1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of MemorySanitizer, a detector of uninitialized 11 /// reads. 12 /// 13 /// The algorithm of the tool is similar to Memcheck 14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 15 /// byte of the application memory, poison the shadow of the malloc-ed 16 /// or alloca-ed memory, load the shadow bits on every memory read, 17 /// propagate the shadow bits through some of the arithmetic 18 /// instruction (including MOV), store the shadow bits on every memory 19 /// write, report a bug on some other instructions (e.g. JMP) if the 20 /// associated shadow is poisoned. 21 /// 22 /// But there are differences too. The first and the major one: 23 /// compiler instrumentation instead of binary instrumentation. This 24 /// gives us much better register allocation, possible compiler 25 /// optimizations and a fast start-up. But this brings the major issue 26 /// as well: msan needs to see all program events, including system 27 /// calls and reads/writes in system libraries, so we either need to 28 /// compile *everything* with msan or use a binary translation 29 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 30 /// Another difference from Memcheck is that we use 8 shadow bits per 31 /// byte of application memory and use a direct shadow mapping. This 32 /// greatly simplifies the instrumentation code and avoids races on 33 /// shadow updates (Memcheck is single-threaded so races are not a 34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 35 /// path storage that uses 8 bits per byte). 36 /// 37 /// The default value of shadow is 0, which means "clean" (not poisoned). 38 /// 39 /// Every module initializer should call __msan_init to ensure that the 40 /// shadow memory is ready. On error, __msan_warning is called. Since 41 /// parameters and return values may be passed via registers, we have a 42 /// specialized thread-local shadow for return values 43 /// (__msan_retval_tls) and parameters (__msan_param_tls). 44 /// 45 /// Origin tracking. 46 /// 47 /// MemorySanitizer can track origins (allocation points) of all uninitialized 48 /// values. This behavior is controlled with a flag (msan-track-origins) and is 49 /// disabled by default. 50 /// 51 /// Origins are 4-byte values created and interpreted by the runtime library. 52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53 /// of application memory. Propagation of origins is basically a bunch of 54 /// "select" instructions that pick the origin of a dirty argument, if an 55 /// instruction has one. 56 /// 57 /// Every 4 aligned, consecutive bytes of application memory have one origin 58 /// value associated with them. If these bytes contain uninitialized data 59 /// coming from 2 different allocations, the last store wins. Because of this, 60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61 /// practice. 62 /// 63 /// Origins are meaningless for fully initialized values, so MemorySanitizer 64 /// avoids storing origin to memory when a fully initialized value is stored. 65 /// This way it avoids needless overwriting origin of the 4-byte region on 66 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 67 /// 68 /// Atomic handling. 69 /// 70 /// Ideally, every atomic store of application value should update the 71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 72 /// of two disjoint locations can not be done without severe slowdown. 73 /// 74 /// Therefore, we implement an approximation that may err on the safe side. 75 /// In this implementation, every atomically accessed location in the program 76 /// may only change from (partially) uninitialized to fully initialized, but 77 /// not the other way around. We load the shadow _after_ the application load, 78 /// and we store the shadow _before_ the app store. Also, we always store clean 79 /// shadow (if the application store is atomic). This way, if the store-load 80 /// pair constitutes a happens-before arc, shadow store and load are correctly 81 /// ordered such that the load will get either the value that was stored, or 82 /// some later value (which is always clean). 83 /// 84 /// This does not work very well with Compare-And-Swap (CAS) and 85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86 /// must store the new shadow before the app operation, and load the shadow 87 /// after the app operation. Computers don't work this way. Current 88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 89 /// value. It implements the store part as a simple atomic store by storing a 90 /// clean shadow. 91 /// 92 /// Instrumenting inline assembly. 93 /// 94 /// For inline assembly code LLVM has little idea about which memory locations 95 /// become initialized depending on the arguments. It can be possible to figure 96 /// out which arguments are meant to point to inputs and outputs, but the 97 /// actual semantics can be only visible at runtime. In the Linux kernel it's 98 /// also possible that the arguments only indicate the offset for a base taken 99 /// from a segment register, so it's dangerous to treat any asm() arguments as 100 /// pointers. We take a conservative approach generating calls to 101 /// __msan_instrument_asm_store(ptr, size) 102 /// , which defer the memory unpoisoning to the runtime library. 103 /// The latter can perform more complex address checks to figure out whether 104 /// it's safe to touch the shadow memory. 105 /// Like with atomic operations, we call __msan_instrument_asm_store() before 106 /// the assembly call, so that changes to the shadow memory will be seen by 107 /// other threads together with main memory initialization. 108 /// 109 /// KernelMemorySanitizer (KMSAN) implementation. 110 /// 111 /// The major differences between KMSAN and MSan instrumentation are: 112 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 113 /// - KMSAN allocates shadow and origin memory for each page separately, so 114 /// there are no explicit accesses to shadow and origin in the 115 /// instrumentation. 116 /// Shadow and origin values for a particular X-byte memory location 117 /// (X=1,2,4,8) are accessed through pointers obtained via the 118 /// __msan_metadata_ptr_for_load_X(ptr) 119 /// __msan_metadata_ptr_for_store_X(ptr) 120 /// functions. The corresponding functions check that the X-byte accesses 121 /// are possible and returns the pointers to shadow and origin memory. 122 /// Arbitrary sized accesses are handled with: 123 /// __msan_metadata_ptr_for_load_n(ptr, size) 124 /// __msan_metadata_ptr_for_store_n(ptr, size); 125 /// - TLS variables are stored in a single per-task struct. A call to a 126 /// function __msan_get_context_state() returning a pointer to that struct 127 /// is inserted into every instrumented function before the entry block; 128 /// - __msan_warning() takes a 32-bit origin parameter; 129 /// - local variables are poisoned with __msan_poison_alloca() upon function 130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 131 /// function; 132 /// - the pass doesn't declare any global variables or add global constructors 133 /// to the translation unit. 134 /// 135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 136 /// calls, making sure we're on the safe side wrt. possible false positives. 137 /// 138 /// KernelMemorySanitizer only supports X86_64 at the moment. 139 /// 140 // 141 // FIXME: This sanitizer does not yet handle scalable vectors 142 // 143 //===----------------------------------------------------------------------===// 144 145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 146 #include "llvm/ADT/APInt.h" 147 #include "llvm/ADT/ArrayRef.h" 148 #include "llvm/ADT/DepthFirstIterator.h" 149 #include "llvm/ADT/SmallSet.h" 150 #include "llvm/ADT/SmallString.h" 151 #include "llvm/ADT/SmallVector.h" 152 #include "llvm/ADT/StringExtras.h" 153 #include "llvm/ADT/StringRef.h" 154 #include "llvm/ADT/Triple.h" 155 #include "llvm/Analysis/TargetLibraryInfo.h" 156 #include "llvm/Analysis/ValueTracking.h" 157 #include "llvm/IR/Argument.h" 158 #include "llvm/IR/Attributes.h" 159 #include "llvm/IR/BasicBlock.h" 160 #include "llvm/IR/CallingConv.h" 161 #include "llvm/IR/Constant.h" 162 #include "llvm/IR/Constants.h" 163 #include "llvm/IR/DataLayout.h" 164 #include "llvm/IR/DerivedTypes.h" 165 #include "llvm/IR/Function.h" 166 #include "llvm/IR/GlobalValue.h" 167 #include "llvm/IR/GlobalVariable.h" 168 #include "llvm/IR/IRBuilder.h" 169 #include "llvm/IR/InlineAsm.h" 170 #include "llvm/IR/InstVisitor.h" 171 #include "llvm/IR/InstrTypes.h" 172 #include "llvm/IR/Instruction.h" 173 #include "llvm/IR/Instructions.h" 174 #include "llvm/IR/IntrinsicInst.h" 175 #include "llvm/IR/Intrinsics.h" 176 #include "llvm/IR/IntrinsicsX86.h" 177 #include "llvm/IR/MDBuilder.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/IR/Type.h" 180 #include "llvm/IR/Value.h" 181 #include "llvm/IR/ValueMap.h" 182 #include "llvm/Support/Alignment.h" 183 #include "llvm/Support/AtomicOrdering.h" 184 #include "llvm/Support/Casting.h" 185 #include "llvm/Support/CommandLine.h" 186 #include "llvm/Support/Debug.h" 187 #include "llvm/Support/ErrorHandling.h" 188 #include "llvm/Support/MathExtras.h" 189 #include "llvm/Support/raw_ostream.h" 190 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 191 #include "llvm/Transforms/Utils/Local.h" 192 #include "llvm/Transforms/Utils/ModuleUtils.h" 193 #include <algorithm> 194 #include <cassert> 195 #include <cstddef> 196 #include <cstdint> 197 #include <memory> 198 #include <string> 199 #include <tuple> 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "msan" 204 205 static const unsigned kOriginSize = 4; 206 static const Align kMinOriginAlignment = Align(4); 207 static const Align kShadowTLSAlignment = Align(8); 208 209 // These constants must be kept in sync with the ones in msan.h. 210 static const unsigned kParamTLSSize = 800; 211 static const unsigned kRetvalTLSSize = 800; 212 213 // Accesses sizes are powers of two: 1, 2, 4, 8. 214 static const size_t kNumberOfAccessSizes = 4; 215 216 /// Track origins of uninitialized values. 217 /// 218 /// Adds a section to MemorySanitizer report that points to the allocation 219 /// (stack or heap) the uninitialized bits came from originally. 220 static cl::opt<int> ClTrackOrigins("msan-track-origins", 221 cl::desc("Track origins (allocation sites) of poisoned memory"), 222 cl::Hidden, cl::init(0)); 223 224 static cl::opt<bool> ClKeepGoing("msan-keep-going", 225 cl::desc("keep going after reporting a UMR"), 226 cl::Hidden, cl::init(false)); 227 228 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 229 cl::desc("poison uninitialized stack variables"), 230 cl::Hidden, cl::init(true)); 231 232 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 233 cl::desc("poison uninitialized stack variables with a call"), 234 cl::Hidden, cl::init(false)); 235 236 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 237 cl::desc("poison uninitialized stack variables with the given pattern"), 238 cl::Hidden, cl::init(0xff)); 239 240 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 241 cl::desc("poison undef temps"), 242 cl::Hidden, cl::init(true)); 243 244 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 245 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 246 cl::Hidden, cl::init(true)); 247 248 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 249 cl::desc("exact handling of relational integer ICmp"), 250 cl::Hidden, cl::init(false)); 251 252 static cl::opt<bool> ClHandleLifetimeIntrinsics( 253 "msan-handle-lifetime-intrinsics", 254 cl::desc( 255 "when possible, poison scoped variables at the beginning of the scope " 256 "(slower, but more precise)"), 257 cl::Hidden, cl::init(true)); 258 259 // When compiling the Linux kernel, we sometimes see false positives related to 260 // MSan being unable to understand that inline assembly calls may initialize 261 // local variables. 262 // This flag makes the compiler conservatively unpoison every memory location 263 // passed into an assembly call. Note that this may cause false positives. 264 // Because it's impossible to figure out the array sizes, we can only unpoison 265 // the first sizeof(type) bytes for each type* pointer. 266 // The instrumentation is only enabled in KMSAN builds, and only if 267 // -msan-handle-asm-conservative is on. This is done because we may want to 268 // quickly disable assembly instrumentation when it breaks. 269 static cl::opt<bool> ClHandleAsmConservative( 270 "msan-handle-asm-conservative", 271 cl::desc("conservative handling of inline assembly"), cl::Hidden, 272 cl::init(true)); 273 274 // This flag controls whether we check the shadow of the address 275 // operand of load or store. Such bugs are very rare, since load from 276 // a garbage address typically results in SEGV, but still happen 277 // (e.g. only lower bits of address are garbage, or the access happens 278 // early at program startup where malloc-ed memory is more likely to 279 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 280 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 281 cl::desc("report accesses through a pointer which has poisoned shadow"), 282 cl::Hidden, cl::init(true)); 283 284 static cl::opt<bool> ClEagerChecks( 285 "msan-eager-checks", 286 cl::desc("check arguments and return values at function call boundaries"), 287 cl::Hidden, cl::init(false)); 288 289 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 290 cl::desc("print out instructions with default strict semantics"), 291 cl::Hidden, cl::init(false)); 292 293 static cl::opt<int> ClInstrumentationWithCallThreshold( 294 "msan-instrumentation-with-call-threshold", 295 cl::desc( 296 "If the function being instrumented requires more than " 297 "this number of checks and origin stores, use callbacks instead of " 298 "inline checks (-1 means never use callbacks)."), 299 cl::Hidden, cl::init(3500)); 300 301 static cl::opt<bool> 302 ClEnableKmsan("msan-kernel", 303 cl::desc("Enable KernelMemorySanitizer instrumentation"), 304 cl::Hidden, cl::init(false)); 305 306 static cl::opt<bool> 307 ClDisableChecks("msan-disable-checks", 308 cl::desc("Apply no_sanitize to the whole file"), cl::Hidden, 309 cl::init(false)); 310 311 // This is an experiment to enable handling of cases where shadow is a non-zero 312 // compile-time constant. For some unexplainable reason they were silently 313 // ignored in the instrumentation. 314 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 315 cl::desc("Insert checks for constant shadow values"), 316 cl::Hidden, cl::init(false)); 317 318 // This is off by default because of a bug in gold: 319 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 320 static cl::opt<bool> ClWithComdat("msan-with-comdat", 321 cl::desc("Place MSan constructors in comdat sections"), 322 cl::Hidden, cl::init(false)); 323 324 // These options allow to specify custom memory map parameters 325 // See MemoryMapParams for details. 326 static cl::opt<uint64_t> ClAndMask("msan-and-mask", 327 cl::desc("Define custom MSan AndMask"), 328 cl::Hidden, cl::init(0)); 329 330 static cl::opt<uint64_t> ClXorMask("msan-xor-mask", 331 cl::desc("Define custom MSan XorMask"), 332 cl::Hidden, cl::init(0)); 333 334 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", 335 cl::desc("Define custom MSan ShadowBase"), 336 cl::Hidden, cl::init(0)); 337 338 static cl::opt<uint64_t> ClOriginBase("msan-origin-base", 339 cl::desc("Define custom MSan OriginBase"), 340 cl::Hidden, cl::init(0)); 341 342 const char kMsanModuleCtorName[] = "msan.module_ctor"; 343 const char kMsanInitName[] = "__msan_init"; 344 345 namespace { 346 347 // Memory map parameters used in application-to-shadow address calculation. 348 // Offset = (Addr & ~AndMask) ^ XorMask 349 // Shadow = ShadowBase + Offset 350 // Origin = OriginBase + Offset 351 struct MemoryMapParams { 352 uint64_t AndMask; 353 uint64_t XorMask; 354 uint64_t ShadowBase; 355 uint64_t OriginBase; 356 }; 357 358 struct PlatformMemoryMapParams { 359 const MemoryMapParams *bits32; 360 const MemoryMapParams *bits64; 361 }; 362 363 } // end anonymous namespace 364 365 // i386 Linux 366 static const MemoryMapParams Linux_I386_MemoryMapParams = { 367 0x000080000000, // AndMask 368 0, // XorMask (not used) 369 0, // ShadowBase (not used) 370 0x000040000000, // OriginBase 371 }; 372 373 // x86_64 Linux 374 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 375 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 376 0x400000000000, // AndMask 377 0, // XorMask (not used) 378 0, // ShadowBase (not used) 379 0x200000000000, // OriginBase 380 #else 381 0, // AndMask (not used) 382 0x500000000000, // XorMask 383 0, // ShadowBase (not used) 384 0x100000000000, // OriginBase 385 #endif 386 }; 387 388 // mips64 Linux 389 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 390 0, // AndMask (not used) 391 0x008000000000, // XorMask 392 0, // ShadowBase (not used) 393 0x002000000000, // OriginBase 394 }; 395 396 // ppc64 Linux 397 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 398 0xE00000000000, // AndMask 399 0x100000000000, // XorMask 400 0x080000000000, // ShadowBase 401 0x1C0000000000, // OriginBase 402 }; 403 404 // s390x Linux 405 static const MemoryMapParams Linux_S390X_MemoryMapParams = { 406 0xC00000000000, // AndMask 407 0, // XorMask (not used) 408 0x080000000000, // ShadowBase 409 0x1C0000000000, // OriginBase 410 }; 411 412 // aarch64 Linux 413 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 414 0, // AndMask (not used) 415 0x06000000000, // XorMask 416 0, // ShadowBase (not used) 417 0x01000000000, // OriginBase 418 }; 419 420 // i386 FreeBSD 421 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 422 0x000180000000, // AndMask 423 0x000040000000, // XorMask 424 0x000020000000, // ShadowBase 425 0x000700000000, // OriginBase 426 }; 427 428 // x86_64 FreeBSD 429 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 430 0xc00000000000, // AndMask 431 0x200000000000, // XorMask 432 0x100000000000, // ShadowBase 433 0x380000000000, // OriginBase 434 }; 435 436 // x86_64 NetBSD 437 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 438 0, // AndMask 439 0x500000000000, // XorMask 440 0, // ShadowBase 441 0x100000000000, // OriginBase 442 }; 443 444 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 445 &Linux_I386_MemoryMapParams, 446 &Linux_X86_64_MemoryMapParams, 447 }; 448 449 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 450 nullptr, 451 &Linux_MIPS64_MemoryMapParams, 452 }; 453 454 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 455 nullptr, 456 &Linux_PowerPC64_MemoryMapParams, 457 }; 458 459 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { 460 nullptr, 461 &Linux_S390X_MemoryMapParams, 462 }; 463 464 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 465 nullptr, 466 &Linux_AArch64_MemoryMapParams, 467 }; 468 469 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 470 &FreeBSD_I386_MemoryMapParams, 471 &FreeBSD_X86_64_MemoryMapParams, 472 }; 473 474 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 475 nullptr, 476 &NetBSD_X86_64_MemoryMapParams, 477 }; 478 479 namespace { 480 481 /// Instrument functions of a module to detect uninitialized reads. 482 /// 483 /// Instantiating MemorySanitizer inserts the msan runtime library API function 484 /// declarations into the module if they don't exist already. Instantiating 485 /// ensures the __msan_init function is in the list of global constructors for 486 /// the module. 487 class MemorySanitizer { 488 public: 489 MemorySanitizer(Module &M, MemorySanitizerOptions Options) 490 : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), 491 Recover(Options.Recover), EagerChecks(Options.EagerChecks) { 492 initializeModule(M); 493 } 494 495 // MSan cannot be moved or copied because of MapParams. 496 MemorySanitizer(MemorySanitizer &&) = delete; 497 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 498 MemorySanitizer(const MemorySanitizer &) = delete; 499 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 500 501 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 502 503 private: 504 friend struct MemorySanitizerVisitor; 505 friend struct VarArgAMD64Helper; 506 friend struct VarArgMIPS64Helper; 507 friend struct VarArgAArch64Helper; 508 friend struct VarArgPowerPC64Helper; 509 friend struct VarArgSystemZHelper; 510 511 void initializeModule(Module &M); 512 void initializeCallbacks(Module &M); 513 void createKernelApi(Module &M); 514 void createUserspaceApi(Module &M); 515 516 /// True if we're compiling the Linux kernel. 517 bool CompileKernel; 518 /// Track origins (allocation points) of uninitialized values. 519 int TrackOrigins; 520 bool Recover; 521 bool EagerChecks; 522 523 LLVMContext *C; 524 Type *IntptrTy; 525 Type *OriginTy; 526 527 // XxxTLS variables represent the per-thread state in MSan and per-task state 528 // in KMSAN. 529 // For the userspace these point to thread-local globals. In the kernel land 530 // they point to the members of a per-task struct obtained via a call to 531 // __msan_get_context_state(). 532 533 /// Thread-local shadow storage for function parameters. 534 Value *ParamTLS; 535 536 /// Thread-local origin storage for function parameters. 537 Value *ParamOriginTLS; 538 539 /// Thread-local shadow storage for function return value. 540 Value *RetvalTLS; 541 542 /// Thread-local origin storage for function return value. 543 Value *RetvalOriginTLS; 544 545 /// Thread-local shadow storage for in-register va_arg function 546 /// parameters (x86_64-specific). 547 Value *VAArgTLS; 548 549 /// Thread-local shadow storage for in-register va_arg function 550 /// parameters (x86_64-specific). 551 Value *VAArgOriginTLS; 552 553 /// Thread-local shadow storage for va_arg overflow area 554 /// (x86_64-specific). 555 Value *VAArgOverflowSizeTLS; 556 557 /// Are the instrumentation callbacks set up? 558 bool CallbacksInitialized = false; 559 560 /// The run-time callback to print a warning. 561 FunctionCallee WarningFn; 562 563 // These arrays are indexed by log2(AccessSize). 564 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; 565 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; 566 567 /// Run-time helper that generates a new origin value for a stack 568 /// allocation. 569 FunctionCallee MsanSetAllocaOrigin4Fn; 570 571 /// Run-time helper that poisons stack on function entry. 572 FunctionCallee MsanPoisonStackFn; 573 574 /// Run-time helper that records a store (or any event) of an 575 /// uninitialized value and returns an updated origin id encoding this info. 576 FunctionCallee MsanChainOriginFn; 577 578 /// Run-time helper that paints an origin over a region. 579 FunctionCallee MsanSetOriginFn; 580 581 /// MSan runtime replacements for memmove, memcpy and memset. 582 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; 583 584 /// KMSAN callback for task-local function argument shadow. 585 StructType *MsanContextStateTy; 586 FunctionCallee MsanGetContextStateFn; 587 588 /// Functions for poisoning/unpoisoning local variables 589 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; 590 591 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 592 /// pointers. 593 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; 594 FunctionCallee MsanMetadataPtrForLoad_1_8[4]; 595 FunctionCallee MsanMetadataPtrForStore_1_8[4]; 596 FunctionCallee MsanInstrumentAsmStoreFn; 597 598 /// Helper to choose between different MsanMetadataPtrXxx(). 599 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); 600 601 /// Memory map parameters used in application-to-shadow calculation. 602 const MemoryMapParams *MapParams; 603 604 /// Custom memory map parameters used when -msan-shadow-base or 605 // -msan-origin-base is provided. 606 MemoryMapParams CustomMapParams; 607 608 MDNode *ColdCallWeights; 609 610 /// Branch weights for origin store. 611 MDNode *OriginStoreWeights; 612 }; 613 614 void insertModuleCtor(Module &M) { 615 getOrCreateSanitizerCtorAndInitFunctions( 616 M, kMsanModuleCtorName, kMsanInitName, 617 /*InitArgTypes=*/{}, 618 /*InitArgs=*/{}, 619 // This callback is invoked when the functions are created the first 620 // time. Hook them into the global ctors list in that case: 621 [&](Function *Ctor, FunctionCallee) { 622 if (!ClWithComdat) { 623 appendToGlobalCtors(M, Ctor, 0); 624 return; 625 } 626 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 627 Ctor->setComdat(MsanCtorComdat); 628 appendToGlobalCtors(M, Ctor, 0, Ctor); 629 }); 630 } 631 632 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { 633 return (Opt.getNumOccurrences() > 0) ? Opt : Default; 634 } 635 636 } // end anonymous namespace 637 638 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, 639 bool EagerChecks) 640 : Kernel(getOptOrDefault(ClEnableKmsan, K)), 641 TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), 642 Recover(getOptOrDefault(ClKeepGoing, Kernel || R)), 643 EagerChecks(getOptOrDefault(ClEagerChecks, EagerChecks)) {} 644 645 PreservedAnalyses MemorySanitizerPass::run(Function &F, 646 FunctionAnalysisManager &FAM) { 647 MemorySanitizer Msan(*F.getParent(), Options); 648 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 649 return PreservedAnalyses::none(); 650 return PreservedAnalyses::all(); 651 } 652 653 PreservedAnalyses 654 ModuleMemorySanitizerPass::run(Module &M, ModuleAnalysisManager &AM) { 655 if (Options.Kernel) 656 return PreservedAnalyses::all(); 657 insertModuleCtor(M); 658 return PreservedAnalyses::none(); 659 } 660 661 void MemorySanitizerPass::printPipeline( 662 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 663 static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( 664 OS, MapClassName2PassName); 665 OS << "<"; 666 if (Options.Recover) 667 OS << "recover;"; 668 if (Options.Kernel) 669 OS << "kernel;"; 670 if (Options.EagerChecks) 671 OS << "eager-checks;"; 672 OS << "track-origins=" << Options.TrackOrigins; 673 OS << ">"; 674 } 675 676 /// Create a non-const global initialized with the given string. 677 /// 678 /// Creates a writable global for Str so that we can pass it to the 679 /// run-time lib. Runtime uses first 4 bytes of the string to store the 680 /// frame ID, so the string needs to be mutable. 681 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 682 StringRef Str) { 683 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 684 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 685 GlobalValue::PrivateLinkage, StrConst, ""); 686 } 687 688 /// Create KMSAN API callbacks. 689 void MemorySanitizer::createKernelApi(Module &M) { 690 IRBuilder<> IRB(*C); 691 692 // These will be initialized in insertKmsanPrologue(). 693 RetvalTLS = nullptr; 694 RetvalOriginTLS = nullptr; 695 ParamTLS = nullptr; 696 ParamOriginTLS = nullptr; 697 VAArgTLS = nullptr; 698 VAArgOriginTLS = nullptr; 699 VAArgOverflowSizeTLS = nullptr; 700 701 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 702 IRB.getInt32Ty()); 703 // Requests the per-task context state (kmsan_context_state*) from the 704 // runtime library. 705 MsanContextStateTy = StructType::get( 706 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 707 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 708 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 709 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ 710 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 711 OriginTy); 712 MsanGetContextStateFn = M.getOrInsertFunction( 713 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); 714 715 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 716 PointerType::get(IRB.getInt32Ty(), 0)); 717 718 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 719 std::string name_load = 720 "__msan_metadata_ptr_for_load_" + std::to_string(size); 721 std::string name_store = 722 "__msan_metadata_ptr_for_store_" + std::to_string(size); 723 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 724 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 725 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 726 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 727 } 728 729 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 730 "__msan_metadata_ptr_for_load_n", RetTy, 731 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 732 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 733 "__msan_metadata_ptr_for_store_n", RetTy, 734 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 735 736 // Functions for poisoning and unpoisoning memory. 737 MsanPoisonAllocaFn = 738 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 739 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 740 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 741 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 742 } 743 744 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 745 return M.getOrInsertGlobal(Name, Ty, [&] { 746 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 747 nullptr, Name, nullptr, 748 GlobalVariable::InitialExecTLSModel); 749 }); 750 } 751 752 /// Insert declarations for userspace-specific functions and globals. 753 void MemorySanitizer::createUserspaceApi(Module &M) { 754 IRBuilder<> IRB(*C); 755 756 // Create the callback. 757 // FIXME: this function should have "Cold" calling conv, 758 // which is not yet implemented. 759 StringRef WarningFnName = Recover ? "__msan_warning_with_origin" 760 : "__msan_warning_with_origin_noreturn"; 761 WarningFn = 762 M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); 763 764 // Create the global TLS variables. 765 RetvalTLS = 766 getOrInsertGlobal(M, "__msan_retval_tls", 767 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 768 769 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 770 771 ParamTLS = 772 getOrInsertGlobal(M, "__msan_param_tls", 773 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 774 775 ParamOriginTLS = 776 getOrInsertGlobal(M, "__msan_param_origin_tls", 777 ArrayType::get(OriginTy, kParamTLSSize / 4)); 778 779 VAArgTLS = 780 getOrInsertGlobal(M, "__msan_va_arg_tls", 781 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 782 783 VAArgOriginTLS = 784 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 785 ArrayType::get(OriginTy, kParamTLSSize / 4)); 786 787 VAArgOverflowSizeTLS = 788 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 789 790 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 791 AccessSizeIndex++) { 792 unsigned AccessSize = 1 << AccessSizeIndex; 793 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 794 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; 795 MaybeWarningFnAttrs.push_back(std::make_pair( 796 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 797 MaybeWarningFnAttrs.push_back(std::make_pair( 798 AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); 799 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 800 FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), 801 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); 802 803 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 804 SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; 805 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 806 AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); 807 MaybeStoreOriginFnAttrs.push_back(std::make_pair( 808 AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); 809 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 810 FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), 811 IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), 812 IRB.getInt32Ty()); 813 } 814 815 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 816 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 817 IRB.getInt8PtrTy(), IntptrTy); 818 MsanPoisonStackFn = 819 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 820 IRB.getInt8PtrTy(), IntptrTy); 821 } 822 823 /// Insert extern declaration of runtime-provided functions and globals. 824 void MemorySanitizer::initializeCallbacks(Module &M) { 825 // Only do this once. 826 if (CallbacksInitialized) 827 return; 828 829 IRBuilder<> IRB(*C); 830 // Initialize callbacks that are common for kernel and userspace 831 // instrumentation. 832 MsanChainOriginFn = M.getOrInsertFunction( 833 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 834 MsanSetOriginFn = 835 M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), 836 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); 837 MemmoveFn = M.getOrInsertFunction( 838 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 839 IRB.getInt8PtrTy(), IntptrTy); 840 MemcpyFn = M.getOrInsertFunction( 841 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 842 IntptrTy); 843 MemsetFn = M.getOrInsertFunction( 844 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 845 IntptrTy); 846 847 MsanInstrumentAsmStoreFn = 848 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 849 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 850 851 if (CompileKernel) { 852 createKernelApi(M); 853 } else { 854 createUserspaceApi(M); 855 } 856 CallbacksInitialized = true; 857 } 858 859 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, 860 int size) { 861 FunctionCallee *Fns = 862 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 863 switch (size) { 864 case 1: 865 return Fns[0]; 866 case 2: 867 return Fns[1]; 868 case 4: 869 return Fns[2]; 870 case 8: 871 return Fns[3]; 872 default: 873 return nullptr; 874 } 875 } 876 877 /// Module-level initialization. 878 /// 879 /// inserts a call to __msan_init to the module's constructor list. 880 void MemorySanitizer::initializeModule(Module &M) { 881 auto &DL = M.getDataLayout(); 882 883 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 884 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 885 // Check the overrides first 886 if (ShadowPassed || OriginPassed) { 887 CustomMapParams.AndMask = ClAndMask; 888 CustomMapParams.XorMask = ClXorMask; 889 CustomMapParams.ShadowBase = ClShadowBase; 890 CustomMapParams.OriginBase = ClOriginBase; 891 MapParams = &CustomMapParams; 892 } else { 893 Triple TargetTriple(M.getTargetTriple()); 894 switch (TargetTriple.getOS()) { 895 case Triple::FreeBSD: 896 switch (TargetTriple.getArch()) { 897 case Triple::x86_64: 898 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 899 break; 900 case Triple::x86: 901 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 902 break; 903 default: 904 report_fatal_error("unsupported architecture"); 905 } 906 break; 907 case Triple::NetBSD: 908 switch (TargetTriple.getArch()) { 909 case Triple::x86_64: 910 MapParams = NetBSD_X86_MemoryMapParams.bits64; 911 break; 912 default: 913 report_fatal_error("unsupported architecture"); 914 } 915 break; 916 case Triple::Linux: 917 switch (TargetTriple.getArch()) { 918 case Triple::x86_64: 919 MapParams = Linux_X86_MemoryMapParams.bits64; 920 break; 921 case Triple::x86: 922 MapParams = Linux_X86_MemoryMapParams.bits32; 923 break; 924 case Triple::mips64: 925 case Triple::mips64el: 926 MapParams = Linux_MIPS_MemoryMapParams.bits64; 927 break; 928 case Triple::ppc64: 929 case Triple::ppc64le: 930 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 931 break; 932 case Triple::systemz: 933 MapParams = Linux_S390_MemoryMapParams.bits64; 934 break; 935 case Triple::aarch64: 936 case Triple::aarch64_be: 937 MapParams = Linux_ARM_MemoryMapParams.bits64; 938 break; 939 default: 940 report_fatal_error("unsupported architecture"); 941 } 942 break; 943 default: 944 report_fatal_error("unsupported operating system"); 945 } 946 } 947 948 C = &(M.getContext()); 949 IRBuilder<> IRB(*C); 950 IntptrTy = IRB.getIntPtrTy(DL); 951 OriginTy = IRB.getInt32Ty(); 952 953 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 954 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 955 956 if (!CompileKernel) { 957 if (TrackOrigins) 958 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 959 return new GlobalVariable( 960 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 961 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 962 }); 963 964 if (Recover) 965 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 966 return new GlobalVariable(M, IRB.getInt32Ty(), true, 967 GlobalValue::WeakODRLinkage, 968 IRB.getInt32(Recover), "__msan_keep_going"); 969 }); 970 } 971 } 972 973 namespace { 974 975 /// A helper class that handles instrumentation of VarArg 976 /// functions on a particular platform. 977 /// 978 /// Implementations are expected to insert the instrumentation 979 /// necessary to propagate argument shadow through VarArg function 980 /// calls. Visit* methods are called during an InstVisitor pass over 981 /// the function, and should avoid creating new basic blocks. A new 982 /// instance of this class is created for each instrumented function. 983 struct VarArgHelper { 984 virtual ~VarArgHelper() = default; 985 986 /// Visit a CallBase. 987 virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; 988 989 /// Visit a va_start call. 990 virtual void visitVAStartInst(VAStartInst &I) = 0; 991 992 /// Visit a va_copy call. 993 virtual void visitVACopyInst(VACopyInst &I) = 0; 994 995 /// Finalize function instrumentation. 996 /// 997 /// This method is called after visiting all interesting (see above) 998 /// instructions in a function. 999 virtual void finalizeInstrumentation() = 0; 1000 }; 1001 1002 struct MemorySanitizerVisitor; 1003 1004 } // end anonymous namespace 1005 1006 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 1007 MemorySanitizerVisitor &Visitor); 1008 1009 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 1010 if (TypeSize <= 8) return 0; 1011 return Log2_32_Ceil((TypeSize + 7) / 8); 1012 } 1013 1014 namespace { 1015 1016 /// This class does all the work for a given function. Store and Load 1017 /// instructions store and load corresponding shadow and origin 1018 /// values. Most instructions propagate shadow from arguments to their 1019 /// return values. Certain instructions (most importantly, BranchInst) 1020 /// test their argument shadow and print reports (with a runtime call) if it's 1021 /// non-zero. 1022 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1023 Function &F; 1024 MemorySanitizer &MS; 1025 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1026 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1027 std::unique_ptr<VarArgHelper> VAHelper; 1028 const TargetLibraryInfo *TLI; 1029 Instruction *FnPrologueEnd; 1030 1031 // The following flags disable parts of MSan instrumentation based on 1032 // exclusion list contents and command-line options. 1033 bool InsertChecks; 1034 bool PropagateShadow; 1035 bool PoisonStack; 1036 bool PoisonUndef; 1037 1038 struct ShadowOriginAndInsertPoint { 1039 Value *Shadow; 1040 Value *Origin; 1041 Instruction *OrigIns; 1042 1043 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1044 : Shadow(S), Origin(O), OrigIns(I) {} 1045 }; 1046 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1047 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; 1048 SmallSet<AllocaInst *, 16> AllocaSet; 1049 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; 1050 SmallVector<StoreInst *, 16> StoreList; 1051 1052 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1053 const TargetLibraryInfo &TLI) 1054 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1055 bool SanitizeFunction = 1056 F.hasFnAttribute(Attribute::SanitizeMemory) && !ClDisableChecks; 1057 InsertChecks = SanitizeFunction; 1058 PropagateShadow = SanitizeFunction; 1059 PoisonStack = SanitizeFunction && ClPoisonStack; 1060 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1061 1062 // In the presence of unreachable blocks, we may see Phi nodes with 1063 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1064 // blocks, such nodes will not have any shadow value associated with them. 1065 // It's easier to remove unreachable blocks than deal with missing shadow. 1066 removeUnreachableBlocks(F); 1067 1068 MS.initializeCallbacks(*F.getParent()); 1069 FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) 1070 .CreateIntrinsic(Intrinsic::donothing, {}, {}); 1071 1072 if (MS.CompileKernel) { 1073 IRBuilder<> IRB(FnPrologueEnd); 1074 insertKmsanPrologue(IRB); 1075 } 1076 1077 LLVM_DEBUG(if (!InsertChecks) dbgs() 1078 << "MemorySanitizer is not inserting checks into '" 1079 << F.getName() << "'\n"); 1080 } 1081 1082 bool isInPrologue(Instruction &I) { 1083 return I.getParent() == FnPrologueEnd->getParent() && 1084 (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); 1085 } 1086 1087 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1088 if (MS.TrackOrigins <= 1) return V; 1089 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1090 } 1091 1092 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1093 const DataLayout &DL = F.getParent()->getDataLayout(); 1094 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1095 if (IntptrSize == kOriginSize) return Origin; 1096 assert(IntptrSize == kOriginSize * 2); 1097 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1098 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1099 } 1100 1101 /// Fill memory range with the given origin value. 1102 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1103 unsigned Size, Align Alignment) { 1104 const DataLayout &DL = F.getParent()->getDataLayout(); 1105 const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); 1106 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1107 assert(IntptrAlignment >= kMinOriginAlignment); 1108 assert(IntptrSize >= kOriginSize); 1109 1110 unsigned Ofs = 0; 1111 Align CurrentAlignment = Alignment; 1112 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1113 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1114 Value *IntptrOriginPtr = 1115 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1116 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1117 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1118 : IntptrOriginPtr; 1119 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1120 Ofs += IntptrSize / kOriginSize; 1121 CurrentAlignment = IntptrAlignment; 1122 } 1123 } 1124 1125 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1126 Value *GEP = 1127 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; 1128 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1129 CurrentAlignment = kMinOriginAlignment; 1130 } 1131 } 1132 1133 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1134 Value *OriginPtr, Align Alignment, bool AsCall) { 1135 const DataLayout &DL = F.getParent()->getDataLayout(); 1136 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1137 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1138 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1139 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1140 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1141 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1142 OriginAlignment); 1143 return; 1144 } 1145 1146 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1147 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1148 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1149 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1150 Value *ConvertedShadow2 = 1151 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1152 CallBase *CB = IRB.CreateCall( 1153 Fn, {ConvertedShadow2, 1154 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); 1155 CB->addParamAttr(0, Attribute::ZExt); 1156 CB->addParamAttr(2, Attribute::ZExt); 1157 } else { 1158 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1159 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1160 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1161 IRBuilder<> IRBNew(CheckTerm); 1162 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1163 OriginAlignment); 1164 } 1165 } 1166 1167 void materializeStores(bool InstrumentWithCalls) { 1168 for (StoreInst *SI : StoreList) { 1169 IRBuilder<> IRB(SI); 1170 Value *Val = SI->getValueOperand(); 1171 Value *Addr = SI->getPointerOperand(); 1172 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1173 Value *ShadowPtr, *OriginPtr; 1174 Type *ShadowTy = Shadow->getType(); 1175 const Align Alignment = SI->getAlign(); 1176 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1177 std::tie(ShadowPtr, OriginPtr) = 1178 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1179 1180 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1181 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1182 (void)NewSI; 1183 1184 if (SI->isAtomic()) 1185 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1186 1187 if (MS.TrackOrigins && !SI->isAtomic()) 1188 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1189 OriginAlignment, InstrumentWithCalls); 1190 } 1191 } 1192 1193 /// Helper function to insert a warning at IRB's current insert point. 1194 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1195 if (!Origin) 1196 Origin = (Value *)IRB.getInt32(0); 1197 assert(Origin->getType()->isIntegerTy()); 1198 IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); 1199 // FIXME: Insert UnreachableInst if !MS.Recover? 1200 // This may invalidate some of the following checks and needs to be done 1201 // at the very end. 1202 } 1203 1204 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1205 bool AsCall) { 1206 IRBuilder<> IRB(OrigIns); 1207 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1208 Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); 1209 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1210 1211 if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { 1212 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1213 insertWarningFn(IRB, Origin); 1214 } 1215 return; 1216 } 1217 1218 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1219 1220 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1221 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1222 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1223 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; 1224 Value *ConvertedShadow2 = 1225 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1226 CallBase *CB = IRB.CreateCall( 1227 Fn, {ConvertedShadow2, 1228 MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); 1229 CB->addParamAttr(0, Attribute::ZExt); 1230 CB->addParamAttr(1, Attribute::ZExt); 1231 } else { 1232 Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); 1233 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1234 Cmp, OrigIns, 1235 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1236 1237 IRB.SetInsertPoint(CheckTerm); 1238 insertWarningFn(IRB, Origin); 1239 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1240 } 1241 } 1242 1243 void materializeChecks(bool InstrumentWithCalls) { 1244 for (const auto &ShadowData : InstrumentationList) { 1245 Instruction *OrigIns = ShadowData.OrigIns; 1246 Value *Shadow = ShadowData.Shadow; 1247 Value *Origin = ShadowData.Origin; 1248 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1249 } 1250 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1251 } 1252 1253 // Returns the last instruction in the new prologue 1254 void insertKmsanPrologue(IRBuilder<> &IRB) { 1255 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1256 Constant *Zero = IRB.getInt32(0); 1257 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1258 {Zero, IRB.getInt32(0)}, "param_shadow"); 1259 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1260 {Zero, IRB.getInt32(1)}, "retval_shadow"); 1261 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1262 {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1263 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1264 {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1265 MS.VAArgOverflowSizeTLS = 1266 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1267 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1268 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1269 {Zero, IRB.getInt32(5)}, "param_origin"); 1270 MS.RetvalOriginTLS = 1271 IRB.CreateGEP(MS.MsanContextStateTy, ContextState, 1272 {Zero, IRB.getInt32(6)}, "retval_origin"); 1273 } 1274 1275 /// Add MemorySanitizer instrumentation to a function. 1276 bool runOnFunction() { 1277 // Iterate all BBs in depth-first order and create shadow instructions 1278 // for all instructions (where applicable). 1279 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1280 for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) 1281 visit(*BB); 1282 1283 // Finalize PHI nodes. 1284 for (PHINode *PN : ShadowPHINodes) { 1285 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1286 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1287 size_t NumValues = PN->getNumIncomingValues(); 1288 for (size_t v = 0; v < NumValues; v++) { 1289 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1290 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1291 } 1292 } 1293 1294 VAHelper->finalizeInstrumentation(); 1295 1296 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to 1297 // instrumenting only allocas. 1298 if (InstrumentLifetimeStart) { 1299 for (auto Item : LifetimeStartList) { 1300 instrumentAlloca(*Item.second, Item.first); 1301 AllocaSet.erase(Item.second); 1302 } 1303 } 1304 // Poison the allocas for which we didn't instrument the corresponding 1305 // lifetime intrinsics. 1306 for (AllocaInst *AI : AllocaSet) 1307 instrumentAlloca(*AI); 1308 1309 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1310 InstrumentationList.size() + StoreList.size() > 1311 (unsigned)ClInstrumentationWithCallThreshold; 1312 1313 // Insert shadow value checks. 1314 materializeChecks(InstrumentWithCalls); 1315 1316 // Delayed instrumentation of StoreInst. 1317 // This may not add new address checks. 1318 materializeStores(InstrumentWithCalls); 1319 1320 return true; 1321 } 1322 1323 /// Compute the shadow type that corresponds to a given Value. 1324 Type *getShadowTy(Value *V) { 1325 return getShadowTy(V->getType()); 1326 } 1327 1328 /// Compute the shadow type that corresponds to a given Type. 1329 Type *getShadowTy(Type *OrigTy) { 1330 if (!OrigTy->isSized()) { 1331 return nullptr; 1332 } 1333 // For integer type, shadow is the same as the original type. 1334 // This may return weird-sized types like i1. 1335 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1336 return IT; 1337 const DataLayout &DL = F.getParent()->getDataLayout(); 1338 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1339 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1340 return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), 1341 cast<FixedVectorType>(VT)->getNumElements()); 1342 } 1343 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1344 return ArrayType::get(getShadowTy(AT->getElementType()), 1345 AT->getNumElements()); 1346 } 1347 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1348 SmallVector<Type*, 4> Elements; 1349 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1350 Elements.push_back(getShadowTy(ST->getElementType(i))); 1351 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1352 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1353 return Res; 1354 } 1355 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1356 return IntegerType::get(*MS.C, TypeSize); 1357 } 1358 1359 /// Flatten a vector type. 1360 Type *getShadowTyNoVec(Type *ty) { 1361 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1362 return IntegerType::get(*MS.C, 1363 vt->getPrimitiveSizeInBits().getFixedSize()); 1364 return ty; 1365 } 1366 1367 /// Extract combined shadow of struct elements as a bool 1368 Value *collapseStructShadow(StructType *Struct, Value *Shadow, 1369 IRBuilder<> &IRB) { 1370 Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); 1371 Value *Aggregator = FalseVal; 1372 1373 for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { 1374 // Combine by ORing together each element's bool shadow 1375 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1376 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1377 Value *ShadowBool = convertToBool(ShadowInner, IRB); 1378 1379 if (Aggregator != FalseVal) 1380 Aggregator = IRB.CreateOr(Aggregator, ShadowBool); 1381 else 1382 Aggregator = ShadowBool; 1383 } 1384 1385 return Aggregator; 1386 } 1387 1388 // Extract combined shadow of array elements 1389 Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, 1390 IRBuilder<> &IRB) { 1391 if (!Array->getNumElements()) 1392 return IRB.getIntN(/* width */ 1, /* value */ 0); 1393 1394 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 1395 Value *Aggregator = convertShadowToScalar(FirstItem, IRB); 1396 1397 for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { 1398 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 1399 Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); 1400 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 1401 } 1402 return Aggregator; 1403 } 1404 1405 /// Convert a shadow value to it's flattened variant. The resulting 1406 /// shadow may not necessarily have the same bit width as the input 1407 /// value, but it will always be comparable to zero. 1408 Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { 1409 if (StructType *Struct = dyn_cast<StructType>(V->getType())) 1410 return collapseStructShadow(Struct, V, IRB); 1411 if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) 1412 return collapseArrayShadow(Array, V, IRB); 1413 Type *Ty = V->getType(); 1414 Type *NoVecTy = getShadowTyNoVec(Ty); 1415 if (Ty == NoVecTy) return V; 1416 return IRB.CreateBitCast(V, NoVecTy); 1417 } 1418 1419 // Convert a scalar value to an i1 by comparing with 0 1420 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { 1421 Type *VTy = V->getType(); 1422 assert(VTy->isIntegerTy()); 1423 if (VTy->getIntegerBitWidth() == 1) 1424 // Just converting a bool to a bool, so do nothing. 1425 return V; 1426 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); 1427 } 1428 1429 /// Compute the integer shadow offset that corresponds to a given 1430 /// application address. 1431 /// 1432 /// Offset = (Addr & ~AndMask) ^ XorMask 1433 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1434 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1435 1436 uint64_t AndMask = MS.MapParams->AndMask; 1437 if (AndMask) 1438 OffsetLong = 1439 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1440 1441 uint64_t XorMask = MS.MapParams->XorMask; 1442 if (XorMask) 1443 OffsetLong = 1444 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1445 return OffsetLong; 1446 } 1447 1448 /// Compute the shadow and origin addresses corresponding to a given 1449 /// application address. 1450 /// 1451 /// Shadow = ShadowBase + Offset 1452 /// Origin = (OriginBase + Offset) & ~3ULL 1453 std::pair<Value *, Value *> 1454 getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1455 MaybeAlign Alignment) { 1456 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1457 Value *ShadowLong = ShadowOffset; 1458 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1459 if (ShadowBase != 0) { 1460 ShadowLong = 1461 IRB.CreateAdd(ShadowLong, 1462 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1463 } 1464 Value *ShadowPtr = 1465 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1466 Value *OriginPtr = nullptr; 1467 if (MS.TrackOrigins) { 1468 Value *OriginLong = ShadowOffset; 1469 uint64_t OriginBase = MS.MapParams->OriginBase; 1470 if (OriginBase != 0) 1471 OriginLong = IRB.CreateAdd(OriginLong, 1472 ConstantInt::get(MS.IntptrTy, OriginBase)); 1473 if (!Alignment || *Alignment < kMinOriginAlignment) { 1474 uint64_t Mask = kMinOriginAlignment.value() - 1; 1475 OriginLong = 1476 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1477 } 1478 OriginPtr = 1479 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); 1480 } 1481 return std::make_pair(ShadowPtr, OriginPtr); 1482 } 1483 1484 std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, 1485 IRBuilder<> &IRB, 1486 Type *ShadowTy, 1487 bool isStore) { 1488 Value *ShadowOriginPtrs; 1489 const DataLayout &DL = F.getParent()->getDataLayout(); 1490 int Size = DL.getTypeStoreSize(ShadowTy); 1491 1492 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1493 Value *AddrCast = 1494 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1495 if (Getter) { 1496 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1497 } else { 1498 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1499 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1500 : MS.MsanMetadataPtrForLoadN, 1501 {AddrCast, SizeVal}); 1502 } 1503 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1504 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1505 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1506 1507 return std::make_pair(ShadowPtr, OriginPtr); 1508 } 1509 1510 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1511 Type *ShadowTy, 1512 MaybeAlign Alignment, 1513 bool isStore) { 1514 if (MS.CompileKernel) 1515 return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); 1516 return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1517 } 1518 1519 /// Compute the shadow address for a given function argument. 1520 /// 1521 /// Shadow = ParamTLS+ArgOffset. 1522 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1523 int ArgOffset) { 1524 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1525 if (ArgOffset) 1526 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1527 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1528 "_msarg"); 1529 } 1530 1531 /// Compute the origin address for a given function argument. 1532 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1533 int ArgOffset) { 1534 if (!MS.TrackOrigins) 1535 return nullptr; 1536 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1537 if (ArgOffset) 1538 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1539 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1540 "_msarg_o"); 1541 } 1542 1543 /// Compute the shadow address for a retval. 1544 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1545 return IRB.CreatePointerCast(MS.RetvalTLS, 1546 PointerType::get(getShadowTy(A), 0), 1547 "_msret"); 1548 } 1549 1550 /// Compute the origin address for a retval. 1551 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1552 // We keep a single origin for the entire retval. Might be too optimistic. 1553 return MS.RetvalOriginTLS; 1554 } 1555 1556 /// Set SV to be the shadow value for V. 1557 void setShadow(Value *V, Value *SV) { 1558 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1559 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1560 } 1561 1562 /// Set Origin to be the origin value for V. 1563 void setOrigin(Value *V, Value *Origin) { 1564 if (!MS.TrackOrigins) return; 1565 assert(!OriginMap.count(V) && "Values may only have one origin"); 1566 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1567 OriginMap[V] = Origin; 1568 } 1569 1570 Constant *getCleanShadow(Type *OrigTy) { 1571 Type *ShadowTy = getShadowTy(OrigTy); 1572 if (!ShadowTy) 1573 return nullptr; 1574 return Constant::getNullValue(ShadowTy); 1575 } 1576 1577 /// Create a clean shadow value for a given value. 1578 /// 1579 /// Clean shadow (all zeroes) means all bits of the value are defined 1580 /// (initialized). 1581 Constant *getCleanShadow(Value *V) { 1582 return getCleanShadow(V->getType()); 1583 } 1584 1585 /// Create a dirty shadow of a given shadow type. 1586 Constant *getPoisonedShadow(Type *ShadowTy) { 1587 assert(ShadowTy); 1588 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1589 return Constant::getAllOnesValue(ShadowTy); 1590 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1591 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1592 getPoisonedShadow(AT->getElementType())); 1593 return ConstantArray::get(AT, Vals); 1594 } 1595 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1596 SmallVector<Constant *, 4> Vals; 1597 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1598 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1599 return ConstantStruct::get(ST, Vals); 1600 } 1601 llvm_unreachable("Unexpected shadow type"); 1602 } 1603 1604 /// Create a dirty shadow for a given value. 1605 Constant *getPoisonedShadow(Value *V) { 1606 Type *ShadowTy = getShadowTy(V); 1607 if (!ShadowTy) 1608 return nullptr; 1609 return getPoisonedShadow(ShadowTy); 1610 } 1611 1612 /// Create a clean (zero) origin. 1613 Value *getCleanOrigin() { 1614 return Constant::getNullValue(MS.OriginTy); 1615 } 1616 1617 /// Get the shadow value for a given Value. 1618 /// 1619 /// This function either returns the value set earlier with setShadow, 1620 /// or extracts if from ParamTLS (for function arguments). 1621 Value *getShadow(Value *V) { 1622 if (Instruction *I = dyn_cast<Instruction>(V)) { 1623 if (!PropagateShadow || I->getMetadata(LLVMContext::MD_nosanitize)) 1624 return getCleanShadow(V); 1625 // For instructions the shadow is already stored in the map. 1626 Value *Shadow = ShadowMap[V]; 1627 if (!Shadow) { 1628 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1629 (void)I; 1630 assert(Shadow && "No shadow for a value"); 1631 } 1632 return Shadow; 1633 } 1634 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1635 Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) 1636 : getCleanShadow(V); 1637 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1638 (void)U; 1639 return AllOnes; 1640 } 1641 if (Argument *A = dyn_cast<Argument>(V)) { 1642 // For arguments we compute the shadow on demand and store it in the map. 1643 Value *&ShadowPtr = ShadowMap[V]; 1644 if (ShadowPtr) 1645 return ShadowPtr; 1646 Function *F = A->getParent(); 1647 IRBuilder<> EntryIRB(FnPrologueEnd); 1648 unsigned ArgOffset = 0; 1649 const DataLayout &DL = F->getParent()->getDataLayout(); 1650 for (auto &FArg : F->args()) { 1651 if (!FArg.getType()->isSized()) { 1652 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1653 continue; 1654 } 1655 1656 unsigned Size = FArg.hasByValAttr() 1657 ? DL.getTypeAllocSize(FArg.getParamByValType()) 1658 : DL.getTypeAllocSize(FArg.getType()); 1659 1660 if (A == &FArg) { 1661 bool Overflow = ArgOffset + Size > kParamTLSSize; 1662 if (FArg.hasByValAttr()) { 1663 // ByVal pointer itself has clean shadow. We copy the actual 1664 // argument shadow to the underlying memory. 1665 // Figure out maximal valid memcpy alignment. 1666 const Align ArgAlign = DL.getValueOrABITypeAlignment( 1667 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); 1668 Value *CpShadowPtr, *CpOriginPtr; 1669 std::tie(CpShadowPtr, CpOriginPtr) = 1670 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1671 /*isStore*/ true); 1672 if (!PropagateShadow || Overflow) { 1673 // ParamTLS overflow. 1674 EntryIRB.CreateMemSet( 1675 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1676 Size, ArgAlign); 1677 } else { 1678 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1679 const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1680 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1681 CopyAlign, Size); 1682 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1683 (void)Cpy; 1684 1685 if (MS.TrackOrigins) { 1686 Value *OriginPtr = 1687 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1688 // FIXME: OriginSize should be: 1689 // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) 1690 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 1691 EntryIRB.CreateMemCpy( 1692 CpOriginPtr, 1693 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginPtr, 1694 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 1695 OriginSize); 1696 } 1697 } 1698 } 1699 1700 if (!PropagateShadow || Overflow || FArg.hasByValAttr() || 1701 (MS.EagerChecks && FArg.hasAttribute(Attribute::NoUndef))) { 1702 ShadowPtr = getCleanShadow(V); 1703 setOrigin(A, getCleanOrigin()); 1704 } else { 1705 // Shadow over TLS 1706 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1707 ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, 1708 kShadowTLSAlignment); 1709 if (MS.TrackOrigins) { 1710 Value *OriginPtr = 1711 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1712 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); 1713 } 1714 } 1715 LLVM_DEBUG(dbgs() 1716 << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n"); 1717 break; 1718 } 1719 1720 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1721 } 1722 assert(ShadowPtr && "Could not find shadow for an argument"); 1723 return ShadowPtr; 1724 } 1725 // For everything else the shadow is zero. 1726 return getCleanShadow(V); 1727 } 1728 1729 /// Get the shadow for i-th argument of the instruction I. 1730 Value *getShadow(Instruction *I, int i) { 1731 return getShadow(I->getOperand(i)); 1732 } 1733 1734 /// Get the origin for a value. 1735 Value *getOrigin(Value *V) { 1736 if (!MS.TrackOrigins) return nullptr; 1737 if (!PropagateShadow) return getCleanOrigin(); 1738 if (isa<Constant>(V)) return getCleanOrigin(); 1739 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1740 "Unexpected value type in getOrigin()"); 1741 if (Instruction *I = dyn_cast<Instruction>(V)) { 1742 if (I->getMetadata(LLVMContext::MD_nosanitize)) 1743 return getCleanOrigin(); 1744 } 1745 Value *Origin = OriginMap[V]; 1746 assert(Origin && "Missing origin"); 1747 return Origin; 1748 } 1749 1750 /// Get the origin for i-th argument of the instruction I. 1751 Value *getOrigin(Instruction *I, int i) { 1752 return getOrigin(I->getOperand(i)); 1753 } 1754 1755 /// Remember the place where a shadow check should be inserted. 1756 /// 1757 /// This location will be later instrumented with a check that will print a 1758 /// UMR warning in runtime if the shadow value is not 0. 1759 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1760 assert(Shadow); 1761 if (!InsertChecks) return; 1762 #ifndef NDEBUG 1763 Type *ShadowTy = Shadow->getType(); 1764 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || 1765 isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && 1766 "Can only insert checks for integer, vector, and aggregate shadow " 1767 "types"); 1768 #endif 1769 InstrumentationList.push_back( 1770 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1771 } 1772 1773 /// Remember the place where a shadow check should be inserted. 1774 /// 1775 /// This location will be later instrumented with a check that will print a 1776 /// UMR warning in runtime if the value is not fully defined. 1777 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1778 assert(Val); 1779 Value *Shadow, *Origin; 1780 if (ClCheckConstantShadow) { 1781 Shadow = getShadow(Val); 1782 if (!Shadow) return; 1783 Origin = getOrigin(Val); 1784 } else { 1785 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1786 if (!Shadow) return; 1787 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1788 } 1789 insertShadowCheck(Shadow, Origin, OrigIns); 1790 } 1791 1792 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1793 switch (a) { 1794 case AtomicOrdering::NotAtomic: 1795 return AtomicOrdering::NotAtomic; 1796 case AtomicOrdering::Unordered: 1797 case AtomicOrdering::Monotonic: 1798 case AtomicOrdering::Release: 1799 return AtomicOrdering::Release; 1800 case AtomicOrdering::Acquire: 1801 case AtomicOrdering::AcquireRelease: 1802 return AtomicOrdering::AcquireRelease; 1803 case AtomicOrdering::SequentiallyConsistent: 1804 return AtomicOrdering::SequentiallyConsistent; 1805 } 1806 llvm_unreachable("Unknown ordering"); 1807 } 1808 1809 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { 1810 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1811 uint32_t OrderingTable[NumOrderings] = {}; 1812 1813 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1814 OrderingTable[(int)AtomicOrderingCABI::release] = 1815 (int)AtomicOrderingCABI::release; 1816 OrderingTable[(int)AtomicOrderingCABI::consume] = 1817 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1818 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1819 (int)AtomicOrderingCABI::acq_rel; 1820 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1821 (int)AtomicOrderingCABI::seq_cst; 1822 1823 return ConstantDataVector::get(IRB.getContext(), 1824 makeArrayRef(OrderingTable, NumOrderings)); 1825 } 1826 1827 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1828 switch (a) { 1829 case AtomicOrdering::NotAtomic: 1830 return AtomicOrdering::NotAtomic; 1831 case AtomicOrdering::Unordered: 1832 case AtomicOrdering::Monotonic: 1833 case AtomicOrdering::Acquire: 1834 return AtomicOrdering::Acquire; 1835 case AtomicOrdering::Release: 1836 case AtomicOrdering::AcquireRelease: 1837 return AtomicOrdering::AcquireRelease; 1838 case AtomicOrdering::SequentiallyConsistent: 1839 return AtomicOrdering::SequentiallyConsistent; 1840 } 1841 llvm_unreachable("Unknown ordering"); 1842 } 1843 1844 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { 1845 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; 1846 uint32_t OrderingTable[NumOrderings] = {}; 1847 1848 OrderingTable[(int)AtomicOrderingCABI::relaxed] = 1849 OrderingTable[(int)AtomicOrderingCABI::acquire] = 1850 OrderingTable[(int)AtomicOrderingCABI::consume] = 1851 (int)AtomicOrderingCABI::acquire; 1852 OrderingTable[(int)AtomicOrderingCABI::release] = 1853 OrderingTable[(int)AtomicOrderingCABI::acq_rel] = 1854 (int)AtomicOrderingCABI::acq_rel; 1855 OrderingTable[(int)AtomicOrderingCABI::seq_cst] = 1856 (int)AtomicOrderingCABI::seq_cst; 1857 1858 return ConstantDataVector::get(IRB.getContext(), 1859 makeArrayRef(OrderingTable, NumOrderings)); 1860 } 1861 1862 // ------------------- Visitors. 1863 using InstVisitor<MemorySanitizerVisitor>::visit; 1864 void visit(Instruction &I) { 1865 if (I.getMetadata(LLVMContext::MD_nosanitize)) 1866 return; 1867 // Don't want to visit if we're in the prologue 1868 if (isInPrologue(I)) 1869 return; 1870 InstVisitor<MemorySanitizerVisitor>::visit(I); 1871 } 1872 1873 /// Instrument LoadInst 1874 /// 1875 /// Loads the corresponding shadow and (optionally) origin. 1876 /// Optionally, checks that the load address is fully defined. 1877 void visitLoadInst(LoadInst &I) { 1878 assert(I.getType()->isSized() && "Load type must have size"); 1879 assert(!I.getMetadata(LLVMContext::MD_nosanitize)); 1880 IRBuilder<> IRB(I.getNextNode()); 1881 Type *ShadowTy = getShadowTy(&I); 1882 Value *Addr = I.getPointerOperand(); 1883 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 1884 const Align Alignment = I.getAlign(); 1885 if (PropagateShadow) { 1886 std::tie(ShadowPtr, OriginPtr) = 1887 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1888 setShadow(&I, 1889 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 1890 } else { 1891 setShadow(&I, getCleanShadow(&I)); 1892 } 1893 1894 if (ClCheckAccessAddress) 1895 insertShadowCheck(I.getPointerOperand(), &I); 1896 1897 if (I.isAtomic()) 1898 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1899 1900 if (MS.TrackOrigins) { 1901 if (PropagateShadow) { 1902 const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1903 setOrigin( 1904 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); 1905 } else { 1906 setOrigin(&I, getCleanOrigin()); 1907 } 1908 } 1909 } 1910 1911 /// Instrument StoreInst 1912 /// 1913 /// Stores the corresponding shadow and (optionally) origin. 1914 /// Optionally, checks that the store address is fully defined. 1915 void visitStoreInst(StoreInst &I) { 1916 StoreList.push_back(&I); 1917 if (ClCheckAccessAddress) 1918 insertShadowCheck(I.getPointerOperand(), &I); 1919 } 1920 1921 void handleCASOrRMW(Instruction &I) { 1922 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1923 1924 IRBuilder<> IRB(&I); 1925 Value *Addr = I.getOperand(0); 1926 Value *Val = I.getOperand(1); 1927 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), 1928 /*isStore*/ true) 1929 .first; 1930 1931 if (ClCheckAccessAddress) 1932 insertShadowCheck(Addr, &I); 1933 1934 // Only test the conditional argument of cmpxchg instruction. 1935 // The other argument can potentially be uninitialized, but we can not 1936 // detect this situation reliably without possible false positives. 1937 if (isa<AtomicCmpXchgInst>(I)) 1938 insertShadowCheck(Val, &I); 1939 1940 IRB.CreateStore(getCleanShadow(Val), ShadowPtr); 1941 1942 setShadow(&I, getCleanShadow(&I)); 1943 setOrigin(&I, getCleanOrigin()); 1944 } 1945 1946 void visitAtomicRMWInst(AtomicRMWInst &I) { 1947 handleCASOrRMW(I); 1948 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1949 } 1950 1951 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1952 handleCASOrRMW(I); 1953 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1954 } 1955 1956 // Vector manipulation. 1957 void visitExtractElementInst(ExtractElementInst &I) { 1958 insertShadowCheck(I.getOperand(1), &I); 1959 IRBuilder<> IRB(&I); 1960 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1961 "_msprop")); 1962 setOrigin(&I, getOrigin(&I, 0)); 1963 } 1964 1965 void visitInsertElementInst(InsertElementInst &I) { 1966 insertShadowCheck(I.getOperand(2), &I); 1967 IRBuilder<> IRB(&I); 1968 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1969 I.getOperand(2), "_msprop")); 1970 setOriginForNaryOp(I); 1971 } 1972 1973 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1974 IRBuilder<> IRB(&I); 1975 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1976 I.getShuffleMask(), "_msprop")); 1977 setOriginForNaryOp(I); 1978 } 1979 1980 // Casts. 1981 void visitSExtInst(SExtInst &I) { 1982 IRBuilder<> IRB(&I); 1983 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1984 setOrigin(&I, getOrigin(&I, 0)); 1985 } 1986 1987 void visitZExtInst(ZExtInst &I) { 1988 IRBuilder<> IRB(&I); 1989 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1990 setOrigin(&I, getOrigin(&I, 0)); 1991 } 1992 1993 void visitTruncInst(TruncInst &I) { 1994 IRBuilder<> IRB(&I); 1995 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1996 setOrigin(&I, getOrigin(&I, 0)); 1997 } 1998 1999 void visitBitCastInst(BitCastInst &I) { 2000 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2001 // a musttail call and a ret, don't instrument. New instructions are not 2002 // allowed after a musttail call. 2003 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 2004 if (CI->isMustTailCall()) 2005 return; 2006 IRBuilder<> IRB(&I); 2007 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 2008 setOrigin(&I, getOrigin(&I, 0)); 2009 } 2010 2011 void visitPtrToIntInst(PtrToIntInst &I) { 2012 IRBuilder<> IRB(&I); 2013 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2014 "_msprop_ptrtoint")); 2015 setOrigin(&I, getOrigin(&I, 0)); 2016 } 2017 2018 void visitIntToPtrInst(IntToPtrInst &I) { 2019 IRBuilder<> IRB(&I); 2020 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 2021 "_msprop_inttoptr")); 2022 setOrigin(&I, getOrigin(&I, 0)); 2023 } 2024 2025 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 2026 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 2027 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 2028 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 2029 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 2030 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 2031 2032 /// Propagate shadow for bitwise AND. 2033 /// 2034 /// This code is exact, i.e. if, for example, a bit in the left argument 2035 /// is defined and 0, then neither the value not definedness of the 2036 /// corresponding bit in B don't affect the resulting shadow. 2037 void visitAnd(BinaryOperator &I) { 2038 IRBuilder<> IRB(&I); 2039 // "And" of 0 and a poisoned value results in unpoisoned value. 2040 // 1&1 => 1; 0&1 => 0; p&1 => p; 2041 // 1&0 => 0; 0&0 => 0; p&0 => 0; 2042 // 1&p => p; 0&p => 0; p&p => p; 2043 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 2044 Value *S1 = getShadow(&I, 0); 2045 Value *S2 = getShadow(&I, 1); 2046 Value *V1 = I.getOperand(0); 2047 Value *V2 = I.getOperand(1); 2048 if (V1->getType() != S1->getType()) { 2049 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2050 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2051 } 2052 Value *S1S2 = IRB.CreateAnd(S1, S2); 2053 Value *V1S2 = IRB.CreateAnd(V1, S2); 2054 Value *S1V2 = IRB.CreateAnd(S1, V2); 2055 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2056 setOriginForNaryOp(I); 2057 } 2058 2059 void visitOr(BinaryOperator &I) { 2060 IRBuilder<> IRB(&I); 2061 // "Or" of 1 and a poisoned value results in unpoisoned value. 2062 // 1|1 => 1; 0|1 => 1; p|1 => 1; 2063 // 1|0 => 1; 0|0 => 0; p|0 => p; 2064 // 1|p => 1; 0|p => p; p|p => p; 2065 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 2066 Value *S1 = getShadow(&I, 0); 2067 Value *S2 = getShadow(&I, 1); 2068 Value *V1 = IRB.CreateNot(I.getOperand(0)); 2069 Value *V2 = IRB.CreateNot(I.getOperand(1)); 2070 if (V1->getType() != S1->getType()) { 2071 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 2072 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 2073 } 2074 Value *S1S2 = IRB.CreateAnd(S1, S2); 2075 Value *V1S2 = IRB.CreateAnd(V1, S2); 2076 Value *S1V2 = IRB.CreateAnd(S1, V2); 2077 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); 2078 setOriginForNaryOp(I); 2079 } 2080 2081 /// Default propagation of shadow and/or origin. 2082 /// 2083 /// This class implements the general case of shadow propagation, used in all 2084 /// cases where we don't know and/or don't care about what the operation 2085 /// actually does. It converts all input shadow values to a common type 2086 /// (extending or truncating as necessary), and bitwise OR's them. 2087 /// 2088 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 2089 /// fully initialized), and less prone to false positives. 2090 /// 2091 /// This class also implements the general case of origin propagation. For a 2092 /// Nary operation, result origin is set to the origin of an argument that is 2093 /// not entirely initialized. If there is more than one such arguments, the 2094 /// rightmost of them is picked. It does not matter which one is picked if all 2095 /// arguments are initialized. 2096 template <bool CombineShadow> 2097 class Combiner { 2098 Value *Shadow = nullptr; 2099 Value *Origin = nullptr; 2100 IRBuilder<> &IRB; 2101 MemorySanitizerVisitor *MSV; 2102 2103 public: 2104 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 2105 : IRB(IRB), MSV(MSV) {} 2106 2107 /// Add a pair of shadow and origin values to the mix. 2108 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 2109 if (CombineShadow) { 2110 assert(OpShadow); 2111 if (!Shadow) 2112 Shadow = OpShadow; 2113 else { 2114 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 2115 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 2116 } 2117 } 2118 2119 if (MSV->MS.TrackOrigins) { 2120 assert(OpOrigin); 2121 if (!Origin) { 2122 Origin = OpOrigin; 2123 } else { 2124 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 2125 // No point in adding something that might result in 0 origin value. 2126 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 2127 Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); 2128 Value *Cond = 2129 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2130 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2131 } 2132 } 2133 } 2134 return *this; 2135 } 2136 2137 /// Add an application value to the mix. 2138 Combiner &Add(Value *V) { 2139 Value *OpShadow = MSV->getShadow(V); 2140 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2141 return Add(OpShadow, OpOrigin); 2142 } 2143 2144 /// Set the current combined values as the given instruction's shadow 2145 /// and origin. 2146 void Done(Instruction *I) { 2147 if (CombineShadow) { 2148 assert(Shadow); 2149 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2150 MSV->setShadow(I, Shadow); 2151 } 2152 if (MSV->MS.TrackOrigins) { 2153 assert(Origin); 2154 MSV->setOrigin(I, Origin); 2155 } 2156 } 2157 }; 2158 2159 using ShadowAndOriginCombiner = Combiner<true>; 2160 using OriginCombiner = Combiner<false>; 2161 2162 /// Propagate origin for arbitrary operation. 2163 void setOriginForNaryOp(Instruction &I) { 2164 if (!MS.TrackOrigins) return; 2165 IRBuilder<> IRB(&I); 2166 OriginCombiner OC(this, IRB); 2167 for (Use &Op : I.operands()) 2168 OC.Add(Op.get()); 2169 OC.Done(&I); 2170 } 2171 2172 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2173 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2174 "Vector of pointers is not a valid shadow type"); 2175 return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * 2176 Ty->getScalarSizeInBits() 2177 : Ty->getPrimitiveSizeInBits(); 2178 } 2179 2180 /// Cast between two shadow types, extending or truncating as 2181 /// necessary. 2182 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2183 bool Signed = false) { 2184 Type *srcTy = V->getType(); 2185 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2186 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2187 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2188 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2189 2190 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2191 return IRB.CreateIntCast(V, dstTy, Signed); 2192 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2193 cast<FixedVectorType>(dstTy)->getNumElements() == 2194 cast<FixedVectorType>(srcTy)->getNumElements()) 2195 return IRB.CreateIntCast(V, dstTy, Signed); 2196 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2197 Value *V2 = 2198 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2199 return IRB.CreateBitCast(V2, dstTy); 2200 // TODO: handle struct types. 2201 } 2202 2203 /// Cast an application value to the type of its own shadow. 2204 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2205 Type *ShadowTy = getShadowTy(V); 2206 if (V->getType() == ShadowTy) 2207 return V; 2208 if (V->getType()->isPtrOrPtrVectorTy()) 2209 return IRB.CreatePtrToInt(V, ShadowTy); 2210 else 2211 return IRB.CreateBitCast(V, ShadowTy); 2212 } 2213 2214 /// Propagate shadow for arbitrary operation. 2215 void handleShadowOr(Instruction &I) { 2216 IRBuilder<> IRB(&I); 2217 ShadowAndOriginCombiner SC(this, IRB); 2218 for (Use &Op : I.operands()) 2219 SC.Add(Op.get()); 2220 SC.Done(&I); 2221 } 2222 2223 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } 2224 2225 // Handle multiplication by constant. 2226 // 2227 // Handle a special case of multiplication by constant that may have one or 2228 // more zeros in the lower bits. This makes corresponding number of lower bits 2229 // of the result zero as well. We model it by shifting the other operand 2230 // shadow left by the required number of bits. Effectively, we transform 2231 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2232 // We use multiplication by 2**N instead of shift to cover the case of 2233 // multiplication by 0, which may occur in some elements of a vector operand. 2234 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2235 Value *OtherArg) { 2236 Constant *ShadowMul; 2237 Type *Ty = ConstArg->getType(); 2238 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2239 unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2240 Type *EltTy = VTy->getElementType(); 2241 SmallVector<Constant *, 16> Elements; 2242 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2243 if (ConstantInt *Elt = 2244 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2245 const APInt &V = Elt->getValue(); 2246 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2247 Elements.push_back(ConstantInt::get(EltTy, V2)); 2248 } else { 2249 Elements.push_back(ConstantInt::get(EltTy, 1)); 2250 } 2251 } 2252 ShadowMul = ConstantVector::get(Elements); 2253 } else { 2254 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2255 const APInt &V = Elt->getValue(); 2256 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2257 ShadowMul = ConstantInt::get(Ty, V2); 2258 } else { 2259 ShadowMul = ConstantInt::get(Ty, 1); 2260 } 2261 } 2262 2263 IRBuilder<> IRB(&I); 2264 setShadow(&I, 2265 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2266 setOrigin(&I, getOrigin(OtherArg)); 2267 } 2268 2269 void visitMul(BinaryOperator &I) { 2270 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2271 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2272 if (constOp0 && !constOp1) 2273 handleMulByConstant(I, constOp0, I.getOperand(1)); 2274 else if (constOp1 && !constOp0) 2275 handleMulByConstant(I, constOp1, I.getOperand(0)); 2276 else 2277 handleShadowOr(I); 2278 } 2279 2280 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2281 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2282 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2283 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2284 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2285 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2286 2287 void handleIntegerDiv(Instruction &I) { 2288 IRBuilder<> IRB(&I); 2289 // Strict on the second argument. 2290 insertShadowCheck(I.getOperand(1), &I); 2291 setShadow(&I, getShadow(&I, 0)); 2292 setOrigin(&I, getOrigin(&I, 0)); 2293 } 2294 2295 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2296 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2297 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2298 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2299 2300 // Floating point division is side-effect free. We can not require that the 2301 // divisor is fully initialized and must propagate shadow. See PR37523. 2302 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2303 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2304 2305 /// Instrument == and != comparisons. 2306 /// 2307 /// Sometimes the comparison result is known even if some of the bits of the 2308 /// arguments are not. 2309 void handleEqualityComparison(ICmpInst &I) { 2310 IRBuilder<> IRB(&I); 2311 Value *A = I.getOperand(0); 2312 Value *B = I.getOperand(1); 2313 Value *Sa = getShadow(A); 2314 Value *Sb = getShadow(B); 2315 2316 // Get rid of pointers and vectors of pointers. 2317 // For ints (and vectors of ints), types of A and Sa match, 2318 // and this is a no-op. 2319 A = IRB.CreatePointerCast(A, Sa->getType()); 2320 B = IRB.CreatePointerCast(B, Sb->getType()); 2321 2322 // A == B <==> (C = A^B) == 0 2323 // A != B <==> (C = A^B) != 0 2324 // Sc = Sa | Sb 2325 Value *C = IRB.CreateXor(A, B); 2326 Value *Sc = IRB.CreateOr(Sa, Sb); 2327 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2328 // Result is defined if one of the following is true 2329 // * there is a defined 1 bit in C 2330 // * C is fully defined 2331 // Si = !(C & ~Sc) && Sc 2332 Value *Zero = Constant::getNullValue(Sc->getType()); 2333 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2334 Value *Si = 2335 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2336 IRB.CreateICmpEQ( 2337 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2338 Si->setName("_msprop_icmp"); 2339 setShadow(&I, Si); 2340 setOriginForNaryOp(I); 2341 } 2342 2343 /// Build the lowest possible value of V, taking into account V's 2344 /// uninitialized bits. 2345 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2346 bool isSigned) { 2347 if (isSigned) { 2348 // Split shadow into sign bit and other bits. 2349 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2350 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2351 // Maximise the undefined shadow bit, minimize other undefined bits. 2352 return 2353 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2354 } else { 2355 // Minimize undefined bits. 2356 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2357 } 2358 } 2359 2360 /// Build the highest possible value of V, taking into account V's 2361 /// uninitialized bits. 2362 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2363 bool isSigned) { 2364 if (isSigned) { 2365 // Split shadow into sign bit and other bits. 2366 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2367 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2368 // Minimise the undefined shadow bit, maximise other undefined bits. 2369 return 2370 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2371 } else { 2372 // Maximize undefined bits. 2373 return IRB.CreateOr(A, Sa); 2374 } 2375 } 2376 2377 /// Instrument relational comparisons. 2378 /// 2379 /// This function does exact shadow propagation for all relational 2380 /// comparisons of integers, pointers and vectors of those. 2381 /// FIXME: output seems suboptimal when one of the operands is a constant 2382 void handleRelationalComparisonExact(ICmpInst &I) { 2383 IRBuilder<> IRB(&I); 2384 Value *A = I.getOperand(0); 2385 Value *B = I.getOperand(1); 2386 Value *Sa = getShadow(A); 2387 Value *Sb = getShadow(B); 2388 2389 // Get rid of pointers and vectors of pointers. 2390 // For ints (and vectors of ints), types of A and Sa match, 2391 // and this is a no-op. 2392 A = IRB.CreatePointerCast(A, Sa->getType()); 2393 B = IRB.CreatePointerCast(B, Sb->getType()); 2394 2395 // Let [a0, a1] be the interval of possible values of A, taking into account 2396 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2397 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2398 bool IsSigned = I.isSigned(); 2399 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2400 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2401 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2402 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2403 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2404 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2405 Value *Si = IRB.CreateXor(S1, S2); 2406 setShadow(&I, Si); 2407 setOriginForNaryOp(I); 2408 } 2409 2410 /// Instrument signed relational comparisons. 2411 /// 2412 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2413 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2414 void handleSignedRelationalComparison(ICmpInst &I) { 2415 Constant *constOp; 2416 Value *op = nullptr; 2417 CmpInst::Predicate pre; 2418 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2419 op = I.getOperand(0); 2420 pre = I.getPredicate(); 2421 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2422 op = I.getOperand(1); 2423 pre = I.getSwappedPredicate(); 2424 } else { 2425 handleShadowOr(I); 2426 return; 2427 } 2428 2429 if ((constOp->isNullValue() && 2430 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2431 (constOp->isAllOnesValue() && 2432 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2433 IRBuilder<> IRB(&I); 2434 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2435 "_msprop_icmp_s"); 2436 setShadow(&I, Shadow); 2437 setOrigin(&I, getOrigin(op)); 2438 } else { 2439 handleShadowOr(I); 2440 } 2441 } 2442 2443 void visitICmpInst(ICmpInst &I) { 2444 if (!ClHandleICmp) { 2445 handleShadowOr(I); 2446 return; 2447 } 2448 if (I.isEquality()) { 2449 handleEqualityComparison(I); 2450 return; 2451 } 2452 2453 assert(I.isRelational()); 2454 if (ClHandleICmpExact) { 2455 handleRelationalComparisonExact(I); 2456 return; 2457 } 2458 if (I.isSigned()) { 2459 handleSignedRelationalComparison(I); 2460 return; 2461 } 2462 2463 assert(I.isUnsigned()); 2464 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2465 handleRelationalComparisonExact(I); 2466 return; 2467 } 2468 2469 handleShadowOr(I); 2470 } 2471 2472 void visitFCmpInst(FCmpInst &I) { 2473 handleShadowOr(I); 2474 } 2475 2476 void handleShift(BinaryOperator &I) { 2477 IRBuilder<> IRB(&I); 2478 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2479 // Otherwise perform the same shift on S1. 2480 Value *S1 = getShadow(&I, 0); 2481 Value *S2 = getShadow(&I, 1); 2482 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2483 S2->getType()); 2484 Value *V2 = I.getOperand(1); 2485 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2486 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2487 setOriginForNaryOp(I); 2488 } 2489 2490 void visitShl(BinaryOperator &I) { handleShift(I); } 2491 void visitAShr(BinaryOperator &I) { handleShift(I); } 2492 void visitLShr(BinaryOperator &I) { handleShift(I); } 2493 2494 void handleFunnelShift(IntrinsicInst &I) { 2495 IRBuilder<> IRB(&I); 2496 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2497 // Otherwise perform the same shift on S0 and S1. 2498 Value *S0 = getShadow(&I, 0); 2499 Value *S1 = getShadow(&I, 1); 2500 Value *S2 = getShadow(&I, 2); 2501 Value *S2Conv = 2502 IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); 2503 Value *V2 = I.getOperand(2); 2504 Function *Intrin = Intrinsic::getDeclaration( 2505 I.getModule(), I.getIntrinsicID(), S2Conv->getType()); 2506 Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); 2507 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2508 setOriginForNaryOp(I); 2509 } 2510 2511 /// Instrument llvm.memmove 2512 /// 2513 /// At this point we don't know if llvm.memmove will be inlined or not. 2514 /// If we don't instrument it and it gets inlined, 2515 /// our interceptor will not kick in and we will lose the memmove. 2516 /// If we instrument the call here, but it does not get inlined, 2517 /// we will memove the shadow twice: which is bad in case 2518 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2519 /// 2520 /// Similar situation exists for memcpy and memset. 2521 void visitMemMoveInst(MemMoveInst &I) { 2522 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2523 IRBuilder<> IRB(&I); 2524 IRB.CreateCall( 2525 MS.MemmoveFn, 2526 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2527 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2528 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2529 I.eraseFromParent(); 2530 } 2531 2532 // Similar to memmove: avoid copying shadow twice. 2533 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2534 // FIXME: consider doing manual inline for small constant sizes and proper 2535 // alignment. 2536 void visitMemCpyInst(MemCpyInst &I) { 2537 getShadow(I.getArgOperand(1)); // Ensure shadow initialized 2538 IRBuilder<> IRB(&I); 2539 IRB.CreateCall( 2540 MS.MemcpyFn, 2541 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2542 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2543 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2544 I.eraseFromParent(); 2545 } 2546 2547 // Same as memcpy. 2548 void visitMemSetInst(MemSetInst &I) { 2549 IRBuilder<> IRB(&I); 2550 IRB.CreateCall( 2551 MS.MemsetFn, 2552 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2553 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2554 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2555 I.eraseFromParent(); 2556 } 2557 2558 void visitVAStartInst(VAStartInst &I) { 2559 VAHelper->visitVAStartInst(I); 2560 } 2561 2562 void visitVACopyInst(VACopyInst &I) { 2563 VAHelper->visitVACopyInst(I); 2564 } 2565 2566 /// Handle vector store-like intrinsics. 2567 /// 2568 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2569 /// has 1 pointer argument and 1 vector argument, returns void. 2570 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2571 IRBuilder<> IRB(&I); 2572 Value* Addr = I.getArgOperand(0); 2573 Value *Shadow = getShadow(&I, 1); 2574 Value *ShadowPtr, *OriginPtr; 2575 2576 // We don't know the pointer alignment (could be unaligned SSE store!). 2577 // Have to assume to worst case. 2578 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2579 Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); 2580 IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); 2581 2582 if (ClCheckAccessAddress) 2583 insertShadowCheck(Addr, &I); 2584 2585 // FIXME: factor out common code from materializeStores 2586 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2587 return true; 2588 } 2589 2590 /// Handle vector load-like intrinsics. 2591 /// 2592 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2593 /// has 1 pointer argument, returns a vector. 2594 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2595 IRBuilder<> IRB(&I); 2596 Value *Addr = I.getArgOperand(0); 2597 2598 Type *ShadowTy = getShadowTy(&I); 2599 Value *ShadowPtr = nullptr, *OriginPtr = nullptr; 2600 if (PropagateShadow) { 2601 // We don't know the pointer alignment (could be unaligned SSE load!). 2602 // Have to assume to worst case. 2603 const Align Alignment = Align(1); 2604 std::tie(ShadowPtr, OriginPtr) = 2605 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2606 setShadow(&I, 2607 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); 2608 } else { 2609 setShadow(&I, getCleanShadow(&I)); 2610 } 2611 2612 if (ClCheckAccessAddress) 2613 insertShadowCheck(Addr, &I); 2614 2615 if (MS.TrackOrigins) { 2616 if (PropagateShadow) 2617 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); 2618 else 2619 setOrigin(&I, getCleanOrigin()); 2620 } 2621 return true; 2622 } 2623 2624 /// Handle (SIMD arithmetic)-like intrinsics. 2625 /// 2626 /// Instrument intrinsics with any number of arguments of the same type, 2627 /// equal to the return type. The type should be simple (no aggregates or 2628 /// pointers; vectors are fine). 2629 /// Caller guarantees that this intrinsic does not access memory. 2630 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2631 Type *RetTy = I.getType(); 2632 if (!(RetTy->isIntOrIntVectorTy() || 2633 RetTy->isFPOrFPVectorTy() || 2634 RetTy->isX86_MMXTy())) 2635 return false; 2636 2637 unsigned NumArgOperands = I.arg_size(); 2638 for (unsigned i = 0; i < NumArgOperands; ++i) { 2639 Type *Ty = I.getArgOperand(i)->getType(); 2640 if (Ty != RetTy) 2641 return false; 2642 } 2643 2644 IRBuilder<> IRB(&I); 2645 ShadowAndOriginCombiner SC(this, IRB); 2646 for (unsigned i = 0; i < NumArgOperands; ++i) 2647 SC.Add(I.getArgOperand(i)); 2648 SC.Done(&I); 2649 2650 return true; 2651 } 2652 2653 /// Heuristically instrument unknown intrinsics. 2654 /// 2655 /// The main purpose of this code is to do something reasonable with all 2656 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2657 /// We recognize several classes of intrinsics by their argument types and 2658 /// ModRefBehaviour and apply special instrumentation when we are reasonably 2659 /// sure that we know what the intrinsic does. 2660 /// 2661 /// We special-case intrinsics where this approach fails. See llvm.bswap 2662 /// handling as an example of that. 2663 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2664 unsigned NumArgOperands = I.arg_size(); 2665 if (NumArgOperands == 0) 2666 return false; 2667 2668 if (NumArgOperands == 2 && 2669 I.getArgOperand(0)->getType()->isPointerTy() && 2670 I.getArgOperand(1)->getType()->isVectorTy() && 2671 I.getType()->isVoidTy() && 2672 !I.onlyReadsMemory()) { 2673 // This looks like a vector store. 2674 return handleVectorStoreIntrinsic(I); 2675 } 2676 2677 if (NumArgOperands == 1 && 2678 I.getArgOperand(0)->getType()->isPointerTy() && 2679 I.getType()->isVectorTy() && 2680 I.onlyReadsMemory()) { 2681 // This looks like a vector load. 2682 return handleVectorLoadIntrinsic(I); 2683 } 2684 2685 if (I.doesNotAccessMemory()) 2686 if (maybeHandleSimpleNomemIntrinsic(I)) 2687 return true; 2688 2689 // FIXME: detect and handle SSE maskstore/maskload 2690 return false; 2691 } 2692 2693 void handleInvariantGroup(IntrinsicInst &I) { 2694 setShadow(&I, getShadow(&I, 0)); 2695 setOrigin(&I, getOrigin(&I, 0)); 2696 } 2697 2698 void handleLifetimeStart(IntrinsicInst &I) { 2699 if (!PoisonStack) 2700 return; 2701 AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); 2702 if (!AI) 2703 InstrumentLifetimeStart = false; 2704 LifetimeStartList.push_back(std::make_pair(&I, AI)); 2705 } 2706 2707 void handleBswap(IntrinsicInst &I) { 2708 IRBuilder<> IRB(&I); 2709 Value *Op = I.getArgOperand(0); 2710 Type *OpType = Op->getType(); 2711 Function *BswapFunc = Intrinsic::getDeclaration( 2712 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2713 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2714 setOrigin(&I, getOrigin(Op)); 2715 } 2716 2717 // Instrument vector convert intrinsic. 2718 // 2719 // This function instruments intrinsics like cvtsi2ss: 2720 // %Out = int_xxx_cvtyyy(%ConvertOp) 2721 // or 2722 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2723 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2724 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2725 // elements from \p CopyOp. 2726 // In most cases conversion involves floating-point value which may trigger a 2727 // hardware exception when not fully initialized. For this reason we require 2728 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2729 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2730 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2731 // return a fully initialized value. 2732 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, 2733 bool HasRoundingMode = false) { 2734 IRBuilder<> IRB(&I); 2735 Value *CopyOp, *ConvertOp; 2736 2737 assert((!HasRoundingMode || 2738 isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && 2739 "Invalid rounding mode"); 2740 2741 switch (I.arg_size() - HasRoundingMode) { 2742 case 2: 2743 CopyOp = I.getArgOperand(0); 2744 ConvertOp = I.getArgOperand(1); 2745 break; 2746 case 1: 2747 ConvertOp = I.getArgOperand(0); 2748 CopyOp = nullptr; 2749 break; 2750 default: 2751 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2752 } 2753 2754 // The first *NumUsedElements* elements of ConvertOp are converted to the 2755 // same number of output elements. The rest of the output is copied from 2756 // CopyOp, or (if not available) filled with zeroes. 2757 // Combine shadow for elements of ConvertOp that are used in this operation, 2758 // and insert a check. 2759 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2760 // int->any conversion. 2761 Value *ConvertShadow = getShadow(ConvertOp); 2762 Value *AggShadow = nullptr; 2763 if (ConvertOp->getType()->isVectorTy()) { 2764 AggShadow = IRB.CreateExtractElement( 2765 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2766 for (int i = 1; i < NumUsedElements; ++i) { 2767 Value *MoreShadow = IRB.CreateExtractElement( 2768 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2769 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2770 } 2771 } else { 2772 AggShadow = ConvertShadow; 2773 } 2774 assert(AggShadow->getType()->isIntegerTy()); 2775 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2776 2777 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2778 // ConvertOp. 2779 if (CopyOp) { 2780 assert(CopyOp->getType() == I.getType()); 2781 assert(CopyOp->getType()->isVectorTy()); 2782 Value *ResultShadow = getShadow(CopyOp); 2783 Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); 2784 for (int i = 0; i < NumUsedElements; ++i) { 2785 ResultShadow = IRB.CreateInsertElement( 2786 ResultShadow, ConstantInt::getNullValue(EltTy), 2787 ConstantInt::get(IRB.getInt32Ty(), i)); 2788 } 2789 setShadow(&I, ResultShadow); 2790 setOrigin(&I, getOrigin(CopyOp)); 2791 } else { 2792 setShadow(&I, getCleanShadow(&I)); 2793 setOrigin(&I, getCleanOrigin()); 2794 } 2795 } 2796 2797 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2798 // zeroes if it is zero, and all ones otherwise. 2799 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2800 if (S->getType()->isVectorTy()) 2801 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2802 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2803 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2804 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2805 } 2806 2807 // Given a vector, extract its first element, and return all 2808 // zeroes if it is zero, and all ones otherwise. 2809 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2810 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2811 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2812 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2813 } 2814 2815 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2816 Type *T = S->getType(); 2817 assert(T->isVectorTy()); 2818 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2819 return IRB.CreateSExt(S2, T); 2820 } 2821 2822 // Instrument vector shift intrinsic. 2823 // 2824 // This function instruments intrinsics like int_x86_avx2_psll_w. 2825 // Intrinsic shifts %In by %ShiftSize bits. 2826 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2827 // size, and the rest is ignored. Behavior is defined even if shift size is 2828 // greater than register (or field) width. 2829 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2830 assert(I.arg_size() == 2); 2831 IRBuilder<> IRB(&I); 2832 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2833 // Otherwise perform the same shift on S1. 2834 Value *S1 = getShadow(&I, 0); 2835 Value *S2 = getShadow(&I, 1); 2836 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2837 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2838 Value *V1 = I.getOperand(0); 2839 Value *V2 = I.getOperand(1); 2840 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2841 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2842 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2843 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2844 setOriginForNaryOp(I); 2845 } 2846 2847 // Get an X86_MMX-sized vector type. 2848 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2849 const unsigned X86_MMXSizeInBits = 64; 2850 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && 2851 "Illegal MMX vector element size"); 2852 return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2853 X86_MMXSizeInBits / EltSizeInBits); 2854 } 2855 2856 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2857 // intrinsic. 2858 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2859 switch (id) { 2860 case Intrinsic::x86_sse2_packsswb_128: 2861 case Intrinsic::x86_sse2_packuswb_128: 2862 return Intrinsic::x86_sse2_packsswb_128; 2863 2864 case Intrinsic::x86_sse2_packssdw_128: 2865 case Intrinsic::x86_sse41_packusdw: 2866 return Intrinsic::x86_sse2_packssdw_128; 2867 2868 case Intrinsic::x86_avx2_packsswb: 2869 case Intrinsic::x86_avx2_packuswb: 2870 return Intrinsic::x86_avx2_packsswb; 2871 2872 case Intrinsic::x86_avx2_packssdw: 2873 case Intrinsic::x86_avx2_packusdw: 2874 return Intrinsic::x86_avx2_packssdw; 2875 2876 case Intrinsic::x86_mmx_packsswb: 2877 case Intrinsic::x86_mmx_packuswb: 2878 return Intrinsic::x86_mmx_packsswb; 2879 2880 case Intrinsic::x86_mmx_packssdw: 2881 return Intrinsic::x86_mmx_packssdw; 2882 default: 2883 llvm_unreachable("unexpected intrinsic id"); 2884 } 2885 } 2886 2887 // Instrument vector pack intrinsic. 2888 // 2889 // This function instruments intrinsics like x86_mmx_packsswb, that 2890 // packs elements of 2 input vectors into half as many bits with saturation. 2891 // Shadow is propagated with the signed variant of the same intrinsic applied 2892 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2893 // EltSizeInBits is used only for x86mmx arguments. 2894 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2895 assert(I.arg_size() == 2); 2896 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2897 IRBuilder<> IRB(&I); 2898 Value *S1 = getShadow(&I, 0); 2899 Value *S2 = getShadow(&I, 1); 2900 assert(isX86_MMX || S1->getType()->isVectorTy()); 2901 2902 // SExt and ICmpNE below must apply to individual elements of input vectors. 2903 // In case of x86mmx arguments, cast them to appropriate vector types and 2904 // back. 2905 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2906 if (isX86_MMX) { 2907 S1 = IRB.CreateBitCast(S1, T); 2908 S2 = IRB.CreateBitCast(S2, T); 2909 } 2910 Value *S1_ext = IRB.CreateSExt( 2911 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2912 Value *S2_ext = IRB.CreateSExt( 2913 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2914 if (isX86_MMX) { 2915 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2916 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2917 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2918 } 2919 2920 Function *ShadowFn = Intrinsic::getDeclaration( 2921 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2922 2923 Value *S = 2924 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2925 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2926 setShadow(&I, S); 2927 setOriginForNaryOp(I); 2928 } 2929 2930 // Instrument sum-of-absolute-differences intrinsic. 2931 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2932 const unsigned SignificantBitsPerResultElement = 16; 2933 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2934 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2935 unsigned ZeroBitsPerResultElement = 2936 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2937 2938 IRBuilder<> IRB(&I); 2939 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2940 S = IRB.CreateBitCast(S, ResTy); 2941 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2942 ResTy); 2943 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2944 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2945 setShadow(&I, S); 2946 setOriginForNaryOp(I); 2947 } 2948 2949 // Instrument multiply-add intrinsic. 2950 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2951 unsigned EltSizeInBits = 0) { 2952 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2953 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2954 IRBuilder<> IRB(&I); 2955 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2956 S = IRB.CreateBitCast(S, ResTy); 2957 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2958 ResTy); 2959 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2960 setShadow(&I, S); 2961 setOriginForNaryOp(I); 2962 } 2963 2964 // Instrument compare-packed intrinsic. 2965 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2966 // all-ones shadow. 2967 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2968 IRBuilder<> IRB(&I); 2969 Type *ResTy = getShadowTy(&I); 2970 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2971 Value *S = IRB.CreateSExt( 2972 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2973 setShadow(&I, S); 2974 setOriginForNaryOp(I); 2975 } 2976 2977 // Instrument compare-scalar intrinsic. 2978 // This handles both cmp* intrinsics which return the result in the first 2979 // element of a vector, and comi* which return the result as i32. 2980 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2981 IRBuilder<> IRB(&I); 2982 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2983 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2984 setShadow(&I, S); 2985 setOriginForNaryOp(I); 2986 } 2987 2988 // Instrument generic vector reduction intrinsics 2989 // by ORing together all their fields. 2990 void handleVectorReduceIntrinsic(IntrinsicInst &I) { 2991 IRBuilder<> IRB(&I); 2992 Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); 2993 setShadow(&I, S); 2994 setOrigin(&I, getOrigin(&I, 0)); 2995 } 2996 2997 // Instrument vector.reduce.or intrinsic. 2998 // Valid (non-poisoned) set bits in the operand pull low the 2999 // corresponding shadow bits. 3000 void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { 3001 IRBuilder<> IRB(&I); 3002 Value *OperandShadow = getShadow(&I, 0); 3003 Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); 3004 Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); 3005 // Bit N is clean if any field's bit N is 1 and unpoison 3006 Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); 3007 // Otherwise, it is clean if every field's bit N is unpoison 3008 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3009 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3010 3011 setShadow(&I, S); 3012 setOrigin(&I, getOrigin(&I, 0)); 3013 } 3014 3015 // Instrument vector.reduce.and intrinsic. 3016 // Valid (non-poisoned) unset bits in the operand pull down the 3017 // corresponding shadow bits. 3018 void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { 3019 IRBuilder<> IRB(&I); 3020 Value *OperandShadow = getShadow(&I, 0); 3021 Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); 3022 // Bit N is clean if any field's bit N is 0 and unpoison 3023 Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); 3024 // Otherwise, it is clean if every field's bit N is unpoison 3025 Value *OrShadow = IRB.CreateOrReduce(OperandShadow); 3026 Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); 3027 3028 setShadow(&I, S); 3029 setOrigin(&I, getOrigin(&I, 0)); 3030 } 3031 3032 void handleStmxcsr(IntrinsicInst &I) { 3033 IRBuilder<> IRB(&I); 3034 Value* Addr = I.getArgOperand(0); 3035 Type *Ty = IRB.getInt32Ty(); 3036 Value *ShadowPtr = 3037 getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; 3038 3039 IRB.CreateStore(getCleanShadow(Ty), 3040 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 3041 3042 if (ClCheckAccessAddress) 3043 insertShadowCheck(Addr, &I); 3044 } 3045 3046 void handleLdmxcsr(IntrinsicInst &I) { 3047 if (!InsertChecks) return; 3048 3049 IRBuilder<> IRB(&I); 3050 Value *Addr = I.getArgOperand(0); 3051 Type *Ty = IRB.getInt32Ty(); 3052 const Align Alignment = Align(1); 3053 Value *ShadowPtr, *OriginPtr; 3054 std::tie(ShadowPtr, OriginPtr) = 3055 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 3056 3057 if (ClCheckAccessAddress) 3058 insertShadowCheck(Addr, &I); 3059 3060 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); 3061 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) 3062 : getCleanOrigin(); 3063 insertShadowCheck(Shadow, Origin, &I); 3064 } 3065 3066 void handleMaskedStore(IntrinsicInst &I) { 3067 IRBuilder<> IRB(&I); 3068 Value *V = I.getArgOperand(0); 3069 Value *Addr = I.getArgOperand(1); 3070 const Align Alignment( 3071 cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 3072 Value *Mask = I.getArgOperand(3); 3073 Value *Shadow = getShadow(V); 3074 3075 Value *ShadowPtr; 3076 Value *OriginPtr; 3077 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 3078 Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); 3079 3080 if (ClCheckAccessAddress) { 3081 insertShadowCheck(Addr, &I); 3082 // Uninitialized mask is kind of like uninitialized address, but not as 3083 // scary. 3084 insertShadowCheck(Mask, &I); 3085 } 3086 3087 IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); 3088 3089 if (MS.TrackOrigins) { 3090 auto &DL = F.getParent()->getDataLayout(); 3091 paintOrigin(IRB, getOrigin(V), OriginPtr, 3092 DL.getTypeStoreSize(Shadow->getType()), 3093 std::max(Alignment, kMinOriginAlignment)); 3094 } 3095 } 3096 3097 bool handleMaskedLoad(IntrinsicInst &I) { 3098 IRBuilder<> IRB(&I); 3099 Value *Addr = I.getArgOperand(0); 3100 const Align Alignment( 3101 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 3102 Value *Mask = I.getArgOperand(2); 3103 Value *PassThru = I.getArgOperand(3); 3104 3105 Type *ShadowTy = getShadowTy(&I); 3106 Value *ShadowPtr, *OriginPtr; 3107 if (PropagateShadow) { 3108 std::tie(ShadowPtr, OriginPtr) = 3109 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 3110 setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, 3111 getShadow(PassThru), "_msmaskedld")); 3112 } else { 3113 setShadow(&I, getCleanShadow(&I)); 3114 } 3115 3116 if (ClCheckAccessAddress) { 3117 insertShadowCheck(Addr, &I); 3118 insertShadowCheck(Mask, &I); 3119 } 3120 3121 if (MS.TrackOrigins) { 3122 if (PropagateShadow) { 3123 // Choose between PassThru's and the loaded value's origins. 3124 Value *MaskedPassThruShadow = IRB.CreateAnd( 3125 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 3126 3127 Value *Acc = IRB.CreateExtractElement( 3128 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 3129 for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) 3130 ->getNumElements(); 3131 i < N; ++i) { 3132 Value *More = IRB.CreateExtractElement( 3133 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 3134 Acc = IRB.CreateOr(Acc, More); 3135 } 3136 3137 Value *Origin = IRB.CreateSelect( 3138 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 3139 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); 3140 3141 setOrigin(&I, Origin); 3142 } else { 3143 setOrigin(&I, getCleanOrigin()); 3144 } 3145 } 3146 return true; 3147 } 3148 3149 // Instrument BMI / BMI2 intrinsics. 3150 // All of these intrinsics are Z = I(X, Y) 3151 // where the types of all operands and the result match, and are either i32 or i64. 3152 // The following instrumentation happens to work for all of them: 3153 // Sz = I(Sx, Y) | (sext (Sy != 0)) 3154 void handleBmiIntrinsic(IntrinsicInst &I) { 3155 IRBuilder<> IRB(&I); 3156 Type *ShadowTy = getShadowTy(&I); 3157 3158 // If any bit of the mask operand is poisoned, then the whole thing is. 3159 Value *SMask = getShadow(&I, 1); 3160 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), 3161 ShadowTy); 3162 // Apply the same intrinsic to the shadow of the first operand. 3163 Value *S = IRB.CreateCall(I.getCalledFunction(), 3164 {getShadow(&I, 0), I.getOperand(1)}); 3165 S = IRB.CreateOr(SMask, S); 3166 setShadow(&I, S); 3167 setOriginForNaryOp(I); 3168 } 3169 3170 SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { 3171 SmallVector<int, 8> Mask; 3172 for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { 3173 Mask.append(2, X); 3174 } 3175 return Mask; 3176 } 3177 3178 // Instrument pclmul intrinsics. 3179 // These intrinsics operate either on odd or on even elements of the input 3180 // vectors, depending on the constant in the 3rd argument, ignoring the rest. 3181 // Replace the unused elements with copies of the used ones, ex: 3182 // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) 3183 // or 3184 // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) 3185 // and then apply the usual shadow combining logic. 3186 void handlePclmulIntrinsic(IntrinsicInst &I) { 3187 IRBuilder<> IRB(&I); 3188 unsigned Width = 3189 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3190 assert(isa<ConstantInt>(I.getArgOperand(2)) && 3191 "pclmul 3rd operand must be a constant"); 3192 unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3193 Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), 3194 getPclmulMask(Width, Imm & 0x01)); 3195 Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), 3196 getPclmulMask(Width, Imm & 0x10)); 3197 ShadowAndOriginCombiner SOC(this, IRB); 3198 SOC.Add(Shuf0, getOrigin(&I, 0)); 3199 SOC.Add(Shuf1, getOrigin(&I, 1)); 3200 SOC.Done(&I); 3201 } 3202 3203 // Instrument _mm_*_sd|ss intrinsics 3204 void handleUnarySdSsIntrinsic(IntrinsicInst &I) { 3205 IRBuilder<> IRB(&I); 3206 unsigned Width = 3207 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3208 Value *First = getShadow(&I, 0); 3209 Value *Second = getShadow(&I, 1); 3210 // First element of second operand, remaining elements of first operand 3211 SmallVector<int, 16> Mask; 3212 Mask.push_back(Width); 3213 for (unsigned i = 1; i < Width; i++) 3214 Mask.push_back(i); 3215 Value *Shadow = IRB.CreateShuffleVector(First, Second, Mask); 3216 3217 setShadow(&I, Shadow); 3218 setOriginForNaryOp(I); 3219 } 3220 3221 void handleBinarySdSsIntrinsic(IntrinsicInst &I) { 3222 IRBuilder<> IRB(&I); 3223 unsigned Width = 3224 cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); 3225 Value *First = getShadow(&I, 0); 3226 Value *Second = getShadow(&I, 1); 3227 Value *OrShadow = IRB.CreateOr(First, Second); 3228 // First element of both OR'd together, remaining elements of first operand 3229 SmallVector<int, 16> Mask; 3230 Mask.push_back(Width); 3231 for (unsigned i = 1; i < Width; i++) 3232 Mask.push_back(i); 3233 Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, Mask); 3234 3235 setShadow(&I, Shadow); 3236 setOriginForNaryOp(I); 3237 } 3238 3239 // Instrument abs intrinsic. 3240 // handleUnknownIntrinsic can't handle it because of the last 3241 // is_int_min_poison argument which does not match the result type. 3242 void handleAbsIntrinsic(IntrinsicInst &I) { 3243 assert(I.getType()->isIntOrIntVectorTy()); 3244 assert(I.getArgOperand(0)->getType() == I.getType()); 3245 3246 // FIXME: Handle is_int_min_poison. 3247 IRBuilder<> IRB(&I); 3248 setShadow(&I, getShadow(&I, 0)); 3249 setOrigin(&I, getOrigin(&I, 0)); 3250 } 3251 3252 void visitIntrinsicInst(IntrinsicInst &I) { 3253 switch (I.getIntrinsicID()) { 3254 case Intrinsic::abs: 3255 handleAbsIntrinsic(I); 3256 break; 3257 case Intrinsic::lifetime_start: 3258 handleLifetimeStart(I); 3259 break; 3260 case Intrinsic::launder_invariant_group: 3261 case Intrinsic::strip_invariant_group: 3262 handleInvariantGroup(I); 3263 break; 3264 case Intrinsic::bswap: 3265 handleBswap(I); 3266 break; 3267 case Intrinsic::masked_store: 3268 handleMaskedStore(I); 3269 break; 3270 case Intrinsic::masked_load: 3271 handleMaskedLoad(I); 3272 break; 3273 case Intrinsic::vector_reduce_and: 3274 handleVectorReduceAndIntrinsic(I); 3275 break; 3276 case Intrinsic::vector_reduce_or: 3277 handleVectorReduceOrIntrinsic(I); 3278 break; 3279 case Intrinsic::vector_reduce_add: 3280 case Intrinsic::vector_reduce_xor: 3281 case Intrinsic::vector_reduce_mul: 3282 handleVectorReduceIntrinsic(I); 3283 break; 3284 case Intrinsic::x86_sse_stmxcsr: 3285 handleStmxcsr(I); 3286 break; 3287 case Intrinsic::x86_sse_ldmxcsr: 3288 handleLdmxcsr(I); 3289 break; 3290 case Intrinsic::x86_avx512_vcvtsd2usi64: 3291 case Intrinsic::x86_avx512_vcvtsd2usi32: 3292 case Intrinsic::x86_avx512_vcvtss2usi64: 3293 case Intrinsic::x86_avx512_vcvtss2usi32: 3294 case Intrinsic::x86_avx512_cvttss2usi64: 3295 case Intrinsic::x86_avx512_cvttss2usi: 3296 case Intrinsic::x86_avx512_cvttsd2usi64: 3297 case Intrinsic::x86_avx512_cvttsd2usi: 3298 case Intrinsic::x86_avx512_cvtusi2ss: 3299 case Intrinsic::x86_avx512_cvtusi642sd: 3300 case Intrinsic::x86_avx512_cvtusi642ss: 3301 handleVectorConvertIntrinsic(I, 1, true); 3302 break; 3303 case Intrinsic::x86_sse2_cvtsd2si64: 3304 case Intrinsic::x86_sse2_cvtsd2si: 3305 case Intrinsic::x86_sse2_cvtsd2ss: 3306 case Intrinsic::x86_sse2_cvttsd2si64: 3307 case Intrinsic::x86_sse2_cvttsd2si: 3308 case Intrinsic::x86_sse_cvtss2si64: 3309 case Intrinsic::x86_sse_cvtss2si: 3310 case Intrinsic::x86_sse_cvttss2si64: 3311 case Intrinsic::x86_sse_cvttss2si: 3312 handleVectorConvertIntrinsic(I, 1); 3313 break; 3314 case Intrinsic::x86_sse_cvtps2pi: 3315 case Intrinsic::x86_sse_cvttps2pi: 3316 handleVectorConvertIntrinsic(I, 2); 3317 break; 3318 3319 case Intrinsic::x86_avx512_psll_w_512: 3320 case Intrinsic::x86_avx512_psll_d_512: 3321 case Intrinsic::x86_avx512_psll_q_512: 3322 case Intrinsic::x86_avx512_pslli_w_512: 3323 case Intrinsic::x86_avx512_pslli_d_512: 3324 case Intrinsic::x86_avx512_pslli_q_512: 3325 case Intrinsic::x86_avx512_psrl_w_512: 3326 case Intrinsic::x86_avx512_psrl_d_512: 3327 case Intrinsic::x86_avx512_psrl_q_512: 3328 case Intrinsic::x86_avx512_psra_w_512: 3329 case Intrinsic::x86_avx512_psra_d_512: 3330 case Intrinsic::x86_avx512_psra_q_512: 3331 case Intrinsic::x86_avx512_psrli_w_512: 3332 case Intrinsic::x86_avx512_psrli_d_512: 3333 case Intrinsic::x86_avx512_psrli_q_512: 3334 case Intrinsic::x86_avx512_psrai_w_512: 3335 case Intrinsic::x86_avx512_psrai_d_512: 3336 case Intrinsic::x86_avx512_psrai_q_512: 3337 case Intrinsic::x86_avx512_psra_q_256: 3338 case Intrinsic::x86_avx512_psra_q_128: 3339 case Intrinsic::x86_avx512_psrai_q_256: 3340 case Intrinsic::x86_avx512_psrai_q_128: 3341 case Intrinsic::x86_avx2_psll_w: 3342 case Intrinsic::x86_avx2_psll_d: 3343 case Intrinsic::x86_avx2_psll_q: 3344 case Intrinsic::x86_avx2_pslli_w: 3345 case Intrinsic::x86_avx2_pslli_d: 3346 case Intrinsic::x86_avx2_pslli_q: 3347 case Intrinsic::x86_avx2_psrl_w: 3348 case Intrinsic::x86_avx2_psrl_d: 3349 case Intrinsic::x86_avx2_psrl_q: 3350 case Intrinsic::x86_avx2_psra_w: 3351 case Intrinsic::x86_avx2_psra_d: 3352 case Intrinsic::x86_avx2_psrli_w: 3353 case Intrinsic::x86_avx2_psrli_d: 3354 case Intrinsic::x86_avx2_psrli_q: 3355 case Intrinsic::x86_avx2_psrai_w: 3356 case Intrinsic::x86_avx2_psrai_d: 3357 case Intrinsic::x86_sse2_psll_w: 3358 case Intrinsic::x86_sse2_psll_d: 3359 case Intrinsic::x86_sse2_psll_q: 3360 case Intrinsic::x86_sse2_pslli_w: 3361 case Intrinsic::x86_sse2_pslli_d: 3362 case Intrinsic::x86_sse2_pslli_q: 3363 case Intrinsic::x86_sse2_psrl_w: 3364 case Intrinsic::x86_sse2_psrl_d: 3365 case Intrinsic::x86_sse2_psrl_q: 3366 case Intrinsic::x86_sse2_psra_w: 3367 case Intrinsic::x86_sse2_psra_d: 3368 case Intrinsic::x86_sse2_psrli_w: 3369 case Intrinsic::x86_sse2_psrli_d: 3370 case Intrinsic::x86_sse2_psrli_q: 3371 case Intrinsic::x86_sse2_psrai_w: 3372 case Intrinsic::x86_sse2_psrai_d: 3373 case Intrinsic::x86_mmx_psll_w: 3374 case Intrinsic::x86_mmx_psll_d: 3375 case Intrinsic::x86_mmx_psll_q: 3376 case Intrinsic::x86_mmx_pslli_w: 3377 case Intrinsic::x86_mmx_pslli_d: 3378 case Intrinsic::x86_mmx_pslli_q: 3379 case Intrinsic::x86_mmx_psrl_w: 3380 case Intrinsic::x86_mmx_psrl_d: 3381 case Intrinsic::x86_mmx_psrl_q: 3382 case Intrinsic::x86_mmx_psra_w: 3383 case Intrinsic::x86_mmx_psra_d: 3384 case Intrinsic::x86_mmx_psrli_w: 3385 case Intrinsic::x86_mmx_psrli_d: 3386 case Intrinsic::x86_mmx_psrli_q: 3387 case Intrinsic::x86_mmx_psrai_w: 3388 case Intrinsic::x86_mmx_psrai_d: 3389 handleVectorShiftIntrinsic(I, /* Variable */ false); 3390 break; 3391 case Intrinsic::x86_avx2_psllv_d: 3392 case Intrinsic::x86_avx2_psllv_d_256: 3393 case Intrinsic::x86_avx512_psllv_d_512: 3394 case Intrinsic::x86_avx2_psllv_q: 3395 case Intrinsic::x86_avx2_psllv_q_256: 3396 case Intrinsic::x86_avx512_psllv_q_512: 3397 case Intrinsic::x86_avx2_psrlv_d: 3398 case Intrinsic::x86_avx2_psrlv_d_256: 3399 case Intrinsic::x86_avx512_psrlv_d_512: 3400 case Intrinsic::x86_avx2_psrlv_q: 3401 case Intrinsic::x86_avx2_psrlv_q_256: 3402 case Intrinsic::x86_avx512_psrlv_q_512: 3403 case Intrinsic::x86_avx2_psrav_d: 3404 case Intrinsic::x86_avx2_psrav_d_256: 3405 case Intrinsic::x86_avx512_psrav_d_512: 3406 case Intrinsic::x86_avx512_psrav_q_128: 3407 case Intrinsic::x86_avx512_psrav_q_256: 3408 case Intrinsic::x86_avx512_psrav_q_512: 3409 handleVectorShiftIntrinsic(I, /* Variable */ true); 3410 break; 3411 3412 case Intrinsic::x86_sse2_packsswb_128: 3413 case Intrinsic::x86_sse2_packssdw_128: 3414 case Intrinsic::x86_sse2_packuswb_128: 3415 case Intrinsic::x86_sse41_packusdw: 3416 case Intrinsic::x86_avx2_packsswb: 3417 case Intrinsic::x86_avx2_packssdw: 3418 case Intrinsic::x86_avx2_packuswb: 3419 case Intrinsic::x86_avx2_packusdw: 3420 handleVectorPackIntrinsic(I); 3421 break; 3422 3423 case Intrinsic::x86_mmx_packsswb: 3424 case Intrinsic::x86_mmx_packuswb: 3425 handleVectorPackIntrinsic(I, 16); 3426 break; 3427 3428 case Intrinsic::x86_mmx_packssdw: 3429 handleVectorPackIntrinsic(I, 32); 3430 break; 3431 3432 case Intrinsic::x86_mmx_psad_bw: 3433 case Intrinsic::x86_sse2_psad_bw: 3434 case Intrinsic::x86_avx2_psad_bw: 3435 handleVectorSadIntrinsic(I); 3436 break; 3437 3438 case Intrinsic::x86_sse2_pmadd_wd: 3439 case Intrinsic::x86_avx2_pmadd_wd: 3440 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3441 case Intrinsic::x86_avx2_pmadd_ub_sw: 3442 handleVectorPmaddIntrinsic(I); 3443 break; 3444 3445 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3446 handleVectorPmaddIntrinsic(I, 8); 3447 break; 3448 3449 case Intrinsic::x86_mmx_pmadd_wd: 3450 handleVectorPmaddIntrinsic(I, 16); 3451 break; 3452 3453 case Intrinsic::x86_sse_cmp_ss: 3454 case Intrinsic::x86_sse2_cmp_sd: 3455 case Intrinsic::x86_sse_comieq_ss: 3456 case Intrinsic::x86_sse_comilt_ss: 3457 case Intrinsic::x86_sse_comile_ss: 3458 case Intrinsic::x86_sse_comigt_ss: 3459 case Intrinsic::x86_sse_comige_ss: 3460 case Intrinsic::x86_sse_comineq_ss: 3461 case Intrinsic::x86_sse_ucomieq_ss: 3462 case Intrinsic::x86_sse_ucomilt_ss: 3463 case Intrinsic::x86_sse_ucomile_ss: 3464 case Intrinsic::x86_sse_ucomigt_ss: 3465 case Intrinsic::x86_sse_ucomige_ss: 3466 case Intrinsic::x86_sse_ucomineq_ss: 3467 case Intrinsic::x86_sse2_comieq_sd: 3468 case Intrinsic::x86_sse2_comilt_sd: 3469 case Intrinsic::x86_sse2_comile_sd: 3470 case Intrinsic::x86_sse2_comigt_sd: 3471 case Intrinsic::x86_sse2_comige_sd: 3472 case Intrinsic::x86_sse2_comineq_sd: 3473 case Intrinsic::x86_sse2_ucomieq_sd: 3474 case Intrinsic::x86_sse2_ucomilt_sd: 3475 case Intrinsic::x86_sse2_ucomile_sd: 3476 case Intrinsic::x86_sse2_ucomigt_sd: 3477 case Intrinsic::x86_sse2_ucomige_sd: 3478 case Intrinsic::x86_sse2_ucomineq_sd: 3479 handleVectorCompareScalarIntrinsic(I); 3480 break; 3481 3482 case Intrinsic::x86_sse_cmp_ps: 3483 case Intrinsic::x86_sse2_cmp_pd: 3484 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3485 // generates reasonably looking IR that fails in the backend with "Do not 3486 // know how to split the result of this operator!". 3487 handleVectorComparePackedIntrinsic(I); 3488 break; 3489 3490 case Intrinsic::x86_bmi_bextr_32: 3491 case Intrinsic::x86_bmi_bextr_64: 3492 case Intrinsic::x86_bmi_bzhi_32: 3493 case Intrinsic::x86_bmi_bzhi_64: 3494 case Intrinsic::x86_bmi_pdep_32: 3495 case Intrinsic::x86_bmi_pdep_64: 3496 case Intrinsic::x86_bmi_pext_32: 3497 case Intrinsic::x86_bmi_pext_64: 3498 handleBmiIntrinsic(I); 3499 break; 3500 3501 case Intrinsic::x86_pclmulqdq: 3502 case Intrinsic::x86_pclmulqdq_256: 3503 case Intrinsic::x86_pclmulqdq_512: 3504 handlePclmulIntrinsic(I); 3505 break; 3506 3507 case Intrinsic::x86_sse41_round_sd: 3508 case Intrinsic::x86_sse41_round_ss: 3509 handleUnarySdSsIntrinsic(I); 3510 break; 3511 case Intrinsic::x86_sse2_max_sd: 3512 case Intrinsic::x86_sse_max_ss: 3513 case Intrinsic::x86_sse2_min_sd: 3514 case Intrinsic::x86_sse_min_ss: 3515 handleBinarySdSsIntrinsic(I); 3516 break; 3517 3518 case Intrinsic::fshl: 3519 case Intrinsic::fshr: 3520 handleFunnelShift(I); 3521 break; 3522 3523 case Intrinsic::is_constant: 3524 // The result of llvm.is.constant() is always defined. 3525 setShadow(&I, getCleanShadow(&I)); 3526 setOrigin(&I, getCleanOrigin()); 3527 break; 3528 3529 default: 3530 if (!handleUnknownIntrinsic(I)) 3531 visitInstruction(I); 3532 break; 3533 } 3534 } 3535 3536 void visitLibAtomicLoad(CallBase &CB) { 3537 // Since we use getNextNode here, we can't have CB terminate the BB. 3538 assert(isa<CallInst>(CB)); 3539 3540 IRBuilder<> IRB(&CB); 3541 Value *Size = CB.getArgOperand(0); 3542 Value *SrcPtr = CB.getArgOperand(1); 3543 Value *DstPtr = CB.getArgOperand(2); 3544 Value *Ordering = CB.getArgOperand(3); 3545 // Convert the call to have at least Acquire ordering to make sure 3546 // the shadow operations aren't reordered before it. 3547 Value *NewOrdering = 3548 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); 3549 CB.setArgOperand(3, NewOrdering); 3550 3551 IRBuilder<> NextIRB(CB.getNextNode()); 3552 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); 3553 3554 Value *SrcShadowPtr, *SrcOriginPtr; 3555 std::tie(SrcShadowPtr, SrcOriginPtr) = 3556 getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3557 /*isStore*/ false); 3558 Value *DstShadowPtr = 3559 getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), 3560 /*isStore*/ true) 3561 .first; 3562 3563 NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); 3564 if (MS.TrackOrigins) { 3565 Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, 3566 kMinOriginAlignment); 3567 Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); 3568 NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); 3569 } 3570 } 3571 3572 void visitLibAtomicStore(CallBase &CB) { 3573 IRBuilder<> IRB(&CB); 3574 Value *Size = CB.getArgOperand(0); 3575 Value *DstPtr = CB.getArgOperand(2); 3576 Value *Ordering = CB.getArgOperand(3); 3577 // Convert the call to have at least Release ordering to make sure 3578 // the shadow operations aren't reordered after it. 3579 Value *NewOrdering = 3580 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); 3581 CB.setArgOperand(3, NewOrdering); 3582 3583 Value *DstShadowPtr = 3584 getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), 3585 /*isStore*/ true) 3586 .first; 3587 3588 // Atomic store always paints clean shadow/origin. See file header. 3589 IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, 3590 Align(1)); 3591 } 3592 3593 void visitCallBase(CallBase &CB) { 3594 assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); 3595 if (CB.isInlineAsm()) { 3596 // For inline asm (either a call to asm function, or callbr instruction), 3597 // do the usual thing: check argument shadow and mark all outputs as 3598 // clean. Note that any side effects of the inline asm that are not 3599 // immediately visible in its constraints are not handled. 3600 if (ClHandleAsmConservative && MS.CompileKernel) 3601 visitAsmInstruction(CB); 3602 else 3603 visitInstruction(CB); 3604 return; 3605 } 3606 LibFunc LF; 3607 if (TLI->getLibFunc(CB, LF)) { 3608 // libatomic.a functions need to have special handling because there isn't 3609 // a good way to intercept them or compile the library with 3610 // instrumentation. 3611 switch (LF) { 3612 case LibFunc_atomic_load: 3613 if (!isa<CallInst>(CB)) { 3614 llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." 3615 "Ignoring!\n"; 3616 break; 3617 } 3618 visitLibAtomicLoad(CB); 3619 return; 3620 case LibFunc_atomic_store: 3621 visitLibAtomicStore(CB); 3622 return; 3623 default: 3624 break; 3625 } 3626 } 3627 3628 if (auto *Call = dyn_cast<CallInst>(&CB)) { 3629 assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); 3630 3631 // We are going to insert code that relies on the fact that the callee 3632 // will become a non-readonly function after it is instrumented by us. To 3633 // prevent this code from being optimized out, mark that function 3634 // non-readonly in advance. 3635 AttributeMask B; 3636 B.addAttribute(Attribute::ReadOnly) 3637 .addAttribute(Attribute::ReadNone) 3638 .addAttribute(Attribute::WriteOnly) 3639 .addAttribute(Attribute::ArgMemOnly) 3640 .addAttribute(Attribute::Speculatable); 3641 3642 Call->removeFnAttrs(B); 3643 if (Function *Func = Call->getCalledFunction()) { 3644 Func->removeFnAttrs(B); 3645 } 3646 3647 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3648 } 3649 IRBuilder<> IRB(&CB); 3650 bool MayCheckCall = MS.EagerChecks; 3651 if (Function *Func = CB.getCalledFunction()) { 3652 // __sanitizer_unaligned_{load,store} functions may be called by users 3653 // and always expects shadows in the TLS. So don't check them. 3654 MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); 3655 } 3656 3657 unsigned ArgOffset = 0; 3658 LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); 3659 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 3660 ++ArgIt) { 3661 Value *A = *ArgIt; 3662 unsigned i = ArgIt - CB.arg_begin(); 3663 if (!A->getType()->isSized()) { 3664 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); 3665 continue; 3666 } 3667 unsigned Size = 0; 3668 const DataLayout &DL = F.getParent()->getDataLayout(); 3669 3670 bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); 3671 bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); 3672 bool EagerCheck = MayCheckCall && !ByVal && NoUndef; 3673 3674 if (EagerCheck) { 3675 insertShadowCheck(A, &CB); 3676 Size = DL.getTypeAllocSize(A->getType()); 3677 } else { 3678 Value *Store = nullptr; 3679 // Compute the Shadow for arg even if it is ByVal, because 3680 // in that case getShadow() will copy the actual arg shadow to 3681 // __msan_param_tls. 3682 Value *ArgShadow = getShadow(A); 3683 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3684 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3685 << " Shadow: " << *ArgShadow << "\n"); 3686 if (ByVal) { 3687 // ByVal requires some special handling as it's too big for a single 3688 // load 3689 assert(A->getType()->isPointerTy() && 3690 "ByVal argument is not a pointer!"); 3691 Size = DL.getTypeAllocSize(CB.getParamByValType(i)); 3692 if (ArgOffset + Size > kParamTLSSize) 3693 break; 3694 const MaybeAlign ParamAlignment(CB.getParamAlign(i)); 3695 MaybeAlign Alignment = llvm::None; 3696 if (ParamAlignment) 3697 Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); 3698 Value *AShadowPtr, *AOriginPtr; 3699 std::tie(AShadowPtr, AOriginPtr) = 3700 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3701 /*isStore*/ false); 3702 if (!PropagateShadow) { 3703 Store = IRB.CreateMemSet(ArgShadowBase, 3704 Constant::getNullValue(IRB.getInt8Ty()), 3705 Size, Alignment); 3706 } else { 3707 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3708 Alignment, Size); 3709 if (MS.TrackOrigins) { 3710 Value *ArgOriginBase = getOriginPtrForArgument(A, IRB, ArgOffset); 3711 // FIXME: OriginSize should be: 3712 // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) 3713 unsigned OriginSize = alignTo(Size, kMinOriginAlignment); 3714 IRB.CreateMemCpy( 3715 ArgOriginBase, 3716 /* by origin_tls[ArgOffset] */ kMinOriginAlignment, 3717 AOriginPtr, 3718 /* by getShadowOriginPtr */ kMinOriginAlignment, OriginSize); 3719 } 3720 } 3721 } else { 3722 // Any other parameters mean we need bit-grained tracking of uninit 3723 // data 3724 Size = DL.getTypeAllocSize(A->getType()); 3725 if (ArgOffset + Size > kParamTLSSize) 3726 break; 3727 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3728 kShadowTLSAlignment); 3729 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3730 if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { 3731 IRB.CreateStore(getOrigin(A), 3732 getOriginPtrForArgument(A, IRB, ArgOffset)); 3733 } 3734 } 3735 (void)Store; 3736 assert(Store != nullptr); 3737 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3738 } 3739 assert(Size != 0); 3740 ArgOffset += alignTo(Size, kShadowTLSAlignment); 3741 } 3742 LLVM_DEBUG(dbgs() << " done with call args\n"); 3743 3744 FunctionType *FT = CB.getFunctionType(); 3745 if (FT->isVarArg()) { 3746 VAHelper->visitCallBase(CB, IRB); 3747 } 3748 3749 // Now, get the shadow for the RetVal. 3750 if (!CB.getType()->isSized()) 3751 return; 3752 // Don't emit the epilogue for musttail call returns. 3753 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 3754 return; 3755 3756 if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { 3757 setShadow(&CB, getCleanShadow(&CB)); 3758 setOrigin(&CB, getCleanOrigin()); 3759 return; 3760 } 3761 3762 IRBuilder<> IRBBefore(&CB); 3763 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3764 Value *Base = getShadowPtrForRetval(&CB, IRBBefore); 3765 IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, 3766 kShadowTLSAlignment); 3767 BasicBlock::iterator NextInsn; 3768 if (isa<CallInst>(CB)) { 3769 NextInsn = ++CB.getIterator(); 3770 assert(NextInsn != CB.getParent()->end()); 3771 } else { 3772 BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); 3773 if (!NormalDest->getSinglePredecessor()) { 3774 // FIXME: this case is tricky, so we are just conservative here. 3775 // Perhaps we need to split the edge between this BB and NormalDest, 3776 // but a naive attempt to use SplitEdge leads to a crash. 3777 setShadow(&CB, getCleanShadow(&CB)); 3778 setOrigin(&CB, getCleanOrigin()); 3779 return; 3780 } 3781 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3782 // Anything inserted there will be instrumented by MSan later! 3783 NextInsn = NormalDest->getFirstInsertionPt(); 3784 assert(NextInsn != NormalDest->end() && 3785 "Could not find insertion point for retval shadow load"); 3786 } 3787 IRBuilder<> IRBAfter(&*NextInsn); 3788 Value *RetvalShadow = IRBAfter.CreateAlignedLoad( 3789 getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), 3790 kShadowTLSAlignment, "_msret"); 3791 setShadow(&CB, RetvalShadow); 3792 if (MS.TrackOrigins) 3793 setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, 3794 getOriginPtrForRetval(IRBAfter))); 3795 } 3796 3797 bool isAMustTailRetVal(Value *RetVal) { 3798 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3799 RetVal = I->getOperand(0); 3800 } 3801 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3802 return I->isMustTailCall(); 3803 } 3804 return false; 3805 } 3806 3807 void visitReturnInst(ReturnInst &I) { 3808 IRBuilder<> IRB(&I); 3809 Value *RetVal = I.getReturnValue(); 3810 if (!RetVal) return; 3811 // Don't emit the epilogue for musttail call returns. 3812 if (isAMustTailRetVal(RetVal)) return; 3813 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3814 bool HasNoUndef = 3815 F.hasRetAttribute(Attribute::NoUndef); 3816 bool StoreShadow = !(MS.EagerChecks && HasNoUndef); 3817 // FIXME: Consider using SpecialCaseList to specify a list of functions that 3818 // must always return fully initialized values. For now, we hardcode "main". 3819 bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main"); 3820 3821 Value *Shadow = getShadow(RetVal); 3822 bool StoreOrigin = true; 3823 if (EagerCheck) { 3824 insertShadowCheck(RetVal, &I); 3825 Shadow = getCleanShadow(RetVal); 3826 StoreOrigin = false; 3827 } 3828 3829 // The caller may still expect information passed over TLS if we pass our 3830 // check 3831 if (StoreShadow) { 3832 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3833 if (MS.TrackOrigins && StoreOrigin) 3834 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3835 } 3836 } 3837 3838 void visitPHINode(PHINode &I) { 3839 IRBuilder<> IRB(&I); 3840 if (!PropagateShadow) { 3841 setShadow(&I, getCleanShadow(&I)); 3842 setOrigin(&I, getCleanOrigin()); 3843 return; 3844 } 3845 3846 ShadowPHINodes.push_back(&I); 3847 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3848 "_msphi_s")); 3849 if (MS.TrackOrigins) 3850 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3851 "_msphi_o")); 3852 } 3853 3854 Value *getLocalVarDescription(AllocaInst &I) { 3855 SmallString<2048> StackDescriptionStorage; 3856 raw_svector_ostream StackDescription(StackDescriptionStorage); 3857 // We create a string with a description of the stack allocation and 3858 // pass it into __msan_set_alloca_origin. 3859 // It will be printed by the run-time if stack-originated UMR is found. 3860 // The first 4 bytes of the string are set to '----' and will be replaced 3861 // by __msan_va_arg_overflow_size_tls at the first call. 3862 StackDescription << "----" << I.getName() << "@" << F.getName(); 3863 return createPrivateNonConstGlobalForString(*F.getParent(), 3864 StackDescription.str()); 3865 } 3866 3867 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3868 if (PoisonStack && ClPoisonStackWithCall) { 3869 IRB.CreateCall(MS.MsanPoisonStackFn, 3870 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3871 } else { 3872 Value *ShadowBase, *OriginBase; 3873 std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( 3874 &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); 3875 3876 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3877 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlign()); 3878 } 3879 3880 if (PoisonStack && MS.TrackOrigins) { 3881 Value *Descr = getLocalVarDescription(I); 3882 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3883 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3884 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3885 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3886 } 3887 } 3888 3889 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3890 Value *Descr = getLocalVarDescription(I); 3891 if (PoisonStack) { 3892 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3893 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3894 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3895 } else { 3896 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3897 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3898 } 3899 } 3900 3901 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { 3902 if (!InsPoint) 3903 InsPoint = &I; 3904 IRBuilder<> IRB(InsPoint->getNextNode()); 3905 const DataLayout &DL = F.getParent()->getDataLayout(); 3906 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3907 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3908 if (I.isArrayAllocation()) 3909 Len = IRB.CreateMul(Len, I.getArraySize()); 3910 3911 if (MS.CompileKernel) 3912 poisonAllocaKmsan(I, IRB, Len); 3913 else 3914 poisonAllocaUserspace(I, IRB, Len); 3915 } 3916 3917 void visitAllocaInst(AllocaInst &I) { 3918 setShadow(&I, getCleanShadow(&I)); 3919 setOrigin(&I, getCleanOrigin()); 3920 // We'll get to this alloca later unless it's poisoned at the corresponding 3921 // llvm.lifetime.start. 3922 AllocaSet.insert(&I); 3923 } 3924 3925 void visitSelectInst(SelectInst& I) { 3926 IRBuilder<> IRB(&I); 3927 // a = select b, c, d 3928 Value *B = I.getCondition(); 3929 Value *C = I.getTrueValue(); 3930 Value *D = I.getFalseValue(); 3931 Value *Sb = getShadow(B); 3932 Value *Sc = getShadow(C); 3933 Value *Sd = getShadow(D); 3934 3935 // Result shadow if condition shadow is 0. 3936 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3937 Value *Sa1; 3938 if (I.getType()->isAggregateType()) { 3939 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3940 // an extra "select". This results in much more compact IR. 3941 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3942 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3943 } else { 3944 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3945 // If Sb (condition is poisoned), look for bits in c and d that are equal 3946 // and both unpoisoned. 3947 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3948 3949 // Cast arguments to shadow-compatible type. 3950 C = CreateAppToShadowCast(IRB, C); 3951 D = CreateAppToShadowCast(IRB, D); 3952 3953 // Result shadow if condition shadow is 1. 3954 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); 3955 } 3956 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3957 setShadow(&I, Sa); 3958 if (MS.TrackOrigins) { 3959 // Origins are always i32, so any vector conditions must be flattened. 3960 // FIXME: consider tracking vector origins for app vectors? 3961 if (B->getType()->isVectorTy()) { 3962 Type *FlatTy = getShadowTyNoVec(B->getType()); 3963 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3964 ConstantInt::getNullValue(FlatTy)); 3965 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3966 ConstantInt::getNullValue(FlatTy)); 3967 } 3968 // a = select b, c, d 3969 // Oa = Sb ? Ob : (b ? Oc : Od) 3970 setOrigin( 3971 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3972 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3973 getOrigin(I.getFalseValue())))); 3974 } 3975 } 3976 3977 void visitLandingPadInst(LandingPadInst &I) { 3978 // Do nothing. 3979 // See https://github.com/google/sanitizers/issues/504 3980 setShadow(&I, getCleanShadow(&I)); 3981 setOrigin(&I, getCleanOrigin()); 3982 } 3983 3984 void visitCatchSwitchInst(CatchSwitchInst &I) { 3985 setShadow(&I, getCleanShadow(&I)); 3986 setOrigin(&I, getCleanOrigin()); 3987 } 3988 3989 void visitFuncletPadInst(FuncletPadInst &I) { 3990 setShadow(&I, getCleanShadow(&I)); 3991 setOrigin(&I, getCleanOrigin()); 3992 } 3993 3994 void visitGetElementPtrInst(GetElementPtrInst &I) { 3995 handleShadowOr(I); 3996 } 3997 3998 void visitExtractValueInst(ExtractValueInst &I) { 3999 IRBuilder<> IRB(&I); 4000 Value *Agg = I.getAggregateOperand(); 4001 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 4002 Value *AggShadow = getShadow(Agg); 4003 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4004 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 4005 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 4006 setShadow(&I, ResShadow); 4007 setOriginForNaryOp(I); 4008 } 4009 4010 void visitInsertValueInst(InsertValueInst &I) { 4011 IRBuilder<> IRB(&I); 4012 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 4013 Value *AggShadow = getShadow(I.getAggregateOperand()); 4014 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 4015 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 4016 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 4017 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 4018 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 4019 setShadow(&I, Res); 4020 setOriginForNaryOp(I); 4021 } 4022 4023 void dumpInst(Instruction &I) { 4024 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 4025 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 4026 } else { 4027 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 4028 } 4029 errs() << "QQQ " << I << "\n"; 4030 } 4031 4032 void visitResumeInst(ResumeInst &I) { 4033 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 4034 // Nothing to do here. 4035 } 4036 4037 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 4038 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 4039 // Nothing to do here. 4040 } 4041 4042 void visitCatchReturnInst(CatchReturnInst &CRI) { 4043 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 4044 // Nothing to do here. 4045 } 4046 4047 void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, 4048 IRBuilder<> &IRB, const DataLayout &DL, 4049 bool isOutput) { 4050 // For each assembly argument, we check its value for being initialized. 4051 // If the argument is a pointer, we assume it points to a single element 4052 // of the corresponding type (or to a 8-byte word, if the type is unsized). 4053 // Each such pointer is instrumented with a call to the runtime library. 4054 Type *OpType = Operand->getType(); 4055 // Check the operand value itself. 4056 insertShadowCheck(Operand, &I); 4057 if (!OpType->isPointerTy() || !isOutput) { 4058 assert(!isOutput); 4059 return; 4060 } 4061 if (!ElemTy->isSized()) 4062 return; 4063 int Size = DL.getTypeStoreSize(ElemTy); 4064 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 4065 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 4066 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 4067 } 4068 4069 /// Get the number of output arguments returned by pointers. 4070 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { 4071 int NumRetOutputs = 0; 4072 int NumOutputs = 0; 4073 Type *RetTy = cast<Value>(CB)->getType(); 4074 if (!RetTy->isVoidTy()) { 4075 // Register outputs are returned via the CallInst return value. 4076 auto *ST = dyn_cast<StructType>(RetTy); 4077 if (ST) 4078 NumRetOutputs = ST->getNumElements(); 4079 else 4080 NumRetOutputs = 1; 4081 } 4082 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 4083 for (const InlineAsm::ConstraintInfo &Info : Constraints) { 4084 switch (Info.Type) { 4085 case InlineAsm::isOutput: 4086 NumOutputs++; 4087 break; 4088 default: 4089 break; 4090 } 4091 } 4092 return NumOutputs - NumRetOutputs; 4093 } 4094 4095 void visitAsmInstruction(Instruction &I) { 4096 // Conservative inline assembly handling: check for poisoned shadow of 4097 // asm() arguments, then unpoison the result and all the memory locations 4098 // pointed to by those arguments. 4099 // An inline asm() statement in C++ contains lists of input and output 4100 // arguments used by the assembly code. These are mapped to operands of the 4101 // CallInst as follows: 4102 // - nR register outputs ("=r) are returned by value in a single structure 4103 // (SSA value of the CallInst); 4104 // - nO other outputs ("=m" and others) are returned by pointer as first 4105 // nO operands of the CallInst; 4106 // - nI inputs ("r", "m" and others) are passed to CallInst as the 4107 // remaining nI operands. 4108 // The total number of asm() arguments in the source is nR+nO+nI, and the 4109 // corresponding CallInst has nO+nI+1 operands (the last operand is the 4110 // function to be called). 4111 const DataLayout &DL = F.getParent()->getDataLayout(); 4112 CallBase *CB = cast<CallBase>(&I); 4113 IRBuilder<> IRB(&I); 4114 InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4115 int OutputArgs = getNumOutputArgs(IA, CB); 4116 // The last operand of a CallInst is the function itself. 4117 int NumOperands = CB->getNumOperands() - 1; 4118 4119 // Check input arguments. Doing so before unpoisoning output arguments, so 4120 // that we won't overwrite uninit values before checking them. 4121 for (int i = OutputArgs; i < NumOperands; i++) { 4122 Value *Operand = CB->getOperand(i); 4123 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4124 /*isOutput*/ false); 4125 } 4126 // Unpoison output arguments. This must happen before the actual InlineAsm 4127 // call, so that the shadow for memory published in the asm() statement 4128 // remains valid. 4129 for (int i = 0; i < OutputArgs; i++) { 4130 Value *Operand = CB->getOperand(i); 4131 instrumentAsmArgument(Operand, CB->getParamElementType(i), I, IRB, DL, 4132 /*isOutput*/ true); 4133 } 4134 4135 setShadow(&I, getCleanShadow(&I)); 4136 setOrigin(&I, getCleanOrigin()); 4137 } 4138 4139 void visitFreezeInst(FreezeInst &I) { 4140 // Freeze always returns a fully defined value. 4141 setShadow(&I, getCleanShadow(&I)); 4142 setOrigin(&I, getCleanOrigin()); 4143 } 4144 4145 void visitInstruction(Instruction &I) { 4146 // Everything else: stop propagating and check for poisoned shadow. 4147 if (ClDumpStrictInstructions) 4148 dumpInst(I); 4149 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 4150 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 4151 Value *Operand = I.getOperand(i); 4152 if (Operand->getType()->isSized()) 4153 insertShadowCheck(Operand, &I); 4154 } 4155 setShadow(&I, getCleanShadow(&I)); 4156 setOrigin(&I, getCleanOrigin()); 4157 } 4158 }; 4159 4160 /// AMD64-specific implementation of VarArgHelper. 4161 struct VarArgAMD64Helper : public VarArgHelper { 4162 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 4163 // See a comment in visitCallBase for more details. 4164 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 4165 static const unsigned AMD64FpEndOffsetSSE = 176; 4166 // If SSE is disabled, fp_offset in va_list is zero. 4167 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 4168 4169 unsigned AMD64FpEndOffset; 4170 Function &F; 4171 MemorySanitizer &MS; 4172 MemorySanitizerVisitor &MSV; 4173 Value *VAArgTLSCopy = nullptr; 4174 Value *VAArgTLSOriginCopy = nullptr; 4175 Value *VAArgOverflowSize = nullptr; 4176 4177 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4178 4179 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4180 4181 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 4182 MemorySanitizerVisitor &MSV) 4183 : F(F), MS(MS), MSV(MSV) { 4184 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 4185 for (const auto &Attr : F.getAttributes().getFnAttrs()) { 4186 if (Attr.isStringAttribute() && 4187 (Attr.getKindAsString() == "target-features")) { 4188 if (Attr.getValueAsString().contains("-sse")) 4189 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 4190 break; 4191 } 4192 } 4193 } 4194 4195 ArgKind classifyArgument(Value* arg) { 4196 // A very rough approximation of X86_64 argument classification rules. 4197 Type *T = arg->getType(); 4198 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 4199 return AK_FloatingPoint; 4200 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4201 return AK_GeneralPurpose; 4202 if (T->isPointerTy()) 4203 return AK_GeneralPurpose; 4204 return AK_Memory; 4205 } 4206 4207 // For VarArg functions, store the argument shadow in an ABI-specific format 4208 // that corresponds to va_list layout. 4209 // We do this because Clang lowers va_arg in the frontend, and this pass 4210 // only sees the low level code that deals with va_list internals. 4211 // A much easier alternative (provided that Clang emits va_arg instructions) 4212 // would have been to associate each live instance of va_list with a copy of 4213 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 4214 // order. 4215 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4216 unsigned GpOffset = 0; 4217 unsigned FpOffset = AMD64GpEndOffset; 4218 unsigned OverflowOffset = AMD64FpEndOffset; 4219 const DataLayout &DL = F.getParent()->getDataLayout(); 4220 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4221 ++ArgIt) { 4222 Value *A = *ArgIt; 4223 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4224 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4225 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4226 if (IsByVal) { 4227 // ByVal arguments always go to the overflow area. 4228 // Fixed arguments passed through the overflow area will be stepped 4229 // over by va_start, so don't count them towards the offset. 4230 if (IsFixed) 4231 continue; 4232 assert(A->getType()->isPointerTy()); 4233 Type *RealTy = CB.getParamByValType(ArgNo); 4234 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4235 Value *ShadowBase = getShadowPtrForVAArgument( 4236 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 4237 Value *OriginBase = nullptr; 4238 if (MS.TrackOrigins) 4239 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 4240 OverflowOffset += alignTo(ArgSize, 8); 4241 if (!ShadowBase) 4242 continue; 4243 Value *ShadowPtr, *OriginPtr; 4244 std::tie(ShadowPtr, OriginPtr) = 4245 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 4246 /*isStore*/ false); 4247 4248 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 4249 kShadowTLSAlignment, ArgSize); 4250 if (MS.TrackOrigins) 4251 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 4252 kShadowTLSAlignment, ArgSize); 4253 } else { 4254 ArgKind AK = classifyArgument(A); 4255 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 4256 AK = AK_Memory; 4257 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 4258 AK = AK_Memory; 4259 Value *ShadowBase, *OriginBase = nullptr; 4260 switch (AK) { 4261 case AK_GeneralPurpose: 4262 ShadowBase = 4263 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 4264 if (MS.TrackOrigins) 4265 OriginBase = 4266 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 4267 GpOffset += 8; 4268 break; 4269 case AK_FloatingPoint: 4270 ShadowBase = 4271 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 4272 if (MS.TrackOrigins) 4273 OriginBase = 4274 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 4275 FpOffset += 16; 4276 break; 4277 case AK_Memory: 4278 if (IsFixed) 4279 continue; 4280 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4281 ShadowBase = 4282 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 4283 if (MS.TrackOrigins) 4284 OriginBase = 4285 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 4286 OverflowOffset += alignTo(ArgSize, 8); 4287 } 4288 // Take fixed arguments into account for GpOffset and FpOffset, 4289 // but don't actually store shadows for them. 4290 // TODO(glider): don't call get*PtrForVAArgument() for them. 4291 if (IsFixed) 4292 continue; 4293 if (!ShadowBase) 4294 continue; 4295 Value *Shadow = MSV.getShadow(A); 4296 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 4297 if (MS.TrackOrigins) { 4298 Value *Origin = MSV.getOrigin(A); 4299 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 4300 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 4301 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 4302 } 4303 } 4304 } 4305 Constant *OverflowSize = 4306 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 4307 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4308 } 4309 4310 /// Compute the shadow address for a given va_arg. 4311 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4312 unsigned ArgOffset, unsigned ArgSize) { 4313 // Make sure we don't overflow __msan_va_arg_tls. 4314 if (ArgOffset + ArgSize > kParamTLSSize) 4315 return nullptr; 4316 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4317 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4318 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4319 "_msarg_va_s"); 4320 } 4321 4322 /// Compute the origin address for a given va_arg. 4323 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 4324 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 4325 // getOriginPtrForVAArgument() is always called after 4326 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 4327 // overflow. 4328 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4329 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 4330 "_msarg_va_o"); 4331 } 4332 4333 void unpoisonVAListTagForInst(IntrinsicInst &I) { 4334 IRBuilder<> IRB(&I); 4335 Value *VAListTag = I.getArgOperand(0); 4336 Value *ShadowPtr, *OriginPtr; 4337 const Align Alignment = Align(8); 4338 std::tie(ShadowPtr, OriginPtr) = 4339 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 4340 /*isStore*/ true); 4341 4342 // Unpoison the whole __va_list_tag. 4343 // FIXME: magic ABI constants. 4344 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4345 /* size */ 24, Alignment, false); 4346 // We shouldn't need to zero out the origins, as they're only checked for 4347 // nonzero shadow. 4348 } 4349 4350 void visitVAStartInst(VAStartInst &I) override { 4351 if (F.getCallingConv() == CallingConv::Win64) 4352 return; 4353 VAStartInstrumentationList.push_back(&I); 4354 unpoisonVAListTagForInst(I); 4355 } 4356 4357 void visitVACopyInst(VACopyInst &I) override { 4358 if (F.getCallingConv() == CallingConv::Win64) return; 4359 unpoisonVAListTagForInst(I); 4360 } 4361 4362 void finalizeInstrumentation() override { 4363 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4364 "finalizeInstrumentation called twice"); 4365 if (!VAStartInstrumentationList.empty()) { 4366 // If there is a va_start in this function, make a backup copy of 4367 // va_arg_tls somewhere in the function entry block. 4368 IRBuilder<> IRB(MSV.FnPrologueEnd); 4369 VAArgOverflowSize = 4370 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4371 Value *CopySize = 4372 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 4373 VAArgOverflowSize); 4374 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4375 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4376 if (MS.TrackOrigins) { 4377 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4378 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 4379 Align(8), CopySize); 4380 } 4381 } 4382 4383 // Instrument va_start. 4384 // Copy va_list shadow from the backup copy of the TLS contents. 4385 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4386 CallInst *OrigInst = VAStartInstrumentationList[i]; 4387 IRBuilder<> IRB(OrigInst->getNextNode()); 4388 Value *VAListTag = OrigInst->getArgOperand(0); 4389 4390 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4391 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 4392 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4393 ConstantInt::get(MS.IntptrTy, 16)), 4394 PointerType::get(RegSaveAreaPtrTy, 0)); 4395 Value *RegSaveAreaPtr = 4396 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4397 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4398 const Align Alignment = Align(16); 4399 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4400 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4401 Alignment, /*isStore*/ true); 4402 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4403 AMD64FpEndOffset); 4404 if (MS.TrackOrigins) 4405 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 4406 Alignment, AMD64FpEndOffset); 4407 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4408 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 4409 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4410 ConstantInt::get(MS.IntptrTy, 8)), 4411 PointerType::get(OverflowArgAreaPtrTy, 0)); 4412 Value *OverflowArgAreaPtr = 4413 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 4414 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 4415 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 4416 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 4417 Alignment, /*isStore*/ true); 4418 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 4419 AMD64FpEndOffset); 4420 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 4421 VAArgOverflowSize); 4422 if (MS.TrackOrigins) { 4423 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 4424 AMD64FpEndOffset); 4425 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 4426 VAArgOverflowSize); 4427 } 4428 } 4429 } 4430 }; 4431 4432 /// MIPS64-specific implementation of VarArgHelper. 4433 struct VarArgMIPS64Helper : public VarArgHelper { 4434 Function &F; 4435 MemorySanitizer &MS; 4436 MemorySanitizerVisitor &MSV; 4437 Value *VAArgTLSCopy = nullptr; 4438 Value *VAArgSize = nullptr; 4439 4440 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4441 4442 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 4443 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4444 4445 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4446 unsigned VAArgOffset = 0; 4447 const DataLayout &DL = F.getParent()->getDataLayout(); 4448 for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), 4449 End = CB.arg_end(); 4450 ArgIt != End; ++ArgIt) { 4451 Triple TargetTriple(F.getParent()->getTargetTriple()); 4452 Value *A = *ArgIt; 4453 Value *Base; 4454 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4455 if (TargetTriple.getArch() == Triple::mips64) { 4456 // Adjusting the shadow for argument with size < 8 to match the placement 4457 // of bits in big endian system 4458 if (ArgSize < 8) 4459 VAArgOffset += (8 - ArgSize); 4460 } 4461 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 4462 VAArgOffset += ArgSize; 4463 VAArgOffset = alignTo(VAArgOffset, 8); 4464 if (!Base) 4465 continue; 4466 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4467 } 4468 4469 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 4470 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4471 // a new class member i.e. it is the total size of all VarArgs. 4472 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4473 } 4474 4475 /// Compute the shadow address for a given va_arg. 4476 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4477 unsigned ArgOffset, unsigned ArgSize) { 4478 // Make sure we don't overflow __msan_va_arg_tls. 4479 if (ArgOffset + ArgSize > kParamTLSSize) 4480 return nullptr; 4481 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4482 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4483 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4484 "_msarg"); 4485 } 4486 4487 void visitVAStartInst(VAStartInst &I) override { 4488 IRBuilder<> IRB(&I); 4489 VAStartInstrumentationList.push_back(&I); 4490 Value *VAListTag = I.getArgOperand(0); 4491 Value *ShadowPtr, *OriginPtr; 4492 const Align Alignment = Align(8); 4493 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4494 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4495 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4496 /* size */ 8, Alignment, false); 4497 } 4498 4499 void visitVACopyInst(VACopyInst &I) override { 4500 IRBuilder<> IRB(&I); 4501 VAStartInstrumentationList.push_back(&I); 4502 Value *VAListTag = I.getArgOperand(0); 4503 Value *ShadowPtr, *OriginPtr; 4504 const Align Alignment = Align(8); 4505 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4506 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4507 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4508 /* size */ 8, Alignment, false); 4509 } 4510 4511 void finalizeInstrumentation() override { 4512 assert(!VAArgSize && !VAArgTLSCopy && 4513 "finalizeInstrumentation called twice"); 4514 IRBuilder<> IRB(MSV.FnPrologueEnd); 4515 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4516 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4517 VAArgSize); 4518 4519 if (!VAStartInstrumentationList.empty()) { 4520 // If there is a va_start in this function, make a backup copy of 4521 // va_arg_tls somewhere in the function entry block. 4522 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4523 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4524 } 4525 4526 // Instrument va_start. 4527 // Copy va_list shadow from the backup copy of the TLS contents. 4528 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4529 CallInst *OrigInst = VAStartInstrumentationList[i]; 4530 IRBuilder<> IRB(OrigInst->getNextNode()); 4531 Value *VAListTag = OrigInst->getArgOperand(0); 4532 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4533 Value *RegSaveAreaPtrPtr = 4534 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4535 PointerType::get(RegSaveAreaPtrTy, 0)); 4536 Value *RegSaveAreaPtr = 4537 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4538 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4539 const Align Alignment = Align(8); 4540 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4541 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4542 Alignment, /*isStore*/ true); 4543 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4544 CopySize); 4545 } 4546 } 4547 }; 4548 4549 /// AArch64-specific implementation of VarArgHelper. 4550 struct VarArgAArch64Helper : public VarArgHelper { 4551 static const unsigned kAArch64GrArgSize = 64; 4552 static const unsigned kAArch64VrArgSize = 128; 4553 4554 static const unsigned AArch64GrBegOffset = 0; 4555 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4556 // Make VR space aligned to 16 bytes. 4557 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4558 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4559 + kAArch64VrArgSize; 4560 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4561 4562 Function &F; 4563 MemorySanitizer &MS; 4564 MemorySanitizerVisitor &MSV; 4565 Value *VAArgTLSCopy = nullptr; 4566 Value *VAArgOverflowSize = nullptr; 4567 4568 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4569 4570 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4571 4572 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4573 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4574 4575 ArgKind classifyArgument(Value* arg) { 4576 Type *T = arg->getType(); 4577 if (T->isFPOrFPVectorTy()) 4578 return AK_FloatingPoint; 4579 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4580 || (T->isPointerTy())) 4581 return AK_GeneralPurpose; 4582 return AK_Memory; 4583 } 4584 4585 // The instrumentation stores the argument shadow in a non ABI-specific 4586 // format because it does not know which argument is named (since Clang, 4587 // like x86_64 case, lowers the va_args in the frontend and this pass only 4588 // sees the low level code that deals with va_list internals). 4589 // The first seven GR registers are saved in the first 56 bytes of the 4590 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4591 // the remaining arguments. 4592 // Using constant offset within the va_arg TLS array allows fast copy 4593 // in the finalize instrumentation. 4594 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4595 unsigned GrOffset = AArch64GrBegOffset; 4596 unsigned VrOffset = AArch64VrBegOffset; 4597 unsigned OverflowOffset = AArch64VAEndOffset; 4598 4599 const DataLayout &DL = F.getParent()->getDataLayout(); 4600 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4601 ++ArgIt) { 4602 Value *A = *ArgIt; 4603 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4604 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4605 ArgKind AK = classifyArgument(A); 4606 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4607 AK = AK_Memory; 4608 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4609 AK = AK_Memory; 4610 Value *Base; 4611 switch (AK) { 4612 case AK_GeneralPurpose: 4613 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4614 GrOffset += 8; 4615 break; 4616 case AK_FloatingPoint: 4617 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4618 VrOffset += 16; 4619 break; 4620 case AK_Memory: 4621 // Don't count fixed arguments in the overflow area - va_start will 4622 // skip right over them. 4623 if (IsFixed) 4624 continue; 4625 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4626 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4627 alignTo(ArgSize, 8)); 4628 OverflowOffset += alignTo(ArgSize, 8); 4629 break; 4630 } 4631 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4632 // bother to actually store a shadow. 4633 if (IsFixed) 4634 continue; 4635 if (!Base) 4636 continue; 4637 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4638 } 4639 Constant *OverflowSize = 4640 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4641 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4642 } 4643 4644 /// Compute the shadow address for a given va_arg. 4645 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4646 unsigned ArgOffset, unsigned ArgSize) { 4647 // Make sure we don't overflow __msan_va_arg_tls. 4648 if (ArgOffset + ArgSize > kParamTLSSize) 4649 return nullptr; 4650 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4651 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4652 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4653 "_msarg"); 4654 } 4655 4656 void visitVAStartInst(VAStartInst &I) override { 4657 IRBuilder<> IRB(&I); 4658 VAStartInstrumentationList.push_back(&I); 4659 Value *VAListTag = I.getArgOperand(0); 4660 Value *ShadowPtr, *OriginPtr; 4661 const Align Alignment = Align(8); 4662 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4663 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4664 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4665 /* size */ 32, Alignment, false); 4666 } 4667 4668 void visitVACopyInst(VACopyInst &I) override { 4669 IRBuilder<> IRB(&I); 4670 VAStartInstrumentationList.push_back(&I); 4671 Value *VAListTag = I.getArgOperand(0); 4672 Value *ShadowPtr, *OriginPtr; 4673 const Align Alignment = Align(8); 4674 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4675 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4676 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4677 /* size */ 32, Alignment, false); 4678 } 4679 4680 // Retrieve a va_list field of 'void*' size. 4681 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4682 Value *SaveAreaPtrPtr = 4683 IRB.CreateIntToPtr( 4684 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4685 ConstantInt::get(MS.IntptrTy, offset)), 4686 Type::getInt64PtrTy(*MS.C)); 4687 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); 4688 } 4689 4690 // Retrieve a va_list field of 'int' size. 4691 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4692 Value *SaveAreaPtr = 4693 IRB.CreateIntToPtr( 4694 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4695 ConstantInt::get(MS.IntptrTy, offset)), 4696 Type::getInt32PtrTy(*MS.C)); 4697 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); 4698 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4699 } 4700 4701 void finalizeInstrumentation() override { 4702 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4703 "finalizeInstrumentation called twice"); 4704 if (!VAStartInstrumentationList.empty()) { 4705 // If there is a va_start in this function, make a backup copy of 4706 // va_arg_tls somewhere in the function entry block. 4707 IRBuilder<> IRB(MSV.FnPrologueEnd); 4708 VAArgOverflowSize = 4709 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4710 Value *CopySize = 4711 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4712 VAArgOverflowSize); 4713 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4714 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4715 } 4716 4717 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4718 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4719 4720 // Instrument va_start, copy va_list shadow from the backup copy of 4721 // the TLS contents. 4722 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4723 CallInst *OrigInst = VAStartInstrumentationList[i]; 4724 IRBuilder<> IRB(OrigInst->getNextNode()); 4725 4726 Value *VAListTag = OrigInst->getArgOperand(0); 4727 4728 // The variadic ABI for AArch64 creates two areas to save the incoming 4729 // argument registers (one for 64-bit general register xn-x7 and another 4730 // for 128-bit FP/SIMD vn-v7). 4731 // We need then to propagate the shadow arguments on both regions 4732 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4733 // The remaining arguments are saved on shadow for 'va::stack'. 4734 // One caveat is it requires only to propagate the non-named arguments, 4735 // however on the call site instrumentation 'all' the arguments are 4736 // saved. So to copy the shadow values from the va_arg TLS array 4737 // we need to adjust the offset for both GR and VR fields based on 4738 // the __{gr,vr}_offs value (since they are stores based on incoming 4739 // named arguments). 4740 4741 // Read the stack pointer from the va_list. 4742 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4743 4744 // Read both the __gr_top and __gr_off and add them up. 4745 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4746 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4747 4748 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4749 4750 // Read both the __vr_top and __vr_off and add them up. 4751 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4752 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4753 4754 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4755 4756 // It does not know how many named arguments is being used and, on the 4757 // callsite all the arguments were saved. Since __gr_off is defined as 4758 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4759 // argument by ignoring the bytes of shadow from named arguments. 4760 Value *GrRegSaveAreaShadowPtrOff = 4761 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4762 4763 Value *GrRegSaveAreaShadowPtr = 4764 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4765 Align(8), /*isStore*/ true) 4766 .first; 4767 4768 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4769 GrRegSaveAreaShadowPtrOff); 4770 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4771 4772 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), 4773 GrCopySize); 4774 4775 // Again, but for FP/SIMD values. 4776 Value *VrRegSaveAreaShadowPtrOff = 4777 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4778 4779 Value *VrRegSaveAreaShadowPtr = 4780 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4781 Align(8), /*isStore*/ true) 4782 .first; 4783 4784 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4785 IRB.getInt8Ty(), 4786 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4787 IRB.getInt32(AArch64VrBegOffset)), 4788 VrRegSaveAreaShadowPtrOff); 4789 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4790 4791 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), 4792 VrCopySize); 4793 4794 // And finally for remaining arguments. 4795 Value *StackSaveAreaShadowPtr = 4796 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4797 Align(16), /*isStore*/ true) 4798 .first; 4799 4800 Value *StackSrcPtr = 4801 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4802 IRB.getInt32(AArch64VAEndOffset)); 4803 4804 IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, 4805 Align(16), VAArgOverflowSize); 4806 } 4807 } 4808 }; 4809 4810 /// PowerPC64-specific implementation of VarArgHelper. 4811 struct VarArgPowerPC64Helper : public VarArgHelper { 4812 Function &F; 4813 MemorySanitizer &MS; 4814 MemorySanitizerVisitor &MSV; 4815 Value *VAArgTLSCopy = nullptr; 4816 Value *VAArgSize = nullptr; 4817 4818 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4819 4820 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4821 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4822 4823 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 4824 // For PowerPC, we need to deal with alignment of stack arguments - 4825 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4826 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4827 // For that reason, we compute current offset from stack pointer (which is 4828 // always properly aligned), and offset for the first vararg, then subtract 4829 // them. 4830 unsigned VAArgBase; 4831 Triple TargetTriple(F.getParent()->getTargetTriple()); 4832 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4833 // and 32 bytes for ABIv2. This is usually determined by target 4834 // endianness, but in theory could be overridden by function attribute. 4835 if (TargetTriple.getArch() == Triple::ppc64) 4836 VAArgBase = 48; 4837 else 4838 VAArgBase = 32; 4839 unsigned VAArgOffset = VAArgBase; 4840 const DataLayout &DL = F.getParent()->getDataLayout(); 4841 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 4842 ++ArgIt) { 4843 Value *A = *ArgIt; 4844 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 4845 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 4846 bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); 4847 if (IsByVal) { 4848 assert(A->getType()->isPointerTy()); 4849 Type *RealTy = CB.getParamByValType(ArgNo); 4850 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4851 Align ArgAlign = CB.getParamAlign(ArgNo).value_or(Align(8)); 4852 if (ArgAlign < 8) 4853 ArgAlign = Align(8); 4854 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4855 if (!IsFixed) { 4856 Value *Base = getShadowPtrForVAArgument( 4857 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4858 if (Base) { 4859 Value *AShadowPtr, *AOriginPtr; 4860 std::tie(AShadowPtr, AOriginPtr) = 4861 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4862 kShadowTLSAlignment, /*isStore*/ false); 4863 4864 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4865 kShadowTLSAlignment, ArgSize); 4866 } 4867 } 4868 VAArgOffset += alignTo(ArgSize, Align(8)); 4869 } else { 4870 Value *Base; 4871 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4872 Align ArgAlign = Align(8); 4873 if (A->getType()->isArrayTy()) { 4874 // Arrays are aligned to element size, except for long double 4875 // arrays, which are aligned to 8 bytes. 4876 Type *ElementTy = A->getType()->getArrayElementType(); 4877 if (!ElementTy->isPPC_FP128Ty()) 4878 ArgAlign = Align(DL.getTypeAllocSize(ElementTy)); 4879 } else if (A->getType()->isVectorTy()) { 4880 // Vectors are naturally aligned. 4881 ArgAlign = Align(ArgSize); 4882 } 4883 if (ArgAlign < 8) 4884 ArgAlign = Align(8); 4885 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4886 if (DL.isBigEndian()) { 4887 // Adjusting the shadow for argument with size < 8 to match the 4888 // placement of bits in big endian system 4889 if (ArgSize < 8) 4890 VAArgOffset += (8 - ArgSize); 4891 } 4892 if (!IsFixed) { 4893 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4894 VAArgOffset - VAArgBase, ArgSize); 4895 if (Base) 4896 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4897 } 4898 VAArgOffset += ArgSize; 4899 VAArgOffset = alignTo(VAArgOffset, Align(8)); 4900 } 4901 if (IsFixed) 4902 VAArgBase = VAArgOffset; 4903 } 4904 4905 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4906 VAArgOffset - VAArgBase); 4907 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4908 // a new class member i.e. it is the total size of all VarArgs. 4909 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4910 } 4911 4912 /// Compute the shadow address for a given va_arg. 4913 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4914 unsigned ArgOffset, unsigned ArgSize) { 4915 // Make sure we don't overflow __msan_va_arg_tls. 4916 if (ArgOffset + ArgSize > kParamTLSSize) 4917 return nullptr; 4918 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4919 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4920 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4921 "_msarg"); 4922 } 4923 4924 void visitVAStartInst(VAStartInst &I) override { 4925 IRBuilder<> IRB(&I); 4926 VAStartInstrumentationList.push_back(&I); 4927 Value *VAListTag = I.getArgOperand(0); 4928 Value *ShadowPtr, *OriginPtr; 4929 const Align Alignment = Align(8); 4930 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4931 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4932 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4933 /* size */ 8, Alignment, false); 4934 } 4935 4936 void visitVACopyInst(VACopyInst &I) override { 4937 IRBuilder<> IRB(&I); 4938 Value *VAListTag = I.getArgOperand(0); 4939 Value *ShadowPtr, *OriginPtr; 4940 const Align Alignment = Align(8); 4941 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4942 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4943 // Unpoison the whole __va_list_tag. 4944 // FIXME: magic ABI constants. 4945 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4946 /* size */ 8, Alignment, false); 4947 } 4948 4949 void finalizeInstrumentation() override { 4950 assert(!VAArgSize && !VAArgTLSCopy && 4951 "finalizeInstrumentation called twice"); 4952 IRBuilder<> IRB(MSV.FnPrologueEnd); 4953 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 4954 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4955 VAArgSize); 4956 4957 if (!VAStartInstrumentationList.empty()) { 4958 // If there is a va_start in this function, make a backup copy of 4959 // va_arg_tls somewhere in the function entry block. 4960 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4961 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 4962 } 4963 4964 // Instrument va_start. 4965 // Copy va_list shadow from the backup copy of the TLS contents. 4966 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4967 CallInst *OrigInst = VAStartInstrumentationList[i]; 4968 IRBuilder<> IRB(OrigInst->getNextNode()); 4969 Value *VAListTag = OrigInst->getArgOperand(0); 4970 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 4971 Value *RegSaveAreaPtrPtr = 4972 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4973 PointerType::get(RegSaveAreaPtrTy, 0)); 4974 Value *RegSaveAreaPtr = 4975 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 4976 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4977 const Align Alignment = Align(8); 4978 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4979 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4980 Alignment, /*isStore*/ true); 4981 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4982 CopySize); 4983 } 4984 } 4985 }; 4986 4987 /// SystemZ-specific implementation of VarArgHelper. 4988 struct VarArgSystemZHelper : public VarArgHelper { 4989 static const unsigned SystemZGpOffset = 16; 4990 static const unsigned SystemZGpEndOffset = 56; 4991 static const unsigned SystemZFpOffset = 128; 4992 static const unsigned SystemZFpEndOffset = 160; 4993 static const unsigned SystemZMaxVrArgs = 8; 4994 static const unsigned SystemZRegSaveAreaSize = 160; 4995 static const unsigned SystemZOverflowOffset = 160; 4996 static const unsigned SystemZVAListTagSize = 32; 4997 static const unsigned SystemZOverflowArgAreaPtrOffset = 16; 4998 static const unsigned SystemZRegSaveAreaPtrOffset = 24; 4999 5000 Function &F; 5001 MemorySanitizer &MS; 5002 MemorySanitizerVisitor &MSV; 5003 Value *VAArgTLSCopy = nullptr; 5004 Value *VAArgTLSOriginCopy = nullptr; 5005 Value *VAArgOverflowSize = nullptr; 5006 5007 SmallVector<CallInst *, 16> VAStartInstrumentationList; 5008 5009 enum class ArgKind { 5010 GeneralPurpose, 5011 FloatingPoint, 5012 Vector, 5013 Memory, 5014 Indirect, 5015 }; 5016 5017 enum class ShadowExtension { None, Zero, Sign }; 5018 5019 VarArgSystemZHelper(Function &F, MemorySanitizer &MS, 5020 MemorySanitizerVisitor &MSV) 5021 : F(F), MS(MS), MSV(MSV) {} 5022 5023 ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { 5024 // T is a SystemZABIInfo::classifyArgumentType() output, and there are 5025 // only a few possibilities of what it can be. In particular, enums, single 5026 // element structs and large types have already been taken care of. 5027 5028 // Some i128 and fp128 arguments are converted to pointers only in the 5029 // back end. 5030 if (T->isIntegerTy(128) || T->isFP128Ty()) 5031 return ArgKind::Indirect; 5032 if (T->isFloatingPointTy()) 5033 return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; 5034 if (T->isIntegerTy() || T->isPointerTy()) 5035 return ArgKind::GeneralPurpose; 5036 if (T->isVectorTy()) 5037 return ArgKind::Vector; 5038 return ArgKind::Memory; 5039 } 5040 5041 ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { 5042 // ABI says: "One of the simple integer types no more than 64 bits wide. 5043 // ... If such an argument is shorter than 64 bits, replace it by a full 5044 // 64-bit integer representing the same number, using sign or zero 5045 // extension". Shadow for an integer argument has the same type as the 5046 // argument itself, so it can be sign or zero extended as well. 5047 bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); 5048 bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); 5049 if (ZExt) { 5050 assert(!SExt); 5051 return ShadowExtension::Zero; 5052 } 5053 if (SExt) { 5054 assert(!ZExt); 5055 return ShadowExtension::Sign; 5056 } 5057 return ShadowExtension::None; 5058 } 5059 5060 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { 5061 bool IsSoftFloatABI = CB.getCalledFunction() 5062 ->getFnAttribute("use-soft-float") 5063 .getValueAsBool(); 5064 unsigned GpOffset = SystemZGpOffset; 5065 unsigned FpOffset = SystemZFpOffset; 5066 unsigned VrIndex = 0; 5067 unsigned OverflowOffset = SystemZOverflowOffset; 5068 const DataLayout &DL = F.getParent()->getDataLayout(); 5069 for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; 5070 ++ArgIt) { 5071 Value *A = *ArgIt; 5072 unsigned ArgNo = CB.getArgOperandNo(ArgIt); 5073 bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); 5074 // SystemZABIInfo does not produce ByVal parameters. 5075 assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); 5076 Type *T = A->getType(); 5077 ArgKind AK = classifyArgument(T, IsSoftFloatABI); 5078 if (AK == ArgKind::Indirect) { 5079 T = PointerType::get(T, 0); 5080 AK = ArgKind::GeneralPurpose; 5081 } 5082 if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) 5083 AK = ArgKind::Memory; 5084 if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) 5085 AK = ArgKind::Memory; 5086 if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) 5087 AK = ArgKind::Memory; 5088 Value *ShadowBase = nullptr; 5089 Value *OriginBase = nullptr; 5090 ShadowExtension SE = ShadowExtension::None; 5091 switch (AK) { 5092 case ArgKind::GeneralPurpose: { 5093 // Always keep track of GpOffset, but store shadow only for varargs. 5094 uint64_t ArgSize = 8; 5095 if (GpOffset + ArgSize <= kParamTLSSize) { 5096 if (!IsFixed) { 5097 SE = getShadowExtension(CB, ArgNo); 5098 uint64_t GapSize = 0; 5099 if (SE == ShadowExtension::None) { 5100 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5101 assert(ArgAllocSize <= ArgSize); 5102 GapSize = ArgSize - ArgAllocSize; 5103 } 5104 ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); 5105 if (MS.TrackOrigins) 5106 OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); 5107 } 5108 GpOffset += ArgSize; 5109 } else { 5110 GpOffset = kParamTLSSize; 5111 } 5112 break; 5113 } 5114 case ArgKind::FloatingPoint: { 5115 // Always keep track of FpOffset, but store shadow only for varargs. 5116 uint64_t ArgSize = 8; 5117 if (FpOffset + ArgSize <= kParamTLSSize) { 5118 if (!IsFixed) { 5119 // PoP says: "A short floating-point datum requires only the 5120 // left-most 32 bit positions of a floating-point register". 5121 // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, 5122 // don't extend shadow and don't mind the gap. 5123 ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); 5124 if (MS.TrackOrigins) 5125 OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); 5126 } 5127 FpOffset += ArgSize; 5128 } else { 5129 FpOffset = kParamTLSSize; 5130 } 5131 break; 5132 } 5133 case ArgKind::Vector: { 5134 // Keep track of VrIndex. No need to store shadow, since vector varargs 5135 // go through AK_Memory. 5136 assert(IsFixed); 5137 VrIndex++; 5138 break; 5139 } 5140 case ArgKind::Memory: { 5141 // Keep track of OverflowOffset and store shadow only for varargs. 5142 // Ignore fixed args, since we need to copy only the vararg portion of 5143 // the overflow area shadow. 5144 if (!IsFixed) { 5145 uint64_t ArgAllocSize = DL.getTypeAllocSize(T); 5146 uint64_t ArgSize = alignTo(ArgAllocSize, 8); 5147 if (OverflowOffset + ArgSize <= kParamTLSSize) { 5148 SE = getShadowExtension(CB, ArgNo); 5149 uint64_t GapSize = 5150 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; 5151 ShadowBase = 5152 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); 5153 if (MS.TrackOrigins) 5154 OriginBase = 5155 getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); 5156 OverflowOffset += ArgSize; 5157 } else { 5158 OverflowOffset = kParamTLSSize; 5159 } 5160 } 5161 break; 5162 } 5163 case ArgKind::Indirect: 5164 llvm_unreachable("Indirect must be converted to GeneralPurpose"); 5165 } 5166 if (ShadowBase == nullptr) 5167 continue; 5168 Value *Shadow = MSV.getShadow(A); 5169 if (SE != ShadowExtension::None) 5170 Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), 5171 /*Signed*/ SE == ShadowExtension::Sign); 5172 ShadowBase = IRB.CreateIntToPtr( 5173 ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); 5174 IRB.CreateStore(Shadow, ShadowBase); 5175 if (MS.TrackOrigins) { 5176 Value *Origin = MSV.getOrigin(A); 5177 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 5178 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 5179 kMinOriginAlignment); 5180 } 5181 } 5182 Constant *OverflowSize = ConstantInt::get( 5183 IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); 5184 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 5185 } 5186 5187 Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { 5188 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 5189 return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5190 } 5191 5192 Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { 5193 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 5194 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 5195 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 5196 "_msarg_va_o"); 5197 } 5198 5199 void unpoisonVAListTagForInst(IntrinsicInst &I) { 5200 IRBuilder<> IRB(&I); 5201 Value *VAListTag = I.getArgOperand(0); 5202 Value *ShadowPtr, *OriginPtr; 5203 const Align Alignment = Align(8); 5204 std::tie(ShadowPtr, OriginPtr) = 5205 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 5206 /*isStore*/ true); 5207 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 5208 SystemZVAListTagSize, Alignment, false); 5209 } 5210 5211 void visitVAStartInst(VAStartInst &I) override { 5212 VAStartInstrumentationList.push_back(&I); 5213 unpoisonVAListTagForInst(I); 5214 } 5215 5216 void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } 5217 5218 void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { 5219 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5220 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 5221 IRB.CreateAdd( 5222 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5223 ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), 5224 PointerType::get(RegSaveAreaPtrTy, 0)); 5225 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); 5226 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 5227 const Align Alignment = Align(8); 5228 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 5229 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, 5230 /*isStore*/ true); 5231 // TODO(iii): copy only fragments filled by visitCallBase() 5232 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 5233 SystemZRegSaveAreaSize); 5234 if (MS.TrackOrigins) 5235 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 5236 Alignment, SystemZRegSaveAreaSize); 5237 } 5238 5239 void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { 5240 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); 5241 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 5242 IRB.CreateAdd( 5243 IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 5244 ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), 5245 PointerType::get(OverflowArgAreaPtrTy, 0)); 5246 Value *OverflowArgAreaPtr = 5247 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); 5248 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 5249 const Align Alignment = Align(8); 5250 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 5251 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 5252 Alignment, /*isStore*/ true); 5253 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 5254 SystemZOverflowOffset); 5255 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 5256 VAArgOverflowSize); 5257 if (MS.TrackOrigins) { 5258 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 5259 SystemZOverflowOffset); 5260 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 5261 VAArgOverflowSize); 5262 } 5263 } 5264 5265 void finalizeInstrumentation() override { 5266 assert(!VAArgOverflowSize && !VAArgTLSCopy && 5267 "finalizeInstrumentation called twice"); 5268 if (!VAStartInstrumentationList.empty()) { 5269 // If there is a va_start in this function, make a backup copy of 5270 // va_arg_tls somewhere in the function entry block. 5271 IRBuilder<> IRB(MSV.FnPrologueEnd); 5272 VAArgOverflowSize = 5273 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); 5274 Value *CopySize = 5275 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), 5276 VAArgOverflowSize); 5277 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5278 IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); 5279 if (MS.TrackOrigins) { 5280 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 5281 IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, 5282 Align(8), CopySize); 5283 } 5284 } 5285 5286 // Instrument va_start. 5287 // Copy va_list shadow from the backup copy of the TLS contents. 5288 for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); 5289 VaStartNo < VaStartNum; VaStartNo++) { 5290 CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; 5291 IRBuilder<> IRB(OrigInst->getNextNode()); 5292 Value *VAListTag = OrigInst->getArgOperand(0); 5293 copyRegSaveArea(IRB, VAListTag); 5294 copyOverflowArea(IRB, VAListTag); 5295 } 5296 } 5297 }; 5298 5299 /// A no-op implementation of VarArgHelper. 5300 struct VarArgNoOpHelper : public VarArgHelper { 5301 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 5302 MemorySanitizerVisitor &MSV) {} 5303 5304 void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} 5305 5306 void visitVAStartInst(VAStartInst &I) override {} 5307 5308 void visitVACopyInst(VACopyInst &I) override {} 5309 5310 void finalizeInstrumentation() override {} 5311 }; 5312 5313 } // end anonymous namespace 5314 5315 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 5316 MemorySanitizerVisitor &Visitor) { 5317 // VarArg handling is only implemented on AMD64. False positives are possible 5318 // on other platforms. 5319 Triple TargetTriple(Func.getParent()->getTargetTriple()); 5320 if (TargetTriple.getArch() == Triple::x86_64) 5321 return new VarArgAMD64Helper(Func, Msan, Visitor); 5322 else if (TargetTriple.isMIPS64()) 5323 return new VarArgMIPS64Helper(Func, Msan, Visitor); 5324 else if (TargetTriple.getArch() == Triple::aarch64) 5325 return new VarArgAArch64Helper(Func, Msan, Visitor); 5326 else if (TargetTriple.getArch() == Triple::ppc64 || 5327 TargetTriple.getArch() == Triple::ppc64le) 5328 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 5329 else if (TargetTriple.getArch() == Triple::systemz) 5330 return new VarArgSystemZHelper(Func, Msan, Visitor); 5331 else 5332 return new VarArgNoOpHelper(Func, Msan, Visitor); 5333 } 5334 5335 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 5336 if (!CompileKernel && F.getName() == kMsanModuleCtorName) 5337 return false; 5338 5339 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 5340 return false; 5341 5342 MemorySanitizerVisitor Visitor(F, *this, TLI); 5343 5344 // Clear out readonly/readnone attributes. 5345 AttributeMask B; 5346 B.addAttribute(Attribute::ReadOnly) 5347 .addAttribute(Attribute::ReadNone) 5348 .addAttribute(Attribute::WriteOnly) 5349 .addAttribute(Attribute::ArgMemOnly) 5350 .addAttribute(Attribute::Speculatable); 5351 F.removeFnAttrs(B); 5352 5353 return Visitor.runOnFunction(); 5354 } 5355