1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/Analysis/VectorUtils.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DIBuilder.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/Intrinsics.h" 81 #include "llvm/IR/LegacyPassManager.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PassManager.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/Use.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/InitializePasses.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/CBindingWrapping.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/DebugCounter.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/KnownBits.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/InstCombine/InstCombine.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstdint> 107 #include <memory> 108 #include <string> 109 #include <utility> 110 111 #define DEBUG_TYPE "instcombine" 112 #include "llvm/Transforms/Utils/InstructionWorklist.h" 113 114 using namespace llvm; 115 using namespace llvm::PatternMatch; 116 117 STATISTIC(NumWorklistIterations, 118 "Number of instruction combining iterations performed"); 119 120 STATISTIC(NumCombined , "Number of insts combined"); 121 STATISTIC(NumConstProp, "Number of constant folds"); 122 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 123 STATISTIC(NumSunkInst , "Number of instructions sunk"); 124 STATISTIC(NumExpand, "Number of expansions"); 125 STATISTIC(NumFactor , "Number of factorizations"); 126 STATISTIC(NumReassoc , "Number of reassociations"); 127 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 128 "Controls which instructions are visited"); 129 130 // FIXME: these limits eventually should be as low as 2. 131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000; 132 #ifndef NDEBUG 133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; 134 #else 135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; 136 #endif 137 138 static cl::opt<bool> 139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 140 cl::init(true)); 141 142 static cl::opt<unsigned> LimitMaxIterations( 143 "instcombine-max-iterations", 144 cl::desc("Limit the maximum number of instruction combining iterations"), 145 cl::init(InstCombineDefaultMaxIterations)); 146 147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold( 148 "instcombine-infinite-loop-threshold", 149 cl::desc("Number of instruction combining iterations considered an " 150 "infinite loop"), 151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); 152 153 static cl::opt<unsigned> 154 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 155 cl::desc("Maximum array size considered when doing a combine")); 156 157 // FIXME: Remove this flag when it is no longer necessary to convert 158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 159 // increases variable availability at the cost of accuracy. Variables that 160 // cannot be promoted by mem2reg or SROA will be described as living in memory 161 // for their entire lifetime. However, passes like DSE and instcombine can 162 // delete stores to the alloca, leading to misleading and inaccurate debug 163 // information. This flag can be removed when those passes are fixed. 164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 165 cl::Hidden, cl::init(true)); 166 167 Optional<Instruction *> 168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 169 // Handle target specific intrinsics 170 if (II.getCalledFunction()->isTargetIntrinsic()) { 171 return TTI.instCombineIntrinsic(*this, II); 172 } 173 return None; 174 } 175 176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 178 bool &KnownBitsComputed) { 179 // Handle target specific intrinsics 180 if (II.getCalledFunction()->isTargetIntrinsic()) { 181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 182 KnownBitsComputed); 183 } 184 return None; 185 } 186 187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, 189 APInt &UndefElts3, 190 std::function<void(Instruction *, unsigned, APInt, APInt &)> 191 SimplifyAndSetOp) { 192 // Handle target specific intrinsics 193 if (II.getCalledFunction()->isTargetIntrinsic()) { 194 return TTI.simplifyDemandedVectorEltsIntrinsic( 195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 196 SimplifyAndSetOp); 197 } 198 return None; 199 } 200 201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 202 return llvm::EmitGEPOffset(&Builder, DL, GEP); 203 } 204 205 /// Legal integers and common types are considered desirable. This is used to 206 /// avoid creating instructions with types that may not be supported well by the 207 /// the backend. 208 /// NOTE: This treats i8, i16 and i32 specially because they are common 209 /// types in frontend languages. 210 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 211 switch (BitWidth) { 212 case 8: 213 case 16: 214 case 32: 215 return true; 216 default: 217 return DL.isLegalInteger(BitWidth); 218 } 219 } 220 221 /// Return true if it is desirable to convert an integer computation from a 222 /// given bit width to a new bit width. 223 /// We don't want to convert from a legal to an illegal type or from a smaller 224 /// to a larger illegal type. A width of '1' is always treated as a desirable 225 /// type because i1 is a fundamental type in IR, and there are many specialized 226 /// optimizations for i1 types. Common/desirable widths are equally treated as 227 /// legal to convert to, in order to open up more combining opportunities. 228 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 229 unsigned ToWidth) const { 230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 232 233 // Convert to desirable widths even if they are not legal types. 234 // Only shrink types, to prevent infinite loops. 235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 236 return true; 237 238 // If this is a legal integer from type, and the result would be an illegal 239 // type, don't do the transformation. 240 if (FromLegal && !ToLegal) 241 return false; 242 243 // Otherwise, if both are illegal, do not increase the size of the result. We 244 // do allow things like i160 -> i64, but not i64 -> i160. 245 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 246 return false; 247 248 return true; 249 } 250 251 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 252 /// We don't want to convert from a legal to an illegal type or from a smaller 253 /// to a larger illegal type. i1 is always treated as a legal type because it is 254 /// a fundamental type in IR, and there are many specialized optimizations for 255 /// i1 types. 256 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 257 // TODO: This could be extended to allow vectors. Datalayout changes might be 258 // needed to properly support that. 259 if (!From->isIntegerTy() || !To->isIntegerTy()) 260 return false; 261 262 unsigned FromWidth = From->getPrimitiveSizeInBits(); 263 unsigned ToWidth = To->getPrimitiveSizeInBits(); 264 return shouldChangeType(FromWidth, ToWidth); 265 } 266 267 // Return true, if No Signed Wrap should be maintained for I. 268 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 269 // where both B and C should be ConstantInts, results in a constant that does 270 // not overflow. This function only handles the Add and Sub opcodes. For 271 // all other opcodes, the function conservatively returns false. 272 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 274 if (!OBO || !OBO->hasNoSignedWrap()) 275 return false; 276 277 // We reason about Add and Sub Only. 278 Instruction::BinaryOps Opcode = I.getOpcode(); 279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 280 return false; 281 282 const APInt *BVal, *CVal; 283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 284 return false; 285 286 bool Overflow = false; 287 if (Opcode == Instruction::Add) 288 (void)BVal->sadd_ov(*CVal, Overflow); 289 else 290 (void)BVal->ssub_ov(*CVal, Overflow); 291 292 return !Overflow; 293 } 294 295 static bool hasNoUnsignedWrap(BinaryOperator &I) { 296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 297 return OBO && OBO->hasNoUnsignedWrap(); 298 } 299 300 static bool hasNoSignedWrap(BinaryOperator &I) { 301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 302 return OBO && OBO->hasNoSignedWrap(); 303 } 304 305 /// Conservatively clears subclassOptionalData after a reassociation or 306 /// commutation. We preserve fast-math flags when applicable as they can be 307 /// preserved. 308 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 310 if (!FPMO) { 311 I.clearSubclassOptionalData(); 312 return; 313 } 314 315 FastMathFlags FMF = I.getFastMathFlags(); 316 I.clearSubclassOptionalData(); 317 I.setFastMathFlags(FMF); 318 } 319 320 /// Combine constant operands of associative operations either before or after a 321 /// cast to eliminate one of the associative operations: 322 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 323 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 324 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 325 InstCombinerImpl &IC) { 326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 327 if (!Cast || !Cast->hasOneUse()) 328 return false; 329 330 // TODO: Enhance logic for other casts and remove this check. 331 auto CastOpcode = Cast->getOpcode(); 332 if (CastOpcode != Instruction::ZExt) 333 return false; 334 335 // TODO: Enhance logic for other BinOps and remove this check. 336 if (!BinOp1->isBitwiseLogicOp()) 337 return false; 338 339 auto AssocOpcode = BinOp1->getOpcode(); 340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 342 return false; 343 344 Constant *C1, *C2; 345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 346 !match(BinOp2->getOperand(1), m_Constant(C2))) 347 return false; 348 349 // TODO: This assumes a zext cast. 350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 351 // to the destination type might lose bits. 352 353 // Fold the constants together in the destination type: 354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 355 Type *DestTy = C1->getType(); 356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 359 IC.replaceOperand(*BinOp1, 1, FoldedC); 360 return true; 361 } 362 363 // Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast. 364 // inttoptr ( ptrtoint (x) ) --> x 365 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) == 368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 370 Type *CastTy = IntToPtr->getDestTy(); 371 if (PtrToInt && 372 CastTy->getPointerAddressSpace() == 373 PtrToInt->getSrcTy()->getPointerAddressSpace() && 374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) == 375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) { 376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy, 377 "", PtrToInt); 378 } 379 } 380 return nullptr; 381 } 382 383 /// This performs a few simplifications for operators that are associative or 384 /// commutative: 385 /// 386 /// Commutative operators: 387 /// 388 /// 1. Order operands such that they are listed from right (least complex) to 389 /// left (most complex). This puts constants before unary operators before 390 /// binary operators. 391 /// 392 /// Associative operators: 393 /// 394 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 395 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 396 /// 397 /// Associative and commutative operators: 398 /// 399 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 400 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 401 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 402 /// if C1 and C2 are constants. 403 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 404 Instruction::BinaryOps Opcode = I.getOpcode(); 405 bool Changed = false; 406 407 do { 408 // Order operands such that they are listed from right (least complex) to 409 // left (most complex). This puts constants before unary operators before 410 // binary operators. 411 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 412 getComplexity(I.getOperand(1))) 413 Changed = !I.swapOperands(); 414 415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 417 418 if (I.isAssociative()) { 419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 if (Op0 && Op0->getOpcode() == Opcode) { 421 Value *A = Op0->getOperand(0); 422 Value *B = Op0->getOperand(1); 423 Value *C = I.getOperand(1); 424 425 // Does "B op C" simplify? 426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 427 // It simplifies to V. Form "A op V". 428 replaceOperand(I, 0, A); 429 replaceOperand(I, 1, V); 430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 432 433 // Conservatively clear all optional flags since they may not be 434 // preserved by the reassociation. Reset nsw/nuw based on the above 435 // analysis. 436 ClearSubclassDataAfterReassociation(I); 437 438 // Note: this is only valid because SimplifyBinOp doesn't look at 439 // the operands to Op0. 440 if (IsNUW) 441 I.setHasNoUnsignedWrap(true); 442 443 if (IsNSW) 444 I.setHasNoSignedWrap(true); 445 446 Changed = true; 447 ++NumReassoc; 448 continue; 449 } 450 } 451 452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 453 if (Op1 && Op1->getOpcode() == Opcode) { 454 Value *A = I.getOperand(0); 455 Value *B = Op1->getOperand(0); 456 Value *C = Op1->getOperand(1); 457 458 // Does "A op B" simplify? 459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "V op C". 461 replaceOperand(I, 0, V); 462 replaceOperand(I, 1, C); 463 // Conservatively clear the optional flags, since they may not be 464 // preserved by the reassociation. 465 ClearSubclassDataAfterReassociation(I); 466 Changed = true; 467 ++NumReassoc; 468 continue; 469 } 470 } 471 } 472 473 if (I.isAssociative() && I.isCommutative()) { 474 if (simplifyAssocCastAssoc(&I, *this)) { 475 Changed = true; 476 ++NumReassoc; 477 continue; 478 } 479 480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 481 if (Op0 && Op0->getOpcode() == Opcode) { 482 Value *A = Op0->getOperand(0); 483 Value *B = Op0->getOperand(1); 484 Value *C = I.getOperand(1); 485 486 // Does "C op A" simplify? 487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 488 // It simplifies to V. Form "V op B". 489 replaceOperand(I, 0, V); 490 replaceOperand(I, 1, B); 491 // Conservatively clear the optional flags, since they may not be 492 // preserved by the reassociation. 493 ClearSubclassDataAfterReassociation(I); 494 Changed = true; 495 ++NumReassoc; 496 continue; 497 } 498 } 499 500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 501 if (Op1 && Op1->getOpcode() == Opcode) { 502 Value *A = I.getOperand(0); 503 Value *B = Op1->getOperand(0); 504 Value *C = Op1->getOperand(1); 505 506 // Does "C op A" simplify? 507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 508 // It simplifies to V. Form "B op V". 509 replaceOperand(I, 0, B); 510 replaceOperand(I, 1, V); 511 // Conservatively clear the optional flags, since they may not be 512 // preserved by the reassociation. 513 ClearSubclassDataAfterReassociation(I); 514 Changed = true; 515 ++NumReassoc; 516 continue; 517 } 518 } 519 520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 521 // if C1 and C2 are constants. 522 Value *A, *B; 523 Constant *C1, *C2; 524 if (Op0 && Op1 && 525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags(); 537 Flags &= Op0->getFastMathFlags(); 538 Flags &= Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 return Op->getOpcode(); 627 } 628 629 /// This tries to simplify binary operations by factorizing out common terms 630 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 631 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, 632 Instruction::BinaryOps InnerOpcode, 633 Value *A, Value *B, Value *C, 634 Value *D) { 635 assert(A && B && C && D && "All values must be provided"); 636 637 Value *V = nullptr; 638 Value *SimplifiedInst = nullptr; 639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 641 642 // Does "X op' Y" always equal "Y op' X"? 643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 644 645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 648 // commutative case, "(A op' B) op (C op' A)"? 649 if (A == C || (InnerCommutative && A == D)) { 650 if (A != C) 651 std::swap(C, D); 652 // Consider forming "A op' (B op D)". 653 // If "B op D" simplifies then it can be formed with no cost. 654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 655 // If "B op D" doesn't simplify then only go on if both of the existing 656 // operations "A op' B" and "C op' D" will be zapped as no longer used. 657 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 659 if (V) { 660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 661 } 662 } 663 664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 667 // commutative case, "(A op' B) op (B op' D)"? 668 if (B == D || (InnerCommutative && B == C)) { 669 if (B != D) 670 std::swap(C, D); 671 // Consider forming "(A op C) op' B". 672 // If "A op C" simplifies then it can be formed with no cost. 673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 674 675 // If "A op C" doesn't simplify then only go on if both of the existing 676 // operations "A op' B" and "C op' D" will be zapped as no longer used. 677 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 679 if (V) { 680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 681 } 682 } 683 684 if (SimplifiedInst) { 685 ++NumFactor; 686 SimplifiedInst->takeName(&I); 687 688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 691 bool HasNSW = false; 692 bool HasNUW = false; 693 if (isa<OverflowingBinaryOperator>(&I)) { 694 HasNSW = I.hasNoSignedWrap(); 695 HasNUW = I.hasNoUnsignedWrap(); 696 } 697 698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 699 HasNSW &= LOBO->hasNoSignedWrap(); 700 HasNUW &= LOBO->hasNoUnsignedWrap(); 701 } 702 703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 704 HasNSW &= ROBO->hasNoSignedWrap(); 705 HasNUW &= ROBO->hasNoUnsignedWrap(); 706 } 707 708 if (TopLevelOpcode == Instruction::Add && 709 InnerOpcode == Instruction::Mul) { 710 // We can propagate 'nsw' if we know that 711 // %Y = mul nsw i16 %X, C 712 // %Z = add nsw i16 %Y, %X 713 // => 714 // %Z = mul nsw i16 %X, C+1 715 // 716 // iff C+1 isn't INT_MIN 717 const APInt *CInt; 718 if (match(V, m_APInt(CInt))) { 719 if (!CInt->isMinSignedValue()) 720 BO->setHasNoSignedWrap(HasNSW); 721 } 722 723 // nuw can be propagated with any constant or nuw value. 724 BO->setHasNoUnsignedWrap(HasNUW); 725 } 726 } 727 } 728 } 729 return SimplifiedInst; 730 } 731 732 /// This tries to simplify binary operations which some other binary operation 733 /// distributes over either by factorizing out common terms 734 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 735 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 736 /// Returns the simplified value, or null if it didn't simplify. 737 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 742 743 { 744 // Factorization. 745 Value *A, *B, *C, *D; 746 Instruction::BinaryOps LHSOpcode, RHSOpcode; 747 if (Op0) 748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 749 if (Op1) 750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 751 752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 753 // a common term. 754 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 756 return V; 757 758 // The instruction has the form "(A op' B) op (C)". Try to factorize common 759 // term. 760 if (Op0) 761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 763 return V; 764 765 // The instruction has the form "(B) op (C op' D)". Try to factorize common 766 // term. 767 if (Op1) 768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 770 return V; 771 } 772 773 // Expansion. 774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 775 // The instruction has the form "(A op' B) op C". See if expanding it out 776 // to "(A op C) op' (B op C)" results in simplifications. 777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 779 780 // Disable the use of undef because it's not safe to distribute undef. 781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 784 785 // Do "A op C" and "B op C" both simplify? 786 if (L && R) { 787 // They do! Return "L op' R". 788 ++NumExpand; 789 C = Builder.CreateBinOp(InnerOpcode, L, R); 790 C->takeName(&I); 791 return C; 792 } 793 794 // Does "A op C" simplify to the identity value for the inner opcode? 795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 796 // They do! Return "B op C". 797 ++NumExpand; 798 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 799 C->takeName(&I); 800 return C; 801 } 802 803 // Does "B op C" simplify to the identity value for the inner opcode? 804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 805 // They do! Return "A op C". 806 ++NumExpand; 807 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 808 C->takeName(&I); 809 return C; 810 } 811 } 812 813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 814 // The instruction has the form "A op (B op' C)". See if expanding it out 815 // to "(A op B) op' (A op C)" results in simplifications. 816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 818 819 // Disable the use of undef because it's not safe to distribute undef. 820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 823 824 // Do "A op B" and "A op C" both simplify? 825 if (L && R) { 826 // They do! Return "L op' R". 827 ++NumExpand; 828 A = Builder.CreateBinOp(InnerOpcode, L, R); 829 A->takeName(&I); 830 return A; 831 } 832 833 // Does "A op B" simplify to the identity value for the inner opcode? 834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 835 // They do! Return "A op C". 836 ++NumExpand; 837 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 838 A->takeName(&I); 839 return A; 840 } 841 842 // Does "A op C" simplify to the identity value for the inner opcode? 843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 844 // They do! Return "A op B". 845 ++NumExpand; 846 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 847 A->takeName(&I); 848 return A; 849 } 850 } 851 852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 853 } 854 855 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 856 Value *LHS, 857 Value *RHS) { 858 Value *A, *B, *C, *D, *E, *F; 859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 861 if (!LHSIsSelect && !RHSIsSelect) 862 return nullptr; 863 864 FastMathFlags FMF; 865 BuilderTy::FastMathFlagGuard Guard(Builder); 866 if (isa<FPMathOperator>(&I)) { 867 FMF = I.getFastMathFlags(); 868 Builder.setFastMathFlags(FMF); 869 } 870 871 Instruction::BinaryOps Opcode = I.getOpcode(); 872 SimplifyQuery Q = SQ.getWithInstruction(&I); 873 874 Value *Cond, *True = nullptr, *False = nullptr; 875 if (LHSIsSelect && RHSIsSelect && A == D) { 876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 877 Cond = A; 878 True = SimplifyBinOp(Opcode, B, E, FMF, Q); 879 False = SimplifyBinOp(Opcode, C, F, FMF, Q); 880 881 if (LHS->hasOneUse() && RHS->hasOneUse()) { 882 if (False && !True) 883 True = Builder.CreateBinOp(Opcode, B, E); 884 else if (True && !False) 885 False = Builder.CreateBinOp(Opcode, C, F); 886 } 887 } else if (LHSIsSelect && LHS->hasOneUse()) { 888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 889 Cond = A; 890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); 891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); 892 } else if (RHSIsSelect && RHS->hasOneUse()) { 893 // X op (D ? E : F) -> D ? (X op E) : (X op F) 894 Cond = D; 895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); 896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); 897 } 898 899 if (!True || !False) 900 return nullptr; 901 902 Value *SI = Builder.CreateSelect(Cond, True, False); 903 SI->takeName(&I); 904 return SI; 905 } 906 907 /// Freely adapt every user of V as-if V was changed to !V. 908 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 909 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { 910 for (User *U : I->users()) { 911 switch (cast<Instruction>(U)->getOpcode()) { 912 case Instruction::Select: { 913 auto *SI = cast<SelectInst>(U); 914 SI->swapValues(); 915 SI->swapProfMetadata(); 916 break; 917 } 918 case Instruction::Br: 919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 920 break; 921 case Instruction::Xor: 922 replaceInstUsesWith(cast<Instruction>(*U), I); 923 break; 924 default: 925 llvm_unreachable("Got unexpected user - out of sync with " 926 "canFreelyInvertAllUsersOf() ?"); 927 } 928 } 929 } 930 931 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 932 /// constant zero (which is the 'negate' form). 933 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 934 Value *NegV; 935 if (match(V, m_Neg(m_Value(NegV)))) 936 return NegV; 937 938 // Constants can be considered to be negated values if they can be folded. 939 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 940 return ConstantExpr::getNeg(C); 941 942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 943 if (C->getType()->getElementType()->isIntegerTy()) 944 return ConstantExpr::getNeg(C); 945 946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 948 Constant *Elt = CV->getAggregateElement(i); 949 if (!Elt) 950 return nullptr; 951 952 if (isa<UndefValue>(Elt)) 953 continue; 954 955 if (!isa<ConstantInt>(Elt)) 956 return nullptr; 957 } 958 return ConstantExpr::getNeg(CV); 959 } 960 961 // Negate integer vector splats. 962 if (auto *CV = dyn_cast<Constant>(V)) 963 if (CV->getType()->isVectorTy() && 964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 965 return ConstantExpr::getNeg(CV); 966 967 return nullptr; 968 } 969 970 /// A binop with a constant operand and a sign-extended boolean operand may be 971 /// converted into a select of constants by applying the binary operation to 972 /// the constant with the two possible values of the extended boolean (0 or -1). 973 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 974 // TODO: Handle non-commutative binop (constant is operand 0). 975 // TODO: Handle zext. 976 // TODO: Peek through 'not' of cast. 977 Value *BO0 = BO.getOperand(0); 978 Value *BO1 = BO.getOperand(1); 979 Value *X; 980 Constant *C; 981 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 982 !X->getType()->isIntOrIntVectorTy(1)) 983 return nullptr; 984 985 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 986 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 987 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 988 Constant *TVal = ConstantExpr::get(BO.getOpcode(), Ones, C); 989 Constant *FVal = ConstantExpr::get(BO.getOpcode(), Zero, C); 990 return SelectInst::Create(X, TVal, FVal); 991 } 992 993 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 994 InstCombiner::BuilderTy &Builder) { 995 if (auto *Cast = dyn_cast<CastInst>(&I)) 996 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 997 998 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 999 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && 1000 "Expected constant-foldable intrinsic"); 1001 Intrinsic::ID IID = II->getIntrinsicID(); 1002 if (II->arg_size() == 1) 1003 return Builder.CreateUnaryIntrinsic(IID, SO); 1004 1005 // This works for real binary ops like min/max (where we always expect the 1006 // constant operand to be canonicalized as op1) and unary ops with a bonus 1007 // constant argument like ctlz/cttz. 1008 // TODO: Handle non-commutative binary intrinsics as below for binops. 1009 assert(II->arg_size() == 2 && "Expected binary intrinsic"); 1010 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand"); 1011 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1)); 1012 } 1013 1014 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 1015 1016 // Figure out if the constant is the left or the right argument. 1017 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 1018 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 1019 1020 if (auto *SOC = dyn_cast<Constant>(SO)) { 1021 if (ConstIsRHS) 1022 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 1023 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 1024 } 1025 1026 Value *Op0 = SO, *Op1 = ConstOperand; 1027 if (!ConstIsRHS) 1028 std::swap(Op0, Op1); 1029 1030 auto *BO = cast<BinaryOperator>(&I); 1031 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 1032 SO->getName() + ".op"); 1033 auto *FPInst = dyn_cast<Instruction>(RI); 1034 if (FPInst && isa<FPMathOperator>(FPInst)) 1035 FPInst->copyFastMathFlags(BO); 1036 return RI; 1037 } 1038 1039 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, 1040 SelectInst *SI) { 1041 // Don't modify shared select instructions. 1042 if (!SI->hasOneUse()) 1043 return nullptr; 1044 1045 Value *TV = SI->getTrueValue(); 1046 Value *FV = SI->getFalseValue(); 1047 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1048 return nullptr; 1049 1050 // Bool selects with constant operands can be folded to logical ops. 1051 if (SI->getType()->isIntOrIntVectorTy(1)) 1052 return nullptr; 1053 1054 // If it's a bitcast involving vectors, make sure it has the same number of 1055 // elements on both sides. 1056 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1057 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1058 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1059 1060 // Verify that either both or neither are vectors. 1061 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1062 return nullptr; 1063 1064 // If vectors, verify that they have the same number of elements. 1065 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1066 return nullptr; 1067 } 1068 1069 // Test if a CmpInst instruction is used exclusively by a select as 1070 // part of a minimum or maximum operation. If so, refrain from doing 1071 // any other folding. This helps out other analyses which understand 1072 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 1073 // and CodeGen. And in this case, at least one of the comparison 1074 // operands has at least one user besides the compare (the select), 1075 // which would often largely negate the benefit of folding anyway. 1076 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 1077 if (CI->hasOneUse()) { 1078 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1079 1080 // FIXME: This is a hack to avoid infinite looping with min/max patterns. 1081 // We have to ensure that vector constants that only differ with 1082 // undef elements are treated as equivalent. 1083 auto areLooselyEqual = [](Value *A, Value *B) { 1084 if (A == B) 1085 return true; 1086 1087 // Test for vector constants. 1088 Constant *ConstA, *ConstB; 1089 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) 1090 return false; 1091 1092 // TODO: Deal with FP constants? 1093 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) 1094 return false; 1095 1096 // Compare for equality including undefs as equal. 1097 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); 1098 const APInt *C; 1099 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne(); 1100 }; 1101 1102 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || 1103 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) 1104 return nullptr; 1105 } 1106 } 1107 1108 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 1109 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 1110 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1111 } 1112 1113 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 1114 InstCombiner::BuilderTy &Builder) { 1115 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 1116 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 1117 1118 if (auto *InC = dyn_cast<Constant>(InV)) { 1119 if (ConstIsRHS) 1120 return ConstantExpr::get(I->getOpcode(), InC, C); 1121 return ConstantExpr::get(I->getOpcode(), C, InC); 1122 } 1123 1124 Value *Op0 = InV, *Op1 = C; 1125 if (!ConstIsRHS) 1126 std::swap(Op0, Op1); 1127 1128 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); 1129 auto *FPInst = dyn_cast<Instruction>(RI); 1130 if (FPInst && isa<FPMathOperator>(FPInst)) 1131 FPInst->copyFastMathFlags(I); 1132 return RI; 1133 } 1134 1135 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1136 unsigned NumPHIValues = PN->getNumIncomingValues(); 1137 if (NumPHIValues == 0) 1138 return nullptr; 1139 1140 // We normally only transform phis with a single use. However, if a PHI has 1141 // multiple uses and they are all the same operation, we can fold *all* of the 1142 // uses into the PHI. 1143 if (!PN->hasOneUse()) { 1144 // Walk the use list for the instruction, comparing them to I. 1145 for (User *U : PN->users()) { 1146 Instruction *UI = cast<Instruction>(U); 1147 if (UI != &I && !I.isIdenticalTo(UI)) 1148 return nullptr; 1149 } 1150 // Otherwise, we can replace *all* users with the new PHI we form. 1151 } 1152 1153 // Check to see if all of the operands of the PHI are simple constants 1154 // (constantint/constantfp/undef). If there is one non-constant value, 1155 // remember the BB it is in. If there is more than one or if *it* is a PHI, 1156 // bail out. We don't do arbitrary constant expressions here because moving 1157 // their computation can be expensive without a cost model. 1158 BasicBlock *NonConstBB = nullptr; 1159 for (unsigned i = 0; i != NumPHIValues; ++i) { 1160 Value *InVal = PN->getIncomingValue(i); 1161 // For non-freeze, require constant operand 1162 // For freeze, require non-undef, non-poison operand 1163 if (!isa<FreezeInst>(I) && match(InVal, m_ImmConstant())) 1164 continue; 1165 if (isa<FreezeInst>(I) && isGuaranteedNotToBeUndefOrPoison(InVal)) 1166 continue; 1167 1168 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 1169 if (NonConstBB) return nullptr; // More than one non-const value. 1170 1171 NonConstBB = PN->getIncomingBlock(i); 1172 1173 // If the InVal is an invoke at the end of the pred block, then we can't 1174 // insert a computation after it without breaking the edge. 1175 if (isa<InvokeInst>(InVal)) 1176 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 1177 return nullptr; 1178 1179 // If the incoming non-constant value is in I's block, we will remove one 1180 // instruction, but insert another equivalent one, leading to infinite 1181 // instcombine. 1182 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI)) 1183 return nullptr; 1184 } 1185 1186 // If there is exactly one non-constant value, we can insert a copy of the 1187 // operation in that block. However, if this is a critical edge, we would be 1188 // inserting the computation on some other paths (e.g. inside a loop). Only 1189 // do this if the pred block is unconditionally branching into the phi block. 1190 // Also, make sure that the pred block is not dead code. 1191 if (NonConstBB != nullptr) { 1192 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 1193 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) 1194 return nullptr; 1195 } 1196 1197 // Okay, we can do the transformation: create the new PHI node. 1198 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1199 InsertNewInstBefore(NewPN, *PN); 1200 NewPN->takeName(PN); 1201 1202 // If we are going to have to insert a new computation, do so right before the 1203 // predecessor's terminator. 1204 if (NonConstBB) 1205 Builder.SetInsertPoint(NonConstBB->getTerminator()); 1206 1207 // Next, add all of the operands to the PHI. 1208 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 1209 // We only currently try to fold the condition of a select when it is a phi, 1210 // not the true/false values. 1211 Value *TrueV = SI->getTrueValue(); 1212 Value *FalseV = SI->getFalseValue(); 1213 BasicBlock *PhiTransBB = PN->getParent(); 1214 for (unsigned i = 0; i != NumPHIValues; ++i) { 1215 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1216 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1217 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1218 Value *InV = nullptr; 1219 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1220 // even if currently isNullValue gives false. 1221 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1222 // For vector constants, we cannot use isNullValue to fold into 1223 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1224 // elements in the vector, we will incorrectly fold InC to 1225 // `TrueVInPred`. 1226 if (InC && isa<ConstantInt>(InC)) 1227 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1228 else { 1229 // Generate the select in the same block as PN's current incoming block. 1230 // Note: ThisBB need not be the NonConstBB because vector constants 1231 // which are constants by definition are handled here. 1232 // FIXME: This can lead to an increase in IR generation because we might 1233 // generate selects for vector constant phi operand, that could not be 1234 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1235 // non-vector phis, this transformation was always profitable because 1236 // the select would be generated exactly once in the NonConstBB. 1237 Builder.SetInsertPoint(ThisBB->getTerminator()); 1238 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1239 FalseVInPred, "phi.sel"); 1240 } 1241 NewPN->addIncoming(InV, ThisBB); 1242 } 1243 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1244 Constant *C = cast<Constant>(I.getOperand(1)); 1245 for (unsigned i = 0; i != NumPHIValues; ++i) { 1246 Value *InV = nullptr; 1247 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1248 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1249 else 1250 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), 1251 C, "phi.cmp"); 1252 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1253 } 1254 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1255 for (unsigned i = 0; i != NumPHIValues; ++i) { 1256 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1257 Builder); 1258 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1259 } 1260 } else if (isa<FreezeInst>(&I)) { 1261 for (unsigned i = 0; i != NumPHIValues; ++i) { 1262 Value *InV; 1263 if (NonConstBB == PN->getIncomingBlock(i)) 1264 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); 1265 else 1266 InV = PN->getIncomingValue(i); 1267 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1268 } 1269 } else { 1270 CastInst *CI = cast<CastInst>(&I); 1271 Type *RetTy = CI->getType(); 1272 for (unsigned i = 0; i != NumPHIValues; ++i) { 1273 Value *InV; 1274 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1275 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1276 else 1277 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1278 I.getType(), "phi.cast"); 1279 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1280 } 1281 } 1282 1283 for (User *U : make_early_inc_range(PN->users())) { 1284 Instruction *User = cast<Instruction>(U); 1285 if (User == &I) continue; 1286 replaceInstUsesWith(*User, NewPN); 1287 eraseInstFromFunction(*User); 1288 } 1289 return replaceInstUsesWith(I, NewPN); 1290 } 1291 1292 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1293 if (!isa<Constant>(I.getOperand(1))) 1294 return nullptr; 1295 1296 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1297 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1298 return NewSel; 1299 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1300 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1301 return NewPhi; 1302 } 1303 return nullptr; 1304 } 1305 1306 /// Given a pointer type and a constant offset, determine whether or not there 1307 /// is a sequence of GEP indices into the pointed type that will land us at the 1308 /// specified offset. If so, fill them into NewIndices and return the resultant 1309 /// element type, otherwise return null. 1310 Type * 1311 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset, 1312 SmallVectorImpl<Value *> &NewIndices) { 1313 Type *Ty = PtrTy->getElementType(); 1314 if (!Ty->isSized()) 1315 return nullptr; 1316 1317 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset); 1318 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset); 1319 if (!Offset.isZero()) 1320 return nullptr; 1321 1322 for (const APInt &Index : Indices) 1323 NewIndices.push_back(Builder.getInt(Index)); 1324 return Ty; 1325 } 1326 1327 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1328 // If this GEP has only 0 indices, it is the same pointer as 1329 // Src. If Src is not a trivial GEP too, don't combine 1330 // the indices. 1331 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1332 !Src.hasOneUse()) 1333 return false; 1334 return true; 1335 } 1336 1337 /// Return a value X such that Val = X * Scale, or null if none. 1338 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1339 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1340 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1341 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1342 Scale.getBitWidth() && "Scale not compatible with value!"); 1343 1344 // If Val is zero or Scale is one then Val = Val * Scale. 1345 if (match(Val, m_Zero()) || Scale == 1) { 1346 NoSignedWrap = true; 1347 return Val; 1348 } 1349 1350 // If Scale is zero then it does not divide Val. 1351 if (Scale.isMinValue()) 1352 return nullptr; 1353 1354 // Look through chains of multiplications, searching for a constant that is 1355 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1356 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1357 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1358 // down from Val: 1359 // 1360 // Val = M1 * X || Analysis starts here and works down 1361 // M1 = M2 * Y || Doesn't descend into terms with more 1362 // M2 = Z * 4 \/ than one use 1363 // 1364 // Then to modify a term at the bottom: 1365 // 1366 // Val = M1 * X 1367 // M1 = Z * Y || Replaced M2 with Z 1368 // 1369 // Then to work back up correcting nsw flags. 1370 1371 // Op - the term we are currently analyzing. Starts at Val then drills down. 1372 // Replaced with its descaled value before exiting from the drill down loop. 1373 Value *Op = Val; 1374 1375 // Parent - initially null, but after drilling down notes where Op came from. 1376 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1377 // 0'th operand of Val. 1378 std::pair<Instruction *, unsigned> Parent; 1379 1380 // Set if the transform requires a descaling at deeper levels that doesn't 1381 // overflow. 1382 bool RequireNoSignedWrap = false; 1383 1384 // Log base 2 of the scale. Negative if not a power of 2. 1385 int32_t logScale = Scale.exactLogBase2(); 1386 1387 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1388 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1389 // If Op is a constant divisible by Scale then descale to the quotient. 1390 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1391 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1392 if (!Remainder.isMinValue()) 1393 // Not divisible by Scale. 1394 return nullptr; 1395 // Replace with the quotient in the parent. 1396 Op = ConstantInt::get(CI->getType(), Quotient); 1397 NoSignedWrap = true; 1398 break; 1399 } 1400 1401 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1402 if (BO->getOpcode() == Instruction::Mul) { 1403 // Multiplication. 1404 NoSignedWrap = BO->hasNoSignedWrap(); 1405 if (RequireNoSignedWrap && !NoSignedWrap) 1406 return nullptr; 1407 1408 // There are three cases for multiplication: multiplication by exactly 1409 // the scale, multiplication by a constant different to the scale, and 1410 // multiplication by something else. 1411 Value *LHS = BO->getOperand(0); 1412 Value *RHS = BO->getOperand(1); 1413 1414 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1415 // Multiplication by a constant. 1416 if (CI->getValue() == Scale) { 1417 // Multiplication by exactly the scale, replace the multiplication 1418 // by its left-hand side in the parent. 1419 Op = LHS; 1420 break; 1421 } 1422 1423 // Otherwise drill down into the constant. 1424 if (!Op->hasOneUse()) 1425 return nullptr; 1426 1427 Parent = std::make_pair(BO, 1); 1428 continue; 1429 } 1430 1431 // Multiplication by something else. Drill down into the left-hand side 1432 // since that's where the reassociate pass puts the good stuff. 1433 if (!Op->hasOneUse()) 1434 return nullptr; 1435 1436 Parent = std::make_pair(BO, 0); 1437 continue; 1438 } 1439 1440 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1441 isa<ConstantInt>(BO->getOperand(1))) { 1442 // Multiplication by a power of 2. 1443 NoSignedWrap = BO->hasNoSignedWrap(); 1444 if (RequireNoSignedWrap && !NoSignedWrap) 1445 return nullptr; 1446 1447 Value *LHS = BO->getOperand(0); 1448 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1449 getLimitedValue(Scale.getBitWidth()); 1450 // Op = LHS << Amt. 1451 1452 if (Amt == logScale) { 1453 // Multiplication by exactly the scale, replace the multiplication 1454 // by its left-hand side in the parent. 1455 Op = LHS; 1456 break; 1457 } 1458 if (Amt < logScale || !Op->hasOneUse()) 1459 return nullptr; 1460 1461 // Multiplication by more than the scale. Reduce the multiplying amount 1462 // by the scale in the parent. 1463 Parent = std::make_pair(BO, 1); 1464 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1465 break; 1466 } 1467 } 1468 1469 if (!Op->hasOneUse()) 1470 return nullptr; 1471 1472 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1473 if (Cast->getOpcode() == Instruction::SExt) { 1474 // Op is sign-extended from a smaller type, descale in the smaller type. 1475 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1476 APInt SmallScale = Scale.trunc(SmallSize); 1477 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1478 // descale Op as (sext Y) * Scale. In order to have 1479 // sext (Y * SmallScale) = (sext Y) * Scale 1480 // some conditions need to hold however: SmallScale must sign-extend to 1481 // Scale and the multiplication Y * SmallScale should not overflow. 1482 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1483 // SmallScale does not sign-extend to Scale. 1484 return nullptr; 1485 assert(SmallScale.exactLogBase2() == logScale); 1486 // Require that Y * SmallScale must not overflow. 1487 RequireNoSignedWrap = true; 1488 1489 // Drill down through the cast. 1490 Parent = std::make_pair(Cast, 0); 1491 Scale = SmallScale; 1492 continue; 1493 } 1494 1495 if (Cast->getOpcode() == Instruction::Trunc) { 1496 // Op is truncated from a larger type, descale in the larger type. 1497 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1498 // trunc (Y * sext Scale) = (trunc Y) * Scale 1499 // always holds. However (trunc Y) * Scale may overflow even if 1500 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1501 // from this point up in the expression (see later). 1502 if (RequireNoSignedWrap) 1503 return nullptr; 1504 1505 // Drill down through the cast. 1506 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1507 Parent = std::make_pair(Cast, 0); 1508 Scale = Scale.sext(LargeSize); 1509 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1510 logScale = -1; 1511 assert(Scale.exactLogBase2() == logScale); 1512 continue; 1513 } 1514 } 1515 1516 // Unsupported expression, bail out. 1517 return nullptr; 1518 } 1519 1520 // If Op is zero then Val = Op * Scale. 1521 if (match(Op, m_Zero())) { 1522 NoSignedWrap = true; 1523 return Op; 1524 } 1525 1526 // We know that we can successfully descale, so from here on we can safely 1527 // modify the IR. Op holds the descaled version of the deepest term in the 1528 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1529 // not to overflow. 1530 1531 if (!Parent.first) 1532 // The expression only had one term. 1533 return Op; 1534 1535 // Rewrite the parent using the descaled version of its operand. 1536 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1537 assert(Op != Parent.first->getOperand(Parent.second) && 1538 "Descaling was a no-op?"); 1539 replaceOperand(*Parent.first, Parent.second, Op); 1540 Worklist.push(Parent.first); 1541 1542 // Now work back up the expression correcting nsw flags. The logic is based 1543 // on the following observation: if X * Y is known not to overflow as a signed 1544 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1545 // then X * Z will not overflow as a signed multiplication either. As we work 1546 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1547 // current level has strictly smaller absolute value than the original. 1548 Instruction *Ancestor = Parent.first; 1549 do { 1550 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1551 // If the multiplication wasn't nsw then we can't say anything about the 1552 // value of the descaled multiplication, and we have to clear nsw flags 1553 // from this point on up. 1554 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1555 NoSignedWrap &= OpNoSignedWrap; 1556 if (NoSignedWrap != OpNoSignedWrap) { 1557 BO->setHasNoSignedWrap(NoSignedWrap); 1558 Worklist.push(Ancestor); 1559 } 1560 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1561 // The fact that the descaled input to the trunc has smaller absolute 1562 // value than the original input doesn't tell us anything useful about 1563 // the absolute values of the truncations. 1564 NoSignedWrap = false; 1565 } 1566 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1567 "Failed to keep proper track of nsw flags while drilling down?"); 1568 1569 if (Ancestor == Val) 1570 // Got to the top, all done! 1571 return Val; 1572 1573 // Move up one level in the expression. 1574 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1575 Ancestor = Ancestor->user_back(); 1576 } while (true); 1577 } 1578 1579 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1580 if (!isa<VectorType>(Inst.getType())) 1581 return nullptr; 1582 1583 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1584 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1585 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1586 cast<VectorType>(Inst.getType())->getElementCount()); 1587 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1588 cast<VectorType>(Inst.getType())->getElementCount()); 1589 1590 // If both operands of the binop are vector concatenations, then perform the 1591 // narrow binop on each pair of the source operands followed by concatenation 1592 // of the results. 1593 Value *L0, *L1, *R0, *R1; 1594 ArrayRef<int> Mask; 1595 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1596 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1597 LHS->hasOneUse() && RHS->hasOneUse() && 1598 cast<ShuffleVectorInst>(LHS)->isConcat() && 1599 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1600 // This transform does not have the speculative execution constraint as 1601 // below because the shuffle is a concatenation. The new binops are 1602 // operating on exactly the same elements as the existing binop. 1603 // TODO: We could ease the mask requirement to allow different undef lanes, 1604 // but that requires an analysis of the binop-with-undef output value. 1605 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1606 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1607 BO->copyIRFlags(&Inst); 1608 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1609 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1610 BO->copyIRFlags(&Inst); 1611 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1612 } 1613 1614 // It may not be safe to reorder shuffles and things like div, urem, etc. 1615 // because we may trap when executing those ops on unknown vector elements. 1616 // See PR20059. 1617 if (!isSafeToSpeculativelyExecute(&Inst)) 1618 return nullptr; 1619 1620 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1621 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1622 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1623 BO->copyIRFlags(&Inst); 1624 return new ShuffleVectorInst(XY, M); 1625 }; 1626 1627 // If both arguments of the binary operation are shuffles that use the same 1628 // mask and shuffle within a single vector, move the shuffle after the binop. 1629 Value *V1, *V2; 1630 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && 1631 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && 1632 V1->getType() == V2->getType() && 1633 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1634 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1635 return createBinOpShuffle(V1, V2, Mask); 1636 } 1637 1638 // If both arguments of a commutative binop are select-shuffles that use the 1639 // same mask with commuted operands, the shuffles are unnecessary. 1640 if (Inst.isCommutative() && 1641 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1642 match(RHS, 1643 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1644 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1645 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1646 // TODO: Allow shuffles that contain undefs in the mask? 1647 // That is legal, but it reduces undef knowledge. 1648 // TODO: Allow arbitrary shuffles by shuffling after binop? 1649 // That might be legal, but we have to deal with poison. 1650 if (LShuf->isSelect() && 1651 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && 1652 RShuf->isSelect() && 1653 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { 1654 // Example: 1655 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1656 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1657 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1658 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1659 NewBO->copyIRFlags(&Inst); 1660 return NewBO; 1661 } 1662 } 1663 1664 // If one argument is a shuffle within one vector and the other is a constant, 1665 // try moving the shuffle after the binary operation. This canonicalization 1666 // intends to move shuffles closer to other shuffles and binops closer to 1667 // other binops, so they can be folded. It may also enable demanded elements 1668 // transforms. 1669 Constant *C; 1670 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1671 if (InstVTy && 1672 match(&Inst, 1673 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), 1674 m_ImmConstant(C))) && 1675 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1676 InstVTy->getNumElements()) { 1677 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1678 "Shuffle should not change scalar type"); 1679 1680 // Find constant NewC that has property: 1681 // shuffle(NewC, ShMask) = C 1682 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1683 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1684 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1685 bool ConstOp1 = isa<Constant>(RHS); 1686 ArrayRef<int> ShMask = Mask; 1687 unsigned SrcVecNumElts = 1688 cast<FixedVectorType>(V1->getType())->getNumElements(); 1689 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1690 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1691 bool MayChange = true; 1692 unsigned NumElts = InstVTy->getNumElements(); 1693 for (unsigned I = 0; I < NumElts; ++I) { 1694 Constant *CElt = C->getAggregateElement(I); 1695 if (ShMask[I] >= 0) { 1696 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1697 Constant *NewCElt = NewVecC[ShMask[I]]; 1698 // Bail out if: 1699 // 1. The constant vector contains a constant expression. 1700 // 2. The shuffle needs an element of the constant vector that can't 1701 // be mapped to a new constant vector. 1702 // 3. This is a widening shuffle that copies elements of V1 into the 1703 // extended elements (extending with undef is allowed). 1704 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1705 I >= SrcVecNumElts) { 1706 MayChange = false; 1707 break; 1708 } 1709 NewVecC[ShMask[I]] = CElt; 1710 } 1711 // If this is a widening shuffle, we must be able to extend with undef 1712 // elements. If the original binop does not produce an undef in the high 1713 // lanes, then this transform is not safe. 1714 // Similarly for undef lanes due to the shuffle mask, we can only 1715 // transform binops that preserve undef. 1716 // TODO: We could shuffle those non-undef constant values into the 1717 // result by using a constant vector (rather than an undef vector) 1718 // as operand 1 of the new binop, but that might be too aggressive 1719 // for target-independent shuffle creation. 1720 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1721 Constant *MaybeUndef = 1722 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1723 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1724 if (!match(MaybeUndef, m_Undef())) { 1725 MayChange = false; 1726 break; 1727 } 1728 } 1729 } 1730 if (MayChange) { 1731 Constant *NewC = ConstantVector::get(NewVecC); 1732 // It may not be safe to execute a binop on a vector with undef elements 1733 // because the entire instruction can be folded to undef or create poison 1734 // that did not exist in the original code. 1735 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1736 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1737 1738 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1739 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1740 Value *NewLHS = ConstOp1 ? V1 : NewC; 1741 Value *NewRHS = ConstOp1 ? NewC : V1; 1742 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1743 } 1744 } 1745 1746 // Try to reassociate to sink a splat shuffle after a binary operation. 1747 if (Inst.isAssociative() && Inst.isCommutative()) { 1748 // Canonicalize shuffle operand as LHS. 1749 if (isa<ShuffleVectorInst>(RHS)) 1750 std::swap(LHS, RHS); 1751 1752 Value *X; 1753 ArrayRef<int> MaskC; 1754 int SplatIndex; 1755 Value *Y, *OtherOp; 1756 if (!match(LHS, 1757 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1758 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1759 X->getType() != Inst.getType() || 1760 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1761 return nullptr; 1762 1763 // FIXME: This may not be safe if the analysis allows undef elements. By 1764 // moving 'Y' before the splat shuffle, we are implicitly assuming 1765 // that it is not undef/poison at the splat index. 1766 if (isSplatValue(OtherOp, SplatIndex)) { 1767 std::swap(Y, OtherOp); 1768 } else if (!isSplatValue(Y, SplatIndex)) { 1769 return nullptr; 1770 } 1771 1772 // X and Y are splatted values, so perform the binary operation on those 1773 // values followed by a splat followed by the 2nd binary operation: 1774 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1775 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1776 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1777 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1778 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1779 1780 // Intersect FMF on both new binops. Other (poison-generating) flags are 1781 // dropped to be safe. 1782 if (isa<FPMathOperator>(R)) { 1783 R->copyFastMathFlags(&Inst); 1784 R->andIRFlags(RHS); 1785 } 1786 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1787 NewInstBO->copyIRFlags(R); 1788 return R; 1789 } 1790 1791 return nullptr; 1792 } 1793 1794 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1795 /// of a value. This requires a potentially expensive known bits check to make 1796 /// sure the narrow op does not overflow. 1797 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1798 // We need at least one extended operand. 1799 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1800 1801 // If this is a sub, we swap the operands since we always want an extension 1802 // on the RHS. The LHS can be an extension or a constant. 1803 if (BO.getOpcode() == Instruction::Sub) 1804 std::swap(Op0, Op1); 1805 1806 Value *X; 1807 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1808 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1809 return nullptr; 1810 1811 // If both operands are the same extension from the same source type and we 1812 // can eliminate at least one (hasOneUse), this might work. 1813 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1814 Value *Y; 1815 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1816 cast<Operator>(Op1)->getOpcode() == CastOpc && 1817 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1818 // If that did not match, see if we have a suitable constant operand. 1819 // Truncating and extending must produce the same constant. 1820 Constant *WideC; 1821 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1822 return nullptr; 1823 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1824 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1825 return nullptr; 1826 Y = NarrowC; 1827 } 1828 1829 // Swap back now that we found our operands. 1830 if (BO.getOpcode() == Instruction::Sub) 1831 std::swap(X, Y); 1832 1833 // Both operands have narrow versions. Last step: the math must not overflow 1834 // in the narrow width. 1835 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1836 return nullptr; 1837 1838 // bo (ext X), (ext Y) --> ext (bo X, Y) 1839 // bo (ext X), C --> ext (bo X, C') 1840 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1841 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1842 if (IsSext) 1843 NewBinOp->setHasNoSignedWrap(); 1844 else 1845 NewBinOp->setHasNoUnsignedWrap(); 1846 } 1847 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1848 } 1849 1850 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 1851 // At least one GEP must be inbounds. 1852 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 1853 return false; 1854 1855 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 1856 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 1857 } 1858 1859 /// Thread a GEP operation with constant indices through the constant true/false 1860 /// arms of a select. 1861 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 1862 InstCombiner::BuilderTy &Builder) { 1863 if (!GEP.hasAllConstantIndices()) 1864 return nullptr; 1865 1866 Instruction *Sel; 1867 Value *Cond; 1868 Constant *TrueC, *FalseC; 1869 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 1870 !match(Sel, 1871 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 1872 return nullptr; 1873 1874 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 1875 // Propagate 'inbounds' and metadata from existing instructions. 1876 // Note: using IRBuilder to create the constants for efficiency. 1877 SmallVector<Value *, 4> IndexC(GEP.indices()); 1878 bool IsInBounds = GEP.isInBounds(); 1879 Type *Ty = GEP.getSourceElementType(); 1880 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC) 1881 : Builder.CreateGEP(Ty, TrueC, IndexC); 1882 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC) 1883 : Builder.CreateGEP(Ty, FalseC, IndexC); 1884 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 1885 } 1886 1887 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1888 SmallVector<Value *, 8> Ops(GEP.operands()); 1889 Type *GEPType = GEP.getType(); 1890 Type *GEPEltType = GEP.getSourceElementType(); 1891 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); 1892 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(), 1893 SQ.getWithInstruction(&GEP))) 1894 return replaceInstUsesWith(GEP, V); 1895 1896 // For vector geps, use the generic demanded vector support. 1897 // Skip if GEP return type is scalable. The number of elements is unknown at 1898 // compile-time. 1899 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 1900 auto VWidth = GEPFVTy->getNumElements(); 1901 APInt UndefElts(VWidth, 0); 1902 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1903 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1904 UndefElts)) { 1905 if (V != &GEP) 1906 return replaceInstUsesWith(GEP, V); 1907 return &GEP; 1908 } 1909 1910 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1911 // possible (decide on canonical form for pointer broadcast), 3) exploit 1912 // undef elements to decrease demanded bits 1913 } 1914 1915 Value *PtrOp = GEP.getOperand(0); 1916 1917 // Eliminate unneeded casts for indices, and replace indices which displace 1918 // by multiples of a zero size type with zero. 1919 bool MadeChange = false; 1920 1921 // Index width may not be the same width as pointer width. 1922 // Data layout chooses the right type based on supported integer types. 1923 Type *NewScalarIndexTy = 1924 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1925 1926 gep_type_iterator GTI = gep_type_begin(GEP); 1927 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1928 ++I, ++GTI) { 1929 // Skip indices into struct types. 1930 if (GTI.isStruct()) 1931 continue; 1932 1933 Type *IndexTy = (*I)->getType(); 1934 Type *NewIndexType = 1935 IndexTy->isVectorTy() 1936 ? VectorType::get(NewScalarIndexTy, 1937 cast<VectorType>(IndexTy)->getElementCount()) 1938 : NewScalarIndexTy; 1939 1940 // If the element type has zero size then any index over it is equivalent 1941 // to an index of zero, so replace it with zero if it is not zero already. 1942 Type *EltTy = GTI.getIndexedType(); 1943 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 1944 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1945 *I = Constant::getNullValue(NewIndexType); 1946 MadeChange = true; 1947 } 1948 1949 if (IndexTy != NewIndexType) { 1950 // If we are using a wider index than needed for this platform, shrink 1951 // it to what we need. If narrower, sign-extend it to what we need. 1952 // This explicit cast can make subsequent optimizations more obvious. 1953 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1954 MadeChange = true; 1955 } 1956 } 1957 if (MadeChange) 1958 return &GEP; 1959 1960 // Check to see if the inputs to the PHI node are getelementptr instructions. 1961 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1962 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1963 if (!Op1) 1964 return nullptr; 1965 1966 // Don't fold a GEP into itself through a PHI node. This can only happen 1967 // through the back-edge of a loop. Folding a GEP into itself means that 1968 // the value of the previous iteration needs to be stored in the meantime, 1969 // thus requiring an additional register variable to be live, but not 1970 // actually achieving anything (the GEP still needs to be executed once per 1971 // loop iteration). 1972 if (Op1 == &GEP) 1973 return nullptr; 1974 1975 int DI = -1; 1976 1977 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1978 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1979 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1980 return nullptr; 1981 1982 // As for Op1 above, don't try to fold a GEP into itself. 1983 if (Op2 == &GEP) 1984 return nullptr; 1985 1986 // Keep track of the type as we walk the GEP. 1987 Type *CurTy = nullptr; 1988 1989 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1990 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1991 return nullptr; 1992 1993 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1994 if (DI == -1) { 1995 // We have not seen any differences yet in the GEPs feeding the 1996 // PHI yet, so we record this one if it is allowed to be a 1997 // variable. 1998 1999 // The first two arguments can vary for any GEP, the rest have to be 2000 // static for struct slots 2001 if (J > 1) { 2002 assert(CurTy && "No current type?"); 2003 if (CurTy->isStructTy()) 2004 return nullptr; 2005 } 2006 2007 DI = J; 2008 } else { 2009 // The GEP is different by more than one input. While this could be 2010 // extended to support GEPs that vary by more than one variable it 2011 // doesn't make sense since it greatly increases the complexity and 2012 // would result in an R+R+R addressing mode which no backend 2013 // directly supports and would need to be broken into several 2014 // simpler instructions anyway. 2015 return nullptr; 2016 } 2017 } 2018 2019 // Sink down a layer of the type for the next iteration. 2020 if (J > 0) { 2021 if (J == 1) { 2022 CurTy = Op1->getSourceElementType(); 2023 } else { 2024 CurTy = 2025 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2026 } 2027 } 2028 } 2029 } 2030 2031 // If not all GEPs are identical we'll have to create a new PHI node. 2032 // Check that the old PHI node has only one use so that it will get 2033 // removed. 2034 if (DI != -1 && !PN->hasOneUse()) 2035 return nullptr; 2036 2037 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2038 if (DI == -1) { 2039 // All the GEPs feeding the PHI are identical. Clone one down into our 2040 // BB so that it can be merged with the current GEP. 2041 } else { 2042 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2043 // into the current block so it can be merged, and create a new PHI to 2044 // set that index. 2045 PHINode *NewPN; 2046 { 2047 IRBuilderBase::InsertPointGuard Guard(Builder); 2048 Builder.SetInsertPoint(PN); 2049 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2050 PN->getNumOperands()); 2051 } 2052 2053 for (auto &I : PN->operands()) 2054 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2055 PN->getIncomingBlock(I)); 2056 2057 NewGEP->setOperand(DI, NewPN); 2058 } 2059 2060 GEP.getParent()->getInstList().insert( 2061 GEP.getParent()->getFirstInsertionPt(), NewGEP); 2062 replaceOperand(GEP, 0, NewGEP); 2063 PtrOp = NewGEP; 2064 } 2065 2066 // Combine Indices - If the source pointer to this getelementptr instruction 2067 // is a getelementptr instruction, combine the indices of the two 2068 // getelementptr instructions into a single instruction. 2069 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 2070 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2071 return nullptr; 2072 2073 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 2074 Src->hasOneUse()) { 2075 Value *GO1 = GEP.getOperand(1); 2076 Value *SO1 = Src->getOperand(1); 2077 2078 if (LI) { 2079 // Try to reassociate loop invariant GEP chains to enable LICM. 2080 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 2081 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 2082 // invariant: this breaks the dependence between GEPs and allows LICM 2083 // to hoist the invariant part out of the loop. 2084 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 2085 // We have to be careful here. 2086 // We have something like: 2087 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 2088 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 2089 // If we just swap idx & idx2 then we could inadvertantly 2090 // change %src from a vector to a scalar, or vice versa. 2091 // Cases: 2092 // 1) %base a scalar & idx a scalar & idx2 a vector 2093 // => Swapping idx & idx2 turns %src into a vector type. 2094 // 2) %base a scalar & idx a vector & idx2 a scalar 2095 // => Swapping idx & idx2 turns %src in a scalar type 2096 // 3) %base, %idx, and %idx2 are scalars 2097 // => %src & %gep are scalars 2098 // => swapping idx & idx2 is safe 2099 // 4) %base a vector 2100 // => %src is a vector 2101 // => swapping idx & idx2 is safe. 2102 auto *SO0 = Src->getOperand(0); 2103 auto *SO0Ty = SO0->getType(); 2104 if (!isa<VectorType>(GEPType) || // case 3 2105 isa<VectorType>(SO0Ty)) { // case 4 2106 Src->setOperand(1, GO1); 2107 GEP.setOperand(1, SO1); 2108 return &GEP; 2109 } else { 2110 // Case 1 or 2 2111 // -- have to recreate %src & %gep 2112 // put NewSrc at same location as %src 2113 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 2114 Value *NewSrc = 2115 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()); 2116 // Propagate 'inbounds' if the new source was not constant-folded. 2117 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc)) 2118 NewSrcGEPI->setIsInBounds(Src->isInBounds()); 2119 GetElementPtrInst *NewGEP = 2120 GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 2121 NewGEP->setIsInBounds(GEP.isInBounds()); 2122 return NewGEP; 2123 } 2124 } 2125 } 2126 } 2127 } 2128 2129 // Note that if our source is a gep chain itself then we wait for that 2130 // chain to be resolved before we perform this transformation. This 2131 // avoids us creating a TON of code in some cases. 2132 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 2133 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 2134 return nullptr; // Wait until our source is folded to completion. 2135 2136 SmallVector<Value*, 8> Indices; 2137 2138 // Find out whether the last index in the source GEP is a sequential idx. 2139 bool EndsWithSequential = false; 2140 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2141 I != E; ++I) 2142 EndsWithSequential = I.isSequential(); 2143 2144 // Can we combine the two pointer arithmetics offsets? 2145 if (EndsWithSequential) { 2146 // Replace: gep (gep %P, long B), long A, ... 2147 // With: T = long A+B; gep %P, T, ... 2148 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2149 Value *GO1 = GEP.getOperand(1); 2150 2151 // If they aren't the same type, then the input hasn't been processed 2152 // by the loop above yet (which canonicalizes sequential index types to 2153 // intptr_t). Just avoid transforming this until the input has been 2154 // normalized. 2155 if (SO1->getType() != GO1->getType()) 2156 return nullptr; 2157 2158 Value *Sum = 2159 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2160 // Only do the combine when we are sure the cost after the 2161 // merge is never more than that before the merge. 2162 if (Sum == nullptr) 2163 return nullptr; 2164 2165 // Update the GEP in place if possible. 2166 if (Src->getNumOperands() == 2) { 2167 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2168 replaceOperand(GEP, 0, Src->getOperand(0)); 2169 replaceOperand(GEP, 1, Sum); 2170 return &GEP; 2171 } 2172 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2173 Indices.push_back(Sum); 2174 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2175 } else if (isa<Constant>(*GEP.idx_begin()) && 2176 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2177 Src->getNumOperands() != 1) { 2178 // Otherwise we can do the fold if the first index of the GEP is a zero 2179 Indices.append(Src->op_begin()+1, Src->op_end()); 2180 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2181 } 2182 2183 if (!Indices.empty()) 2184 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) 2185 ? GetElementPtrInst::CreateInBounds( 2186 Src->getSourceElementType(), Src->getOperand(0), Indices, 2187 GEP.getName()) 2188 : GetElementPtrInst::Create(Src->getSourceElementType(), 2189 Src->getOperand(0), Indices, 2190 GEP.getName()); 2191 } 2192 2193 // Skip if GEP source element type is scalable. The type alloc size is unknown 2194 // at compile-time. 2195 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2196 unsigned AS = GEP.getPointerAddressSpace(); 2197 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2198 DL.getIndexSizeInBits(AS)) { 2199 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2200 2201 bool Matched = false; 2202 uint64_t C; 2203 Value *V = nullptr; 2204 if (TyAllocSize == 1) { 2205 V = GEP.getOperand(1); 2206 Matched = true; 2207 } else if (match(GEP.getOperand(1), 2208 m_AShr(m_Value(V), m_ConstantInt(C)))) { 2209 if (TyAllocSize == 1ULL << C) 2210 Matched = true; 2211 } else if (match(GEP.getOperand(1), 2212 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 2213 if (TyAllocSize == C) 2214 Matched = true; 2215 } 2216 2217 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but 2218 // only if both point to the same underlying object (otherwise provenance 2219 // is not necessarily retained). 2220 Value *Y; 2221 Value *X = GEP.getOperand(0); 2222 if (Matched && 2223 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2224 getUnderlyingObject(X) == getUnderlyingObject(Y)) 2225 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 2226 } 2227 } 2228 2229 // We do not handle pointer-vector geps here. 2230 if (GEPType->isVectorTy()) 2231 return nullptr; 2232 2233 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 2234 Value *StrippedPtr = PtrOp->stripPointerCasts(); 2235 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 2236 2237 if (StrippedPtr != PtrOp) { 2238 bool HasZeroPointerIndex = false; 2239 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 2240 2241 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 2242 HasZeroPointerIndex = C->isZero(); 2243 2244 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 2245 // into : GEP [10 x i8]* X, i32 0, ... 2246 // 2247 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 2248 // into : GEP i8* X, ... 2249 // 2250 // This occurs when the program declares an array extern like "int X[];" 2251 if (HasZeroPointerIndex) { 2252 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 2253 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 2254 if (CATy->getElementType() == StrippedPtrEltTy) { 2255 // -> GEP i8* X, ... 2256 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); 2257 GetElementPtrInst *Res = GetElementPtrInst::Create( 2258 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 2259 Res->setIsInBounds(GEP.isInBounds()); 2260 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 2261 return Res; 2262 // Insert Res, and create an addrspacecast. 2263 // e.g., 2264 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 2265 // -> 2266 // %0 = GEP i8 addrspace(1)* X, ... 2267 // addrspacecast i8 addrspace(1)* %0 to i8* 2268 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 2269 } 2270 2271 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 2272 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2273 if (CATy->getElementType() == XATy->getElementType()) { 2274 // -> GEP [10 x i8]* X, i32 0, ... 2275 // At this point, we know that the cast source type is a pointer 2276 // to an array of the same type as the destination pointer 2277 // array. Because the array type is never stepped over (there 2278 // is a leading zero) we can fold the cast into this GEP. 2279 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2280 GEP.setSourceElementType(XATy); 2281 return replaceOperand(GEP, 0, StrippedPtr); 2282 } 2283 // Cannot replace the base pointer directly because StrippedPtr's 2284 // address space is different. Instead, create a new GEP followed by 2285 // an addrspacecast. 2286 // e.g., 2287 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2288 // i32 0, ... 2289 // -> 2290 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2291 // addrspacecast i8 addrspace(1)* %0 to i8* 2292 SmallVector<Value *, 8> Idx(GEP.indices()); 2293 Value *NewGEP = 2294 GEP.isInBounds() 2295 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2296 Idx, GEP.getName()) 2297 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2298 GEP.getName()); 2299 return new AddrSpaceCastInst(NewGEP, GEPType); 2300 } 2301 } 2302 } 2303 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { 2304 // Skip if GEP source element type is scalable. The type alloc size is 2305 // unknown at compile-time. 2306 // Transform things like: %t = getelementptr i32* 2307 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 2308 // x i32]* %str, i32 0, i32 %V; bitcast 2309 if (StrippedPtrEltTy->isArrayTy() && 2310 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2311 DL.getTypeAllocSize(GEPEltType)) { 2312 Type *IdxType = DL.getIndexType(GEPType); 2313 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2314 Value *NewGEP = 2315 GEP.isInBounds() 2316 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2317 GEP.getName()) 2318 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2319 GEP.getName()); 2320 2321 // V and GEP are both pointer types --> BitCast 2322 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2323 } 2324 2325 // Transform things like: 2326 // %V = mul i64 %N, 4 2327 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2328 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2329 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2330 // Check that changing the type amounts to dividing the index by a scale 2331 // factor. 2332 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2333 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); 2334 if (ResSize && SrcSize % ResSize == 0) { 2335 Value *Idx = GEP.getOperand(1); 2336 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2337 uint64_t Scale = SrcSize / ResSize; 2338 2339 // Earlier transforms ensure that the index has the right type 2340 // according to Data Layout, which considerably simplifies the 2341 // logic by eliminating implicit casts. 2342 assert(Idx->getType() == DL.getIndexType(GEPType) && 2343 "Index type does not match the Data Layout preferences"); 2344 2345 bool NSW; 2346 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2347 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2348 // If the multiplication NewIdx * Scale may overflow then the new 2349 // GEP may not be "inbounds". 2350 Value *NewGEP = 2351 GEP.isInBounds() && NSW 2352 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2353 NewIdx, GEP.getName()) 2354 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2355 GEP.getName()); 2356 2357 // The NewGEP must be pointer typed, so must the old one -> BitCast 2358 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2359 GEPType); 2360 } 2361 } 2362 } 2363 2364 // Similarly, transform things like: 2365 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2366 // (where tmp = 8*tmp2) into: 2367 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2368 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2369 StrippedPtrEltTy->isArrayTy()) { 2370 // Check that changing to the array element type amounts to dividing the 2371 // index by a scale factor. 2372 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); 2373 uint64_t ArrayEltSize = 2374 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) 2375 .getFixedSize(); 2376 if (ResSize && ArrayEltSize % ResSize == 0) { 2377 Value *Idx = GEP.getOperand(1); 2378 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2379 uint64_t Scale = ArrayEltSize / ResSize; 2380 2381 // Earlier transforms ensure that the index has the right type 2382 // according to the Data Layout, which considerably simplifies 2383 // the logic by eliminating implicit casts. 2384 assert(Idx->getType() == DL.getIndexType(GEPType) && 2385 "Index type does not match the Data Layout preferences"); 2386 2387 bool NSW; 2388 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2389 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2390 // If the multiplication NewIdx * Scale may overflow then the new 2391 // GEP may not be "inbounds". 2392 Type *IndTy = DL.getIndexType(GEPType); 2393 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2394 2395 Value *NewGEP = 2396 GEP.isInBounds() && NSW 2397 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2398 Off, GEP.getName()) 2399 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2400 GEP.getName()); 2401 // The NewGEP must be pointer typed, so must the old one -> BitCast 2402 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2403 GEPType); 2404 } 2405 } 2406 } 2407 } 2408 } 2409 2410 // addrspacecast between types is canonicalized as a bitcast, then an 2411 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2412 // through the addrspacecast. 2413 Value *ASCStrippedPtrOp = PtrOp; 2414 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2415 // X = bitcast A addrspace(1)* to B addrspace(1)* 2416 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2417 // Z = gep Y, <...constant indices...> 2418 // Into an addrspacecasted GEP of the struct. 2419 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2420 ASCStrippedPtrOp = BC; 2421 } 2422 2423 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2424 Value *SrcOp = BCI->getOperand(0); 2425 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2426 Type *SrcEltType = SrcType->getElementType(); 2427 2428 // GEP directly using the source operand if this GEP is accessing an element 2429 // of a bitcasted pointer to vector or array of the same dimensions: 2430 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2431 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2432 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, 2433 const DataLayout &DL) { 2434 auto *VecVTy = cast<FixedVectorType>(VecTy); 2435 return ArrTy->getArrayElementType() == VecVTy->getElementType() && 2436 ArrTy->getArrayNumElements() == VecVTy->getNumElements() && 2437 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); 2438 }; 2439 if (GEP.getNumOperands() == 3 && 2440 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && 2441 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || 2442 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && 2443 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { 2444 2445 // Create a new GEP here, as using `setOperand()` followed by 2446 // `setSourceElementType()` won't actually update the type of the 2447 // existing GEP Value. Causing issues if this Value is accessed when 2448 // constructing an AddrSpaceCastInst 2449 Value *NGEP = 2450 GEP.isInBounds() 2451 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2452 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2453 NGEP->takeName(&GEP); 2454 2455 // Preserve GEP address space to satisfy users 2456 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2457 return new AddrSpaceCastInst(NGEP, GEPType); 2458 2459 return replaceInstUsesWith(GEP, NGEP); 2460 } 2461 2462 // See if we can simplify: 2463 // X = bitcast A* to B* 2464 // Y = gep X, <...constant indices...> 2465 // into a gep of the original struct. This is important for SROA and alias 2466 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2467 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2468 APInt Offset(OffsetBits, 0); 2469 2470 // If the bitcast argument is an allocation, The bitcast is for convertion 2471 // to actual type of allocation. Removing such bitcasts, results in having 2472 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of 2473 // struct or array hierarchy. 2474 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have 2475 // a better chance to succeed. 2476 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) && 2477 !isAllocationFn(SrcOp, &TLI)) { 2478 // If this GEP instruction doesn't move the pointer, just replace the GEP 2479 // with a bitcast of the real input to the dest type. 2480 if (!Offset) { 2481 // If the bitcast is of an allocation, and the allocation will be 2482 // converted to match the type of the cast, don't touch this. 2483 if (isa<AllocaInst>(SrcOp)) { 2484 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2485 if (Instruction *I = visitBitCast(*BCI)) { 2486 if (I != BCI) { 2487 I->takeName(BCI); 2488 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2489 replaceInstUsesWith(*BCI, I); 2490 } 2491 return &GEP; 2492 } 2493 } 2494 2495 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2496 return new AddrSpaceCastInst(SrcOp, GEPType); 2497 return new BitCastInst(SrcOp, GEPType); 2498 } 2499 2500 // Otherwise, if the offset is non-zero, we need to find out if there is a 2501 // field at Offset in 'A's type. If so, we can pull the cast through the 2502 // GEP. 2503 SmallVector<Value*, 8> NewIndices; 2504 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2505 Value *NGEP = 2506 GEP.isInBounds() 2507 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2508 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2509 2510 if (NGEP->getType() == GEPType) 2511 return replaceInstUsesWith(GEP, NGEP); 2512 NGEP->takeName(&GEP); 2513 2514 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2515 return new AddrSpaceCastInst(NGEP, GEPType); 2516 return new BitCastInst(NGEP, GEPType); 2517 } 2518 } 2519 } 2520 2521 if (!GEP.isInBounds()) { 2522 unsigned IdxWidth = 2523 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2524 APInt BasePtrOffset(IdxWidth, 0); 2525 Value *UnderlyingPtrOp = 2526 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2527 BasePtrOffset); 2528 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2529 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2530 BasePtrOffset.isNonNegative()) { 2531 APInt AllocSize( 2532 IdxWidth, 2533 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); 2534 if (BasePtrOffset.ule(AllocSize)) { 2535 return GetElementPtrInst::CreateInBounds( 2536 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2537 GEP.getName()); 2538 } 2539 } 2540 } 2541 } 2542 2543 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2544 return R; 2545 2546 return nullptr; 2547 } 2548 2549 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2550 Instruction *AI) { 2551 if (isa<ConstantPointerNull>(V)) 2552 return true; 2553 if (auto *LI = dyn_cast<LoadInst>(V)) 2554 return isa<GlobalVariable>(LI->getPointerOperand()); 2555 // Two distinct allocations will never be equal. 2556 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2557 // through bitcasts of V can cause 2558 // the result statement below to be true, even when AI and V (ex: 2559 // i8* ->i32* ->i8* of AI) are the same allocations. 2560 return isAllocLikeFn(V, &TLI) && V != AI; 2561 } 2562 2563 /// Given a call CB which uses an address UsedV, return true if we can prove the 2564 /// call's only possible effect is storing to V. 2565 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2566 const TargetLibraryInfo &TLI) { 2567 if (!CB.use_empty()) 2568 // TODO: add recursion if returned attribute is present 2569 return false; 2570 2571 if (CB.isTerminator()) 2572 // TODO: remove implementation restriction 2573 return false; 2574 2575 if (!CB.willReturn() || !CB.doesNotThrow()) 2576 return false; 2577 2578 // If the only possible side effect of the call is writing to the alloca, 2579 // and the result isn't used, we can safely remove any reads implied by the 2580 // call including those which might read the alloca itself. 2581 Optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2582 return Dest && Dest->Ptr == UsedV; 2583 } 2584 2585 static bool isAllocSiteRemovable(Instruction *AI, 2586 SmallVectorImpl<WeakTrackingVH> &Users, 2587 const TargetLibraryInfo &TLI) { 2588 SmallVector<Instruction*, 4> Worklist; 2589 Worklist.push_back(AI); 2590 2591 do { 2592 Instruction *PI = Worklist.pop_back_val(); 2593 for (User *U : PI->users()) { 2594 Instruction *I = cast<Instruction>(U); 2595 switch (I->getOpcode()) { 2596 default: 2597 // Give up the moment we see something we can't handle. 2598 return false; 2599 2600 case Instruction::AddrSpaceCast: 2601 case Instruction::BitCast: 2602 case Instruction::GetElementPtr: 2603 Users.emplace_back(I); 2604 Worklist.push_back(I); 2605 continue; 2606 2607 case Instruction::ICmp: { 2608 ICmpInst *ICI = cast<ICmpInst>(I); 2609 // We can fold eq/ne comparisons with null to false/true, respectively. 2610 // We also fold comparisons in some conditions provided the alloc has 2611 // not escaped (see isNeverEqualToUnescapedAlloc). 2612 if (!ICI->isEquality()) 2613 return false; 2614 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2615 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2616 return false; 2617 Users.emplace_back(I); 2618 continue; 2619 } 2620 2621 case Instruction::Call: 2622 // Ignore no-op and store intrinsics. 2623 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2624 switch (II->getIntrinsicID()) { 2625 default: 2626 return false; 2627 2628 case Intrinsic::memmove: 2629 case Intrinsic::memcpy: 2630 case Intrinsic::memset: { 2631 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2632 if (MI->isVolatile() || MI->getRawDest() != PI) 2633 return false; 2634 LLVM_FALLTHROUGH; 2635 } 2636 case Intrinsic::assume: 2637 case Intrinsic::invariant_start: 2638 case Intrinsic::invariant_end: 2639 case Intrinsic::lifetime_start: 2640 case Intrinsic::lifetime_end: 2641 case Intrinsic::objectsize: 2642 Users.emplace_back(I); 2643 continue; 2644 case Intrinsic::launder_invariant_group: 2645 case Intrinsic::strip_invariant_group: 2646 Users.emplace_back(I); 2647 Worklist.push_back(I); 2648 continue; 2649 } 2650 } 2651 2652 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2653 Users.emplace_back(I); 2654 continue; 2655 } 2656 2657 if (isFreeCall(I, &TLI)) { 2658 Users.emplace_back(I); 2659 continue; 2660 } 2661 2662 if (isReallocLikeFn(I, &TLI, true)) { 2663 Users.emplace_back(I); 2664 Worklist.push_back(I); 2665 continue; 2666 } 2667 2668 return false; 2669 2670 case Instruction::Store: { 2671 StoreInst *SI = cast<StoreInst>(I); 2672 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2673 return false; 2674 Users.emplace_back(I); 2675 continue; 2676 } 2677 } 2678 llvm_unreachable("missing a return?"); 2679 } 2680 } while (!Worklist.empty()); 2681 return true; 2682 } 2683 2684 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2685 // If we have a malloc call which is only used in any amount of comparisons to 2686 // null and free calls, delete the calls and replace the comparisons with true 2687 // or false as appropriate. 2688 2689 // This is based on the principle that we can substitute our own allocation 2690 // function (which will never return null) rather than knowledge of the 2691 // specific function being called. In some sense this can change the permitted 2692 // outputs of a program (when we convert a malloc to an alloca, the fact that 2693 // the allocation is now on the stack is potentially visible, for example), 2694 // but we believe in a permissible manner. 2695 SmallVector<WeakTrackingVH, 64> Users; 2696 2697 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2698 // before each store. 2699 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2700 std::unique_ptr<DIBuilder> DIB; 2701 if (isa<AllocaInst>(MI)) { 2702 findDbgUsers(DVIs, &MI); 2703 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2704 } 2705 2706 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2707 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2708 // Lowering all @llvm.objectsize calls first because they may 2709 // use a bitcast/GEP of the alloca we are removing. 2710 if (!Users[i]) 2711 continue; 2712 2713 Instruction *I = cast<Instruction>(&*Users[i]); 2714 2715 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2716 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2717 Value *Result = 2718 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2719 replaceInstUsesWith(*I, Result); 2720 eraseInstFromFunction(*I); 2721 Users[i] = nullptr; // Skip examining in the next loop. 2722 } 2723 } 2724 } 2725 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2726 if (!Users[i]) 2727 continue; 2728 2729 Instruction *I = cast<Instruction>(&*Users[i]); 2730 2731 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2732 replaceInstUsesWith(*C, 2733 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2734 C->isFalseWhenEqual())); 2735 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2736 for (auto *DVI : DVIs) 2737 if (DVI->isAddressOfVariable()) 2738 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2739 } else { 2740 // Casts, GEP, or anything else: we're about to delete this instruction, 2741 // so it can not have any valid uses. 2742 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2743 } 2744 eraseInstFromFunction(*I); 2745 } 2746 2747 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2748 // Replace invoke with a NOP intrinsic to maintain the original CFG 2749 Module *M = II->getModule(); 2750 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2751 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2752 None, "", II->getParent()); 2753 } 2754 2755 // Remove debug intrinsics which describe the value contained within the 2756 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2757 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2758 // 2759 // ``` 2760 // define void @foo(i32 %0) { 2761 // %a = alloca i32 ; Deleted. 2762 // store i32 %0, i32* %a 2763 // dbg.value(i32 %0, "arg0") ; Not deleted. 2764 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2765 // call void @trivially_inlinable_no_op(i32* %a) 2766 // ret void 2767 // } 2768 // ``` 2769 // 2770 // This may not be required if we stop describing the contents of allocas 2771 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2772 // the LowerDbgDeclare utility. 2773 // 2774 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2775 // "arg0" dbg.value may be stale after the call. However, failing to remove 2776 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2777 for (auto *DVI : DVIs) 2778 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2779 DVI->eraseFromParent(); 2780 2781 return eraseInstFromFunction(MI); 2782 } 2783 return nullptr; 2784 } 2785 2786 /// Move the call to free before a NULL test. 2787 /// 2788 /// Check if this free is accessed after its argument has been test 2789 /// against NULL (property 0). 2790 /// If yes, it is legal to move this call in its predecessor block. 2791 /// 2792 /// The move is performed only if the block containing the call to free 2793 /// will be removed, i.e.: 2794 /// 1. it has only one predecessor P, and P has two successors 2795 /// 2. it contains the call, noops, and an unconditional branch 2796 /// 3. its successor is the same as its predecessor's successor 2797 /// 2798 /// The profitability is out-of concern here and this function should 2799 /// be called only if the caller knows this transformation would be 2800 /// profitable (e.g., for code size). 2801 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2802 const DataLayout &DL) { 2803 Value *Op = FI.getArgOperand(0); 2804 BasicBlock *FreeInstrBB = FI.getParent(); 2805 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2806 2807 // Validate part of constraint #1: Only one predecessor 2808 // FIXME: We can extend the number of predecessor, but in that case, we 2809 // would duplicate the call to free in each predecessor and it may 2810 // not be profitable even for code size. 2811 if (!PredBB) 2812 return nullptr; 2813 2814 // Validate constraint #2: Does this block contains only the call to 2815 // free, noops, and an unconditional branch? 2816 BasicBlock *SuccBB; 2817 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2818 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2819 return nullptr; 2820 2821 // If there are only 2 instructions in the block, at this point, 2822 // this is the call to free and unconditional. 2823 // If there are more than 2 instructions, check that they are noops 2824 // i.e., they won't hurt the performance of the generated code. 2825 if (FreeInstrBB->size() != 2) { 2826 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2827 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2828 continue; 2829 auto *Cast = dyn_cast<CastInst>(&Inst); 2830 if (!Cast || !Cast->isNoopCast(DL)) 2831 return nullptr; 2832 } 2833 } 2834 // Validate the rest of constraint #1 by matching on the pred branch. 2835 Instruction *TI = PredBB->getTerminator(); 2836 BasicBlock *TrueBB, *FalseBB; 2837 ICmpInst::Predicate Pred; 2838 if (!match(TI, m_Br(m_ICmp(Pred, 2839 m_CombineOr(m_Specific(Op), 2840 m_Specific(Op->stripPointerCasts())), 2841 m_Zero()), 2842 TrueBB, FalseBB))) 2843 return nullptr; 2844 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2845 return nullptr; 2846 2847 // Validate constraint #3: Ensure the null case just falls through. 2848 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2849 return nullptr; 2850 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2851 "Broken CFG: missing edge from predecessor to successor"); 2852 2853 // At this point, we know that everything in FreeInstrBB can be moved 2854 // before TI. 2855 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2856 if (&Instr == FreeInstrBBTerminator) 2857 break; 2858 Instr.moveBefore(TI); 2859 } 2860 assert(FreeInstrBB->size() == 1 && 2861 "Only the branch instruction should remain"); 2862 2863 // Now that we've moved the call to free before the NULL check, we have to 2864 // remove any attributes on its parameter that imply it's non-null, because 2865 // those attributes might have only been valid because of the NULL check, and 2866 // we can get miscompiles if we keep them. This is conservative if non-null is 2867 // also implied by something other than the NULL check, but it's guaranteed to 2868 // be correct, and the conservativeness won't matter in practice, since the 2869 // attributes are irrelevant for the call to free itself and the pointer 2870 // shouldn't be used after the call. 2871 AttributeList Attrs = FI.getAttributes(); 2872 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2873 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2874 if (Dereferenceable.isValid()) { 2875 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2876 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2877 Attribute::Dereferenceable); 2878 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2879 } 2880 FI.setAttributes(Attrs); 2881 2882 return &FI; 2883 } 2884 2885 Instruction *InstCombinerImpl::visitFree(CallInst &FI) { 2886 Value *Op = FI.getArgOperand(0); 2887 2888 // free undef -> unreachable. 2889 if (isa<UndefValue>(Op)) { 2890 // Leave a marker since we can't modify the CFG here. 2891 CreateNonTerminatorUnreachable(&FI); 2892 return eraseInstFromFunction(FI); 2893 } 2894 2895 // If we have 'free null' delete the instruction. This can happen in stl code 2896 // when lots of inlining happens. 2897 if (isa<ConstantPointerNull>(Op)) 2898 return eraseInstFromFunction(FI); 2899 2900 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2901 // realloc() entirely. 2902 if (CallInst *CI = dyn_cast<CallInst>(Op)) { 2903 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) { 2904 return eraseInstFromFunction( 2905 *replaceInstUsesWith(*CI, CI->getOperand(0))); 2906 } 2907 } 2908 2909 // If we optimize for code size, try to move the call to free before the null 2910 // test so that simplify cfg can remove the empty block and dead code 2911 // elimination the branch. I.e., helps to turn something like: 2912 // if (foo) free(foo); 2913 // into 2914 // free(foo); 2915 // 2916 // Note that we can only do this for 'free' and not for any flavor of 2917 // 'operator delete'; there is no 'operator delete' symbol for which we are 2918 // permitted to invent a call, even if we're passing in a null pointer. 2919 if (MinimizeSize) { 2920 LibFunc Func; 2921 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2922 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2923 return I; 2924 } 2925 2926 return nullptr; 2927 } 2928 2929 static bool isMustTailCall(Value *V) { 2930 if (auto *CI = dyn_cast<CallInst>(V)) 2931 return CI->isMustTailCall(); 2932 return false; 2933 } 2934 2935 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2936 if (RI.getNumOperands() == 0) // ret void 2937 return nullptr; 2938 2939 Value *ResultOp = RI.getOperand(0); 2940 Type *VTy = ResultOp->getType(); 2941 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) 2942 return nullptr; 2943 2944 // Don't replace result of musttail calls. 2945 if (isMustTailCall(ResultOp)) 2946 return nullptr; 2947 2948 // There might be assume intrinsics dominating this return that completely 2949 // determine the value. If so, constant fold it. 2950 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2951 if (Known.isConstant()) 2952 return replaceOperand(RI, 0, 2953 Constant::getIntegerValue(VTy, Known.getConstant())); 2954 2955 return nullptr; 2956 } 2957 2958 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2959 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 2960 // Try to remove the previous instruction if it must lead to unreachable. 2961 // This includes instructions like stores and "llvm.assume" that may not get 2962 // removed by simple dead code elimination. 2963 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 2964 // While we theoretically can erase EH, that would result in a block that 2965 // used to start with an EH no longer starting with EH, which is invalid. 2966 // To make it valid, we'd need to fixup predecessors to no longer refer to 2967 // this block, but that changes CFG, which is not allowed in InstCombine. 2968 if (Prev->isEHPad()) 2969 return nullptr; // Can not drop any more instructions. We're done here. 2970 2971 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 2972 return nullptr; // Can not drop any more instructions. We're done here. 2973 // Otherwise, this instruction can be freely erased, 2974 // even if it is not side-effect free. 2975 2976 // A value may still have uses before we process it here (for example, in 2977 // another unreachable block), so convert those to poison. 2978 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 2979 eraseInstFromFunction(*Prev); 2980 } 2981 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty."); 2982 // FIXME: recurse into unconditional predecessors? 2983 return nullptr; 2984 } 2985 2986 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 2987 assert(BI.isUnconditional() && "Only for unconditional branches."); 2988 2989 // If this store is the second-to-last instruction in the basic block 2990 // (excluding debug info and bitcasts of pointers) and if the block ends with 2991 // an unconditional branch, try to move the store to the successor block. 2992 2993 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 2994 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 2995 return BBI->isDebugOrPseudoInst() || 2996 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 2997 }; 2998 2999 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3000 do { 3001 if (BBI != FirstInstr) 3002 --BBI; 3003 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3004 3005 return dyn_cast<StoreInst>(BBI); 3006 }; 3007 3008 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3009 if (mergeStoreIntoSuccessor(*SI)) 3010 return &BI; 3011 3012 return nullptr; 3013 } 3014 3015 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3016 if (BI.isUnconditional()) 3017 return visitUnconditionalBranchInst(BI); 3018 3019 // Change br (not X), label True, label False to: br X, label False, True 3020 Value *X = nullptr; 3021 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 3022 !isa<Constant>(X)) { 3023 // Swap Destinations and condition... 3024 BI.swapSuccessors(); 3025 return replaceOperand(BI, 0, X); 3026 } 3027 3028 // If the condition is irrelevant, remove the use so that other 3029 // transforms on the condition become more effective. 3030 if (!isa<ConstantInt>(BI.getCondition()) && 3031 BI.getSuccessor(0) == BI.getSuccessor(1)) 3032 return replaceOperand( 3033 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); 3034 3035 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3036 CmpInst::Predicate Pred; 3037 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), 3038 m_BasicBlock(), m_BasicBlock())) && 3039 !isCanonicalPredicate(Pred)) { 3040 // Swap destinations and condition. 3041 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 3042 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 3043 BI.swapSuccessors(); 3044 Worklist.push(Cond); 3045 return &BI; 3046 } 3047 3048 return nullptr; 3049 } 3050 3051 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3052 Value *Cond = SI.getCondition(); 3053 Value *Op0; 3054 ConstantInt *AddRHS; 3055 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3056 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3057 for (auto Case : SI.cases()) { 3058 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3059 assert(isa<ConstantInt>(NewCase) && 3060 "Result of expression should be constant"); 3061 Case.setValue(cast<ConstantInt>(NewCase)); 3062 } 3063 return replaceOperand(SI, 0, Op0); 3064 } 3065 3066 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3067 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3068 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3069 3070 // Compute the number of leading bits we can ignore. 3071 // TODO: A better way to determine this would use ComputeNumSignBits(). 3072 for (auto &C : SI.cases()) { 3073 LeadingKnownZeros = std::min( 3074 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 3075 LeadingKnownOnes = std::min( 3076 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 3077 } 3078 3079 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3080 3081 // Shrink the condition operand if the new type is smaller than the old type. 3082 // But do not shrink to a non-standard type, because backend can't generate 3083 // good code for that yet. 3084 // TODO: We can make it aggressive again after fixing PR39569. 3085 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3086 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3087 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3088 Builder.SetInsertPoint(&SI); 3089 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3090 3091 for (auto Case : SI.cases()) { 3092 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3093 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3094 } 3095 return replaceOperand(SI, 0, NewCond); 3096 } 3097 3098 return nullptr; 3099 } 3100 3101 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3102 Value *Agg = EV.getAggregateOperand(); 3103 3104 if (!EV.hasIndices()) 3105 return replaceInstUsesWith(EV, Agg); 3106 3107 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 3108 SQ.getWithInstruction(&EV))) 3109 return replaceInstUsesWith(EV, V); 3110 3111 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3112 // We're extracting from an insertvalue instruction, compare the indices 3113 const unsigned *exti, *exte, *insi, *inse; 3114 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3115 exte = EV.idx_end(), inse = IV->idx_end(); 3116 exti != exte && insi != inse; 3117 ++exti, ++insi) { 3118 if (*insi != *exti) 3119 // The insert and extract both reference distinctly different elements. 3120 // This means the extract is not influenced by the insert, and we can 3121 // replace the aggregate operand of the extract with the aggregate 3122 // operand of the insert. i.e., replace 3123 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3124 // %E = extractvalue { i32, { i32 } } %I, 0 3125 // with 3126 // %E = extractvalue { i32, { i32 } } %A, 0 3127 return ExtractValueInst::Create(IV->getAggregateOperand(), 3128 EV.getIndices()); 3129 } 3130 if (exti == exte && insi == inse) 3131 // Both iterators are at the end: Index lists are identical. Replace 3132 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3133 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3134 // with "i32 42" 3135 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3136 if (exti == exte) { 3137 // The extract list is a prefix of the insert list. i.e. replace 3138 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3139 // %E = extractvalue { i32, { i32 } } %I, 1 3140 // with 3141 // %X = extractvalue { i32, { i32 } } %A, 1 3142 // %E = insertvalue { i32 } %X, i32 42, 0 3143 // by switching the order of the insert and extract (though the 3144 // insertvalue should be left in, since it may have other uses). 3145 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3146 EV.getIndices()); 3147 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3148 makeArrayRef(insi, inse)); 3149 } 3150 if (insi == inse) 3151 // The insert list is a prefix of the extract list 3152 // We can simply remove the common indices from the extract and make it 3153 // operate on the inserted value instead of the insertvalue result. 3154 // i.e., replace 3155 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3156 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3157 // with 3158 // %E extractvalue { i32 } { i32 42 }, 0 3159 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3160 makeArrayRef(exti, exte)); 3161 } 3162 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 3163 // We're extracting from an overflow intrinsic, see if we're the only user, 3164 // which allows us to simplify multiple result intrinsics to simpler 3165 // things that just get one value. 3166 if (WO->hasOneUse()) { 3167 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3168 // and replace it with a traditional binary instruction. 3169 if (*EV.idx_begin() == 0) { 3170 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3171 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3172 // Replace the old instruction's uses with poison. 3173 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3174 eraseInstFromFunction(*WO); 3175 return BinaryOperator::Create(BinOp, LHS, RHS); 3176 } 3177 3178 assert(*EV.idx_begin() == 1 && 3179 "unexpected extract index for overflow inst"); 3180 3181 // If only the overflow result is used, and the right hand side is a 3182 // constant (or constant splat), we can remove the intrinsic by directly 3183 // checking for overflow. 3184 const APInt *C; 3185 if (match(WO->getRHS(), m_APInt(C))) { 3186 // Compute the no-wrap range for LHS given RHS=C, then construct an 3187 // equivalent icmp, potentially using an offset. 3188 ConstantRange NWR = 3189 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 3190 WO->getNoWrapKind()); 3191 3192 CmpInst::Predicate Pred; 3193 APInt NewRHSC, Offset; 3194 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3195 auto *OpTy = WO->getRHS()->getType(); 3196 auto *NewLHS = WO->getLHS(); 3197 if (Offset != 0) 3198 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3199 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3200 ConstantInt::get(OpTy, NewRHSC)); 3201 } 3202 } 3203 } 3204 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 3205 // If the (non-volatile) load only has one use, we can rewrite this to a 3206 // load from a GEP. This reduces the size of the load. If a load is used 3207 // only by extractvalue instructions then this either must have been 3208 // optimized before, or it is a struct with padding, in which case we 3209 // don't want to do the transformation as it loses padding knowledge. 3210 if (L->isSimple() && L->hasOneUse()) { 3211 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3212 SmallVector<Value*, 4> Indices; 3213 // Prefix an i32 0 since we need the first element. 3214 Indices.push_back(Builder.getInt32(0)); 3215 for (unsigned Idx : EV.indices()) 3216 Indices.push_back(Builder.getInt32(Idx)); 3217 3218 // We need to insert these at the location of the old load, not at that of 3219 // the extractvalue. 3220 Builder.SetInsertPoint(L); 3221 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3222 L->getPointerOperand(), Indices); 3223 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3224 // Whatever aliasing information we had for the orignal load must also 3225 // hold for the smaller load, so propagate the annotations. 3226 NL->setAAMetadata(L->getAAMetadata()); 3227 // Returning the load directly will cause the main loop to insert it in 3228 // the wrong spot, so use replaceInstUsesWith(). 3229 return replaceInstUsesWith(EV, NL); 3230 } 3231 // We could simplify extracts from other values. Note that nested extracts may 3232 // already be simplified implicitly by the above: extract (extract (insert) ) 3233 // will be translated into extract ( insert ( extract ) ) first and then just 3234 // the value inserted, if appropriate. Similarly for extracts from single-use 3235 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3236 // and if again single-use then via load (gep (gep)) to load (gep). 3237 // However, double extracts from e.g. function arguments or return values 3238 // aren't handled yet. 3239 return nullptr; 3240 } 3241 3242 /// Return 'true' if the given typeinfo will match anything. 3243 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3244 switch (Personality) { 3245 case EHPersonality::GNU_C: 3246 case EHPersonality::GNU_C_SjLj: 3247 case EHPersonality::Rust: 3248 // The GCC C EH and Rust personality only exists to support cleanups, so 3249 // it's not clear what the semantics of catch clauses are. 3250 return false; 3251 case EHPersonality::Unknown: 3252 return false; 3253 case EHPersonality::GNU_Ada: 3254 // While __gnat_all_others_value will match any Ada exception, it doesn't 3255 // match foreign exceptions (or didn't, before gcc-4.7). 3256 return false; 3257 case EHPersonality::GNU_CXX: 3258 case EHPersonality::GNU_CXX_SjLj: 3259 case EHPersonality::GNU_ObjC: 3260 case EHPersonality::MSVC_X86SEH: 3261 case EHPersonality::MSVC_TableSEH: 3262 case EHPersonality::MSVC_CXX: 3263 case EHPersonality::CoreCLR: 3264 case EHPersonality::Wasm_CXX: 3265 case EHPersonality::XL_CXX: 3266 return TypeInfo->isNullValue(); 3267 } 3268 llvm_unreachable("invalid enum"); 3269 } 3270 3271 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3272 return 3273 cast<ArrayType>(LHS->getType())->getNumElements() 3274 < 3275 cast<ArrayType>(RHS->getType())->getNumElements(); 3276 } 3277 3278 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3279 // The logic here should be correct for any real-world personality function. 3280 // However if that turns out not to be true, the offending logic can always 3281 // be conditioned on the personality function, like the catch-all logic is. 3282 EHPersonality Personality = 3283 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3284 3285 // Simplify the list of clauses, eg by removing repeated catch clauses 3286 // (these are often created by inlining). 3287 bool MakeNewInstruction = false; // If true, recreate using the following: 3288 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3289 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3290 3291 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3292 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3293 bool isLastClause = i + 1 == e; 3294 if (LI.isCatch(i)) { 3295 // A catch clause. 3296 Constant *CatchClause = LI.getClause(i); 3297 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3298 3299 // If we already saw this clause, there is no point in having a second 3300 // copy of it. 3301 if (AlreadyCaught.insert(TypeInfo).second) { 3302 // This catch clause was not already seen. 3303 NewClauses.push_back(CatchClause); 3304 } else { 3305 // Repeated catch clause - drop the redundant copy. 3306 MakeNewInstruction = true; 3307 } 3308 3309 // If this is a catch-all then there is no point in keeping any following 3310 // clauses or marking the landingpad as having a cleanup. 3311 if (isCatchAll(Personality, TypeInfo)) { 3312 if (!isLastClause) 3313 MakeNewInstruction = true; 3314 CleanupFlag = false; 3315 break; 3316 } 3317 } else { 3318 // A filter clause. If any of the filter elements were already caught 3319 // then they can be dropped from the filter. It is tempting to try to 3320 // exploit the filter further by saying that any typeinfo that does not 3321 // occur in the filter can't be caught later (and thus can be dropped). 3322 // However this would be wrong, since typeinfos can match without being 3323 // equal (for example if one represents a C++ class, and the other some 3324 // class derived from it). 3325 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3326 Constant *FilterClause = LI.getClause(i); 3327 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3328 unsigned NumTypeInfos = FilterType->getNumElements(); 3329 3330 // An empty filter catches everything, so there is no point in keeping any 3331 // following clauses or marking the landingpad as having a cleanup. By 3332 // dealing with this case here the following code is made a bit simpler. 3333 if (!NumTypeInfos) { 3334 NewClauses.push_back(FilterClause); 3335 if (!isLastClause) 3336 MakeNewInstruction = true; 3337 CleanupFlag = false; 3338 break; 3339 } 3340 3341 bool MakeNewFilter = false; // If true, make a new filter. 3342 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3343 if (isa<ConstantAggregateZero>(FilterClause)) { 3344 // Not an empty filter - it contains at least one null typeinfo. 3345 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3346 Constant *TypeInfo = 3347 Constant::getNullValue(FilterType->getElementType()); 3348 // If this typeinfo is a catch-all then the filter can never match. 3349 if (isCatchAll(Personality, TypeInfo)) { 3350 // Throw the filter away. 3351 MakeNewInstruction = true; 3352 continue; 3353 } 3354 3355 // There is no point in having multiple copies of this typeinfo, so 3356 // discard all but the first copy if there is more than one. 3357 NewFilterElts.push_back(TypeInfo); 3358 if (NumTypeInfos > 1) 3359 MakeNewFilter = true; 3360 } else { 3361 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3362 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3363 NewFilterElts.reserve(NumTypeInfos); 3364 3365 // Remove any filter elements that were already caught or that already 3366 // occurred in the filter. While there, see if any of the elements are 3367 // catch-alls. If so, the filter can be discarded. 3368 bool SawCatchAll = false; 3369 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3370 Constant *Elt = Filter->getOperand(j); 3371 Constant *TypeInfo = Elt->stripPointerCasts(); 3372 if (isCatchAll(Personality, TypeInfo)) { 3373 // This element is a catch-all. Bail out, noting this fact. 3374 SawCatchAll = true; 3375 break; 3376 } 3377 3378 // Even if we've seen a type in a catch clause, we don't want to 3379 // remove it from the filter. An unexpected type handler may be 3380 // set up for a call site which throws an exception of the same 3381 // type caught. In order for the exception thrown by the unexpected 3382 // handler to propagate correctly, the filter must be correctly 3383 // described for the call site. 3384 // 3385 // Example: 3386 // 3387 // void unexpected() { throw 1;} 3388 // void foo() throw (int) { 3389 // std::set_unexpected(unexpected); 3390 // try { 3391 // throw 2.0; 3392 // } catch (int i) {} 3393 // } 3394 3395 // There is no point in having multiple copies of the same typeinfo in 3396 // a filter, so only add it if we didn't already. 3397 if (SeenInFilter.insert(TypeInfo).second) 3398 NewFilterElts.push_back(cast<Constant>(Elt)); 3399 } 3400 // A filter containing a catch-all cannot match anything by definition. 3401 if (SawCatchAll) { 3402 // Throw the filter away. 3403 MakeNewInstruction = true; 3404 continue; 3405 } 3406 3407 // If we dropped something from the filter, make a new one. 3408 if (NewFilterElts.size() < NumTypeInfos) 3409 MakeNewFilter = true; 3410 } 3411 if (MakeNewFilter) { 3412 FilterType = ArrayType::get(FilterType->getElementType(), 3413 NewFilterElts.size()); 3414 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3415 MakeNewInstruction = true; 3416 } 3417 3418 NewClauses.push_back(FilterClause); 3419 3420 // If the new filter is empty then it will catch everything so there is 3421 // no point in keeping any following clauses or marking the landingpad 3422 // as having a cleanup. The case of the original filter being empty was 3423 // already handled above. 3424 if (MakeNewFilter && !NewFilterElts.size()) { 3425 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3426 CleanupFlag = false; 3427 break; 3428 } 3429 } 3430 } 3431 3432 // If several filters occur in a row then reorder them so that the shortest 3433 // filters come first (those with the smallest number of elements). This is 3434 // advantageous because shorter filters are more likely to match, speeding up 3435 // unwinding, but mostly because it increases the effectiveness of the other 3436 // filter optimizations below. 3437 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3438 unsigned j; 3439 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3440 for (j = i; j != e; ++j) 3441 if (!isa<ArrayType>(NewClauses[j]->getType())) 3442 break; 3443 3444 // Check whether the filters are already sorted by length. We need to know 3445 // if sorting them is actually going to do anything so that we only make a 3446 // new landingpad instruction if it does. 3447 for (unsigned k = i; k + 1 < j; ++k) 3448 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3449 // Not sorted, so sort the filters now. Doing an unstable sort would be 3450 // correct too but reordering filters pointlessly might confuse users. 3451 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3452 shorter_filter); 3453 MakeNewInstruction = true; 3454 break; 3455 } 3456 3457 // Look for the next batch of filters. 3458 i = j + 1; 3459 } 3460 3461 // If typeinfos matched if and only if equal, then the elements of a filter L 3462 // that occurs later than a filter F could be replaced by the intersection of 3463 // the elements of F and L. In reality two typeinfos can match without being 3464 // equal (for example if one represents a C++ class, and the other some class 3465 // derived from it) so it would be wrong to perform this transform in general. 3466 // However the transform is correct and useful if F is a subset of L. In that 3467 // case L can be replaced by F, and thus removed altogether since repeating a 3468 // filter is pointless. So here we look at all pairs of filters F and L where 3469 // L follows F in the list of clauses, and remove L if every element of F is 3470 // an element of L. This can occur when inlining C++ functions with exception 3471 // specifications. 3472 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3473 // Examine each filter in turn. 3474 Value *Filter = NewClauses[i]; 3475 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3476 if (!FTy) 3477 // Not a filter - skip it. 3478 continue; 3479 unsigned FElts = FTy->getNumElements(); 3480 // Examine each filter following this one. Doing this backwards means that 3481 // we don't have to worry about filters disappearing under us when removed. 3482 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3483 Value *LFilter = NewClauses[j]; 3484 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3485 if (!LTy) 3486 // Not a filter - skip it. 3487 continue; 3488 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3489 // an element of LFilter, then discard LFilter. 3490 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3491 // If Filter is empty then it is a subset of LFilter. 3492 if (!FElts) { 3493 // Discard LFilter. 3494 NewClauses.erase(J); 3495 MakeNewInstruction = true; 3496 // Move on to the next filter. 3497 continue; 3498 } 3499 unsigned LElts = LTy->getNumElements(); 3500 // If Filter is longer than LFilter then it cannot be a subset of it. 3501 if (FElts > LElts) 3502 // Move on to the next filter. 3503 continue; 3504 // At this point we know that LFilter has at least one element. 3505 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3506 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3507 // already know that Filter is not longer than LFilter). 3508 if (isa<ConstantAggregateZero>(Filter)) { 3509 assert(FElts <= LElts && "Should have handled this case earlier!"); 3510 // Discard LFilter. 3511 NewClauses.erase(J); 3512 MakeNewInstruction = true; 3513 } 3514 // Move on to the next filter. 3515 continue; 3516 } 3517 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3518 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3519 // Since Filter is non-empty and contains only zeros, it is a subset of 3520 // LFilter iff LFilter contains a zero. 3521 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3522 for (unsigned l = 0; l != LElts; ++l) 3523 if (LArray->getOperand(l)->isNullValue()) { 3524 // LFilter contains a zero - discard it. 3525 NewClauses.erase(J); 3526 MakeNewInstruction = true; 3527 break; 3528 } 3529 // Move on to the next filter. 3530 continue; 3531 } 3532 // At this point we know that both filters are ConstantArrays. Loop over 3533 // operands to see whether every element of Filter is also an element of 3534 // LFilter. Since filters tend to be short this is probably faster than 3535 // using a method that scales nicely. 3536 ConstantArray *FArray = cast<ConstantArray>(Filter); 3537 bool AllFound = true; 3538 for (unsigned f = 0; f != FElts; ++f) { 3539 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3540 AllFound = false; 3541 for (unsigned l = 0; l != LElts; ++l) { 3542 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3543 if (LTypeInfo == FTypeInfo) { 3544 AllFound = true; 3545 break; 3546 } 3547 } 3548 if (!AllFound) 3549 break; 3550 } 3551 if (AllFound) { 3552 // Discard LFilter. 3553 NewClauses.erase(J); 3554 MakeNewInstruction = true; 3555 } 3556 // Move on to the next filter. 3557 } 3558 } 3559 3560 // If we changed any of the clauses, replace the old landingpad instruction 3561 // with a new one. 3562 if (MakeNewInstruction) { 3563 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3564 NewClauses.size()); 3565 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3566 NLI->addClause(NewClauses[i]); 3567 // A landing pad with no clauses must have the cleanup flag set. It is 3568 // theoretically possible, though highly unlikely, that we eliminated all 3569 // clauses. If so, force the cleanup flag to true. 3570 if (NewClauses.empty()) 3571 CleanupFlag = true; 3572 NLI->setCleanup(CleanupFlag); 3573 return NLI; 3574 } 3575 3576 // Even if none of the clauses changed, we may nonetheless have understood 3577 // that the cleanup flag is pointless. Clear it if so. 3578 if (LI.isCleanup() != CleanupFlag) { 3579 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3580 LI.setCleanup(CleanupFlag); 3581 return &LI; 3582 } 3583 3584 return nullptr; 3585 } 3586 3587 Value * 3588 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3589 // Try to push freeze through instructions that propagate but don't produce 3590 // poison as far as possible. If an operand of freeze follows three 3591 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3592 // guaranteed-non-poison operands then push the freeze through to the one 3593 // operand that is not guaranteed non-poison. The actual transform is as 3594 // follows. 3595 // Op1 = ... ; Op1 can be posion 3596 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3597 // ; single guaranteed-non-poison operands 3598 // ... = Freeze(Op0) 3599 // => 3600 // Op1 = ... 3601 // Op1.fr = Freeze(Op1) 3602 // ... = Inst(Op1.fr, NonPoisonOps...) 3603 auto *OrigOp = OrigFI.getOperand(0); 3604 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3605 3606 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3607 // potentially reduces their optimization potential, so let's only do this iff 3608 // the OrigOp is only used by the freeze. 3609 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3610 return nullptr; 3611 3612 // We can't push the freeze through an instruction which can itself create 3613 // poison. If the only source of new poison is flags, we can simply 3614 // strip them (since we know the only use is the freeze and nothing can 3615 // benefit from them.) 3616 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), /*ConsiderFlags*/ false)) 3617 return nullptr; 3618 3619 // If operand is guaranteed not to be poison, there is no need to add freeze 3620 // to the operand. So we first find the operand that is not guaranteed to be 3621 // poison. 3622 Use *MaybePoisonOperand = nullptr; 3623 for (Use &U : OrigOpInst->operands()) { 3624 if (isGuaranteedNotToBeUndefOrPoison(U.get())) 3625 continue; 3626 if (!MaybePoisonOperand) 3627 MaybePoisonOperand = &U; 3628 else 3629 return nullptr; 3630 } 3631 3632 OrigOpInst->dropPoisonGeneratingFlags(); 3633 3634 // If all operands are guaranteed to be non-poison, we can drop freeze. 3635 if (!MaybePoisonOperand) 3636 return OrigOp; 3637 3638 auto *FrozenMaybePoisonOperand = new FreezeInst( 3639 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3640 3641 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3642 FrozenMaybePoisonOperand->insertBefore(OrigOpInst); 3643 return OrigOp; 3644 } 3645 3646 bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) { 3647 Value *Op = FI.getOperand(0); 3648 3649 if (isa<Constant>(Op)) 3650 return false; 3651 3652 bool Changed = false; 3653 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3654 bool Dominates = DT.dominates(&FI, U); 3655 Changed |= Dominates; 3656 return Dominates; 3657 }); 3658 3659 return Changed; 3660 } 3661 3662 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3663 Value *Op0 = I.getOperand(0); 3664 3665 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3666 return replaceInstUsesWith(I, V); 3667 3668 // freeze (phi const, x) --> phi const, (freeze x) 3669 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3670 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3671 return NV; 3672 } 3673 3674 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3675 return replaceInstUsesWith(I, NI); 3676 3677 if (match(Op0, m_Undef())) { 3678 // If I is freeze(undef), see its uses and fold it to the best constant. 3679 // - or: pick -1 3680 // - select's condition: pick the value that leads to choosing a constant 3681 // - other ops: pick 0 3682 Constant *BestValue = nullptr; 3683 Constant *NullValue = Constant::getNullValue(I.getType()); 3684 for (const auto *U : I.users()) { 3685 Constant *C = NullValue; 3686 3687 if (match(U, m_Or(m_Value(), m_Value()))) 3688 C = Constant::getAllOnesValue(I.getType()); 3689 else if (const auto *SI = dyn_cast<SelectInst>(U)) { 3690 if (SI->getCondition() == &I) { 3691 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); 3692 C = Constant::getIntegerValue(I.getType(), CondVal); 3693 } 3694 } 3695 3696 if (!BestValue) 3697 BestValue = C; 3698 else if (BestValue != C) 3699 BestValue = NullValue; 3700 } 3701 3702 return replaceInstUsesWith(I, BestValue); 3703 } 3704 3705 // Replace all dominated uses of Op to freeze(Op). 3706 if (freezeDominatedUses(I)) 3707 return &I; 3708 3709 return nullptr; 3710 } 3711 3712 /// Try to move the specified instruction from its current block into the 3713 /// beginning of DestBlock, which can only happen if it's safe to move the 3714 /// instruction past all of the instructions between it and the end of its 3715 /// block. 3716 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3717 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!"); 3718 BasicBlock *SrcBlock = I->getParent(); 3719 3720 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3721 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3722 I->isTerminator()) 3723 return false; 3724 3725 // Do not sink static or dynamic alloca instructions. Static allocas must 3726 // remain in the entry block, and dynamic allocas must not be sunk in between 3727 // a stacksave / stackrestore pair, which would incorrectly shorten its 3728 // lifetime. 3729 if (isa<AllocaInst>(I)) 3730 return false; 3731 3732 // Do not sink into catchswitch blocks. 3733 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3734 return false; 3735 3736 // Do not sink convergent call instructions. 3737 if (auto *CI = dyn_cast<CallInst>(I)) { 3738 if (CI->isConvergent()) 3739 return false; 3740 } 3741 // We can only sink load instructions if there is nothing between the load and 3742 // the end of block that could change the value. 3743 if (I->mayReadFromMemory()) { 3744 // We don't want to do any sophisticated alias analysis, so we only check 3745 // the instructions after I in I's parent block if we try to sink to its 3746 // successor block. 3747 if (DestBlock->getUniquePredecessor() != I->getParent()) 3748 return false; 3749 for (BasicBlock::iterator Scan = I->getIterator(), 3750 E = I->getParent()->end(); 3751 Scan != E; ++Scan) 3752 if (Scan->mayWriteToMemory()) 3753 return false; 3754 } 3755 3756 I->dropDroppableUses([DestBlock](const Use *U) { 3757 if (auto *I = dyn_cast<Instruction>(U->getUser())) 3758 return I->getParent() != DestBlock; 3759 return true; 3760 }); 3761 /// FIXME: We could remove droppable uses that are not dominated by 3762 /// the new position. 3763 3764 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3765 I->moveBefore(&*InsertPos); 3766 ++NumSunkInst; 3767 3768 // Also sink all related debug uses from the source basic block. Otherwise we 3769 // get debug use before the def. Attempt to salvage debug uses first, to 3770 // maximise the range variables have location for. If we cannot salvage, then 3771 // mark the location undef: we know it was supposed to receive a new location 3772 // here, but that computation has been sunk. 3773 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3774 findDbgUsers(DbgUsers, I); 3775 // Process the sinking DbgUsers in reverse order, as we only want to clone the 3776 // last appearing debug intrinsic for each given variable. 3777 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 3778 for (DbgVariableIntrinsic *DVI : DbgUsers) 3779 if (DVI->getParent() == SrcBlock) 3780 DbgUsersToSink.push_back(DVI); 3781 llvm::sort(DbgUsersToSink, 3782 [](auto *A, auto *B) { return B->comesBefore(A); }); 3783 3784 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 3785 SmallSet<DebugVariable, 4> SunkVariables; 3786 for (auto User : DbgUsersToSink) { 3787 // A dbg.declare instruction should not be cloned, since there can only be 3788 // one per variable fragment. It should be left in the original place 3789 // because the sunk instruction is not an alloca (otherwise we could not be 3790 // here). 3791 if (isa<DbgDeclareInst>(User)) 3792 continue; 3793 3794 DebugVariable DbgUserVariable = 3795 DebugVariable(User->getVariable(), User->getExpression(), 3796 User->getDebugLoc()->getInlinedAt()); 3797 3798 if (!SunkVariables.insert(DbgUserVariable).second) 3799 continue; 3800 3801 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 3802 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 3803 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 3804 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 3805 } 3806 3807 // Perform salvaging without the clones, then sink the clones. 3808 if (!DIIClones.empty()) { 3809 salvageDebugInfoForDbgValues(*I, DbgUsers); 3810 // The clones are in reverse order of original appearance, reverse again to 3811 // maintain the original order. 3812 for (auto &DIIClone : llvm::reverse(DIIClones)) { 3813 DIIClone->insertBefore(&*InsertPos); 3814 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 3815 } 3816 } 3817 3818 return true; 3819 } 3820 3821 bool InstCombinerImpl::run() { 3822 while (!Worklist.isEmpty()) { 3823 // Walk deferred instructions in reverse order, and push them to the 3824 // worklist, which means they'll end up popped from the worklist in-order. 3825 while (Instruction *I = Worklist.popDeferred()) { 3826 // Check to see if we can DCE the instruction. We do this already here to 3827 // reduce the number of uses and thus allow other folds to trigger. 3828 // Note that eraseInstFromFunction() may push additional instructions on 3829 // the deferred worklist, so this will DCE whole instruction chains. 3830 if (isInstructionTriviallyDead(I, &TLI)) { 3831 eraseInstFromFunction(*I); 3832 ++NumDeadInst; 3833 continue; 3834 } 3835 3836 Worklist.push(I); 3837 } 3838 3839 Instruction *I = Worklist.removeOne(); 3840 if (I == nullptr) continue; // skip null values. 3841 3842 // Check to see if we can DCE the instruction. 3843 if (isInstructionTriviallyDead(I, &TLI)) { 3844 eraseInstFromFunction(*I); 3845 ++NumDeadInst; 3846 continue; 3847 } 3848 3849 if (!DebugCounter::shouldExecute(VisitCounter)) 3850 continue; 3851 3852 // Instruction isn't dead, see if we can constant propagate it. 3853 if (!I->use_empty() && 3854 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3855 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3856 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3857 << '\n'); 3858 3859 // Add operands to the worklist. 3860 replaceInstUsesWith(*I, C); 3861 ++NumConstProp; 3862 if (isInstructionTriviallyDead(I, &TLI)) 3863 eraseInstFromFunction(*I); 3864 MadeIRChange = true; 3865 continue; 3866 } 3867 } 3868 3869 // See if we can trivially sink this instruction to its user if we can 3870 // prove that the successor is not executed more frequently than our block. 3871 // Return the UserBlock if successful. 3872 auto getOptionalSinkBlockForInst = 3873 [this](Instruction *I) -> Optional<BasicBlock *> { 3874 if (!EnableCodeSinking) 3875 return None; 3876 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser()); 3877 if (!UserInst) 3878 return None; 3879 3880 BasicBlock *BB = I->getParent(); 3881 BasicBlock *UserParent = nullptr; 3882 3883 // Special handling for Phi nodes - get the block the use occurs in. 3884 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 3885 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 3886 if (PN->getIncomingValue(i) == I) { 3887 // Bail out if we have uses in different blocks. We don't do any 3888 // sophisticated analysis (i.e finding NearestCommonDominator of these 3889 // use blocks). 3890 if (UserParent && UserParent != PN->getIncomingBlock(i)) 3891 return None; 3892 UserParent = PN->getIncomingBlock(i); 3893 } 3894 } 3895 assert(UserParent && "expected to find user block!"); 3896 } else 3897 UserParent = UserInst->getParent(); 3898 3899 // Try sinking to another block. If that block is unreachable, then do 3900 // not bother. SimplifyCFG should handle it. 3901 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 3902 return None; 3903 3904 auto *Term = UserParent->getTerminator(); 3905 // See if the user is one of our successors that has only one 3906 // predecessor, so that we don't have to split the critical edge. 3907 // Another option where we can sink is a block that ends with a 3908 // terminator that does not pass control to other block (such as 3909 // return or unreachable). In this case: 3910 // - I dominates the User (by SSA form); 3911 // - the User will be executed at most once. 3912 // So sinking I down to User is always profitable or neutral. 3913 if (UserParent->getUniquePredecessor() == BB || 3914 (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) { 3915 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 3916 return UserParent; 3917 } 3918 return None; 3919 }; 3920 3921 auto OptBB = getOptionalSinkBlockForInst(I); 3922 if (OptBB) { 3923 auto *UserParent = *OptBB; 3924 // Okay, the CFG is simple enough, try to sink this instruction. 3925 if (TryToSinkInstruction(I, UserParent)) { 3926 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3927 MadeIRChange = true; 3928 // We'll add uses of the sunk instruction below, but since 3929 // sinking can expose opportunities for it's *operands* add 3930 // them to the worklist 3931 for (Use &U : I->operands()) 3932 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3933 Worklist.push(OpI); 3934 } 3935 } 3936 3937 // Now that we have an instruction, try combining it to simplify it. 3938 Builder.SetInsertPoint(I); 3939 Builder.CollectMetadataToCopy( 3940 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3941 3942 #ifndef NDEBUG 3943 std::string OrigI; 3944 #endif 3945 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3946 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3947 3948 if (Instruction *Result = visit(*I)) { 3949 ++NumCombined; 3950 // Should we replace the old instruction with a new one? 3951 if (Result != I) { 3952 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3953 << " New = " << *Result << '\n'); 3954 3955 Result->copyMetadata(*I, 3956 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 3957 // Everything uses the new instruction now. 3958 I->replaceAllUsesWith(Result); 3959 3960 // Move the name to the new instruction first. 3961 Result->takeName(I); 3962 3963 // Insert the new instruction into the basic block... 3964 BasicBlock *InstParent = I->getParent(); 3965 BasicBlock::iterator InsertPos = I->getIterator(); 3966 3967 // Are we replace a PHI with something that isn't a PHI, or vice versa? 3968 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 3969 // We need to fix up the insertion point. 3970 if (isa<PHINode>(I)) // PHI -> Non-PHI 3971 InsertPos = InstParent->getFirstInsertionPt(); 3972 else // Non-PHI -> PHI 3973 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 3974 } 3975 3976 InstParent->getInstList().insert(InsertPos, Result); 3977 3978 // Push the new instruction and any users onto the worklist. 3979 Worklist.pushUsersToWorkList(*Result); 3980 Worklist.push(Result); 3981 3982 eraseInstFromFunction(*I); 3983 } else { 3984 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3985 << " New = " << *I << '\n'); 3986 3987 // If the instruction was modified, it's possible that it is now dead. 3988 // if so, remove it. 3989 if (isInstructionTriviallyDead(I, &TLI)) { 3990 eraseInstFromFunction(*I); 3991 } else { 3992 Worklist.pushUsersToWorkList(*I); 3993 Worklist.push(I); 3994 } 3995 } 3996 MadeIRChange = true; 3997 } 3998 } 3999 4000 Worklist.zap(); 4001 return MadeIRChange; 4002 } 4003 4004 // Track the scopes used by !alias.scope and !noalias. In a function, a 4005 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4006 // by both sets. If not, the declaration of the scope can be safely omitted. 4007 // The MDNode of the scope can be omitted as well for the instructions that are 4008 // part of this function. We do not do that at this point, as this might become 4009 // too time consuming to do. 4010 class AliasScopeTracker { 4011 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4012 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4013 4014 public: 4015 void analyse(Instruction *I) { 4016 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4017 if (!I->hasMetadataOtherThanDebugLoc()) 4018 return; 4019 4020 auto Track = [](Metadata *ScopeList, auto &Container) { 4021 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4022 if (!MDScopeList || !Container.insert(MDScopeList).second) 4023 return; 4024 for (auto &MDOperand : MDScopeList->operands()) 4025 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4026 Container.insert(MDScope); 4027 }; 4028 4029 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4030 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4031 } 4032 4033 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4034 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4035 if (!Decl) 4036 return false; 4037 4038 assert(Decl->use_empty() && 4039 "llvm.experimental.noalias.scope.decl in use ?"); 4040 const MDNode *MDSL = Decl->getScopeList(); 4041 assert(MDSL->getNumOperands() == 1 && 4042 "llvm.experimental.noalias.scope should refer to a single scope"); 4043 auto &MDOperand = MDSL->getOperand(0); 4044 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4045 return !UsedAliasScopesAndLists.contains(MD) || 4046 !UsedNoAliasScopesAndLists.contains(MD); 4047 4048 // Not an MDNode ? throw away. 4049 return true; 4050 } 4051 }; 4052 4053 /// Populate the IC worklist from a function, by walking it in depth-first 4054 /// order and adding all reachable code to the worklist. 4055 /// 4056 /// This has a couple of tricks to make the code faster and more powerful. In 4057 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4058 /// them to the worklist (this significantly speeds up instcombine on code where 4059 /// many instructions are dead or constant). Additionally, if we find a branch 4060 /// whose condition is a known constant, we only visit the reachable successors. 4061 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 4062 const TargetLibraryInfo *TLI, 4063 InstructionWorklist &ICWorklist) { 4064 bool MadeIRChange = false; 4065 SmallPtrSet<BasicBlock *, 32> Visited; 4066 SmallVector<BasicBlock*, 256> Worklist; 4067 Worklist.push_back(&F.front()); 4068 4069 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4070 DenseMap<Constant *, Constant *> FoldedConstants; 4071 AliasScopeTracker SeenAliasScopes; 4072 4073 do { 4074 BasicBlock *BB = Worklist.pop_back_val(); 4075 4076 // We have now visited this block! If we've already been here, ignore it. 4077 if (!Visited.insert(BB).second) 4078 continue; 4079 4080 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4081 // ConstantProp instruction if trivially constant. 4082 if (!Inst.use_empty() && 4083 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4084 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) { 4085 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4086 << '\n'); 4087 Inst.replaceAllUsesWith(C); 4088 ++NumConstProp; 4089 if (isInstructionTriviallyDead(&Inst, TLI)) 4090 Inst.eraseFromParent(); 4091 MadeIRChange = true; 4092 continue; 4093 } 4094 4095 // See if we can constant fold its operands. 4096 for (Use &U : Inst.operands()) { 4097 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4098 continue; 4099 4100 auto *C = cast<Constant>(U); 4101 Constant *&FoldRes = FoldedConstants[C]; 4102 if (!FoldRes) 4103 FoldRes = ConstantFoldConstant(C, DL, TLI); 4104 4105 if (FoldRes != C) { 4106 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4107 << "\n Old = " << *C 4108 << "\n New = " << *FoldRes << '\n'); 4109 U = FoldRes; 4110 MadeIRChange = true; 4111 } 4112 } 4113 4114 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4115 // these call instructions consumes non-trivial amount of time and 4116 // provides no value for the optimization. 4117 if (!Inst.isDebugOrPseudoInst()) { 4118 InstrsForInstructionWorklist.push_back(&Inst); 4119 SeenAliasScopes.analyse(&Inst); 4120 } 4121 } 4122 4123 // Recursively visit successors. If this is a branch or switch on a 4124 // constant, only visit the reachable successor. 4125 Instruction *TI = BB->getTerminator(); 4126 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 4127 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 4128 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 4129 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 4130 Worklist.push_back(ReachableBB); 4131 continue; 4132 } 4133 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4134 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4135 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 4136 continue; 4137 } 4138 } 4139 4140 append_range(Worklist, successors(TI)); 4141 } while (!Worklist.empty()); 4142 4143 // Remove instructions inside unreachable blocks. This prevents the 4144 // instcombine code from having to deal with some bad special cases, and 4145 // reduces use counts of instructions. 4146 for (BasicBlock &BB : F) { 4147 if (Visited.count(&BB)) 4148 continue; 4149 4150 unsigned NumDeadInstInBB; 4151 unsigned NumDeadDbgInstInBB; 4152 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4153 removeAllNonTerminatorAndEHPadInstructions(&BB); 4154 4155 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4156 NumDeadInst += NumDeadInstInBB; 4157 } 4158 4159 // Once we've found all of the instructions to add to instcombine's worklist, 4160 // add them in reverse order. This way instcombine will visit from the top 4161 // of the function down. This jives well with the way that it adds all uses 4162 // of instructions to the worklist after doing a transformation, thus avoiding 4163 // some N^2 behavior in pathological cases. 4164 ICWorklist.reserve(InstrsForInstructionWorklist.size()); 4165 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4166 // DCE instruction if trivially dead. As we iterate in reverse program 4167 // order here, we will clean up whole chains of dead instructions. 4168 if (isInstructionTriviallyDead(Inst, TLI) || 4169 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4170 ++NumDeadInst; 4171 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4172 salvageDebugInfo(*Inst); 4173 Inst->eraseFromParent(); 4174 MadeIRChange = true; 4175 continue; 4176 } 4177 4178 ICWorklist.push(Inst); 4179 } 4180 4181 return MadeIRChange; 4182 } 4183 4184 static bool combineInstructionsOverFunction( 4185 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4186 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4187 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4188 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { 4189 auto &DL = F.getParent()->getDataLayout(); 4190 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); 4191 4192 /// Builder - This is an IRBuilder that automatically inserts new 4193 /// instructions into the worklist when they are created. 4194 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4195 F.getContext(), TargetFolder(DL), 4196 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4197 Worklist.add(I); 4198 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4199 AC.registerAssumption(Assume); 4200 })); 4201 4202 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4203 // by instcombiner. 4204 bool MadeIRChange = false; 4205 if (ShouldLowerDbgDeclare) 4206 MadeIRChange = LowerDbgDeclare(F); 4207 4208 // Iterate while there is work to do. 4209 unsigned Iteration = 0; 4210 while (true) { 4211 ++NumWorklistIterations; 4212 ++Iteration; 4213 4214 if (Iteration > InfiniteLoopDetectionThreshold) { 4215 report_fatal_error( 4216 "Instruction Combining seems stuck in an infinite loop after " + 4217 Twine(InfiniteLoopDetectionThreshold) + " iterations."); 4218 } 4219 4220 if (Iteration > MaxIterations) { 4221 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations 4222 << " on " << F.getName() 4223 << " reached; stopping before reaching a fixpoint\n"); 4224 break; 4225 } 4226 4227 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4228 << F.getName() << "\n"); 4229 4230 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 4231 4232 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4233 ORE, BFI, PSI, DL, LI); 4234 IC.MaxArraySizeForCombine = MaxArraySize; 4235 4236 if (!IC.run()) 4237 break; 4238 4239 MadeIRChange = true; 4240 } 4241 4242 return MadeIRChange; 4243 } 4244 4245 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} 4246 4247 InstCombinePass::InstCombinePass(unsigned MaxIterations) 4248 : MaxIterations(MaxIterations) {} 4249 4250 PreservedAnalyses InstCombinePass::run(Function &F, 4251 FunctionAnalysisManager &AM) { 4252 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4253 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4254 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4255 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4256 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4257 4258 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4259 4260 auto *AA = &AM.getResult<AAManager>(F); 4261 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4262 ProfileSummaryInfo *PSI = 4263 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4264 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4265 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4266 4267 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4268 BFI, PSI, MaxIterations, LI)) 4269 // No changes, all analyses are preserved. 4270 return PreservedAnalyses::all(); 4271 4272 // Mark all the analyses that instcombine updates as preserved. 4273 PreservedAnalyses PA; 4274 PA.preserveSet<CFGAnalyses>(); 4275 return PA; 4276 } 4277 4278 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4279 AU.setPreservesCFG(); 4280 AU.addRequired<AAResultsWrapperPass>(); 4281 AU.addRequired<AssumptionCacheTracker>(); 4282 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4283 AU.addRequired<TargetTransformInfoWrapperPass>(); 4284 AU.addRequired<DominatorTreeWrapperPass>(); 4285 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4286 AU.addPreserved<DominatorTreeWrapperPass>(); 4287 AU.addPreserved<AAResultsWrapperPass>(); 4288 AU.addPreserved<BasicAAWrapperPass>(); 4289 AU.addPreserved<GlobalsAAWrapperPass>(); 4290 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4291 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4292 } 4293 4294 bool InstructionCombiningPass::runOnFunction(Function &F) { 4295 if (skipFunction(F)) 4296 return false; 4297 4298 // Required analyses. 4299 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4300 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4301 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4302 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4303 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4304 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4305 4306 // Optional analyses. 4307 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4308 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4309 ProfileSummaryInfo *PSI = 4310 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4311 BlockFrequencyInfo *BFI = 4312 (PSI && PSI->hasProfileSummary()) ? 4313 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4314 nullptr; 4315 4316 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4317 BFI, PSI, MaxIterations, LI); 4318 } 4319 4320 char InstructionCombiningPass::ID = 0; 4321 4322 InstructionCombiningPass::InstructionCombiningPass() 4323 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { 4324 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4325 } 4326 4327 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) 4328 : FunctionPass(ID), MaxIterations(MaxIterations) { 4329 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4330 } 4331 4332 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4333 "Combine redundant instructions", false, false) 4334 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4335 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4336 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4337 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4338 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4339 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4340 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4341 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4342 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4343 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4344 "Combine redundant instructions", false, false) 4345 4346 // Initialization Routines 4347 void llvm::initializeInstCombine(PassRegistry &Registry) { 4348 initializeInstructionCombiningPassPass(Registry); 4349 } 4350 4351 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 4352 initializeInstructionCombiningPassPass(*unwrap(R)); 4353 } 4354 4355 FunctionPass *llvm::createInstructionCombiningPass() { 4356 return new InstructionCombiningPass(); 4357 } 4358 4359 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { 4360 return new InstructionCombiningPass(MaxIterations); 4361 } 4362 4363 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 4364 unwrap(PM)->add(createInstructionCombiningPass()); 4365 } 4366