // used in static branch probability heuristics: 304 static std::string getBranchCondString(Instruction *TI) { 305 BranchInst *BI = dyn_cast<BranchInst>(TI); 306 if (!BI || !BI->isConditional()) 307 return std::string(); 308 309 Value *Cond = BI->getCondition(); 310 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 311 if (!CI) 312 return std::string(); 313 314 std::string result; 315 raw_string_ostream OS(result); 316 OS << CmpInst::getPredicateName(CI->getPredicate()) << "_"; 317 CI->getOperand(0)->getType()->print(OS, true); 318 319 Value *RHS = CI->getOperand(1); 320 ConstantInt *CV = dyn_cast<ConstantInt>(RHS); 321 if (CV) { 322 if (CV->isZero()) 323 OS << "_Zero"; 324 else if (CV->isOne()) 325 OS << "_One"; 326 else if (CV->isMinusOne()) 327 OS << "_MinusOne"; 328 else 329 OS << "_Const"; 330 } 331 OS.flush(); 332 return result; 333 } 334 335 static const char *ValueProfKindDescr[] = { 336 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr, 337 #include "llvm/ProfileData/InstrProfData.inc" 338 }; 339 340 namespace { 341 342 /// The select instruction visitor plays three roles specified 343 /// by the mode. In \c VM_counting mode, it simply counts the number of 344 /// select instructions. In \c VM_instrument mode, it inserts code to count 345 /// the number times TrueValue of select is taken. In \c VM_annotate mode, 346 /// it reads the profile data and annotate the select instruction with metadata. 347 enum VisitMode { VM_counting, VM_instrument, VM_annotate }; 348 class PGOUseFunc; 349 350 /// Instruction Visitor class to visit select instructions. 351 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> { 352 Function &F; 353 unsigned NSIs = 0; // Number of select instructions instrumented. 354 VisitMode Mode = VM_counting; // Visiting mode. 355 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index. 356 unsigned TotalNumCtrs = 0; // Total number of counters 357 GlobalVariable *FuncNameVar = nullptr; 358 uint64_t FuncHash = 0; 359 PGOUseFunc *UseFunc = nullptr; 360 361 SelectInstVisitor(Function &Func) : F(Func) {} 362 363 void countSelects(Function &Func) { 364 NSIs = 0; 365 Mode = VM_counting; 366 visit(Func); 367 } 368 369 // Visit the IR stream and instrument all select instructions. \p 370 // Ind is a pointer to the counter index variable; \p TotalNC 371 // is the total number of counters; \p FNV is the pointer to the 372 // PGO function name var; \p FHash is the function hash. 373 void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC, 374 GlobalVariable *FNV, uint64_t FHash) { 375 Mode = VM_instrument; 376 CurCtrIdx = Ind; 377 TotalNumCtrs = TotalNC; 378 FuncHash = FHash; 379 FuncNameVar = FNV; 380 visit(Func); 381 } 382 383 // Visit the IR stream and annotate all select instructions. 384 void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) { 385 Mode = VM_annotate; 386 UseFunc = UF; 387 CurCtrIdx = Ind; 388 visit(Func); 389 } 390 391 void instrumentOneSelectInst(SelectInst &SI); 392 void annotateOneSelectInst(SelectInst &SI); 393 394 // Visit \p SI instruction and perform tasks according to visit mode. 395 void visitSelectInst(SelectInst &SI); 396 397 // Return the number of select instructions. This needs be called after 398 // countSelects(). 399 unsigned getNumOfSelectInsts() const { return NSIs; } 400 }; 401 402 403 class PGOInstrumentationGenLegacyPass : public ModulePass { 404 public: 405 static char ID; 406 407 PGOInstrumentationGenLegacyPass(bool IsCS = false) 408 : ModulePass(ID), IsCS(IsCS) { 409 initializePGOInstrumentationGenLegacyPassPass( 410 *PassRegistry::getPassRegistry()); 411 } 412 413 StringRef getPassName() const override { return "PGOInstrumentationGenPass"; } 414 415 private: 416 // Is this is context-sensitive instrumentation. 417 bool IsCS; 418 bool runOnModule(Module &M) override; 419 420 void getAnalysisUsage(AnalysisUsage &AU) const override { 421 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 422 AU.addRequired<TargetLibraryInfoWrapperPass>(); 423 } 424 }; 425 426 class PGOInstrumentationUseLegacyPass : public ModulePass { 427 public: 428 static char ID; 429 430 // Provide the profile filename as the parameter. 431 PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false) 432 : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) { 433 if (!PGOTestProfileFile.empty()) 434 ProfileFileName = PGOTestProfileFile; 435 initializePGOInstrumentationUseLegacyPassPass( 436 *PassRegistry::getPassRegistry()); 437 } 438 439 StringRef getPassName() const override { return "PGOInstrumentationUsePass"; } 440 441 private: 442 std::string ProfileFileName; 443 // Is this is context-sensitive instrumentation use. 444 bool IsCS; 445 446 bool runOnModule(Module &M) override; 447 448 void getAnalysisUsage(AnalysisUsage &AU) const override { 449 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 450 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 451 AU.addRequired<TargetLibraryInfoWrapperPass>(); 452 } 453 }; 454 455 class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass { 456 public: 457 static char ID; 458 StringRef getPassName() const override { 459 return "PGOInstrumentationGenCreateVarPass"; 460 } 461 PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "") 462 : ModulePass(ID), InstrProfileOutput(CSInstrName) { 463 initializePGOInstrumentationGenCreateVarLegacyPassPass( 464 *PassRegistry::getPassRegistry()); 465 } 466 467 private: 468 bool runOnModule(Module &M) override { 469 createProfileFileNameVar(M, InstrProfileOutput); 470 // The variable in a comdat may be discarded by LTO. Ensure the 471 // declaration will be retained. 472 appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true, 473 PGOInstrumentEntry, 474 DebugInfoCorrelate)); 475 return false; 476 } 477 std::string InstrProfileOutput; 478 }; 479 480 } // end anonymous namespace 481 482 char PGOInstrumentationGenLegacyPass::ID = 0; 483 484 INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", 485 "PGO instrumentation.", false, false) 486 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 487 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 488 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 489 INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", 490 "PGO instrumentation.", false, false) 491 492 ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) { 493 return new PGOInstrumentationGenLegacyPass(IsCS); 494 } 495 496 char PGOInstrumentationUseLegacyPass::ID = 0; 497 498 INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use", 499 "Read PGO instrumentation profile.", false, false) 500 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 501 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 502 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 503 INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use", 504 "Read PGO instrumentation profile.", false, false) 505 506 ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename, 507 bool IsCS) { 508 return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS); 509 } 510 511 char PGOInstrumentationGenCreateVarLegacyPass::ID = 0; 512 513 INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass, 514 "pgo-instr-gen-create-var", 515 "Create PGO instrumentation version variable for CSPGO.", false, 516 false) 517 518 ModulePass * 519 llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) { 520 return new PGOInstrumentationGenCreateVarLegacyPass(std::string(CSInstrName)); 521 } 522 523 namespace { 524 525 /// An MST based instrumentation for PGO 526 /// 527 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO 528 /// in the function level. 529 struct PGOEdge { 530 // This class implements the CFG edges. Note the CFG can be a multi-graph. 531 // So there might be multiple edges with same SrcBB and DestBB. 532 const BasicBlock *SrcBB; 533 const BasicBlock *DestBB; 534 uint64_t Weight; 535 bool InMST = false; 536 bool Removed = false; 537 bool IsCritical = false; 538 539 PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) 540 : SrcBB(Src), DestBB(Dest), Weight(W) {} 541 542 // Return the information string of an edge. 543 std::string infoString() const { 544 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + 545 (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); 546 } 547 }; 548 549 // This class stores the auxiliary information for each BB. 550 struct BBInfo { 551 BBInfo *Group; 552 uint32_t Index; 553 uint32_t Rank = 0; 554 555 BBInfo(unsigned IX) : Group(this), Index(IX) {} 556 557 // Return the information string of this object. 558 std::string infoString() const { 559 return (Twine("Index=") + Twine(Index)).str(); 560 } 561 562 // Empty function -- only applicable to UseBBInfo. 563 void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} 564 565 // Empty function -- only applicable to UseBBInfo. 566 void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} 567 }; 568 569 // This class implements the CFG edges. Note the CFG can be a multi-graph. 570 template <class Edge, class BBInfo> class FuncPGOInstrumentation { 571 private: 572 Function &F; 573 574 // Is this is context-sensitive instrumentation. 575 bool IsCS; 576 577 // A map that stores the Comdat group in function F. 578 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers; 579 580 ValueProfileCollector VPC; 581 582 void computeCFGHash(); 583 void renameComdatFunction(); 584 585 public: 586 std::vector<std::vector<VPCandidateInfo>> ValueSites; 587 SelectInstVisitor SIVisitor; 588 std::string FuncName; 589 GlobalVariable *FuncNameVar; 590 591 // CFG hash value for this function. 592 uint64_t FunctionHash = 0; 593 594 // The Minimum Spanning Tree of function CFG. 595 CFGMST<Edge, BBInfo> MST; 596 597 // Collect all the BBs that will be instrumented, and store them in 598 // InstrumentBBs. 599 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs); 600 601 // Give an edge, find the BB that will be instrumented. 602 // Return nullptr if there is no BB to be instrumented. 603 BasicBlock *getInstrBB(Edge *E); 604 605 // Return the auxiliary BB information. 606 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } 607 608 // Return the auxiliary BB information if available. 609 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); } 610 611 // Dump edges and BB information. 612 void dumpInfo(std::string Str = "") const { 613 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + 614 Twine(FunctionHash) + "\t" + Str); 615 } 616 617 FuncPGOInstrumentation( 618 Function &Func, TargetLibraryInfo &TLI, 619 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, 620 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr, 621 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false, 622 bool InstrumentFuncEntry = true) 623 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI), 624 ValueSites(IPVK_Last + 1), SIVisitor(Func), 625 MST(F, InstrumentFuncEntry, BPI, BFI) { 626 // This should be done before CFG hash computation. 627 SIVisitor.countSelects(Func); 628 ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize); 629 if (!IsCS) { 630 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); 631 NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); 632 NumOfPGOBB += MST.BBInfos.size(); 633 ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget); 634 } else { 635 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); 636 NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); 637 NumOfCSPGOBB += MST.BBInfos.size(); 638 } 639 640 FuncName = getPGOFuncName(F); 641 computeCFGHash(); 642 if (!ComdatMembers.empty()) 643 renameComdatFunction(); 644 LLVM_DEBUG(dumpInfo("after CFGMST")); 645 646 for (auto &E : MST.AllEdges) { 647 if (E->Removed) 648 continue; 649 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++; 650 if (!E->InMST) 651 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++; 652 } 653 654 if (CreateGlobalVar) 655 FuncNameVar = createPGOFuncNameVar(F, FuncName); 656 } 657 }; 658 659 } // end anonymous namespace 660 661 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 662 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers 663 // of selects, indirect calls, mem ops and edges. 664 template <class Edge, class BBInfo> 665 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { 666 std::vector<uint8_t> Indexes; 667 JamCRC JC; 668 for (auto &BB : F) { 669 const Instruction *TI = BB.getTerminator(); 670 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 671 BasicBlock *Succ = TI->getSuccessor(I); 672 auto BI = findBBInfo(Succ); 673 if (BI == nullptr) 674 continue; 675 uint32_t Index = BI->Index; 676 for (int J = 0; J < 4; J++) 677 Indexes.push_back((uint8_t)(Index >> (J * 8))); 678 } 679 } 680 JC.update(Indexes); 681 682 JamCRC JCH; 683 if (PGOOldCFGHashing) { 684 // Hash format for context sensitive profile. Reserve 4 bits for other 685 // information. 686 FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 | 687 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 | 688 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 | 689 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC(); 690 } else { 691 // The higher 32 bits. 692 auto updateJCH = [&JCH](uint64_t Num) { 693 uint8_t Data[8]; 694 support::endian::write64le(Data, Num); 695 JCH.update(Data); 696 }; 697 updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts()); 698 updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size()); 699 updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size()); 700 updateJCH((uint64_t)MST.AllEdges.size()); 701 702 // Hash format for context sensitive profile. Reserve 4 bits for other 703 // information. 704 FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC(); 705 } 706 707 // Reserve bit 60-63 for other information purpose. 708 FunctionHash &= 0x0FFFFFFFFFFFFFFF; 709 if (IsCS) 710 NamedInstrProfRecord::setCSFlagInHash(FunctionHash); 711 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n" 712 << " CRC = " << JC.getCRC() 713 << ", Selects = " << SIVisitor.getNumOfSelectInsts() 714 << ", Edges = " << MST.AllEdges.size() << ", ICSites = " 715 << ValueSites[IPVK_IndirectCallTarget].size()); 716 if (!PGOOldCFGHashing) { 717 LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size() 718 << ", High32 CRC = " << JCH.getCRC()); 719 } 720 LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";); 721 } 722 723 // Check if we can safely rename this Comdat function. 724 static bool canRenameComdat( 725 Function &F, 726 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { 727 if (!DoComdatRenaming || !canRenameComdatFunc(F, true)) 728 return false; 729 730 // FIXME: Current only handle those Comdat groups that only containing one 731 // function. 732 // (1) For a Comdat group containing multiple functions, we need to have a 733 // unique postfix based on the hashes for each function. There is a 734 // non-trivial code refactoring to do this efficiently. 735 // (2) Variables can not be renamed, so we can not rename Comdat function in a 736 // group including global vars. 737 Comdat *C = F.getComdat(); 738 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { 739 assert(!isa<GlobalAlias>(CM.second)); 740 Function *FM = dyn_cast<Function>(CM.second); 741 if (FM != &F) 742 return false; 743 } 744 return true; 745 } 746 747 // Append the CFGHash to the Comdat function name. 748 template <class Edge, class BBInfo> 749 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() { 750 if (!canRenameComdat(F, ComdatMembers)) 751 return; 752 std::string OrigName = F.getName().str(); 753 std::string NewFuncName = 754 Twine(F.getName() + "." + Twine(FunctionHash)).str(); 755 F.setName(Twine(NewFuncName)); 756 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F); 757 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str(); 758 Comdat *NewComdat; 759 Module *M = F.getParent(); 760 // For AvailableExternallyLinkage functions, change the linkage to 761 // LinkOnceODR and put them into comdat. This is because after renaming, there 762 // is no backup external copy available for the function. 763 if (!F.hasComdat()) { 764 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 765 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName)); 766 F.setLinkage(GlobalValue::LinkOnceODRLinkage); 767 F.setComdat(NewComdat); 768 return; 769 } 770 771 // This function belongs to a single function Comdat group. 772 Comdat *OrigComdat = F.getComdat(); 773 std::string NewComdatName = 774 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str(); 775 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName)); 776 NewComdat->setSelectionKind(OrigComdat->getSelectionKind()); 777 778 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) { 779 // Must be a function. 780 cast<Function>(CM.second)->setComdat(NewComdat); 781 } 782 } 783 784 // Collect all the BBs that will be instruments and return them in 785 // InstrumentBBs and setup InEdges/OutEdge for UseBBInfo. 786 template <class Edge, class BBInfo> 787 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs( 788 std::vector<BasicBlock *> &InstrumentBBs) { 789 // Use a worklist as we will update the vector during the iteration. 790 std::vector<Edge *> EdgeList; 791 EdgeList.reserve(MST.AllEdges.size()); 792 for (auto &E : MST.AllEdges) 793 EdgeList.push_back(E.get()); 794 795 for (auto &E : EdgeList) { 796 BasicBlock *InstrBB = getInstrBB(E); 797 if (InstrBB) 798 InstrumentBBs.push_back(InstrBB); 799 } 800 801 // Set up InEdges/OutEdges for all BBs. 802 for (auto &E : MST.AllEdges) { 803 if (E->Removed) 804 continue; 805 const BasicBlock *SrcBB = E->SrcBB; 806 const BasicBlock *DestBB = E->DestBB; 807 BBInfo &SrcInfo = getBBInfo(SrcBB); 808 BBInfo &DestInfo = getBBInfo(DestBB); 809 SrcInfo.addOutEdge(E.get()); 810 DestInfo.addInEdge(E.get()); 811 } 812 } 813 814 // Given a CFG E to be instrumented, find which BB to place the instrumented 815 // code. The function will split the critical edge if necessary. 816 template <class Edge, class BBInfo> 817 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) { 818 if (E->InMST || E->Removed) 819 return nullptr; 820 821 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); 822 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); 823 // For a fake edge, instrument the real BB. 824 if (SrcBB == nullptr) 825 return DestBB; 826 if (DestBB == nullptr) 827 return SrcBB; 828 829 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * { 830 // There are basic blocks (such as catchswitch) cannot be instrumented. 831 // If the returned first insertion point is the end of BB, skip this BB. 832 if (BB->getFirstInsertionPt() == BB->end()) 833 return nullptr; 834 return BB; 835 }; 836 837 // Instrument the SrcBB if it has a single successor, 838 // otherwise, the DestBB if this is not a critical edge. 839 Instruction *TI = SrcBB->getTerminator(); 840 if (TI->getNumSuccessors() <= 1) 841 return canInstrument(SrcBB); 842 if (!E->IsCritical) 843 return canInstrument(DestBB); 844 845 // Some IndirectBr critical edges cannot be split by the previous 846 // SplitIndirectBrCriticalEdges call. Bail out. 847 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); 848 BasicBlock *InstrBB = 849 isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum); 850 if (!InstrBB) { 851 LLVM_DEBUG( 852 dbgs() << "Fail to split critical edge: not instrument this edge.\n"); 853 return nullptr; 854 } 855 // For a critical edge, we have to split. Instrument the newly 856 // created BB. 857 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++; 858 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index 859 << " --> " << getBBInfo(DestBB).Index << "\n"); 860 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB. 861 MST.addEdge(SrcBB, InstrBB, 0); 862 // Second one: Add new edge of InstrBB->DestBB. 863 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0); 864 NewEdge1.InMST = true; 865 E->Removed = true; 866 867 return canInstrument(InstrBB); 868 } 869 870 // When generating value profiling calls on Windows routines that make use of 871 // handler funclets for exception processing an operand bundle needs to attached 872 // to the called function. This routine will set \p OpBundles to contain the 873 // funclet information, if any is needed, that should be placed on the generated 874 // value profiling call for the value profile candidate call. 875 static void 876 populateEHOperandBundle(VPCandidateInfo &Cand, 877 DenseMap<BasicBlock *, ColorVector> &BlockColors, 878 SmallVectorImpl<OperandBundleDef> &OpBundles) { 879 auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst); 880 if (OrigCall && !isa<IntrinsicInst>(OrigCall)) { 881 // The instrumentation call should belong to the same funclet as a 882 // non-intrinsic call, so just copy the operand bundle, if any exists. 883 Optional<OperandBundleUse> ParentFunclet = 884 OrigCall->getOperandBundle(LLVMContext::OB_funclet); 885 if (ParentFunclet) 886 OpBundles.emplace_back(OperandBundleDef(*ParentFunclet)); 887 } else { 888 // Intrinsics or other instructions do not get funclet information from the 889 // front-end. Need to use the BlockColors that was computed by the routine 890 // colorEHFunclets to determine whether a funclet is needed. 891 if (!BlockColors.empty()) { 892 const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second; 893 assert(CV.size() == 1 && "non-unique color for block!"); 894 Instruction *EHPad = CV.front()->getFirstNonPHI(); 895 if (EHPad->isEHPad()) 896 OpBundles.emplace_back("funclet", EHPad); 897 } 898 } 899 } 900 901 // Visit all edge and instrument the edges not in MST, and do value profiling. 902 // Critical edges will be split. 903 static void instrumentOneFunc( 904 Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI, 905 BlockFrequencyInfo *BFI, 906 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, 907 bool IsCS) { 908 // Split indirectbr critical edges here before computing the MST rather than 909 // later in getInstrBB() to avoid invalidating it. 910 SplitIndirectBrCriticalEdges(F, BPI, BFI); 911 912 FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo( 913 F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry); 914 std::vector<BasicBlock *> InstrumentBBs; 915 FuncInfo.getInstrumentBBs(InstrumentBBs); 916 unsigned NumCounters = 917 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); 918 919 uint32_t I = 0; 920 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); 921 for (auto *InstrBB : InstrumentBBs) { 922 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); 923 assert(Builder.GetInsertPoint() != InstrBB->end() && 924 "Cannot get the Instrumentation point"); 925 Builder.CreateCall( 926 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), 927 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), 928 Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), 929 Builder.getInt32(I++)}); 930 } 931 932 // Now instrument select instructions: 933 FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar, 934 FuncInfo.FunctionHash); 935 assert(I == NumCounters); 936 937 if (DisableValueProfiling) 938 return; 939 940 NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size(); 941 942 // Intrinsic function calls do not have funclet operand bundles needed for 943 // Windows exception handling attached to them. However, if value profiling is 944 // inserted for one of these calls, then a funclet value will need to be set 945 // on the instrumentation call based on the funclet coloring. 946 DenseMap<BasicBlock *, ColorVector> BlockColors; 947 if (F.hasPersonalityFn() && 948 isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 949 BlockColors = colorEHFunclets(F); 950 951 // For each VP Kind, walk the VP candidates and instrument each one. 952 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 953 unsigned SiteIndex = 0; 954 if (Kind == IPVK_MemOPSize && !PGOInstrMemOP) 955 continue; 956 957 for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) { 958 LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind] 959 << " site: CallSite Index = " << SiteIndex << "\n"); 960 961 IRBuilder<> Builder(Cand.InsertPt); 962 assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() && 963 "Cannot get the Instrumentation point"); 964 965 Value *ToProfile = nullptr; 966 if (Cand.V->getType()->isIntegerTy()) 967 ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty()); 968 else if (Cand.V->getType()->isPointerTy()) 969 ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty()); 970 assert(ToProfile && "value profiling Value is of unexpected type"); 971 972 SmallVector<OperandBundleDef, 1> OpBundles; 973 populateEHOperandBundle(Cand, BlockColors, OpBundles); 974 Builder.CreateCall( 975 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), 976 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), 977 Builder.getInt64(FuncInfo.FunctionHash), ToProfile, 978 Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)}, 979 OpBundles); 980 } 981 } // IPVK_First <= Kind <= IPVK_Last 982 } 983 984 namespace { 985 986 // This class represents a CFG edge in profile use compilation. 987 struct PGOUseEdge : public PGOEdge { 988 bool CountValid = false; 989 uint64_t CountValue = 0; 990 991 PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) 992 : PGOEdge(Src, Dest, W) {} 993 994 // Set edge count value 995 void setEdgeCount(uint64_t Value) { 996 CountValue = Value; 997 CountValid = true; 998 } 999 1000 // Return the information string for this object. 1001 std::string infoString() const { 1002 if (!CountValid) 1003 return PGOEdge::infoString(); 1004 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) 1005 .str(); 1006 } 1007 }; 1008 1009 using DirectEdges = SmallVector<PGOUseEdge *, 2>; 1010 1011 // This class stores the auxiliary information for each BB. 1012 struct UseBBInfo : public BBInfo { 1013 uint64_t CountValue = 0; 1014 bool CountValid; 1015 int32_t UnknownCountInEdge = 0; 1016 int32_t UnknownCountOutEdge = 0; 1017 DirectEdges InEdges; 1018 DirectEdges OutEdges; 1019 1020 UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {} 1021 1022 UseBBInfo(unsigned IX, uint64_t C) 1023 : BBInfo(IX), CountValue(C), CountValid(true) {} 1024 1025 // Set the profile count value for this BB. 1026 void setBBInfoCount(uint64_t Value) { 1027 CountValue = Value; 1028 CountValid = true; 1029 } 1030 1031 // Return the information string of this object. 1032 std::string infoString() const { 1033 if (!CountValid) 1034 return BBInfo::infoString(); 1035 return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); 1036 } 1037 1038 // Add an OutEdge and update the edge count. 1039 void addOutEdge(PGOUseEdge *E) { 1040 OutEdges.push_back(E); 1041 UnknownCountOutEdge++; 1042 } 1043 1044 // Add an InEdge and update the edge count. 1045 void addInEdge(PGOUseEdge *E) { 1046 InEdges.push_back(E); 1047 UnknownCountInEdge++; 1048 } 1049 }; 1050 1051 } // end anonymous namespace 1052 1053 // Sum up the count values for all the edges. 1054 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) { 1055 uint64_t Total = 0; 1056 for (auto &E : Edges) { 1057 if (E->Removed) 1058 continue; 1059 Total += E->CountValue; 1060 } 1061 return Total; 1062 } 1063 1064 namespace { 1065 1066 class PGOUseFunc { 1067 public: 1068 PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI, 1069 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, 1070 BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin, 1071 ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry) 1072 : F(Func), M(Modu), BFI(BFIin), PSI(PSI), 1073 FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS, 1074 InstrumentFuncEntry), 1075 FreqAttr(FFA_Normal), IsCS(IsCS) {} 1076 1077 // Read counts for the instrumented BB from profile. 1078 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, 1079 bool &AllMinusOnes); 1080 1081 // Populate the counts for all BBs. 1082 void populateCounters(); 1083 1084 // Set the branch weights based on the count values. 1085 void setBranchWeights(); 1086 1087 // Annotate the value profile call sites for all value kind. 1088 void annotateValueSites(); 1089 1090 // Annotate the value profile call sites for one value kind. 1091 void annotateValueSites(uint32_t Kind); 1092 1093 // Annotate the irreducible loop header weights. 1094 void annotateIrrLoopHeaderWeights(); 1095 1096 // The hotness of the function from the profile count. 1097 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; 1098 1099 // Return the function hotness from the profile. 1100 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } 1101 1102 // Return the function hash. 1103 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; } 1104 1105 // Return the profile record for this function; 1106 InstrProfRecord &getProfileRecord() { return ProfileRecord; } 1107 1108 // Return the auxiliary BB information. 1109 UseBBInfo &getBBInfo(const BasicBlock *BB) const { 1110 return FuncInfo.getBBInfo(BB); 1111 } 1112 1113 // Return the auxiliary BB information if available. 1114 UseBBInfo *findBBInfo(const BasicBlock *BB) const { 1115 return FuncInfo.findBBInfo(BB); 1116 } 1117 1118 Function &getFunc() const { return F; } 1119 1120 void dumpInfo(std::string Str = "") const { 1121 FuncInfo.dumpInfo(Str); 1122 } 1123 1124 uint64_t getProgramMaxCount() const { return ProgramMaxCount; } 1125 private: 1126 Function &F; 1127 Module *M; 1128 BlockFrequencyInfo *BFI; 1129 ProfileSummaryInfo *PSI; 1130 1131 // This member stores the shared information with class PGOGenFunc. 1132 FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo; 1133 1134 // The maximum count value in the profile. This is only used in PGO use 1135 // compilation. 1136 uint64_t ProgramMaxCount; 1137 1138 // Position of counter that remains to be read. 1139 uint32_t CountPosition = 0; 1140 1141 // Total size of the profile count for this function. 1142 uint32_t ProfileCountSize = 0; 1143 1144 // ProfileRecord for this function. 1145 InstrProfRecord ProfileRecord; 1146 1147 // Function hotness info derived from profile. 1148 FuncFreqAttr FreqAttr; 1149 1150 // Is to use the context sensitive profile. 1151 bool IsCS; 1152 1153 // Find the Instrumented BB and set the value. Return false on error. 1154 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile); 1155 1156 // Set the edge counter value for the unknown edge -- there should be only 1157 // one unknown edge. 1158 void setEdgeCount(DirectEdges &Edges, uint64_t Value); 1159 1160 // Return FuncName string; 1161 std::string getFuncName() const { return FuncInfo.FuncName; } 1162 1163 // Set the hot/cold inline hints based on the count values. 1164 // FIXME: This function should be removed once the functionality in 1165 // the inliner is implemented. 1166 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { 1167 if (PSI->isHotCount(EntryCount)) 1168 FreqAttr = FFA_Hot; 1169 else if (PSI->isColdCount(MaxCount)) 1170 FreqAttr = FFA_Cold; 1171 } 1172 }; 1173 1174 } // end anonymous namespace 1175 1176 // Visit all the edges and assign the count value for the instrumented 1177 // edges and the BB. Return false on error. 1178 bool PGOUseFunc::setInstrumentedCounts( 1179 const std::vector<uint64_t> &CountFromProfile) { 1180 1181 std::vector<BasicBlock *> InstrumentBBs; 1182 FuncInfo.getInstrumentBBs(InstrumentBBs); 1183 unsigned NumCounters = 1184 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); 1185 // The number of counters here should match the number of counters 1186 // in profile. Return if they mismatch. 1187 if (NumCounters != CountFromProfile.size()) { 1188 return false; 1189 } 1190 auto *FuncEntry = &*F.begin(); 1191 1192 // Set the profile count to the Instrumented BBs. 1193 uint32_t I = 0; 1194 for (BasicBlock *InstrBB : InstrumentBBs) { 1195 uint64_t CountValue = CountFromProfile[I++]; 1196 UseBBInfo &Info = getBBInfo(InstrBB); 1197 // If we reach here, we know that we have some nonzero count 1198 // values in this function. The entry count should not be 0. 1199 // Fix it if necessary. 1200 if (InstrBB == FuncEntry && CountValue == 0) 1201 CountValue = 1; 1202 Info.setBBInfoCount(CountValue); 1203 } 1204 ProfileCountSize = CountFromProfile.size(); 1205 CountPosition = I; 1206 1207 // Set the edge count and update the count of unknown edges for BBs. 1208 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void { 1209 E->setEdgeCount(Value); 1210 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--; 1211 this->getBBInfo(E->DestBB).UnknownCountInEdge--; 1212 }; 1213 1214 // Set the profile count the Instrumented edges. There are BBs that not in 1215 // MST but not instrumented. Need to set the edge count value so that we can 1216 // populate the profile counts later. 1217 for (auto &E : FuncInfo.MST.AllEdges) { 1218 if (E->Removed || E->InMST) 1219 continue; 1220 const BasicBlock *SrcBB = E->SrcBB; 1221 UseBBInfo &SrcInfo = getBBInfo(SrcBB); 1222 1223 // If only one out-edge, the edge profile count should be the same as BB 1224 // profile count. 1225 if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1) 1226 setEdgeCount(E.get(), SrcInfo.CountValue); 1227 else { 1228 const BasicBlock *DestBB = E->DestBB; 1229 UseBBInfo &DestInfo = getBBInfo(DestBB); 1230 // If only one in-edge, the edge profile count should be the same as BB 1231 // profile count. 1232 if (DestInfo.CountValid && DestInfo.InEdges.size() == 1) 1233 setEdgeCount(E.get(), DestInfo.CountValue); 1234 } 1235 if (E->CountValid) 1236 continue; 1237 // E's count should have been set from profile. If not, this meenas E skips 1238 // the instrumentation. We set the count to 0. 1239 setEdgeCount(E.get(), 0); 1240 } 1241 return true; 1242 } 1243 1244 // Set the count value for the unknown edge. There should be one and only one 1245 // unknown edge in Edges vector. 1246 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { 1247 for (auto &E : Edges) { 1248 if (E->CountValid) 1249 continue; 1250 E->setEdgeCount(Value); 1251 1252 getBBInfo(E->SrcBB).UnknownCountOutEdge--; 1253 getBBInfo(E->DestBB).UnknownCountInEdge--; 1254 return; 1255 } 1256 llvm_unreachable("Cannot find the unknown count edge"); 1257 } 1258 1259 // Emit function metadata indicating PGO profile mismatch. 1260 static void annotateFunctionWithHashMismatch(Function &F, 1261 LLVMContext &ctx) { 1262 const char MetadataName[] = "instr_prof_hash_mismatch"; 1263 SmallVector<Metadata *, 2> Names; 1264 // If this metadata already exists, ignore. 1265 auto *Existing = F.getMetadata(LLVMContext::MD_annotation); 1266 if (Existing) { 1267 MDTuple *Tuple = cast<MDTuple>(Existing); 1268 for (auto &N : Tuple->operands()) { 1269 if (cast<MDString>(N.get())->getString() == MetadataName) 1270 return; 1271 Names.push_back(N.get()); 1272 } 1273 } 1274 1275 MDBuilder MDB(ctx); 1276 Names.push_back(MDB.createString(MetadataName)); 1277 MDNode *MD = MDTuple::get(ctx, Names); 1278 F.setMetadata(LLVMContext::MD_annotation, MD); 1279 } 1280 1281 // Read the profile from ProfileFileName and assign the value to the 1282 // instrumented BB and the edges. This function also updates ProgramMaxCount. 1283 // Return true if the profile are successfully read, and false on errors. 1284 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, 1285 bool &AllMinusOnes) { 1286 auto &Ctx = M->getContext(); 1287 Expected<InstrProfRecord> Result = 1288 PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); 1289 if (Error E = Result.takeError()) { 1290 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 1291 auto Err = IPE.get(); 1292 bool SkipWarning = false; 1293 LLVM_DEBUG(dbgs() << "Error in reading profile for Func " 1294 << FuncInfo.FuncName << ": "); 1295 if (Err == instrprof_error::unknown_function) { 1296 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++; 1297 SkipWarning = !PGOWarnMissing; 1298 LLVM_DEBUG(dbgs() << "unknown function"); 1299 } else if (Err == instrprof_error::hash_mismatch || 1300 Err == instrprof_error::malformed) { 1301 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++; 1302 SkipWarning = 1303 NoPGOWarnMismatch || 1304 (NoPGOWarnMismatchComdat && 1305 (F.hasComdat() || 1306 F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); 1307 LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")"); 1308 // Emit function metadata indicating PGO profile mismatch. 1309 annotateFunctionWithHashMismatch(F, M->getContext()); 1310 } 1311 1312 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n"); 1313 if (SkipWarning) 1314 return; 1315 1316 std::string Msg = IPE.message() + std::string(" ") + F.getName().str() + 1317 std::string(" Hash = ") + 1318 std::to_string(FuncInfo.FunctionHash); 1319 1320 Ctx.diagnose( 1321 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); 1322 }); 1323 return false; 1324 } 1325 ProfileRecord = std::move(Result.get()); 1326 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts; 1327 1328 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++; 1329 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); 1330 AllMinusOnes = (CountFromProfile.size() > 0); 1331 uint64_t ValueSum = 0; 1332 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { 1333 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); 1334 ValueSum += CountFromProfile[I]; 1335 if (CountFromProfile[I] != (uint64_t)-1) 1336 AllMinusOnes = false; 1337 } 1338 AllZeros = (ValueSum == 0); 1339 1340 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); 1341 1342 getBBInfo(nullptr).UnknownCountOutEdge = 2; 1343 getBBInfo(nullptr).UnknownCountInEdge = 2; 1344 1345 if (!setInstrumentedCounts(CountFromProfile)) { 1346 LLVM_DEBUG( 1347 dbgs() << "Inconsistent number of counts, skipping this function"); 1348 Ctx.diagnose(DiagnosticInfoPGOProfile( 1349 M->getName().data(), 1350 Twine("Inconsistent number of counts in ") + F.getName().str() 1351 + Twine(": the profile may be stale or there is a function name collision."), 1352 DS_Warning)); 1353 return false; 1354 } 1355 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS); 1356 return true; 1357 } 1358 1359 // Populate the counters from instrumented BBs to all BBs. 1360 // In the end of this operation, all BBs should have a valid count value. 1361 void PGOUseFunc::populateCounters() { 1362 bool Changes = true; 1363 unsigned NumPasses = 0; 1364 while (Changes) { 1365 NumPasses++; 1366 Changes = false; 1367 1368 // For efficient traversal, it's better to start from the end as most 1369 // of the instrumented edges are at the end. 1370 for (auto &BB : reverse(F)) { 1371 UseBBInfo *Count = findBBInfo(&BB); 1372 if (Count == nullptr) 1373 continue; 1374 if (!Count->CountValid) { 1375 if (Count->UnknownCountOutEdge == 0) { 1376 Count->CountValue = sumEdgeCount(Count->OutEdges); 1377 Count->CountValid = true; 1378 Changes = true; 1379 } else if (Count->UnknownCountInEdge == 0) { 1380 Count->CountValue = sumEdgeCount(Count->InEdges); 1381 Count->CountValid = true; 1382 Changes = true; 1383 } 1384 } 1385 if (Count->CountValid) { 1386 if (Count->UnknownCountOutEdge == 1) { 1387 uint64_t Total = 0; 1388 uint64_t OutSum = sumEdgeCount(Count->OutEdges); 1389 // If the one of the successor block can early terminate (no-return), 1390 // we can end up with situation where out edge sum count is larger as 1391 // the source BB's count is collected by a post-dominated block. 1392 if (Count->CountValue > OutSum) 1393 Total = Count->CountValue - OutSum; 1394 setEdgeCount(Count->OutEdges, Total); 1395 Changes = true; 1396 } 1397 if (Count->UnknownCountInEdge == 1) { 1398 uint64_t Total = 0; 1399 uint64_t InSum = sumEdgeCount(Count->InEdges); 1400 if (Count->CountValue > InSum) 1401 Total = Count->CountValue - InSum; 1402 setEdgeCount(Count->InEdges, Total); 1403 Changes = true; 1404 } 1405 } 1406 } 1407 } 1408 1409 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); 1410 #ifndef NDEBUG 1411 // Assert every BB has a valid counter. 1412 for (auto &BB : F) { 1413 auto BI = findBBInfo(&BB); 1414 if (BI == nullptr) 1415 continue; 1416 assert(BI->CountValid && "BB count is not valid"); 1417 } 1418 #endif 1419 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; 1420 uint64_t FuncMaxCount = FuncEntryCount; 1421 for (auto &BB : F) { 1422 auto BI = findBBInfo(&BB); 1423 if (BI == nullptr) 1424 continue; 1425 FuncMaxCount = std::max(FuncMaxCount, BI->CountValue); 1426 } 1427 1428 // Fix the obviously inconsistent entry count. 1429 if (FuncMaxCount > 0 && FuncEntryCount == 0) 1430 FuncEntryCount = 1; 1431 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real)); 1432 markFunctionAttributes(FuncEntryCount, FuncMaxCount); 1433 1434 // Now annotate select instructions 1435 FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition); 1436 assert(CountPosition == ProfileCountSize); 1437 1438 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile.")); 1439 } 1440 1441 // Assign the scaled count values to the BB with multiple out edges. 1442 void PGOUseFunc::setBranchWeights() { 1443 // Generate MD_prof metadata for every branch instruction. 1444 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName() 1445 << " IsCS=" << IsCS << "\n"); 1446 for (auto &BB : F) { 1447 Instruction *TI = BB.getTerminator(); 1448 if (TI->getNumSuccessors() < 2) 1449 continue; 1450 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || 1451 isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI))) 1452 continue; 1453 1454 if (getBBInfo(&BB).CountValue == 0) 1455 continue; 1456 1457 // We have a non-zero Branch BB. 1458 const UseBBInfo &BBCountInfo = getBBInfo(&BB); 1459 unsigned Size = BBCountInfo.OutEdges.size(); 1460 SmallVector<uint64_t, 2> EdgeCounts(Size, 0); 1461 uint64_t MaxCount = 0; 1462 for (unsigned s = 0; s < Size; s++) { 1463 const PGOUseEdge *E = BBCountInfo.OutEdges[s]; 1464 const BasicBlock *SrcBB = E->SrcBB; 1465 const BasicBlock *DestBB = E->DestBB; 1466 if (DestBB == nullptr) 1467 continue; 1468 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); 1469 uint64_t EdgeCount = E->CountValue; 1470 if (EdgeCount > MaxCount) 1471 MaxCount = EdgeCount; 1472 EdgeCounts[SuccNum] = EdgeCount; 1473 } 1474 setProfMetadata(M, TI, EdgeCounts, MaxCount); 1475 } 1476 } 1477 1478 static bool isIndirectBrTarget(BasicBlock *BB) { 1479 for (BasicBlock *Pred : predecessors(BB)) { 1480 if (isa<IndirectBrInst>(Pred->getTerminator())) 1481 return true; 1482 } 1483 return false; 1484 } 1485 1486 void PGOUseFunc::annotateIrrLoopHeaderWeights() { 1487 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n"); 1488 // Find irr loop headers 1489 for (auto &BB : F) { 1490 // As a heuristic also annotate indrectbr targets as they have a high chance 1491 // to become an irreducible loop header after the indirectbr tail 1492 // duplication. 1493 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) { 1494 Instruction *TI = BB.getTerminator(); 1495 const UseBBInfo &BBCountInfo = getBBInfo(&BB); 1496 setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue); 1497 } 1498 } 1499 } 1500 1501 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) { 1502 Module *M = F.getParent(); 1503 IRBuilder<> Builder(&SI); 1504 Type *Int64Ty = Builder.getInt64Ty(); 1505 Type *I8PtrTy = Builder.getInt8PtrTy(); 1506 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty); 1507 Builder.CreateCall( 1508 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step), 1509 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), 1510 Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs), 1511 Builder.getInt32(*CurCtrIdx), Step}); 1512 ++(*CurCtrIdx); 1513 } 1514 1515 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) { 1516 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts; 1517 assert(*CurCtrIdx < CountFromProfile.size() && 1518 "Out of bound access of counters"); 1519 uint64_t SCounts[2]; 1520 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count 1521 ++(*CurCtrIdx); 1522 uint64_t TotalCount = 0; 1523 auto BI = UseFunc->findBBInfo(SI.getParent()); 1524 if (BI != nullptr) 1525 TotalCount = BI->CountValue; 1526 // False Count 1527 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0); 1528 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]); 1529 if (MaxCount) 1530 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount); 1531 } 1532 1533 void SelectInstVisitor::visitSelectInst(SelectInst &SI) { 1534 if (!PGOInstrSelect) 1535 return; 1536 // FIXME: do not handle this yet. 1537 if (SI.getCondition()->getType()->isVectorTy()) 1538 return; 1539 1540 switch (Mode) { 1541 case VM_counting: 1542 NSIs++; 1543 return; 1544 case VM_instrument: 1545 instrumentOneSelectInst(SI); 1546 return; 1547 case VM_annotate: 1548 annotateOneSelectInst(SI); 1549 return; 1550 } 1551 1552 llvm_unreachable("Unknown visiting mode"); 1553 } 1554 1555 // Traverse all valuesites and annotate the instructions for all value kind. 1556 void PGOUseFunc::annotateValueSites() { 1557 if (DisableValueProfiling) 1558 return; 1559 1560 // Create the PGOFuncName meta data. 1561 createPGOFuncNameMetadata(F, FuncInfo.FuncName); 1562 1563 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1564 annotateValueSites(Kind); 1565 } 1566 1567 // Annotate the instructions for a specific value kind. 1568 void PGOUseFunc::annotateValueSites(uint32_t Kind) { 1569 assert(Kind <= IPVK_Last); 1570 unsigned ValueSiteIndex = 0; 1571 auto &ValueSites = FuncInfo.ValueSites[Kind]; 1572 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind); 1573 if (NumValueSites != ValueSites.size()) { 1574 auto &Ctx = M->getContext(); 1575 Ctx.diagnose(DiagnosticInfoPGOProfile( 1576 M->getName().data(), 1577 Twine("Inconsistent number of value sites for ") + 1578 Twine(ValueProfKindDescr[Kind]) + 1579 Twine(" profiling in \"") + F.getName().str() + 1580 Twine("\", possibly due to the use of a stale profile."), 1581 DS_Warning)); 1582 return; 1583 } 1584 1585 for (VPCandidateInfo &I : ValueSites) { 1586 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind 1587 << "): Index = " << ValueSiteIndex << " out of " 1588 << NumValueSites << "\n"); 1589 annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord, 1590 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex, 1591 Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations 1592 : MaxNumAnnotations); 1593 ValueSiteIndex++; 1594 } 1595 } 1596 1597 // Collect the set of members for each Comdat in module M and store 1598 // in ComdatMembers. 1599 static void collectComdatMembers( 1600 Module &M, 1601 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { 1602 if (!DoComdatRenaming) 1603 return; 1604 for (Function &F : M) 1605 if (Comdat *C = F.getComdat()) 1606 ComdatMembers.insert(std::make_pair(C, &F)); 1607 for (GlobalVariable &GV : M.globals()) 1608 if (Comdat *C = GV.getComdat()) 1609 ComdatMembers.insert(std::make_pair(C, &GV)); 1610 for (GlobalAlias &GA : M.aliases()) 1611 if (Comdat *C = GA.getComdat()) 1612 ComdatMembers.insert(std::make_pair(C, &GA)); 1613 } 1614 1615 static bool InstrumentAllFunctions( 1616 Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI, 1617 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, 1618 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) { 1619 // For the context-sensitve instrumentation, we should have a separated pass 1620 // (before LTO/ThinLTO linking) to create these variables. 1621 if (!IsCS) 1622 createIRLevelProfileFlagVar(M, /*IsCS=*/false, PGOInstrumentEntry, 1623 DebugInfoCorrelate); 1624 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; 1625 collectComdatMembers(M, ComdatMembers); 1626 1627 for (auto &F : M) { 1628 if (F.isDeclaration()) 1629 continue; 1630 if (F.hasFnAttribute(llvm::Attribute::NoProfile)) 1631 continue; 1632 auto &TLI = LookupTLI(F); 1633 auto *BPI = LookupBPI(F); 1634 auto *BFI = LookupBFI(F); 1635 instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS); 1636 } 1637 return true; 1638 } 1639 1640 PreservedAnalyses 1641 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) { 1642 createProfileFileNameVar(M, CSInstrName); 1643 // The variable in a comdat may be discarded by LTO. Ensure the declaration 1644 // will be retained. 1645 appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true, 1646 PGOInstrumentEntry, 1647 DebugInfoCorrelate)); 1648 return PreservedAnalyses::all(); 1649 } 1650 1651 bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) { 1652 if (skipModule(M)) 1653 return false; 1654 1655 auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { 1656 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1657 }; 1658 auto LookupBPI = [this](Function &F) { 1659 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); 1660 }; 1661 auto LookupBFI = [this](Function &F) { 1662 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 1663 }; 1664 return InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS); 1665 } 1666 1667 PreservedAnalyses PGOInstrumentationGen::run(Module &M, 1668 ModuleAnalysisManager &AM) { 1669 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1670 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1671 return FAM.getResult<TargetLibraryAnalysis>(F); 1672 }; 1673 auto LookupBPI = [&FAM](Function &F) { 1674 return &FAM.getResult<BranchProbabilityAnalysis>(F); 1675 }; 1676 auto LookupBFI = [&FAM](Function &F) { 1677 return &FAM.getResult<BlockFrequencyAnalysis>(F); 1678 }; 1679 1680 if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS)) 1681 return PreservedAnalyses::all(); 1682 1683 return PreservedAnalyses::none(); 1684 } 1685 1686 // Using the ratio b/w sums of profile count values and BFI count values to 1687 // adjust the func entry count. 1688 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI, 1689 BranchProbabilityInfo &NBPI) { 1690 Function &F = Func.getFunc(); 1691 BlockFrequencyInfo NBFI(F, NBPI, LI); 1692 #ifndef NDEBUG 1693 auto BFIEntryCount = F.getEntryCount(); 1694 assert(BFIEntryCount.hasValue() && (BFIEntryCount->getCount() > 0) && 1695 "Invalid BFI Entrycount"); 1696 #endif 1697 auto SumCount = APFloat::getZero(APFloat::IEEEdouble()); 1698 auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble()); 1699 for (auto &BBI : F) { 1700 uint64_t CountValue = 0; 1701 uint64_t BFICountValue = 0; 1702 if (!Func.findBBInfo(&BBI)) 1703 continue; 1704 auto BFICount = NBFI.getBlockProfileCount(&BBI); 1705 CountValue = Func.getBBInfo(&BBI).CountValue; 1706 BFICountValue = BFICount.getValue(); 1707 SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven); 1708 SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven); 1709 } 1710 if (SumCount.isZero()) 1711 return; 1712 1713 assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan && 1714 "Incorrect sum of BFI counts"); 1715 if (SumBFICount.compare(SumCount) == APFloat::cmpEqual) 1716 return; 1717 double Scale = (SumCount / SumBFICount).convertToDouble(); 1718 if (Scale < 1.001 && Scale > 0.999) 1719 return; 1720 1721 uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue; 1722 uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale; 1723 if (NewEntryCount == 0) 1724 NewEntryCount = 1; 1725 if (NewEntryCount != FuncEntryCount) { 1726 F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real)); 1727 LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName() 1728 << ", entry_count " << FuncEntryCount << " --> " 1729 << NewEntryCount << "\n"); 1730 } 1731 } 1732 1733 // Compare the profile count values with BFI count values, and print out 1734 // the non-matching ones. 1735 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI, 1736 BranchProbabilityInfo &NBPI, 1737 uint64_t HotCountThreshold, 1738 uint64_t ColdCountThreshold) { 1739 Function &F = Func.getFunc(); 1740 BlockFrequencyInfo NBFI(F, NBPI, LI); 1741 // bool PrintFunc = false; 1742 bool HotBBOnly = PGOVerifyHotBFI; 1743 std::string Msg; 1744 OptimizationRemarkEmitter ORE(&F); 1745 1746 unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0; 1747 for (auto &BBI : F) { 1748 uint64_t CountValue = 0; 1749 uint64_t BFICountValue = 0; 1750 1751 if (Func.getBBInfo(&BBI).CountValid) 1752 CountValue = Func.getBBInfo(&BBI).CountValue; 1753 1754 BBNum++; 1755 if (CountValue) 1756 NonZeroBBNum++; 1757 auto BFICount = NBFI.getBlockProfileCount(&BBI); 1758 if (BFICount) 1759 BFICountValue = BFICount.getValue(); 1760 1761 if (HotBBOnly) { 1762 bool rawIsHot = CountValue >= HotCountThreshold; 1763 bool BFIIsHot = BFICountValue >= HotCountThreshold; 1764 bool rawIsCold = CountValue <= ColdCountThreshold; 1765 bool ShowCount = false; 1766 if (rawIsHot && !BFIIsHot) { 1767 Msg = "raw-Hot to BFI-nonHot"; 1768 ShowCount = true; 1769 } else if (rawIsCold && BFIIsHot) { 1770 Msg = "raw-Cold to BFI-Hot"; 1771 ShowCount = true; 1772 } 1773 if (!ShowCount) 1774 continue; 1775 } else { 1776 if ((CountValue < PGOVerifyBFICutoff) && 1777 (BFICountValue < PGOVerifyBFICutoff)) 1778 continue; 1779 uint64_t Diff = (BFICountValue >= CountValue) 1780 ? BFICountValue - CountValue 1781 : CountValue - BFICountValue; 1782 if (Diff <= CountValue / 100 * PGOVerifyBFIRatio) 1783 continue; 1784 } 1785 BBMisMatchNum++; 1786 1787 ORE.emit([&]() { 1788 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify", 1789 F.getSubprogram(), &BBI); 1790 Remark << "BB " << ore::NV("Block", BBI.getName()) 1791 << " Count=" << ore::NV("Count", CountValue) 1792 << " BFI_Count=" << ore::NV("Count", BFICountValue); 1793 if (!Msg.empty()) 1794 Remark << " (" << Msg << ")"; 1795 return Remark; 1796 }); 1797 } 1798 if (BBMisMatchNum) 1799 ORE.emit([&]() { 1800 return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify", 1801 F.getSubprogram(), &F.getEntryBlock()) 1802 << "In Func " << ore::NV("Function", F.getName()) 1803 << ": Num_of_BB=" << ore::NV("Count", BBNum) 1804 << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum) 1805 << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum); 1806 }); 1807 } 1808 1809 static bool annotateAllFunctions( 1810 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName, 1811 function_ref<TargetLibraryInfo &(Function &)> LookupTLI, 1812 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, 1813 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, 1814 ProfileSummaryInfo *PSI, bool IsCS) { 1815 LLVM_DEBUG(dbgs() << "Read in profile counters: "); 1816 auto &Ctx = M.getContext(); 1817 // Read the counter array from file. 1818 auto ReaderOrErr = 1819 IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName); 1820 if (Error E = ReaderOrErr.takeError()) { 1821 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { 1822 Ctx.diagnose( 1823 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); 1824 }); 1825 return false; 1826 } 1827 1828 std::unique_ptr<IndexedInstrProfReader> PGOReader = 1829 std::move(ReaderOrErr.get()); 1830 if (!PGOReader) { 1831 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), 1832 StringRef("Cannot get PGOReader"))); 1833 return false; 1834 } 1835 if (!PGOReader->hasCSIRLevelProfile() && IsCS) 1836 return false; 1837 1838 // TODO: might need to change the warning once the clang option is finalized. 1839 if (!PGOReader->isIRLevelProfile()) { 1840 Ctx.diagnose(DiagnosticInfoPGOProfile( 1841 ProfileFileName.data(), "Not an IR level instrumentation profile")); 1842 return false; 1843 } 1844 1845 // Add the profile summary (read from the header of the indexed summary) here 1846 // so that we can use it below when reading counters (which checks if the 1847 // function should be marked with a cold or inlinehint attribute). 1848 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()), 1849 IsCS ? ProfileSummary::PSK_CSInstr 1850 : ProfileSummary::PSK_Instr); 1851 PSI->refresh(); 1852 1853 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; 1854 collectComdatMembers(M, ComdatMembers); 1855 std::vector<Function *> HotFunctions; 1856 std::vector<Function *> ColdFunctions; 1857 1858 // If the profile marked as always instrument the entry BB, do the 1859 // same. Note this can be overwritten by the internal option in CFGMST.h 1860 bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled(); 1861 if (PGOInstrumentEntry.getNumOccurrences() > 0) 1862 InstrumentFuncEntry = PGOInstrumentEntry; 1863 for (auto &F : M) { 1864 if (F.isDeclaration()) 1865 continue; 1866 auto &TLI = LookupTLI(F); 1867 auto *BPI = LookupBPI(F); 1868 auto *BFI = LookupBFI(F); 1869 // Split indirectbr critical edges here before computing the MST rather than 1870 // later in getInstrBB() to avoid invalidating it. 1871 SplitIndirectBrCriticalEdges(F, BPI, BFI); 1872 PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS, 1873 InstrumentFuncEntry); 1874 // When AllMinusOnes is true, it means the profile for the function 1875 // is unrepresentative and this function is actually hot. Set the 1876 // entry count of the function to be multiple times of hot threshold 1877 // and drop all its internal counters. 1878 bool AllMinusOnes = false; 1879 bool AllZeros = false; 1880 if (!Func.readCounters(PGOReader.get(), AllZeros, AllMinusOnes)) 1881 continue; 1882 if (AllZeros) { 1883 F.setEntryCount(ProfileCount(0, Function::PCT_Real)); 1884 if (Func.getProgramMaxCount() != 0) 1885 ColdFunctions.push_back(&F); 1886 continue; 1887 } 1888 const unsigned MultiplyFactor = 3; 1889 if (AllMinusOnes) { 1890 uint64_t HotThreshold = PSI->getHotCountThreshold(); 1891 if (HotThreshold) 1892 F.setEntryCount( 1893 ProfileCount(HotThreshold * MultiplyFactor, Function::PCT_Real)); 1894 HotFunctions.push_back(&F); 1895 continue; 1896 } 1897 Func.populateCounters(); 1898 Func.setBranchWeights(); 1899 Func.annotateValueSites(); 1900 Func.annotateIrrLoopHeaderWeights(); 1901 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); 1902 if (FreqAttr == PGOUseFunc::FFA_Cold) 1903 ColdFunctions.push_back(&F); 1904 else if (FreqAttr == PGOUseFunc::FFA_Hot) 1905 HotFunctions.push_back(&F); 1906 if (PGOViewCounts != PGOVCT_None && 1907 (ViewBlockFreqFuncName.empty() || 1908 F.getName().equals(ViewBlockFreqFuncName))) { 1909 LoopInfo LI{DominatorTree(F)}; 1910 std::unique_ptr<BranchProbabilityInfo> NewBPI = 1911 std::make_unique<BranchProbabilityInfo>(F, LI); 1912 std::unique_ptr<BlockFrequencyInfo> NewBFI = 1913 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI); 1914 if (PGOViewCounts == PGOVCT_Graph) 1915 NewBFI->view(); 1916 else if (PGOViewCounts == PGOVCT_Text) { 1917 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n"; 1918 NewBFI->print(dbgs()); 1919 } 1920 } 1921 if (PGOViewRawCounts != PGOVCT_None && 1922 (ViewBlockFreqFuncName.empty() || 1923 F.getName().equals(ViewBlockFreqFuncName))) { 1924 if (PGOViewRawCounts == PGOVCT_Graph) 1925 if (ViewBlockFreqFuncName.empty()) 1926 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); 1927 else 1928 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); 1929 else if (PGOViewRawCounts == PGOVCT_Text) { 1930 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n"; 1931 Func.dumpInfo(); 1932 } 1933 } 1934 1935 if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) { 1936 LoopInfo LI{DominatorTree(F)}; 1937 BranchProbabilityInfo NBPI(F, LI); 1938 1939 // Fix func entry count. 1940 if (PGOFixEntryCount) 1941 fixFuncEntryCount(Func, LI, NBPI); 1942 1943 // Verify BlockFrequency information. 1944 uint64_t HotCountThreshold = 0, ColdCountThreshold = 0; 1945 if (PGOVerifyHotBFI) { 1946 HotCountThreshold = PSI->getOrCompHotCountThreshold(); 1947 ColdCountThreshold = PSI->getOrCompColdCountThreshold(); 1948 } 1949 verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold); 1950 } 1951 } 1952 1953 // Set function hotness attribute from the profile. 1954 // We have to apply these attributes at the end because their presence 1955 // can affect the BranchProbabilityInfo of any callers, resulting in an 1956 // inconsistent MST between prof-gen and prof-use. 1957 for (auto &F : HotFunctions) { 1958 F->addFnAttr(Attribute::InlineHint); 1959 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() 1960 << "\n"); 1961 } 1962 for (auto &F : ColdFunctions) { 1963 // Only set when there is no Attribute::Hot set by the user. For Hot 1964 // attribute, user's annotation has the precedence over the profile. 1965 if (F->hasFnAttribute(Attribute::Hot)) { 1966 auto &Ctx = M.getContext(); 1967 std::string Msg = std::string("Function ") + F->getName().str() + 1968 std::string(" is annotated as a hot function but" 1969 " the profile is cold"); 1970 Ctx.diagnose( 1971 DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning)); 1972 continue; 1973 } 1974 F->addFnAttr(Attribute::Cold); 1975 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() 1976 << "\n"); 1977 } 1978 return true; 1979 } 1980 1981 PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename, 1982 std::string RemappingFilename, 1983 bool IsCS) 1984 : ProfileFileName(std::move(Filename)), 1985 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) { 1986 if (!PGOTestProfileFile.empty()) 1987 ProfileFileName = PGOTestProfileFile; 1988 if (!PGOTestProfileRemappingFile.empty()) 1989 ProfileRemappingFileName = PGOTestProfileRemappingFile; 1990 } 1991 1992 PreservedAnalyses PGOInstrumentationUse::run(Module &M, 1993 ModuleAnalysisManager &AM) { 1994 1995 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1996 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1997 return FAM.getResult<TargetLibraryAnalysis>(F); 1998 }; 1999 auto LookupBPI = [&FAM](Function &F) { 2000 return &FAM.getResult<BranchProbabilityAnalysis>(F); 2001 }; 2002 auto LookupBFI = [&FAM](Function &F) { 2003 return &FAM.getResult<BlockFrequencyAnalysis>(F); 2004 }; 2005 2006 auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2007 2008 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, 2009 LookupTLI, LookupBPI, LookupBFI, PSI, IsCS)) 2010 return PreservedAnalyses::all(); 2011 2012 return PreservedAnalyses::none(); 2013 } 2014 2015 bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) { 2016 if (skipModule(M)) 2017 return false; 2018 2019 auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { 2020 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2021 }; 2022 auto LookupBPI = [this](Function &F) { 2023 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); 2024 }; 2025 auto LookupBFI = [this](Function &F) { 2026 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2027 }; 2028 2029 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2030 return annotateAllFunctions(M, ProfileFileName, "", LookupTLI, LookupBPI, 2031 LookupBFI, PSI, IsCS); 2032 } 2033 2034 static std::string getSimpleNodeName(const BasicBlock *Node) { 2035 if (!Node->getName().empty()) 2036 return std::string(Node->getName()); 2037 2038 std::string SimpleNodeName; 2039 raw_string_ostream OS(SimpleNodeName); 2040 Node->printAsOperand(OS, false); 2041 return OS.str(); 2042 } 2043 2044 void llvm::setProfMetadata(Module *M, Instruction *TI, 2045 ArrayRef<uint64_t> EdgeCounts, 2046 uint64_t MaxCount) { 2047 MDBuilder MDB(M->getContext()); 2048 assert(MaxCount > 0 && "Bad max count"); 2049 uint64_t Scale = calculateCountScale(MaxCount); 2050 SmallVector<unsigned, 4> Weights; 2051 for (const auto &ECI : EdgeCounts) 2052 Weights.push_back(scaleBranchCount(ECI, Scale)); 2053 2054 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W 2055 : Weights) { 2056 dbgs() << W << " "; 2057 } dbgs() << "\n";); 2058 2059 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 2060 if (EmitBranchProbability) { 2061 std::string BrCondStr = getBranchCondString(TI); 2062 if (BrCondStr.empty()) 2063 return; 2064 2065 uint64_t WSum = 2066 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0, 2067 [](uint64_t w1, uint64_t w2) { return w1 + w2; }); 2068 uint64_t TotalCount = 2069 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0, 2070 [](uint64_t c1, uint64_t c2) { return c1 + c2; }); 2071 Scale = calculateCountScale(WSum); 2072 BranchProbability BP(scaleBranchCount(Weights[0], Scale), 2073 scaleBranchCount(WSum, Scale)); 2074 std::string BranchProbStr; 2075 raw_string_ostream OS(BranchProbStr); 2076 OS << BP; 2077 OS << " (total count : " << TotalCount << ")"; 2078 OS.flush(); 2079 Function *F = TI->getParent()->getParent(); 2080 OptimizationRemarkEmitter ORE(F); 2081 ORE.emit([&]() { 2082 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI) 2083 << BrCondStr << " is true with probability : " << BranchProbStr; 2084 }); 2085 } 2086 } 2087 2088 namespace llvm { 2089 2090 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) { 2091 MDBuilder MDB(M->getContext()); 2092 TI->setMetadata(llvm::LLVMContext::MD_irr_loop, 2093 MDB.createIrrLoopHeaderWeight(Count)); 2094 } 2095 2096 template <> struct GraphTraits<PGOUseFunc *> { 2097 using NodeRef = const BasicBlock *; 2098 using ChildIteratorType = const_succ_iterator; 2099 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2100 2101 static NodeRef getEntryNode(const PGOUseFunc *G) { 2102 return &G->getFunc().front(); 2103 } 2104 2105 static ChildIteratorType child_begin(const NodeRef N) { 2106 return succ_begin(N); 2107 } 2108 2109 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } 2110 2111 static nodes_iterator nodes_begin(const PGOUseFunc *G) { 2112 return nodes_iterator(G->getFunc().begin()); 2113 } 2114 2115 static nodes_iterator nodes_end(const PGOUseFunc *G) { 2116 return nodes_iterator(G->getFunc().end()); 2117 } 2118 }; 2119 2120 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits { 2121 explicit DOTGraphTraits(bool isSimple = false) 2122 : DefaultDOTGraphTraits(isSimple) {} 2123 2124 static std::string getGraphName(const PGOUseFunc *G) { 2125 return std::string(G->getFunc().getName()); 2126 } 2127 2128 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) { 2129 std::string Result; 2130 raw_string_ostream OS(Result); 2131 2132 OS << getSimpleNodeName(Node) << ":\\l"; 2133 UseBBInfo *BI = Graph->findBBInfo(Node); 2134 OS << "Count : "; 2135 if (BI && BI->CountValid) 2136 OS << BI->CountValue << "\\l"; 2137 else 2138 OS << "Unknown\\l"; 2139 2140 if (!PGOInstrSelect) 2141 return Result; 2142 2143 for (const Instruction &I : *Node) { 2144 if (!isa<SelectInst>(&I)) 2145 continue; 2146 // Display scaled counts for SELECT instruction: 2147 OS << "SELECT : { T = "; 2148 uint64_t TC, FC; 2149 bool HasProf = I.extractProfMetadata(TC, FC); 2150 if (!HasProf) 2151 OS << "Unknown, F = Unknown }\\l"; 2152 else 2153 OS << TC << ", F = " << FC << " }\\l"; 2154 } 2155 return Result; 2156 } 2157 }; 2158 2159 } // end namespace llvm 2160