1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/None.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallVector.h" 69 #include "llvm/ADT/StringExtras.h" 70 #include "llvm/ADT/StringRef.h" 71 #include "llvm/ADT/Triple.h" 72 #include "llvm/ADT/iterator.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Argument.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DataLayout.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/GlobalAlias.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/GlobalVariable.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InlineAsm.h" 88 #include "llvm/IR/InstVisitor.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/IntrinsicInst.h" 93 #include "llvm/IR/LLVMContext.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Alignment.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/SpecialCaseList.h" 107 #include "llvm/Support/VirtualFileSystem.h" 108 #include "llvm/Transforms/Instrumentation.h" 109 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 110 #include "llvm/Transforms/Utils/Local.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <iterator> 116 #include <memory> 117 #include <set> 118 #include <string> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 // This must be consistent with ShadowWidthBits. 125 static const Align ShadowTLSAlignment = Align(2); 126 127 static const Align MinOriginAlignment = Align(4); 128 129 // The size of TLS variables. These constants must be kept in sync with the ones 130 // in dfsan.cpp. 131 static const unsigned ArgTLSSize = 800; 132 static const unsigned RetvalTLSSize = 800; 133 134 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 135 // alignment requirements provided by the input IR are correct. For example, 136 // if the input IR contains a load with alignment 8, this flag will cause 137 // the shadow load to have alignment 16. This flag is disabled by default as 138 // we have unfortunately encountered too much code (including Clang itself; 139 // see PR14291) which performs misaligned access. 140 static cl::opt<bool> ClPreserveAlignment( 141 "dfsan-preserve-alignment", 142 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 143 cl::init(false)); 144 145 // The ABI list files control how shadow parameters are passed. The pass treats 146 // every function labelled "uninstrumented" in the ABI list file as conforming 147 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 148 // additional annotations for those functions, a call to one of those functions 149 // will produce a warning message, as the labelling behaviour of the function is 150 // unknown. The other supported annotations for uninstrumented functions are 151 // "functional" and "discard", which are described below under 152 // DataFlowSanitizer::WrapperKind. 153 // Functions will often be labelled with both "uninstrumented" and one of 154 // "functional" or "discard". This will leave the function unchanged by this 155 // pass, and create a wrapper function that will call the original. 156 // 157 // Instrumented functions can also be annotated as "force_zero_labels", which 158 // will make all shadow and return values set zero labels. 159 // Functions should never be labelled with both "force_zero_labels" and 160 // "uninstrumented" or any of the unistrumented wrapper kinds. 161 static cl::list<std::string> ClABIListFiles( 162 "dfsan-abilist", 163 cl::desc("File listing native ABI functions and how the pass treats them"), 164 cl::Hidden); 165 166 // Controls whether the pass includes or ignores the labels of pointers in load 167 // instructions. 168 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 169 "dfsan-combine-pointer-labels-on-load", 170 cl::desc("Combine the label of the pointer with the label of the data when " 171 "loading from memory."), 172 cl::Hidden, cl::init(true)); 173 174 // Controls whether the pass includes or ignores the labels of pointers in 175 // stores instructions. 176 static cl::opt<bool> ClCombinePointerLabelsOnStore( 177 "dfsan-combine-pointer-labels-on-store", 178 cl::desc("Combine the label of the pointer with the label of the data when " 179 "storing in memory."), 180 cl::Hidden, cl::init(false)); 181 182 // Controls whether the pass propagates labels of offsets in GEP instructions. 183 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 184 "dfsan-combine-offset-labels-on-gep", 185 cl::desc( 186 "Combine the label of the offset with the label of the pointer when " 187 "doing pointer arithmetic."), 188 cl::Hidden, cl::init(true)); 189 190 static cl::opt<bool> ClDebugNonzeroLabels( 191 "dfsan-debug-nonzero-labels", 192 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 193 "load or return with a nonzero label"), 194 cl::Hidden); 195 196 // Experimental feature that inserts callbacks for certain data events. 197 // Currently callbacks are only inserted for loads, stores, memory transfers 198 // (i.e. memcpy and memmove), and comparisons. 199 // 200 // If this flag is set to true, the user must provide definitions for the 201 // following callback functions: 202 // void __dfsan_load_callback(dfsan_label Label, void* addr); 203 // void __dfsan_store_callback(dfsan_label Label, void* addr); 204 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 205 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 206 static cl::opt<bool> ClEventCallbacks( 207 "dfsan-event-callbacks", 208 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 209 cl::Hidden, cl::init(false)); 210 211 // Controls whether the pass tracks the control flow of select instructions. 212 static cl::opt<bool> ClTrackSelectControlFlow( 213 "dfsan-track-select-control-flow", 214 cl::desc("Propagate labels from condition values of select instructions " 215 "to results."), 216 cl::Hidden, cl::init(true)); 217 218 // TODO: This default value follows MSan. DFSan may use a different value. 219 static cl::opt<int> ClInstrumentWithCallThreshold( 220 "dfsan-instrument-with-call-threshold", 221 cl::desc("If the function being instrumented requires more than " 222 "this number of origin stores, use callbacks instead of " 223 "inline checks (-1 means never use callbacks)."), 224 cl::Hidden, cl::init(3500)); 225 226 // Controls how to track origins. 227 // * 0: do not track origins. 228 // * 1: track origins at memory store operations. 229 // * 2: track origins at memory load and store operations. 230 // TODO: track callsites. 231 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 232 cl::desc("Track origins of labels"), 233 cl::Hidden, cl::init(0)); 234 235 static cl::opt<bool> ClIgnorePersonalityRoutine( 236 "dfsan-ignore-personality-routine", 237 cl::desc("If a personality routine is marked uninstrumented from the ABI " 238 "list, do not create a wrapper for it."), 239 cl::Hidden, cl::init(false)); 240 241 static StringRef getGlobalTypeString(const GlobalValue &G) { 242 // Types of GlobalVariables are always pointer types. 243 Type *GType = G.getValueType(); 244 // For now we support excluding struct types only. 245 if (StructType *SGType = dyn_cast<StructType>(GType)) { 246 if (!SGType->isLiteral()) 247 return SGType->getName(); 248 } 249 return "<unknown type>"; 250 } 251 252 namespace { 253 254 // Memory map parameters used in application-to-shadow address calculation. 255 // Offset = (Addr & ~AndMask) ^ XorMask 256 // Shadow = ShadowBase + Offset 257 // Origin = (OriginBase + Offset) & ~3ULL 258 struct MemoryMapParams { 259 uint64_t AndMask; 260 uint64_t XorMask; 261 uint64_t ShadowBase; 262 uint64_t OriginBase; 263 }; 264 265 } // end anonymous namespace 266 267 // x86_64 Linux 268 // NOLINTNEXTLINE(readability-identifier-naming) 269 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 270 0, // AndMask (not used) 271 0x500000000000, // XorMask 272 0, // ShadowBase (not used) 273 0x100000000000, // OriginBase 274 }; 275 276 namespace { 277 278 class DFSanABIList { 279 std::unique_ptr<SpecialCaseList> SCL; 280 281 public: 282 DFSanABIList() = default; 283 284 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 285 286 /// Returns whether either this function or its source file are listed in the 287 /// given category. 288 bool isIn(const Function &F, StringRef Category) const { 289 return isIn(*F.getParent(), Category) || 290 SCL->inSection("dataflow", "fun", F.getName(), Category); 291 } 292 293 /// Returns whether this global alias is listed in the given category. 294 /// 295 /// If GA aliases a function, the alias's name is matched as a function name 296 /// would be. Similarly, aliases of globals are matched like globals. 297 bool isIn(const GlobalAlias &GA, StringRef Category) const { 298 if (isIn(*GA.getParent(), Category)) 299 return true; 300 301 if (isa<FunctionType>(GA.getValueType())) 302 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 303 304 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 305 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 306 Category); 307 } 308 309 /// Returns whether this module is listed in the given category. 310 bool isIn(const Module &M, StringRef Category) const { 311 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 312 } 313 }; 314 315 /// TransformedFunction is used to express the result of transforming one 316 /// function type into another. This struct is immutable. It holds metadata 317 /// useful for updating calls of the old function to the new type. 318 struct TransformedFunction { 319 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 320 std::vector<unsigned> ArgumentIndexMapping) 321 : OriginalType(OriginalType), TransformedType(TransformedType), 322 ArgumentIndexMapping(ArgumentIndexMapping) {} 323 324 // Disallow copies. 325 TransformedFunction(const TransformedFunction &) = delete; 326 TransformedFunction &operator=(const TransformedFunction &) = delete; 327 328 // Allow moves. 329 TransformedFunction(TransformedFunction &&) = default; 330 TransformedFunction &operator=(TransformedFunction &&) = default; 331 332 /// Type of the function before the transformation. 333 FunctionType *OriginalType; 334 335 /// Type of the function after the transformation. 336 FunctionType *TransformedType; 337 338 /// Transforming a function may change the position of arguments. This 339 /// member records the mapping from each argument's old position to its new 340 /// position. Argument positions are zero-indexed. If the transformation 341 /// from F to F' made the first argument of F into the third argument of F', 342 /// then ArgumentIndexMapping[0] will equal 2. 343 std::vector<unsigned> ArgumentIndexMapping; 344 }; 345 346 /// Given function attributes from a call site for the original function, 347 /// return function attributes appropriate for a call to the transformed 348 /// function. 349 AttributeList 350 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 351 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 352 353 // Construct a vector of AttributeSet for each function argument. 354 std::vector<llvm::AttributeSet> ArgumentAttributes( 355 TransformedFunction.TransformedType->getNumParams()); 356 357 // Copy attributes from the parameter of the original function to the 358 // transformed version. 'ArgumentIndexMapping' holds the mapping from 359 // old argument position to new. 360 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 361 I < IE; ++I) { 362 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 363 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 364 } 365 366 // Copy annotations on varargs arguments. 367 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 368 IE = CallSiteAttrs.getNumAttrSets(); 369 I < IE; ++I) { 370 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 371 } 372 373 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 374 CallSiteAttrs.getRetAttrs(), 375 llvm::makeArrayRef(ArgumentAttributes)); 376 } 377 378 class DataFlowSanitizer { 379 friend struct DFSanFunction; 380 friend class DFSanVisitor; 381 382 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 383 384 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 385 386 /// How should calls to uninstrumented functions be handled? 387 enum WrapperKind { 388 /// This function is present in an uninstrumented form but we don't know 389 /// how it should be handled. Print a warning and call the function anyway. 390 /// Don't label the return value. 391 WK_Warning, 392 393 /// This function does not write to (user-accessible) memory, and its return 394 /// value is unlabelled. 395 WK_Discard, 396 397 /// This function does not write to (user-accessible) memory, and the label 398 /// of its return value is the union of the label of its arguments. 399 WK_Functional, 400 401 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 402 /// where F is the name of the function. This function may wrap the 403 /// original function or provide its own implementation. WK_Custom uses an 404 /// extra pointer argument to return the shadow. This allows the wrapped 405 /// form of the function type to be expressed in C. 406 WK_Custom 407 }; 408 409 Module *Mod; 410 LLVMContext *Ctx; 411 Type *Int8Ptr; 412 IntegerType *OriginTy; 413 PointerType *OriginPtrTy; 414 ConstantInt *ZeroOrigin; 415 /// The shadow type for all primitive types and vector types. 416 IntegerType *PrimitiveShadowTy; 417 PointerType *PrimitiveShadowPtrTy; 418 IntegerType *IntptrTy; 419 ConstantInt *ZeroPrimitiveShadow; 420 Constant *ArgTLS; 421 ArrayType *ArgOriginTLSTy; 422 Constant *ArgOriginTLS; 423 Constant *RetvalTLS; 424 Constant *RetvalOriginTLS; 425 FunctionType *DFSanUnionLoadFnTy; 426 FunctionType *DFSanLoadLabelAndOriginFnTy; 427 FunctionType *DFSanUnimplementedFnTy; 428 FunctionType *DFSanSetLabelFnTy; 429 FunctionType *DFSanNonzeroLabelFnTy; 430 FunctionType *DFSanVarargWrapperFnTy; 431 FunctionType *DFSanCmpCallbackFnTy; 432 FunctionType *DFSanLoadStoreCallbackFnTy; 433 FunctionType *DFSanMemTransferCallbackFnTy; 434 FunctionType *DFSanChainOriginFnTy; 435 FunctionType *DFSanChainOriginIfTaintedFnTy; 436 FunctionType *DFSanMemOriginTransferFnTy; 437 FunctionType *DFSanMaybeStoreOriginFnTy; 438 FunctionCallee DFSanUnionLoadFn; 439 FunctionCallee DFSanLoadLabelAndOriginFn; 440 FunctionCallee DFSanUnimplementedFn; 441 FunctionCallee DFSanSetLabelFn; 442 FunctionCallee DFSanNonzeroLabelFn; 443 FunctionCallee DFSanVarargWrapperFn; 444 FunctionCallee DFSanLoadCallbackFn; 445 FunctionCallee DFSanStoreCallbackFn; 446 FunctionCallee DFSanMemTransferCallbackFn; 447 FunctionCallee DFSanCmpCallbackFn; 448 FunctionCallee DFSanChainOriginFn; 449 FunctionCallee DFSanChainOriginIfTaintedFn; 450 FunctionCallee DFSanMemOriginTransferFn; 451 FunctionCallee DFSanMaybeStoreOriginFn; 452 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 453 MDNode *ColdCallWeights; 454 MDNode *OriginStoreWeights; 455 DFSanABIList ABIList; 456 DenseMap<Value *, Function *> UnwrappedFnMap; 457 AttrBuilder ReadOnlyNoneAttrs; 458 459 /// Memory map parameters used in calculation mapping application addresses 460 /// to shadow addresses and origin addresses. 461 const MemoryMapParams *MapParams; 462 463 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 464 Value *getShadowAddress(Value *Addr, Instruction *Pos); 465 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 466 std::pair<Value *, Value *> 467 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 468 bool isInstrumented(const Function *F); 469 bool isInstrumented(const GlobalAlias *GA); 470 bool isForceZeroLabels(const Function *F); 471 FunctionType *getTrampolineFunctionType(FunctionType *T); 472 TransformedFunction getCustomFunctionType(FunctionType *T); 473 WrapperKind getWrapperKind(Function *F); 474 void addGlobalNameSuffix(GlobalValue *GV); 475 Function *buildWrapperFunction(Function *F, StringRef NewFName, 476 GlobalValue::LinkageTypes NewFLink, 477 FunctionType *NewFT); 478 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 479 void initializeCallbackFunctions(Module &M); 480 void initializeRuntimeFunctions(Module &M); 481 void injectMetadataGlobals(Module &M); 482 bool initializeModule(Module &M); 483 484 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 485 /// from it. Returns the origin's loaded value. 486 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 487 Value **OriginAddr); 488 489 /// Returns whether the given load byte size is amenable to inlined 490 /// optimization patterns. 491 bool hasLoadSizeForFastPath(uint64_t Size); 492 493 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 494 bool shouldTrackOrigins(); 495 496 /// Returns a zero constant with the shadow type of OrigTy. 497 /// 498 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 499 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 500 /// getZeroShadow(other type) = i16(0) 501 Constant *getZeroShadow(Type *OrigTy); 502 /// Returns a zero constant with the shadow type of V's type. 503 Constant *getZeroShadow(Value *V); 504 505 /// Checks if V is a zero shadow. 506 bool isZeroShadow(Value *V); 507 508 /// Returns the shadow type of OrigTy. 509 /// 510 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 511 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 512 /// getShadowTy(other type) = i16 513 Type *getShadowTy(Type *OrigTy); 514 /// Returns the shadow type of of V's type. 515 Type *getShadowTy(Value *V); 516 517 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 518 519 public: 520 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 521 522 bool runImpl(Module &M); 523 }; 524 525 struct DFSanFunction { 526 DataFlowSanitizer &DFS; 527 Function *F; 528 DominatorTree DT; 529 bool IsNativeABI; 530 bool IsForceZeroLabels; 531 AllocaInst *LabelReturnAlloca = nullptr; 532 AllocaInst *OriginReturnAlloca = nullptr; 533 DenseMap<Value *, Value *> ValShadowMap; 534 DenseMap<Value *, Value *> ValOriginMap; 535 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 536 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 537 538 struct PHIFixupElement { 539 PHINode *Phi; 540 PHINode *ShadowPhi; 541 PHINode *OriginPhi; 542 }; 543 std::vector<PHIFixupElement> PHIFixups; 544 545 DenseSet<Instruction *> SkipInsts; 546 std::vector<Value *> NonZeroChecks; 547 548 struct CachedShadow { 549 BasicBlock *Block; // The block where Shadow is defined. 550 Value *Shadow; 551 }; 552 /// Maps a value to its latest shadow value in terms of domination tree. 553 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 554 /// Maps a value to its latest collapsed shadow value it was converted to in 555 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 556 /// used at a post process where CFG blocks are split. So it does not cache 557 /// BasicBlock like CachedShadows, but uses domination between values. 558 DenseMap<Value *, Value *> CachedCollapsedShadows; 559 DenseMap<Value *, std::set<Value *>> ShadowElements; 560 561 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 562 bool IsForceZeroLabels) 563 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 564 IsForceZeroLabels(IsForceZeroLabels) { 565 DT.recalculate(*F); 566 } 567 568 /// Computes the shadow address for a given function argument. 569 /// 570 /// Shadow = ArgTLS+ArgOffset. 571 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 572 573 /// Computes the shadow address for a return value. 574 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 575 576 /// Computes the origin address for a given function argument. 577 /// 578 /// Origin = ArgOriginTLS[ArgNo]. 579 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 580 581 /// Computes the origin address for a return value. 582 Value *getRetvalOriginTLS(); 583 584 Value *getOrigin(Value *V); 585 void setOrigin(Instruction *I, Value *Origin); 586 /// Generates IR to compute the origin of the last operand with a taint label. 587 Value *combineOperandOrigins(Instruction *Inst); 588 /// Before the instruction Pos, generates IR to compute the last origin with a 589 /// taint label. Labels and origins are from vectors Shadows and Origins 590 /// correspondingly. The generated IR is like 591 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 592 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 593 /// zeros with other bitwidths. 594 Value *combineOrigins(const std::vector<Value *> &Shadows, 595 const std::vector<Value *> &Origins, Instruction *Pos, 596 ConstantInt *Zero = nullptr); 597 598 Value *getShadow(Value *V); 599 void setShadow(Instruction *I, Value *Shadow); 600 /// Generates IR to compute the union of the two given shadows, inserting it 601 /// before Pos. The combined value is with primitive type. 602 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 603 /// Combines the shadow values of V1 and V2, then converts the combined value 604 /// with primitive type into a shadow value with the original type T. 605 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 606 Instruction *Pos); 607 Value *combineOperandShadows(Instruction *Inst); 608 609 /// Generates IR to load shadow and origin corresponding to bytes [\p 610 /// Addr, \p Addr + \p Size), where addr has alignment \p 611 /// InstAlignment, and take the union of each of those shadows. The returned 612 /// shadow always has primitive type. 613 /// 614 /// When tracking loads is enabled, the returned origin is a chain at the 615 /// current stack if the returned shadow is tainted. 616 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 617 Align InstAlignment, 618 Instruction *Pos); 619 620 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 621 Align InstAlignment, Value *PrimitiveShadow, 622 Value *Origin, Instruction *Pos); 623 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 624 /// the expanded shadow value. 625 /// 626 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 627 /// EFP([n x T], PS) = [n x EFP(T,PS)] 628 /// EFP(other types, PS) = PS 629 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 630 Instruction *Pos); 631 /// Collapses Shadow into a single primitive shadow value, unioning all 632 /// primitive shadow values in the process. Returns the final primitive 633 /// shadow value. 634 /// 635 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 636 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 637 /// CTP(other types, PS) = PS 638 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 639 640 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 641 Instruction *Pos); 642 643 Align getShadowAlign(Align InstAlignment); 644 645 private: 646 /// Collapses the shadow with aggregate type into a single primitive shadow 647 /// value. 648 template <class AggregateType> 649 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 650 IRBuilder<> &IRB); 651 652 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 653 654 /// Returns the shadow value of an argument A. 655 Value *getShadowForTLSArgument(Argument *A); 656 657 /// The fast path of loading shadows. 658 std::pair<Value *, Value *> 659 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 660 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 661 Instruction *Pos); 662 663 Align getOriginAlign(Align InstAlignment); 664 665 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 666 /// is __dfsan_load_label_and_origin. This function returns the union of all 667 /// labels and the origin of the first taint label. However this is an 668 /// additional call with many instructions. To ensure common cases are fast, 669 /// checks if it is possible to load labels and origins without using the 670 /// callback function. 671 /// 672 /// When enabling tracking load instructions, we always use 673 /// __dfsan_load_label_and_origin to reduce code size. 674 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 675 676 /// Returns a chain at the current stack with previous origin V. 677 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 678 679 /// Returns a chain at the current stack with previous origin V if Shadow is 680 /// tainted. 681 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 682 683 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 684 /// Origin otherwise. 685 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 686 687 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 688 /// Size). 689 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 690 uint64_t StoreOriginSize, Align Alignment); 691 692 /// Stores Origin in terms of its Shadow value. 693 /// * Do not write origins for zero shadows because we do not trace origins 694 /// for untainted sinks. 695 /// * Use __dfsan_maybe_store_origin if there are too many origin store 696 /// instrumentations. 697 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 698 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 699 700 /// Convert a scalar value to an i1 by comparing with 0. 701 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 702 703 bool shouldInstrumentWithCall(); 704 705 /// Generates IR to load shadow and origin corresponding to bytes [\p 706 /// Addr, \p Addr + \p Size), where addr has alignment \p 707 /// InstAlignment, and take the union of each of those shadows. The returned 708 /// shadow always has primitive type. 709 std::pair<Value *, Value *> 710 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 711 Align InstAlignment, Instruction *Pos); 712 int NumOriginStores = 0; 713 }; 714 715 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 716 public: 717 DFSanFunction &DFSF; 718 719 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 720 721 const DataLayout &getDataLayout() const { 722 return DFSF.F->getParent()->getDataLayout(); 723 } 724 725 // Combines shadow values and origins for all of I's operands. 726 void visitInstOperands(Instruction &I); 727 728 void visitUnaryOperator(UnaryOperator &UO); 729 void visitBinaryOperator(BinaryOperator &BO); 730 void visitBitCastInst(BitCastInst &BCI); 731 void visitCastInst(CastInst &CI); 732 void visitCmpInst(CmpInst &CI); 733 void visitLandingPadInst(LandingPadInst &LPI); 734 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 735 void visitLoadInst(LoadInst &LI); 736 void visitStoreInst(StoreInst &SI); 737 void visitAtomicRMWInst(AtomicRMWInst &I); 738 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 739 void visitReturnInst(ReturnInst &RI); 740 void visitCallBase(CallBase &CB); 741 void visitPHINode(PHINode &PN); 742 void visitExtractElementInst(ExtractElementInst &I); 743 void visitInsertElementInst(InsertElementInst &I); 744 void visitShuffleVectorInst(ShuffleVectorInst &I); 745 void visitExtractValueInst(ExtractValueInst &I); 746 void visitInsertValueInst(InsertValueInst &I); 747 void visitAllocaInst(AllocaInst &I); 748 void visitSelectInst(SelectInst &I); 749 void visitMemSetInst(MemSetInst &I); 750 void visitMemTransferInst(MemTransferInst &I); 751 752 private: 753 void visitCASOrRMW(Align InstAlignment, Instruction &I); 754 755 // Returns false when this is an invoke of a custom function. 756 bool visitWrappedCallBase(Function &F, CallBase &CB); 757 758 // Combines origins for all of I's operands. 759 void visitInstOperandOrigins(Instruction &I); 760 761 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 762 IRBuilder<> &IRB); 763 764 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 765 IRBuilder<> &IRB); 766 }; 767 768 } // end anonymous namespace 769 770 DataFlowSanitizer::DataFlowSanitizer( 771 const std::vector<std::string> &ABIListFiles) { 772 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 773 llvm::append_range(AllABIListFiles, ClABIListFiles); 774 // FIXME: should we propagate vfs::FileSystem to this constructor? 775 ABIList.set( 776 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 777 } 778 779 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 780 assert(!T->isVarArg()); 781 SmallVector<Type *, 4> ArgTypes; 782 ArgTypes.push_back(T->getPointerTo()); 783 ArgTypes.append(T->param_begin(), T->param_end()); 784 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 785 Type *RetType = T->getReturnType(); 786 if (!RetType->isVoidTy()) 787 ArgTypes.push_back(PrimitiveShadowPtrTy); 788 789 if (shouldTrackOrigins()) { 790 ArgTypes.append(T->getNumParams(), OriginTy); 791 if (!RetType->isVoidTy()) 792 ArgTypes.push_back(OriginPtrTy); 793 } 794 795 return FunctionType::get(T->getReturnType(), ArgTypes, false); 796 } 797 798 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 799 SmallVector<Type *, 4> ArgTypes; 800 801 // Some parameters of the custom function being constructed are 802 // parameters of T. Record the mapping from parameters of T to 803 // parameters of the custom function, so that parameter attributes 804 // at call sites can be updated. 805 std::vector<unsigned> ArgumentIndexMapping; 806 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 807 Type *ParamType = T->getParamType(I); 808 FunctionType *FT; 809 if (isa<PointerType>(ParamType) && 810 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 811 ArgumentIndexMapping.push_back(ArgTypes.size()); 812 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 813 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 814 } else { 815 ArgumentIndexMapping.push_back(ArgTypes.size()); 816 ArgTypes.push_back(ParamType); 817 } 818 } 819 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 820 ArgTypes.push_back(PrimitiveShadowTy); 821 if (T->isVarArg()) 822 ArgTypes.push_back(PrimitiveShadowPtrTy); 823 Type *RetType = T->getReturnType(); 824 if (!RetType->isVoidTy()) 825 ArgTypes.push_back(PrimitiveShadowPtrTy); 826 827 if (shouldTrackOrigins()) { 828 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 829 ArgTypes.push_back(OriginTy); 830 if (T->isVarArg()) 831 ArgTypes.push_back(OriginPtrTy); 832 if (!RetType->isVoidTy()) 833 ArgTypes.push_back(OriginPtrTy); 834 } 835 836 return TransformedFunction( 837 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 838 ArgumentIndexMapping); 839 } 840 841 bool DataFlowSanitizer::isZeroShadow(Value *V) { 842 Type *T = V->getType(); 843 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 844 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 845 return CI->isZero(); 846 return false; 847 } 848 849 return isa<ConstantAggregateZero>(V); 850 } 851 852 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 853 uint64_t ShadowSize = Size * ShadowWidthBytes; 854 return ShadowSize % 8 == 0 || ShadowSize == 4; 855 } 856 857 bool DataFlowSanitizer::shouldTrackOrigins() { 858 static const bool ShouldTrackOrigins = ClTrackOrigins; 859 return ShouldTrackOrigins; 860 } 861 862 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 863 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 864 return ZeroPrimitiveShadow; 865 Type *ShadowTy = getShadowTy(OrigTy); 866 return ConstantAggregateZero::get(ShadowTy); 867 } 868 869 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 870 return getZeroShadow(V->getType()); 871 } 872 873 static Value *expandFromPrimitiveShadowRecursive( 874 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 875 Value *PrimitiveShadow, IRBuilder<> &IRB) { 876 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 877 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 878 879 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 880 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 881 Indices.push_back(Idx); 882 Shadow = expandFromPrimitiveShadowRecursive( 883 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 884 Indices.pop_back(); 885 } 886 return Shadow; 887 } 888 889 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 890 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 891 Indices.push_back(Idx); 892 Shadow = expandFromPrimitiveShadowRecursive( 893 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 894 Indices.pop_back(); 895 } 896 return Shadow; 897 } 898 llvm_unreachable("Unexpected shadow type"); 899 } 900 901 bool DFSanFunction::shouldInstrumentWithCall() { 902 return ClInstrumentWithCallThreshold >= 0 && 903 NumOriginStores >= ClInstrumentWithCallThreshold; 904 } 905 906 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 907 Instruction *Pos) { 908 Type *ShadowTy = DFS.getShadowTy(T); 909 910 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 911 return PrimitiveShadow; 912 913 if (DFS.isZeroShadow(PrimitiveShadow)) 914 return DFS.getZeroShadow(ShadowTy); 915 916 IRBuilder<> IRB(Pos); 917 SmallVector<unsigned, 4> Indices; 918 Value *Shadow = UndefValue::get(ShadowTy); 919 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 920 PrimitiveShadow, IRB); 921 922 // Caches the primitive shadow value that built the shadow value. 923 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 924 return Shadow; 925 } 926 927 template <class AggregateType> 928 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 929 IRBuilder<> &IRB) { 930 if (!AT->getNumElements()) 931 return DFS.ZeroPrimitiveShadow; 932 933 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 934 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 935 936 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 937 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 938 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 939 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 940 } 941 return Aggregator; 942 } 943 944 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 945 IRBuilder<> &IRB) { 946 Type *ShadowTy = Shadow->getType(); 947 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 948 return Shadow; 949 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 950 return collapseAggregateShadow<>(AT, Shadow, IRB); 951 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 952 return collapseAggregateShadow<>(ST, Shadow, IRB); 953 llvm_unreachable("Unexpected shadow type"); 954 } 955 956 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 957 Instruction *Pos) { 958 Type *ShadowTy = Shadow->getType(); 959 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 960 return Shadow; 961 962 // Checks if the cached collapsed shadow value dominates Pos. 963 Value *&CS = CachedCollapsedShadows[Shadow]; 964 if (CS && DT.dominates(CS, Pos)) 965 return CS; 966 967 IRBuilder<> IRB(Pos); 968 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 969 // Caches the converted primitive shadow value. 970 CS = PrimitiveShadow; 971 return PrimitiveShadow; 972 } 973 974 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 975 if (!OrigTy->isSized()) 976 return PrimitiveShadowTy; 977 if (isa<IntegerType>(OrigTy)) 978 return PrimitiveShadowTy; 979 if (isa<VectorType>(OrigTy)) 980 return PrimitiveShadowTy; 981 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 982 return ArrayType::get(getShadowTy(AT->getElementType()), 983 AT->getNumElements()); 984 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 985 SmallVector<Type *, 4> Elements; 986 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 987 Elements.push_back(getShadowTy(ST->getElementType(I))); 988 return StructType::get(*Ctx, Elements); 989 } 990 return PrimitiveShadowTy; 991 } 992 993 Type *DataFlowSanitizer::getShadowTy(Value *V) { 994 return getShadowTy(V->getType()); 995 } 996 997 bool DataFlowSanitizer::initializeModule(Module &M) { 998 Triple TargetTriple(M.getTargetTriple()); 999 const DataLayout &DL = M.getDataLayout(); 1000 1001 if (TargetTriple.getOS() != Triple::Linux) 1002 report_fatal_error("unsupported operating system"); 1003 if (TargetTriple.getArch() != Triple::x86_64) 1004 report_fatal_error("unsupported architecture"); 1005 MapParams = &Linux_X86_64_MemoryMapParams; 1006 1007 Mod = &M; 1008 Ctx = &M.getContext(); 1009 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1010 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1011 OriginPtrTy = PointerType::getUnqual(OriginTy); 1012 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1013 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1014 IntptrTy = DL.getIntPtrType(*Ctx); 1015 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1016 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1017 1018 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1019 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1020 /*isVarArg=*/false); 1021 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1022 DFSanLoadLabelAndOriginFnTy = 1023 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1024 /*isVarArg=*/false); 1025 DFSanUnimplementedFnTy = FunctionType::get( 1026 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1027 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1028 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1029 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1030 DFSanSetLabelArgs, /*isVarArg=*/false); 1031 DFSanNonzeroLabelFnTy = 1032 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1033 DFSanVarargWrapperFnTy = FunctionType::get( 1034 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1035 DFSanCmpCallbackFnTy = 1036 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1037 /*isVarArg=*/false); 1038 DFSanChainOriginFnTy = 1039 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1040 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1041 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1042 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1043 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1044 Int8Ptr, IntptrTy, OriginTy}; 1045 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1046 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1047 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1048 DFSanMemOriginTransferFnTy = FunctionType::get( 1049 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1050 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1051 DFSanLoadStoreCallbackFnTy = 1052 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1053 /*isVarArg=*/false); 1054 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1055 DFSanMemTransferCallbackFnTy = 1056 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1057 /*isVarArg=*/false); 1058 1059 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1060 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1061 return true; 1062 } 1063 1064 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1065 return !ABIList.isIn(*F, "uninstrumented"); 1066 } 1067 1068 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1069 return !ABIList.isIn(*GA, "uninstrumented"); 1070 } 1071 1072 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1073 return ABIList.isIn(*F, "force_zero_labels"); 1074 } 1075 1076 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1077 if (ABIList.isIn(*F, "functional")) 1078 return WK_Functional; 1079 if (ABIList.isIn(*F, "discard")) 1080 return WK_Discard; 1081 if (ABIList.isIn(*F, "custom")) 1082 return WK_Custom; 1083 1084 return WK_Warning; 1085 } 1086 1087 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1088 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1089 GV->setName(GVName + Suffix); 1090 1091 // Try to change the name of the function in module inline asm. We only do 1092 // this for specific asm directives, currently only ".symver", to try to avoid 1093 // corrupting asm which happens to contain the symbol name as a substring. 1094 // Note that the substitution for .symver assumes that the versioned symbol 1095 // also has an instrumented name. 1096 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1097 std::string SearchStr = ".symver " + GVName + ","; 1098 size_t Pos = Asm.find(SearchStr); 1099 if (Pos != std::string::npos) { 1100 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1101 Pos = Asm.find("@"); 1102 1103 if (Pos == std::string::npos) 1104 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1105 1106 Asm.replace(Pos, 1, Suffix + "@"); 1107 GV->getParent()->setModuleInlineAsm(Asm); 1108 } 1109 } 1110 1111 Function * 1112 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1113 GlobalValue::LinkageTypes NewFLink, 1114 FunctionType *NewFT) { 1115 FunctionType *FT = F->getFunctionType(); 1116 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1117 NewFName, F->getParent()); 1118 NewF->copyAttributesFrom(F); 1119 NewF->removeRetAttrs( 1120 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1121 1122 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1123 if (F->isVarArg()) { 1124 NewF->removeFnAttr("split-stack"); 1125 CallInst::Create(DFSanVarargWrapperFn, 1126 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1127 BB); 1128 new UnreachableInst(*Ctx, BB); 1129 } else { 1130 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1131 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1132 1133 CallInst *CI = CallInst::Create(F, Args, "", BB); 1134 if (FT->getReturnType()->isVoidTy()) 1135 ReturnInst::Create(*Ctx, BB); 1136 else 1137 ReturnInst::Create(*Ctx, CI, BB); 1138 } 1139 1140 return NewF; 1141 } 1142 1143 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1144 StringRef FName) { 1145 FunctionType *FTT = getTrampolineFunctionType(FT); 1146 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1147 Function *F = dyn_cast<Function>(C.getCallee()); 1148 if (F && F->isDeclaration()) { 1149 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1150 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1151 std::vector<Value *> Args; 1152 Function::arg_iterator AI = F->arg_begin() + 1; 1153 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1154 Args.push_back(&*AI); 1155 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1156 Type *RetType = FT->getReturnType(); 1157 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1158 : ReturnInst::Create(*Ctx, CI, BB); 1159 1160 // F is called by a wrapped custom function with primitive shadows. So 1161 // its arguments and return value need conversion. 1162 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true, 1163 /*ForceZeroLabels=*/false); 1164 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1165 ++ValAI; 1166 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1167 Value *Shadow = 1168 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1169 DFSF.ValShadowMap[&*ValAI] = Shadow; 1170 } 1171 Function::arg_iterator RetShadowAI = ShadowAI; 1172 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1173 if (ShouldTrackOrigins) { 1174 ValAI = F->arg_begin(); 1175 ++ValAI; 1176 Function::arg_iterator OriginAI = ShadowAI; 1177 if (!RetType->isVoidTy()) 1178 ++OriginAI; 1179 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1180 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1181 } 1182 } 1183 DFSanVisitor(DFSF).visitCallInst(*CI); 1184 if (!RetType->isVoidTy()) { 1185 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1186 DFSF.getShadow(RI->getReturnValue()), RI); 1187 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1188 if (ShouldTrackOrigins) { 1189 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1190 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1191 } 1192 } 1193 } 1194 1195 return cast<Constant>(C.getCallee()); 1196 } 1197 1198 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1199 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1200 { 1201 AttributeList AL; 1202 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1203 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1204 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1205 DFSanUnionLoadFn = 1206 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1207 } 1208 { 1209 AttributeList AL; 1210 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1211 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1212 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1213 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1214 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1215 } 1216 DFSanUnimplementedFn = 1217 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1218 { 1219 AttributeList AL; 1220 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1221 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1222 DFSanSetLabelFn = 1223 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1224 } 1225 DFSanNonzeroLabelFn = 1226 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1227 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1228 DFSanVarargWrapperFnTy); 1229 { 1230 AttributeList AL; 1231 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1232 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1233 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1234 DFSanChainOriginFnTy, AL); 1235 } 1236 { 1237 AttributeList AL; 1238 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1239 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1240 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1241 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1242 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1243 } 1244 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1245 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1246 1247 { 1248 AttributeList AL; 1249 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1250 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1251 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1252 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1253 } 1254 1255 DFSanRuntimeFunctions.insert( 1256 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1257 DFSanRuntimeFunctions.insert( 1258 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1259 DFSanRuntimeFunctions.insert( 1260 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1261 DFSanRuntimeFunctions.insert( 1262 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1263 DFSanRuntimeFunctions.insert( 1264 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1265 DFSanRuntimeFunctions.insert( 1266 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1267 DFSanRuntimeFunctions.insert( 1268 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1269 DFSanRuntimeFunctions.insert( 1270 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1271 DFSanRuntimeFunctions.insert( 1272 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1273 DFSanRuntimeFunctions.insert( 1274 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1275 DFSanRuntimeFunctions.insert( 1276 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1277 DFSanRuntimeFunctions.insert( 1278 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1279 DFSanRuntimeFunctions.insert( 1280 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1281 DFSanRuntimeFunctions.insert( 1282 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1283 } 1284 1285 // Initializes event callback functions and declare them in the module 1286 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1287 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1288 DFSanLoadStoreCallbackFnTy); 1289 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1290 DFSanLoadStoreCallbackFnTy); 1291 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1292 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1293 DFSanCmpCallbackFn = 1294 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1295 } 1296 1297 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1298 // These variables can be used: 1299 // - by the runtime (to discover what the shadow width was, during 1300 // compilation) 1301 // - in testing (to avoid hardcoding the shadow width and type but instead 1302 // extract them by pattern matching) 1303 Type *IntTy = Type::getInt32Ty(*Ctx); 1304 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1305 return new GlobalVariable( 1306 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1307 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1308 }); 1309 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1310 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1311 GlobalValue::WeakODRLinkage, 1312 ConstantInt::get(IntTy, ShadowWidthBytes), 1313 "__dfsan_shadow_width_bytes"); 1314 }); 1315 } 1316 1317 bool DataFlowSanitizer::runImpl(Module &M) { 1318 initializeModule(M); 1319 1320 if (ABIList.isIn(M, "skip")) 1321 return false; 1322 1323 const unsigned InitialGlobalSize = M.global_size(); 1324 const unsigned InitialModuleSize = M.size(); 1325 1326 bool Changed = false; 1327 1328 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1329 Type *Ty) -> Constant * { 1330 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1331 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1332 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1333 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1334 } 1335 return C; 1336 }; 1337 1338 // These globals must be kept in sync with the ones in dfsan.cpp. 1339 ArgTLS = 1340 GetOrInsertGlobal("__dfsan_arg_tls", 1341 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1342 RetvalTLS = GetOrInsertGlobal( 1343 "__dfsan_retval_tls", 1344 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1345 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1346 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1347 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1348 1349 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1350 Changed = true; 1351 return new GlobalVariable( 1352 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1353 ConstantInt::getSigned(OriginTy, 1354 shouldTrackOrigins() ? ClTrackOrigins : 0), 1355 "__dfsan_track_origins"); 1356 }); 1357 1358 injectMetadataGlobals(M); 1359 1360 initializeCallbackFunctions(M); 1361 initializeRuntimeFunctions(M); 1362 1363 std::vector<Function *> FnsToInstrument; 1364 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1365 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1366 SmallPtrSet<Constant *, 1> PersonalityFns; 1367 for (Function &F : M) 1368 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) { 1369 FnsToInstrument.push_back(&F); 1370 if (F.hasPersonalityFn()) 1371 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts()); 1372 } 1373 1374 if (ClIgnorePersonalityRoutine) { 1375 for (auto *C : PersonalityFns) { 1376 assert(isa<Function>(C) && "Personality routine is not a function!"); 1377 Function *F = cast<Function>(C); 1378 if (!isInstrumented(F)) 1379 FnsToInstrument.erase( 1380 std::remove(FnsToInstrument.begin(), FnsToInstrument.end(), F), 1381 FnsToInstrument.end()); 1382 } 1383 } 1384 1385 // Give function aliases prefixes when necessary, and build wrappers where the 1386 // instrumentedness is inconsistent. 1387 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1388 // Don't stop on weak. We assume people aren't playing games with the 1389 // instrumentedness of overridden weak aliases. 1390 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1391 if (!F) 1392 continue; 1393 1394 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1395 if (GAInst && FInst) { 1396 addGlobalNameSuffix(&GA); 1397 } else if (GAInst != FInst) { 1398 // Non-instrumented alias of an instrumented function, or vice versa. 1399 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1400 // below will take care of instrumenting it. 1401 Function *NewF = 1402 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1403 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType())); 1404 NewF->takeName(&GA); 1405 GA.eraseFromParent(); 1406 FnsToInstrument.push_back(NewF); 1407 } 1408 } 1409 1410 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1411 .addAttribute(Attribute::ReadNone); 1412 1413 // First, change the ABI of every function in the module. ABI-listed 1414 // functions keep their original ABI and get a wrapper function. 1415 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1416 FE = FnsToInstrument.end(); 1417 FI != FE; ++FI) { 1418 Function &F = **FI; 1419 FunctionType *FT = F.getFunctionType(); 1420 1421 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1422 FT->getReturnType()->isVoidTy()); 1423 1424 if (isInstrumented(&F)) { 1425 if (isForceZeroLabels(&F)) 1426 FnsWithForceZeroLabel.insert(&F); 1427 1428 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1429 // easily identify cases of mismatching ABIs. This naming scheme is 1430 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1431 addGlobalNameSuffix(&F); 1432 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1433 // Build a wrapper function for F. The wrapper simply calls F, and is 1434 // added to FnsToInstrument so that any instrumentation according to its 1435 // WrapperKind is done in the second pass below. 1436 1437 // If the function being wrapped has local linkage, then preserve the 1438 // function's linkage in the wrapper function. 1439 GlobalValue::LinkageTypes WrapperLinkage = 1440 F.hasLocalLinkage() ? F.getLinkage() 1441 : GlobalValue::LinkOnceODRLinkage; 1442 1443 Function *NewF = buildWrapperFunction( 1444 &F, 1445 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1446 std::string(F.getName()), 1447 WrapperLinkage, FT); 1448 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1449 1450 Value *WrappedFnCst = 1451 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1452 F.replaceAllUsesWith(WrappedFnCst); 1453 1454 UnwrappedFnMap[WrappedFnCst] = &F; 1455 *FI = NewF; 1456 1457 if (!F.isDeclaration()) { 1458 // This function is probably defining an interposition of an 1459 // uninstrumented function and hence needs to keep the original ABI. 1460 // But any functions it may call need to use the instrumented ABI, so 1461 // we instrument it in a mode which preserves the original ABI. 1462 FnsWithNativeABI.insert(&F); 1463 1464 // This code needs to rebuild the iterators, as they may be invalidated 1465 // by the push_back, taking care that the new range does not include 1466 // any functions added by this code. 1467 size_t N = FI - FnsToInstrument.begin(), 1468 Count = FE - FnsToInstrument.begin(); 1469 FnsToInstrument.push_back(&F); 1470 FI = FnsToInstrument.begin() + N; 1471 FE = FnsToInstrument.begin() + Count; 1472 } 1473 // Hopefully, nobody will try to indirectly call a vararg 1474 // function... yet. 1475 } else if (FT->isVarArg()) { 1476 UnwrappedFnMap[&F] = &F; 1477 *FI = nullptr; 1478 } 1479 } 1480 1481 for (Function *F : FnsToInstrument) { 1482 if (!F || F->isDeclaration()) 1483 continue; 1484 1485 removeUnreachableBlocks(*F); 1486 1487 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1488 FnsWithForceZeroLabel.count(F)); 1489 1490 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1491 // Build a copy of the list before iterating over it. 1492 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1493 1494 for (BasicBlock *BB : BBList) { 1495 Instruction *Inst = &BB->front(); 1496 while (true) { 1497 // DFSanVisitor may split the current basic block, changing the current 1498 // instruction's next pointer and moving the next instruction to the 1499 // tail block from which we should continue. 1500 Instruction *Next = Inst->getNextNode(); 1501 // DFSanVisitor may delete Inst, so keep track of whether it was a 1502 // terminator. 1503 bool IsTerminator = Inst->isTerminator(); 1504 if (!DFSF.SkipInsts.count(Inst)) 1505 DFSanVisitor(DFSF).visit(Inst); 1506 if (IsTerminator) 1507 break; 1508 Inst = Next; 1509 } 1510 } 1511 1512 // We will not necessarily be able to compute the shadow for every phi node 1513 // until we have visited every block. Therefore, the code that handles phi 1514 // nodes adds them to the PHIFixups list so that they can be properly 1515 // handled here. 1516 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1517 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1518 ++Val) { 1519 P.ShadowPhi->setIncomingValue( 1520 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1521 if (P.OriginPhi) 1522 P.OriginPhi->setIncomingValue( 1523 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1524 } 1525 } 1526 1527 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1528 // places (i.e. instructions in basic blocks we haven't even begun visiting 1529 // yet). To make our life easier, do this work in a pass after the main 1530 // instrumentation. 1531 if (ClDebugNonzeroLabels) { 1532 for (Value *V : DFSF.NonZeroChecks) { 1533 Instruction *Pos; 1534 if (Instruction *I = dyn_cast<Instruction>(V)) 1535 Pos = I->getNextNode(); 1536 else 1537 Pos = &DFSF.F->getEntryBlock().front(); 1538 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1539 Pos = Pos->getNextNode(); 1540 IRBuilder<> IRB(Pos); 1541 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1542 Value *Ne = 1543 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1544 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1545 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1546 IRBuilder<> ThenIRB(BI); 1547 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1548 } 1549 } 1550 } 1551 1552 return Changed || !FnsToInstrument.empty() || 1553 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1554 } 1555 1556 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1557 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1558 if (ArgOffset) 1559 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1560 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1561 "_dfsarg"); 1562 } 1563 1564 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1565 return IRB.CreatePointerCast( 1566 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1567 } 1568 1569 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1570 1571 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1572 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1573 "_dfsarg_o"); 1574 } 1575 1576 Value *DFSanFunction::getOrigin(Value *V) { 1577 assert(DFS.shouldTrackOrigins()); 1578 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1579 return DFS.ZeroOrigin; 1580 Value *&Origin = ValOriginMap[V]; 1581 if (!Origin) { 1582 if (Argument *A = dyn_cast<Argument>(V)) { 1583 if (IsNativeABI) 1584 return DFS.ZeroOrigin; 1585 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1586 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1587 IRBuilder<> IRB(ArgOriginTLSPos); 1588 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1589 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1590 } else { 1591 // Overflow 1592 Origin = DFS.ZeroOrigin; 1593 } 1594 } else { 1595 Origin = DFS.ZeroOrigin; 1596 } 1597 } 1598 return Origin; 1599 } 1600 1601 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1602 if (!DFS.shouldTrackOrigins()) 1603 return; 1604 assert(!ValOriginMap.count(I)); 1605 assert(Origin->getType() == DFS.OriginTy); 1606 ValOriginMap[I] = Origin; 1607 } 1608 1609 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1610 unsigned ArgOffset = 0; 1611 const DataLayout &DL = F->getParent()->getDataLayout(); 1612 for (auto &FArg : F->args()) { 1613 if (!FArg.getType()->isSized()) { 1614 if (A == &FArg) 1615 break; 1616 continue; 1617 } 1618 1619 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1620 if (A != &FArg) { 1621 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1622 if (ArgOffset > ArgTLSSize) 1623 break; // ArgTLS overflows, uses a zero shadow. 1624 continue; 1625 } 1626 1627 if (ArgOffset + Size > ArgTLSSize) 1628 break; // ArgTLS overflows, uses a zero shadow. 1629 1630 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1631 IRBuilder<> IRB(ArgTLSPos); 1632 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1633 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1634 ShadowTLSAlignment); 1635 } 1636 1637 return DFS.getZeroShadow(A); 1638 } 1639 1640 Value *DFSanFunction::getShadow(Value *V) { 1641 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1642 return DFS.getZeroShadow(V); 1643 if (IsForceZeroLabels) 1644 return DFS.getZeroShadow(V); 1645 Value *&Shadow = ValShadowMap[V]; 1646 if (!Shadow) { 1647 if (Argument *A = dyn_cast<Argument>(V)) { 1648 if (IsNativeABI) 1649 return DFS.getZeroShadow(V); 1650 Shadow = getShadowForTLSArgument(A); 1651 NonZeroChecks.push_back(Shadow); 1652 } else { 1653 Shadow = DFS.getZeroShadow(V); 1654 } 1655 } 1656 return Shadow; 1657 } 1658 1659 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1660 assert(!ValShadowMap.count(I)); 1661 ValShadowMap[I] = Shadow; 1662 } 1663 1664 /// Compute the integer shadow offset that corresponds to a given 1665 /// application address. 1666 /// 1667 /// Offset = (Addr & ~AndMask) ^ XorMask 1668 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1669 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1670 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1671 1672 uint64_t AndMask = MapParams->AndMask; 1673 if (AndMask) 1674 OffsetLong = 1675 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1676 1677 uint64_t XorMask = MapParams->XorMask; 1678 if (XorMask) 1679 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1680 return OffsetLong; 1681 } 1682 1683 std::pair<Value *, Value *> 1684 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1685 Instruction *Pos) { 1686 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1687 IRBuilder<> IRB(Pos); 1688 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1689 Value *ShadowLong = ShadowOffset; 1690 uint64_t ShadowBase = MapParams->ShadowBase; 1691 if (ShadowBase != 0) { 1692 ShadowLong = 1693 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1694 } 1695 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1696 Value *ShadowPtr = 1697 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1698 Value *OriginPtr = nullptr; 1699 if (shouldTrackOrigins()) { 1700 Value *OriginLong = ShadowOffset; 1701 uint64_t OriginBase = MapParams->OriginBase; 1702 if (OriginBase != 0) 1703 OriginLong = 1704 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1705 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1706 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1707 // So Mask is unnecessary. 1708 if (Alignment < MinOriginAlignment) { 1709 uint64_t Mask = MinOriginAlignment.value() - 1; 1710 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1711 } 1712 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1713 } 1714 return std::make_pair(ShadowPtr, OriginPtr); 1715 } 1716 1717 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1718 Value *ShadowOffset) { 1719 IRBuilder<> IRB(Pos); 1720 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1721 } 1722 1723 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1724 IRBuilder<> IRB(Pos); 1725 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1726 return getShadowAddress(Addr, Pos, ShadowOffset); 1727 } 1728 1729 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1730 Instruction *Pos) { 1731 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1732 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1733 } 1734 1735 // Generates IR to compute the union of the two given shadows, inserting it 1736 // before Pos. The combined value is with primitive type. 1737 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1738 if (DFS.isZeroShadow(V1)) 1739 return collapseToPrimitiveShadow(V2, Pos); 1740 if (DFS.isZeroShadow(V2)) 1741 return collapseToPrimitiveShadow(V1, Pos); 1742 if (V1 == V2) 1743 return collapseToPrimitiveShadow(V1, Pos); 1744 1745 auto V1Elems = ShadowElements.find(V1); 1746 auto V2Elems = ShadowElements.find(V2); 1747 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1748 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1749 V2Elems->second.begin(), V2Elems->second.end())) { 1750 return collapseToPrimitiveShadow(V1, Pos); 1751 } 1752 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1753 V1Elems->second.begin(), V1Elems->second.end())) { 1754 return collapseToPrimitiveShadow(V2, Pos); 1755 } 1756 } else if (V1Elems != ShadowElements.end()) { 1757 if (V1Elems->second.count(V2)) 1758 return collapseToPrimitiveShadow(V1, Pos); 1759 } else if (V2Elems != ShadowElements.end()) { 1760 if (V2Elems->second.count(V1)) 1761 return collapseToPrimitiveShadow(V2, Pos); 1762 } 1763 1764 auto Key = std::make_pair(V1, V2); 1765 if (V1 > V2) 1766 std::swap(Key.first, Key.second); 1767 CachedShadow &CCS = CachedShadows[Key]; 1768 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1769 return CCS.Shadow; 1770 1771 // Converts inputs shadows to shadows with primitive types. 1772 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1773 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1774 1775 IRBuilder<> IRB(Pos); 1776 CCS.Block = Pos->getParent(); 1777 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1778 1779 std::set<Value *> UnionElems; 1780 if (V1Elems != ShadowElements.end()) { 1781 UnionElems = V1Elems->second; 1782 } else { 1783 UnionElems.insert(V1); 1784 } 1785 if (V2Elems != ShadowElements.end()) { 1786 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1787 } else { 1788 UnionElems.insert(V2); 1789 } 1790 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1791 1792 return CCS.Shadow; 1793 } 1794 1795 // A convenience function which folds the shadows of each of the operands 1796 // of the provided instruction Inst, inserting the IR before Inst. Returns 1797 // the computed union Value. 1798 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1799 if (Inst->getNumOperands() == 0) 1800 return DFS.getZeroShadow(Inst); 1801 1802 Value *Shadow = getShadow(Inst->getOperand(0)); 1803 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1804 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1805 1806 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1807 } 1808 1809 void DFSanVisitor::visitInstOperands(Instruction &I) { 1810 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1811 DFSF.setShadow(&I, CombinedShadow); 1812 visitInstOperandOrigins(I); 1813 } 1814 1815 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1816 const std::vector<Value *> &Origins, 1817 Instruction *Pos, ConstantInt *Zero) { 1818 assert(Shadows.size() == Origins.size()); 1819 size_t Size = Origins.size(); 1820 if (Size == 0) 1821 return DFS.ZeroOrigin; 1822 Value *Origin = nullptr; 1823 if (!Zero) 1824 Zero = DFS.ZeroPrimitiveShadow; 1825 for (size_t I = 0; I != Size; ++I) { 1826 Value *OpOrigin = Origins[I]; 1827 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1828 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1829 continue; 1830 if (!Origin) { 1831 Origin = OpOrigin; 1832 continue; 1833 } 1834 Value *OpShadow = Shadows[I]; 1835 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1836 IRBuilder<> IRB(Pos); 1837 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1838 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1839 } 1840 return Origin ? Origin : DFS.ZeroOrigin; 1841 } 1842 1843 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1844 size_t Size = Inst->getNumOperands(); 1845 std::vector<Value *> Shadows(Size); 1846 std::vector<Value *> Origins(Size); 1847 for (unsigned I = 0; I != Size; ++I) { 1848 Shadows[I] = getShadow(Inst->getOperand(I)); 1849 Origins[I] = getOrigin(Inst->getOperand(I)); 1850 } 1851 return combineOrigins(Shadows, Origins, Inst); 1852 } 1853 1854 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1855 if (!DFSF.DFS.shouldTrackOrigins()) 1856 return; 1857 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1858 DFSF.setOrigin(&I, CombinedOrigin); 1859 } 1860 1861 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1862 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1863 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1864 } 1865 1866 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1867 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1868 return Align(std::max(MinOriginAlignment, Alignment)); 1869 } 1870 1871 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1872 Align InstAlignment) { 1873 // When enabling tracking load instructions, we always use 1874 // __dfsan_load_label_and_origin to reduce code size. 1875 if (ClTrackOrigins == 2) 1876 return true; 1877 1878 assert(Size != 0); 1879 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1880 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1881 // load its origin aligned at 4. If not, although origins may be lost, it 1882 // should not happen very often. 1883 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1884 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1885 // * Otherwise we use __dfsan_load_label_and_origin. 1886 // This should ensure that common cases run efficiently. 1887 if (Size <= 2) 1888 return false; 1889 1890 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1891 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1892 } 1893 1894 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1895 Value **OriginAddr) { 1896 IRBuilder<> IRB(Pos); 1897 *OriginAddr = 1898 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1899 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1900 } 1901 1902 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1903 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1904 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1905 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1906 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1907 1908 assert(Size >= 4 && "Not large enough load size for fast path!"); 1909 1910 // Used for origin tracking. 1911 std::vector<Value *> Shadows; 1912 std::vector<Value *> Origins; 1913 1914 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 1915 // but this function is only used in a subset of cases that make it possible 1916 // to optimize the instrumentation. 1917 // 1918 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 1919 // per byte) is either: 1920 // - a multiple of 8 (common) 1921 // - equal to 4 (only for load32) 1922 // 1923 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 1924 // other cases, we use a 64-bit integer to hold the wide shadow. 1925 Type *WideShadowTy = 1926 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 1927 1928 IRBuilder<> IRB(Pos); 1929 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 1930 Value *CombinedWideShadow = 1931 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1932 1933 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 1934 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 1935 1936 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 1937 if (BytesPerWideShadow > 4) { 1938 assert(BytesPerWideShadow == 8); 1939 // The wide shadow relates to two origin pointers: one for the first four 1940 // application bytes, and one for the latest four. We use a left shift to 1941 // get just the shadow bytes that correspond to the first origin pointer, 1942 // and then the entire shadow for the second origin pointer (which will be 1943 // chosen by combineOrigins() iff the least-significant half of the wide 1944 // shadow was empty but the other half was not). 1945 Value *WideShadowLo = IRB.CreateShl( 1946 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 1947 Shadows.push_back(WideShadow); 1948 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 1949 1950 Shadows.push_back(WideShadowLo); 1951 Origins.push_back(Origin); 1952 } else { 1953 Shadows.push_back(WideShadow); 1954 Origins.push_back(Origin); 1955 } 1956 }; 1957 1958 if (ShouldTrackOrigins) 1959 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 1960 1961 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 1962 // then OR individual shadows within the combined WideShadow by binary ORing. 1963 // This is fewer instructions than ORing shadows individually, since it 1964 // needs logN shift/or instructions (N being the bytes of the combined wide 1965 // shadow). 1966 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 1967 ByteOfs += BytesPerWideShadow) { 1968 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 1969 ConstantInt::get(DFS.IntptrTy, 1)); 1970 Value *NextWideShadow = 1971 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1972 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1973 if (ShouldTrackOrigins) { 1974 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 1975 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 1976 } 1977 } 1978 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 1979 Width >>= 1) { 1980 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1981 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1982 } 1983 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 1984 ShouldTrackOrigins 1985 ? combineOrigins(Shadows, Origins, Pos, 1986 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 1987 : DFS.ZeroOrigin}; 1988 } 1989 1990 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 1991 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 1992 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1993 1994 // Non-escaped loads. 1995 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1996 const auto SI = AllocaShadowMap.find(AI); 1997 if (SI != AllocaShadowMap.end()) { 1998 IRBuilder<> IRB(Pos); 1999 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 2000 const auto OI = AllocaOriginMap.find(AI); 2001 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 2002 return {ShadowLI, ShouldTrackOrigins 2003 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 2004 : nullptr}; 2005 } 2006 } 2007 2008 // Load from constant addresses. 2009 SmallVector<const Value *, 2> Objs; 2010 getUnderlyingObjects(Addr, Objs); 2011 bool AllConstants = true; 2012 for (const Value *Obj : Objs) { 2013 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 2014 continue; 2015 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 2016 continue; 2017 2018 AllConstants = false; 2019 break; 2020 } 2021 if (AllConstants) 2022 return {DFS.ZeroPrimitiveShadow, 2023 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2024 2025 if (Size == 0) 2026 return {DFS.ZeroPrimitiveShadow, 2027 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2028 2029 // Use callback to load if this is not an optimizable case for origin 2030 // tracking. 2031 if (ShouldTrackOrigins && 2032 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2033 IRBuilder<> IRB(Pos); 2034 CallInst *Call = 2035 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2036 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2037 ConstantInt::get(DFS.IntptrTy, Size)}); 2038 Call->addRetAttr(Attribute::ZExt); 2039 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2040 DFS.PrimitiveShadowTy), 2041 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2042 } 2043 2044 // Other cases that support loading shadows or origins in a fast way. 2045 Value *ShadowAddr, *OriginAddr; 2046 std::tie(ShadowAddr, OriginAddr) = 2047 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2048 2049 const Align ShadowAlign = getShadowAlign(InstAlignment); 2050 const Align OriginAlign = getOriginAlign(InstAlignment); 2051 Value *Origin = nullptr; 2052 if (ShouldTrackOrigins) { 2053 IRBuilder<> IRB(Pos); 2054 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2055 } 2056 2057 // When the byte size is small enough, we can load the shadow directly with 2058 // just a few instructions. 2059 switch (Size) { 2060 case 1: { 2061 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2062 LI->setAlignment(ShadowAlign); 2063 return {LI, Origin}; 2064 } 2065 case 2: { 2066 IRBuilder<> IRB(Pos); 2067 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2068 ConstantInt::get(DFS.IntptrTy, 1)); 2069 Value *Load = 2070 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2071 Value *Load1 = 2072 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2073 return {combineShadows(Load, Load1, Pos), Origin}; 2074 } 2075 } 2076 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2077 2078 if (HasSizeForFastPath) 2079 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2080 OriginAlign, Origin, Pos); 2081 2082 IRBuilder<> IRB(Pos); 2083 CallInst *FallbackCall = IRB.CreateCall( 2084 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2085 FallbackCall->addRetAttr(Attribute::ZExt); 2086 return {FallbackCall, Origin}; 2087 } 2088 2089 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2090 uint64_t Size, 2091 Align InstAlignment, 2092 Instruction *Pos) { 2093 Value *PrimitiveShadow, *Origin; 2094 std::tie(PrimitiveShadow, Origin) = 2095 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2096 if (DFS.shouldTrackOrigins()) { 2097 if (ClTrackOrigins == 2) { 2098 IRBuilder<> IRB(Pos); 2099 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2100 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2101 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2102 } 2103 } 2104 return {PrimitiveShadow, Origin}; 2105 } 2106 2107 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2108 switch (AO) { 2109 case AtomicOrdering::NotAtomic: 2110 return AtomicOrdering::NotAtomic; 2111 case AtomicOrdering::Unordered: 2112 case AtomicOrdering::Monotonic: 2113 case AtomicOrdering::Acquire: 2114 return AtomicOrdering::Acquire; 2115 case AtomicOrdering::Release: 2116 case AtomicOrdering::AcquireRelease: 2117 return AtomicOrdering::AcquireRelease; 2118 case AtomicOrdering::SequentiallyConsistent: 2119 return AtomicOrdering::SequentiallyConsistent; 2120 } 2121 llvm_unreachable("Unknown ordering"); 2122 } 2123 2124 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2125 auto &DL = LI.getModule()->getDataLayout(); 2126 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2127 if (Size == 0) { 2128 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2129 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2130 return; 2131 } 2132 2133 // When an application load is atomic, increase atomic ordering between 2134 // atomic application loads and stores to ensure happen-before order; load 2135 // shadow data after application data; store zero shadow data before 2136 // application data. This ensure shadow loads return either labels of the 2137 // initial application data or zeros. 2138 if (LI.isAtomic()) 2139 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2140 2141 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2142 std::vector<Value *> Shadows; 2143 std::vector<Value *> Origins; 2144 Value *PrimitiveShadow, *Origin; 2145 std::tie(PrimitiveShadow, Origin) = 2146 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2147 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2148 if (ShouldTrackOrigins) { 2149 Shadows.push_back(PrimitiveShadow); 2150 Origins.push_back(Origin); 2151 } 2152 if (ClCombinePointerLabelsOnLoad) { 2153 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2154 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2155 if (ShouldTrackOrigins) { 2156 Shadows.push_back(PtrShadow); 2157 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2158 } 2159 } 2160 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2161 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2162 2163 Value *Shadow = 2164 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2165 DFSF.setShadow(&LI, Shadow); 2166 2167 if (ShouldTrackOrigins) { 2168 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2169 } 2170 2171 if (ClEventCallbacks) { 2172 IRBuilder<> IRB(Pos); 2173 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2174 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2175 } 2176 } 2177 2178 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2179 IRBuilder<> &IRB) { 2180 assert(DFS.shouldTrackOrigins()); 2181 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2182 } 2183 2184 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2185 if (!DFS.shouldTrackOrigins()) 2186 return V; 2187 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2188 } 2189 2190 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2191 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2192 const DataLayout &DL = F->getParent()->getDataLayout(); 2193 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2194 if (IntptrSize == OriginSize) 2195 return Origin; 2196 assert(IntptrSize == OriginSize * 2); 2197 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2198 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2199 } 2200 2201 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2202 Value *StoreOriginAddr, 2203 uint64_t StoreOriginSize, Align Alignment) { 2204 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2205 const DataLayout &DL = F->getParent()->getDataLayout(); 2206 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2207 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2208 assert(IntptrAlignment >= MinOriginAlignment); 2209 assert(IntptrSize >= OriginSize); 2210 2211 unsigned Ofs = 0; 2212 Align CurrentAlignment = Alignment; 2213 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2214 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2215 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2216 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2217 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2218 Value *Ptr = 2219 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2220 : IntptrStoreOriginPtr; 2221 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2222 Ofs += IntptrSize / OriginSize; 2223 CurrentAlignment = IntptrAlignment; 2224 } 2225 } 2226 2227 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2228 ++I) { 2229 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2230 : StoreOriginAddr; 2231 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2232 CurrentAlignment = MinOriginAlignment; 2233 } 2234 } 2235 2236 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2237 const Twine &Name) { 2238 Type *VTy = V->getType(); 2239 assert(VTy->isIntegerTy()); 2240 if (VTy->getIntegerBitWidth() == 1) 2241 // Just converting a bool to a bool, so do nothing. 2242 return V; 2243 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2244 } 2245 2246 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2247 Value *Shadow, Value *Origin, 2248 Value *StoreOriginAddr, Align InstAlignment) { 2249 // Do not write origins for zero shadows because we do not trace origins for 2250 // untainted sinks. 2251 const Align OriginAlignment = getOriginAlign(InstAlignment); 2252 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2253 IRBuilder<> IRB(Pos); 2254 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2255 if (!ConstantShadow->isZeroValue()) 2256 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2257 OriginAlignment); 2258 return; 2259 } 2260 2261 if (shouldInstrumentWithCall()) { 2262 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2263 {CollapsedShadow, 2264 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2265 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2266 } else { 2267 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2268 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2269 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2270 IRBuilder<> IRBNew(CheckTerm); 2271 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2272 OriginAlignment); 2273 ++NumOriginStores; 2274 } 2275 } 2276 2277 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2278 Align ShadowAlign, 2279 Instruction *Pos) { 2280 IRBuilder<> IRB(Pos); 2281 IntegerType *ShadowTy = 2282 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2283 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2284 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2285 Value *ExtShadowAddr = 2286 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2287 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2288 // Do not write origins for 0 shadows because we do not trace origins for 2289 // untainted sinks. 2290 } 2291 2292 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2293 Align InstAlignment, 2294 Value *PrimitiveShadow, 2295 Value *Origin, 2296 Instruction *Pos) { 2297 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2298 2299 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2300 const auto SI = AllocaShadowMap.find(AI); 2301 if (SI != AllocaShadowMap.end()) { 2302 IRBuilder<> IRB(Pos); 2303 IRB.CreateStore(PrimitiveShadow, SI->second); 2304 2305 // Do not write origins for 0 shadows because we do not trace origins for 2306 // untainted sinks. 2307 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2308 const auto OI = AllocaOriginMap.find(AI); 2309 assert(OI != AllocaOriginMap.end() && Origin); 2310 IRB.CreateStore(Origin, OI->second); 2311 } 2312 return; 2313 } 2314 } 2315 2316 const Align ShadowAlign = getShadowAlign(InstAlignment); 2317 if (DFS.isZeroShadow(PrimitiveShadow)) { 2318 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2319 return; 2320 } 2321 2322 IRBuilder<> IRB(Pos); 2323 Value *ShadowAddr, *OriginAddr; 2324 std::tie(ShadowAddr, OriginAddr) = 2325 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2326 2327 const unsigned ShadowVecSize = 8; 2328 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2329 "Shadow vector is too large!"); 2330 2331 uint64_t Offset = 0; 2332 uint64_t LeftSize = Size; 2333 if (LeftSize >= ShadowVecSize) { 2334 auto *ShadowVecTy = 2335 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2336 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2337 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2338 ShadowVec = IRB.CreateInsertElement( 2339 ShadowVec, PrimitiveShadow, 2340 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2341 } 2342 Value *ShadowVecAddr = 2343 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2344 do { 2345 Value *CurShadowVecAddr = 2346 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2347 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2348 LeftSize -= ShadowVecSize; 2349 ++Offset; 2350 } while (LeftSize >= ShadowVecSize); 2351 Offset *= ShadowVecSize; 2352 } 2353 while (LeftSize > 0) { 2354 Value *CurShadowAddr = 2355 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2356 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2357 --LeftSize; 2358 ++Offset; 2359 } 2360 2361 if (ShouldTrackOrigins) { 2362 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2363 InstAlignment); 2364 } 2365 } 2366 2367 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2368 switch (AO) { 2369 case AtomicOrdering::NotAtomic: 2370 return AtomicOrdering::NotAtomic; 2371 case AtomicOrdering::Unordered: 2372 case AtomicOrdering::Monotonic: 2373 case AtomicOrdering::Release: 2374 return AtomicOrdering::Release; 2375 case AtomicOrdering::Acquire: 2376 case AtomicOrdering::AcquireRelease: 2377 return AtomicOrdering::AcquireRelease; 2378 case AtomicOrdering::SequentiallyConsistent: 2379 return AtomicOrdering::SequentiallyConsistent; 2380 } 2381 llvm_unreachable("Unknown ordering"); 2382 } 2383 2384 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2385 auto &DL = SI.getModule()->getDataLayout(); 2386 Value *Val = SI.getValueOperand(); 2387 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2388 if (Size == 0) 2389 return; 2390 2391 // When an application store is atomic, increase atomic ordering between 2392 // atomic application loads and stores to ensure happen-before order; load 2393 // shadow data after application data; store zero shadow data before 2394 // application data. This ensure shadow loads return either labels of the 2395 // initial application data or zeros. 2396 if (SI.isAtomic()) 2397 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2398 2399 const bool ShouldTrackOrigins = 2400 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2401 std::vector<Value *> Shadows; 2402 std::vector<Value *> Origins; 2403 2404 Value *Shadow = 2405 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2406 2407 if (ShouldTrackOrigins) { 2408 Shadows.push_back(Shadow); 2409 Origins.push_back(DFSF.getOrigin(Val)); 2410 } 2411 2412 Value *PrimitiveShadow; 2413 if (ClCombinePointerLabelsOnStore) { 2414 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2415 if (ShouldTrackOrigins) { 2416 Shadows.push_back(PtrShadow); 2417 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2418 } 2419 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2420 } else { 2421 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2422 } 2423 Value *Origin = nullptr; 2424 if (ShouldTrackOrigins) 2425 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2426 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2427 PrimitiveShadow, Origin, &SI); 2428 if (ClEventCallbacks) { 2429 IRBuilder<> IRB(&SI); 2430 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2431 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2432 } 2433 } 2434 2435 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2436 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2437 2438 Value *Val = I.getOperand(1); 2439 const auto &DL = I.getModule()->getDataLayout(); 2440 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2441 if (Size == 0) 2442 return; 2443 2444 // Conservatively set data at stored addresses and return with zero shadow to 2445 // prevent shadow data races. 2446 IRBuilder<> IRB(&I); 2447 Value *Addr = I.getOperand(0); 2448 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2449 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2450 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2451 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2452 } 2453 2454 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2455 visitCASOrRMW(I.getAlign(), I); 2456 // TODO: The ordering change follows MSan. It is possible not to change 2457 // ordering because we always set and use 0 shadows. 2458 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2459 } 2460 2461 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2462 visitCASOrRMW(I.getAlign(), I); 2463 // TODO: The ordering change follows MSan. It is possible not to change 2464 // ordering because we always set and use 0 shadows. 2465 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2466 } 2467 2468 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2469 visitInstOperands(UO); 2470 } 2471 2472 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2473 visitInstOperands(BO); 2474 } 2475 2476 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2477 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2478 // a musttail call and a ret, don't instrument. New instructions are not 2479 // allowed after a musttail call. 2480 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2481 if (CI->isMustTailCall()) 2482 return; 2483 visitInstOperands(BCI); 2484 } 2485 2486 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2487 2488 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2489 visitInstOperands(CI); 2490 if (ClEventCallbacks) { 2491 IRBuilder<> IRB(&CI); 2492 Value *CombinedShadow = DFSF.getShadow(&CI); 2493 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2494 } 2495 } 2496 2497 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2498 // We do not need to track data through LandingPadInst. 2499 // 2500 // For the C++ exceptions, if a value is thrown, this value will be stored 2501 // in a memory location provided by __cxa_allocate_exception(...) (on the 2502 // throw side) or __cxa_begin_catch(...) (on the catch side). 2503 // This memory will have a shadow, so with the loads and stores we will be 2504 // able to propagate labels on data thrown through exceptions, without any 2505 // special handling of the LandingPadInst. 2506 // 2507 // The second element in the pair result of the LandingPadInst is a 2508 // register value, but it is for a type ID and should never be tainted. 2509 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2510 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2511 } 2512 2513 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2514 if (ClCombineOffsetLabelsOnGEP) { 2515 visitInstOperands(GEPI); 2516 return; 2517 } 2518 2519 // Only propagate shadow/origin of base pointer value but ignore those of 2520 // offset operands. 2521 Value *BasePointer = GEPI.getPointerOperand(); 2522 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2523 if (DFSF.DFS.shouldTrackOrigins()) 2524 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2525 } 2526 2527 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2528 visitInstOperands(I); 2529 } 2530 2531 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2532 visitInstOperands(I); 2533 } 2534 2535 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2536 visitInstOperands(I); 2537 } 2538 2539 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2540 IRBuilder<> IRB(&I); 2541 Value *Agg = I.getAggregateOperand(); 2542 Value *AggShadow = DFSF.getShadow(Agg); 2543 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2544 DFSF.setShadow(&I, ResShadow); 2545 visitInstOperandOrigins(I); 2546 } 2547 2548 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2549 IRBuilder<> IRB(&I); 2550 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2551 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2552 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2553 DFSF.setShadow(&I, Res); 2554 visitInstOperandOrigins(I); 2555 } 2556 2557 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2558 bool AllLoadsStores = true; 2559 for (User *U : I.users()) { 2560 if (isa<LoadInst>(U)) 2561 continue; 2562 2563 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2564 if (SI->getPointerOperand() == &I) 2565 continue; 2566 } 2567 2568 AllLoadsStores = false; 2569 break; 2570 } 2571 if (AllLoadsStores) { 2572 IRBuilder<> IRB(&I); 2573 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2574 if (DFSF.DFS.shouldTrackOrigins()) { 2575 DFSF.AllocaOriginMap[&I] = 2576 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2577 } 2578 } 2579 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2580 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2581 } 2582 2583 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2584 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2585 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2586 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2587 Value *ShadowSel = nullptr; 2588 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2589 std::vector<Value *> Shadows; 2590 std::vector<Value *> Origins; 2591 Value *TrueOrigin = 2592 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2593 Value *FalseOrigin = 2594 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2595 2596 if (isa<VectorType>(I.getCondition()->getType())) { 2597 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2598 FalseShadow, &I); 2599 if (ShouldTrackOrigins) { 2600 Shadows.push_back(TrueShadow); 2601 Shadows.push_back(FalseShadow); 2602 Origins.push_back(TrueOrigin); 2603 Origins.push_back(FalseOrigin); 2604 } 2605 } else { 2606 if (TrueShadow == FalseShadow) { 2607 ShadowSel = TrueShadow; 2608 if (ShouldTrackOrigins) { 2609 Shadows.push_back(TrueShadow); 2610 Origins.push_back(TrueOrigin); 2611 } 2612 } else { 2613 ShadowSel = 2614 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2615 if (ShouldTrackOrigins) { 2616 Shadows.push_back(ShadowSel); 2617 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2618 FalseOrigin, "", &I)); 2619 } 2620 } 2621 } 2622 DFSF.setShadow(&I, ClTrackSelectControlFlow 2623 ? DFSF.combineShadowsThenConvert( 2624 I.getType(), CondShadow, ShadowSel, &I) 2625 : ShadowSel); 2626 if (ShouldTrackOrigins) { 2627 if (ClTrackSelectControlFlow) { 2628 Shadows.push_back(CondShadow); 2629 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2630 } 2631 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2632 } 2633 } 2634 2635 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2636 IRBuilder<> IRB(&I); 2637 Value *ValShadow = DFSF.getShadow(I.getValue()); 2638 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2639 ? DFSF.getOrigin(I.getValue()) 2640 : DFSF.DFS.ZeroOrigin; 2641 IRB.CreateCall( 2642 DFSF.DFS.DFSanSetLabelFn, 2643 {ValShadow, ValOrigin, 2644 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2645 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2646 } 2647 2648 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2649 IRBuilder<> IRB(&I); 2650 2651 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2652 // need to move origins before moving shadows. 2653 if (DFSF.DFS.shouldTrackOrigins()) { 2654 IRB.CreateCall( 2655 DFSF.DFS.DFSanMemOriginTransferFn, 2656 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2657 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2658 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2659 } 2660 2661 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2662 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2663 Value *LenShadow = 2664 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2665 DFSF.DFS.ShadowWidthBytes)); 2666 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2667 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2668 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2669 auto *MTI = cast<MemTransferInst>( 2670 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2671 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2672 if (ClPreserveAlignment) { 2673 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2674 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2675 } else { 2676 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2677 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2678 } 2679 if (ClEventCallbacks) { 2680 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2681 {RawDestShadow, 2682 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2683 } 2684 } 2685 2686 static bool isAMustTailRetVal(Value *RetVal) { 2687 // Tail call may have a bitcast between return. 2688 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2689 RetVal = I->getOperand(0); 2690 } 2691 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2692 return I->isMustTailCall(); 2693 } 2694 return false; 2695 } 2696 2697 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2698 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2699 // Don't emit the instrumentation for musttail call returns. 2700 if (isAMustTailRetVal(RI.getReturnValue())) 2701 return; 2702 2703 Value *S = DFSF.getShadow(RI.getReturnValue()); 2704 IRBuilder<> IRB(&RI); 2705 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2706 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2707 if (Size <= RetvalTLSSize) { 2708 // If the size overflows, stores nothing. At callsite, oversized return 2709 // shadows are set to zero. 2710 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2711 } 2712 if (DFSF.DFS.shouldTrackOrigins()) { 2713 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2714 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2715 } 2716 } 2717 } 2718 2719 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2720 std::vector<Value *> &Args, 2721 IRBuilder<> &IRB) { 2722 FunctionType *FT = F.getFunctionType(); 2723 2724 auto *I = CB.arg_begin(); 2725 2726 // Adds non-variable argument shadows. 2727 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2728 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2729 2730 // Adds variable argument shadows. 2731 if (FT->isVarArg()) { 2732 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2733 CB.arg_size() - FT->getNumParams()); 2734 auto *LabelVAAlloca = 2735 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2736 "labelva", &DFSF.F->getEntryBlock().front()); 2737 2738 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2739 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2740 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2741 LabelVAPtr); 2742 } 2743 2744 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2745 } 2746 2747 // Adds the return value shadow. 2748 if (!FT->getReturnType()->isVoidTy()) { 2749 if (!DFSF.LabelReturnAlloca) { 2750 DFSF.LabelReturnAlloca = new AllocaInst( 2751 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2752 "labelreturn", &DFSF.F->getEntryBlock().front()); 2753 } 2754 Args.push_back(DFSF.LabelReturnAlloca); 2755 } 2756 } 2757 2758 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2759 std::vector<Value *> &Args, 2760 IRBuilder<> &IRB) { 2761 FunctionType *FT = F.getFunctionType(); 2762 2763 auto *I = CB.arg_begin(); 2764 2765 // Add non-variable argument origins. 2766 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2767 Args.push_back(DFSF.getOrigin(*I)); 2768 2769 // Add variable argument origins. 2770 if (FT->isVarArg()) { 2771 auto *OriginVATy = 2772 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2773 auto *OriginVAAlloca = 2774 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2775 "originva", &DFSF.F->getEntryBlock().front()); 2776 2777 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2778 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2779 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2780 } 2781 2782 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2783 } 2784 2785 // Add the return value origin. 2786 if (!FT->getReturnType()->isVoidTy()) { 2787 if (!DFSF.OriginReturnAlloca) { 2788 DFSF.OriginReturnAlloca = new AllocaInst( 2789 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2790 "originreturn", &DFSF.F->getEntryBlock().front()); 2791 } 2792 Args.push_back(DFSF.OriginReturnAlloca); 2793 } 2794 } 2795 2796 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2797 IRBuilder<> IRB(&CB); 2798 switch (DFSF.DFS.getWrapperKind(&F)) { 2799 case DataFlowSanitizer::WK_Warning: 2800 CB.setCalledFunction(&F); 2801 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2802 IRB.CreateGlobalStringPtr(F.getName())); 2803 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2804 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2805 return true; 2806 case DataFlowSanitizer::WK_Discard: 2807 CB.setCalledFunction(&F); 2808 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2809 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2810 return true; 2811 case DataFlowSanitizer::WK_Functional: 2812 CB.setCalledFunction(&F); 2813 visitInstOperands(CB); 2814 return true; 2815 case DataFlowSanitizer::WK_Custom: 2816 // Don't try to handle invokes of custom functions, it's too complicated. 2817 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2818 // wrapper. 2819 CallInst *CI = dyn_cast<CallInst>(&CB); 2820 if (!CI) 2821 return false; 2822 2823 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2824 FunctionType *FT = F.getFunctionType(); 2825 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2826 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2827 CustomFName += F.getName(); 2828 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2829 CustomFName, CustomFn.TransformedType); 2830 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2831 CustomFn->copyAttributesFrom(&F); 2832 2833 // Custom functions returning non-void will write to the return label. 2834 if (!FT->getReturnType()->isVoidTy()) { 2835 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 2836 } 2837 } 2838 2839 std::vector<Value *> Args; 2840 2841 // Adds non-variable arguments. 2842 auto *I = CB.arg_begin(); 2843 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2844 Type *T = (*I)->getType(); 2845 FunctionType *ParamFT; 2846 if (isa<PointerType>(T) && 2847 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2848 std::string TName = "dfst"; 2849 TName += utostr(FT->getNumParams() - N); 2850 TName += "$"; 2851 TName += F.getName(); 2852 Constant *Trampoline = 2853 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2854 Args.push_back(Trampoline); 2855 Args.push_back( 2856 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2857 } else { 2858 Args.push_back(*I); 2859 } 2860 } 2861 2862 // Adds shadow arguments. 2863 const unsigned ShadowArgStart = Args.size(); 2864 addShadowArguments(F, CB, Args, IRB); 2865 2866 // Adds origin arguments. 2867 const unsigned OriginArgStart = Args.size(); 2868 if (ShouldTrackOrigins) 2869 addOriginArguments(F, CB, Args, IRB); 2870 2871 // Adds variable arguments. 2872 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2873 2874 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2875 CustomCI->setCallingConv(CI->getCallingConv()); 2876 CustomCI->setAttributes(transformFunctionAttributes( 2877 CustomFn, CI->getContext(), CI->getAttributes())); 2878 2879 // Update the parameter attributes of the custom call instruction to 2880 // zero extend the shadow parameters. This is required for targets 2881 // which consider PrimitiveShadowTy an illegal type. 2882 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2883 const unsigned ArgNo = ShadowArgStart + N; 2884 if (CustomCI->getArgOperand(ArgNo)->getType() == 2885 DFSF.DFS.PrimitiveShadowTy) 2886 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2887 if (ShouldTrackOrigins) { 2888 const unsigned OriginArgNo = OriginArgStart + N; 2889 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2890 DFSF.DFS.OriginTy) 2891 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2892 } 2893 } 2894 2895 // Loads the return value shadow and origin. 2896 if (!FT->getReturnType()->isVoidTy()) { 2897 LoadInst *LabelLoad = 2898 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2899 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2900 FT->getReturnType(), LabelLoad, &CB)); 2901 if (ShouldTrackOrigins) { 2902 LoadInst *OriginLoad = 2903 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2904 DFSF.setOrigin(CustomCI, OriginLoad); 2905 } 2906 } 2907 2908 CI->replaceAllUsesWith(CustomCI); 2909 CI->eraseFromParent(); 2910 return true; 2911 } 2912 return false; 2913 } 2914 2915 void DFSanVisitor::visitCallBase(CallBase &CB) { 2916 Function *F = CB.getCalledFunction(); 2917 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2918 visitInstOperands(CB); 2919 return; 2920 } 2921 2922 // Calls to this function are synthesized in wrappers, and we shouldn't 2923 // instrument them. 2924 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2925 return; 2926 2927 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2928 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2929 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2930 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2931 return; 2932 2933 IRBuilder<> IRB(&CB); 2934 2935 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2936 FunctionType *FT = CB.getFunctionType(); 2937 const DataLayout &DL = getDataLayout(); 2938 2939 // Stores argument shadows. 2940 unsigned ArgOffset = 0; 2941 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2942 if (ShouldTrackOrigins) { 2943 // Ignore overflowed origins 2944 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2945 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 2946 !DFSF.DFS.isZeroShadow(ArgShadow)) 2947 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 2948 DFSF.getArgOriginTLS(I, IRB)); 2949 } 2950 2951 unsigned Size = 2952 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2953 // Stop storing if arguments' size overflows. Inside a function, arguments 2954 // after overflow have zero shadow values. 2955 if (ArgOffset + Size > ArgTLSSize) 2956 break; 2957 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 2958 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2959 ShadowTLSAlignment); 2960 ArgOffset += alignTo(Size, ShadowTLSAlignment); 2961 } 2962 2963 Instruction *Next = nullptr; 2964 if (!CB.getType()->isVoidTy()) { 2965 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2966 if (II->getNormalDest()->getSinglePredecessor()) { 2967 Next = &II->getNormalDest()->front(); 2968 } else { 2969 BasicBlock *NewBB = 2970 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2971 Next = &NewBB->front(); 2972 } 2973 } else { 2974 assert(CB.getIterator() != CB.getParent()->end()); 2975 Next = CB.getNextNode(); 2976 } 2977 2978 // Don't emit the epilogue for musttail call returns. 2979 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 2980 return; 2981 2982 // Loads the return value shadow. 2983 IRBuilder<> NextIRB(Next); 2984 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2985 if (Size > RetvalTLSSize) { 2986 // Set overflowed return shadow to be zero. 2987 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2988 } else { 2989 LoadInst *LI = NextIRB.CreateAlignedLoad( 2990 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2991 ShadowTLSAlignment, "_dfsret"); 2992 DFSF.SkipInsts.insert(LI); 2993 DFSF.setShadow(&CB, LI); 2994 DFSF.NonZeroChecks.push_back(LI); 2995 } 2996 2997 if (ShouldTrackOrigins) { 2998 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 2999 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 3000 DFSF.SkipInsts.insert(LI); 3001 DFSF.setOrigin(&CB, LI); 3002 } 3003 } 3004 } 3005 3006 void DFSanVisitor::visitPHINode(PHINode &PN) { 3007 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 3008 PHINode *ShadowPN = 3009 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 3010 3011 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 3012 Value *UndefShadow = UndefValue::get(ShadowTy); 3013 for (BasicBlock *BB : PN.blocks()) 3014 ShadowPN->addIncoming(UndefShadow, BB); 3015 3016 DFSF.setShadow(&PN, ShadowPN); 3017 3018 PHINode *OriginPN = nullptr; 3019 if (DFSF.DFS.shouldTrackOrigins()) { 3020 OriginPN = 3021 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3022 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3023 for (BasicBlock *BB : PN.blocks()) 3024 OriginPN->addIncoming(UndefOrigin, BB); 3025 DFSF.setOrigin(&PN, OriginPN); 3026 } 3027 3028 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3029 } 3030 3031 namespace { 3032 class DataFlowSanitizerLegacyPass : public ModulePass { 3033 private: 3034 std::vector<std::string> ABIListFiles; 3035 3036 public: 3037 static char ID; 3038 3039 DataFlowSanitizerLegacyPass( 3040 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3041 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3042 3043 bool runOnModule(Module &M) override { 3044 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3045 } 3046 }; 3047 } // namespace 3048 3049 char DataFlowSanitizerLegacyPass::ID; 3050 3051 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3052 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3053 3054 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3055 const std::vector<std::string> &ABIListFiles) { 3056 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3057 } 3058 3059 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3060 ModuleAnalysisManager &AM) { 3061 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3062 return PreservedAnalyses::none(); 3063 } 3064 return PreservedAnalyses::all(); 3065 } 3066