xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 #define DEBUG_TYPE "instcombine"
112 #include "llvm/Transforms/Utils/InstructionWorklist.h"
113 
114 using namespace llvm;
115 using namespace llvm::PatternMatch;
116 
117 STATISTIC(NumWorklistIterations,
118           "Number of instruction combining iterations performed");
119 
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand,    "Number of expansions");
125 STATISTIC(NumFactor   , "Number of factorizations");
126 STATISTIC(NumReassoc  , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128               "Controls which instructions are visited");
129 
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137 
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140                                               cl::init(true));
141 
142 static cl::opt<unsigned> LimitMaxIterations(
143     "instcombine-max-iterations",
144     cl::desc("Limit the maximum number of instruction combining iterations"),
145     cl::init(InstCombineDefaultMaxIterations));
146 
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148     "instcombine-infinite-loop-threshold",
149     cl::desc("Number of instruction combining iterations considered an "
150              "infinite loop"),
151     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152 
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155              cl::desc("Maximum array size considered when doing a combine"));
156 
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165                                                cl::Hidden, cl::init(true));
166 
167 Optional<Instruction *>
168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169   // Handle target specific intrinsics
170   if (II.getCalledFunction()->isTargetIntrinsic()) {
171     return TTI.instCombineIntrinsic(*this, II);
172   }
173   return None;
174 }
175 
176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178     bool &KnownBitsComputed) {
179   // Handle target specific intrinsics
180   if (II.getCalledFunction()->isTargetIntrinsic()) {
181     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182                                                 KnownBitsComputed);
183   }
184   return None;
185 }
186 
187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188     IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189     APInt &UndefElts3,
190     std::function<void(Instruction *, unsigned, APInt, APInt &)>
191         SimplifyAndSetOp) {
192   // Handle target specific intrinsics
193   if (II.getCalledFunction()->isTargetIntrinsic()) {
194     return TTI.simplifyDemandedVectorEltsIntrinsic(
195         *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196         SimplifyAndSetOp);
197   }
198   return None;
199 }
200 
201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202   return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204 
205 /// Legal integers and common types are considered desirable. This is used to
206 /// avoid creating instructions with types that may not be supported well by the
207 /// the backend.
208 /// NOTE: This treats i8, i16 and i32 specially because they are common
209 ///       types in frontend languages.
210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
211   switch (BitWidth) {
212   case 8:
213   case 16:
214   case 32:
215     return true;
216   default:
217     return DL.isLegalInteger(BitWidth);
218   }
219 }
220 
221 /// Return true if it is desirable to convert an integer computation from a
222 /// given bit width to a new bit width.
223 /// We don't want to convert from a legal to an illegal type or from a smaller
224 /// to a larger illegal type. A width of '1' is always treated as a desirable
225 /// type because i1 is a fundamental type in IR, and there are many specialized
226 /// optimizations for i1 types. Common/desirable widths are equally treated as
227 /// legal to convert to, in order to open up more combining opportunities.
228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
229                                         unsigned ToWidth) const {
230   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
231   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
232 
233   // Convert to desirable widths even if they are not legal types.
234   // Only shrink types, to prevent infinite loops.
235   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
236     return true;
237 
238   // If this is a legal integer from type, and the result would be an illegal
239   // type, don't do the transformation.
240   if (FromLegal && !ToLegal)
241     return false;
242 
243   // Otherwise, if both are illegal, do not increase the size of the result. We
244   // do allow things like i160 -> i64, but not i64 -> i160.
245   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
246     return false;
247 
248   return true;
249 }
250 
251 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
252 /// We don't want to convert from a legal to an illegal type or from a smaller
253 /// to a larger illegal type. i1 is always treated as a legal type because it is
254 /// a fundamental type in IR, and there are many specialized optimizations for
255 /// i1 types.
256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
257   // TODO: This could be extended to allow vectors. Datalayout changes might be
258   // needed to properly support that.
259   if (!From->isIntegerTy() || !To->isIntegerTy())
260     return false;
261 
262   unsigned FromWidth = From->getPrimitiveSizeInBits();
263   unsigned ToWidth = To->getPrimitiveSizeInBits();
264   return shouldChangeType(FromWidth, ToWidth);
265 }
266 
267 // Return true, if No Signed Wrap should be maintained for I.
268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
269 // where both B and C should be ConstantInts, results in a constant that does
270 // not overflow. This function only handles the Add and Sub opcodes. For
271 // all other opcodes, the function conservatively returns false.
272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
273   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
274   if (!OBO || !OBO->hasNoSignedWrap())
275     return false;
276 
277   // We reason about Add and Sub Only.
278   Instruction::BinaryOps Opcode = I.getOpcode();
279   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
280     return false;
281 
282   const APInt *BVal, *CVal;
283   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
284     return false;
285 
286   bool Overflow = false;
287   if (Opcode == Instruction::Add)
288     (void)BVal->sadd_ov(*CVal, Overflow);
289   else
290     (void)BVal->ssub_ov(*CVal, Overflow);
291 
292   return !Overflow;
293 }
294 
295 static bool hasNoUnsignedWrap(BinaryOperator &I) {
296   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
297   return OBO && OBO->hasNoUnsignedWrap();
298 }
299 
300 static bool hasNoSignedWrap(BinaryOperator &I) {
301   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
302   return OBO && OBO->hasNoSignedWrap();
303 }
304 
305 /// Conservatively clears subclassOptionalData after a reassociation or
306 /// commutation. We preserve fast-math flags when applicable as they can be
307 /// preserved.
308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
309   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
310   if (!FPMO) {
311     I.clearSubclassOptionalData();
312     return;
313   }
314 
315   FastMathFlags FMF = I.getFastMathFlags();
316   I.clearSubclassOptionalData();
317   I.setFastMathFlags(FMF);
318 }
319 
320 /// Combine constant operands of associative operations either before or after a
321 /// cast to eliminate one of the associative operations:
322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
325                                    InstCombinerImpl &IC) {
326   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
327   if (!Cast || !Cast->hasOneUse())
328     return false;
329 
330   // TODO: Enhance logic for other casts and remove this check.
331   auto CastOpcode = Cast->getOpcode();
332   if (CastOpcode != Instruction::ZExt)
333     return false;
334 
335   // TODO: Enhance logic for other BinOps and remove this check.
336   if (!BinOp1->isBitwiseLogicOp())
337     return false;
338 
339   auto AssocOpcode = BinOp1->getOpcode();
340   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
341   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
342     return false;
343 
344   Constant *C1, *C2;
345   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
346       !match(BinOp2->getOperand(1), m_Constant(C2)))
347     return false;
348 
349   // TODO: This assumes a zext cast.
350   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
351   // to the destination type might lose bits.
352 
353   // Fold the constants together in the destination type:
354   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
355   Type *DestTy = C1->getType();
356   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
357   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
358   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
359   IC.replaceOperand(*BinOp1, 1, FoldedC);
360   return true;
361 }
362 
363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
364 // inttoptr ( ptrtoint (x) ) --> x
365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
366   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
367   if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
368                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
369     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
370     Type *CastTy = IntToPtr->getDestTy();
371     if (PtrToInt &&
372         CastTy->getPointerAddressSpace() ==
373             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
374         DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
375             DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
376       return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
377                                               "", PtrToInt);
378     }
379   }
380   return nullptr;
381 }
382 
383 /// This performs a few simplifications for operators that are associative or
384 /// commutative:
385 ///
386 ///  Commutative operators:
387 ///
388 ///  1. Order operands such that they are listed from right (least complex) to
389 ///     left (most complex).  This puts constants before unary operators before
390 ///     binary operators.
391 ///
392 ///  Associative operators:
393 ///
394 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
395 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
396 ///
397 ///  Associative and commutative operators:
398 ///
399 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
400 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
401 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
402 ///     if C1 and C2 are constants.
403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
404   Instruction::BinaryOps Opcode = I.getOpcode();
405   bool Changed = false;
406 
407   do {
408     // Order operands such that they are listed from right (least complex) to
409     // left (most complex).  This puts constants before unary operators before
410     // binary operators.
411     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
412         getComplexity(I.getOperand(1)))
413       Changed = !I.swapOperands();
414 
415     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
416     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
417 
418     if (I.isAssociative()) {
419       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
420       if (Op0 && Op0->getOpcode() == Opcode) {
421         Value *A = Op0->getOperand(0);
422         Value *B = Op0->getOperand(1);
423         Value *C = I.getOperand(1);
424 
425         // Does "B op C" simplify?
426         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
427           // It simplifies to V.  Form "A op V".
428           replaceOperand(I, 0, A);
429           replaceOperand(I, 1, V);
430           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
431           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
432 
433           // Conservatively clear all optional flags since they may not be
434           // preserved by the reassociation. Reset nsw/nuw based on the above
435           // analysis.
436           ClearSubclassDataAfterReassociation(I);
437 
438           // Note: this is only valid because SimplifyBinOp doesn't look at
439           // the operands to Op0.
440           if (IsNUW)
441             I.setHasNoUnsignedWrap(true);
442 
443           if (IsNSW)
444             I.setHasNoSignedWrap(true);
445 
446           Changed = true;
447           ++NumReassoc;
448           continue;
449         }
450       }
451 
452       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
453       if (Op1 && Op1->getOpcode() == Opcode) {
454         Value *A = I.getOperand(0);
455         Value *B = Op1->getOperand(0);
456         Value *C = Op1->getOperand(1);
457 
458         // Does "A op B" simplify?
459         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
460           // It simplifies to V.  Form "V op C".
461           replaceOperand(I, 0, V);
462           replaceOperand(I, 1, C);
463           // Conservatively clear the optional flags, since they may not be
464           // preserved by the reassociation.
465           ClearSubclassDataAfterReassociation(I);
466           Changed = true;
467           ++NumReassoc;
468           continue;
469         }
470       }
471     }
472 
473     if (I.isAssociative() && I.isCommutative()) {
474       if (simplifyAssocCastAssoc(&I, *this)) {
475         Changed = true;
476         ++NumReassoc;
477         continue;
478       }
479 
480       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
481       if (Op0 && Op0->getOpcode() == Opcode) {
482         Value *A = Op0->getOperand(0);
483         Value *B = Op0->getOperand(1);
484         Value *C = I.getOperand(1);
485 
486         // Does "C op A" simplify?
487         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
488           // It simplifies to V.  Form "V op B".
489           replaceOperand(I, 0, V);
490           replaceOperand(I, 1, B);
491           // Conservatively clear the optional flags, since they may not be
492           // preserved by the reassociation.
493           ClearSubclassDataAfterReassociation(I);
494           Changed = true;
495           ++NumReassoc;
496           continue;
497         }
498       }
499 
500       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
501       if (Op1 && Op1->getOpcode() == Opcode) {
502         Value *A = I.getOperand(0);
503         Value *B = Op1->getOperand(0);
504         Value *C = Op1->getOperand(1);
505 
506         // Does "C op A" simplify?
507         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
508           // It simplifies to V.  Form "B op V".
509           replaceOperand(I, 0, B);
510           replaceOperand(I, 1, V);
511           // Conservatively clear the optional flags, since they may not be
512           // preserved by the reassociation.
513           ClearSubclassDataAfterReassociation(I);
514           Changed = true;
515           ++NumReassoc;
516           continue;
517         }
518       }
519 
520       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
521       // if C1 and C2 are constants.
522       Value *A, *B;
523       Constant *C1, *C2;
524       if (Op0 && Op1 &&
525           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
526           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
527           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
528         bool IsNUW = hasNoUnsignedWrap(I) &&
529            hasNoUnsignedWrap(*Op0) &&
530            hasNoUnsignedWrap(*Op1);
531          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
532            BinaryOperator::CreateNUW(Opcode, A, B) :
533            BinaryOperator::Create(Opcode, A, B);
534 
535          if (isa<FPMathOperator>(NewBO)) {
536           FastMathFlags Flags = I.getFastMathFlags();
537           Flags &= Op0->getFastMathFlags();
538           Flags &= Op1->getFastMathFlags();
539           NewBO->setFastMathFlags(Flags);
540         }
541         InsertNewInstWith(NewBO, I);
542         NewBO->takeName(Op1);
543         replaceOperand(I, 0, NewBO);
544         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
545         // Conservatively clear the optional flags, since they may not be
546         // preserved by the reassociation.
547         ClearSubclassDataAfterReassociation(I);
548         if (IsNUW)
549           I.setHasNoUnsignedWrap(true);
550 
551         Changed = true;
552         continue;
553       }
554     }
555 
556     // No further simplifications.
557     return Changed;
558   } while (true);
559 }
560 
561 /// Return whether "X LOp (Y ROp Z)" is always equal to
562 /// "(X LOp Y) ROp (X LOp Z)".
563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
564                                      Instruction::BinaryOps ROp) {
565   // X & (Y | Z) <--> (X & Y) | (X & Z)
566   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
567   if (LOp == Instruction::And)
568     return ROp == Instruction::Or || ROp == Instruction::Xor;
569 
570   // X | (Y & Z) <--> (X | Y) & (X | Z)
571   if (LOp == Instruction::Or)
572     return ROp == Instruction::And;
573 
574   // X * (Y + Z) <--> (X * Y) + (X * Z)
575   // X * (Y - Z) <--> (X * Y) - (X * Z)
576   if (LOp == Instruction::Mul)
577     return ROp == Instruction::Add || ROp == Instruction::Sub;
578 
579   return false;
580 }
581 
582 /// Return whether "(X LOp Y) ROp Z" is always equal to
583 /// "(X ROp Z) LOp (Y ROp Z)".
584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
585                                      Instruction::BinaryOps ROp) {
586   if (Instruction::isCommutative(ROp))
587     return leftDistributesOverRight(ROp, LOp);
588 
589   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
590   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
591 
592   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
593   // but this requires knowing that the addition does not overflow and other
594   // such subtleties.
595 }
596 
597 /// This function returns identity value for given opcode, which can be used to
598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
600   if (isa<Constant>(V))
601     return nullptr;
602 
603   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
604 }
605 
606 /// This function predicates factorization using distributive laws. By default,
607 /// it just returns the 'Op' inputs. But for special-cases like
608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
610 /// allow more factorization opportunities.
611 static Instruction::BinaryOps
612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
613                           Value *&LHS, Value *&RHS) {
614   assert(Op && "Expected a binary operator");
615   LHS = Op->getOperand(0);
616   RHS = Op->getOperand(1);
617   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
618     Constant *C;
619     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
620       // X << C --> X * (1 << C)
621       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
622       return Instruction::Mul;
623     }
624     // TODO: We can add other conversions e.g. shr => div etc.
625   }
626   return Op->getOpcode();
627 }
628 
629 /// This tries to simplify binary operations by factorizing out common terms
630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
632                                           Instruction::BinaryOps InnerOpcode,
633                                           Value *A, Value *B, Value *C,
634                                           Value *D) {
635   assert(A && B && C && D && "All values must be provided");
636 
637   Value *V = nullptr;
638   Value *SimplifiedInst = nullptr;
639   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
640   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
641 
642   // Does "X op' Y" always equal "Y op' X"?
643   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
644 
645   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
646   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
647     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
648     // commutative case, "(A op' B) op (C op' A)"?
649     if (A == C || (InnerCommutative && A == D)) {
650       if (A != C)
651         std::swap(C, D);
652       // Consider forming "A op' (B op D)".
653       // If "B op D" simplifies then it can be formed with no cost.
654       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
655       // If "B op D" doesn't simplify then only go on if both of the existing
656       // operations "A op' B" and "C op' D" will be zapped as no longer used.
657       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
658         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
659       if (V) {
660         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
661       }
662     }
663 
664   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
665   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
666     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
667     // commutative case, "(A op' B) op (B op' D)"?
668     if (B == D || (InnerCommutative && B == C)) {
669       if (B != D)
670         std::swap(C, D);
671       // Consider forming "(A op C) op' B".
672       // If "A op C" simplifies then it can be formed with no cost.
673       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
674 
675       // If "A op C" doesn't simplify then only go on if both of the existing
676       // operations "A op' B" and "C op' D" will be zapped as no longer used.
677       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
678         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
679       if (V) {
680         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
681       }
682     }
683 
684   if (SimplifiedInst) {
685     ++NumFactor;
686     SimplifiedInst->takeName(&I);
687 
688     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
689     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
690       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
691         bool HasNSW = false;
692         bool HasNUW = false;
693         if (isa<OverflowingBinaryOperator>(&I)) {
694           HasNSW = I.hasNoSignedWrap();
695           HasNUW = I.hasNoUnsignedWrap();
696         }
697 
698         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
699           HasNSW &= LOBO->hasNoSignedWrap();
700           HasNUW &= LOBO->hasNoUnsignedWrap();
701         }
702 
703         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
704           HasNSW &= ROBO->hasNoSignedWrap();
705           HasNUW &= ROBO->hasNoUnsignedWrap();
706         }
707 
708         if (TopLevelOpcode == Instruction::Add &&
709             InnerOpcode == Instruction::Mul) {
710           // We can propagate 'nsw' if we know that
711           //  %Y = mul nsw i16 %X, C
712           //  %Z = add nsw i16 %Y, %X
713           // =>
714           //  %Z = mul nsw i16 %X, C+1
715           //
716           // iff C+1 isn't INT_MIN
717           const APInt *CInt;
718           if (match(V, m_APInt(CInt))) {
719             if (!CInt->isMinSignedValue())
720               BO->setHasNoSignedWrap(HasNSW);
721           }
722 
723           // nuw can be propagated with any constant or nuw value.
724           BO->setHasNoUnsignedWrap(HasNUW);
725         }
726       }
727     }
728   }
729   return SimplifiedInst;
730 }
731 
732 /// This tries to simplify binary operations which some other binary operation
733 /// distributes over either by factorizing out common terms
734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
736 /// Returns the simplified value, or null if it didn't simplify.
737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
738   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
739   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
740   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
741   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
742 
743   {
744     // Factorization.
745     Value *A, *B, *C, *D;
746     Instruction::BinaryOps LHSOpcode, RHSOpcode;
747     if (Op0)
748       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
749     if (Op1)
750       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
751 
752     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
753     // a common term.
754     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
755       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
756         return V;
757 
758     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
759     // term.
760     if (Op0)
761       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
762         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
763           return V;
764 
765     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
766     // term.
767     if (Op1)
768       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
769         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
770           return V;
771   }
772 
773   // Expansion.
774   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
775     // The instruction has the form "(A op' B) op C".  See if expanding it out
776     // to "(A op C) op' (B op C)" results in simplifications.
777     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
778     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
779 
780     // Disable the use of undef because it's not safe to distribute undef.
781     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
782     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
783     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
784 
785     // Do "A op C" and "B op C" both simplify?
786     if (L && R) {
787       // They do! Return "L op' R".
788       ++NumExpand;
789       C = Builder.CreateBinOp(InnerOpcode, L, R);
790       C->takeName(&I);
791       return C;
792     }
793 
794     // Does "A op C" simplify to the identity value for the inner opcode?
795     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
796       // They do! Return "B op C".
797       ++NumExpand;
798       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
799       C->takeName(&I);
800       return C;
801     }
802 
803     // Does "B op C" simplify to the identity value for the inner opcode?
804     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
805       // They do! Return "A op C".
806       ++NumExpand;
807       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
808       C->takeName(&I);
809       return C;
810     }
811   }
812 
813   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
814     // The instruction has the form "A op (B op' C)".  See if expanding it out
815     // to "(A op B) op' (A op C)" results in simplifications.
816     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
817     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
818 
819     // Disable the use of undef because it's not safe to distribute undef.
820     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
821     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
822     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
823 
824     // Do "A op B" and "A op C" both simplify?
825     if (L && R) {
826       // They do! Return "L op' R".
827       ++NumExpand;
828       A = Builder.CreateBinOp(InnerOpcode, L, R);
829       A->takeName(&I);
830       return A;
831     }
832 
833     // Does "A op B" simplify to the identity value for the inner opcode?
834     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
835       // They do! Return "A op C".
836       ++NumExpand;
837       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
838       A->takeName(&I);
839       return A;
840     }
841 
842     // Does "A op C" simplify to the identity value for the inner opcode?
843     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
844       // They do! Return "A op B".
845       ++NumExpand;
846       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
847       A->takeName(&I);
848       return A;
849     }
850   }
851 
852   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
853 }
854 
855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
856                                                         Value *LHS,
857                                                         Value *RHS) {
858   Value *A, *B, *C, *D, *E, *F;
859   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
860   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
861   if (!LHSIsSelect && !RHSIsSelect)
862     return nullptr;
863 
864   FastMathFlags FMF;
865   BuilderTy::FastMathFlagGuard Guard(Builder);
866   if (isa<FPMathOperator>(&I)) {
867     FMF = I.getFastMathFlags();
868     Builder.setFastMathFlags(FMF);
869   }
870 
871   Instruction::BinaryOps Opcode = I.getOpcode();
872   SimplifyQuery Q = SQ.getWithInstruction(&I);
873 
874   Value *Cond, *True = nullptr, *False = nullptr;
875   if (LHSIsSelect && RHSIsSelect && A == D) {
876     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
877     Cond = A;
878     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
879     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
880 
881     if (LHS->hasOneUse() && RHS->hasOneUse()) {
882       if (False && !True)
883         True = Builder.CreateBinOp(Opcode, B, E);
884       else if (True && !False)
885         False = Builder.CreateBinOp(Opcode, C, F);
886     }
887   } else if (LHSIsSelect && LHS->hasOneUse()) {
888     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
889     Cond = A;
890     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
891     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
892   } else if (RHSIsSelect && RHS->hasOneUse()) {
893     // X op (D ? E : F) -> D ? (X op E) : (X op F)
894     Cond = D;
895     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
896     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
897   }
898 
899   if (!True || !False)
900     return nullptr;
901 
902   Value *SI = Builder.CreateSelect(Cond, True, False);
903   SI->takeName(&I);
904   return SI;
905 }
906 
907 /// Freely adapt every user of V as-if V was changed to !V.
908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
910   for (User *U : I->users()) {
911     switch (cast<Instruction>(U)->getOpcode()) {
912     case Instruction::Select: {
913       auto *SI = cast<SelectInst>(U);
914       SI->swapValues();
915       SI->swapProfMetadata();
916       break;
917     }
918     case Instruction::Br:
919       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
920       break;
921     case Instruction::Xor:
922       replaceInstUsesWith(cast<Instruction>(*U), I);
923       break;
924     default:
925       llvm_unreachable("Got unexpected user - out of sync with "
926                        "canFreelyInvertAllUsersOf() ?");
927     }
928   }
929 }
930 
931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
932 /// constant zero (which is the 'negate' form).
933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
934   Value *NegV;
935   if (match(V, m_Neg(m_Value(NegV))))
936     return NegV;
937 
938   // Constants can be considered to be negated values if they can be folded.
939   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
940     return ConstantExpr::getNeg(C);
941 
942   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
943     if (C->getType()->getElementType()->isIntegerTy())
944       return ConstantExpr::getNeg(C);
945 
946   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
947     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
948       Constant *Elt = CV->getAggregateElement(i);
949       if (!Elt)
950         return nullptr;
951 
952       if (isa<UndefValue>(Elt))
953         continue;
954 
955       if (!isa<ConstantInt>(Elt))
956         return nullptr;
957     }
958     return ConstantExpr::getNeg(CV);
959   }
960 
961   // Negate integer vector splats.
962   if (auto *CV = dyn_cast<Constant>(V))
963     if (CV->getType()->isVectorTy() &&
964         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
965       return ConstantExpr::getNeg(CV);
966 
967   return nullptr;
968 }
969 
970 /// A binop with a constant operand and a sign-extended boolean operand may be
971 /// converted into a select of constants by applying the binary operation to
972 /// the constant with the two possible values of the extended boolean (0 or -1).
973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
974   // TODO: Handle non-commutative binop (constant is operand 0).
975   // TODO: Handle zext.
976   // TODO: Peek through 'not' of cast.
977   Value *BO0 = BO.getOperand(0);
978   Value *BO1 = BO.getOperand(1);
979   Value *X;
980   Constant *C;
981   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
982       !X->getType()->isIntOrIntVectorTy(1))
983     return nullptr;
984 
985   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
986   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
987   Constant *Zero = ConstantInt::getNullValue(BO.getType());
988   Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C);
989   Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C);
990   return SelectInst::Create(X, TVal, FVal);
991 }
992 
993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
994                                              InstCombiner::BuilderTy &Builder) {
995   if (auto *Cast = dyn_cast<CastInst>(&I))
996     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
997 
998   if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
999     assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&
1000            "Expected constant-foldable intrinsic");
1001     Intrinsic::ID IID = II->getIntrinsicID();
1002     if (II->arg_size() == 1)
1003       return Builder.CreateUnaryIntrinsic(IID, SO);
1004 
1005     // This works for real binary ops like min/max (where we always expect the
1006     // constant operand to be canonicalized as op1) and unary ops with a bonus
1007     // constant argument like ctlz/cttz.
1008     // TODO: Handle non-commutative binary intrinsics as below for binops.
1009     assert(II->arg_size() == 2 && "Expected binary intrinsic");
1010     assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand");
1011     return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
1012   }
1013 
1014   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
1015 
1016   // Figure out if the constant is the left or the right argument.
1017   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1018   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1019 
1020   if (auto *SOC = dyn_cast<Constant>(SO)) {
1021     if (ConstIsRHS)
1022       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1023     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1024   }
1025 
1026   Value *Op0 = SO, *Op1 = ConstOperand;
1027   if (!ConstIsRHS)
1028     std::swap(Op0, Op1);
1029 
1030   auto *BO = cast<BinaryOperator>(&I);
1031   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
1032                                   SO->getName() + ".op");
1033   auto *FPInst = dyn_cast<Instruction>(RI);
1034   if (FPInst && isa<FPMathOperator>(FPInst))
1035     FPInst->copyFastMathFlags(BO);
1036   return RI;
1037 }
1038 
1039 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1040                                                 SelectInst *SI) {
1041   // Don't modify shared select instructions.
1042   if (!SI->hasOneUse())
1043     return nullptr;
1044 
1045   Value *TV = SI->getTrueValue();
1046   Value *FV = SI->getFalseValue();
1047   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1048     return nullptr;
1049 
1050   // Bool selects with constant operands can be folded to logical ops.
1051   if (SI->getType()->isIntOrIntVectorTy(1))
1052     return nullptr;
1053 
1054   // If it's a bitcast involving vectors, make sure it has the same number of
1055   // elements on both sides.
1056   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1057     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1058     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1059 
1060     // Verify that either both or neither are vectors.
1061     if ((SrcTy == nullptr) != (DestTy == nullptr))
1062       return nullptr;
1063 
1064     // If vectors, verify that they have the same number of elements.
1065     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1066       return nullptr;
1067   }
1068 
1069   // Test if a CmpInst instruction is used exclusively by a select as
1070   // part of a minimum or maximum operation. If so, refrain from doing
1071   // any other folding. This helps out other analyses which understand
1072   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1073   // and CodeGen. And in this case, at least one of the comparison
1074   // operands has at least one user besides the compare (the select),
1075   // which would often largely negate the benefit of folding anyway.
1076   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1077     if (CI->hasOneUse()) {
1078       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1079 
1080       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1081       //        We have to ensure that vector constants that only differ with
1082       //        undef elements are treated as equivalent.
1083       auto areLooselyEqual = [](Value *A, Value *B) {
1084         if (A == B)
1085           return true;
1086 
1087         // Test for vector constants.
1088         Constant *ConstA, *ConstB;
1089         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1090           return false;
1091 
1092         // TODO: Deal with FP constants?
1093         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1094           return false;
1095 
1096         // Compare for equality including undefs as equal.
1097         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1098         const APInt *C;
1099         return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1100       };
1101 
1102       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1103           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1104         return nullptr;
1105     }
1106   }
1107 
1108   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1109   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1110   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1111 }
1112 
1113 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1114                                         InstCombiner::BuilderTy &Builder) {
1115   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1116   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1117 
1118   if (auto *InC = dyn_cast<Constant>(InV)) {
1119     if (ConstIsRHS)
1120       return ConstantExpr::get(I->getOpcode(), InC, C);
1121     return ConstantExpr::get(I->getOpcode(), C, InC);
1122   }
1123 
1124   Value *Op0 = InV, *Op1 = C;
1125   if (!ConstIsRHS)
1126     std::swap(Op0, Op1);
1127 
1128   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1129   auto *FPInst = dyn_cast<Instruction>(RI);
1130   if (FPInst && isa<FPMathOperator>(FPInst))
1131     FPInst->copyFastMathFlags(I);
1132   return RI;
1133 }
1134 
1135 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1136   unsigned NumPHIValues = PN->getNumIncomingValues();
1137   if (NumPHIValues == 0)
1138     return nullptr;
1139 
1140   // We normally only transform phis with a single use.  However, if a PHI has
1141   // multiple uses and they are all the same operation, we can fold *all* of the
1142   // uses into the PHI.
1143   if (!PN->hasOneUse()) {
1144     // Walk the use list for the instruction, comparing them to I.
1145     for (User *U : PN->users()) {
1146       Instruction *UI = cast<Instruction>(U);
1147       if (UI != &I && !I.isIdenticalTo(UI))
1148         return nullptr;
1149     }
1150     // Otherwise, we can replace *all* users with the new PHI we form.
1151   }
1152 
1153   // Check to see if all of the operands of the PHI are simple constants
1154   // (constantint/constantfp/undef).  If there is one non-constant value,
1155   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1156   // bail out.  We don't do arbitrary constant expressions here because moving
1157   // their computation can be expensive without a cost model.
1158   BasicBlock *NonConstBB = nullptr;
1159   for (unsigned i = 0; i != NumPHIValues; ++i) {
1160     Value *InVal = PN->getIncomingValue(i);
1161     // For non-freeze, require constant operand
1162     // For freeze, require non-undef, non-poison operand
1163     if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant()))
1164       continue;
1165     if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal))
1166       continue;
1167 
1168     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1169     if (NonConstBB) return nullptr;  // More than one non-const value.
1170 
1171     NonConstBB = PN->getIncomingBlock(i);
1172 
1173     // If the InVal is an invoke at the end of the pred block, then we can't
1174     // insert a computation after it without breaking the edge.
1175     if (isa<InvokeInst>(InVal))
1176       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1177         return nullptr;
1178 
1179     // If the incoming non-constant value is in I's block, we will remove one
1180     // instruction, but insert another equivalent one, leading to infinite
1181     // instcombine.
1182     if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1183       return nullptr;
1184   }
1185 
1186   // If there is exactly one non-constant value, we can insert a copy of the
1187   // operation in that block.  However, if this is a critical edge, we would be
1188   // inserting the computation on some other paths (e.g. inside a loop).  Only
1189   // do this if the pred block is unconditionally branching into the phi block.
1190   // Also, make sure that the pred block is not dead code.
1191   if (NonConstBB != nullptr) {
1192     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1193     if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1194       return nullptr;
1195   }
1196 
1197   // Okay, we can do the transformation: create the new PHI node.
1198   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1199   InsertNewInstBefore(NewPN, *PN);
1200   NewPN->takeName(PN);
1201 
1202   // If we are going to have to insert a new computation, do so right before the
1203   // predecessor's terminator.
1204   if (NonConstBB)
1205     Builder.SetInsertPoint(NonConstBB->getTerminator());
1206 
1207   // Next, add all of the operands to the PHI.
1208   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1209     // We only currently try to fold the condition of a select when it is a phi,
1210     // not the true/false values.
1211     Value *TrueV = SI->getTrueValue();
1212     Value *FalseV = SI->getFalseValue();
1213     BasicBlock *PhiTransBB = PN->getParent();
1214     for (unsigned i = 0; i != NumPHIValues; ++i) {
1215       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1216       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1217       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1218       Value *InV = nullptr;
1219       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1220       // even if currently isNullValue gives false.
1221       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1222       // For vector constants, we cannot use isNullValue to fold into
1223       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1224       // elements in the vector, we will incorrectly fold InC to
1225       // `TrueVInPred`.
1226       if (InC && isa<ConstantInt>(InC))
1227         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1228       else {
1229         // Generate the select in the same block as PN's current incoming block.
1230         // Note: ThisBB need not be the NonConstBB because vector constants
1231         // which are constants by definition are handled here.
1232         // FIXME: This can lead to an increase in IR generation because we might
1233         // generate selects for vector constant phi operand, that could not be
1234         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1235         // non-vector phis, this transformation was always profitable because
1236         // the select would be generated exactly once in the NonConstBB.
1237         Builder.SetInsertPoint(ThisBB->getTerminator());
1238         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1239                                    FalseVInPred, "phi.sel");
1240       }
1241       NewPN->addIncoming(InV, ThisBB);
1242     }
1243   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1244     Constant *C = cast<Constant>(I.getOperand(1));
1245     for (unsigned i = 0; i != NumPHIValues; ++i) {
1246       Value *InV = nullptr;
1247       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1248         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1249       else
1250         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1251                                 C, "phi.cmp");
1252       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1253     }
1254   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1255     for (unsigned i = 0; i != NumPHIValues; ++i) {
1256       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1257                                              Builder);
1258       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1259     }
1260   } else if (isa<FreezeInst>(&I)) {
1261     for (unsigned i = 0; i != NumPHIValues; ++i) {
1262       Value *InV;
1263       if (NonConstBB == PN->getIncomingBlock(i))
1264         InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1265       else
1266         InV = PN->getIncomingValue(i);
1267       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1268     }
1269   } else {
1270     CastInst *CI = cast<CastInst>(&I);
1271     Type *RetTy = CI->getType();
1272     for (unsigned i = 0; i != NumPHIValues; ++i) {
1273       Value *InV;
1274       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1275         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1276       else
1277         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1278                                  I.getType(), "phi.cast");
1279       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1280     }
1281   }
1282 
1283   for (User *U : make_early_inc_range(PN->users())) {
1284     Instruction *User = cast<Instruction>(U);
1285     if (User == &I) continue;
1286     replaceInstUsesWith(*User, NewPN);
1287     eraseInstFromFunction(*User);
1288   }
1289   return replaceInstUsesWith(I, NewPN);
1290 }
1291 
1292 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1293   if (!isa<Constant>(I.getOperand(1)))
1294     return nullptr;
1295 
1296   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1297     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1298       return NewSel;
1299   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1300     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1301       return NewPhi;
1302   }
1303   return nullptr;
1304 }
1305 
1306 /// Given a pointer type and a constant offset, determine whether or not there
1307 /// is a sequence of GEP indices into the pointed type that will land us at the
1308 /// specified offset. If so, fill them into NewIndices and return the resultant
1309 /// element type, otherwise return null.
1310 Type *
1311 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1312                                       SmallVectorImpl<Value *> &NewIndices) {
1313   Type *Ty = PtrTy->getElementType();
1314   if (!Ty->isSized())
1315     return nullptr;
1316 
1317   APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1318   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1319   if (!Offset.isZero())
1320     return nullptr;
1321 
1322   for (const APInt &Index : Indices)
1323     NewIndices.push_back(Builder.getInt(Index));
1324   return Ty;
1325 }
1326 
1327 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1328   // If this GEP has only 0 indices, it is the same pointer as
1329   // Src. If Src is not a trivial GEP too, don't combine
1330   // the indices.
1331   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1332       !Src.hasOneUse())
1333     return false;
1334   return true;
1335 }
1336 
1337 /// Return a value X such that Val = X * Scale, or null if none.
1338 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1339 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1340   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1341   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1342          Scale.getBitWidth() && "Scale not compatible with value!");
1343 
1344   // If Val is zero or Scale is one then Val = Val * Scale.
1345   if (match(Val, m_Zero()) || Scale == 1) {
1346     NoSignedWrap = true;
1347     return Val;
1348   }
1349 
1350   // If Scale is zero then it does not divide Val.
1351   if (Scale.isMinValue())
1352     return nullptr;
1353 
1354   // Look through chains of multiplications, searching for a constant that is
1355   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1356   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1357   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1358   // down from Val:
1359   //
1360   //     Val = M1 * X          ||   Analysis starts here and works down
1361   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1362   //      M2 =  Z * 4          \/   than one use
1363   //
1364   // Then to modify a term at the bottom:
1365   //
1366   //     Val = M1 * X
1367   //      M1 =  Z * Y          ||   Replaced M2 with Z
1368   //
1369   // Then to work back up correcting nsw flags.
1370 
1371   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1372   // Replaced with its descaled value before exiting from the drill down loop.
1373   Value *Op = Val;
1374 
1375   // Parent - initially null, but after drilling down notes where Op came from.
1376   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1377   // 0'th operand of Val.
1378   std::pair<Instruction *, unsigned> Parent;
1379 
1380   // Set if the transform requires a descaling at deeper levels that doesn't
1381   // overflow.
1382   bool RequireNoSignedWrap = false;
1383 
1384   // Log base 2 of the scale. Negative if not a power of 2.
1385   int32_t logScale = Scale.exactLogBase2();
1386 
1387   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1388     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1389       // If Op is a constant divisible by Scale then descale to the quotient.
1390       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1391       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1392       if (!Remainder.isMinValue())
1393         // Not divisible by Scale.
1394         return nullptr;
1395       // Replace with the quotient in the parent.
1396       Op = ConstantInt::get(CI->getType(), Quotient);
1397       NoSignedWrap = true;
1398       break;
1399     }
1400 
1401     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1402       if (BO->getOpcode() == Instruction::Mul) {
1403         // Multiplication.
1404         NoSignedWrap = BO->hasNoSignedWrap();
1405         if (RequireNoSignedWrap && !NoSignedWrap)
1406           return nullptr;
1407 
1408         // There are three cases for multiplication: multiplication by exactly
1409         // the scale, multiplication by a constant different to the scale, and
1410         // multiplication by something else.
1411         Value *LHS = BO->getOperand(0);
1412         Value *RHS = BO->getOperand(1);
1413 
1414         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1415           // Multiplication by a constant.
1416           if (CI->getValue() == Scale) {
1417             // Multiplication by exactly the scale, replace the multiplication
1418             // by its left-hand side in the parent.
1419             Op = LHS;
1420             break;
1421           }
1422 
1423           // Otherwise drill down into the constant.
1424           if (!Op->hasOneUse())
1425             return nullptr;
1426 
1427           Parent = std::make_pair(BO, 1);
1428           continue;
1429         }
1430 
1431         // Multiplication by something else. Drill down into the left-hand side
1432         // since that's where the reassociate pass puts the good stuff.
1433         if (!Op->hasOneUse())
1434           return nullptr;
1435 
1436         Parent = std::make_pair(BO, 0);
1437         continue;
1438       }
1439 
1440       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1441           isa<ConstantInt>(BO->getOperand(1))) {
1442         // Multiplication by a power of 2.
1443         NoSignedWrap = BO->hasNoSignedWrap();
1444         if (RequireNoSignedWrap && !NoSignedWrap)
1445           return nullptr;
1446 
1447         Value *LHS = BO->getOperand(0);
1448         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1449           getLimitedValue(Scale.getBitWidth());
1450         // Op = LHS << Amt.
1451 
1452         if (Amt == logScale) {
1453           // Multiplication by exactly the scale, replace the multiplication
1454           // by its left-hand side in the parent.
1455           Op = LHS;
1456           break;
1457         }
1458         if (Amt < logScale || !Op->hasOneUse())
1459           return nullptr;
1460 
1461         // Multiplication by more than the scale.  Reduce the multiplying amount
1462         // by the scale in the parent.
1463         Parent = std::make_pair(BO, 1);
1464         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1465         break;
1466       }
1467     }
1468 
1469     if (!Op->hasOneUse())
1470       return nullptr;
1471 
1472     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1473       if (Cast->getOpcode() == Instruction::SExt) {
1474         // Op is sign-extended from a smaller type, descale in the smaller type.
1475         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1476         APInt SmallScale = Scale.trunc(SmallSize);
1477         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1478         // descale Op as (sext Y) * Scale.  In order to have
1479         //   sext (Y * SmallScale) = (sext Y) * Scale
1480         // some conditions need to hold however: SmallScale must sign-extend to
1481         // Scale and the multiplication Y * SmallScale should not overflow.
1482         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1483           // SmallScale does not sign-extend to Scale.
1484           return nullptr;
1485         assert(SmallScale.exactLogBase2() == logScale);
1486         // Require that Y * SmallScale must not overflow.
1487         RequireNoSignedWrap = true;
1488 
1489         // Drill down through the cast.
1490         Parent = std::make_pair(Cast, 0);
1491         Scale = SmallScale;
1492         continue;
1493       }
1494 
1495       if (Cast->getOpcode() == Instruction::Trunc) {
1496         // Op is truncated from a larger type, descale in the larger type.
1497         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1498         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1499         // always holds.  However (trunc Y) * Scale may overflow even if
1500         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1501         // from this point up in the expression (see later).
1502         if (RequireNoSignedWrap)
1503           return nullptr;
1504 
1505         // Drill down through the cast.
1506         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1507         Parent = std::make_pair(Cast, 0);
1508         Scale = Scale.sext(LargeSize);
1509         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1510           logScale = -1;
1511         assert(Scale.exactLogBase2() == logScale);
1512         continue;
1513       }
1514     }
1515 
1516     // Unsupported expression, bail out.
1517     return nullptr;
1518   }
1519 
1520   // If Op is zero then Val = Op * Scale.
1521   if (match(Op, m_Zero())) {
1522     NoSignedWrap = true;
1523     return Op;
1524   }
1525 
1526   // We know that we can successfully descale, so from here on we can safely
1527   // modify the IR.  Op holds the descaled version of the deepest term in the
1528   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1529   // not to overflow.
1530 
1531   if (!Parent.first)
1532     // The expression only had one term.
1533     return Op;
1534 
1535   // Rewrite the parent using the descaled version of its operand.
1536   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1537   assert(Op != Parent.first->getOperand(Parent.second) &&
1538          "Descaling was a no-op?");
1539   replaceOperand(*Parent.first, Parent.second, Op);
1540   Worklist.push(Parent.first);
1541 
1542   // Now work back up the expression correcting nsw flags.  The logic is based
1543   // on the following observation: if X * Y is known not to overflow as a signed
1544   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1545   // then X * Z will not overflow as a signed multiplication either.  As we work
1546   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1547   // current level has strictly smaller absolute value than the original.
1548   Instruction *Ancestor = Parent.first;
1549   do {
1550     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1551       // If the multiplication wasn't nsw then we can't say anything about the
1552       // value of the descaled multiplication, and we have to clear nsw flags
1553       // from this point on up.
1554       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1555       NoSignedWrap &= OpNoSignedWrap;
1556       if (NoSignedWrap != OpNoSignedWrap) {
1557         BO->setHasNoSignedWrap(NoSignedWrap);
1558         Worklist.push(Ancestor);
1559       }
1560     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1561       // The fact that the descaled input to the trunc has smaller absolute
1562       // value than the original input doesn't tell us anything useful about
1563       // the absolute values of the truncations.
1564       NoSignedWrap = false;
1565     }
1566     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1567            "Failed to keep proper track of nsw flags while drilling down?");
1568 
1569     if (Ancestor == Val)
1570       // Got to the top, all done!
1571       return Val;
1572 
1573     // Move up one level in the expression.
1574     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1575     Ancestor = Ancestor->user_back();
1576   } while (true);
1577 }
1578 
1579 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1580   if (!isa<VectorType>(Inst.getType()))
1581     return nullptr;
1582 
1583   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1584   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1585   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1586          cast<VectorType>(Inst.getType())->getElementCount());
1587   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1588          cast<VectorType>(Inst.getType())->getElementCount());
1589 
1590   // If both operands of the binop are vector concatenations, then perform the
1591   // narrow binop on each pair of the source operands followed by concatenation
1592   // of the results.
1593   Value *L0, *L1, *R0, *R1;
1594   ArrayRef<int> Mask;
1595   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1596       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1597       LHS->hasOneUse() && RHS->hasOneUse() &&
1598       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1599       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1600     // This transform does not have the speculative execution constraint as
1601     // below because the shuffle is a concatenation. The new binops are
1602     // operating on exactly the same elements as the existing binop.
1603     // TODO: We could ease the mask requirement to allow different undef lanes,
1604     //       but that requires an analysis of the binop-with-undef output value.
1605     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1606     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1607       BO->copyIRFlags(&Inst);
1608     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1609     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1610       BO->copyIRFlags(&Inst);
1611     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1612   }
1613 
1614   // It may not be safe to reorder shuffles and things like div, urem, etc.
1615   // because we may trap when executing those ops on unknown vector elements.
1616   // See PR20059.
1617   if (!isSafeToSpeculativelyExecute(&Inst))
1618     return nullptr;
1619 
1620   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1621     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1622     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1623       BO->copyIRFlags(&Inst);
1624     return new ShuffleVectorInst(XY, M);
1625   };
1626 
1627   // If both arguments of the binary operation are shuffles that use the same
1628   // mask and shuffle within a single vector, move the shuffle after the binop.
1629   Value *V1, *V2;
1630   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1631       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1632       V1->getType() == V2->getType() &&
1633       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1634     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1635     return createBinOpShuffle(V1, V2, Mask);
1636   }
1637 
1638   // If both arguments of a commutative binop are select-shuffles that use the
1639   // same mask with commuted operands, the shuffles are unnecessary.
1640   if (Inst.isCommutative() &&
1641       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1642       match(RHS,
1643             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1644     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1645     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1646     // TODO: Allow shuffles that contain undefs in the mask?
1647     //       That is legal, but it reduces undef knowledge.
1648     // TODO: Allow arbitrary shuffles by shuffling after binop?
1649     //       That might be legal, but we have to deal with poison.
1650     if (LShuf->isSelect() &&
1651         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1652         RShuf->isSelect() &&
1653         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1654       // Example:
1655       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1656       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1657       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1658       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1659       NewBO->copyIRFlags(&Inst);
1660       return NewBO;
1661     }
1662   }
1663 
1664   // If one argument is a shuffle within one vector and the other is a constant,
1665   // try moving the shuffle after the binary operation. This canonicalization
1666   // intends to move shuffles closer to other shuffles and binops closer to
1667   // other binops, so they can be folded. It may also enable demanded elements
1668   // transforms.
1669   Constant *C;
1670   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1671   if (InstVTy &&
1672       match(&Inst,
1673             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1674                       m_ImmConstant(C))) &&
1675       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1676           InstVTy->getNumElements()) {
1677     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1678            "Shuffle should not change scalar type");
1679 
1680     // Find constant NewC that has property:
1681     //   shuffle(NewC, ShMask) = C
1682     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1683     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1684     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1685     bool ConstOp1 = isa<Constant>(RHS);
1686     ArrayRef<int> ShMask = Mask;
1687     unsigned SrcVecNumElts =
1688         cast<FixedVectorType>(V1->getType())->getNumElements();
1689     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1690     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1691     bool MayChange = true;
1692     unsigned NumElts = InstVTy->getNumElements();
1693     for (unsigned I = 0; I < NumElts; ++I) {
1694       Constant *CElt = C->getAggregateElement(I);
1695       if (ShMask[I] >= 0) {
1696         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1697         Constant *NewCElt = NewVecC[ShMask[I]];
1698         // Bail out if:
1699         // 1. The constant vector contains a constant expression.
1700         // 2. The shuffle needs an element of the constant vector that can't
1701         //    be mapped to a new constant vector.
1702         // 3. This is a widening shuffle that copies elements of V1 into the
1703         //    extended elements (extending with undef is allowed).
1704         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1705             I >= SrcVecNumElts) {
1706           MayChange = false;
1707           break;
1708         }
1709         NewVecC[ShMask[I]] = CElt;
1710       }
1711       // If this is a widening shuffle, we must be able to extend with undef
1712       // elements. If the original binop does not produce an undef in the high
1713       // lanes, then this transform is not safe.
1714       // Similarly for undef lanes due to the shuffle mask, we can only
1715       // transform binops that preserve undef.
1716       // TODO: We could shuffle those non-undef constant values into the
1717       //       result by using a constant vector (rather than an undef vector)
1718       //       as operand 1 of the new binop, but that might be too aggressive
1719       //       for target-independent shuffle creation.
1720       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1721         Constant *MaybeUndef =
1722             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1723                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1724         if (!match(MaybeUndef, m_Undef())) {
1725           MayChange = false;
1726           break;
1727         }
1728       }
1729     }
1730     if (MayChange) {
1731       Constant *NewC = ConstantVector::get(NewVecC);
1732       // It may not be safe to execute a binop on a vector with undef elements
1733       // because the entire instruction can be folded to undef or create poison
1734       // that did not exist in the original code.
1735       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1736         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1737 
1738       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1739       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1740       Value *NewLHS = ConstOp1 ? V1 : NewC;
1741       Value *NewRHS = ConstOp1 ? NewC : V1;
1742       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1743     }
1744   }
1745 
1746   // Try to reassociate to sink a splat shuffle after a binary operation.
1747   if (Inst.isAssociative() && Inst.isCommutative()) {
1748     // Canonicalize shuffle operand as LHS.
1749     if (isa<ShuffleVectorInst>(RHS))
1750       std::swap(LHS, RHS);
1751 
1752     Value *X;
1753     ArrayRef<int> MaskC;
1754     int SplatIndex;
1755     Value *Y, *OtherOp;
1756     if (!match(LHS,
1757                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1758         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1759         X->getType() != Inst.getType() ||
1760         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1761       return nullptr;
1762 
1763     // FIXME: This may not be safe if the analysis allows undef elements. By
1764     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1765     //        that it is not undef/poison at the splat index.
1766     if (isSplatValue(OtherOp, SplatIndex)) {
1767       std::swap(Y, OtherOp);
1768     } else if (!isSplatValue(Y, SplatIndex)) {
1769       return nullptr;
1770     }
1771 
1772     // X and Y are splatted values, so perform the binary operation on those
1773     // values followed by a splat followed by the 2nd binary operation:
1774     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1775     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1776     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1777     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1778     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1779 
1780     // Intersect FMF on both new binops. Other (poison-generating) flags are
1781     // dropped to be safe.
1782     if (isa<FPMathOperator>(R)) {
1783       R->copyFastMathFlags(&Inst);
1784       R->andIRFlags(RHS);
1785     }
1786     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1787       NewInstBO->copyIRFlags(R);
1788     return R;
1789   }
1790 
1791   return nullptr;
1792 }
1793 
1794 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1795 /// of a value. This requires a potentially expensive known bits check to make
1796 /// sure the narrow op does not overflow.
1797 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1798   // We need at least one extended operand.
1799   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1800 
1801   // If this is a sub, we swap the operands since we always want an extension
1802   // on the RHS. The LHS can be an extension or a constant.
1803   if (BO.getOpcode() == Instruction::Sub)
1804     std::swap(Op0, Op1);
1805 
1806   Value *X;
1807   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1808   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1809     return nullptr;
1810 
1811   // If both operands are the same extension from the same source type and we
1812   // can eliminate at least one (hasOneUse), this might work.
1813   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1814   Value *Y;
1815   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1816         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1817         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1818     // If that did not match, see if we have a suitable constant operand.
1819     // Truncating and extending must produce the same constant.
1820     Constant *WideC;
1821     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1822       return nullptr;
1823     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1824     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1825       return nullptr;
1826     Y = NarrowC;
1827   }
1828 
1829   // Swap back now that we found our operands.
1830   if (BO.getOpcode() == Instruction::Sub)
1831     std::swap(X, Y);
1832 
1833   // Both operands have narrow versions. Last step: the math must not overflow
1834   // in the narrow width.
1835   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1836     return nullptr;
1837 
1838   // bo (ext X), (ext Y) --> ext (bo X, Y)
1839   // bo (ext X), C       --> ext (bo X, C')
1840   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1841   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1842     if (IsSext)
1843       NewBinOp->setHasNoSignedWrap();
1844     else
1845       NewBinOp->setHasNoUnsignedWrap();
1846   }
1847   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1848 }
1849 
1850 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1851   // At least one GEP must be inbounds.
1852   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1853     return false;
1854 
1855   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1856          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1857 }
1858 
1859 /// Thread a GEP operation with constant indices through the constant true/false
1860 /// arms of a select.
1861 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1862                                   InstCombiner::BuilderTy &Builder) {
1863   if (!GEP.hasAllConstantIndices())
1864     return nullptr;
1865 
1866   Instruction *Sel;
1867   Value *Cond;
1868   Constant *TrueC, *FalseC;
1869   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1870       !match(Sel,
1871              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1872     return nullptr;
1873 
1874   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1875   // Propagate 'inbounds' and metadata from existing instructions.
1876   // Note: using IRBuilder to create the constants for efficiency.
1877   SmallVector<Value *, 4> IndexC(GEP.indices());
1878   bool IsInBounds = GEP.isInBounds();
1879   Type *Ty = GEP.getSourceElementType();
1880   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1881                                : Builder.CreateGEP(Ty, TrueC, IndexC);
1882   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1883                                 : Builder.CreateGEP(Ty, FalseC, IndexC);
1884   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1885 }
1886 
1887 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1888   SmallVector<Value *, 8> Ops(GEP.operands());
1889   Type *GEPType = GEP.getType();
1890   Type *GEPEltType = GEP.getSourceElementType();
1891   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1892   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(),
1893                                  SQ.getWithInstruction(&GEP)))
1894     return replaceInstUsesWith(GEP, V);
1895 
1896   // For vector geps, use the generic demanded vector support.
1897   // Skip if GEP return type is scalable. The number of elements is unknown at
1898   // compile-time.
1899   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1900     auto VWidth = GEPFVTy->getNumElements();
1901     APInt UndefElts(VWidth, 0);
1902     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1903     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1904                                               UndefElts)) {
1905       if (V != &GEP)
1906         return replaceInstUsesWith(GEP, V);
1907       return &GEP;
1908     }
1909 
1910     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1911     // possible (decide on canonical form for pointer broadcast), 3) exploit
1912     // undef elements to decrease demanded bits
1913   }
1914 
1915   Value *PtrOp = GEP.getOperand(0);
1916 
1917   // Eliminate unneeded casts for indices, and replace indices which displace
1918   // by multiples of a zero size type with zero.
1919   bool MadeChange = false;
1920 
1921   // Index width may not be the same width as pointer width.
1922   // Data layout chooses the right type based on supported integer types.
1923   Type *NewScalarIndexTy =
1924       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1925 
1926   gep_type_iterator GTI = gep_type_begin(GEP);
1927   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1928        ++I, ++GTI) {
1929     // Skip indices into struct types.
1930     if (GTI.isStruct())
1931       continue;
1932 
1933     Type *IndexTy = (*I)->getType();
1934     Type *NewIndexType =
1935         IndexTy->isVectorTy()
1936             ? VectorType::get(NewScalarIndexTy,
1937                               cast<VectorType>(IndexTy)->getElementCount())
1938             : NewScalarIndexTy;
1939 
1940     // If the element type has zero size then any index over it is equivalent
1941     // to an index of zero, so replace it with zero if it is not zero already.
1942     Type *EltTy = GTI.getIndexedType();
1943     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1944       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1945         *I = Constant::getNullValue(NewIndexType);
1946         MadeChange = true;
1947       }
1948 
1949     if (IndexTy != NewIndexType) {
1950       // If we are using a wider index than needed for this platform, shrink
1951       // it to what we need.  If narrower, sign-extend it to what we need.
1952       // This explicit cast can make subsequent optimizations more obvious.
1953       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1954       MadeChange = true;
1955     }
1956   }
1957   if (MadeChange)
1958     return &GEP;
1959 
1960   // Check to see if the inputs to the PHI node are getelementptr instructions.
1961   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1962     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1963     if (!Op1)
1964       return nullptr;
1965 
1966     // Don't fold a GEP into itself through a PHI node. This can only happen
1967     // through the back-edge of a loop. Folding a GEP into itself means that
1968     // the value of the previous iteration needs to be stored in the meantime,
1969     // thus requiring an additional register variable to be live, but not
1970     // actually achieving anything (the GEP still needs to be executed once per
1971     // loop iteration).
1972     if (Op1 == &GEP)
1973       return nullptr;
1974 
1975     int DI = -1;
1976 
1977     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1978       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1979       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1980         return nullptr;
1981 
1982       // As for Op1 above, don't try to fold a GEP into itself.
1983       if (Op2 == &GEP)
1984         return nullptr;
1985 
1986       // Keep track of the type as we walk the GEP.
1987       Type *CurTy = nullptr;
1988 
1989       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1990         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1991           return nullptr;
1992 
1993         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1994           if (DI == -1) {
1995             // We have not seen any differences yet in the GEPs feeding the
1996             // PHI yet, so we record this one if it is allowed to be a
1997             // variable.
1998 
1999             // The first two arguments can vary for any GEP, the rest have to be
2000             // static for struct slots
2001             if (J > 1) {
2002               assert(CurTy && "No current type?");
2003               if (CurTy->isStructTy())
2004                 return nullptr;
2005             }
2006 
2007             DI = J;
2008           } else {
2009             // The GEP is different by more than one input. While this could be
2010             // extended to support GEPs that vary by more than one variable it
2011             // doesn't make sense since it greatly increases the complexity and
2012             // would result in an R+R+R addressing mode which no backend
2013             // directly supports and would need to be broken into several
2014             // simpler instructions anyway.
2015             return nullptr;
2016           }
2017         }
2018 
2019         // Sink down a layer of the type for the next iteration.
2020         if (J > 0) {
2021           if (J == 1) {
2022             CurTy = Op1->getSourceElementType();
2023           } else {
2024             CurTy =
2025                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2026           }
2027         }
2028       }
2029     }
2030 
2031     // If not all GEPs are identical we'll have to create a new PHI node.
2032     // Check that the old PHI node has only one use so that it will get
2033     // removed.
2034     if (DI != -1 && !PN->hasOneUse())
2035       return nullptr;
2036 
2037     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2038     if (DI == -1) {
2039       // All the GEPs feeding the PHI are identical. Clone one down into our
2040       // BB so that it can be merged with the current GEP.
2041     } else {
2042       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2043       // into the current block so it can be merged, and create a new PHI to
2044       // set that index.
2045       PHINode *NewPN;
2046       {
2047         IRBuilderBase::InsertPointGuard Guard(Builder);
2048         Builder.SetInsertPoint(PN);
2049         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2050                                   PN->getNumOperands());
2051       }
2052 
2053       for (auto &I : PN->operands())
2054         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2055                            PN->getIncomingBlock(I));
2056 
2057       NewGEP->setOperand(DI, NewPN);
2058     }
2059 
2060     GEP.getParent()->getInstList().insert(
2061         GEP.getParent()->getFirstInsertionPt(), NewGEP);
2062     replaceOperand(GEP, 0, NewGEP);
2063     PtrOp = NewGEP;
2064   }
2065 
2066   // Combine Indices - If the source pointer to this getelementptr instruction
2067   // is a getelementptr instruction, combine the indices of the two
2068   // getelementptr instructions into a single instruction.
2069   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2070     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2071       return nullptr;
2072 
2073     if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2074         Src->hasOneUse()) {
2075       Value *GO1 = GEP.getOperand(1);
2076       Value *SO1 = Src->getOperand(1);
2077 
2078       if (LI) {
2079         // Try to reassociate loop invariant GEP chains to enable LICM.
2080         if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2081           // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2082           // invariant: this breaks the dependence between GEPs and allows LICM
2083           // to hoist the invariant part out of the loop.
2084           if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2085             // We have to be careful here.
2086             // We have something like:
2087             //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2088             //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2089             // If we just swap idx & idx2 then we could inadvertantly
2090             // change %src from a vector to a scalar, or vice versa.
2091             // Cases:
2092             //  1) %base a scalar & idx a scalar & idx2 a vector
2093             //      => Swapping idx & idx2 turns %src into a vector type.
2094             //  2) %base a scalar & idx a vector & idx2 a scalar
2095             //      => Swapping idx & idx2 turns %src in a scalar type
2096             //  3) %base, %idx, and %idx2 are scalars
2097             //      => %src & %gep are scalars
2098             //      => swapping idx & idx2 is safe
2099             //  4) %base a vector
2100             //      => %src is a vector
2101             //      => swapping idx & idx2 is safe.
2102             auto *SO0 = Src->getOperand(0);
2103             auto *SO0Ty = SO0->getType();
2104             if (!isa<VectorType>(GEPType) || // case 3
2105                 isa<VectorType>(SO0Ty)) {    // case 4
2106               Src->setOperand(1, GO1);
2107               GEP.setOperand(1, SO1);
2108               return &GEP;
2109             } else {
2110               // Case 1 or 2
2111               // -- have to recreate %src & %gep
2112               // put NewSrc at same location as %src
2113               Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2114               Value *NewSrc =
2115                   Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName());
2116               // Propagate 'inbounds' if the new source was not constant-folded.
2117               if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2118                 NewSrcGEPI->setIsInBounds(Src->isInBounds());
2119               GetElementPtrInst *NewGEP =
2120                   GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2121               NewGEP->setIsInBounds(GEP.isInBounds());
2122               return NewGEP;
2123             }
2124           }
2125         }
2126       }
2127     }
2128 
2129     // Note that if our source is a gep chain itself then we wait for that
2130     // chain to be resolved before we perform this transformation.  This
2131     // avoids us creating a TON of code in some cases.
2132     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2133       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2134         return nullptr;   // Wait until our source is folded to completion.
2135 
2136     SmallVector<Value*, 8> Indices;
2137 
2138     // Find out whether the last index in the source GEP is a sequential idx.
2139     bool EndsWithSequential = false;
2140     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2141          I != E; ++I)
2142       EndsWithSequential = I.isSequential();
2143 
2144     // Can we combine the two pointer arithmetics offsets?
2145     if (EndsWithSequential) {
2146       // Replace: gep (gep %P, long B), long A, ...
2147       // With:    T = long A+B; gep %P, T, ...
2148       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2149       Value *GO1 = GEP.getOperand(1);
2150 
2151       // If they aren't the same type, then the input hasn't been processed
2152       // by the loop above yet (which canonicalizes sequential index types to
2153       // intptr_t).  Just avoid transforming this until the input has been
2154       // normalized.
2155       if (SO1->getType() != GO1->getType())
2156         return nullptr;
2157 
2158       Value *Sum =
2159           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2160       // Only do the combine when we are sure the cost after the
2161       // merge is never more than that before the merge.
2162       if (Sum == nullptr)
2163         return nullptr;
2164 
2165       // Update the GEP in place if possible.
2166       if (Src->getNumOperands() == 2) {
2167         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2168         replaceOperand(GEP, 0, Src->getOperand(0));
2169         replaceOperand(GEP, 1, Sum);
2170         return &GEP;
2171       }
2172       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2173       Indices.push_back(Sum);
2174       Indices.append(GEP.op_begin()+2, GEP.op_end());
2175     } else if (isa<Constant>(*GEP.idx_begin()) &&
2176                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2177                Src->getNumOperands() != 1) {
2178       // Otherwise we can do the fold if the first index of the GEP is a zero
2179       Indices.append(Src->op_begin()+1, Src->op_end());
2180       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2181     }
2182 
2183     if (!Indices.empty())
2184       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2185                  ? GetElementPtrInst::CreateInBounds(
2186                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2187                        GEP.getName())
2188                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2189                                              Src->getOperand(0), Indices,
2190                                              GEP.getName());
2191   }
2192 
2193   // Skip if GEP source element type is scalable. The type alloc size is unknown
2194   // at compile-time.
2195   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2196     unsigned AS = GEP.getPointerAddressSpace();
2197     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2198         DL.getIndexSizeInBits(AS)) {
2199       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2200 
2201       bool Matched = false;
2202       uint64_t C;
2203       Value *V = nullptr;
2204       if (TyAllocSize == 1) {
2205         V = GEP.getOperand(1);
2206         Matched = true;
2207       } else if (match(GEP.getOperand(1),
2208                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2209         if (TyAllocSize == 1ULL << C)
2210           Matched = true;
2211       } else if (match(GEP.getOperand(1),
2212                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2213         if (TyAllocSize == C)
2214           Matched = true;
2215       }
2216 
2217       // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2218       // only if both point to the same underlying object (otherwise provenance
2219       // is not necessarily retained).
2220       Value *Y;
2221       Value *X = GEP.getOperand(0);
2222       if (Matched &&
2223           match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2224           getUnderlyingObject(X) == getUnderlyingObject(Y))
2225         return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2226     }
2227   }
2228 
2229   // We do not handle pointer-vector geps here.
2230   if (GEPType->isVectorTy())
2231     return nullptr;
2232 
2233   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2234   Value *StrippedPtr = PtrOp->stripPointerCasts();
2235   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2236 
2237   if (StrippedPtr != PtrOp) {
2238     bool HasZeroPointerIndex = false;
2239     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2240 
2241     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2242       HasZeroPointerIndex = C->isZero();
2243 
2244     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2245     // into     : GEP [10 x i8]* X, i32 0, ...
2246     //
2247     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2248     //           into     : GEP i8* X, ...
2249     //
2250     // This occurs when the program declares an array extern like "int X[];"
2251     if (HasZeroPointerIndex) {
2252       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2253         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2254         if (CATy->getElementType() == StrippedPtrEltTy) {
2255           // -> GEP i8* X, ...
2256           SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2257           GetElementPtrInst *Res = GetElementPtrInst::Create(
2258               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2259           Res->setIsInBounds(GEP.isInBounds());
2260           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2261             return Res;
2262           // Insert Res, and create an addrspacecast.
2263           // e.g.,
2264           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2265           // ->
2266           // %0 = GEP i8 addrspace(1)* X, ...
2267           // addrspacecast i8 addrspace(1)* %0 to i8*
2268           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2269         }
2270 
2271         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2272           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2273           if (CATy->getElementType() == XATy->getElementType()) {
2274             // -> GEP [10 x i8]* X, i32 0, ...
2275             // At this point, we know that the cast source type is a pointer
2276             // to an array of the same type as the destination pointer
2277             // array.  Because the array type is never stepped over (there
2278             // is a leading zero) we can fold the cast into this GEP.
2279             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2280               GEP.setSourceElementType(XATy);
2281               return replaceOperand(GEP, 0, StrippedPtr);
2282             }
2283             // Cannot replace the base pointer directly because StrippedPtr's
2284             // address space is different. Instead, create a new GEP followed by
2285             // an addrspacecast.
2286             // e.g.,
2287             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2288             //   i32 0, ...
2289             // ->
2290             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2291             // addrspacecast i8 addrspace(1)* %0 to i8*
2292             SmallVector<Value *, 8> Idx(GEP.indices());
2293             Value *NewGEP =
2294                 GEP.isInBounds()
2295                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2296                                                 Idx, GEP.getName())
2297                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2298                                         GEP.getName());
2299             return new AddrSpaceCastInst(NewGEP, GEPType);
2300           }
2301         }
2302       }
2303     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2304       // Skip if GEP source element type is scalable. The type alloc size is
2305       // unknown at compile-time.
2306       // Transform things like: %t = getelementptr i32*
2307       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2308       // x i32]* %str, i32 0, i32 %V; bitcast
2309       if (StrippedPtrEltTy->isArrayTy() &&
2310           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2311               DL.getTypeAllocSize(GEPEltType)) {
2312         Type *IdxType = DL.getIndexType(GEPType);
2313         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2314         Value *NewGEP =
2315             GEP.isInBounds()
2316                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2317                                             GEP.getName())
2318                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2319                                     GEP.getName());
2320 
2321         // V and GEP are both pointer types --> BitCast
2322         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2323       }
2324 
2325       // Transform things like:
2326       // %V = mul i64 %N, 4
2327       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2328       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2329       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2330         // Check that changing the type amounts to dividing the index by a scale
2331         // factor.
2332         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2333         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2334         if (ResSize && SrcSize % ResSize == 0) {
2335           Value *Idx = GEP.getOperand(1);
2336           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2337           uint64_t Scale = SrcSize / ResSize;
2338 
2339           // Earlier transforms ensure that the index has the right type
2340           // according to Data Layout, which considerably simplifies the
2341           // logic by eliminating implicit casts.
2342           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2343                  "Index type does not match the Data Layout preferences");
2344 
2345           bool NSW;
2346           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2347             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2348             // If the multiplication NewIdx * Scale may overflow then the new
2349             // GEP may not be "inbounds".
2350             Value *NewGEP =
2351                 GEP.isInBounds() && NSW
2352                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2353                                                 NewIdx, GEP.getName())
2354                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2355                                         GEP.getName());
2356 
2357             // The NewGEP must be pointer typed, so must the old one -> BitCast
2358             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2359                                                                  GEPType);
2360           }
2361         }
2362       }
2363 
2364       // Similarly, transform things like:
2365       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2366       //   (where tmp = 8*tmp2) into:
2367       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2368       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2369           StrippedPtrEltTy->isArrayTy()) {
2370         // Check that changing to the array element type amounts to dividing the
2371         // index by a scale factor.
2372         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2373         uint64_t ArrayEltSize =
2374             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2375                 .getFixedSize();
2376         if (ResSize && ArrayEltSize % ResSize == 0) {
2377           Value *Idx = GEP.getOperand(1);
2378           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2379           uint64_t Scale = ArrayEltSize / ResSize;
2380 
2381           // Earlier transforms ensure that the index has the right type
2382           // according to the Data Layout, which considerably simplifies
2383           // the logic by eliminating implicit casts.
2384           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2385                  "Index type does not match the Data Layout preferences");
2386 
2387           bool NSW;
2388           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2389             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2390             // If the multiplication NewIdx * Scale may overflow then the new
2391             // GEP may not be "inbounds".
2392             Type *IndTy = DL.getIndexType(GEPType);
2393             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2394 
2395             Value *NewGEP =
2396                 GEP.isInBounds() && NSW
2397                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2398                                                 Off, GEP.getName())
2399                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2400                                         GEP.getName());
2401             // The NewGEP must be pointer typed, so must the old one -> BitCast
2402             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2403                                                                  GEPType);
2404           }
2405         }
2406       }
2407     }
2408   }
2409 
2410   // addrspacecast between types is canonicalized as a bitcast, then an
2411   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2412   // through the addrspacecast.
2413   Value *ASCStrippedPtrOp = PtrOp;
2414   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2415     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2416     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2417     //   Z = gep Y, <...constant indices...>
2418     // Into an addrspacecasted GEP of the struct.
2419     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2420       ASCStrippedPtrOp = BC;
2421   }
2422 
2423   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2424     Value *SrcOp = BCI->getOperand(0);
2425     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2426     Type *SrcEltType = SrcType->getElementType();
2427 
2428     // GEP directly using the source operand if this GEP is accessing an element
2429     // of a bitcasted pointer to vector or array of the same dimensions:
2430     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2431     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2432     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2433                                           const DataLayout &DL) {
2434       auto *VecVTy = cast<FixedVectorType>(VecTy);
2435       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2436              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2437              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2438     };
2439     if (GEP.getNumOperands() == 3 &&
2440         ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2441           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2442          (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2443           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2444 
2445       // Create a new GEP here, as using `setOperand()` followed by
2446       // `setSourceElementType()` won't actually update the type of the
2447       // existing GEP Value. Causing issues if this Value is accessed when
2448       // constructing an AddrSpaceCastInst
2449       Value *NGEP =
2450           GEP.isInBounds()
2451               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2452               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2453       NGEP->takeName(&GEP);
2454 
2455       // Preserve GEP address space to satisfy users
2456       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2457         return new AddrSpaceCastInst(NGEP, GEPType);
2458 
2459       return replaceInstUsesWith(GEP, NGEP);
2460     }
2461 
2462     // See if we can simplify:
2463     //   X = bitcast A* to B*
2464     //   Y = gep X, <...constant indices...>
2465     // into a gep of the original struct. This is important for SROA and alias
2466     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2467     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2468     APInt Offset(OffsetBits, 0);
2469 
2470     // If the bitcast argument is an allocation, The bitcast is for convertion
2471     // to actual type of allocation. Removing such bitcasts, results in having
2472     // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2473     // struct or array hierarchy.
2474     // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2475     // a better chance to succeed.
2476     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2477         !isAllocationFn(SrcOp, &TLI)) {
2478       // If this GEP instruction doesn't move the pointer, just replace the GEP
2479       // with a bitcast of the real input to the dest type.
2480       if (!Offset) {
2481         // If the bitcast is of an allocation, and the allocation will be
2482         // converted to match the type of the cast, don't touch this.
2483         if (isa<AllocaInst>(SrcOp)) {
2484           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2485           if (Instruction *I = visitBitCast(*BCI)) {
2486             if (I != BCI) {
2487               I->takeName(BCI);
2488               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2489               replaceInstUsesWith(*BCI, I);
2490             }
2491             return &GEP;
2492           }
2493         }
2494 
2495         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2496           return new AddrSpaceCastInst(SrcOp, GEPType);
2497         return new BitCastInst(SrcOp, GEPType);
2498       }
2499 
2500       // Otherwise, if the offset is non-zero, we need to find out if there is a
2501       // field at Offset in 'A's type.  If so, we can pull the cast through the
2502       // GEP.
2503       SmallVector<Value*, 8> NewIndices;
2504       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2505         Value *NGEP =
2506             GEP.isInBounds()
2507                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2508                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2509 
2510         if (NGEP->getType() == GEPType)
2511           return replaceInstUsesWith(GEP, NGEP);
2512         NGEP->takeName(&GEP);
2513 
2514         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2515           return new AddrSpaceCastInst(NGEP, GEPType);
2516         return new BitCastInst(NGEP, GEPType);
2517       }
2518     }
2519   }
2520 
2521   if (!GEP.isInBounds()) {
2522     unsigned IdxWidth =
2523         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2524     APInt BasePtrOffset(IdxWidth, 0);
2525     Value *UnderlyingPtrOp =
2526             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2527                                                              BasePtrOffset);
2528     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2529       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2530           BasePtrOffset.isNonNegative()) {
2531         APInt AllocSize(
2532             IdxWidth,
2533             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2534         if (BasePtrOffset.ule(AllocSize)) {
2535           return GetElementPtrInst::CreateInBounds(
2536               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2537               GEP.getName());
2538         }
2539       }
2540     }
2541   }
2542 
2543   if (Instruction *R = foldSelectGEP(GEP, Builder))
2544     return R;
2545 
2546   return nullptr;
2547 }
2548 
2549 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2550                                          Instruction *AI) {
2551   if (isa<ConstantPointerNull>(V))
2552     return true;
2553   if (auto *LI = dyn_cast<LoadInst>(V))
2554     return isa<GlobalVariable>(LI->getPointerOperand());
2555   // Two distinct allocations will never be equal.
2556   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2557   // through bitcasts of V can cause
2558   // the result statement below to be true, even when AI and V (ex:
2559   // i8* ->i32* ->i8* of AI) are the same allocations.
2560   return isAllocLikeFn(V, &TLI) && V != AI;
2561 }
2562 
2563 /// Given a call CB which uses an address UsedV, return true if we can prove the
2564 /// call's only possible effect is storing to V.
2565 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2566                              const TargetLibraryInfo &TLI) {
2567   if (!CB.use_empty())
2568     // TODO: add recursion if returned attribute is present
2569     return false;
2570 
2571   if (CB.isTerminator())
2572     // TODO: remove implementation restriction
2573     return false;
2574 
2575   if (!CB.willReturn() || !CB.doesNotThrow())
2576     return false;
2577 
2578   // If the only possible side effect of the call is writing to the alloca,
2579   // and the result isn't used, we can safely remove any reads implied by the
2580   // call including those which might read the alloca itself.
2581   Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2582   return Dest && Dest->Ptr == UsedV;
2583 }
2584 
2585 static bool isAllocSiteRemovable(Instruction *AI,
2586                                  SmallVectorImpl<WeakTrackingVH> &Users,
2587                                  const TargetLibraryInfo &TLI) {
2588   SmallVector<Instruction*, 4> Worklist;
2589   Worklist.push_back(AI);
2590 
2591   do {
2592     Instruction *PI = Worklist.pop_back_val();
2593     for (User *U : PI->users()) {
2594       Instruction *I = cast<Instruction>(U);
2595       switch (I->getOpcode()) {
2596       default:
2597         // Give up the moment we see something we can't handle.
2598         return false;
2599 
2600       case Instruction::AddrSpaceCast:
2601       case Instruction::BitCast:
2602       case Instruction::GetElementPtr:
2603         Users.emplace_back(I);
2604         Worklist.push_back(I);
2605         continue;
2606 
2607       case Instruction::ICmp: {
2608         ICmpInst *ICI = cast<ICmpInst>(I);
2609         // We can fold eq/ne comparisons with null to false/true, respectively.
2610         // We also fold comparisons in some conditions provided the alloc has
2611         // not escaped (see isNeverEqualToUnescapedAlloc).
2612         if (!ICI->isEquality())
2613           return false;
2614         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2615         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2616           return false;
2617         Users.emplace_back(I);
2618         continue;
2619       }
2620 
2621       case Instruction::Call:
2622         // Ignore no-op and store intrinsics.
2623         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2624           switch (II->getIntrinsicID()) {
2625           default:
2626             return false;
2627 
2628           case Intrinsic::memmove:
2629           case Intrinsic::memcpy:
2630           case Intrinsic::memset: {
2631             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2632             if (MI->isVolatile() || MI->getRawDest() != PI)
2633               return false;
2634             LLVM_FALLTHROUGH;
2635           }
2636           case Intrinsic::assume:
2637           case Intrinsic::invariant_start:
2638           case Intrinsic::invariant_end:
2639           case Intrinsic::lifetime_start:
2640           case Intrinsic::lifetime_end:
2641           case Intrinsic::objectsize:
2642             Users.emplace_back(I);
2643             continue;
2644           case Intrinsic::launder_invariant_group:
2645           case Intrinsic::strip_invariant_group:
2646             Users.emplace_back(I);
2647             Worklist.push_back(I);
2648             continue;
2649           }
2650         }
2651 
2652         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2653           Users.emplace_back(I);
2654           continue;
2655         }
2656 
2657         if (isFreeCall(I, &TLI)) {
2658           Users.emplace_back(I);
2659           continue;
2660         }
2661 
2662         if (isReallocLikeFn(I, &TLI, true)) {
2663           Users.emplace_back(I);
2664           Worklist.push_back(I);
2665           continue;
2666         }
2667 
2668         return false;
2669 
2670       case Instruction::Store: {
2671         StoreInst *SI = cast<StoreInst>(I);
2672         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2673           return false;
2674         Users.emplace_back(I);
2675         continue;
2676       }
2677       }
2678       llvm_unreachable("missing a return?");
2679     }
2680   } while (!Worklist.empty());
2681   return true;
2682 }
2683 
2684 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2685   // If we have a malloc call which is only used in any amount of comparisons to
2686   // null and free calls, delete the calls and replace the comparisons with true
2687   // or false as appropriate.
2688 
2689   // This is based on the principle that we can substitute our own allocation
2690   // function (which will never return null) rather than knowledge of the
2691   // specific function being called. In some sense this can change the permitted
2692   // outputs of a program (when we convert a malloc to an alloca, the fact that
2693   // the allocation is now on the stack is potentially visible, for example),
2694   // but we believe in a permissible manner.
2695   SmallVector<WeakTrackingVH, 64> Users;
2696 
2697   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2698   // before each store.
2699   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2700   std::unique_ptr<DIBuilder> DIB;
2701   if (isa<AllocaInst>(MI)) {
2702     findDbgUsers(DVIs, &MI);
2703     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2704   }
2705 
2706   if (isAllocSiteRemovable(&MI, Users, TLI)) {
2707     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2708       // Lowering all @llvm.objectsize calls first because they may
2709       // use a bitcast/GEP of the alloca we are removing.
2710       if (!Users[i])
2711        continue;
2712 
2713       Instruction *I = cast<Instruction>(&*Users[i]);
2714 
2715       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2716         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2717           Value *Result =
2718               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2719           replaceInstUsesWith(*I, Result);
2720           eraseInstFromFunction(*I);
2721           Users[i] = nullptr; // Skip examining in the next loop.
2722         }
2723       }
2724     }
2725     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2726       if (!Users[i])
2727         continue;
2728 
2729       Instruction *I = cast<Instruction>(&*Users[i]);
2730 
2731       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2732         replaceInstUsesWith(*C,
2733                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2734                                              C->isFalseWhenEqual()));
2735       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2736         for (auto *DVI : DVIs)
2737           if (DVI->isAddressOfVariable())
2738             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2739       } else {
2740         // Casts, GEP, or anything else: we're about to delete this instruction,
2741         // so it can not have any valid uses.
2742         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2743       }
2744       eraseInstFromFunction(*I);
2745     }
2746 
2747     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2748       // Replace invoke with a NOP intrinsic to maintain the original CFG
2749       Module *M = II->getModule();
2750       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2751       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2752                          None, "", II->getParent());
2753     }
2754 
2755     // Remove debug intrinsics which describe the value contained within the
2756     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2757     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2758     //
2759     // ```
2760     //   define void @foo(i32 %0) {
2761     //     %a = alloca i32                              ; Deleted.
2762     //     store i32 %0, i32* %a
2763     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2764     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2765     //     call void @trivially_inlinable_no_op(i32* %a)
2766     //     ret void
2767     //  }
2768     // ```
2769     //
2770     // This may not be required if we stop describing the contents of allocas
2771     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2772     // the LowerDbgDeclare utility.
2773     //
2774     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2775     // "arg0" dbg.value may be stale after the call. However, failing to remove
2776     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2777     for (auto *DVI : DVIs)
2778       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2779         DVI->eraseFromParent();
2780 
2781     return eraseInstFromFunction(MI);
2782   }
2783   return nullptr;
2784 }
2785 
2786 /// Move the call to free before a NULL test.
2787 ///
2788 /// Check if this free is accessed after its argument has been test
2789 /// against NULL (property 0).
2790 /// If yes, it is legal to move this call in its predecessor block.
2791 ///
2792 /// The move is performed only if the block containing the call to free
2793 /// will be removed, i.e.:
2794 /// 1. it has only one predecessor P, and P has two successors
2795 /// 2. it contains the call, noops, and an unconditional branch
2796 /// 3. its successor is the same as its predecessor's successor
2797 ///
2798 /// The profitability is out-of concern here and this function should
2799 /// be called only if the caller knows this transformation would be
2800 /// profitable (e.g., for code size).
2801 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2802                                                 const DataLayout &DL) {
2803   Value *Op = FI.getArgOperand(0);
2804   BasicBlock *FreeInstrBB = FI.getParent();
2805   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2806 
2807   // Validate part of constraint #1: Only one predecessor
2808   // FIXME: We can extend the number of predecessor, but in that case, we
2809   //        would duplicate the call to free in each predecessor and it may
2810   //        not be profitable even for code size.
2811   if (!PredBB)
2812     return nullptr;
2813 
2814   // Validate constraint #2: Does this block contains only the call to
2815   //                         free, noops, and an unconditional branch?
2816   BasicBlock *SuccBB;
2817   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2818   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2819     return nullptr;
2820 
2821   // If there are only 2 instructions in the block, at this point,
2822   // this is the call to free and unconditional.
2823   // If there are more than 2 instructions, check that they are noops
2824   // i.e., they won't hurt the performance of the generated code.
2825   if (FreeInstrBB->size() != 2) {
2826     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2827       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2828         continue;
2829       auto *Cast = dyn_cast<CastInst>(&Inst);
2830       if (!Cast || !Cast->isNoopCast(DL))
2831         return nullptr;
2832     }
2833   }
2834   // Validate the rest of constraint #1 by matching on the pred branch.
2835   Instruction *TI = PredBB->getTerminator();
2836   BasicBlock *TrueBB, *FalseBB;
2837   ICmpInst::Predicate Pred;
2838   if (!match(TI, m_Br(m_ICmp(Pred,
2839                              m_CombineOr(m_Specific(Op),
2840                                          m_Specific(Op->stripPointerCasts())),
2841                              m_Zero()),
2842                       TrueBB, FalseBB)))
2843     return nullptr;
2844   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2845     return nullptr;
2846 
2847   // Validate constraint #3: Ensure the null case just falls through.
2848   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2849     return nullptr;
2850   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2851          "Broken CFG: missing edge from predecessor to successor");
2852 
2853   // At this point, we know that everything in FreeInstrBB can be moved
2854   // before TI.
2855   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2856     if (&Instr == FreeInstrBBTerminator)
2857       break;
2858     Instr.moveBefore(TI);
2859   }
2860   assert(FreeInstrBB->size() == 1 &&
2861          "Only the branch instruction should remain");
2862 
2863   // Now that we've moved the call to free before the NULL check, we have to
2864   // remove any attributes on its parameter that imply it's non-null, because
2865   // those attributes might have only been valid because of the NULL check, and
2866   // we can get miscompiles if we keep them. This is conservative if non-null is
2867   // also implied by something other than the NULL check, but it's guaranteed to
2868   // be correct, and the conservativeness won't matter in practice, since the
2869   // attributes are irrelevant for the call to free itself and the pointer
2870   // shouldn't be used after the call.
2871   AttributeList Attrs = FI.getAttributes();
2872   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
2873   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
2874   if (Dereferenceable.isValid()) {
2875     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
2876     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
2877                                        Attribute::Dereferenceable);
2878     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
2879   }
2880   FI.setAttributes(Attrs);
2881 
2882   return &FI;
2883 }
2884 
2885 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2886   Value *Op = FI.getArgOperand(0);
2887 
2888   // free undef -> unreachable.
2889   if (isa<UndefValue>(Op)) {
2890     // Leave a marker since we can't modify the CFG here.
2891     CreateNonTerminatorUnreachable(&FI);
2892     return eraseInstFromFunction(FI);
2893   }
2894 
2895   // If we have 'free null' delete the instruction.  This can happen in stl code
2896   // when lots of inlining happens.
2897   if (isa<ConstantPointerNull>(Op))
2898     return eraseInstFromFunction(FI);
2899 
2900   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2901   // realloc() entirely.
2902   if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2903     if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) {
2904       return eraseInstFromFunction(
2905           *replaceInstUsesWith(*CI, CI->getOperand(0)));
2906     }
2907   }
2908 
2909   // If we optimize for code size, try to move the call to free before the null
2910   // test so that simplify cfg can remove the empty block and dead code
2911   // elimination the branch. I.e., helps to turn something like:
2912   // if (foo) free(foo);
2913   // into
2914   // free(foo);
2915   //
2916   // Note that we can only do this for 'free' and not for any flavor of
2917   // 'operator delete'; there is no 'operator delete' symbol for which we are
2918   // permitted to invent a call, even if we're passing in a null pointer.
2919   if (MinimizeSize) {
2920     LibFunc Func;
2921     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2922       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2923         return I;
2924   }
2925 
2926   return nullptr;
2927 }
2928 
2929 static bool isMustTailCall(Value *V) {
2930   if (auto *CI = dyn_cast<CallInst>(V))
2931     return CI->isMustTailCall();
2932   return false;
2933 }
2934 
2935 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2936   if (RI.getNumOperands() == 0) // ret void
2937     return nullptr;
2938 
2939   Value *ResultOp = RI.getOperand(0);
2940   Type *VTy = ResultOp->getType();
2941   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2942     return nullptr;
2943 
2944   // Don't replace result of musttail calls.
2945   if (isMustTailCall(ResultOp))
2946     return nullptr;
2947 
2948   // There might be assume intrinsics dominating this return that completely
2949   // determine the value. If so, constant fold it.
2950   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2951   if (Known.isConstant())
2952     return replaceOperand(RI, 0,
2953         Constant::getIntegerValue(VTy, Known.getConstant()));
2954 
2955   return nullptr;
2956 }
2957 
2958 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2959 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2960   // Try to remove the previous instruction if it must lead to unreachable.
2961   // This includes instructions like stores and "llvm.assume" that may not get
2962   // removed by simple dead code elimination.
2963   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2964     // While we theoretically can erase EH, that would result in a block that
2965     // used to start with an EH no longer starting with EH, which is invalid.
2966     // To make it valid, we'd need to fixup predecessors to no longer refer to
2967     // this block, but that changes CFG, which is not allowed in InstCombine.
2968     if (Prev->isEHPad())
2969       return nullptr; // Can not drop any more instructions. We're done here.
2970 
2971     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2972       return nullptr; // Can not drop any more instructions. We're done here.
2973     // Otherwise, this instruction can be freely erased,
2974     // even if it is not side-effect free.
2975 
2976     // A value may still have uses before we process it here (for example, in
2977     // another unreachable block), so convert those to poison.
2978     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2979     eraseInstFromFunction(*Prev);
2980   }
2981   assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.");
2982   // FIXME: recurse into unconditional predecessors?
2983   return nullptr;
2984 }
2985 
2986 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2987   assert(BI.isUnconditional() && "Only for unconditional branches.");
2988 
2989   // If this store is the second-to-last instruction in the basic block
2990   // (excluding debug info and bitcasts of pointers) and if the block ends with
2991   // an unconditional branch, try to move the store to the successor block.
2992 
2993   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2994     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2995       return BBI->isDebugOrPseudoInst() ||
2996              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2997     };
2998 
2999     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3000     do {
3001       if (BBI != FirstInstr)
3002         --BBI;
3003     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3004 
3005     return dyn_cast<StoreInst>(BBI);
3006   };
3007 
3008   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3009     if (mergeStoreIntoSuccessor(*SI))
3010       return &BI;
3011 
3012   return nullptr;
3013 }
3014 
3015 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3016   if (BI.isUnconditional())
3017     return visitUnconditionalBranchInst(BI);
3018 
3019   // Change br (not X), label True, label False to: br X, label False, True
3020   Value *X = nullptr;
3021   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
3022       !isa<Constant>(X)) {
3023     // Swap Destinations and condition...
3024     BI.swapSuccessors();
3025     return replaceOperand(BI, 0, X);
3026   }
3027 
3028   // If the condition is irrelevant, remove the use so that other
3029   // transforms on the condition become more effective.
3030   if (!isa<ConstantInt>(BI.getCondition()) &&
3031       BI.getSuccessor(0) == BI.getSuccessor(1))
3032     return replaceOperand(
3033         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
3034 
3035   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3036   CmpInst::Predicate Pred;
3037   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
3038                       m_BasicBlock(), m_BasicBlock())) &&
3039       !isCanonicalPredicate(Pred)) {
3040     // Swap destinations and condition.
3041     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
3042     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
3043     BI.swapSuccessors();
3044     Worklist.push(Cond);
3045     return &BI;
3046   }
3047 
3048   return nullptr;
3049 }
3050 
3051 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3052   Value *Cond = SI.getCondition();
3053   Value *Op0;
3054   ConstantInt *AddRHS;
3055   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3056     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3057     for (auto Case : SI.cases()) {
3058       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3059       assert(isa<ConstantInt>(NewCase) &&
3060              "Result of expression should be constant");
3061       Case.setValue(cast<ConstantInt>(NewCase));
3062     }
3063     return replaceOperand(SI, 0, Op0);
3064   }
3065 
3066   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3067   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3068   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3069 
3070   // Compute the number of leading bits we can ignore.
3071   // TODO: A better way to determine this would use ComputeNumSignBits().
3072   for (auto &C : SI.cases()) {
3073     LeadingKnownZeros = std::min(
3074         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3075     LeadingKnownOnes = std::min(
3076         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3077   }
3078 
3079   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3080 
3081   // Shrink the condition operand if the new type is smaller than the old type.
3082   // But do not shrink to a non-standard type, because backend can't generate
3083   // good code for that yet.
3084   // TODO: We can make it aggressive again after fixing PR39569.
3085   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3086       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3087     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3088     Builder.SetInsertPoint(&SI);
3089     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3090 
3091     for (auto Case : SI.cases()) {
3092       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3093       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3094     }
3095     return replaceOperand(SI, 0, NewCond);
3096   }
3097 
3098   return nullptr;
3099 }
3100 
3101 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3102   Value *Agg = EV.getAggregateOperand();
3103 
3104   if (!EV.hasIndices())
3105     return replaceInstUsesWith(EV, Agg);
3106 
3107   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3108                                           SQ.getWithInstruction(&EV)))
3109     return replaceInstUsesWith(EV, V);
3110 
3111   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3112     // We're extracting from an insertvalue instruction, compare the indices
3113     const unsigned *exti, *exte, *insi, *inse;
3114     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3115          exte = EV.idx_end(), inse = IV->idx_end();
3116          exti != exte && insi != inse;
3117          ++exti, ++insi) {
3118       if (*insi != *exti)
3119         // The insert and extract both reference distinctly different elements.
3120         // This means the extract is not influenced by the insert, and we can
3121         // replace the aggregate operand of the extract with the aggregate
3122         // operand of the insert. i.e., replace
3123         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3124         // %E = extractvalue { i32, { i32 } } %I, 0
3125         // with
3126         // %E = extractvalue { i32, { i32 } } %A, 0
3127         return ExtractValueInst::Create(IV->getAggregateOperand(),
3128                                         EV.getIndices());
3129     }
3130     if (exti == exte && insi == inse)
3131       // Both iterators are at the end: Index lists are identical. Replace
3132       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3133       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3134       // with "i32 42"
3135       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3136     if (exti == exte) {
3137       // The extract list is a prefix of the insert list. i.e. replace
3138       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3139       // %E = extractvalue { i32, { i32 } } %I, 1
3140       // with
3141       // %X = extractvalue { i32, { i32 } } %A, 1
3142       // %E = insertvalue { i32 } %X, i32 42, 0
3143       // by switching the order of the insert and extract (though the
3144       // insertvalue should be left in, since it may have other uses).
3145       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3146                                                 EV.getIndices());
3147       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3148                                      makeArrayRef(insi, inse));
3149     }
3150     if (insi == inse)
3151       // The insert list is a prefix of the extract list
3152       // We can simply remove the common indices from the extract and make it
3153       // operate on the inserted value instead of the insertvalue result.
3154       // i.e., replace
3155       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3156       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3157       // with
3158       // %E extractvalue { i32 } { i32 42 }, 0
3159       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3160                                       makeArrayRef(exti, exte));
3161   }
3162   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3163     // We're extracting from an overflow intrinsic, see if we're the only user,
3164     // which allows us to simplify multiple result intrinsics to simpler
3165     // things that just get one value.
3166     if (WO->hasOneUse()) {
3167       // Check if we're grabbing only the result of a 'with overflow' intrinsic
3168       // and replace it with a traditional binary instruction.
3169       if (*EV.idx_begin() == 0) {
3170         Instruction::BinaryOps BinOp = WO->getBinaryOp();
3171         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3172         // Replace the old instruction's uses with poison.
3173         replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3174         eraseInstFromFunction(*WO);
3175         return BinaryOperator::Create(BinOp, LHS, RHS);
3176       }
3177 
3178       assert(*EV.idx_begin() == 1 &&
3179              "unexpected extract index for overflow inst");
3180 
3181       // If only the overflow result is used, and the right hand side is a
3182       // constant (or constant splat), we can remove the intrinsic by directly
3183       // checking for overflow.
3184       const APInt *C;
3185       if (match(WO->getRHS(), m_APInt(C))) {
3186         // Compute the no-wrap range for LHS given RHS=C, then construct an
3187         // equivalent icmp, potentially using an offset.
3188         ConstantRange NWR =
3189           ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3190                                                WO->getNoWrapKind());
3191 
3192         CmpInst::Predicate Pred;
3193         APInt NewRHSC, Offset;
3194         NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3195         auto *OpTy = WO->getRHS()->getType();
3196         auto *NewLHS = WO->getLHS();
3197         if (Offset != 0)
3198           NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3199         return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3200                             ConstantInt::get(OpTy, NewRHSC));
3201       }
3202     }
3203   }
3204   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3205     // If the (non-volatile) load only has one use, we can rewrite this to a
3206     // load from a GEP. This reduces the size of the load. If a load is used
3207     // only by extractvalue instructions then this either must have been
3208     // optimized before, or it is a struct with padding, in which case we
3209     // don't want to do the transformation as it loses padding knowledge.
3210     if (L->isSimple() && L->hasOneUse()) {
3211       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3212       SmallVector<Value*, 4> Indices;
3213       // Prefix an i32 0 since we need the first element.
3214       Indices.push_back(Builder.getInt32(0));
3215       for (unsigned Idx : EV.indices())
3216         Indices.push_back(Builder.getInt32(Idx));
3217 
3218       // We need to insert these at the location of the old load, not at that of
3219       // the extractvalue.
3220       Builder.SetInsertPoint(L);
3221       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3222                                              L->getPointerOperand(), Indices);
3223       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3224       // Whatever aliasing information we had for the orignal load must also
3225       // hold for the smaller load, so propagate the annotations.
3226       NL->setAAMetadata(L->getAAMetadata());
3227       // Returning the load directly will cause the main loop to insert it in
3228       // the wrong spot, so use replaceInstUsesWith().
3229       return replaceInstUsesWith(EV, NL);
3230     }
3231   // We could simplify extracts from other values. Note that nested extracts may
3232   // already be simplified implicitly by the above: extract (extract (insert) )
3233   // will be translated into extract ( insert ( extract ) ) first and then just
3234   // the value inserted, if appropriate. Similarly for extracts from single-use
3235   // loads: extract (extract (load)) will be translated to extract (load (gep))
3236   // and if again single-use then via load (gep (gep)) to load (gep).
3237   // However, double extracts from e.g. function arguments or return values
3238   // aren't handled yet.
3239   return nullptr;
3240 }
3241 
3242 /// Return 'true' if the given typeinfo will match anything.
3243 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3244   switch (Personality) {
3245   case EHPersonality::GNU_C:
3246   case EHPersonality::GNU_C_SjLj:
3247   case EHPersonality::Rust:
3248     // The GCC C EH and Rust personality only exists to support cleanups, so
3249     // it's not clear what the semantics of catch clauses are.
3250     return false;
3251   case EHPersonality::Unknown:
3252     return false;
3253   case EHPersonality::GNU_Ada:
3254     // While __gnat_all_others_value will match any Ada exception, it doesn't
3255     // match foreign exceptions (or didn't, before gcc-4.7).
3256     return false;
3257   case EHPersonality::GNU_CXX:
3258   case EHPersonality::GNU_CXX_SjLj:
3259   case EHPersonality::GNU_ObjC:
3260   case EHPersonality::MSVC_X86SEH:
3261   case EHPersonality::MSVC_TableSEH:
3262   case EHPersonality::MSVC_CXX:
3263   case EHPersonality::CoreCLR:
3264   case EHPersonality::Wasm_CXX:
3265   case EHPersonality::XL_CXX:
3266     return TypeInfo->isNullValue();
3267   }
3268   llvm_unreachable("invalid enum");
3269 }
3270 
3271 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3272   return
3273     cast<ArrayType>(LHS->getType())->getNumElements()
3274   <
3275     cast<ArrayType>(RHS->getType())->getNumElements();
3276 }
3277 
3278 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3279   // The logic here should be correct for any real-world personality function.
3280   // However if that turns out not to be true, the offending logic can always
3281   // be conditioned on the personality function, like the catch-all logic is.
3282   EHPersonality Personality =
3283       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3284 
3285   // Simplify the list of clauses, eg by removing repeated catch clauses
3286   // (these are often created by inlining).
3287   bool MakeNewInstruction = false; // If true, recreate using the following:
3288   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3289   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3290 
3291   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3292   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3293     bool isLastClause = i + 1 == e;
3294     if (LI.isCatch(i)) {
3295       // A catch clause.
3296       Constant *CatchClause = LI.getClause(i);
3297       Constant *TypeInfo = CatchClause->stripPointerCasts();
3298 
3299       // If we already saw this clause, there is no point in having a second
3300       // copy of it.
3301       if (AlreadyCaught.insert(TypeInfo).second) {
3302         // This catch clause was not already seen.
3303         NewClauses.push_back(CatchClause);
3304       } else {
3305         // Repeated catch clause - drop the redundant copy.
3306         MakeNewInstruction = true;
3307       }
3308 
3309       // If this is a catch-all then there is no point in keeping any following
3310       // clauses or marking the landingpad as having a cleanup.
3311       if (isCatchAll(Personality, TypeInfo)) {
3312         if (!isLastClause)
3313           MakeNewInstruction = true;
3314         CleanupFlag = false;
3315         break;
3316       }
3317     } else {
3318       // A filter clause.  If any of the filter elements were already caught
3319       // then they can be dropped from the filter.  It is tempting to try to
3320       // exploit the filter further by saying that any typeinfo that does not
3321       // occur in the filter can't be caught later (and thus can be dropped).
3322       // However this would be wrong, since typeinfos can match without being
3323       // equal (for example if one represents a C++ class, and the other some
3324       // class derived from it).
3325       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3326       Constant *FilterClause = LI.getClause(i);
3327       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3328       unsigned NumTypeInfos = FilterType->getNumElements();
3329 
3330       // An empty filter catches everything, so there is no point in keeping any
3331       // following clauses or marking the landingpad as having a cleanup.  By
3332       // dealing with this case here the following code is made a bit simpler.
3333       if (!NumTypeInfos) {
3334         NewClauses.push_back(FilterClause);
3335         if (!isLastClause)
3336           MakeNewInstruction = true;
3337         CleanupFlag = false;
3338         break;
3339       }
3340 
3341       bool MakeNewFilter = false; // If true, make a new filter.
3342       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3343       if (isa<ConstantAggregateZero>(FilterClause)) {
3344         // Not an empty filter - it contains at least one null typeinfo.
3345         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3346         Constant *TypeInfo =
3347           Constant::getNullValue(FilterType->getElementType());
3348         // If this typeinfo is a catch-all then the filter can never match.
3349         if (isCatchAll(Personality, TypeInfo)) {
3350           // Throw the filter away.
3351           MakeNewInstruction = true;
3352           continue;
3353         }
3354 
3355         // There is no point in having multiple copies of this typeinfo, so
3356         // discard all but the first copy if there is more than one.
3357         NewFilterElts.push_back(TypeInfo);
3358         if (NumTypeInfos > 1)
3359           MakeNewFilter = true;
3360       } else {
3361         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3362         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3363         NewFilterElts.reserve(NumTypeInfos);
3364 
3365         // Remove any filter elements that were already caught or that already
3366         // occurred in the filter.  While there, see if any of the elements are
3367         // catch-alls.  If so, the filter can be discarded.
3368         bool SawCatchAll = false;
3369         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3370           Constant *Elt = Filter->getOperand(j);
3371           Constant *TypeInfo = Elt->stripPointerCasts();
3372           if (isCatchAll(Personality, TypeInfo)) {
3373             // This element is a catch-all.  Bail out, noting this fact.
3374             SawCatchAll = true;
3375             break;
3376           }
3377 
3378           // Even if we've seen a type in a catch clause, we don't want to
3379           // remove it from the filter.  An unexpected type handler may be
3380           // set up for a call site which throws an exception of the same
3381           // type caught.  In order for the exception thrown by the unexpected
3382           // handler to propagate correctly, the filter must be correctly
3383           // described for the call site.
3384           //
3385           // Example:
3386           //
3387           // void unexpected() { throw 1;}
3388           // void foo() throw (int) {
3389           //   std::set_unexpected(unexpected);
3390           //   try {
3391           //     throw 2.0;
3392           //   } catch (int i) {}
3393           // }
3394 
3395           // There is no point in having multiple copies of the same typeinfo in
3396           // a filter, so only add it if we didn't already.
3397           if (SeenInFilter.insert(TypeInfo).second)
3398             NewFilterElts.push_back(cast<Constant>(Elt));
3399         }
3400         // A filter containing a catch-all cannot match anything by definition.
3401         if (SawCatchAll) {
3402           // Throw the filter away.
3403           MakeNewInstruction = true;
3404           continue;
3405         }
3406 
3407         // If we dropped something from the filter, make a new one.
3408         if (NewFilterElts.size() < NumTypeInfos)
3409           MakeNewFilter = true;
3410       }
3411       if (MakeNewFilter) {
3412         FilterType = ArrayType::get(FilterType->getElementType(),
3413                                     NewFilterElts.size());
3414         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3415         MakeNewInstruction = true;
3416       }
3417 
3418       NewClauses.push_back(FilterClause);
3419 
3420       // If the new filter is empty then it will catch everything so there is
3421       // no point in keeping any following clauses or marking the landingpad
3422       // as having a cleanup.  The case of the original filter being empty was
3423       // already handled above.
3424       if (MakeNewFilter && !NewFilterElts.size()) {
3425         assert(MakeNewInstruction && "New filter but not a new instruction!");
3426         CleanupFlag = false;
3427         break;
3428       }
3429     }
3430   }
3431 
3432   // If several filters occur in a row then reorder them so that the shortest
3433   // filters come first (those with the smallest number of elements).  This is
3434   // advantageous because shorter filters are more likely to match, speeding up
3435   // unwinding, but mostly because it increases the effectiveness of the other
3436   // filter optimizations below.
3437   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3438     unsigned j;
3439     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3440     for (j = i; j != e; ++j)
3441       if (!isa<ArrayType>(NewClauses[j]->getType()))
3442         break;
3443 
3444     // Check whether the filters are already sorted by length.  We need to know
3445     // if sorting them is actually going to do anything so that we only make a
3446     // new landingpad instruction if it does.
3447     for (unsigned k = i; k + 1 < j; ++k)
3448       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3449         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3450         // correct too but reordering filters pointlessly might confuse users.
3451         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3452                          shorter_filter);
3453         MakeNewInstruction = true;
3454         break;
3455       }
3456 
3457     // Look for the next batch of filters.
3458     i = j + 1;
3459   }
3460 
3461   // If typeinfos matched if and only if equal, then the elements of a filter L
3462   // that occurs later than a filter F could be replaced by the intersection of
3463   // the elements of F and L.  In reality two typeinfos can match without being
3464   // equal (for example if one represents a C++ class, and the other some class
3465   // derived from it) so it would be wrong to perform this transform in general.
3466   // However the transform is correct and useful if F is a subset of L.  In that
3467   // case L can be replaced by F, and thus removed altogether since repeating a
3468   // filter is pointless.  So here we look at all pairs of filters F and L where
3469   // L follows F in the list of clauses, and remove L if every element of F is
3470   // an element of L.  This can occur when inlining C++ functions with exception
3471   // specifications.
3472   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3473     // Examine each filter in turn.
3474     Value *Filter = NewClauses[i];
3475     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3476     if (!FTy)
3477       // Not a filter - skip it.
3478       continue;
3479     unsigned FElts = FTy->getNumElements();
3480     // Examine each filter following this one.  Doing this backwards means that
3481     // we don't have to worry about filters disappearing under us when removed.
3482     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3483       Value *LFilter = NewClauses[j];
3484       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3485       if (!LTy)
3486         // Not a filter - skip it.
3487         continue;
3488       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3489       // an element of LFilter, then discard LFilter.
3490       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3491       // If Filter is empty then it is a subset of LFilter.
3492       if (!FElts) {
3493         // Discard LFilter.
3494         NewClauses.erase(J);
3495         MakeNewInstruction = true;
3496         // Move on to the next filter.
3497         continue;
3498       }
3499       unsigned LElts = LTy->getNumElements();
3500       // If Filter is longer than LFilter then it cannot be a subset of it.
3501       if (FElts > LElts)
3502         // Move on to the next filter.
3503         continue;
3504       // At this point we know that LFilter has at least one element.
3505       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3506         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3507         // already know that Filter is not longer than LFilter).
3508         if (isa<ConstantAggregateZero>(Filter)) {
3509           assert(FElts <= LElts && "Should have handled this case earlier!");
3510           // Discard LFilter.
3511           NewClauses.erase(J);
3512           MakeNewInstruction = true;
3513         }
3514         // Move on to the next filter.
3515         continue;
3516       }
3517       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3518       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3519         // Since Filter is non-empty and contains only zeros, it is a subset of
3520         // LFilter iff LFilter contains a zero.
3521         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3522         for (unsigned l = 0; l != LElts; ++l)
3523           if (LArray->getOperand(l)->isNullValue()) {
3524             // LFilter contains a zero - discard it.
3525             NewClauses.erase(J);
3526             MakeNewInstruction = true;
3527             break;
3528           }
3529         // Move on to the next filter.
3530         continue;
3531       }
3532       // At this point we know that both filters are ConstantArrays.  Loop over
3533       // operands to see whether every element of Filter is also an element of
3534       // LFilter.  Since filters tend to be short this is probably faster than
3535       // using a method that scales nicely.
3536       ConstantArray *FArray = cast<ConstantArray>(Filter);
3537       bool AllFound = true;
3538       for (unsigned f = 0; f != FElts; ++f) {
3539         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3540         AllFound = false;
3541         for (unsigned l = 0; l != LElts; ++l) {
3542           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3543           if (LTypeInfo == FTypeInfo) {
3544             AllFound = true;
3545             break;
3546           }
3547         }
3548         if (!AllFound)
3549           break;
3550       }
3551       if (AllFound) {
3552         // Discard LFilter.
3553         NewClauses.erase(J);
3554         MakeNewInstruction = true;
3555       }
3556       // Move on to the next filter.
3557     }
3558   }
3559 
3560   // If we changed any of the clauses, replace the old landingpad instruction
3561   // with a new one.
3562   if (MakeNewInstruction) {
3563     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3564                                                  NewClauses.size());
3565     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3566       NLI->addClause(NewClauses[i]);
3567     // A landing pad with no clauses must have the cleanup flag set.  It is
3568     // theoretically possible, though highly unlikely, that we eliminated all
3569     // clauses.  If so, force the cleanup flag to true.
3570     if (NewClauses.empty())
3571       CleanupFlag = true;
3572     NLI->setCleanup(CleanupFlag);
3573     return NLI;
3574   }
3575 
3576   // Even if none of the clauses changed, we may nonetheless have understood
3577   // that the cleanup flag is pointless.  Clear it if so.
3578   if (LI.isCleanup() != CleanupFlag) {
3579     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3580     LI.setCleanup(CleanupFlag);
3581     return &LI;
3582   }
3583 
3584   return nullptr;
3585 }
3586 
3587 Value *
3588 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3589   // Try to push freeze through instructions that propagate but don't produce
3590   // poison as far as possible.  If an operand of freeze follows three
3591   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3592   // guaranteed-non-poison operands then push the freeze through to the one
3593   // operand that is not guaranteed non-poison.  The actual transform is as
3594   // follows.
3595   //   Op1 = ...                        ; Op1 can be posion
3596   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3597   //                                    ; single guaranteed-non-poison operands
3598   //   ... = Freeze(Op0)
3599   // =>
3600   //   Op1 = ...
3601   //   Op1.fr = Freeze(Op1)
3602   //   ... = Inst(Op1.fr, NonPoisonOps...)
3603   auto *OrigOp = OrigFI.getOperand(0);
3604   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3605 
3606   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3607   // potentially reduces their optimization potential, so let's only do this iff
3608   // the OrigOp is only used by the freeze.
3609   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3610     return nullptr;
3611 
3612   // We can't push the freeze through an instruction which can itself create
3613   // poison.  If the only source of new poison is flags, we can simply
3614   // strip them (since we know the only use is the freeze and nothing can
3615   // benefit from them.)
3616   if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false))
3617     return nullptr;
3618 
3619   // If operand is guaranteed not to be poison, there is no need to add freeze
3620   // to the operand. So we first find the operand that is not guaranteed to be
3621   // poison.
3622   Use *MaybePoisonOperand = nullptr;
3623   for (Use &U : OrigOpInst->operands()) {
3624     if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3625       continue;
3626     if (!MaybePoisonOperand)
3627       MaybePoisonOperand = &U;
3628     else
3629       return nullptr;
3630   }
3631 
3632   OrigOpInst->dropPoisonGeneratingFlags();
3633 
3634   // If all operands are guaranteed to be non-poison, we can drop freeze.
3635   if (!MaybePoisonOperand)
3636     return OrigOp;
3637 
3638   auto *FrozenMaybePoisonOperand = new FreezeInst(
3639       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3640 
3641   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3642   FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3643   return OrigOp;
3644 }
3645 
3646 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3647   Value *Op = FI.getOperand(0);
3648 
3649   if (isa<Constant>(Op))
3650     return false;
3651 
3652   bool Changed = false;
3653   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3654     bool Dominates = DT.dominates(&FI, U);
3655     Changed |= Dominates;
3656     return Dominates;
3657   });
3658 
3659   return Changed;
3660 }
3661 
3662 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3663   Value *Op0 = I.getOperand(0);
3664 
3665   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3666     return replaceInstUsesWith(I, V);
3667 
3668   // freeze (phi const, x) --> phi const, (freeze x)
3669   if (auto *PN = dyn_cast<PHINode>(Op0)) {
3670     if (Instruction *NV = foldOpIntoPhi(I, PN))
3671       return NV;
3672   }
3673 
3674   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
3675     return replaceInstUsesWith(I, NI);
3676 
3677   if (match(Op0, m_Undef())) {
3678     // If I is freeze(undef), see its uses and fold it to the best constant.
3679     // - or: pick -1
3680     // - select's condition: pick the value that leads to choosing a constant
3681     // - other ops: pick 0
3682     Constant *BestValue = nullptr;
3683     Constant *NullValue = Constant::getNullValue(I.getType());
3684     for (const auto *U : I.users()) {
3685       Constant *C = NullValue;
3686 
3687       if (match(U, m_Or(m_Value(), m_Value())))
3688         C = Constant::getAllOnesValue(I.getType());
3689       else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3690         if (SI->getCondition() == &I) {
3691           APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3692           C = Constant::getIntegerValue(I.getType(), CondVal);
3693         }
3694       }
3695 
3696       if (!BestValue)
3697         BestValue = C;
3698       else if (BestValue != C)
3699         BestValue = NullValue;
3700     }
3701 
3702     return replaceInstUsesWith(I, BestValue);
3703   }
3704 
3705   // Replace all dominated uses of Op to freeze(Op).
3706   if (freezeDominatedUses(I))
3707     return &I;
3708 
3709   return nullptr;
3710 }
3711 
3712 /// Try to move the specified instruction from its current block into the
3713 /// beginning of DestBlock, which can only happen if it's safe to move the
3714 /// instruction past all of the instructions between it and the end of its
3715 /// block.
3716 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3717   assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!");
3718   BasicBlock *SrcBlock = I->getParent();
3719 
3720   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3721   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3722       I->isTerminator())
3723     return false;
3724 
3725   // Do not sink static or dynamic alloca instructions. Static allocas must
3726   // remain in the entry block, and dynamic allocas must not be sunk in between
3727   // a stacksave / stackrestore pair, which would incorrectly shorten its
3728   // lifetime.
3729   if (isa<AllocaInst>(I))
3730     return false;
3731 
3732   // Do not sink into catchswitch blocks.
3733   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3734     return false;
3735 
3736   // Do not sink convergent call instructions.
3737   if (auto *CI = dyn_cast<CallInst>(I)) {
3738     if (CI->isConvergent())
3739       return false;
3740   }
3741   // We can only sink load instructions if there is nothing between the load and
3742   // the end of block that could change the value.
3743   if (I->mayReadFromMemory()) {
3744     // We don't want to do any sophisticated alias analysis, so we only check
3745     // the instructions after I in I's parent block if we try to sink to its
3746     // successor block.
3747     if (DestBlock->getUniquePredecessor() != I->getParent())
3748       return false;
3749     for (BasicBlock::iterator Scan = I->getIterator(),
3750                               E = I->getParent()->end();
3751          Scan != E; ++Scan)
3752       if (Scan->mayWriteToMemory())
3753         return false;
3754   }
3755 
3756   I->dropDroppableUses([DestBlock](const Use *U) {
3757     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3758       return I->getParent() != DestBlock;
3759     return true;
3760   });
3761   /// FIXME: We could remove droppable uses that are not dominated by
3762   /// the new position.
3763 
3764   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3765   I->moveBefore(&*InsertPos);
3766   ++NumSunkInst;
3767 
3768   // Also sink all related debug uses from the source basic block. Otherwise we
3769   // get debug use before the def. Attempt to salvage debug uses first, to
3770   // maximise the range variables have location for. If we cannot salvage, then
3771   // mark the location undef: we know it was supposed to receive a new location
3772   // here, but that computation has been sunk.
3773   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3774   findDbgUsers(DbgUsers, I);
3775   // Process the sinking DbgUsers in reverse order, as we only want to clone the
3776   // last appearing debug intrinsic for each given variable.
3777   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3778   for (DbgVariableIntrinsic *DVI : DbgUsers)
3779     if (DVI->getParent() == SrcBlock)
3780       DbgUsersToSink.push_back(DVI);
3781   llvm::sort(DbgUsersToSink,
3782              [](auto *A, auto *B) { return B->comesBefore(A); });
3783 
3784   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3785   SmallSet<DebugVariable, 4> SunkVariables;
3786   for (auto User : DbgUsersToSink) {
3787     // A dbg.declare instruction should not be cloned, since there can only be
3788     // one per variable fragment. It should be left in the original place
3789     // because the sunk instruction is not an alloca (otherwise we could not be
3790     // here).
3791     if (isa<DbgDeclareInst>(User))
3792       continue;
3793 
3794     DebugVariable DbgUserVariable =
3795         DebugVariable(User->getVariable(), User->getExpression(),
3796                       User->getDebugLoc()->getInlinedAt());
3797 
3798     if (!SunkVariables.insert(DbgUserVariable).second)
3799       continue;
3800 
3801     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3802     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3803       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3804     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3805   }
3806 
3807   // Perform salvaging without the clones, then sink the clones.
3808   if (!DIIClones.empty()) {
3809     salvageDebugInfoForDbgValues(*I, DbgUsers);
3810     // The clones are in reverse order of original appearance, reverse again to
3811     // maintain the original order.
3812     for (auto &DIIClone : llvm::reverse(DIIClones)) {
3813       DIIClone->insertBefore(&*InsertPos);
3814       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3815     }
3816   }
3817 
3818   return true;
3819 }
3820 
3821 bool InstCombinerImpl::run() {
3822   while (!Worklist.isEmpty()) {
3823     // Walk deferred instructions in reverse order, and push them to the
3824     // worklist, which means they'll end up popped from the worklist in-order.
3825     while (Instruction *I = Worklist.popDeferred()) {
3826       // Check to see if we can DCE the instruction. We do this already here to
3827       // reduce the number of uses and thus allow other folds to trigger.
3828       // Note that eraseInstFromFunction() may push additional instructions on
3829       // the deferred worklist, so this will DCE whole instruction chains.
3830       if (isInstructionTriviallyDead(I, &TLI)) {
3831         eraseInstFromFunction(*I);
3832         ++NumDeadInst;
3833         continue;
3834       }
3835 
3836       Worklist.push(I);
3837     }
3838 
3839     Instruction *I = Worklist.removeOne();
3840     if (I == nullptr) continue;  // skip null values.
3841 
3842     // Check to see if we can DCE the instruction.
3843     if (isInstructionTriviallyDead(I, &TLI)) {
3844       eraseInstFromFunction(*I);
3845       ++NumDeadInst;
3846       continue;
3847     }
3848 
3849     if (!DebugCounter::shouldExecute(VisitCounter))
3850       continue;
3851 
3852     // Instruction isn't dead, see if we can constant propagate it.
3853     if (!I->use_empty() &&
3854         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3855       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3856         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3857                           << '\n');
3858 
3859         // Add operands to the worklist.
3860         replaceInstUsesWith(*I, C);
3861         ++NumConstProp;
3862         if (isInstructionTriviallyDead(I, &TLI))
3863           eraseInstFromFunction(*I);
3864         MadeIRChange = true;
3865         continue;
3866       }
3867     }
3868 
3869     // See if we can trivially sink this instruction to its user if we can
3870     // prove that the successor is not executed more frequently than our block.
3871     // Return the UserBlock if successful.
3872     auto getOptionalSinkBlockForInst =
3873         [this](Instruction *I) -> Optional<BasicBlock *> {
3874       if (!EnableCodeSinking)
3875         return None;
3876       auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
3877       if (!UserInst)
3878         return None;
3879 
3880       BasicBlock *BB = I->getParent();
3881       BasicBlock *UserParent = nullptr;
3882 
3883       // Special handling for Phi nodes - get the block the use occurs in.
3884       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
3885         for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
3886           if (PN->getIncomingValue(i) == I) {
3887             // Bail out if we have uses in different blocks. We don't do any
3888             // sophisticated analysis (i.e finding NearestCommonDominator of these
3889             // use blocks).
3890             if (UserParent && UserParent != PN->getIncomingBlock(i))
3891               return None;
3892             UserParent = PN->getIncomingBlock(i);
3893           }
3894         }
3895         assert(UserParent && "expected to find user block!");
3896       } else
3897         UserParent = UserInst->getParent();
3898 
3899       // Try sinking to another block. If that block is unreachable, then do
3900       // not bother. SimplifyCFG should handle it.
3901       if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
3902         return None;
3903 
3904       auto *Term = UserParent->getTerminator();
3905       // See if the user is one of our successors that has only one
3906       // predecessor, so that we don't have to split the critical edge.
3907       // Another option where we can sink is a block that ends with a
3908       // terminator that does not pass control to other block (such as
3909       // return or unreachable). In this case:
3910       //   - I dominates the User (by SSA form);
3911       //   - the User will be executed at most once.
3912       // So sinking I down to User is always profitable or neutral.
3913       if (UserParent->getUniquePredecessor() == BB ||
3914           (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) {
3915         assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
3916         return UserParent;
3917       }
3918       return None;
3919     };
3920 
3921     auto OptBB = getOptionalSinkBlockForInst(I);
3922     if (OptBB) {
3923       auto *UserParent = *OptBB;
3924       // Okay, the CFG is simple enough, try to sink this instruction.
3925       if (TryToSinkInstruction(I, UserParent)) {
3926         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3927         MadeIRChange = true;
3928         // We'll add uses of the sunk instruction below, but since
3929         // sinking can expose opportunities for it's *operands* add
3930         // them to the worklist
3931         for (Use &U : I->operands())
3932           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3933             Worklist.push(OpI);
3934       }
3935     }
3936 
3937     // Now that we have an instruction, try combining it to simplify it.
3938     Builder.SetInsertPoint(I);
3939     Builder.CollectMetadataToCopy(
3940         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3941 
3942 #ifndef NDEBUG
3943     std::string OrigI;
3944 #endif
3945     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3946     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3947 
3948     if (Instruction *Result = visit(*I)) {
3949       ++NumCombined;
3950       // Should we replace the old instruction with a new one?
3951       if (Result != I) {
3952         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3953                           << "    New = " << *Result << '\n');
3954 
3955         Result->copyMetadata(*I,
3956                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3957         // Everything uses the new instruction now.
3958         I->replaceAllUsesWith(Result);
3959 
3960         // Move the name to the new instruction first.
3961         Result->takeName(I);
3962 
3963         // Insert the new instruction into the basic block...
3964         BasicBlock *InstParent = I->getParent();
3965         BasicBlock::iterator InsertPos = I->getIterator();
3966 
3967         // Are we replace a PHI with something that isn't a PHI, or vice versa?
3968         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3969           // We need to fix up the insertion point.
3970           if (isa<PHINode>(I)) // PHI -> Non-PHI
3971             InsertPos = InstParent->getFirstInsertionPt();
3972           else // Non-PHI -> PHI
3973             InsertPos = InstParent->getFirstNonPHI()->getIterator();
3974         }
3975 
3976         InstParent->getInstList().insert(InsertPos, Result);
3977 
3978         // Push the new instruction and any users onto the worklist.
3979         Worklist.pushUsersToWorkList(*Result);
3980         Worklist.push(Result);
3981 
3982         eraseInstFromFunction(*I);
3983       } else {
3984         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3985                           << "    New = " << *I << '\n');
3986 
3987         // If the instruction was modified, it's possible that it is now dead.
3988         // if so, remove it.
3989         if (isInstructionTriviallyDead(I, &TLI)) {
3990           eraseInstFromFunction(*I);
3991         } else {
3992           Worklist.pushUsersToWorkList(*I);
3993           Worklist.push(I);
3994         }
3995       }
3996       MadeIRChange = true;
3997     }
3998   }
3999 
4000   Worklist.zap();
4001   return MadeIRChange;
4002 }
4003 
4004 // Track the scopes used by !alias.scope and !noalias. In a function, a
4005 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4006 // by both sets. If not, the declaration of the scope can be safely omitted.
4007 // The MDNode of the scope can be omitted as well for the instructions that are
4008 // part of this function. We do not do that at this point, as this might become
4009 // too time consuming to do.
4010 class AliasScopeTracker {
4011   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4012   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4013 
4014 public:
4015   void analyse(Instruction *I) {
4016     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4017     if (!I->hasMetadataOtherThanDebugLoc())
4018       return;
4019 
4020     auto Track = [](Metadata *ScopeList, auto &Container) {
4021       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4022       if (!MDScopeList || !Container.insert(MDScopeList).second)
4023         return;
4024       for (auto &MDOperand : MDScopeList->operands())
4025         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4026           Container.insert(MDScope);
4027     };
4028 
4029     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4030     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4031   }
4032 
4033   bool isNoAliasScopeDeclDead(Instruction *Inst) {
4034     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4035     if (!Decl)
4036       return false;
4037 
4038     assert(Decl->use_empty() &&
4039            "llvm.experimental.noalias.scope.decl in use ?");
4040     const MDNode *MDSL = Decl->getScopeList();
4041     assert(MDSL->getNumOperands() == 1 &&
4042            "llvm.experimental.noalias.scope should refer to a single scope");
4043     auto &MDOperand = MDSL->getOperand(0);
4044     if (auto *MD = dyn_cast<MDNode>(MDOperand))
4045       return !UsedAliasScopesAndLists.contains(MD) ||
4046              !UsedNoAliasScopesAndLists.contains(MD);
4047 
4048     // Not an MDNode ? throw away.
4049     return true;
4050   }
4051 };
4052 
4053 /// Populate the IC worklist from a function, by walking it in depth-first
4054 /// order and adding all reachable code to the worklist.
4055 ///
4056 /// This has a couple of tricks to make the code faster and more powerful.  In
4057 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4058 /// them to the worklist (this significantly speeds up instcombine on code where
4059 /// many instructions are dead or constant).  Additionally, if we find a branch
4060 /// whose condition is a known constant, we only visit the reachable successors.
4061 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
4062                                           const TargetLibraryInfo *TLI,
4063                                           InstructionWorklist &ICWorklist) {
4064   bool MadeIRChange = false;
4065   SmallPtrSet<BasicBlock *, 32> Visited;
4066   SmallVector<BasicBlock*, 256> Worklist;
4067   Worklist.push_back(&F.front());
4068 
4069   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4070   DenseMap<Constant *, Constant *> FoldedConstants;
4071   AliasScopeTracker SeenAliasScopes;
4072 
4073   do {
4074     BasicBlock *BB = Worklist.pop_back_val();
4075 
4076     // We have now visited this block!  If we've already been here, ignore it.
4077     if (!Visited.insert(BB).second)
4078       continue;
4079 
4080     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4081       // ConstantProp instruction if trivially constant.
4082       if (!Inst.use_empty() &&
4083           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4084         if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4085           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4086                             << '\n');
4087           Inst.replaceAllUsesWith(C);
4088           ++NumConstProp;
4089           if (isInstructionTriviallyDead(&Inst, TLI))
4090             Inst.eraseFromParent();
4091           MadeIRChange = true;
4092           continue;
4093         }
4094 
4095       // See if we can constant fold its operands.
4096       for (Use &U : Inst.operands()) {
4097         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4098           continue;
4099 
4100         auto *C = cast<Constant>(U);
4101         Constant *&FoldRes = FoldedConstants[C];
4102         if (!FoldRes)
4103           FoldRes = ConstantFoldConstant(C, DL, TLI);
4104 
4105         if (FoldRes != C) {
4106           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4107                             << "\n    Old = " << *C
4108                             << "\n    New = " << *FoldRes << '\n');
4109           U = FoldRes;
4110           MadeIRChange = true;
4111         }
4112       }
4113 
4114       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4115       // these call instructions consumes non-trivial amount of time and
4116       // provides no value for the optimization.
4117       if (!Inst.isDebugOrPseudoInst()) {
4118         InstrsForInstructionWorklist.push_back(&Inst);
4119         SeenAliasScopes.analyse(&Inst);
4120       }
4121     }
4122 
4123     // Recursively visit successors.  If this is a branch or switch on a
4124     // constant, only visit the reachable successor.
4125     Instruction *TI = BB->getTerminator();
4126     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4127       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4128         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4129         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4130         Worklist.push_back(ReachableBB);
4131         continue;
4132       }
4133     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4134       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4135         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4136         continue;
4137       }
4138     }
4139 
4140     append_range(Worklist, successors(TI));
4141   } while (!Worklist.empty());
4142 
4143   // Remove instructions inside unreachable blocks. This prevents the
4144   // instcombine code from having to deal with some bad special cases, and
4145   // reduces use counts of instructions.
4146   for (BasicBlock &BB : F) {
4147     if (Visited.count(&BB))
4148       continue;
4149 
4150     unsigned NumDeadInstInBB;
4151     unsigned NumDeadDbgInstInBB;
4152     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4153         removeAllNonTerminatorAndEHPadInstructions(&BB);
4154 
4155     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4156     NumDeadInst += NumDeadInstInBB;
4157   }
4158 
4159   // Once we've found all of the instructions to add to instcombine's worklist,
4160   // add them in reverse order.  This way instcombine will visit from the top
4161   // of the function down.  This jives well with the way that it adds all uses
4162   // of instructions to the worklist after doing a transformation, thus avoiding
4163   // some N^2 behavior in pathological cases.
4164   ICWorklist.reserve(InstrsForInstructionWorklist.size());
4165   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4166     // DCE instruction if trivially dead. As we iterate in reverse program
4167     // order here, we will clean up whole chains of dead instructions.
4168     if (isInstructionTriviallyDead(Inst, TLI) ||
4169         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4170       ++NumDeadInst;
4171       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4172       salvageDebugInfo(*Inst);
4173       Inst->eraseFromParent();
4174       MadeIRChange = true;
4175       continue;
4176     }
4177 
4178     ICWorklist.push(Inst);
4179   }
4180 
4181   return MadeIRChange;
4182 }
4183 
4184 static bool combineInstructionsOverFunction(
4185     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4186     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4187     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4188     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4189   auto &DL = F.getParent()->getDataLayout();
4190   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4191 
4192   /// Builder - This is an IRBuilder that automatically inserts new
4193   /// instructions into the worklist when they are created.
4194   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4195       F.getContext(), TargetFolder(DL),
4196       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4197         Worklist.add(I);
4198         if (auto *Assume = dyn_cast<AssumeInst>(I))
4199           AC.registerAssumption(Assume);
4200       }));
4201 
4202   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4203   // by instcombiner.
4204   bool MadeIRChange = false;
4205   if (ShouldLowerDbgDeclare)
4206     MadeIRChange = LowerDbgDeclare(F);
4207 
4208   // Iterate while there is work to do.
4209   unsigned Iteration = 0;
4210   while (true) {
4211     ++NumWorklistIterations;
4212     ++Iteration;
4213 
4214     if (Iteration > InfiniteLoopDetectionThreshold) {
4215       report_fatal_error(
4216           "Instruction Combining seems stuck in an infinite loop after " +
4217           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4218     }
4219 
4220     if (Iteration > MaxIterations) {
4221       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
4222                         << " on " << F.getName()
4223                         << " reached; stopping before reaching a fixpoint\n");
4224       break;
4225     }
4226 
4227     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4228                       << F.getName() << "\n");
4229 
4230     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4231 
4232     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4233                         ORE, BFI, PSI, DL, LI);
4234     IC.MaxArraySizeForCombine = MaxArraySize;
4235 
4236     if (!IC.run())
4237       break;
4238 
4239     MadeIRChange = true;
4240   }
4241 
4242   return MadeIRChange;
4243 }
4244 
4245 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4246 
4247 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4248     : MaxIterations(MaxIterations) {}
4249 
4250 PreservedAnalyses InstCombinePass::run(Function &F,
4251                                        FunctionAnalysisManager &AM) {
4252   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4253   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4254   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4255   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4256   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4257 
4258   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4259 
4260   auto *AA = &AM.getResult<AAManager>(F);
4261   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4262   ProfileSummaryInfo *PSI =
4263       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4264   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4265       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4266 
4267   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4268                                        BFI, PSI, MaxIterations, LI))
4269     // No changes, all analyses are preserved.
4270     return PreservedAnalyses::all();
4271 
4272   // Mark all the analyses that instcombine updates as preserved.
4273   PreservedAnalyses PA;
4274   PA.preserveSet<CFGAnalyses>();
4275   return PA;
4276 }
4277 
4278 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4279   AU.setPreservesCFG();
4280   AU.addRequired<AAResultsWrapperPass>();
4281   AU.addRequired<AssumptionCacheTracker>();
4282   AU.addRequired<TargetLibraryInfoWrapperPass>();
4283   AU.addRequired<TargetTransformInfoWrapperPass>();
4284   AU.addRequired<DominatorTreeWrapperPass>();
4285   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4286   AU.addPreserved<DominatorTreeWrapperPass>();
4287   AU.addPreserved<AAResultsWrapperPass>();
4288   AU.addPreserved<BasicAAWrapperPass>();
4289   AU.addPreserved<GlobalsAAWrapperPass>();
4290   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4291   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4292 }
4293 
4294 bool InstructionCombiningPass::runOnFunction(Function &F) {
4295   if (skipFunction(F))
4296     return false;
4297 
4298   // Required analyses.
4299   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4300   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4301   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4302   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4303   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4304   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4305 
4306   // Optional analyses.
4307   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4308   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4309   ProfileSummaryInfo *PSI =
4310       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4311   BlockFrequencyInfo *BFI =
4312       (PSI && PSI->hasProfileSummary()) ?
4313       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4314       nullptr;
4315 
4316   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4317                                          BFI, PSI, MaxIterations, LI);
4318 }
4319 
4320 char InstructionCombiningPass::ID = 0;
4321 
4322 InstructionCombiningPass::InstructionCombiningPass()
4323     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4324   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4325 }
4326 
4327 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4328     : FunctionPass(ID), MaxIterations(MaxIterations) {
4329   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4330 }
4331 
4332 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4333                       "Combine redundant instructions", false, false)
4334 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4335 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4336 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4337 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4338 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4339 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4340 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4341 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4342 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4343 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4344                     "Combine redundant instructions", false, false)
4345 
4346 // Initialization Routines
4347 void llvm::initializeInstCombine(PassRegistry &Registry) {
4348   initializeInstructionCombiningPassPass(Registry);
4349 }
4350 
4351 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4352   initializeInstructionCombiningPassPass(*unwrap(R));
4353 }
4354 
4355 FunctionPass *llvm::createInstructionCombiningPass() {
4356   return new InstructionCombiningPass();
4357 }
4358 
4359 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4360   return new InstructionCombiningPass(MaxIterations);
4361 }
4362 
4363 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4364   unwrap(PM)->add(createInstructionCombiningPass());
4365 }
4366