xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 #define DEBUG_TYPE "instcombine"
112 #include "llvm/Transforms/Utils/InstructionWorklist.h"
113 
114 using namespace llvm;
115 using namespace llvm::PatternMatch;
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Legal integers and common types are considered desirable. This is used to
206 /// avoid creating instructions with types that may not be supported well by the
207 /// the backend.
208 /// NOTE: This treats i8, i16 and i32 specially because they are common
209 ///       types in frontend languages.
210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
211   switch (BitWidth) {
212   case 8:
213   case 16:
214   case 32:
215     return true;
216   default:
217     return DL.isLegalInteger(BitWidth);
218   }
219 }
220 
221 /// Return true if it is desirable to convert an integer computation from a
222 /// given bit width to a new bit width.
223 /// We don't want to convert from a legal to an illegal type or from a smaller
224 /// to a larger illegal type. A width of '1' is always treated as a desirable
225 /// type because i1 is a fundamental type in IR, and there are many specialized
226 /// optimizations for i1 types. Common/desirable widths are equally treated as
227 /// legal to convert to, in order to open up more combining opportunities.
228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
229                                         unsigned ToWidth) const {
230   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
231   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
232 
233   // Convert to desirable widths even if they are not legal types.
234   // Only shrink types, to prevent infinite loops.
235   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
236     return true;
237 
238   // If this is a legal integer from type, and the result would be an illegal
239   // type, don't do the transformation.
240   if (FromLegal && !ToLegal)
241     return false;
242 
243   // Otherwise, if both are illegal, do not increase the size of the result. We
244   // do allow things like i160 -> i64, but not i64 -> i160.
245   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
246     return false;
247 
248   return true;
249 }
250 
251 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
252 /// We don't want to convert from a legal to an illegal type or from a smaller
253 /// to a larger illegal type. i1 is always treated as a legal type because it is
254 /// a fundamental type in IR, and there are many specialized optimizations for
255 /// i1 types.
256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
257   // TODO: This could be extended to allow vectors. Datalayout changes might be
258   // needed to properly support that.
259   if (!From->isIntegerTy() || !To->isIntegerTy())
260     return false;
261 
262   unsigned FromWidth = From->getPrimitiveSizeInBits();
263   unsigned ToWidth = To->getPrimitiveSizeInBits();
264   return shouldChangeType(FromWidth, ToWidth);
265 }
266 
267 // Return true, if No Signed Wrap should be maintained for I.
268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
269 // where both B and C should be ConstantInts, results in a constant that does
270 // not overflow. This function only handles the Add and Sub opcodes. For
271 // all other opcodes, the function conservatively returns false.
272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
273   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
274   if (!OBO || !OBO->hasNoSignedWrap())
275     return false;
276 
277   // We reason about Add and Sub Only.
278   Instruction::BinaryOps Opcode = I.getOpcode();
279   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
280     return false;
281 
282   const APInt *BVal, *CVal;
283   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
284     return false;
285 
286   bool Overflow = false;
287   if (Opcode == Instruction::Add)
288     (void)BVal->sadd_ov(*CVal, Overflow);
289   else
290     (void)BVal->ssub_ov(*CVal, Overflow);
291 
292   return !Overflow;
293 }
294 
295 static bool hasNoUnsignedWrap(BinaryOperator &I) {
296   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
297   return OBO && OBO->hasNoUnsignedWrap();
298 }
299 
300 static bool hasNoSignedWrap(BinaryOperator &I) {
301   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
302   return OBO && OBO->hasNoSignedWrap();
303 }
304 
305 /// Conservatively clears subclassOptionalData after a reassociation or
306 /// commutation. We preserve fast-math flags when applicable as they can be
307 /// preserved.
308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
309   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
310   if (!FPMO) {
311     I.clearSubclassOptionalData();
312     return;
313   }
314 
315   FastMathFlags FMF = I.getFastMathFlags();
316   I.clearSubclassOptionalData();
317   I.setFastMathFlags(FMF);
318 }
319 
320 /// Combine constant operands of associative operations either before or after a
321 /// cast to eliminate one of the associative operations:
322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
325                                    InstCombinerImpl &IC) {
326   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
327   if (!Cast || !Cast->hasOneUse())
328     return false;
329 
330   // TODO: Enhance logic for other casts and remove this check.
331   auto CastOpcode = Cast->getOpcode();
332   if (CastOpcode != Instruction::ZExt)
333     return false;
334 
335   // TODO: Enhance logic for other BinOps and remove this check.
336   if (!BinOp1->isBitwiseLogicOp())
337     return false;
338 
339   auto AssocOpcode = BinOp1->getOpcode();
340   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
341   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
342     return false;
343 
344   Constant *C1, *C2;
345   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
346       !match(BinOp2->getOperand(1), m_Constant(C2)))
347     return false;
348 
349   // TODO: This assumes a zext cast.
350   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
351   // to the destination type might lose bits.
352 
353   // Fold the constants together in the destination type:
354   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
355   Type *DestTy = C1->getType();
356   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
357   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
358   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
359   IC.replaceOperand(*BinOp1, 1, FoldedC);
360   return true;
361 }
362 
363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
364 // inttoptr ( ptrtoint (x) ) --> x
365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
366   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
367   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
368                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
369     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
370     Type *CastTy = IntToPtr->getDestTy();
371     if (PtrToInt &&
372         CastTy->getPointerAddressSpace() ==
373             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
374         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
375             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
376       return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
377                                               "", PtrToInt);
378     }
379   }
380   return nullptr;
381 }
382 
383 /// This performs a few simplifications for operators that are associative or
384 /// commutative:
385 ///
386 ///  Commutative operators:
387 ///
388 ///  1. Order operands such that they are listed from right (least complex) to
389 ///     left (most complex).  This puts constants before unary operators before
390 ///     binary operators.
391 ///
392 ///  Associative operators:
393 ///
394 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
395 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
396 ///
397 ///  Associative and commutative operators:
398 ///
399 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
400 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
401 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
402 ///     if C1 and C2 are constants.
403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
404   Instruction::BinaryOps Opcode = I.getOpcode();
405   bool Changed = false;
406 
407   do {
408     // Order operands such that they are listed from right (least complex) to
409     // left (most complex).  This puts constants before unary operators before
410     // binary operators.
411     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
412         getComplexity(I.getOperand(1)))
413       Changed = !I.swapOperands();
414 
415     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
416     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
417 
418     if (I.isAssociative()) {
419       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
420       if (Op0 && Op0->getOpcode() == Opcode) {
421         Value *A = Op0->getOperand(0);
422         Value *B = Op0->getOperand(1);
423         Value *C = I.getOperand(1);
424 
425         // Does "B op C" simplify?
426         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
427           // It simplifies to V.  Form "A op V".
428           replaceOperand(I, 0, A);
429           replaceOperand(I, 1, V);
430           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
431           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
432 
433           // Conservatively clear all optional flags since they may not be
434           // preserved by the reassociation. Reset nsw/nuw based on the above
435           // analysis.
436           ClearSubclassDataAfterReassociation(I);
437 
438           // Note: this is only valid because SimplifyBinOp doesn't look at
439           // the operands to Op0.
440           if (IsNUW)
441             I.setHasNoUnsignedWrap(true);
442 
443           if (IsNSW)
444             I.setHasNoSignedWrap(true);
445 
446           Changed = true;
447           ++NumReassoc;
448           continue;
449         }
450       }
451 
452       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
453       if (Op1 && Op1->getOpcode() == Opcode) {
454         Value *A = I.getOperand(0);
455         Value *B = Op1->getOperand(0);
456         Value *C = Op1->getOperand(1);
457 
458         // Does "A op B" simplify?
459         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
460           // It simplifies to V.  Form "V op C".
461           replaceOperand(I, 0, V);
462           replaceOperand(I, 1, C);
463           // Conservatively clear the optional flags, since they may not be
464           // preserved by the reassociation.
465           ClearSubclassDataAfterReassociation(I);
466           Changed = true;
467           ++NumReassoc;
468           continue;
469         }
470       }
471     }
472 
473     if (I.isAssociative() && I.isCommutative()) {
474       if (simplifyAssocCastAssoc(&I, *this)) {
475         Changed = true;
476         ++NumReassoc;
477         continue;
478       }
479 
480       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
481       if (Op0 && Op0->getOpcode() == Opcode) {
482         Value *A = Op0->getOperand(0);
483         Value *B = Op0->getOperand(1);
484         Value *C = I.getOperand(1);
485 
486         // Does "C op A" simplify?
487         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
488           // It simplifies to V.  Form "V op B".
489           replaceOperand(I, 0, V);
490           replaceOperand(I, 1, B);
491           // Conservatively clear the optional flags, since they may not be
492           // preserved by the reassociation.
493           ClearSubclassDataAfterReassociation(I);
494           Changed = true;
495           ++NumReassoc;
496           continue;
497         }
498       }
499 
500       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
501       if (Op1 && Op1->getOpcode() == Opcode) {
502         Value *A = I.getOperand(0);
503         Value *B = Op1->getOperand(0);
504         Value *C = Op1->getOperand(1);
505 
506         // Does "C op A" simplify?
507         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
508           // It simplifies to V.  Form "B op V".
509           replaceOperand(I, 0, B);
510           replaceOperand(I, 1, V);
511           // Conservatively clear the optional flags, since they may not be
512           // preserved by the reassociation.
513           ClearSubclassDataAfterReassociation(I);
514           Changed = true;
515           ++NumReassoc;
516           continue;
517         }
518       }
519 
520       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
521       // if C1 and C2 are constants.
522       Value *A, *B;
523       Constant *C1, *C2;
524       if (Op0 && Op1 &&
525           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
526           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
527           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
528         bool IsNUW = hasNoUnsignedWrap(I) &&
529            hasNoUnsignedWrap(*Op0) &&
530            hasNoUnsignedWrap(*Op1);
531          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
532            BinaryOperator::CreateNUW(Opcode, A, B) :
533            BinaryOperator::Create(Opcode, A, B);
534 
535          if (isa<FPMathOperator>(NewBO)) {
536           FastMathFlags Flags = I.getFastMathFlags();
537           Flags &= Op0->getFastMathFlags();
538           Flags &= Op1->getFastMathFlags();
539           NewBO->setFastMathFlags(Flags);
540         }
541         InsertNewInstWith(NewBO, I);
542         NewBO->takeName(Op1);
543         replaceOperand(I, 0, NewBO);
544         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
545         // Conservatively clear the optional flags, since they may not be
546         // preserved by the reassociation.
547         ClearSubclassDataAfterReassociation(I);
548         if (IsNUW)
549           I.setHasNoUnsignedWrap(true);
550 
551         Changed = true;
552         continue;
553       }
554     }
555 
556     // No further simplifications.
557     return Changed;
558   } while (true);
559 }
560 
561 /// Return whether "X LOp (Y ROp Z)" is always equal to
562 /// "(X LOp Y) ROp (X LOp Z)".
563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
564                                      Instruction::BinaryOps ROp) {
565   // X & (Y | Z) <--> (X & Y) | (X & Z)
566   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
567   if (LOp == Instruction::And)
568     return ROp == Instruction::Or || ROp == Instruction::Xor;
569 
570   // X | (Y & Z) <--> (X | Y) & (X | Z)
571   if (LOp == Instruction::Or)
572     return ROp == Instruction::And;
573 
574   // X * (Y + Z) <--> (X * Y) + (X * Z)
575   // X * (Y - Z) <--> (X * Y) - (X * Z)
576   if (LOp == Instruction::Mul)
577     return ROp == Instruction::Add || ROp == Instruction::Sub;
578 
579   return false;
580 }
581 
582 /// Return whether "(X LOp Y) ROp Z" is always equal to
583 /// "(X ROp Z) LOp (Y ROp Z)".
584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
585                                      Instruction::BinaryOps ROp) {
586   if (Instruction::isCommutative(ROp))
587     return leftDistributesOverRight(ROp, LOp);
588 
589   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
590   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
591 
592   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
593   // but this requires knowing that the addition does not overflow and other
594   // such subtleties.
595 }
596 
597 /// This function returns identity value for given opcode, which can be used to
598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
600   if (isa<Constant>(V))
601     return nullptr;
602 
603   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
604 }
605 
606 /// This function predicates factorization using distributive laws. By default,
607 /// it just returns the 'Op' inputs. But for special-cases like
608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
610 /// allow more factorization opportunities.
611 static Instruction::BinaryOps
612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
613                           Value *&LHS, Value *&RHS) {
614   assert(Op && "Expected a binary operator");
615   LHS = Op->getOperand(0);
616   RHS = Op->getOperand(1);
617   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
618     Constant *C;
619     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
620       // X << C --> X * (1 << C)
621       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
622       return Instruction::Mul;
623     }
624     // TODO: We can add other conversions e.g. shr => div etc.
625   }
626   return Op->getOpcode();
627 }
628 
629 /// This tries to simplify binary operations by factorizing out common terms
630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
632                                           Instruction::BinaryOps InnerOpcode,
633                                           Value *A, Value *B, Value *C,
634                                           Value *D) {
635   assert(A && B && C && D && "All values must be provided");
636 
637   Value *V = nullptr;
638   Value *SimplifiedInst = nullptr;
639   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
640   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
641 
642   // Does "X op' Y" always equal "Y op' X"?
643   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
644 
645   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
646   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
647     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
648     // commutative case, "(A op' B) op (C op' A)"?
649     if (A == C || (InnerCommutative && A == D)) {
650       if (A != C)
651         std::swap(C, D);
652       // Consider forming "A op' (B op D)".
653       // If "B op D" simplifies then it can be formed with no cost.
654       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
655       // If "B op D" doesn't simplify then only go on if both of the existing
656       // operations "A op' B" and "C op' D" will be zapped as no longer used.
657       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
658         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
659       if (V) {
660         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
661       }
662     }
663 
664   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
665   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
666     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
667     // commutative case, "(A op' B) op (B op' D)"?
668     if (B == D || (InnerCommutative && B == C)) {
669       if (B != D)
670         std::swap(C, D);
671       // Consider forming "(A op C) op' B".
672       // If "A op C" simplifies then it can be formed with no cost.
673       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
674 
675       // If "A op C" doesn't simplify then only go on if both of the existing
676       // operations "A op' B" and "C op' D" will be zapped as no longer used.
677       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
678         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
679       if (V) {
680         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
681       }
682     }
683 
684   if (SimplifiedInst) {
685     ++NumFactor;
686     SimplifiedInst->takeName(&I);
687 
688     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
689     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
690       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
691         bool HasNSW = false;
692         bool HasNUW = false;
693         if (isa<OverflowingBinaryOperator>(&I)) {
694           HasNSW = I.hasNoSignedWrap();
695           HasNUW = I.hasNoUnsignedWrap();
696         }
697 
698         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
699           HasNSW &= LOBO->hasNoSignedWrap();
700           HasNUW &= LOBO->hasNoUnsignedWrap();
701         }
702 
703         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
704           HasNSW &= ROBO->hasNoSignedWrap();
705           HasNUW &= ROBO->hasNoUnsignedWrap();
706         }
707 
708         if (TopLevelOpcode == Instruction::Add &&
709             InnerOpcode == Instruction::Mul) {
710           // We can propagate 'nsw' if we know that
711           //  %Y = mul nsw i16 %X, C
712           //  %Z = add nsw i16 %Y, %X
713           // =>
714           //  %Z = mul nsw i16 %X, C+1
715           //
716           // iff C+1 isn't INT_MIN
717           const APInt *CInt;
718           if (match(V, m_APInt(CInt))) {
719             if (!CInt->isMinSignedValue())
720               BO->setHasNoSignedWrap(HasNSW);
721           }
722 
723           // nuw can be propagated with any constant or nuw value.
724           BO->setHasNoUnsignedWrap(HasNUW);
725         }
726       }
727     }
728   }
729   return SimplifiedInst;
730 }
731 
732 /// This tries to simplify binary operations which some other binary operation
733 /// distributes over either by factorizing out common terms
734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
736 /// Returns the simplified value, or null if it didn't simplify.
737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
738   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
739   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
740   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
741   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
742 
743   {
744     // Factorization.
745     Value *A, *B, *C, *D;
746     Instruction::BinaryOps LHSOpcode, RHSOpcode;
747     if (Op0)
748       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
749     if (Op1)
750       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
751 
752     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
753     // a common term.
754     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
755       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
756         return V;
757 
758     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
759     // term.
760     if (Op0)
761       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
762         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
763           return V;
764 
765     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
766     // term.
767     if (Op1)
768       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
769         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
770           return V;
771   }
772 
773   // Expansion.
774   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
775     // The instruction has the form "(A op' B) op C".  See if expanding it out
776     // to "(A op C) op' (B op C)" results in simplifications.
777     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
778     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
779 
780     // Disable the use of undef because it's not safe to distribute undef.
781     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
782     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
783     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
784 
785     // Do "A op C" and "B op C" both simplify?
786     if (L && R) {
787       // They do! Return "L op' R".
788       ++NumExpand;
789       C = Builder.CreateBinOp(InnerOpcode, L, R);
790       C->takeName(&I);
791       return C;
792     }
793 
794     // Does "A op C" simplify to the identity value for the inner opcode?
795     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
796       // They do! Return "B op C".
797       ++NumExpand;
798       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
799       C->takeName(&I);
800       return C;
801     }
802 
803     // Does "B op C" simplify to the identity value for the inner opcode?
804     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
805       // They do! Return "A op C".
806       ++NumExpand;
807       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
808       C->takeName(&I);
809       return C;
810     }
811   }
812 
813   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
814     // The instruction has the form "A op (B op' C)".  See if expanding it out
815     // to "(A op B) op' (A op C)" results in simplifications.
816     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
817     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
818 
819     // Disable the use of undef because it's not safe to distribute undef.
820     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
821     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
822     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
823 
824     // Do "A op B" and "A op C" both simplify?
825     if (L && R) {
826       // They do! Return "L op' R".
827       ++NumExpand;
828       A = Builder.CreateBinOp(InnerOpcode, L, R);
829       A->takeName(&I);
830       return A;
831     }
832 
833     // Does "A op B" simplify to the identity value for the inner opcode?
834     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
835       // They do! Return "A op C".
836       ++NumExpand;
837       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
838       A->takeName(&I);
839       return A;
840     }
841 
842     // Does "A op C" simplify to the identity value for the inner opcode?
843     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
844       // They do! Return "A op B".
845       ++NumExpand;
846       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
847       A->takeName(&I);
848       return A;
849     }
850   }
851 
852   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
853 }
854 
855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
856                                                         Value *LHS,
857                                                         Value *RHS) {
858   Value *A, *B, *C, *D, *E, *F;
859   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
860   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
861   if (!LHSIsSelect && !RHSIsSelect)
862     return nullptr;
863 
864   FastMathFlags FMF;
865   BuilderTy::FastMathFlagGuard Guard(Builder);
866   if (isa<FPMathOperator>(&I)) {
867     FMF = I.getFastMathFlags();
868     Builder.setFastMathFlags(FMF);
869   }
870 
871   Instruction::BinaryOps Opcode = I.getOpcode();
872   SimplifyQuery Q = SQ.getWithInstruction(&I);
873 
874   Value *Cond, *True = nullptr, *False = nullptr;
875   if (LHSIsSelect && RHSIsSelect && A == D) {
876     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
877     Cond = A;
878     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
879     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
880 
881     if (LHS->hasOneUse() && RHS->hasOneUse()) {
882       if (False && !True)
883         True = Builder.CreateBinOp(Opcode, B, E);
884       else if (True && !False)
885         False = Builder.CreateBinOp(Opcode, C, F);
886     }
887   } else if (LHSIsSelect && LHS->hasOneUse()) {
888     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
889     Cond = A;
890     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
891     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
892   } else if (RHSIsSelect && RHS->hasOneUse()) {
893     // X op (D ? E : F) -> D ? (X op E) : (X op F)
894     Cond = D;
895     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
896     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
897   }
898 
899   if (!True || !False)
900     return nullptr;
901 
902   Value *SI = Builder.CreateSelect(Cond, True, False);
903   SI->takeName(&I);
904   return SI;
905 }
906 
907 /// Freely adapt every user of V as-if V was changed to !V.
908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
910   for (User *U : I->users()) {
911     switch (cast<Instruction>(U)->getOpcode()) {
912     case Instruction::Select: {
913       auto *SI = cast<SelectInst>(U);
914       SI->swapValues();
915       SI->swapProfMetadata();
916       break;
917     }
918     case Instruction::Br:
919       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
920       break;
921     case Instruction::Xor:
922       replaceInstUsesWith(cast<Instruction>(*U), I);
923       break;
924     default:
925       llvm_unreachable("Got unexpected user - out of sync with "
926                        "canFreelyInvertAllUsersOf() ?");
927     }
928   }
929 }
930 
931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
932 /// constant zero (which is the 'negate' form).
933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
934   Value *NegV;
935   if (match(V, m_Neg(m_Value(NegV))))
936     return NegV;
937 
938   // Constants can be considered to be negated values if they can be folded.
939   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
940     return ConstantExpr::getNeg(C);
941 
942   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
943     if (C->getType()->getElementType()->isIntegerTy())
944       return ConstantExpr::getNeg(C);
945 
946   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
947     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
948       Constant *Elt = CV->getAggregateElement(i);
949       if (!Elt)
950         return nullptr;
951 
952       if (isa<UndefValue>(Elt))
953         continue;
954 
955       if (!isa<ConstantInt>(Elt))
956         return nullptr;
957     }
958     return ConstantExpr::getNeg(CV);
959   }
960 
961   // Negate integer vector splats.
962   if (auto *CV = dyn_cast<Constant>(V))
963     if (CV->getType()->isVectorTy() &&
964         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
965       return ConstantExpr::getNeg(CV);
966 
967   return nullptr;
968 }
969 
970 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
971                                              InstCombiner::BuilderTy &Builder) {
972   if (auto *Cast = dyn_cast<CastInst>(&I))
973     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
974 
975   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
976     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
977            "Expected constant-foldable intrinsic");
978     Intrinsic::ID IID = II->getIntrinsicID();
979     if (II->arg_size() == 1)
980       return Builder.CreateUnaryIntrinsic(IID, SO);
981 
982     // This works for real binary ops like min/max (where we always expect the
983     // constant operand to be canonicalized as op1) and unary ops with a bonus
984     // constant argument like ctlz/cttz.
985     // TODO: Handle non-commutative binary intrinsics as below for binops.
986     assert(II->arg_size() == 2 && "Expected binary intrinsic");
987     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
988     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
989   }
990 
991   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
992 
993   // Figure out if the constant is the left or the right argument.
994   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
995   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
996 
997   if (auto *SOC = dyn_cast<Constant>(SO)) {
998     if (ConstIsRHS)
999       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1000     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1001   }
1002 
1003   Value *Op0 = SO, *Op1 = ConstOperand;
1004   if (!ConstIsRHS)
1005     std::swap(Op0, Op1);
1006 
1007   auto *BO = cast<BinaryOperator>(&I);
1008   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
1009                                   SO->getName() + ".op");
1010   auto *FPInst = dyn_cast<Instruction>(RI);
1011   if (FPInst && isa<FPMathOperator>(FPInst))
1012     FPInst->copyFastMathFlags(BO);
1013   return RI;
1014 }
1015 
1016 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1017                                                 SelectInst *SI) {
1018   // Don't modify shared select instructions.
1019   if (!SI->hasOneUse())
1020     return nullptr;
1021 
1022   Value *TV = SI->getTrueValue();
1023   Value *FV = SI->getFalseValue();
1024   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1025     return nullptr;
1026 
1027   // Bool selects with constant operands can be folded to logical ops.
1028   if (SI->getType()->isIntOrIntVectorTy(1))
1029     return nullptr;
1030 
1031   // If it's a bitcast involving vectors, make sure it has the same number of
1032   // elements on both sides.
1033   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1034     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1035     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1036 
1037     // Verify that either both or neither are vectors.
1038     if ((SrcTy == nullptr) != (DestTy == nullptr))
1039       return nullptr;
1040 
1041     // If vectors, verify that they have the same number of elements.
1042     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1043       return nullptr;
1044   }
1045 
1046   // Test if a CmpInst instruction is used exclusively by a select as
1047   // part of a minimum or maximum operation. If so, refrain from doing
1048   // any other folding. This helps out other analyses which understand
1049   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1050   // and CodeGen. And in this case, at least one of the comparison
1051   // operands has at least one user besides the compare (the select),
1052   // which would often largely negate the benefit of folding anyway.
1053   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1054     if (CI->hasOneUse()) {
1055       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1056 
1057       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1058       //        We have to ensure that vector constants that only differ with
1059       //        undef elements are treated as equivalent.
1060       auto areLooselyEqual = [](Value *A, Value *B) {
1061         if (A == B)
1062           return true;
1063 
1064         // Test for vector constants.
1065         Constant *ConstA, *ConstB;
1066         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1067           return false;
1068 
1069         // TODO: Deal with FP constants?
1070         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1071           return false;
1072 
1073         // Compare for equality including undefs as equal.
1074         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1075         const APInt *C;
1076         return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1077       };
1078 
1079       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1080           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1081         return nullptr;
1082     }
1083   }
1084 
1085   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1086   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1087   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1088 }
1089 
1090 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1091                                         InstCombiner::BuilderTy &Builder) {
1092   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1093   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1094 
1095   if (auto *InC = dyn_cast<Constant>(InV)) {
1096     if (ConstIsRHS)
1097       return ConstantExpr::get(I->getOpcode(), InC, C);
1098     return ConstantExpr::get(I->getOpcode(), C, InC);
1099   }
1100 
1101   Value *Op0 = InV, *Op1 = C;
1102   if (!ConstIsRHS)
1103     std::swap(Op0, Op1);
1104 
1105   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1106   auto *FPInst = dyn_cast<Instruction>(RI);
1107   if (FPInst && isa<FPMathOperator>(FPInst))
1108     FPInst->copyFastMathFlags(I);
1109   return RI;
1110 }
1111 
1112 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1113   unsigned NumPHIValues = PN->getNumIncomingValues();
1114   if (NumPHIValues == 0)
1115     return nullptr;
1116 
1117   // We normally only transform phis with a single use.  However, if a PHI has
1118   // multiple uses and they are all the same operation, we can fold *all* of the
1119   // uses into the PHI.
1120   if (!PN->hasOneUse()) {
1121     // Walk the use list for the instruction, comparing them to I.
1122     for (User *U : PN->users()) {
1123       Instruction *UI = cast<Instruction>(U);
1124       if (UI != &I && !I.isIdenticalTo(UI))
1125         return nullptr;
1126     }
1127     // Otherwise, we can replace *all* users with the new PHI we form.
1128   }
1129 
1130   // Check to see if all of the operands of the PHI are simple constants
1131   // (constantint/constantfp/undef).  If there is one non-constant value,
1132   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1133   // bail out.  We don't do arbitrary constant expressions here because moving
1134   // their computation can be expensive without a cost model.
1135   BasicBlock *NonConstBB = nullptr;
1136   for (unsigned i = 0; i != NumPHIValues; ++i) {
1137     Value *InVal = PN->getIncomingValue(i);
1138     // For non-freeze, require constant operand
1139     // For freeze, require non-undef, non-poison operand
1140     if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant()))
1141       continue;
1142     if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal))
1143       continue;
1144 
1145     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1146     if (NonConstBB) return nullptr;  // More than one non-const value.
1147 
1148     NonConstBB = PN->getIncomingBlock(i);
1149 
1150     // If the InVal is an invoke at the end of the pred block, then we can't
1151     // insert a computation after it without breaking the edge.
1152     if (isa<InvokeInst>(InVal))
1153       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1154         return nullptr;
1155 
1156     // If the incoming non-constant value is in I's block, we will remove one
1157     // instruction, but insert another equivalent one, leading to infinite
1158     // instcombine.
1159     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1160       return nullptr;
1161   }
1162 
1163   // If there is exactly one non-constant value, we can insert a copy of the
1164   // operation in that block.  However, if this is a critical edge, we would be
1165   // inserting the computation on some other paths (e.g. inside a loop).  Only
1166   // do this if the pred block is unconditionally branching into the phi block.
1167   // Also, make sure that the pred block is not dead code.
1168   if (NonConstBB != nullptr) {
1169     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1170     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1171       return nullptr;
1172   }
1173 
1174   // Okay, we can do the transformation: create the new PHI node.
1175   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1176   InsertNewInstBefore(NewPN, *PN);
1177   NewPN->takeName(PN);
1178 
1179   // If we are going to have to insert a new computation, do so right before the
1180   // predecessor's terminator.
1181   if (NonConstBB)
1182     Builder.SetInsertPoint(NonConstBB->getTerminator());
1183 
1184   // Next, add all of the operands to the PHI.
1185   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1186     // We only currently try to fold the condition of a select when it is a phi,
1187     // not the true/false values.
1188     Value *TrueV = SI->getTrueValue();
1189     Value *FalseV = SI->getFalseValue();
1190     BasicBlock *PhiTransBB = PN->getParent();
1191     for (unsigned i = 0; i != NumPHIValues; ++i) {
1192       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1193       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1194       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1195       Value *InV = nullptr;
1196       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1197       // even if currently isNullValue gives false.
1198       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1199       // For vector constants, we cannot use isNullValue to fold into
1200       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1201       // elements in the vector, we will incorrectly fold InC to
1202       // `TrueVInPred`.
1203       if (InC && isa<ConstantInt>(InC))
1204         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1205       else {
1206         // Generate the select in the same block as PN's current incoming block.
1207         // Note: ThisBB need not be the NonConstBB because vector constants
1208         // which are constants by definition are handled here.
1209         // FIXME: This can lead to an increase in IR generation because we might
1210         // generate selects for vector constant phi operand, that could not be
1211         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1212         // non-vector phis, this transformation was always profitable because
1213         // the select would be generated exactly once in the NonConstBB.
1214         Builder.SetInsertPoint(ThisBB->getTerminator());
1215         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1216                                    FalseVInPred, "phi.sel");
1217       }
1218       NewPN->addIncoming(InV, ThisBB);
1219     }
1220   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1221     Constant *C = cast<Constant>(I.getOperand(1));
1222     for (unsigned i = 0; i != NumPHIValues; ++i) {
1223       Value *InV = nullptr;
1224       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1225         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1226       else
1227         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1228                                 C, "phi.cmp");
1229       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1230     }
1231   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1232     for (unsigned i = 0; i != NumPHIValues; ++i) {
1233       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1234                                              Builder);
1235       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1236     }
1237   } else if (isa<FreezeInst>(&I)) {
1238     for (unsigned i = 0; i != NumPHIValues; ++i) {
1239       Value *InV;
1240       if (NonConstBB == PN->getIncomingBlock(i))
1241         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1242       else
1243         InV = PN->getIncomingValue(i);
1244       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1245     }
1246   } else {
1247     CastInst *CI = cast<CastInst>(&I);
1248     Type *RetTy = CI->getType();
1249     for (unsigned i = 0; i != NumPHIValues; ++i) {
1250       Value *InV;
1251       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1252         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1253       else
1254         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1255                                  I.getType(), "phi.cast");
1256       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1257     }
1258   }
1259 
1260   for (User *U : make_early_inc_range(PN->users())) {
1261     Instruction *User = cast<Instruction>(U);
1262     if (User == &I) continue;
1263     replaceInstUsesWith(*User, NewPN);
1264     eraseInstFromFunction(*User);
1265   }
1266   return replaceInstUsesWith(I, NewPN);
1267 }
1268 
1269 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1270   if (!isa<Constant>(I.getOperand(1)))
1271     return nullptr;
1272 
1273   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1274     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1275       return NewSel;
1276   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1277     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1278       return NewPhi;
1279   }
1280   return nullptr;
1281 }
1282 
1283 /// Given a pointer type and a constant offset, determine whether or not there
1284 /// is a sequence of GEP indices into the pointed type that will land us at the
1285 /// specified offset. If so, fill them into NewIndices and return the resultant
1286 /// element type, otherwise return null.
1287 Type *
1288 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1289                                       SmallVectorImpl<Value *> &NewIndices) {
1290   Type *Ty = PtrTy->getElementType();
1291   if (!Ty->isSized())
1292     return nullptr;
1293 
1294   APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1295   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1296   if (!Offset.isZero())
1297     return nullptr;
1298 
1299   for (const APInt &Index : Indices)
1300     NewIndices.push_back(Builder.getInt(Index));
1301   return Ty;
1302 }
1303 
1304 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1305   // If this GEP has only 0 indices, it is the same pointer as
1306   // Src. If Src is not a trivial GEP too, don't combine
1307   // the indices.
1308   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1309       !Src.hasOneUse())
1310     return false;
1311   return true;
1312 }
1313 
1314 /// Return a value X such that Val = X * Scale, or null if none.
1315 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1316 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1317   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1318   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1319          Scale.getBitWidth() && "Scale not compatible with value!");
1320 
1321   // If Val is zero or Scale is one then Val = Val * Scale.
1322   if (match(Val, m_Zero()) || Scale == 1) {
1323     NoSignedWrap = true;
1324     return Val;
1325   }
1326 
1327   // If Scale is zero then it does not divide Val.
1328   if (Scale.isMinValue())
1329     return nullptr;
1330 
1331   // Look through chains of multiplications, searching for a constant that is
1332   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1333   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1334   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1335   // down from Val:
1336   //
1337   //     Val = M1 * X          ||   Analysis starts here and works down
1338   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1339   //      M2 =  Z * 4          \/   than one use
1340   //
1341   // Then to modify a term at the bottom:
1342   //
1343   //     Val = M1 * X
1344   //      M1 =  Z * Y          ||   Replaced M2 with Z
1345   //
1346   // Then to work back up correcting nsw flags.
1347 
1348   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1349   // Replaced with its descaled value before exiting from the drill down loop.
1350   Value *Op = Val;
1351 
1352   // Parent - initially null, but after drilling down notes where Op came from.
1353   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1354   // 0'th operand of Val.
1355   std::pair<Instruction *, unsigned> Parent;
1356 
1357   // Set if the transform requires a descaling at deeper levels that doesn't
1358   // overflow.
1359   bool RequireNoSignedWrap = false;
1360 
1361   // Log base 2 of the scale. Negative if not a power of 2.
1362   int32_t logScale = Scale.exactLogBase2();
1363 
1364   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1365     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1366       // If Op is a constant divisible by Scale then descale to the quotient.
1367       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1368       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1369       if (!Remainder.isMinValue())
1370         // Not divisible by Scale.
1371         return nullptr;
1372       // Replace with the quotient in the parent.
1373       Op = ConstantInt::get(CI->getType(), Quotient);
1374       NoSignedWrap = true;
1375       break;
1376     }
1377 
1378     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1379       if (BO->getOpcode() == Instruction::Mul) {
1380         // Multiplication.
1381         NoSignedWrap = BO->hasNoSignedWrap();
1382         if (RequireNoSignedWrap && !NoSignedWrap)
1383           return nullptr;
1384 
1385         // There are three cases for multiplication: multiplication by exactly
1386         // the scale, multiplication by a constant different to the scale, and
1387         // multiplication by something else.
1388         Value *LHS = BO->getOperand(0);
1389         Value *RHS = BO->getOperand(1);
1390 
1391         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1392           // Multiplication by a constant.
1393           if (CI->getValue() == Scale) {
1394             // Multiplication by exactly the scale, replace the multiplication
1395             // by its left-hand side in the parent.
1396             Op = LHS;
1397             break;
1398           }
1399 
1400           // Otherwise drill down into the constant.
1401           if (!Op->hasOneUse())
1402             return nullptr;
1403 
1404           Parent = std::make_pair(BO, 1);
1405           continue;
1406         }
1407 
1408         // Multiplication by something else. Drill down into the left-hand side
1409         // since that's where the reassociate pass puts the good stuff.
1410         if (!Op->hasOneUse())
1411           return nullptr;
1412 
1413         Parent = std::make_pair(BO, 0);
1414         continue;
1415       }
1416 
1417       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1418           isa<ConstantInt>(BO->getOperand(1))) {
1419         // Multiplication by a power of 2.
1420         NoSignedWrap = BO->hasNoSignedWrap();
1421         if (RequireNoSignedWrap && !NoSignedWrap)
1422           return nullptr;
1423 
1424         Value *LHS = BO->getOperand(0);
1425         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1426           getLimitedValue(Scale.getBitWidth());
1427         // Op = LHS << Amt.
1428 
1429         if (Amt == logScale) {
1430           // Multiplication by exactly the scale, replace the multiplication
1431           // by its left-hand side in the parent.
1432           Op = LHS;
1433           break;
1434         }
1435         if (Amt < logScale || !Op->hasOneUse())
1436           return nullptr;
1437 
1438         // Multiplication by more than the scale.  Reduce the multiplying amount
1439         // by the scale in the parent.
1440         Parent = std::make_pair(BO, 1);
1441         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1442         break;
1443       }
1444     }
1445 
1446     if (!Op->hasOneUse())
1447       return nullptr;
1448 
1449     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1450       if (Cast->getOpcode() == Instruction::SExt) {
1451         // Op is sign-extended from a smaller type, descale in the smaller type.
1452         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1453         APInt SmallScale = Scale.trunc(SmallSize);
1454         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1455         // descale Op as (sext Y) * Scale.  In order to have
1456         //   sext (Y * SmallScale) = (sext Y) * Scale
1457         // some conditions need to hold however: SmallScale must sign-extend to
1458         // Scale and the multiplication Y * SmallScale should not overflow.
1459         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1460           // SmallScale does not sign-extend to Scale.
1461           return nullptr;
1462         assert(SmallScale.exactLogBase2() == logScale);
1463         // Require that Y * SmallScale must not overflow.
1464         RequireNoSignedWrap = true;
1465 
1466         // Drill down through the cast.
1467         Parent = std::make_pair(Cast, 0);
1468         Scale = SmallScale;
1469         continue;
1470       }
1471 
1472       if (Cast->getOpcode() == Instruction::Trunc) {
1473         // Op is truncated from a larger type, descale in the larger type.
1474         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1475         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1476         // always holds.  However (trunc Y) * Scale may overflow even if
1477         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1478         // from this point up in the expression (see later).
1479         if (RequireNoSignedWrap)
1480           return nullptr;
1481 
1482         // Drill down through the cast.
1483         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1484         Parent = std::make_pair(Cast, 0);
1485         Scale = Scale.sext(LargeSize);
1486         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1487           logScale = -1;
1488         assert(Scale.exactLogBase2() == logScale);
1489         continue;
1490       }
1491     }
1492 
1493     // Unsupported expression, bail out.
1494     return nullptr;
1495   }
1496 
1497   // If Op is zero then Val = Op * Scale.
1498   if (match(Op, m_Zero())) {
1499     NoSignedWrap = true;
1500     return Op;
1501   }
1502 
1503   // We know that we can successfully descale, so from here on we can safely
1504   // modify the IR.  Op holds the descaled version of the deepest term in the
1505   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1506   // not to overflow.
1507 
1508   if (!Parent.first)
1509     // The expression only had one term.
1510     return Op;
1511 
1512   // Rewrite the parent using the descaled version of its operand.
1513   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1514   assert(Op != Parent.first->getOperand(Parent.second) &&
1515          "Descaling was a no-op?");
1516   replaceOperand(*Parent.first, Parent.second, Op);
1517   Worklist.push(Parent.first);
1518 
1519   // Now work back up the expression correcting nsw flags.  The logic is based
1520   // on the following observation: if X * Y is known not to overflow as a signed
1521   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1522   // then X * Z will not overflow as a signed multiplication either.  As we work
1523   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1524   // current level has strictly smaller absolute value than the original.
1525   Instruction *Ancestor = Parent.first;
1526   do {
1527     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1528       // If the multiplication wasn't nsw then we can't say anything about the
1529       // value of the descaled multiplication, and we have to clear nsw flags
1530       // from this point on up.
1531       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1532       NoSignedWrap &= OpNoSignedWrap;
1533       if (NoSignedWrap != OpNoSignedWrap) {
1534         BO->setHasNoSignedWrap(NoSignedWrap);
1535         Worklist.push(Ancestor);
1536       }
1537     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1538       // The fact that the descaled input to the trunc has smaller absolute
1539       // value than the original input doesn't tell us anything useful about
1540       // the absolute values of the truncations.
1541       NoSignedWrap = false;
1542     }
1543     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1544            "Failed to keep proper track of nsw flags while drilling down?");
1545 
1546     if (Ancestor == Val)
1547       // Got to the top, all done!
1548       return Val;
1549 
1550     // Move up one level in the expression.
1551     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1552     Ancestor = Ancestor->user_back();
1553   } while (true);
1554 }
1555 
1556 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1557   if (!isa<VectorType>(Inst.getType()))
1558     return nullptr;
1559 
1560   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1561   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1562   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1563          cast<VectorType>(Inst.getType())->getElementCount());
1564   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1565          cast<VectorType>(Inst.getType())->getElementCount());
1566 
1567   // If both operands of the binop are vector concatenations, then perform the
1568   // narrow binop on each pair of the source operands followed by concatenation
1569   // of the results.
1570   Value *L0, *L1, *R0, *R1;
1571   ArrayRef<int> Mask;
1572   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1573       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1574       LHS->hasOneUse() && RHS->hasOneUse() &&
1575       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1576       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1577     // This transform does not have the speculative execution constraint as
1578     // below because the shuffle is a concatenation. The new binops are
1579     // operating on exactly the same elements as the existing binop.
1580     // TODO: We could ease the mask requirement to allow different undef lanes,
1581     //       but that requires an analysis of the binop-with-undef output value.
1582     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1583     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1584       BO->copyIRFlags(&Inst);
1585     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1586     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1587       BO->copyIRFlags(&Inst);
1588     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1589   }
1590 
1591   // It may not be safe to reorder shuffles and things like div, urem, etc.
1592   // because we may trap when executing those ops on unknown vector elements.
1593   // See PR20059.
1594   if (!isSafeToSpeculativelyExecute(&Inst))
1595     return nullptr;
1596 
1597   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1598     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1599     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1600       BO->copyIRFlags(&Inst);
1601     return new ShuffleVectorInst(XY, M);
1602   };
1603 
1604   // If both arguments of the binary operation are shuffles that use the same
1605   // mask and shuffle within a single vector, move the shuffle after the binop.
1606   Value *V1, *V2;
1607   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1608       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1609       V1->getType() == V2->getType() &&
1610       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1611     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1612     return createBinOpShuffle(V1, V2, Mask);
1613   }
1614 
1615   // If both arguments of a commutative binop are select-shuffles that use the
1616   // same mask with commuted operands, the shuffles are unnecessary.
1617   if (Inst.isCommutative() &&
1618       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1619       match(RHS,
1620             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1621     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1622     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1623     // TODO: Allow shuffles that contain undefs in the mask?
1624     //       That is legal, but it reduces undef knowledge.
1625     // TODO: Allow arbitrary shuffles by shuffling after binop?
1626     //       That might be legal, but we have to deal with poison.
1627     if (LShuf->isSelect() &&
1628         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1629         RShuf->isSelect() &&
1630         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1631       // Example:
1632       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1633       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1634       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1635       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1636       NewBO->copyIRFlags(&Inst);
1637       return NewBO;
1638     }
1639   }
1640 
1641   // If one argument is a shuffle within one vector and the other is a constant,
1642   // try moving the shuffle after the binary operation. This canonicalization
1643   // intends to move shuffles closer to other shuffles and binops closer to
1644   // other binops, so they can be folded. It may also enable demanded elements
1645   // transforms.
1646   Constant *C;
1647   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1648   if (InstVTy &&
1649       match(&Inst,
1650             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1651                       m_ImmConstant(C))) &&
1652       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1653           InstVTy->getNumElements()) {
1654     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1655            "Shuffle should not change scalar type");
1656 
1657     // Find constant NewC that has property:
1658     //   shuffle(NewC, ShMask) = C
1659     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1660     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1661     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1662     bool ConstOp1 = isa<Constant>(RHS);
1663     ArrayRef<int> ShMask = Mask;
1664     unsigned SrcVecNumElts =
1665         cast<FixedVectorType>(V1->getType())->getNumElements();
1666     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1667     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1668     bool MayChange = true;
1669     unsigned NumElts = InstVTy->getNumElements();
1670     for (unsigned I = 0; I < NumElts; ++I) {
1671       Constant *CElt = C->getAggregateElement(I);
1672       if (ShMask[I] >= 0) {
1673         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1674         Constant *NewCElt = NewVecC[ShMask[I]];
1675         // Bail out if:
1676         // 1. The constant vector contains a constant expression.
1677         // 2. The shuffle needs an element of the constant vector that can't
1678         //    be mapped to a new constant vector.
1679         // 3. This is a widening shuffle that copies elements of V1 into the
1680         //    extended elements (extending with undef is allowed).
1681         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1682             I >= SrcVecNumElts) {
1683           MayChange = false;
1684           break;
1685         }
1686         NewVecC[ShMask[I]] = CElt;
1687       }
1688       // If this is a widening shuffle, we must be able to extend with undef
1689       // elements. If the original binop does not produce an undef in the high
1690       // lanes, then this transform is not safe.
1691       // Similarly for undef lanes due to the shuffle mask, we can only
1692       // transform binops that preserve undef.
1693       // TODO: We could shuffle those non-undef constant values into the
1694       //       result by using a constant vector (rather than an undef vector)
1695       //       as operand 1 of the new binop, but that might be too aggressive
1696       //       for target-independent shuffle creation.
1697       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1698         Constant *MaybeUndef =
1699             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1700                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1701         if (!match(MaybeUndef, m_Undef())) {
1702           MayChange = false;
1703           break;
1704         }
1705       }
1706     }
1707     if (MayChange) {
1708       Constant *NewC = ConstantVector::get(NewVecC);
1709       // It may not be safe to execute a binop on a vector with undef elements
1710       // because the entire instruction can be folded to undef or create poison
1711       // that did not exist in the original code.
1712       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1713         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1714 
1715       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1716       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1717       Value *NewLHS = ConstOp1 ? V1 : NewC;
1718       Value *NewRHS = ConstOp1 ? NewC : V1;
1719       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1720     }
1721   }
1722 
1723   // Try to reassociate to sink a splat shuffle after a binary operation.
1724   if (Inst.isAssociative() && Inst.isCommutative()) {
1725     // Canonicalize shuffle operand as LHS.
1726     if (isa<ShuffleVectorInst>(RHS))
1727       std::swap(LHS, RHS);
1728 
1729     Value *X;
1730     ArrayRef<int> MaskC;
1731     int SplatIndex;
1732     Value *Y, *OtherOp;
1733     if (!match(LHS,
1734                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1735         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1736         X->getType() != Inst.getType() ||
1737         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1738       return nullptr;
1739 
1740     // FIXME: This may not be safe if the analysis allows undef elements. By
1741     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1742     //        that it is not undef/poison at the splat index.
1743     if (isSplatValue(OtherOp, SplatIndex)) {
1744       std::swap(Y, OtherOp);
1745     } else if (!isSplatValue(Y, SplatIndex)) {
1746       return nullptr;
1747     }
1748 
1749     // X and Y are splatted values, so perform the binary operation on those
1750     // values followed by a splat followed by the 2nd binary operation:
1751     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1752     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1753     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1754     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1755     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1756 
1757     // Intersect FMF on both new binops. Other (poison-generating) flags are
1758     // dropped to be safe.
1759     if (isa<FPMathOperator>(R)) {
1760       R->copyFastMathFlags(&Inst);
1761       R->andIRFlags(RHS);
1762     }
1763     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1764       NewInstBO->copyIRFlags(R);
1765     return R;
1766   }
1767 
1768   return nullptr;
1769 }
1770 
1771 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1772 /// of a value. This requires a potentially expensive known bits check to make
1773 /// sure the narrow op does not overflow.
1774 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1775   // We need at least one extended operand.
1776   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1777 
1778   // If this is a sub, we swap the operands since we always want an extension
1779   // on the RHS. The LHS can be an extension or a constant.
1780   if (BO.getOpcode() == Instruction::Sub)
1781     std::swap(Op0, Op1);
1782 
1783   Value *X;
1784   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1785   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1786     return nullptr;
1787 
1788   // If both operands are the same extension from the same source type and we
1789   // can eliminate at least one (hasOneUse), this might work.
1790   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1791   Value *Y;
1792   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1793         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1794         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1795     // If that did not match, see if we have a suitable constant operand.
1796     // Truncating and extending must produce the same constant.
1797     Constant *WideC;
1798     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1799       return nullptr;
1800     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1801     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1802       return nullptr;
1803     Y = NarrowC;
1804   }
1805 
1806   // Swap back now that we found our operands.
1807   if (BO.getOpcode() == Instruction::Sub)
1808     std::swap(X, Y);
1809 
1810   // Both operands have narrow versions. Last step: the math must not overflow
1811   // in the narrow width.
1812   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1813     return nullptr;
1814 
1815   // bo (ext X), (ext Y) --> ext (bo X, Y)
1816   // bo (ext X), C       --> ext (bo X, C')
1817   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1818   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1819     if (IsSext)
1820       NewBinOp->setHasNoSignedWrap();
1821     else
1822       NewBinOp->setHasNoUnsignedWrap();
1823   }
1824   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1825 }
1826 
1827 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1828   // At least one GEP must be inbounds.
1829   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1830     return false;
1831 
1832   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1833          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1834 }
1835 
1836 /// Thread a GEP operation with constant indices through the constant true/false
1837 /// arms of a select.
1838 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1839                                   InstCombiner::BuilderTy &Builder) {
1840   if (!GEP.hasAllConstantIndices())
1841     return nullptr;
1842 
1843   Instruction *Sel;
1844   Value *Cond;
1845   Constant *TrueC, *FalseC;
1846   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1847       !match(Sel,
1848              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1849     return nullptr;
1850 
1851   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1852   // Propagate 'inbounds' and metadata from existing instructions.
1853   // Note: using IRBuilder to create the constants for efficiency.
1854   SmallVector<Value *, 4> IndexC(GEP.indices());
1855   bool IsInBounds = GEP.isInBounds();
1856   Type *Ty = GEP.getSourceElementType();
1857   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1858                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1859   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1860                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1861   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1862 }
1863 
1864 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1865   SmallVector<Value *, 8> Ops(GEP.operands());
1866   Type *GEPType = GEP.getType();
1867   Type *GEPEltType = GEP.getSourceElementType();
1868   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1869   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(),
1870                                  SQ.getWithInstruction(&GEP)))
1871     return replaceInstUsesWith(GEP, V);
1872 
1873   // For vector geps, use the generic demanded vector support.
1874   // Skip if GEP return type is scalable. The number of elements is unknown at
1875   // compile-time.
1876   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1877     auto VWidth = GEPFVTy->getNumElements();
1878     APInt UndefElts(VWidth, 0);
1879     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1880     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1881                                               UndefElts)) {
1882       if (V != &GEP)
1883         return replaceInstUsesWith(GEP, V);
1884       return &GEP;
1885     }
1886 
1887     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1888     // possible (decide on canonical form for pointer broadcast), 3) exploit
1889     // undef elements to decrease demanded bits
1890   }
1891 
1892   Value *PtrOp = GEP.getOperand(0);
1893 
1894   // Eliminate unneeded casts for indices, and replace indices which displace
1895   // by multiples of a zero size type with zero.
1896   bool MadeChange = false;
1897 
1898   // Index width may not be the same width as pointer width.
1899   // Data layout chooses the right type based on supported integer types.
1900   Type *NewScalarIndexTy =
1901       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1902 
1903   gep_type_iterator GTI = gep_type_begin(GEP);
1904   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1905        ++I, ++GTI) {
1906     // Skip indices into struct types.
1907     if (GTI.isStruct())
1908       continue;
1909 
1910     Type *IndexTy = (*I)->getType();
1911     Type *NewIndexType =
1912         IndexTy->isVectorTy()
1913             ? VectorType::get(NewScalarIndexTy,
1914                               cast<VectorType>(IndexTy)->getElementCount())
1915             : NewScalarIndexTy;
1916 
1917     // If the element type has zero size then any index over it is equivalent
1918     // to an index of zero, so replace it with zero if it is not zero already.
1919     Type *EltTy = GTI.getIndexedType();
1920     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1921       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1922         *I = Constant::getNullValue(NewIndexType);
1923         MadeChange = true;
1924       }
1925 
1926     if (IndexTy != NewIndexType) {
1927       // If we are using a wider index than needed for this platform, shrink
1928       // it to what we need.  If narrower, sign-extend it to what we need.
1929       // This explicit cast can make subsequent optimizations more obvious.
1930       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1931       MadeChange = true;
1932     }
1933   }
1934   if (MadeChange)
1935     return &GEP;
1936 
1937   // Check to see if the inputs to the PHI node are getelementptr instructions.
1938   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1939     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1940     if (!Op1)
1941       return nullptr;
1942 
1943     // Don't fold a GEP into itself through a PHI node. This can only happen
1944     // through the back-edge of a loop. Folding a GEP into itself means that
1945     // the value of the previous iteration needs to be stored in the meantime,
1946     // thus requiring an additional register variable to be live, but not
1947     // actually achieving anything (the GEP still needs to be executed once per
1948     // loop iteration).
1949     if (Op1 == &GEP)
1950       return nullptr;
1951 
1952     int DI = -1;
1953 
1954     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1955       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1956       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1957         return nullptr;
1958 
1959       // As for Op1 above, don't try to fold a GEP into itself.
1960       if (Op2 == &GEP)
1961         return nullptr;
1962 
1963       // Keep track of the type as we walk the GEP.
1964       Type *CurTy = nullptr;
1965 
1966       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1967         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1968           return nullptr;
1969 
1970         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1971           if (DI == -1) {
1972             // We have not seen any differences yet in the GEPs feeding the
1973             // PHI yet, so we record this one if it is allowed to be a
1974             // variable.
1975 
1976             // The first two arguments can vary for any GEP, the rest have to be
1977             // static for struct slots
1978             if (J > 1) {
1979               assert(CurTy && "No current type?");
1980               if (CurTy->isStructTy())
1981                 return nullptr;
1982             }
1983 
1984             DI = J;
1985           } else {
1986             // The GEP is different by more than one input. While this could be
1987             // extended to support GEPs that vary by more than one variable it
1988             // doesn't make sense since it greatly increases the complexity and
1989             // would result in an R+R+R addressing mode which no backend
1990             // directly supports and would need to be broken into several
1991             // simpler instructions anyway.
1992             return nullptr;
1993           }
1994         }
1995 
1996         // Sink down a layer of the type for the next iteration.
1997         if (J > 0) {
1998           if (J == 1) {
1999             CurTy = Op1->getSourceElementType();
2000           } else {
2001             CurTy =
2002                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2003           }
2004         }
2005       }
2006     }
2007 
2008     // If not all GEPs are identical we'll have to create a new PHI node.
2009     // Check that the old PHI node has only one use so that it will get
2010     // removed.
2011     if (DI != -1 && !PN->hasOneUse())
2012       return nullptr;
2013 
2014     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2015     if (DI == -1) {
2016       // All the GEPs feeding the PHI are identical. Clone one down into our
2017       // BB so that it can be merged with the current GEP.
2018     } else {
2019       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2020       // into the current block so it can be merged, and create a new PHI to
2021       // set that index.
2022       PHINode *NewPN;
2023       {
2024         IRBuilderBase::InsertPointGuard Guard(Builder);
2025         Builder.SetInsertPoint(PN);
2026         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2027                                   PN->getNumOperands());
2028       }
2029 
2030       for (auto &I : PN->operands())
2031         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2032                            PN->getIncomingBlock(I));
2033 
2034       NewGEP->setOperand(DI, NewPN);
2035     }
2036 
2037     GEP.getParent()->getInstList().insert(
2038         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2039     replaceOperand(GEP, 0, NewGEP);
2040     PtrOp = NewGEP;
2041   }
2042 
2043   // Combine Indices - If the source pointer to this getelementptr instruction
2044   // is a getelementptr instruction, combine the indices of the two
2045   // getelementptr instructions into a single instruction.
2046   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2047     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2048       return nullptr;
2049 
2050     if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2051         Src->hasOneUse()) {
2052       Value *GO1 = GEP.getOperand(1);
2053       Value *SO1 = Src->getOperand(1);
2054 
2055       if (LI) {
2056         // Try to reassociate loop invariant GEP chains to enable LICM.
2057         if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2058           // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2059           // invariant: this breaks the dependence between GEPs and allows LICM
2060           // to hoist the invariant part out of the loop.
2061           if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2062             // We have to be careful here.
2063             // We have something like:
2064             //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2065             //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2066             // If we just swap idx & idx2 then we could inadvertantly
2067             // change %src from a vector to a scalar, or vice versa.
2068             // Cases:
2069             //  1) %base a scalar & idx a scalar & idx2 a vector
2070             //      => Swapping idx & idx2 turns %src into a vector type.
2071             //  2) %base a scalar & idx a vector & idx2 a scalar
2072             //      => Swapping idx & idx2 turns %src in a scalar type
2073             //  3) %base, %idx, and %idx2 are scalars
2074             //      => %src & %gep are scalars
2075             //      => swapping idx & idx2 is safe
2076             //  4) %base a vector
2077             //      => %src is a vector
2078             //      => swapping idx & idx2 is safe.
2079             auto *SO0 = Src->getOperand(0);
2080             auto *SO0Ty = SO0->getType();
2081             if (!isa<VectorType>(GEPType) || // case 3
2082                 isa<VectorType>(SO0Ty)) {    // case 4
2083               Src->setOperand(1, GO1);
2084               GEP.setOperand(1, SO1);
2085               return &GEP;
2086             } else {
2087               // Case 1 or 2
2088               // -- have to recreate %src & %gep
2089               // put NewSrc at same location as %src
2090               Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2091               Value *NewSrc =
2092                   Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName());
2093               // Propagate 'inbounds' if the new source was not constant-folded.
2094               if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2095                 NewSrcGEPI->setIsInBounds(Src->isInBounds());
2096               GetElementPtrInst *NewGEP =
2097                   GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2098               NewGEP->setIsInBounds(GEP.isInBounds());
2099               return NewGEP;
2100             }
2101           }
2102         }
2103       }
2104     }
2105 
2106     // Note that if our source is a gep chain itself then we wait for that
2107     // chain to be resolved before we perform this transformation.  This
2108     // avoids us creating a TON of code in some cases.
2109     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2110       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2111         return nullptr;   // Wait until our source is folded to completion.
2112 
2113     SmallVector<Value*, 8> Indices;
2114 
2115     // Find out whether the last index in the source GEP is a sequential idx.
2116     bool EndsWithSequential = false;
2117     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2118          I != E; ++I)
2119       EndsWithSequential = I.isSequential();
2120 
2121     // Can we combine the two pointer arithmetics offsets?
2122     if (EndsWithSequential) {
2123       // Replace: gep (gep %P, long B), long A, ...
2124       // With:    T = long A+B; gep %P, T, ...
2125       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2126       Value *GO1 = GEP.getOperand(1);
2127 
2128       // If they aren't the same type, then the input hasn't been processed
2129       // by the loop above yet (which canonicalizes sequential index types to
2130       // intptr_t).  Just avoid transforming this until the input has been
2131       // normalized.
2132       if (SO1->getType() != GO1->getType())
2133         return nullptr;
2134 
2135       Value *Sum =
2136           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2137       // Only do the combine when we are sure the cost after the
2138       // merge is never more than that before the merge.
2139       if (Sum == nullptr)
2140         return nullptr;
2141 
2142       // Update the GEP in place if possible.
2143       if (Src->getNumOperands() == 2) {
2144         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2145         replaceOperand(GEP, 0, Src->getOperand(0));
2146         replaceOperand(GEP, 1, Sum);
2147         return &GEP;
2148       }
2149       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2150       Indices.push_back(Sum);
2151       Indices.append(GEP.op_begin()+2, GEP.op_end());
2152     } else if (isa<Constant>(*GEP.idx_begin()) &&
2153                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2154                Src->getNumOperands() != 1) {
2155       // Otherwise we can do the fold if the first index of the GEP is a zero
2156       Indices.append(Src->op_begin()+1, Src->op_end());
2157       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2158     }
2159 
2160     if (!Indices.empty())
2161       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2162                  ? GetElementPtrInst::CreateInBounds(
2163                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2164                        GEP.getName())
2165                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2166                                              Src->getOperand(0), Indices,
2167                                              GEP.getName());
2168   }
2169 
2170   // Skip if GEP source element type is scalable. The type alloc size is unknown
2171   // at compile-time.
2172   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2173     unsigned AS = GEP.getPointerAddressSpace();
2174     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2175         DL.getIndexSizeInBits(AS)) {
2176       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2177 
2178       bool Matched = false;
2179       uint64_t C;
2180       Value *V = nullptr;
2181       if (TyAllocSize == 1) {
2182         V = GEP.getOperand(1);
2183         Matched = true;
2184       } else if (match(GEP.getOperand(1),
2185                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2186         if (TyAllocSize == 1ULL << C)
2187           Matched = true;
2188       } else if (match(GEP.getOperand(1),
2189                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2190         if (TyAllocSize == C)
2191           Matched = true;
2192       }
2193 
2194       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2195       // only if both point to the same underlying object (otherwise provenance
2196       // is not necessarily retained).
2197       Value *Y;
2198       Value *X = GEP.getOperand(0);
2199       if (Matched &&
2200           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2201           getUnderlyingObject(X) == getUnderlyingObject(Y))
2202         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2203     }
2204   }
2205 
2206   // We do not handle pointer-vector geps here.
2207   if (GEPType->isVectorTy())
2208     return nullptr;
2209 
2210   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2211   Value *StrippedPtr = PtrOp->stripPointerCasts();
2212   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2213 
2214   if (StrippedPtr != PtrOp) {
2215     bool HasZeroPointerIndex = false;
2216     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2217 
2218     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2219       HasZeroPointerIndex = C->isZero();
2220 
2221     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2222     // into     : GEP [10 x i8]* X, i32 0, ...
2223     //
2224     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2225     //           into     : GEP i8* X, ...
2226     //
2227     // This occurs when the program declares an array extern like "int X[];"
2228     if (HasZeroPointerIndex) {
2229       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2230         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2231         if (CATy->getElementType() == StrippedPtrEltTy) {
2232           // -> GEP i8* X, ...
2233           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2234           GetElementPtrInst *Res = GetElementPtrInst::Create(
2235               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2236           Res->setIsInBounds(GEP.isInBounds());
2237           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2238             return Res;
2239           // Insert Res, and create an addrspacecast.
2240           // e.g.,
2241           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2242           // ->
2243           // %0 = GEP i8 addrspace(1)* X, ...
2244           // addrspacecast i8 addrspace(1)* %0 to i8*
2245           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2246         }
2247 
2248         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2249           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2250           if (CATy->getElementType() == XATy->getElementType()) {
2251             // -> GEP [10 x i8]* X, i32 0, ...
2252             // At this point, we know that the cast source type is a pointer
2253             // to an array of the same type as the destination pointer
2254             // array.  Because the array type is never stepped over (there
2255             // is a leading zero) we can fold the cast into this GEP.
2256             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2257               GEP.setSourceElementType(XATy);
2258               return replaceOperand(GEP, 0, StrippedPtr);
2259             }
2260             // Cannot replace the base pointer directly because StrippedPtr's
2261             // address space is different. Instead, create a new GEP followed by
2262             // an addrspacecast.
2263             // e.g.,
2264             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2265             //   i32 0, ...
2266             // ->
2267             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2268             // addrspacecast i8 addrspace(1)* %0 to i8*
2269             SmallVector<Value *, 8> Idx(GEP.indices());
2270             Value *NewGEP =
2271                 GEP.isInBounds()
2272                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2273                                                 Idx, GEP.getName())
2274                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2275                                         GEP.getName());
2276             return new AddrSpaceCastInst(NewGEP, GEPType);
2277           }
2278         }
2279       }
2280     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2281       // Skip if GEP source element type is scalable. The type alloc size is
2282       // unknown at compile-time.
2283       // Transform things like: %t = getelementptr i32*
2284       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2285       // x i32]* %str, i32 0, i32 %V; bitcast
2286       if (StrippedPtrEltTy->isArrayTy() &&
2287           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2288               DL.getTypeAllocSize(GEPEltType)) {
2289         Type *IdxType = DL.getIndexType(GEPType);
2290         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2291         Value *NewGEP =
2292             GEP.isInBounds()
2293                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2294                                             GEP.getName())
2295                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2296                                     GEP.getName());
2297 
2298         // V and GEP are both pointer types --> BitCast
2299         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2300       }
2301 
2302       // Transform things like:
2303       // %V = mul i64 %N, 4
2304       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2305       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2306       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2307         // Check that changing the type amounts to dividing the index by a scale
2308         // factor.
2309         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2310         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2311         if (ResSize && SrcSize % ResSize == 0) {
2312           Value *Idx = GEP.getOperand(1);
2313           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2314           uint64_t Scale = SrcSize / ResSize;
2315 
2316           // Earlier transforms ensure that the index has the right type
2317           // according to Data Layout, which considerably simplifies the
2318           // logic by eliminating implicit casts.
2319           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2320                  "Index type does not match the Data Layout preferences");
2321 
2322           bool NSW;
2323           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2324             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2325             // If the multiplication NewIdx * Scale may overflow then the new
2326             // GEP may not be "inbounds".
2327             Value *NewGEP =
2328                 GEP.isInBounds() && NSW
2329                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2330                                                 NewIdx, GEP.getName())
2331                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2332                                         GEP.getName());
2333 
2334             // The NewGEP must be pointer typed, so must the old one -> BitCast
2335             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2336                                                                  GEPType);
2337           }
2338         }
2339       }
2340 
2341       // Similarly, transform things like:
2342       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2343       //   (where tmp = 8*tmp2) into:
2344       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2345       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2346           StrippedPtrEltTy->isArrayTy()) {
2347         // Check that changing to the array element type amounts to dividing the
2348         // index by a scale factor.
2349         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2350         uint64_t ArrayEltSize =
2351             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2352                 .getFixedSize();
2353         if (ResSize && ArrayEltSize % ResSize == 0) {
2354           Value *Idx = GEP.getOperand(1);
2355           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2356           uint64_t Scale = ArrayEltSize / ResSize;
2357 
2358           // Earlier transforms ensure that the index has the right type
2359           // according to the Data Layout, which considerably simplifies
2360           // the logic by eliminating implicit casts.
2361           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2362                  "Index type does not match the Data Layout preferences");
2363 
2364           bool NSW;
2365           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2366             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2367             // If the multiplication NewIdx * Scale may overflow then the new
2368             // GEP may not be "inbounds".
2369             Type *IndTy = DL.getIndexType(GEPType);
2370             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2371 
2372             Value *NewGEP =
2373                 GEP.isInBounds() && NSW
2374                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2375                                                 Off, GEP.getName())
2376                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2377                                         GEP.getName());
2378             // The NewGEP must be pointer typed, so must the old one -> BitCast
2379             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2380                                                                  GEPType);
2381           }
2382         }
2383       }
2384     }
2385   }
2386 
2387   // addrspacecast between types is canonicalized as a bitcast, then an
2388   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2389   // through the addrspacecast.
2390   Value *ASCStrippedPtrOp = PtrOp;
2391   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2392     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2393     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2394     //   Z = gep Y, <...constant indices...>
2395     // Into an addrspacecasted GEP of the struct.
2396     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2397       ASCStrippedPtrOp = BC;
2398   }
2399 
2400   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2401     Value *SrcOp = BCI->getOperand(0);
2402     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2403     Type *SrcEltType = SrcType->getElementType();
2404 
2405     // GEP directly using the source operand if this GEP is accessing an element
2406     // of a bitcasted pointer to vector or array of the same dimensions:
2407     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2408     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2409     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2410                                           const DataLayout &DL) {
2411       auto *VecVTy = cast<FixedVectorType>(VecTy);
2412       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2413              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2414              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2415     };
2416     if (GEP.getNumOperands() == 3 &&
2417         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2418           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2419          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2420           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2421 
2422       // Create a new GEP here, as using `setOperand()` followed by
2423       // `setSourceElementType()` won't actually update the type of the
2424       // existing GEP Value. Causing issues if this Value is accessed when
2425       // constructing an AddrSpaceCastInst
2426       Value *NGEP =
2427           GEP.isInBounds()
2428               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2429               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2430       NGEP->takeName(&GEP);
2431 
2432       // Preserve GEP address space to satisfy users
2433       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2434         return new AddrSpaceCastInst(NGEP, GEPType);
2435 
2436       return replaceInstUsesWith(GEP, NGEP);
2437     }
2438 
2439     // See if we can simplify:
2440     //   X = bitcast A* to B*
2441     //   Y = gep X, <...constant indices...>
2442     // into a gep of the original struct. This is important for SROA and alias
2443     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2444     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2445     APInt Offset(OffsetBits, 0);
2446 
2447     // If the bitcast argument is an allocation, The bitcast is for convertion
2448     // to actual type of allocation. Removing such bitcasts, results in having
2449     // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2450     // struct or array hierarchy.
2451     // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2452     // a better chance to succeed.
2453     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2454         !isAllocationFn(SrcOp, &TLI)) {
2455       // If this GEP instruction doesn't move the pointer, just replace the GEP
2456       // with a bitcast of the real input to the dest type.
2457       if (!Offset) {
2458         // If the bitcast is of an allocation, and the allocation will be
2459         // converted to match the type of the cast, don't touch this.
2460         if (isa<AllocaInst>(SrcOp)) {
2461           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2462           if (Instruction *I = visitBitCast(*BCI)) {
2463             if (I != BCI) {
2464               I->takeName(BCI);
2465               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2466               replaceInstUsesWith(*BCI, I);
2467             }
2468             return &GEP;
2469           }
2470         }
2471 
2472         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2473           return new AddrSpaceCastInst(SrcOp, GEPType);
2474         return new BitCastInst(SrcOp, GEPType);
2475       }
2476 
2477       // Otherwise, if the offset is non-zero, we need to find out if there is a
2478       // field at Offset in 'A's type.  If so, we can pull the cast through the
2479       // GEP.
2480       SmallVector<Value*, 8> NewIndices;
2481       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2482         Value *NGEP =
2483             GEP.isInBounds()
2484                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2485                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2486 
2487         if (NGEP->getType() == GEPType)
2488           return replaceInstUsesWith(GEP, NGEP);
2489         NGEP->takeName(&GEP);
2490 
2491         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2492           return new AddrSpaceCastInst(NGEP, GEPType);
2493         return new BitCastInst(NGEP, GEPType);
2494       }
2495     }
2496   }
2497 
2498   if (!GEP.isInBounds()) {
2499     unsigned IdxWidth =
2500         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2501     APInt BasePtrOffset(IdxWidth, 0);
2502     Value *UnderlyingPtrOp =
2503             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2504                                                              BasePtrOffset);
2505     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2506       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2507           BasePtrOffset.isNonNegative()) {
2508         APInt AllocSize(
2509             IdxWidth,
2510             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2511         if (BasePtrOffset.ule(AllocSize)) {
2512           return GetElementPtrInst::CreateInBounds(
2513               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2514               GEP.getName());
2515         }
2516       }
2517     }
2518   }
2519 
2520   if (Instruction *R = foldSelectGEP(GEP, Builder))
2521     return R;
2522 
2523   return nullptr;
2524 }
2525 
2526 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2527                                          Instruction *AI) {
2528   if (isa<ConstantPointerNull>(V))
2529     return true;
2530   if (auto *LI = dyn_cast<LoadInst>(V))
2531     return isa<GlobalVariable>(LI->getPointerOperand());
2532   // Two distinct allocations will never be equal.
2533   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2534   // through bitcasts of V can cause
2535   // the result statement below to be true, even when AI and V (ex:
2536   // i8* ->i32* ->i8* of AI) are the same allocations.
2537   return isAllocLikeFn(V, TLI) && V != AI;
2538 }
2539 
2540 static bool isAllocSiteRemovable(Instruction *AI,
2541                                  SmallVectorImpl<WeakTrackingVH> &Users,
2542                                  const TargetLibraryInfo *TLI) {
2543   SmallVector<Instruction*, 4> Worklist;
2544   Worklist.push_back(AI);
2545 
2546   do {
2547     Instruction *PI = Worklist.pop_back_val();
2548     for (User *U : PI->users()) {
2549       Instruction *I = cast<Instruction>(U);
2550       switch (I->getOpcode()) {
2551       default:
2552         // Give up the moment we see something we can't handle.
2553         return false;
2554 
2555       case Instruction::AddrSpaceCast:
2556       case Instruction::BitCast:
2557       case Instruction::GetElementPtr:
2558         Users.emplace_back(I);
2559         Worklist.push_back(I);
2560         continue;
2561 
2562       case Instruction::ICmp: {
2563         ICmpInst *ICI = cast<ICmpInst>(I);
2564         // We can fold eq/ne comparisons with null to false/true, respectively.
2565         // We also fold comparisons in some conditions provided the alloc has
2566         // not escaped (see isNeverEqualToUnescapedAlloc).
2567         if (!ICI->isEquality())
2568           return false;
2569         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2570         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2571           return false;
2572         Users.emplace_back(I);
2573         continue;
2574       }
2575 
2576       case Instruction::Call:
2577         // Ignore no-op and store intrinsics.
2578         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2579           switch (II->getIntrinsicID()) {
2580           default:
2581             return false;
2582 
2583           case Intrinsic::memmove:
2584           case Intrinsic::memcpy:
2585           case Intrinsic::memset: {
2586             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2587             if (MI->isVolatile() || MI->getRawDest() != PI)
2588               return false;
2589             LLVM_FALLTHROUGH;
2590           }
2591           case Intrinsic::assume:
2592           case Intrinsic::invariant_start:
2593           case Intrinsic::invariant_end:
2594           case Intrinsic::lifetime_start:
2595           case Intrinsic::lifetime_end:
2596           case Intrinsic::objectsize:
2597             Users.emplace_back(I);
2598             continue;
2599           case Intrinsic::launder_invariant_group:
2600           case Intrinsic::strip_invariant_group:
2601             Users.emplace_back(I);
2602             Worklist.push_back(I);
2603             continue;
2604           }
2605         }
2606 
2607         if (isFreeCall(I, TLI)) {
2608           Users.emplace_back(I);
2609           continue;
2610         }
2611 
2612         if (isReallocLikeFn(I, TLI, true)) {
2613           Users.emplace_back(I);
2614           Worklist.push_back(I);
2615           continue;
2616         }
2617 
2618         return false;
2619 
2620       case Instruction::Store: {
2621         StoreInst *SI = cast<StoreInst>(I);
2622         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2623           return false;
2624         Users.emplace_back(I);
2625         continue;
2626       }
2627       }
2628       llvm_unreachable("missing a return?");
2629     }
2630   } while (!Worklist.empty());
2631   return true;
2632 }
2633 
2634 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2635   // If we have a malloc call which is only used in any amount of comparisons to
2636   // null and free calls, delete the calls and replace the comparisons with true
2637   // or false as appropriate.
2638 
2639   // This is based on the principle that we can substitute our own allocation
2640   // function (which will never return null) rather than knowledge of the
2641   // specific function being called. In some sense this can change the permitted
2642   // outputs of a program (when we convert a malloc to an alloca, the fact that
2643   // the allocation is now on the stack is potentially visible, for example),
2644   // but we believe in a permissible manner.
2645   SmallVector<WeakTrackingVH, 64> Users;
2646 
2647   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2648   // before each store.
2649   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2650   std::unique_ptr<DIBuilder> DIB;
2651   if (isa<AllocaInst>(MI)) {
2652     findDbgUsers(DVIs, &MI);
2653     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2654   }
2655 
2656   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2657     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2658       // Lowering all @llvm.objectsize calls first because they may
2659       // use a bitcast/GEP of the alloca we are removing.
2660       if (!Users[i])
2661        continue;
2662 
2663       Instruction *I = cast<Instruction>(&*Users[i]);
2664 
2665       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2666         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2667           Value *Result =
2668               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2669           replaceInstUsesWith(*I, Result);
2670           eraseInstFromFunction(*I);
2671           Users[i] = nullptr; // Skip examining in the next loop.
2672         }
2673       }
2674     }
2675     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2676       if (!Users[i])
2677         continue;
2678 
2679       Instruction *I = cast<Instruction>(&*Users[i]);
2680 
2681       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2682         replaceInstUsesWith(*C,
2683                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2684                                              C->isFalseWhenEqual()));
2685       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2686         for (auto *DVI : DVIs)
2687           if (DVI->isAddressOfVariable())
2688             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2689       } else {
2690         // Casts, GEP, or anything else: we're about to delete this instruction,
2691         // so it can not have any valid uses.
2692         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2693       }
2694       eraseInstFromFunction(*I);
2695     }
2696 
2697     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2698       // Replace invoke with a NOP intrinsic to maintain the original CFG
2699       Module *M = II->getModule();
2700       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2701       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2702                          None, "", II->getParent());
2703     }
2704 
2705     // Remove debug intrinsics which describe the value contained within the
2706     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2707     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2708     //
2709     // ```
2710     //   define void @foo(i32 %0) {
2711     //     %a = alloca i32                              ; Deleted.
2712     //     store i32 %0, i32* %a
2713     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2714     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2715     //     call void @trivially_inlinable_no_op(i32* %a)
2716     //     ret void
2717     //  }
2718     // ```
2719     //
2720     // This may not be required if we stop describing the contents of allocas
2721     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2722     // the LowerDbgDeclare utility.
2723     //
2724     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2725     // "arg0" dbg.value may be stale after the call. However, failing to remove
2726     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2727     for (auto *DVI : DVIs)
2728       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2729         DVI->eraseFromParent();
2730 
2731     return eraseInstFromFunction(MI);
2732   }
2733   return nullptr;
2734 }
2735 
2736 /// Move the call to free before a NULL test.
2737 ///
2738 /// Check if this free is accessed after its argument has been test
2739 /// against NULL (property 0).
2740 /// If yes, it is legal to move this call in its predecessor block.
2741 ///
2742 /// The move is performed only if the block containing the call to free
2743 /// will be removed, i.e.:
2744 /// 1. it has only one predecessor P, and P has two successors
2745 /// 2. it contains the call, noops, and an unconditional branch
2746 /// 3. its successor is the same as its predecessor's successor
2747 ///
2748 /// The profitability is out-of concern here and this function should
2749 /// be called only if the caller knows this transformation would be
2750 /// profitable (e.g., for code size).
2751 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2752                                                 const DataLayout &DL) {
2753   Value *Op = FI.getArgOperand(0);
2754   BasicBlock *FreeInstrBB = FI.getParent();
2755   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2756 
2757   // Validate part of constraint #1: Only one predecessor
2758   // FIXME: We can extend the number of predecessor, but in that case, we
2759   //        would duplicate the call to free in each predecessor and it may
2760   //        not be profitable even for code size.
2761   if (!PredBB)
2762     return nullptr;
2763 
2764   // Validate constraint #2: Does this block contains only the call to
2765   //                         free, noops, and an unconditional branch?
2766   BasicBlock *SuccBB;
2767   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2768   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2769     return nullptr;
2770 
2771   // If there are only 2 instructions in the block, at this point,
2772   // this is the call to free and unconditional.
2773   // If there are more than 2 instructions, check that they are noops
2774   // i.e., they won't hurt the performance of the generated code.
2775   if (FreeInstrBB->size() != 2) {
2776     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2777       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2778         continue;
2779       auto *Cast = dyn_cast<CastInst>(&Inst);
2780       if (!Cast || !Cast->isNoopCast(DL))
2781         return nullptr;
2782     }
2783   }
2784   // Validate the rest of constraint #1 by matching on the pred branch.
2785   Instruction *TI = PredBB->getTerminator();
2786   BasicBlock *TrueBB, *FalseBB;
2787   ICmpInst::Predicate Pred;
2788   if (!match(TI, m_Br(m_ICmp(Pred,
2789                              m_CombineOr(m_Specific(Op),
2790                                          m_Specific(Op->stripPointerCasts())),
2791                              m_Zero()),
2792                       TrueBB, FalseBB)))
2793     return nullptr;
2794   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2795     return nullptr;
2796 
2797   // Validate constraint #3: Ensure the null case just falls through.
2798   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2799     return nullptr;
2800   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2801          "Broken CFG: missing edge from predecessor to successor");
2802 
2803   // At this point, we know that everything in FreeInstrBB can be moved
2804   // before TI.
2805   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2806     if (&Instr == FreeInstrBBTerminator)
2807       break;
2808     Instr.moveBefore(TI);
2809   }
2810   assert(FreeInstrBB->size() == 1 &&
2811          "Only the branch instruction should remain");
2812 
2813   // Now that we've moved the call to free before the NULL check, we have to
2814   // remove any attributes on its parameter that imply it's non-null, because
2815   // those attributes might have only been valid because of the NULL check, and
2816   // we can get miscompiles if we keep them. This is conservative if non-null is
2817   // also implied by something other than the NULL check, but it's guaranteed to
2818   // be correct, and the conservativeness won't matter in practice, since the
2819   // attributes are irrelevant for the call to free itself and the pointer
2820   // shouldn't be used after the call.
2821   AttributeList Attrs = FI.getAttributes();
2822   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
2823   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
2824   if (Dereferenceable.isValid()) {
2825     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
2826     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
2827                                        Attribute::Dereferenceable);
2828     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
2829   }
2830   FI.setAttributes(Attrs);
2831 
2832   return &FI;
2833 }
2834 
2835 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2836   Value *Op = FI.getArgOperand(0);
2837 
2838   // free undef -> unreachable.
2839   if (isa<UndefValue>(Op)) {
2840     // Leave a marker since we can't modify the CFG here.
2841     CreateNonTerminatorUnreachable(&FI);
2842     return eraseInstFromFunction(FI);
2843   }
2844 
2845   // If we have 'free null' delete the instruction.  This can happen in stl code
2846   // when lots of inlining happens.
2847   if (isa<ConstantPointerNull>(Op))
2848     return eraseInstFromFunction(FI);
2849 
2850   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2851   // realloc() entirely.
2852   if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2853     if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) {
2854       return eraseInstFromFunction(
2855           *replaceInstUsesWith(*CI, CI->getOperand(0)));
2856     }
2857   }
2858 
2859   // If we optimize for code size, try to move the call to free before the null
2860   // test so that simplify cfg can remove the empty block and dead code
2861   // elimination the branch. I.e., helps to turn something like:
2862   // if (foo) free(foo);
2863   // into
2864   // free(foo);
2865   //
2866   // Note that we can only do this for 'free' and not for any flavor of
2867   // 'operator delete'; there is no 'operator delete' symbol for which we are
2868   // permitted to invent a call, even if we're passing in a null pointer.
2869   if (MinimizeSize) {
2870     LibFunc Func;
2871     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2872       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2873         return I;
2874   }
2875 
2876   return nullptr;
2877 }
2878 
2879 static bool isMustTailCall(Value *V) {
2880   if (auto *CI = dyn_cast<CallInst>(V))
2881     return CI->isMustTailCall();
2882   return false;
2883 }
2884 
2885 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2886   if (RI.getNumOperands() == 0) // ret void
2887     return nullptr;
2888 
2889   Value *ResultOp = RI.getOperand(0);
2890   Type *VTy = ResultOp->getType();
2891   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2892     return nullptr;
2893 
2894   // Don't replace result of musttail calls.
2895   if (isMustTailCall(ResultOp))
2896     return nullptr;
2897 
2898   // There might be assume intrinsics dominating this return that completely
2899   // determine the value. If so, constant fold it.
2900   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2901   if (Known.isConstant())
2902     return replaceOperand(RI, 0,
2903         Constant::getIntegerValue(VTy, Known.getConstant()));
2904 
2905   return nullptr;
2906 }
2907 
2908 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2909 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2910   // Try to remove the previous instruction if it must lead to unreachable.
2911   // This includes instructions like stores and "llvm.assume" that may not get
2912   // removed by simple dead code elimination.
2913   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2914     // While we theoretically can erase EH, that would result in a block that
2915     // used to start with an EH no longer starting with EH, which is invalid.
2916     // To make it valid, we'd need to fixup predecessors to no longer refer to
2917     // this block, but that changes CFG, which is not allowed in InstCombine.
2918     if (Prev->isEHPad())
2919       return nullptr; // Can not drop any more instructions. We're done here.
2920 
2921     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2922       return nullptr; // Can not drop any more instructions. We're done here.
2923     // Otherwise, this instruction can be freely erased,
2924     // even if it is not side-effect free.
2925 
2926     // A value may still have uses before we process it here (for example, in
2927     // another unreachable block), so convert those to poison.
2928     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2929     eraseInstFromFunction(*Prev);
2930   }
2931   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
2932   // FIXME: recurse into unconditional predecessors?
2933   return nullptr;
2934 }
2935 
2936 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2937   assert(BI.isUnconditional() && "Only for unconditional branches.");
2938 
2939   // If this store is the second-to-last instruction in the basic block
2940   // (excluding debug info and bitcasts of pointers) and if the block ends with
2941   // an unconditional branch, try to move the store to the successor block.
2942 
2943   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2944     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2945       return BBI->isDebugOrPseudoInst() ||
2946              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2947     };
2948 
2949     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2950     do {
2951       if (BBI != FirstInstr)
2952         --BBI;
2953     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2954 
2955     return dyn_cast<StoreInst>(BBI);
2956   };
2957 
2958   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2959     if (mergeStoreIntoSuccessor(*SI))
2960       return &BI;
2961 
2962   return nullptr;
2963 }
2964 
2965 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2966   if (BI.isUnconditional())
2967     return visitUnconditionalBranchInst(BI);
2968 
2969   // Change br (not X), label True, label False to: br X, label False, True
2970   Value *X = nullptr;
2971   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2972       !isa<Constant>(X)) {
2973     // Swap Destinations and condition...
2974     BI.swapSuccessors();
2975     return replaceOperand(BI, 0, X);
2976   }
2977 
2978   // If the condition is irrelevant, remove the use so that other
2979   // transforms on the condition become more effective.
2980   if (!isa<ConstantInt>(BI.getCondition()) &&
2981       BI.getSuccessor(0) == BI.getSuccessor(1))
2982     return replaceOperand(
2983         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2984 
2985   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2986   CmpInst::Predicate Pred;
2987   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2988                       m_BasicBlock(), m_BasicBlock())) &&
2989       !isCanonicalPredicate(Pred)) {
2990     // Swap destinations and condition.
2991     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2992     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2993     BI.swapSuccessors();
2994     Worklist.push(Cond);
2995     return &BI;
2996   }
2997 
2998   return nullptr;
2999 }
3000 
3001 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3002   Value *Cond = SI.getCondition();
3003   Value *Op0;
3004   ConstantInt *AddRHS;
3005   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3006     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3007     for (auto Case : SI.cases()) {
3008       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3009       assert(isa<ConstantInt>(NewCase) &&
3010              "Result of expression should be constant");
3011       Case.setValue(cast<ConstantInt>(NewCase));
3012     }
3013     return replaceOperand(SI, 0, Op0);
3014   }
3015 
3016   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3017   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3018   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3019 
3020   // Compute the number of leading bits we can ignore.
3021   // TODO: A better way to determine this would use ComputeNumSignBits().
3022   for (auto &C : SI.cases()) {
3023     LeadingKnownZeros = std::min(
3024         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3025     LeadingKnownOnes = std::min(
3026         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3027   }
3028 
3029   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3030 
3031   // Shrink the condition operand if the new type is smaller than the old type.
3032   // But do not shrink to a non-standard type, because backend can't generate
3033   // good code for that yet.
3034   // TODO: We can make it aggressive again after fixing PR39569.
3035   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3036       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3037     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3038     Builder.SetInsertPoint(&SI);
3039     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3040 
3041     for (auto Case : SI.cases()) {
3042       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3043       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3044     }
3045     return replaceOperand(SI, 0, NewCond);
3046   }
3047 
3048   return nullptr;
3049 }
3050 
3051 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3052   Value *Agg = EV.getAggregateOperand();
3053 
3054   if (!EV.hasIndices())
3055     return replaceInstUsesWith(EV, Agg);
3056 
3057   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3058                                           SQ.getWithInstruction(&EV)))
3059     return replaceInstUsesWith(EV, V);
3060 
3061   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3062     // We're extracting from an insertvalue instruction, compare the indices
3063     const unsigned *exti, *exte, *insi, *inse;
3064     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3065          exte = EV.idx_end(), inse = IV->idx_end();
3066          exti != exte && insi != inse;
3067          ++exti, ++insi) {
3068       if (*insi != *exti)
3069         // The insert and extract both reference distinctly different elements.
3070         // This means the extract is not influenced by the insert, and we can
3071         // replace the aggregate operand of the extract with the aggregate
3072         // operand of the insert. i.e., replace
3073         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3074         // %E = extractvalue { i32, { i32 } } %I, 0
3075         // with
3076         // %E = extractvalue { i32, { i32 } } %A, 0
3077         return ExtractValueInst::Create(IV->getAggregateOperand(),
3078                                         EV.getIndices());
3079     }
3080     if (exti == exte && insi == inse)
3081       // Both iterators are at the end: Index lists are identical. Replace
3082       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3083       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3084       // with "i32 42"
3085       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3086     if (exti == exte) {
3087       // The extract list is a prefix of the insert list. i.e. replace
3088       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3089       // %E = extractvalue { i32, { i32 } } %I, 1
3090       // with
3091       // %X = extractvalue { i32, { i32 } } %A, 1
3092       // %E = insertvalue { i32 } %X, i32 42, 0
3093       // by switching the order of the insert and extract (though the
3094       // insertvalue should be left in, since it may have other uses).
3095       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3096                                                 EV.getIndices());
3097       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3098                                      makeArrayRef(insi, inse));
3099     }
3100     if (insi == inse)
3101       // The insert list is a prefix of the extract list
3102       // We can simply remove the common indices from the extract and make it
3103       // operate on the inserted value instead of the insertvalue result.
3104       // i.e., replace
3105       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3106       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3107       // with
3108       // %E extractvalue { i32 } { i32 42 }, 0
3109       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3110                                       makeArrayRef(exti, exte));
3111   }
3112   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3113     // We're extracting from an overflow intrinsic, see if we're the only user,
3114     // which allows us to simplify multiple result intrinsics to simpler
3115     // things that just get one value.
3116     if (WO->hasOneUse()) {
3117       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3118       // and replace it with a traditional binary instruction.
3119       if (*EV.idx_begin() == 0) {
3120         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3121         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3122         // Replace the old instruction's uses with poison.
3123         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3124         eraseInstFromFunction(*WO);
3125         return BinaryOperator::Create(BinOp, LHS, RHS);
3126       }
3127 
3128       assert(*EV.idx_begin() == 1 &&
3129              "unexpected extract index for overflow inst");
3130 
3131       // If only the overflow result is used, and the right hand side is a
3132       // constant (or constant splat), we can remove the intrinsic by directly
3133       // checking for overflow.
3134       const APInt *C;
3135       if (match(WO->getRHS(), m_APInt(C))) {
3136         // Compute the no-wrap range for LHS given RHS=C, then construct an
3137         // equivalent icmp, potentially using an offset.
3138         ConstantRange NWR =
3139           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3140                                                WO->getNoWrapKind());
3141 
3142         CmpInst::Predicate Pred;
3143         APInt NewRHSC, Offset;
3144         NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3145         auto *OpTy = WO->getRHS()->getType();
3146         auto *NewLHS = WO->getLHS();
3147         if (Offset != 0)
3148           NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3149         return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3150                             ConstantInt::get(OpTy, NewRHSC));
3151       }
3152     }
3153   }
3154   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3155     // If the (non-volatile) load only has one use, we can rewrite this to a
3156     // load from a GEP. This reduces the size of the load. If a load is used
3157     // only by extractvalue instructions then this either must have been
3158     // optimized before, or it is a struct with padding, in which case we
3159     // don't want to do the transformation as it loses padding knowledge.
3160     if (L->isSimple() && L->hasOneUse()) {
3161       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3162       SmallVector<Value*, 4> Indices;
3163       // Prefix an i32 0 since we need the first element.
3164       Indices.push_back(Builder.getInt32(0));
3165       for (unsigned Idx : EV.indices())
3166         Indices.push_back(Builder.getInt32(Idx));
3167 
3168       // We need to insert these at the location of the old load, not at that of
3169       // the extractvalue.
3170       Builder.SetInsertPoint(L);
3171       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3172                                              L->getPointerOperand(), Indices);
3173       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3174       // Whatever aliasing information we had for the orignal load must also
3175       // hold for the smaller load, so propagate the annotations.
3176       NL->setAAMetadata(L->getAAMetadata());
3177       // Returning the load directly will cause the main loop to insert it in
3178       // the wrong spot, so use replaceInstUsesWith().
3179       return replaceInstUsesWith(EV, NL);
3180     }
3181   // We could simplify extracts from other values. Note that nested extracts may
3182   // already be simplified implicitly by the above: extract (extract (insert) )
3183   // will be translated into extract ( insert ( extract ) ) first and then just
3184   // the value inserted, if appropriate. Similarly for extracts from single-use
3185   // loads: extract (extract (load)) will be translated to extract (load (gep))
3186   // and if again single-use then via load (gep (gep)) to load (gep).
3187   // However, double extracts from e.g. function arguments or return values
3188   // aren't handled yet.
3189   return nullptr;
3190 }
3191 
3192 /// Return 'true' if the given typeinfo will match anything.
3193 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3194   switch (Personality) {
3195   case EHPersonality::GNU_C:
3196   case EHPersonality::GNU_C_SjLj:
3197   case EHPersonality::Rust:
3198     // The GCC C EH and Rust personality only exists to support cleanups, so
3199     // it's not clear what the semantics of catch clauses are.
3200     return false;
3201   case EHPersonality::Unknown:
3202     return false;
3203   case EHPersonality::GNU_Ada:
3204     // While __gnat_all_others_value will match any Ada exception, it doesn't
3205     // match foreign exceptions (or didn't, before gcc-4.7).
3206     return false;
3207   case EHPersonality::GNU_CXX:
3208   case EHPersonality::GNU_CXX_SjLj:
3209   case EHPersonality::GNU_ObjC:
3210   case EHPersonality::MSVC_X86SEH:
3211   case EHPersonality::MSVC_TableSEH:
3212   case EHPersonality::MSVC_CXX:
3213   case EHPersonality::CoreCLR:
3214   case EHPersonality::Wasm_CXX:
3215   case EHPersonality::XL_CXX:
3216     return TypeInfo->isNullValue();
3217   }
3218   llvm_unreachable("invalid enum");
3219 }
3220 
3221 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3222   return
3223     cast<ArrayType>(LHS->getType())->getNumElements()
3224   <
3225     cast<ArrayType>(RHS->getType())->getNumElements();
3226 }
3227 
3228 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3229   // The logic here should be correct for any real-world personality function.
3230   // However if that turns out not to be true, the offending logic can always
3231   // be conditioned on the personality function, like the catch-all logic is.
3232   EHPersonality Personality =
3233       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3234 
3235   // Simplify the list of clauses, eg by removing repeated catch clauses
3236   // (these are often created by inlining).
3237   bool MakeNewInstruction = false; // If true, recreate using the following:
3238   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3239   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3240 
3241   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3242   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3243     bool isLastClause = i + 1 == e;
3244     if (LI.isCatch(i)) {
3245       // A catch clause.
3246       Constant *CatchClause = LI.getClause(i);
3247       Constant *TypeInfo = CatchClause->stripPointerCasts();
3248 
3249       // If we already saw this clause, there is no point in having a second
3250       // copy of it.
3251       if (AlreadyCaught.insert(TypeInfo).second) {
3252         // This catch clause was not already seen.
3253         NewClauses.push_back(CatchClause);
3254       } else {
3255         // Repeated catch clause - drop the redundant copy.
3256         MakeNewInstruction = true;
3257       }
3258 
3259       // If this is a catch-all then there is no point in keeping any following
3260       // clauses or marking the landingpad as having a cleanup.
3261       if (isCatchAll(Personality, TypeInfo)) {
3262         if (!isLastClause)
3263           MakeNewInstruction = true;
3264         CleanupFlag = false;
3265         break;
3266       }
3267     } else {
3268       // A filter clause.  If any of the filter elements were already caught
3269       // then they can be dropped from the filter.  It is tempting to try to
3270       // exploit the filter further by saying that any typeinfo that does not
3271       // occur in the filter can't be caught later (and thus can be dropped).
3272       // However this would be wrong, since typeinfos can match without being
3273       // equal (for example if one represents a C++ class, and the other some
3274       // class derived from it).
3275       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3276       Constant *FilterClause = LI.getClause(i);
3277       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3278       unsigned NumTypeInfos = FilterType->getNumElements();
3279 
3280       // An empty filter catches everything, so there is no point in keeping any
3281       // following clauses or marking the landingpad as having a cleanup.  By
3282       // dealing with this case here the following code is made a bit simpler.
3283       if (!NumTypeInfos) {
3284         NewClauses.push_back(FilterClause);
3285         if (!isLastClause)
3286           MakeNewInstruction = true;
3287         CleanupFlag = false;
3288         break;
3289       }
3290 
3291       bool MakeNewFilter = false; // If true, make a new filter.
3292       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3293       if (isa<ConstantAggregateZero>(FilterClause)) {
3294         // Not an empty filter - it contains at least one null typeinfo.
3295         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3296         Constant *TypeInfo =
3297           Constant::getNullValue(FilterType->getElementType());
3298         // If this typeinfo is a catch-all then the filter can never match.
3299         if (isCatchAll(Personality, TypeInfo)) {
3300           // Throw the filter away.
3301           MakeNewInstruction = true;
3302           continue;
3303         }
3304 
3305         // There is no point in having multiple copies of this typeinfo, so
3306         // discard all but the first copy if there is more than one.
3307         NewFilterElts.push_back(TypeInfo);
3308         if (NumTypeInfos > 1)
3309           MakeNewFilter = true;
3310       } else {
3311         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3312         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3313         NewFilterElts.reserve(NumTypeInfos);
3314 
3315         // Remove any filter elements that were already caught or that already
3316         // occurred in the filter.  While there, see if any of the elements are
3317         // catch-alls.  If so, the filter can be discarded.
3318         bool SawCatchAll = false;
3319         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3320           Constant *Elt = Filter->getOperand(j);
3321           Constant *TypeInfo = Elt->stripPointerCasts();
3322           if (isCatchAll(Personality, TypeInfo)) {
3323             // This element is a catch-all.  Bail out, noting this fact.
3324             SawCatchAll = true;
3325             break;
3326           }
3327 
3328           // Even if we've seen a type in a catch clause, we don't want to
3329           // remove it from the filter.  An unexpected type handler may be
3330           // set up for a call site which throws an exception of the same
3331           // type caught.  In order for the exception thrown by the unexpected
3332           // handler to propagate correctly, the filter must be correctly
3333           // described for the call site.
3334           //
3335           // Example:
3336           //
3337           // void unexpected() { throw 1;}
3338           // void foo() throw (int) {
3339           //   std::set_unexpected(unexpected);
3340           //   try {
3341           //     throw 2.0;
3342           //   } catch (int i) {}
3343           // }
3344 
3345           // There is no point in having multiple copies of the same typeinfo in
3346           // a filter, so only add it if we didn't already.
3347           if (SeenInFilter.insert(TypeInfo).second)
3348             NewFilterElts.push_back(cast<Constant>(Elt));
3349         }
3350         // A filter containing a catch-all cannot match anything by definition.
3351         if (SawCatchAll) {
3352           // Throw the filter away.
3353           MakeNewInstruction = true;
3354           continue;
3355         }
3356 
3357         // If we dropped something from the filter, make a new one.
3358         if (NewFilterElts.size() < NumTypeInfos)
3359           MakeNewFilter = true;
3360       }
3361       if (MakeNewFilter) {
3362         FilterType = ArrayType::get(FilterType->getElementType(),
3363                                     NewFilterElts.size());
3364         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3365         MakeNewInstruction = true;
3366       }
3367 
3368       NewClauses.push_back(FilterClause);
3369 
3370       // If the new filter is empty then it will catch everything so there is
3371       // no point in keeping any following clauses or marking the landingpad
3372       // as having a cleanup.  The case of the original filter being empty was
3373       // already handled above.
3374       if (MakeNewFilter && !NewFilterElts.size()) {
3375         assert(MakeNewInstruction && "New filter but not a new instruction!");
3376         CleanupFlag = false;
3377         break;
3378       }
3379     }
3380   }
3381 
3382   // If several filters occur in a row then reorder them so that the shortest
3383   // filters come first (those with the smallest number of elements).  This is
3384   // advantageous because shorter filters are more likely to match, speeding up
3385   // unwinding, but mostly because it increases the effectiveness of the other
3386   // filter optimizations below.
3387   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3388     unsigned j;
3389     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3390     for (j = i; j != e; ++j)
3391       if (!isa<ArrayType>(NewClauses[j]->getType()))
3392         break;
3393 
3394     // Check whether the filters are already sorted by length.  We need to know
3395     // if sorting them is actually going to do anything so that we only make a
3396     // new landingpad instruction if it does.
3397     for (unsigned k = i; k + 1 < j; ++k)
3398       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3399         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3400         // correct too but reordering filters pointlessly might confuse users.
3401         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3402                          shorter_filter);
3403         MakeNewInstruction = true;
3404         break;
3405       }
3406 
3407     // Look for the next batch of filters.
3408     i = j + 1;
3409   }
3410 
3411   // If typeinfos matched if and only if equal, then the elements of a filter L
3412   // that occurs later than a filter F could be replaced by the intersection of
3413   // the elements of F and L.  In reality two typeinfos can match without being
3414   // equal (for example if one represents a C++ class, and the other some class
3415   // derived from it) so it would be wrong to perform this transform in general.
3416   // However the transform is correct and useful if F is a subset of L.  In that
3417   // case L can be replaced by F, and thus removed altogether since repeating a
3418   // filter is pointless.  So here we look at all pairs of filters F and L where
3419   // L follows F in the list of clauses, and remove L if every element of F is
3420   // an element of L.  This can occur when inlining C++ functions with exception
3421   // specifications.
3422   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3423     // Examine each filter in turn.
3424     Value *Filter = NewClauses[i];
3425     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3426     if (!FTy)
3427       // Not a filter - skip it.
3428       continue;
3429     unsigned FElts = FTy->getNumElements();
3430     // Examine each filter following this one.  Doing this backwards means that
3431     // we don't have to worry about filters disappearing under us when removed.
3432     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3433       Value *LFilter = NewClauses[j];
3434       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3435       if (!LTy)
3436         // Not a filter - skip it.
3437         continue;
3438       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3439       // an element of LFilter, then discard LFilter.
3440       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3441       // If Filter is empty then it is a subset of LFilter.
3442       if (!FElts) {
3443         // Discard LFilter.
3444         NewClauses.erase(J);
3445         MakeNewInstruction = true;
3446         // Move on to the next filter.
3447         continue;
3448       }
3449       unsigned LElts = LTy->getNumElements();
3450       // If Filter is longer than LFilter then it cannot be a subset of it.
3451       if (FElts > LElts)
3452         // Move on to the next filter.
3453         continue;
3454       // At this point we know that LFilter has at least one element.
3455       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3456         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3457         // already know that Filter is not longer than LFilter).
3458         if (isa<ConstantAggregateZero>(Filter)) {
3459           assert(FElts <= LElts && "Should have handled this case earlier!");
3460           // Discard LFilter.
3461           NewClauses.erase(J);
3462           MakeNewInstruction = true;
3463         }
3464         // Move on to the next filter.
3465         continue;
3466       }
3467       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3468       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3469         // Since Filter is non-empty and contains only zeros, it is a subset of
3470         // LFilter iff LFilter contains a zero.
3471         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3472         for (unsigned l = 0; l != LElts; ++l)
3473           if (LArray->getOperand(l)->isNullValue()) {
3474             // LFilter contains a zero - discard it.
3475             NewClauses.erase(J);
3476             MakeNewInstruction = true;
3477             break;
3478           }
3479         // Move on to the next filter.
3480         continue;
3481       }
3482       // At this point we know that both filters are ConstantArrays.  Loop over
3483       // operands to see whether every element of Filter is also an element of
3484       // LFilter.  Since filters tend to be short this is probably faster than
3485       // using a method that scales nicely.
3486       ConstantArray *FArray = cast<ConstantArray>(Filter);
3487       bool AllFound = true;
3488       for (unsigned f = 0; f != FElts; ++f) {
3489         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3490         AllFound = false;
3491         for (unsigned l = 0; l != LElts; ++l) {
3492           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3493           if (LTypeInfo == FTypeInfo) {
3494             AllFound = true;
3495             break;
3496           }
3497         }
3498         if (!AllFound)
3499           break;
3500       }
3501       if (AllFound) {
3502         // Discard LFilter.
3503         NewClauses.erase(J);
3504         MakeNewInstruction = true;
3505       }
3506       // Move on to the next filter.
3507     }
3508   }
3509 
3510   // If we changed any of the clauses, replace the old landingpad instruction
3511   // with a new one.
3512   if (MakeNewInstruction) {
3513     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3514                                                  NewClauses.size());
3515     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3516       NLI->addClause(NewClauses[i]);
3517     // A landing pad with no clauses must have the cleanup flag set.  It is
3518     // theoretically possible, though highly unlikely, that we eliminated all
3519     // clauses.  If so, force the cleanup flag to true.
3520     if (NewClauses.empty())
3521       CleanupFlag = true;
3522     NLI->setCleanup(CleanupFlag);
3523     return NLI;
3524   }
3525 
3526   // Even if none of the clauses changed, we may nonetheless have understood
3527   // that the cleanup flag is pointless.  Clear it if so.
3528   if (LI.isCleanup() != CleanupFlag) {
3529     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3530     LI.setCleanup(CleanupFlag);
3531     return &LI;
3532   }
3533 
3534   return nullptr;
3535 }
3536 
3537 Value *
3538 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3539   // Try to push freeze through instructions that propagate but don't produce
3540   // poison as far as possible.  If an operand of freeze follows three
3541   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3542   // guaranteed-non-poison operands then push the freeze through to the one
3543   // operand that is not guaranteed non-poison.  The actual transform is as
3544   // follows.
3545   //   Op1 = ...                        ; Op1 can be posion
3546   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3547   //                                    ; single guaranteed-non-poison operands
3548   //   ... = Freeze(Op0)
3549   // =>
3550   //   Op1 = ...
3551   //   Op1.fr = Freeze(Op1)
3552   //   ... = Inst(Op1.fr, NonPoisonOps...)
3553   auto *OrigOp = OrigFI.getOperand(0);
3554   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3555 
3556   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3557   // potentially reduces their optimization potential, so let's only do this iff
3558   // the OrigOp is only used by the freeze.
3559   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3560     return nullptr;
3561 
3562   // We can't push the freeze through an instruction which can itself create
3563   // poison.  If the only source of new poison is flags, we can simply
3564   // strip them (since we know the only use is the freeze and nothing can
3565   // benefit from them.)
3566   if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false))
3567     return nullptr;
3568 
3569   // If operand is guaranteed not to be poison, there is no need to add freeze
3570   // to the operand. So we first find the operand that is not guaranteed to be
3571   // poison.
3572   Use *MaybePoisonOperand = nullptr;
3573   for (Use &U : OrigOpInst->operands()) {
3574     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3575       continue;
3576     if (!MaybePoisonOperand)
3577       MaybePoisonOperand = &U;
3578     else
3579       return nullptr;
3580   }
3581 
3582   OrigOpInst->dropPoisonGeneratingFlags();
3583 
3584   // If all operands are guaranteed to be non-poison, we can drop freeze.
3585   if (!MaybePoisonOperand)
3586     return OrigOp;
3587 
3588   auto *FrozenMaybePoisonOperand = new FreezeInst(
3589       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3590 
3591   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3592   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3593   return OrigOp;
3594 }
3595 
3596 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3597   Value *Op = FI.getOperand(0);
3598 
3599   if (isa<Constant>(Op))
3600     return false;
3601 
3602   bool Changed = false;
3603   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3604     bool Dominates = DT.dominates(&FI, U);
3605     Changed |= Dominates;
3606     return Dominates;
3607   });
3608 
3609   return Changed;
3610 }
3611 
3612 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3613   Value *Op0 = I.getOperand(0);
3614 
3615   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3616     return replaceInstUsesWith(I, V);
3617 
3618   // freeze (phi const, x) --> phi const, (freeze x)
3619   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3620     if (Instruction *NV = foldOpIntoPhi(I, PN))
3621       return NV;
3622   }
3623 
3624   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3625     return replaceInstUsesWith(I, NI);
3626 
3627   if (match(Op0, m_Undef())) {
3628     // If I is freeze(undef), see its uses and fold it to the best constant.
3629     // - or: pick -1
3630     // - select's condition: pick the value that leads to choosing a constant
3631     // - other ops: pick 0
3632     Constant *BestValue = nullptr;
3633     Constant *NullValue = Constant::getNullValue(I.getType());
3634     for (const auto *U : I.users()) {
3635       Constant *C = NullValue;
3636 
3637       if (match(U, m_Or(m_Value(), m_Value())))
3638         C = Constant::getAllOnesValue(I.getType());
3639       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3640         if (SI->getCondition() == &I) {
3641           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3642           C = Constant::getIntegerValue(I.getType(), CondVal);
3643         }
3644       }
3645 
3646       if (!BestValue)
3647         BestValue = C;
3648       else if (BestValue != C)
3649         BestValue = NullValue;
3650     }
3651 
3652     return replaceInstUsesWith(I, BestValue);
3653   }
3654 
3655   // Replace all dominated uses of Op to freeze(Op).
3656   if (freezeDominatedUses(I))
3657     return &I;
3658 
3659   return nullptr;
3660 }
3661 
3662 /// Try to move the specified instruction from its current block into the
3663 /// beginning of DestBlock, which can only happen if it's safe to move the
3664 /// instruction past all of the instructions between it and the end of its
3665 /// block.
3666 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3667   assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!");
3668   BasicBlock *SrcBlock = I->getParent();
3669 
3670   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3671   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3672       I->isTerminator())
3673     return false;
3674 
3675   // Do not sink static or dynamic alloca instructions. Static allocas must
3676   // remain in the entry block, and dynamic allocas must not be sunk in between
3677   // a stacksave / stackrestore pair, which would incorrectly shorten its
3678   // lifetime.
3679   if (isa<AllocaInst>(I))
3680     return false;
3681 
3682   // Do not sink into catchswitch blocks.
3683   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3684     return false;
3685 
3686   // Do not sink convergent call instructions.
3687   if (auto *CI = dyn_cast<CallInst>(I)) {
3688     if (CI->isConvergent())
3689       return false;
3690   }
3691   // We can only sink load instructions if there is nothing between the load and
3692   // the end of block that could change the value.
3693   if (I->mayReadFromMemory()) {
3694     // We don't want to do any sophisticated alias analysis, so we only check
3695     // the instructions after I in I's parent block if we try to sink to its
3696     // successor block.
3697     if (DestBlock->getUniquePredecessor() != I->getParent())
3698       return false;
3699     for (BasicBlock::iterator Scan = I->getIterator(),
3700                               E = I->getParent()->end();
3701          Scan != E; ++Scan)
3702       if (Scan->mayWriteToMemory())
3703         return false;
3704   }
3705 
3706   I->dropDroppableUses([DestBlock](const Use *U) {
3707     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3708       return I->getParent() != DestBlock;
3709     return true;
3710   });
3711   /// FIXME: We could remove droppable uses that are not dominated by
3712   /// the new position.
3713 
3714   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3715   I->moveBefore(&*InsertPos);
3716   ++NumSunkInst;
3717 
3718   // Also sink all related debug uses from the source basic block. Otherwise we
3719   // get debug use before the def. Attempt to salvage debug uses first, to
3720   // maximise the range variables have location for. If we cannot salvage, then
3721   // mark the location undef: we know it was supposed to receive a new location
3722   // here, but that computation has been sunk.
3723   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3724   findDbgUsers(DbgUsers, I);
3725   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3726   // last appearing debug intrinsic for each given variable.
3727   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3728   for (DbgVariableIntrinsic *DVI : DbgUsers)
3729     if (DVI->getParent() == SrcBlock)
3730       DbgUsersToSink.push_back(DVI);
3731   llvm::sort(DbgUsersToSink,
3732              [](auto *A, auto *B) { return B->comesBefore(A); });
3733 
3734   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3735   SmallSet<DebugVariable, 4> SunkVariables;
3736   for (auto User : DbgUsersToSink) {
3737     // A dbg.declare instruction should not be cloned, since there can only be
3738     // one per variable fragment. It should be left in the original place
3739     // because the sunk instruction is not an alloca (otherwise we could not be
3740     // here).
3741     if (isa<DbgDeclareInst>(User))
3742       continue;
3743 
3744     DebugVariable DbgUserVariable =
3745         DebugVariable(User->getVariable(), User->getExpression(),
3746                       User->getDebugLoc()->getInlinedAt());
3747 
3748     if (!SunkVariables.insert(DbgUserVariable).second)
3749       continue;
3750 
3751     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3752     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3753       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3754     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3755   }
3756 
3757   // Perform salvaging without the clones, then sink the clones.
3758   if (!DIIClones.empty()) {
3759     salvageDebugInfoForDbgValues(*I, DbgUsers);
3760     // The clones are in reverse order of original appearance, reverse again to
3761     // maintain the original order.
3762     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3763       DIIClone->insertBefore(&*InsertPos);
3764       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3765     }
3766   }
3767 
3768   return true;
3769 }
3770 
3771 bool InstCombinerImpl::run() {
3772   while (!Worklist.isEmpty()) {
3773     // Walk deferred instructions in reverse order, and push them to the
3774     // worklist, which means they'll end up popped from the worklist in-order.
3775     while (Instruction *I = Worklist.popDeferred()) {
3776       // Check to see if we can DCE the instruction. We do this already here to
3777       // reduce the number of uses and thus allow other folds to trigger.
3778       // Note that eraseInstFromFunction() may push additional instructions on
3779       // the deferred worklist, so this will DCE whole instruction chains.
3780       if (isInstructionTriviallyDead(I, &TLI)) {
3781         eraseInstFromFunction(*I);
3782         ++NumDeadInst;
3783         continue;
3784       }
3785 
3786       Worklist.push(I);
3787     }
3788 
3789     Instruction *I = Worklist.removeOne();
3790     if (I == nullptr) continue;  // skip null values.
3791 
3792     // Check to see if we can DCE the instruction.
3793     if (isInstructionTriviallyDead(I, &TLI)) {
3794       eraseInstFromFunction(*I);
3795       ++NumDeadInst;
3796       continue;
3797     }
3798 
3799     if (!DebugCounter::shouldExecute(VisitCounter))
3800       continue;
3801 
3802     // Instruction isn't dead, see if we can constant propagate it.
3803     if (!I->use_empty() &&
3804         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3805       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3806         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3807                           << '\n');
3808 
3809         // Add operands to the worklist.
3810         replaceInstUsesWith(*I, C);
3811         ++NumConstProp;
3812         if (isInstructionTriviallyDead(I, &TLI))
3813           eraseInstFromFunction(*I);
3814         MadeIRChange = true;
3815         continue;
3816       }
3817     }
3818 
3819     // See if we can trivially sink this instruction to its user if we can
3820     // prove that the successor is not executed more frequently than our block.
3821     // Return the UserBlock if successful.
3822     auto getOptionalSinkBlockForInst =
3823         [this](Instruction *I) -> Optional<BasicBlock *> {
3824       if (!EnableCodeSinking)
3825         return None;
3826       auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
3827       if (!UserInst)
3828         return None;
3829 
3830       BasicBlock *BB = I->getParent();
3831       BasicBlock *UserParent = nullptr;
3832 
3833       // Special handling for Phi nodes - get the block the use occurs in.
3834       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
3835         for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
3836           if (PN->getIncomingValue(i) == I) {
3837             // Bail out if we have uses in different blocks. We don't do any
3838             // sophisticated analysis (i.e finding NearestCommonDominator of these
3839             // use blocks).
3840             if (UserParent && UserParent != PN->getIncomingBlock(i))
3841               return None;
3842             UserParent = PN->getIncomingBlock(i);
3843           }
3844         }
3845         assert(UserParent && "expected to find user block!");
3846       } else
3847         UserParent = UserInst->getParent();
3848 
3849       // Try sinking to another block. If that block is unreachable, then do
3850       // not bother. SimplifyCFG should handle it.
3851       if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
3852         return None;
3853 
3854       auto *Term = UserParent->getTerminator();
3855       // See if the user is one of our successors that has only one
3856       // predecessor, so that we don't have to split the critical edge.
3857       // Another option where we can sink is a block that ends with a
3858       // terminator that does not pass control to other block (such as
3859       // return or unreachable). In this case:
3860       //   - I dominates the User (by SSA form);
3861       //   - the User will be executed at most once.
3862       // So sinking I down to User is always profitable or neutral.
3863       if (UserParent->getUniquePredecessor() == BB ||
3864           (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) {
3865         assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
3866         return UserParent;
3867       }
3868       return None;
3869     };
3870 
3871     auto OptBB = getOptionalSinkBlockForInst(I);
3872     if (OptBB) {
3873       auto *UserParent = *OptBB;
3874       // Okay, the CFG is simple enough, try to sink this instruction.
3875       if (TryToSinkInstruction(I, UserParent)) {
3876         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3877         MadeIRChange = true;
3878         // We'll add uses of the sunk instruction below, but since
3879         // sinking can expose opportunities for it's *operands* add
3880         // them to the worklist
3881         for (Use &U : I->operands())
3882           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3883             Worklist.push(OpI);
3884       }
3885     }
3886 
3887     // Now that we have an instruction, try combining it to simplify it.
3888     Builder.SetInsertPoint(I);
3889     Builder.CollectMetadataToCopy(
3890         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3891 
3892 #ifndef NDEBUG
3893     std::string OrigI;
3894 #endif
3895     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3896     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3897 
3898     if (Instruction *Result = visit(*I)) {
3899       ++NumCombined;
3900       // Should we replace the old instruction with a new one?
3901       if (Result != I) {
3902         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3903                           << "    New = " << *Result << '\n');
3904 
3905         Result->copyMetadata(*I,
3906                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3907         // Everything uses the new instruction now.
3908         I->replaceAllUsesWith(Result);
3909 
3910         // Move the name to the new instruction first.
3911         Result->takeName(I);
3912 
3913         // Insert the new instruction into the basic block...
3914         BasicBlock *InstParent = I->getParent();
3915         BasicBlock::iterator InsertPos = I->getIterator();
3916 
3917         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3918         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3919           // We need to fix up the insertion point.
3920           if (isa<PHINode>(I)) // PHI -> Non-PHI
3921             InsertPos = InstParent->getFirstInsertionPt();
3922           else // Non-PHI -> PHI
3923             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3924         }
3925 
3926         InstParent->getInstList().insert(InsertPos, Result);
3927 
3928         // Push the new instruction and any users onto the worklist.
3929         Worklist.pushUsersToWorkList(*Result);
3930         Worklist.push(Result);
3931 
3932         eraseInstFromFunction(*I);
3933       } else {
3934         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3935                           << "    New = " << *I << '\n');
3936 
3937         // If the instruction was modified, it's possible that it is now dead.
3938         // if so, remove it.
3939         if (isInstructionTriviallyDead(I, &TLI)) {
3940           eraseInstFromFunction(*I);
3941         } else {
3942           Worklist.pushUsersToWorkList(*I);
3943           Worklist.push(I);
3944         }
3945       }
3946       MadeIRChange = true;
3947     }
3948   }
3949 
3950   Worklist.zap();
3951   return MadeIRChange;
3952 }
3953 
3954 // Track the scopes used by !alias.scope and !noalias. In a function, a
3955 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3956 // by both sets. If not, the declaration of the scope can be safely omitted.
3957 // The MDNode of the scope can be omitted as well for the instructions that are
3958 // part of this function. We do not do that at this point, as this might become
3959 // too time consuming to do.
3960 class AliasScopeTracker {
3961   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3962   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3963 
3964 public:
3965   void analyse(Instruction *I) {
3966     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3967     if (!I->hasMetadataOtherThanDebugLoc())
3968       return;
3969 
3970     auto Track = [](Metadata *ScopeList, auto &Container) {
3971       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3972       if (!MDScopeList || !Container.insert(MDScopeList).second)
3973         return;
3974       for (auto &MDOperand : MDScopeList->operands())
3975         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3976           Container.insert(MDScope);
3977     };
3978 
3979     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3980     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3981   }
3982 
3983   bool isNoAliasScopeDeclDead(Instruction *Inst) {
3984     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3985     if (!Decl)
3986       return false;
3987 
3988     assert(Decl->use_empty() &&
3989            "llvm.experimental.noalias.scope.decl in use ?");
3990     const MDNode *MDSL = Decl->getScopeList();
3991     assert(MDSL->getNumOperands() == 1 &&
3992            "llvm.experimental.noalias.scope should refer to a single scope");
3993     auto &MDOperand = MDSL->getOperand(0);
3994     if (auto *MD = dyn_cast<MDNode>(MDOperand))
3995       return !UsedAliasScopesAndLists.contains(MD) ||
3996              !UsedNoAliasScopesAndLists.contains(MD);
3997 
3998     // Not an MDNode ? throw away.
3999     return true;
4000   }
4001 };
4002 
4003 /// Populate the IC worklist from a function, by walking it in depth-first
4004 /// order and adding all reachable code to the worklist.
4005 ///
4006 /// This has a couple of tricks to make the code faster and more powerful.  In
4007 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4008 /// them to the worklist (this significantly speeds up instcombine on code where
4009 /// many instructions are dead or constant).  Additionally, if we find a branch
4010 /// whose condition is a known constant, we only visit the reachable successors.
4011 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4012                                           const TargetLibraryInfo *TLI,
4013                                           InstructionWorklist &ICWorklist) {
4014   bool MadeIRChange = false;
4015   SmallPtrSet<BasicBlock *, 32> Visited;
4016   SmallVector<BasicBlock*, 256> Worklist;
4017   Worklist.push_back(&F.front());
4018 
4019   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4020   DenseMap<Constant *, Constant *> FoldedConstants;
4021   AliasScopeTracker SeenAliasScopes;
4022 
4023   do {
4024     BasicBlock *BB = Worklist.pop_back_val();
4025 
4026     // We have now visited this block!  If we've already been here, ignore it.
4027     if (!Visited.insert(BB).second)
4028       continue;
4029 
4030     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4031       // ConstantProp instruction if trivially constant.
4032       if (!Inst.use_empty() &&
4033           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4034         if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4035           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4036                             << '\n');
4037           Inst.replaceAllUsesWith(C);
4038           ++NumConstProp;
4039           if (isInstructionTriviallyDead(&Inst, TLI))
4040             Inst.eraseFromParent();
4041           MadeIRChange = true;
4042           continue;
4043         }
4044 
4045       // See if we can constant fold its operands.
4046       for (Use &U : Inst.operands()) {
4047         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4048           continue;
4049 
4050         auto *C = cast<Constant>(U);
4051         Constant *&FoldRes = FoldedConstants[C];
4052         if (!FoldRes)
4053           FoldRes = ConstantFoldConstant(C, DL, TLI);
4054 
4055         if (FoldRes != C) {
4056           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4057                             << "\n    Old = " << *C
4058                             << "\n    New = " << *FoldRes << '\n');
4059           U = FoldRes;
4060           MadeIRChange = true;
4061         }
4062       }
4063 
4064       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4065       // these call instructions consumes non-trivial amount of time and
4066       // provides no value for the optimization.
4067       if (!Inst.isDebugOrPseudoInst()) {
4068         InstrsForInstructionWorklist.push_back(&Inst);
4069         SeenAliasScopes.analyse(&Inst);
4070       }
4071     }
4072 
4073     // Recursively visit successors.  If this is a branch or switch on a
4074     // constant, only visit the reachable successor.
4075     Instruction *TI = BB->getTerminator();
4076     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4077       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4078         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4079         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4080         Worklist.push_back(ReachableBB);
4081         continue;
4082       }
4083     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4084       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4085         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4086         continue;
4087       }
4088     }
4089 
4090     append_range(Worklist, successors(TI));
4091   } while (!Worklist.empty());
4092 
4093   // Remove instructions inside unreachable blocks. This prevents the
4094   // instcombine code from having to deal with some bad special cases, and
4095   // reduces use counts of instructions.
4096   for (BasicBlock &BB : F) {
4097     if (Visited.count(&BB))
4098       continue;
4099 
4100     unsigned NumDeadInstInBB;
4101     unsigned NumDeadDbgInstInBB;
4102     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4103         removeAllNonTerminatorAndEHPadInstructions(&BB);
4104 
4105     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4106     NumDeadInst += NumDeadInstInBB;
4107   }
4108 
4109   // Once we've found all of the instructions to add to instcombine's worklist,
4110   // add them in reverse order.  This way instcombine will visit from the top
4111   // of the function down.  This jives well with the way that it adds all uses
4112   // of instructions to the worklist after doing a transformation, thus avoiding
4113   // some N^2 behavior in pathological cases.
4114   ICWorklist.reserve(InstrsForInstructionWorklist.size());
4115   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4116     // DCE instruction if trivially dead. As we iterate in reverse program
4117     // order here, we will clean up whole chains of dead instructions.
4118     if (isInstructionTriviallyDead(Inst, TLI) ||
4119         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4120       ++NumDeadInst;
4121       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4122       salvageDebugInfo(*Inst);
4123       Inst->eraseFromParent();
4124       MadeIRChange = true;
4125       continue;
4126     }
4127 
4128     ICWorklist.push(Inst);
4129   }
4130 
4131   return MadeIRChange;
4132 }
4133 
4134 static bool combineInstructionsOverFunction(
4135     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4136     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4137     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4138     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4139   auto &DL = F.getParent()->getDataLayout();
4140   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4141 
4142   /// Builder - This is an IRBuilder that automatically inserts new
4143   /// instructions into the worklist when they are created.
4144   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4145       F.getContext(), TargetFolder(DL),
4146       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4147         Worklist.add(I);
4148         if (auto *Assume = dyn_cast<AssumeInst>(I))
4149           AC.registerAssumption(Assume);
4150       }));
4151 
4152   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4153   // by instcombiner.
4154   bool MadeIRChange = false;
4155   if (ShouldLowerDbgDeclare)
4156     MadeIRChange = LowerDbgDeclare(F);
4157 
4158   // Iterate while there is work to do.
4159   unsigned Iteration = 0;
4160   while (true) {
4161     ++NumWorklistIterations;
4162     ++Iteration;
4163 
4164     if (Iteration > InfiniteLoopDetectionThreshold) {
4165       report_fatal_error(
4166           "Instruction Combining seems stuck in an infinite loop after " +
4167           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4168     }
4169 
4170     if (Iteration > MaxIterations) {
4171       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4172                         << " on " << F.getName()
4173                         << " reached; stopping before reaching a fixpoint\n");
4174       break;
4175     }
4176 
4177     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4178                       << F.getName() << "\n");
4179 
4180     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4181 
4182     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4183                         ORE, BFI, PSI, DL, LI);
4184     IC.MaxArraySizeForCombine = MaxArraySize;
4185 
4186     if (!IC.run())
4187       break;
4188 
4189     MadeIRChange = true;
4190   }
4191 
4192   return MadeIRChange;
4193 }
4194 
4195 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4196 
4197 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4198     : MaxIterations(MaxIterations) {}
4199 
4200 PreservedAnalyses InstCombinePass::run(Function &F,
4201                                        FunctionAnalysisManager &AM) {
4202   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4203   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4204   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4205   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4206   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4207 
4208   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4209 
4210   auto *AA = &AM.getResult<AAManager>(F);
4211   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4212   ProfileSummaryInfo *PSI =
4213       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4214   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4215       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4216 
4217   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4218                                        BFI, PSI, MaxIterations, LI))
4219     // No changes, all analyses are preserved.
4220     return PreservedAnalyses::all();
4221 
4222   // Mark all the analyses that instcombine updates as preserved.
4223   PreservedAnalyses PA;
4224   PA.preserveSet<CFGAnalyses>();
4225   return PA;
4226 }
4227 
4228 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4229   AU.setPreservesCFG();
4230   AU.addRequired<AAResultsWrapperPass>();
4231   AU.addRequired<AssumptionCacheTracker>();
4232   AU.addRequired<TargetLibraryInfoWrapperPass>();
4233   AU.addRequired<TargetTransformInfoWrapperPass>();
4234   AU.addRequired<DominatorTreeWrapperPass>();
4235   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4236   AU.addPreserved<DominatorTreeWrapperPass>();
4237   AU.addPreserved<AAResultsWrapperPass>();
4238   AU.addPreserved<BasicAAWrapperPass>();
4239   AU.addPreserved<GlobalsAAWrapperPass>();
4240   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4241   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4242 }
4243 
4244 bool InstructionCombiningPass::runOnFunction(Function &F) {
4245   if (skipFunction(F))
4246     return false;
4247 
4248   // Required analyses.
4249   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4250   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4251   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4252   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4253   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4254   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4255 
4256   // Optional analyses.
4257   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4258   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4259   ProfileSummaryInfo *PSI =
4260       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4261   BlockFrequencyInfo *BFI =
4262       (PSI && PSI->hasProfileSummary()) ?
4263       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4264       nullptr;
4265 
4266   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4267                                          BFI, PSI, MaxIterations, LI);
4268 }
4269 
4270 char InstructionCombiningPass::ID = 0;
4271 
4272 InstructionCombiningPass::InstructionCombiningPass()
4273     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4274   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4275 }
4276 
4277 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4278     : FunctionPass(ID), MaxIterations(MaxIterations) {
4279   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4280 }
4281 
4282 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4283                       "Combine redundant instructions", false, false)
4284 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4285 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4286 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4287 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4288 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4289 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4290 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4291 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4292 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4293 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4294                     "Combine redundant instructions", false, false)
4295 
4296 // Initialization Routines
4297 void llvm::initializeInstCombine(PassRegistry &Registry) {
4298   initializeInstructionCombiningPassPass(Registry);
4299 }
4300 
4301 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4302   initializeInstructionCombiningPassPass(*unwrap(R));
4303 }
4304 
4305 FunctionPass *llvm::createInstructionCombiningPass() {
4306   return new InstructionCombiningPass();
4307 }
4308 
4309 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4310   return new InstructionCombiningPass(MaxIterations);
4311 }
4312 
4313 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4314   unwrap(PM)->add(createInstructionCombiningPass());
4315 }
4316