1 //===- MemProfiler.cpp - memory allocation and access profiler ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemProfiler. Memory accesses are instrumented 10 // to increment the access count held in a shadow memory location, or 11 // alternatively to call into the runtime. Memory intrinsic calls (memmove, 12 // memcpy, memset) are changed to call the memory profiling runtime version 13 // instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Instrumentation/MemProfiler.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Transforms/Instrumentation.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/ModuleUtils.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "memprof" 44 45 constexpr int LLVM_MEM_PROFILER_VERSION = 1; 46 47 // Size of memory mapped to a single shadow location. 48 constexpr uint64_t DefaultShadowGranularity = 64; 49 50 // Scale from granularity down to shadow size. 51 constexpr uint64_t DefaultShadowScale = 3; 52 53 constexpr char MemProfModuleCtorName[] = "memprof.module_ctor"; 54 constexpr uint64_t MemProfCtorAndDtorPriority = 1; 55 // On Emscripten, the system needs more than one priorities for constructors. 56 constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50; 57 constexpr char MemProfInitName[] = "__memprof_init"; 58 constexpr char MemProfVersionCheckNamePrefix[] = 59 "__memprof_version_mismatch_check_v"; 60 61 constexpr char MemProfShadowMemoryDynamicAddress[] = 62 "__memprof_shadow_memory_dynamic_address"; 63 64 constexpr char MemProfFilenameVar[] = "__memprof_profile_filename"; 65 66 // Command-line flags. 67 68 static cl::opt<bool> ClInsertVersionCheck( 69 "memprof-guard-against-version-mismatch", 70 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, 71 cl::init(true)); 72 73 // This flag may need to be replaced with -f[no-]memprof-reads. 74 static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads", 75 cl::desc("instrument read instructions"), 76 cl::Hidden, cl::init(true)); 77 78 static cl::opt<bool> 79 ClInstrumentWrites("memprof-instrument-writes", 80 cl::desc("instrument write instructions"), cl::Hidden, 81 cl::init(true)); 82 83 static cl::opt<bool> ClInstrumentAtomics( 84 "memprof-instrument-atomics", 85 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 86 cl::init(true)); 87 88 static cl::opt<bool> ClUseCalls( 89 "memprof-use-callbacks", 90 cl::desc("Use callbacks instead of inline instrumentation sequences."), 91 cl::Hidden, cl::init(false)); 92 93 static cl::opt<std::string> 94 ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix", 95 cl::desc("Prefix for memory access callbacks"), 96 cl::Hidden, cl::init("__memprof_")); 97 98 // These flags allow to change the shadow mapping. 99 // The shadow mapping looks like 100 // Shadow = ((Mem & mask) >> scale) + offset 101 102 static cl::opt<int> ClMappingScale("memprof-mapping-scale", 103 cl::desc("scale of memprof shadow mapping"), 104 cl::Hidden, cl::init(DefaultShadowScale)); 105 106 static cl::opt<int> 107 ClMappingGranularity("memprof-mapping-granularity", 108 cl::desc("granularity of memprof shadow mapping"), 109 cl::Hidden, cl::init(DefaultShadowGranularity)); 110 111 static cl::opt<bool> ClStack("memprof-instrument-stack", 112 cl::desc("Instrument scalar stack variables"), 113 cl::Hidden, cl::init(false)); 114 115 // Debug flags. 116 117 static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden, 118 cl::init(0)); 119 120 static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden, 121 cl::desc("Debug func")); 122 123 static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"), 124 cl::Hidden, cl::init(-1)); 125 126 static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"), 127 cl::Hidden, cl::init(-1)); 128 129 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 130 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 131 STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads"); 132 STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes"); 133 134 namespace { 135 136 /// This struct defines the shadow mapping using the rule: 137 /// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset. 138 struct ShadowMapping { 139 ShadowMapping() { 140 Scale = ClMappingScale; 141 Granularity = ClMappingGranularity; 142 Mask = ~(Granularity - 1); 143 } 144 145 int Scale; 146 int Granularity; 147 uint64_t Mask; // Computed as ~(Granularity-1) 148 }; 149 150 static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) { 151 return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority 152 : MemProfCtorAndDtorPriority; 153 } 154 155 struct InterestingMemoryAccess { 156 Value *Addr = nullptr; 157 bool IsWrite; 158 unsigned Alignment; 159 uint64_t TypeSize; 160 Value *MaybeMask = nullptr; 161 }; 162 163 /// Instrument the code in module to profile memory accesses. 164 class MemProfiler { 165 public: 166 MemProfiler(Module &M) { 167 C = &(M.getContext()); 168 LongSize = M.getDataLayout().getPointerSizeInBits(); 169 IntptrTy = Type::getIntNTy(*C, LongSize); 170 } 171 172 /// If it is an interesting memory access, populate information 173 /// about the access and return a InterestingMemoryAccess struct. 174 /// Otherwise return None. 175 Optional<InterestingMemoryAccess> 176 isInterestingMemoryAccess(Instruction *I) const; 177 178 void instrumentMop(Instruction *I, const DataLayout &DL, 179 InterestingMemoryAccess &Access); 180 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 181 Value *Addr, uint32_t TypeSize, bool IsWrite); 182 void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, 183 Instruction *I, Value *Addr, 184 unsigned Alignment, uint32_t TypeSize, 185 bool IsWrite); 186 void instrumentMemIntrinsic(MemIntrinsic *MI); 187 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 188 bool instrumentFunction(Function &F); 189 bool maybeInsertMemProfInitAtFunctionEntry(Function &F); 190 bool insertDynamicShadowAtFunctionEntry(Function &F); 191 192 private: 193 void initializeCallbacks(Module &M); 194 195 LLVMContext *C; 196 int LongSize; 197 Type *IntptrTy; 198 ShadowMapping Mapping; 199 200 // These arrays is indexed by AccessIsWrite 201 FunctionCallee MemProfMemoryAccessCallback[2]; 202 FunctionCallee MemProfMemoryAccessCallbackSized[2]; 203 204 FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset; 205 Value *DynamicShadowOffset = nullptr; 206 }; 207 208 class MemProfilerLegacyPass : public FunctionPass { 209 public: 210 static char ID; 211 212 explicit MemProfilerLegacyPass() : FunctionPass(ID) { 213 initializeMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); 214 } 215 216 StringRef getPassName() const override { return "MemProfilerFunctionPass"; } 217 218 bool runOnFunction(Function &F) override { 219 MemProfiler Profiler(*F.getParent()); 220 return Profiler.instrumentFunction(F); 221 } 222 }; 223 224 class ModuleMemProfiler { 225 public: 226 ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); } 227 228 bool instrumentModule(Module &); 229 230 private: 231 Triple TargetTriple; 232 ShadowMapping Mapping; 233 Function *MemProfCtorFunction = nullptr; 234 }; 235 236 class ModuleMemProfilerLegacyPass : public ModulePass { 237 public: 238 static char ID; 239 240 explicit ModuleMemProfilerLegacyPass() : ModulePass(ID) { 241 initializeModuleMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); 242 } 243 244 StringRef getPassName() const override { return "ModuleMemProfiler"; } 245 246 void getAnalysisUsage(AnalysisUsage &AU) const override {} 247 248 bool runOnModule(Module &M) override { 249 ModuleMemProfiler MemProfiler(M); 250 return MemProfiler.instrumentModule(M); 251 } 252 }; 253 254 } // end anonymous namespace 255 256 MemProfilerPass::MemProfilerPass() {} 257 258 PreservedAnalyses MemProfilerPass::run(Function &F, 259 AnalysisManager<Function> &AM) { 260 Module &M = *F.getParent(); 261 MemProfiler Profiler(M); 262 if (Profiler.instrumentFunction(F)) 263 return PreservedAnalyses::none(); 264 return PreservedAnalyses::all(); 265 } 266 267 ModuleMemProfilerPass::ModuleMemProfilerPass() {} 268 269 PreservedAnalyses ModuleMemProfilerPass::run(Module &M, 270 AnalysisManager<Module> &AM) { 271 ModuleMemProfiler Profiler(M); 272 if (Profiler.instrumentModule(M)) 273 return PreservedAnalyses::none(); 274 return PreservedAnalyses::all(); 275 } 276 277 char MemProfilerLegacyPass::ID = 0; 278 279 INITIALIZE_PASS_BEGIN(MemProfilerLegacyPass, "memprof", 280 "MemProfiler: profile memory allocations and accesses.", 281 false, false) 282 INITIALIZE_PASS_END(MemProfilerLegacyPass, "memprof", 283 "MemProfiler: profile memory allocations and accesses.", 284 false, false) 285 286 FunctionPass *llvm::createMemProfilerFunctionPass() { 287 return new MemProfilerLegacyPass(); 288 } 289 290 char ModuleMemProfilerLegacyPass::ID = 0; 291 292 INITIALIZE_PASS(ModuleMemProfilerLegacyPass, "memprof-module", 293 "MemProfiler: profile memory allocations and accesses." 294 "ModulePass", 295 false, false) 296 297 ModulePass *llvm::createModuleMemProfilerLegacyPassPass() { 298 return new ModuleMemProfilerLegacyPass(); 299 } 300 301 Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 302 // (Shadow & mask) >> scale 303 Shadow = IRB.CreateAnd(Shadow, Mapping.Mask); 304 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 305 // (Shadow >> scale) | offset 306 assert(DynamicShadowOffset); 307 return IRB.CreateAdd(Shadow, DynamicShadowOffset); 308 } 309 310 // Instrument memset/memmove/memcpy 311 void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) { 312 IRBuilder<> IRB(MI); 313 if (isa<MemTransferInst>(MI)) { 314 IRB.CreateCall( 315 isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy, 316 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 317 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 318 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 319 } else if (isa<MemSetInst>(MI)) { 320 IRB.CreateCall( 321 MemProfMemset, 322 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 323 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 324 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 325 } 326 MI->eraseFromParent(); 327 } 328 329 Optional<InterestingMemoryAccess> 330 MemProfiler::isInterestingMemoryAccess(Instruction *I) const { 331 // Do not instrument the load fetching the dynamic shadow address. 332 if (DynamicShadowOffset == I) 333 return None; 334 335 InterestingMemoryAccess Access; 336 337 const DataLayout &DL = I->getModule()->getDataLayout(); 338 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 339 if (!ClInstrumentReads) 340 return None; 341 Access.IsWrite = false; 342 Access.TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 343 Access.Alignment = LI->getAlignment(); 344 Access.Addr = LI->getPointerOperand(); 345 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 346 if (!ClInstrumentWrites) 347 return None; 348 Access.IsWrite = true; 349 Access.TypeSize = 350 DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 351 Access.Alignment = SI->getAlignment(); 352 Access.Addr = SI->getPointerOperand(); 353 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 354 if (!ClInstrumentAtomics) 355 return None; 356 Access.IsWrite = true; 357 Access.TypeSize = 358 DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 359 Access.Alignment = 0; 360 Access.Addr = RMW->getPointerOperand(); 361 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 362 if (!ClInstrumentAtomics) 363 return None; 364 Access.IsWrite = true; 365 Access.TypeSize = 366 DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 367 Access.Alignment = 0; 368 Access.Addr = XCHG->getPointerOperand(); 369 } else if (auto *CI = dyn_cast<CallInst>(I)) { 370 auto *F = CI->getCalledFunction(); 371 if (F && (F->getIntrinsicID() == Intrinsic::masked_load || 372 F->getIntrinsicID() == Intrinsic::masked_store)) { 373 unsigned OpOffset = 0; 374 if (F->getIntrinsicID() == Intrinsic::masked_store) { 375 if (!ClInstrumentWrites) 376 return None; 377 // Masked store has an initial operand for the value. 378 OpOffset = 1; 379 Access.IsWrite = true; 380 } else { 381 if (!ClInstrumentReads) 382 return None; 383 Access.IsWrite = false; 384 } 385 386 auto *BasePtr = CI->getOperand(0 + OpOffset); 387 auto *Ty = cast<PointerType>(BasePtr->getType())->getElementType(); 388 Access.TypeSize = DL.getTypeStoreSizeInBits(Ty); 389 if (auto *AlignmentConstant = 390 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 391 Access.Alignment = (unsigned)AlignmentConstant->getZExtValue(); 392 else 393 Access.Alignment = 1; // No alignment guarantees. We probably got Undef 394 Access.MaybeMask = CI->getOperand(2 + OpOffset); 395 Access.Addr = BasePtr; 396 } 397 } 398 399 if (!Access.Addr) 400 return None; 401 402 // Do not instrument acesses from different address spaces; we cannot deal 403 // with them. 404 Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType()); 405 if (PtrTy->getPointerAddressSpace() != 0) 406 return None; 407 408 // Ignore swifterror addresses. 409 // swifterror memory addresses are mem2reg promoted by instruction 410 // selection. As such they cannot have regular uses like an instrumentation 411 // function and it makes no sense to track them as memory. 412 if (Access.Addr->isSwiftError()) 413 return None; 414 415 return Access; 416 } 417 418 void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, 419 Instruction *I, Value *Addr, 420 unsigned Alignment, 421 uint32_t TypeSize, bool IsWrite) { 422 auto *VTy = cast<FixedVectorType>( 423 cast<PointerType>(Addr->getType())->getElementType()); 424 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 425 unsigned Num = VTy->getNumElements(); 426 auto *Zero = ConstantInt::get(IntptrTy, 0); 427 for (unsigned Idx = 0; Idx < Num; ++Idx) { 428 Value *InstrumentedAddress = nullptr; 429 Instruction *InsertBefore = I; 430 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { 431 // dyn_cast as we might get UndefValue 432 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { 433 if (Masked->isZero()) 434 // Mask is constant false, so no instrumentation needed. 435 continue; 436 // If we have a true or undef value, fall through to instrumentAddress. 437 // with InsertBefore == I 438 } 439 } else { 440 IRBuilder<> IRB(I); 441 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); 442 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); 443 InsertBefore = ThenTerm; 444 } 445 446 IRBuilder<> IRB(InsertBefore); 447 InstrumentedAddress = 448 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); 449 instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize, 450 IsWrite); 451 } 452 } 453 454 void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL, 455 InterestingMemoryAccess &Access) { 456 // Skip instrumentation of stack accesses unless requested. 457 if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) { 458 if (Access.IsWrite) 459 ++NumSkippedStackWrites; 460 else 461 ++NumSkippedStackReads; 462 return; 463 } 464 465 if (Access.IsWrite) 466 NumInstrumentedWrites++; 467 else 468 NumInstrumentedReads++; 469 470 if (Access.MaybeMask) { 471 instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr, 472 Access.Alignment, Access.TypeSize, 473 Access.IsWrite); 474 } else { 475 // Since the access counts will be accumulated across the entire allocation, 476 // we only update the shadow access count for the first location and thus 477 // don't need to worry about alignment and type size. 478 instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite); 479 } 480 } 481 482 void MemProfiler::instrumentAddress(Instruction *OrigIns, 483 Instruction *InsertBefore, Value *Addr, 484 uint32_t TypeSize, bool IsWrite) { 485 IRBuilder<> IRB(InsertBefore); 486 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 487 488 if (ClUseCalls) { 489 IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong); 490 return; 491 } 492 493 // Create an inline sequence to compute shadow location, and increment the 494 // value by one. 495 Type *ShadowTy = Type::getInt64Ty(*C); 496 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 497 Value *ShadowPtr = memToShadow(AddrLong, IRB); 498 Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy); 499 Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr); 500 Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1); 501 ShadowValue = IRB.CreateAdd(ShadowValue, Inc); 502 IRB.CreateStore(ShadowValue, ShadowAddr); 503 } 504 505 // Create the variable for the profile file name. 506 void createProfileFileNameVar(Module &M) { 507 const MDString *MemProfFilename = 508 dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename")); 509 if (!MemProfFilename) 510 return; 511 assert(!MemProfFilename->getString().empty() && 512 "Unexpected MemProfProfileFilename metadata with empty string"); 513 Constant *ProfileNameConst = ConstantDataArray::getString( 514 M.getContext(), MemProfFilename->getString(), true); 515 GlobalVariable *ProfileNameVar = new GlobalVariable( 516 M, ProfileNameConst->getType(), /*isConstant=*/true, 517 GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar); 518 Triple TT(M.getTargetTriple()); 519 if (TT.supportsCOMDAT()) { 520 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 521 ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar)); 522 } 523 } 524 525 bool ModuleMemProfiler::instrumentModule(Module &M) { 526 // Create a module constructor. 527 std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION); 528 std::string VersionCheckName = 529 ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion) 530 : ""; 531 std::tie(MemProfCtorFunction, std::ignore) = 532 createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName, 533 MemProfInitName, /*InitArgTypes=*/{}, 534 /*InitArgs=*/{}, VersionCheckName); 535 536 const uint64_t Priority = getCtorAndDtorPriority(TargetTriple); 537 appendToGlobalCtors(M, MemProfCtorFunction, Priority); 538 539 createProfileFileNameVar(M); 540 541 return true; 542 } 543 544 void MemProfiler::initializeCallbacks(Module &M) { 545 IRBuilder<> IRB(*C); 546 547 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 548 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 549 550 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 551 SmallVector<Type *, 2> Args1{1, IntptrTy}; 552 MemProfMemoryAccessCallbackSized[AccessIsWrite] = 553 M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N", 554 FunctionType::get(IRB.getVoidTy(), Args2, false)); 555 556 MemProfMemoryAccessCallback[AccessIsWrite] = 557 M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr, 558 FunctionType::get(IRB.getVoidTy(), Args1, false)); 559 } 560 MemProfMemmove = M.getOrInsertFunction( 561 ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 562 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); 563 MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy", 564 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 565 IRB.getInt8PtrTy(), IntptrTy); 566 MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", 567 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 568 IRB.getInt32Ty(), IntptrTy); 569 } 570 571 bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) { 572 // For each NSObject descendant having a +load method, this method is invoked 573 // by the ObjC runtime before any of the static constructors is called. 574 // Therefore we need to instrument such methods with a call to __memprof_init 575 // at the beginning in order to initialize our runtime before any access to 576 // the shadow memory. 577 // We cannot just ignore these methods, because they may call other 578 // instrumented functions. 579 if (F.getName().find(" load]") != std::string::npos) { 580 FunctionCallee MemProfInitFunction = 581 declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {}); 582 IRBuilder<> IRB(&F.front(), F.front().begin()); 583 IRB.CreateCall(MemProfInitFunction, {}); 584 return true; 585 } 586 return false; 587 } 588 589 bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) { 590 IRBuilder<> IRB(&F.front().front()); 591 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 592 MemProfShadowMemoryDynamicAddress, IntptrTy); 593 if (F.getParent()->getPICLevel() == PICLevel::NotPIC) 594 cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true); 595 DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 596 return true; 597 } 598 599 bool MemProfiler::instrumentFunction(Function &F) { 600 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) 601 return false; 602 if (ClDebugFunc == F.getName()) 603 return false; 604 if (F.getName().startswith("__memprof_")) 605 return false; 606 607 bool FunctionModified = false; 608 609 // If needed, insert __memprof_init. 610 // This function needs to be called even if the function body is not 611 // instrumented. 612 if (maybeInsertMemProfInitAtFunctionEntry(F)) 613 FunctionModified = true; 614 615 LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n"); 616 617 initializeCallbacks(*F.getParent()); 618 619 FunctionModified |= insertDynamicShadowAtFunctionEntry(F); 620 621 SmallVector<Instruction *, 16> ToInstrument; 622 623 // Fill the set of memory operations to instrument. 624 for (auto &BB : F) { 625 for (auto &Inst : BB) { 626 if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst)) 627 ToInstrument.push_back(&Inst); 628 } 629 } 630 631 int NumInstrumented = 0; 632 for (auto *Inst : ToInstrument) { 633 if (ClDebugMin < 0 || ClDebugMax < 0 || 634 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 635 Optional<InterestingMemoryAccess> Access = 636 isInterestingMemoryAccess(Inst); 637 if (Access) 638 instrumentMop(Inst, F.getParent()->getDataLayout(), *Access); 639 else 640 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 641 } 642 NumInstrumented++; 643 } 644 645 if (NumInstrumented > 0) 646 FunctionModified = true; 647 648 LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " " 649 << F << "\n"); 650 651 return FunctionModified; 652 } 653