1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 #include "llvm/Transforms/Utils/InstructionWorklist.h" 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. If the extract index \p EI is a constant integer then 56 /// some operations may be cheap to scalarize. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, Value *EI) { 60 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 61 62 // If we can pick a scalar constant value out of a vector, that is free. 63 if (auto *C = dyn_cast<Constant>(V)) 64 return CEI || C->getSplatValue(); 65 66 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 67 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 68 // Index needs to be lower than the minimum size of the vector, because 69 // for scalable vector, the vector size is known at run time. 70 return CEI->getValue().ult(EC.getKnownMinValue()); 71 } 72 73 // An insertelement to the same constant index as our extract will simplify 74 // to the scalar inserted element. An insertelement to a different constant 75 // index is irrelevant to our extract. 76 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 77 return CEI; 78 79 if (match(V, m_OneUse(m_Load(m_Value())))) 80 return true; 81 82 if (match(V, m_OneUse(m_UnOp()))) 83 return true; 84 85 Value *V0, *V1; 86 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 87 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 88 return true; 89 90 CmpInst::Predicate UnusedPred; 91 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 92 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 93 return true; 94 95 return false; 96 } 97 98 // If we have a PHI node with a vector type that is only used to feed 99 // itself and be an operand of extractelement at a constant location, 100 // try to replace the PHI of the vector type with a PHI of a scalar type. 101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 102 PHINode *PN) { 103 SmallVector<Instruction *, 2> Extracts; 104 // The users we want the PHI to have are: 105 // 1) The EI ExtractElement (we already know this) 106 // 2) Possibly more ExtractElements with the same index. 107 // 3) Another operand, which will feed back into the PHI. 108 Instruction *PHIUser = nullptr; 109 for (auto U : PN->users()) { 110 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 111 if (EI.getIndexOperand() == EU->getIndexOperand()) 112 Extracts.push_back(EU); 113 else 114 return nullptr; 115 } else if (!PHIUser) { 116 PHIUser = cast<Instruction>(U); 117 } else { 118 return nullptr; 119 } 120 } 121 122 if (!PHIUser) 123 return nullptr; 124 125 // Verify that this PHI user has one use, which is the PHI itself, 126 // and that it is a binary operation which is cheap to scalarize. 127 // otherwise return nullptr. 128 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 129 !(isa<BinaryOperator>(PHIUser)) || 130 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 131 return nullptr; 132 133 // Create a scalar PHI node that will replace the vector PHI node 134 // just before the current PHI node. 135 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 136 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 137 // Scalarize each PHI operand. 138 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 139 Value *PHIInVal = PN->getIncomingValue(i); 140 BasicBlock *inBB = PN->getIncomingBlock(i); 141 Value *Elt = EI.getIndexOperand(); 142 // If the operand is the PHI induction variable: 143 if (PHIInVal == PHIUser) { 144 // Scalarize the binary operation. Its first operand is the 145 // scalar PHI, and the second operand is extracted from the other 146 // vector operand. 147 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 148 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 149 Value *Op = InsertNewInstWith( 150 ExtractElementInst::Create(B0->getOperand(opId), Elt, 151 B0->getOperand(opId)->getName() + ".Elt"), 152 *B0); 153 Value *newPHIUser = InsertNewInstWith( 154 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 155 scalarPHI, Op, B0), *B0); 156 scalarPHI->addIncoming(newPHIUser, inBB); 157 } else { 158 // Scalarize PHI input: 159 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 160 // Insert the new instruction into the predecessor basic block. 161 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 162 BasicBlock::iterator InsertPos; 163 if (pos && !isa<PHINode>(pos)) { 164 InsertPos = ++pos->getIterator(); 165 } else { 166 InsertPos = inBB->getFirstInsertionPt(); 167 } 168 169 InsertNewInstWith(newEI, *InsertPos); 170 171 scalarPHI->addIncoming(newEI, inBB); 172 } 173 } 174 175 for (auto E : Extracts) 176 replaceInstUsesWith(*E, scalarPHI); 177 178 return &EI; 179 } 180 181 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 182 Value *X; 183 uint64_t ExtIndexC; 184 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 185 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 186 return nullptr; 187 188 ElementCount NumElts = 189 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 190 Type *DestTy = Ext.getType(); 191 bool IsBigEndian = DL.isBigEndian(); 192 193 // If we are casting an integer to vector and extracting a portion, that is 194 // a shift-right and truncate. 195 // TODO: Allow FP dest type by casting the trunc to FP? 196 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && 197 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { 198 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 199 "Expected fixed vector type for bitcast from scalar integer"); 200 201 // Big endian requires adjusting the extract index since MSB is at index 0. 202 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 203 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 204 if (IsBigEndian) 205 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 206 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); 207 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { 208 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 209 return new TruncInst(Lshr, DestTy); 210 } 211 } 212 213 if (!X->getType()->isVectorTy()) 214 return nullptr; 215 216 // If this extractelement is using a bitcast from a vector of the same number 217 // of elements, see if we can find the source element from the source vector: 218 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 219 auto *SrcTy = cast<VectorType>(X->getType()); 220 ElementCount NumSrcElts = SrcTy->getElementCount(); 221 if (NumSrcElts == NumElts) 222 if (Value *Elt = findScalarElement(X, ExtIndexC)) 223 return new BitCastInst(Elt, DestTy); 224 225 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 226 "Src and Dst must be the same sort of vector type"); 227 228 // If the source elements are wider than the destination, try to shift and 229 // truncate a subset of scalar bits of an insert op. 230 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 231 Value *Scalar; 232 uint64_t InsIndexC; 233 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 234 m_ConstantInt(InsIndexC)))) 235 return nullptr; 236 237 // The extract must be from the subset of vector elements that we inserted 238 // into. Example: if we inserted element 1 of a <2 x i64> and we are 239 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 240 // of elements 4-7 of the bitcasted vector. 241 unsigned NarrowingRatio = 242 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 243 if (ExtIndexC / NarrowingRatio != InsIndexC) 244 return nullptr; 245 246 // We are extracting part of the original scalar. How that scalar is 247 // inserted into the vector depends on the endian-ness. Example: 248 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 249 // +--+--+--+--+--+--+--+--+ 250 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 251 // extelt <4 x i16> V', 3: | |S2|S3| 252 // +--+--+--+--+--+--+--+--+ 253 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 254 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 255 // In this example, we must right-shift little-endian. Big-endian is just a 256 // truncate. 257 unsigned Chunk = ExtIndexC % NarrowingRatio; 258 if (IsBigEndian) 259 Chunk = NarrowingRatio - 1 - Chunk; 260 261 // Bail out if this is an FP vector to FP vector sequence. That would take 262 // more instructions than we started with unless there is no shift, and it 263 // may not be handled as well in the backend. 264 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 265 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 266 if (NeedSrcBitcast && NeedDestBitcast) 267 return nullptr; 268 269 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 270 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 271 unsigned ShAmt = Chunk * DestWidth; 272 273 // TODO: This limitation is more strict than necessary. We could sum the 274 // number of new instructions and subtract the number eliminated to know if 275 // we can proceed. 276 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 277 if (NeedSrcBitcast || NeedDestBitcast) 278 return nullptr; 279 280 if (NeedSrcBitcast) { 281 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 282 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 283 } 284 285 if (ShAmt) { 286 // Bail out if we could end with more instructions than we started with. 287 if (!Ext.getVectorOperand()->hasOneUse()) 288 return nullptr; 289 Scalar = Builder.CreateLShr(Scalar, ShAmt); 290 } 291 292 if (NeedDestBitcast) { 293 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 294 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 295 } 296 return new TruncInst(Scalar, DestTy); 297 } 298 299 return nullptr; 300 } 301 302 /// Find elements of V demanded by UserInstr. 303 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 304 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 305 306 // Conservatively assume that all elements are needed. 307 APInt UsedElts(APInt::getAllOnes(VWidth)); 308 309 switch (UserInstr->getOpcode()) { 310 case Instruction::ExtractElement: { 311 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 312 assert(EEI->getVectorOperand() == V); 313 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 314 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 315 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 316 } 317 break; 318 } 319 case Instruction::ShuffleVector: { 320 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 321 unsigned MaskNumElts = 322 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 323 324 UsedElts = APInt(VWidth, 0); 325 for (unsigned i = 0; i < MaskNumElts; i++) { 326 unsigned MaskVal = Shuffle->getMaskValue(i); 327 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 328 continue; 329 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 330 UsedElts.setBit(MaskVal); 331 if (Shuffle->getOperand(1) == V && 332 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 333 UsedElts.setBit(MaskVal - VWidth); 334 } 335 break; 336 } 337 default: 338 break; 339 } 340 return UsedElts; 341 } 342 343 /// Find union of elements of V demanded by all its users. 344 /// If it is known by querying findDemandedEltsBySingleUser that 345 /// no user demands an element of V, then the corresponding bit 346 /// remains unset in the returned value. 347 static APInt findDemandedEltsByAllUsers(Value *V) { 348 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 349 350 APInt UnionUsedElts(VWidth, 0); 351 for (const Use &U : V->uses()) { 352 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 353 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 354 } else { 355 UnionUsedElts = APInt::getAllOnes(VWidth); 356 break; 357 } 358 359 if (UnionUsedElts.isAllOnes()) 360 break; 361 } 362 363 return UnionUsedElts; 364 } 365 366 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 367 Value *SrcVec = EI.getVectorOperand(); 368 Value *Index = EI.getIndexOperand(); 369 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 370 SQ.getWithInstruction(&EI))) 371 return replaceInstUsesWith(EI, V); 372 373 // If extracting a specified index from the vector, see if we can recursively 374 // find a previously computed scalar that was inserted into the vector. 375 auto *IndexC = dyn_cast<ConstantInt>(Index); 376 if (IndexC) { 377 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 378 unsigned NumElts = EC.getKnownMinValue(); 379 380 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 381 Intrinsic::ID IID = II->getIntrinsicID(); 382 // Index needs to be lower than the minimum size of the vector, because 383 // for scalable vector, the vector size is known at run time. 384 if (IID == Intrinsic::experimental_stepvector && 385 IndexC->getValue().ult(NumElts)) { 386 Type *Ty = EI.getType(); 387 unsigned BitWidth = Ty->getIntegerBitWidth(); 388 Value *Idx; 389 // Return index when its value does not exceed the allowed limit 390 // for the element type of the vector, otherwise return undefined. 391 if (IndexC->getValue().getActiveBits() <= BitWidth) 392 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 393 else 394 Idx = UndefValue::get(Ty); 395 return replaceInstUsesWith(EI, Idx); 396 } 397 } 398 399 // InstSimplify should handle cases where the index is invalid. 400 // For fixed-length vector, it's invalid to extract out-of-range element. 401 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 402 return nullptr; 403 404 // This instruction only demands the single element from the input vector. 405 // Skip for scalable type, the number of elements is unknown at 406 // compile-time. 407 if (!EC.isScalable() && NumElts != 1) { 408 // If the input vector has a single use, simplify it based on this use 409 // property. 410 if (SrcVec->hasOneUse()) { 411 APInt UndefElts(NumElts, 0); 412 APInt DemandedElts(NumElts, 0); 413 DemandedElts.setBit(IndexC->getZExtValue()); 414 if (Value *V = 415 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 416 return replaceOperand(EI, 0, V); 417 } else { 418 // If the input vector has multiple uses, simplify it based on a union 419 // of all elements used. 420 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 421 if (!DemandedElts.isAllOnes()) { 422 APInt UndefElts(NumElts, 0); 423 if (Value *V = SimplifyDemandedVectorElts( 424 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 425 true /* AllowMultipleUsers */)) { 426 if (V != SrcVec) { 427 SrcVec->replaceAllUsesWith(V); 428 return &EI; 429 } 430 } 431 } 432 } 433 } 434 435 if (Instruction *I = foldBitcastExtElt(EI)) 436 return I; 437 438 // If there's a vector PHI feeding a scalar use through this extractelement 439 // instruction, try to scalarize the PHI. 440 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 441 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 442 return ScalarPHI; 443 } 444 445 // TODO come up with a n-ary matcher that subsumes both unary and 446 // binary matchers. 447 UnaryOperator *UO; 448 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 449 // extelt (unop X), Index --> unop (extelt X, Index) 450 Value *X = UO->getOperand(0); 451 Value *E = Builder.CreateExtractElement(X, Index); 452 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 453 } 454 455 BinaryOperator *BO; 456 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 457 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 458 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 459 Value *E0 = Builder.CreateExtractElement(X, Index); 460 Value *E1 = Builder.CreateExtractElement(Y, Index); 461 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 462 } 463 464 Value *X, *Y; 465 CmpInst::Predicate Pred; 466 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 467 cheapToScalarize(SrcVec, Index)) { 468 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 469 Value *E0 = Builder.CreateExtractElement(X, Index); 470 Value *E1 = Builder.CreateExtractElement(Y, Index); 471 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 472 } 473 474 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 475 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 476 // Extracting the inserted element? 477 if (IE->getOperand(2) == Index) 478 return replaceInstUsesWith(EI, IE->getOperand(1)); 479 // If the inserted and extracted elements are constants, they must not 480 // be the same value, extract from the pre-inserted value instead. 481 if (isa<Constant>(IE->getOperand(2)) && IndexC) 482 return replaceOperand(EI, 0, IE->getOperand(0)); 483 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 484 auto *VecType = cast<VectorType>(GEP->getType()); 485 ElementCount EC = VecType->getElementCount(); 486 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 487 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 488 // Find out why we have a vector result - these are a few examples: 489 // 1. We have a scalar pointer and a vector of indices, or 490 // 2. We have a vector of pointers and a scalar index, or 491 // 3. We have a vector of pointers and a vector of indices, etc. 492 // Here we only consider combining when there is exactly one vector 493 // operand, since the optimization is less obviously a win due to 494 // needing more than one extractelements. 495 496 unsigned VectorOps = 497 llvm::count_if(GEP->operands(), [](const Value *V) { 498 return isa<VectorType>(V->getType()); 499 }); 500 if (VectorOps > 1) 501 return nullptr; 502 assert(VectorOps == 1 && "Expected exactly one vector GEP operand!"); 503 504 Value *NewPtr = GEP->getPointerOperand(); 505 if (isa<VectorType>(NewPtr->getType())) 506 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 507 508 SmallVector<Value *> NewOps; 509 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 510 Value *Op = GEP->getOperand(I); 511 if (isa<VectorType>(Op->getType())) 512 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 513 else 514 NewOps.push_back(Op); 515 } 516 517 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 518 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 519 NewOps); 520 NewGEP->setIsInBounds(GEP->isInBounds()); 521 return NewGEP; 522 } 523 return nullptr; 524 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 525 // If this is extracting an element from a shufflevector, figure out where 526 // it came from and extract from the appropriate input element instead. 527 // Restrict the following transformation to fixed-length vector. 528 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 529 int SrcIdx = 530 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 531 Value *Src; 532 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 533 ->getNumElements(); 534 535 if (SrcIdx < 0) 536 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 537 if (SrcIdx < (int)LHSWidth) 538 Src = SVI->getOperand(0); 539 else { 540 SrcIdx -= LHSWidth; 541 Src = SVI->getOperand(1); 542 } 543 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 544 return ExtractElementInst::Create( 545 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 546 } 547 } else if (auto *CI = dyn_cast<CastInst>(I)) { 548 // Canonicalize extractelement(cast) -> cast(extractelement). 549 // Bitcasts can change the number of vector elements, and they cost 550 // nothing. 551 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 552 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 553 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 554 } 555 } 556 } 557 return nullptr; 558 } 559 560 /// If V is a shuffle of values that ONLY returns elements from either LHS or 561 /// RHS, return the shuffle mask and true. Otherwise, return false. 562 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 563 SmallVectorImpl<int> &Mask) { 564 assert(LHS->getType() == RHS->getType() && 565 "Invalid CollectSingleShuffleElements"); 566 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 567 568 if (match(V, m_Undef())) { 569 Mask.assign(NumElts, -1); 570 return true; 571 } 572 573 if (V == LHS) { 574 for (unsigned i = 0; i != NumElts; ++i) 575 Mask.push_back(i); 576 return true; 577 } 578 579 if (V == RHS) { 580 for (unsigned i = 0; i != NumElts; ++i) 581 Mask.push_back(i + NumElts); 582 return true; 583 } 584 585 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 586 // If this is an insert of an extract from some other vector, include it. 587 Value *VecOp = IEI->getOperand(0); 588 Value *ScalarOp = IEI->getOperand(1); 589 Value *IdxOp = IEI->getOperand(2); 590 591 if (!isa<ConstantInt>(IdxOp)) 592 return false; 593 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 594 595 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 596 // We can handle this if the vector we are inserting into is 597 // transitively ok. 598 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 599 // If so, update the mask to reflect the inserted undef. 600 Mask[InsertedIdx] = -1; 601 return true; 602 } 603 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 604 if (isa<ConstantInt>(EI->getOperand(1))) { 605 unsigned ExtractedIdx = 606 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 607 unsigned NumLHSElts = 608 cast<FixedVectorType>(LHS->getType())->getNumElements(); 609 610 // This must be extracting from either LHS or RHS. 611 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 612 // We can handle this if the vector we are inserting into is 613 // transitively ok. 614 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 615 // If so, update the mask to reflect the inserted value. 616 if (EI->getOperand(0) == LHS) { 617 Mask[InsertedIdx % NumElts] = ExtractedIdx; 618 } else { 619 assert(EI->getOperand(0) == RHS); 620 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 621 } 622 return true; 623 } 624 } 625 } 626 } 627 } 628 629 return false; 630 } 631 632 /// If we have insertion into a vector that is wider than the vector that we 633 /// are extracting from, try to widen the source vector to allow a single 634 /// shufflevector to replace one or more insert/extract pairs. 635 static void replaceExtractElements(InsertElementInst *InsElt, 636 ExtractElementInst *ExtElt, 637 InstCombinerImpl &IC) { 638 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 639 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 640 unsigned NumInsElts = InsVecType->getNumElements(); 641 unsigned NumExtElts = ExtVecType->getNumElements(); 642 643 // The inserted-to vector must be wider than the extracted-from vector. 644 if (InsVecType->getElementType() != ExtVecType->getElementType() || 645 NumExtElts >= NumInsElts) 646 return; 647 648 // Create a shuffle mask to widen the extended-from vector using poison 649 // values. The mask selects all of the values of the original vector followed 650 // by as many poison values as needed to create a vector of the same length 651 // as the inserted-to vector. 652 SmallVector<int, 16> ExtendMask; 653 for (unsigned i = 0; i < NumExtElts; ++i) 654 ExtendMask.push_back(i); 655 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 656 ExtendMask.push_back(-1); 657 658 Value *ExtVecOp = ExtElt->getVectorOperand(); 659 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 660 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 661 ? ExtVecOpInst->getParent() 662 : ExtElt->getParent(); 663 664 // TODO: This restriction matches the basic block check below when creating 665 // new extractelement instructions. If that limitation is removed, this one 666 // could also be removed. But for now, we just bail out to ensure that we 667 // will replace the extractelement instruction that is feeding our 668 // insertelement instruction. This allows the insertelement to then be 669 // replaced by a shufflevector. If the insertelement is not replaced, we can 670 // induce infinite looping because there's an optimization for extractelement 671 // that will delete our widening shuffle. This would trigger another attempt 672 // here to create that shuffle, and we spin forever. 673 if (InsertionBlock != InsElt->getParent()) 674 return; 675 676 // TODO: This restriction matches the check in visitInsertElementInst() and 677 // prevents an infinite loop caused by not turning the extract/insert pair 678 // into a shuffle. We really should not need either check, but we're lacking 679 // folds for shufflevectors because we're afraid to generate shuffle masks 680 // that the backend can't handle. 681 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 682 return; 683 684 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 685 686 // Insert the new shuffle after the vector operand of the extract is defined 687 // (as long as it's not a PHI) or at the start of the basic block of the 688 // extract, so any subsequent extracts in the same basic block can use it. 689 // TODO: Insert before the earliest ExtractElementInst that is replaced. 690 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 691 WideVec->insertAfter(ExtVecOpInst); 692 else 693 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 694 695 // Replace extracts from the original narrow vector with extracts from the new 696 // wide vector. 697 for (User *U : ExtVecOp->users()) { 698 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 699 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 700 continue; 701 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 702 NewExt->insertAfter(OldExt); 703 IC.replaceInstUsesWith(*OldExt, NewExt); 704 } 705 } 706 707 /// We are building a shuffle to create V, which is a sequence of insertelement, 708 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 709 /// not rely on the second vector source. Return a std::pair containing the 710 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 711 /// parameter as required. 712 /// 713 /// Note: we intentionally don't try to fold earlier shuffles since they have 714 /// often been chosen carefully to be efficiently implementable on the target. 715 using ShuffleOps = std::pair<Value *, Value *>; 716 717 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 718 Value *PermittedRHS, 719 InstCombinerImpl &IC) { 720 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 721 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 722 723 if (match(V, m_Undef())) { 724 Mask.assign(NumElts, -1); 725 return std::make_pair( 726 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 727 } 728 729 if (isa<ConstantAggregateZero>(V)) { 730 Mask.assign(NumElts, 0); 731 return std::make_pair(V, nullptr); 732 } 733 734 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 735 // If this is an insert of an extract from some other vector, include it. 736 Value *VecOp = IEI->getOperand(0); 737 Value *ScalarOp = IEI->getOperand(1); 738 Value *IdxOp = IEI->getOperand(2); 739 740 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 741 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 742 unsigned ExtractedIdx = 743 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 744 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 745 746 // Either the extracted from or inserted into vector must be RHSVec, 747 // otherwise we'd end up with a shuffle of three inputs. 748 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 749 Value *RHS = EI->getOperand(0); 750 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 751 assert(LR.second == nullptr || LR.second == RHS); 752 753 if (LR.first->getType() != RHS->getType()) { 754 // Although we are giving up for now, see if we can create extracts 755 // that match the inserts for another round of combining. 756 replaceExtractElements(IEI, EI, IC); 757 758 // We tried our best, but we can't find anything compatible with RHS 759 // further up the chain. Return a trivial shuffle. 760 for (unsigned i = 0; i < NumElts; ++i) 761 Mask[i] = i; 762 return std::make_pair(V, nullptr); 763 } 764 765 unsigned NumLHSElts = 766 cast<FixedVectorType>(RHS->getType())->getNumElements(); 767 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 768 return std::make_pair(LR.first, RHS); 769 } 770 771 if (VecOp == PermittedRHS) { 772 // We've gone as far as we can: anything on the other side of the 773 // extractelement will already have been converted into a shuffle. 774 unsigned NumLHSElts = 775 cast<FixedVectorType>(EI->getOperand(0)->getType()) 776 ->getNumElements(); 777 for (unsigned i = 0; i != NumElts; ++i) 778 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 779 return std::make_pair(EI->getOperand(0), PermittedRHS); 780 } 781 782 // If this insertelement is a chain that comes from exactly these two 783 // vectors, return the vector and the effective shuffle. 784 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 785 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 786 Mask)) 787 return std::make_pair(EI->getOperand(0), PermittedRHS); 788 } 789 } 790 } 791 792 // Otherwise, we can't do anything fancy. Return an identity vector. 793 for (unsigned i = 0; i != NumElts; ++i) 794 Mask.push_back(i); 795 return std::make_pair(V, nullptr); 796 } 797 798 /// Look for chain of insertvalue's that fully define an aggregate, and trace 799 /// back the values inserted, see if they are all were extractvalue'd from 800 /// the same source aggregate from the exact same element indexes. 801 /// If they were, just reuse the source aggregate. 802 /// This potentially deals with PHI indirections. 803 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 804 InsertValueInst &OrigIVI) { 805 Type *AggTy = OrigIVI.getType(); 806 unsigned NumAggElts; 807 switch (AggTy->getTypeID()) { 808 case Type::StructTyID: 809 NumAggElts = AggTy->getStructNumElements(); 810 break; 811 case Type::ArrayTyID: 812 NumAggElts = AggTy->getArrayNumElements(); 813 break; 814 default: 815 llvm_unreachable("Unhandled aggregate type?"); 816 } 817 818 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 819 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 820 // FIXME: any interesting patterns to be caught with larger limit? 821 assert(NumAggElts > 0 && "Aggregate should have elements."); 822 if (NumAggElts > 2) 823 return nullptr; 824 825 static constexpr auto NotFound = None; 826 static constexpr auto FoundMismatch = nullptr; 827 828 // Try to find a value of each element of an aggregate. 829 // FIXME: deal with more complex, not one-dimensional, aggregate types 830 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 831 832 // Do we know values for each element of the aggregate? 833 auto KnowAllElts = [&AggElts]() { 834 return all_of(AggElts, 835 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 836 }; 837 838 int Depth = 0; 839 840 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 841 // every element being overwritten twice, which should never happen. 842 static const int DepthLimit = 2 * NumAggElts; 843 844 // Recurse up the chain of `insertvalue` aggregate operands until either we've 845 // reconstructed full initializer or can't visit any more `insertvalue`'s. 846 for (InsertValueInst *CurrIVI = &OrigIVI; 847 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 848 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 849 ++Depth) { 850 auto *InsertedValue = 851 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 852 if (!InsertedValue) 853 return nullptr; // Inserted value must be produced by an instruction. 854 855 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 856 857 // Don't bother with more than single-level aggregates. 858 if (Indices.size() != 1) 859 return nullptr; // FIXME: deal with more complex aggregates? 860 861 // Now, we may have already previously recorded the value for this element 862 // of an aggregate. If we did, that means the CurrIVI will later be 863 // overwritten with the already-recorded value. But if not, let's record it! 864 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 865 Elt = Elt.getValueOr(InsertedValue); 866 867 // FIXME: should we handle chain-terminating undef base operand? 868 } 869 870 // Was that sufficient to deduce the full initializer for the aggregate? 871 if (!KnowAllElts()) 872 return nullptr; // Give up then. 873 874 // We now want to find the source[s] of the aggregate elements we've found. 875 // And with "source" we mean the original aggregate[s] from which 876 // the inserted elements were extracted. This may require PHI translation. 877 878 enum class AggregateDescription { 879 /// When analyzing the value that was inserted into an aggregate, we did 880 /// not manage to find defining `extractvalue` instruction to analyze. 881 NotFound, 882 /// When analyzing the value that was inserted into an aggregate, we did 883 /// manage to find defining `extractvalue` instruction[s], and everything 884 /// matched perfectly - aggregate type, element insertion/extraction index. 885 Found, 886 /// When analyzing the value that was inserted into an aggregate, we did 887 /// manage to find defining `extractvalue` instruction, but there was 888 /// a mismatch: either the source type from which the extraction was didn't 889 /// match the aggregate type into which the insertion was, 890 /// or the extraction/insertion channels mismatched, 891 /// or different elements had different source aggregates. 892 FoundMismatch 893 }; 894 auto Describe = [](Optional<Value *> SourceAggregate) { 895 if (SourceAggregate == NotFound) 896 return AggregateDescription::NotFound; 897 if (*SourceAggregate == FoundMismatch) 898 return AggregateDescription::FoundMismatch; 899 return AggregateDescription::Found; 900 }; 901 902 // Given the value \p Elt that was being inserted into element \p EltIdx of an 903 // aggregate AggTy, see if \p Elt was originally defined by an 904 // appropriate extractvalue (same element index, same aggregate type). 905 // If found, return the source aggregate from which the extraction was. 906 // If \p PredBB is provided, does PHI translation of an \p Elt first. 907 auto FindSourceAggregate = 908 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 909 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 910 // For now(?), only deal with, at most, a single level of PHI indirection. 911 if (UseBB && PredBB) 912 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 913 // FIXME: deal with multiple levels of PHI indirection? 914 915 // Did we find an extraction? 916 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 917 if (!EVI) 918 return NotFound; 919 920 Value *SourceAggregate = EVI->getAggregateOperand(); 921 922 // Is the extraction from the same type into which the insertion was? 923 if (SourceAggregate->getType() != AggTy) 924 return FoundMismatch; 925 // And the element index doesn't change between extraction and insertion? 926 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 927 return FoundMismatch; 928 929 return SourceAggregate; // AggregateDescription::Found 930 }; 931 932 // Given elements AggElts that were constructing an aggregate OrigIVI, 933 // see if we can find appropriate source aggregate for each of the elements, 934 // and see it's the same aggregate for each element. If so, return it. 935 auto FindCommonSourceAggregate = 936 [&](Optional<BasicBlock *> UseBB, 937 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 938 Optional<Value *> SourceAggregate; 939 940 for (auto I : enumerate(AggElts)) { 941 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 942 "We don't store nullptr in SourceAggregate!"); 943 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 944 (I.index() != 0) && 945 "SourceAggregate should be valid after the first element,"); 946 947 // For this element, is there a plausible source aggregate? 948 // FIXME: we could special-case undef element, IFF we know that in the 949 // source aggregate said element isn't poison. 950 Optional<Value *> SourceAggregateForElement = 951 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 952 953 // Okay, what have we found? Does that correlate with previous findings? 954 955 // Regardless of whether or not we have previously found source 956 // aggregate for previous elements (if any), if we didn't find one for 957 // this element, passthrough whatever we have just found. 958 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 959 return SourceAggregateForElement; 960 961 // Okay, we have found source aggregate for this element. 962 // Let's see what we already know from previous elements, if any. 963 switch (Describe(SourceAggregate)) { 964 case AggregateDescription::NotFound: 965 // This is apparently the first element that we have examined. 966 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 967 continue; // Great, now look at next element. 968 case AggregateDescription::Found: 969 // We have previously already successfully examined other elements. 970 // Is this the same source aggregate we've found for other elements? 971 if (*SourceAggregateForElement != *SourceAggregate) 972 return FoundMismatch; 973 continue; // Still the same aggregate, look at next element. 974 case AggregateDescription::FoundMismatch: 975 llvm_unreachable("Can't happen. We would have early-exited then."); 976 }; 977 } 978 979 assert(Describe(SourceAggregate) == AggregateDescription::Found && 980 "Must be a valid Value"); 981 return *SourceAggregate; 982 }; 983 984 Optional<Value *> SourceAggregate; 985 986 // Can we find the source aggregate without looking at predecessors? 987 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 988 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 989 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 990 return nullptr; // Conflicting source aggregates! 991 ++NumAggregateReconstructionsSimplified; 992 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 993 } 994 995 // Okay, apparently we need to look at predecessors. 996 997 // We should be smart about picking the "use" basic block, which will be the 998 // merge point for aggregate, where we'll insert the final PHI that will be 999 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1000 // We should look in which blocks each of the AggElts is being defined, 1001 // they all should be defined in the same basic block. 1002 BasicBlock *UseBB = nullptr; 1003 1004 for (const Optional<Instruction *> &I : AggElts) { 1005 BasicBlock *BB = (*I)->getParent(); 1006 // If it's the first instruction we've encountered, record the basic block. 1007 if (!UseBB) { 1008 UseBB = BB; 1009 continue; 1010 } 1011 // Otherwise, this must be the same basic block we've seen previously. 1012 if (UseBB != BB) 1013 return nullptr; 1014 } 1015 1016 // If *all* of the elements are basic-block-independent, meaning they are 1017 // either function arguments, or constant expressions, then if we didn't 1018 // handle them without predecessor-aware handling, we won't handle them now. 1019 if (!UseBB) 1020 return nullptr; 1021 1022 // If we didn't manage to find source aggregate without looking at 1023 // predecessors, and there are no predecessors to look at, then we're done. 1024 if (pred_empty(UseBB)) 1025 return nullptr; 1026 1027 // Arbitrary predecessor count limit. 1028 static const int PredCountLimit = 64; 1029 1030 // Cache the (non-uniqified!) list of predecessors in a vector, 1031 // checking the limit at the same time for efficiency. 1032 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1033 for (BasicBlock *Pred : predecessors(UseBB)) { 1034 // Don't bother if there are too many predecessors. 1035 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1036 return nullptr; 1037 Preds.emplace_back(Pred); 1038 } 1039 1040 // For each predecessor, what is the source aggregate, 1041 // from which all the elements were originally extracted from? 1042 // Note that we want for the map to have stable iteration order! 1043 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1044 for (BasicBlock *Pred : Preds) { 1045 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1046 SourceAggregates.insert({Pred, nullptr}); 1047 // Did we already evaluate this predecessor? 1048 if (!IV.second) 1049 continue; 1050 1051 // Let's hope that when coming from predecessor Pred, all elements of the 1052 // aggregate produced by OrigIVI must have been originally extracted from 1053 // the same aggregate. Is that so? Can we find said original aggregate? 1054 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1055 if (Describe(SourceAggregate) != AggregateDescription::Found) 1056 return nullptr; // Give up. 1057 IV.first->second = *SourceAggregate; 1058 } 1059 1060 // All good! Now we just need to thread the source aggregates here. 1061 // Note that we have to insert the new PHI here, ourselves, because we can't 1062 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1063 // Note that the same block can be a predecessor more than once, 1064 // and we need to preserve that invariant for the PHI node. 1065 BuilderTy::InsertPointGuard Guard(Builder); 1066 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1067 auto *PHI = 1068 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1069 for (BasicBlock *Pred : Preds) 1070 PHI->addIncoming(SourceAggregates[Pred], Pred); 1071 1072 ++NumAggregateReconstructionsSimplified; 1073 return replaceInstUsesWith(OrigIVI, PHI); 1074 } 1075 1076 /// Try to find redundant insertvalue instructions, like the following ones: 1077 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1078 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1079 /// Here the second instruction inserts values at the same indices, as the 1080 /// first one, making the first one redundant. 1081 /// It should be transformed to: 1082 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1083 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1084 bool IsRedundant = false; 1085 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1086 1087 // If there is a chain of insertvalue instructions (each of them except the 1088 // last one has only one use and it's another insertvalue insn from this 1089 // chain), check if any of the 'children' uses the same indices as the first 1090 // instruction. In this case, the first one is redundant. 1091 Value *V = &I; 1092 unsigned Depth = 0; 1093 while (V->hasOneUse() && Depth < 10) { 1094 User *U = V->user_back(); 1095 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1096 if (!UserInsInst || U->getOperand(0) != V) 1097 break; 1098 if (UserInsInst->getIndices() == FirstIndices) { 1099 IsRedundant = true; 1100 break; 1101 } 1102 V = UserInsInst; 1103 Depth++; 1104 } 1105 1106 if (IsRedundant) 1107 return replaceInstUsesWith(I, I.getOperand(0)); 1108 1109 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1110 return NewI; 1111 1112 return nullptr; 1113 } 1114 1115 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1116 // Can not analyze scalable type, the number of elements is not a compile-time 1117 // constant. 1118 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1119 return false; 1120 1121 int MaskSize = Shuf.getShuffleMask().size(); 1122 int VecSize = 1123 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1124 1125 // A vector select does not change the size of the operands. 1126 if (MaskSize != VecSize) 1127 return false; 1128 1129 // Each mask element must be undefined or choose a vector element from one of 1130 // the source operands without crossing vector lanes. 1131 for (int i = 0; i != MaskSize; ++i) { 1132 int Elt = Shuf.getMaskValue(i); 1133 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1134 return false; 1135 } 1136 1137 return true; 1138 } 1139 1140 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1141 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1142 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1143 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1144 // We are interested in the last insert in a chain. So if this insert has a 1145 // single user and that user is an insert, bail. 1146 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1147 return nullptr; 1148 1149 VectorType *VecTy = InsElt.getType(); 1150 // Can not handle scalable type, the number of elements is not a compile-time 1151 // constant. 1152 if (isa<ScalableVectorType>(VecTy)) 1153 return nullptr; 1154 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1155 1156 // Do not try to do this for a one-element vector, since that's a nop, 1157 // and will cause an inf-loop. 1158 if (NumElements == 1) 1159 return nullptr; 1160 1161 Value *SplatVal = InsElt.getOperand(1); 1162 InsertElementInst *CurrIE = &InsElt; 1163 SmallBitVector ElementPresent(NumElements, false); 1164 InsertElementInst *FirstIE = nullptr; 1165 1166 // Walk the chain backwards, keeping track of which indices we inserted into, 1167 // until we hit something that isn't an insert of the splatted value. 1168 while (CurrIE) { 1169 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1170 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1171 return nullptr; 1172 1173 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1174 // Check none of the intermediate steps have any additional uses, except 1175 // for the root insertelement instruction, which can be re-used, if it 1176 // inserts at position 0. 1177 if (CurrIE != &InsElt && 1178 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1179 return nullptr; 1180 1181 ElementPresent[Idx->getZExtValue()] = true; 1182 FirstIE = CurrIE; 1183 CurrIE = NextIE; 1184 } 1185 1186 // If this is just a single insertelement (not a sequence), we are done. 1187 if (FirstIE == &InsElt) 1188 return nullptr; 1189 1190 // If we are not inserting into an undef vector, make sure we've seen an 1191 // insert into every element. 1192 // TODO: If the base vector is not undef, it might be better to create a splat 1193 // and then a select-shuffle (blend) with the base vector. 1194 if (!match(FirstIE->getOperand(0), m_Undef())) 1195 if (!ElementPresent.all()) 1196 return nullptr; 1197 1198 // Create the insert + shuffle. 1199 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1200 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1201 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1202 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1203 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1204 1205 // Splat from element 0, but replace absent elements with undef in the mask. 1206 SmallVector<int, 16> Mask(NumElements, 0); 1207 for (unsigned i = 0; i != NumElements; ++i) 1208 if (!ElementPresent[i]) 1209 Mask[i] = -1; 1210 1211 return new ShuffleVectorInst(FirstIE, Mask); 1212 } 1213 1214 /// Try to fold an insert element into an existing splat shuffle by changing 1215 /// the shuffle's mask to include the index of this insert element. 1216 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1217 // Check if the vector operand of this insert is a canonical splat shuffle. 1218 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1219 if (!Shuf || !Shuf->isZeroEltSplat()) 1220 return nullptr; 1221 1222 // Bail out early if shuffle is scalable type. The number of elements in 1223 // shuffle mask is unknown at compile-time. 1224 if (isa<ScalableVectorType>(Shuf->getType())) 1225 return nullptr; 1226 1227 // Check for a constant insertion index. 1228 uint64_t IdxC; 1229 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1230 return nullptr; 1231 1232 // Check if the splat shuffle's input is the same as this insert's scalar op. 1233 Value *X = InsElt.getOperand(1); 1234 Value *Op0 = Shuf->getOperand(0); 1235 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1236 return nullptr; 1237 1238 // Replace the shuffle mask element at the index of this insert with a zero. 1239 // For example: 1240 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1241 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1242 unsigned NumMaskElts = 1243 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1244 SmallVector<int, 16> NewMask(NumMaskElts); 1245 for (unsigned i = 0; i != NumMaskElts; ++i) 1246 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1247 1248 return new ShuffleVectorInst(Op0, NewMask); 1249 } 1250 1251 /// Try to fold an extract+insert element into an existing identity shuffle by 1252 /// changing the shuffle's mask to include the index of this insert element. 1253 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1254 // Check if the vector operand of this insert is an identity shuffle. 1255 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1256 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1257 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1258 return nullptr; 1259 1260 // Bail out early if shuffle is scalable type. The number of elements in 1261 // shuffle mask is unknown at compile-time. 1262 if (isa<ScalableVectorType>(Shuf->getType())) 1263 return nullptr; 1264 1265 // Check for a constant insertion index. 1266 uint64_t IdxC; 1267 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1268 return nullptr; 1269 1270 // Check if this insert's scalar op is extracted from the identity shuffle's 1271 // input vector. 1272 Value *Scalar = InsElt.getOperand(1); 1273 Value *X = Shuf->getOperand(0); 1274 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1275 return nullptr; 1276 1277 // Replace the shuffle mask element at the index of this extract+insert with 1278 // that same index value. 1279 // For example: 1280 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1281 unsigned NumMaskElts = 1282 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1283 SmallVector<int, 16> NewMask(NumMaskElts); 1284 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1285 for (unsigned i = 0; i != NumMaskElts; ++i) { 1286 if (i != IdxC) { 1287 // All mask elements besides the inserted element remain the same. 1288 NewMask[i] = OldMask[i]; 1289 } else if (OldMask[i] == (int)IdxC) { 1290 // If the mask element was already set, there's nothing to do 1291 // (demanded elements analysis may unset it later). 1292 return nullptr; 1293 } else { 1294 assert(OldMask[i] == UndefMaskElem && 1295 "Unexpected shuffle mask element for identity shuffle"); 1296 NewMask[i] = IdxC; 1297 } 1298 } 1299 1300 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1301 } 1302 1303 /// If we have an insertelement instruction feeding into another insertelement 1304 /// and the 2nd is inserting a constant into the vector, canonicalize that 1305 /// constant insertion before the insertion of a variable: 1306 /// 1307 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1308 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1309 /// 1310 /// This has the potential of eliminating the 2nd insertelement instruction 1311 /// via constant folding of the scalar constant into a vector constant. 1312 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1313 InstCombiner::BuilderTy &Builder) { 1314 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1315 if (!InsElt1 || !InsElt1->hasOneUse()) 1316 return nullptr; 1317 1318 Value *X, *Y; 1319 Constant *ScalarC; 1320 ConstantInt *IdxC1, *IdxC2; 1321 if (match(InsElt1->getOperand(0), m_Value(X)) && 1322 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1323 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1324 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1325 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1326 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1327 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1328 } 1329 1330 return nullptr; 1331 } 1332 1333 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1334 /// --> shufflevector X, CVec', Mask' 1335 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1336 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1337 // Bail out if the parent has more than one use. In that case, we'd be 1338 // replacing the insertelt with a shuffle, and that's not a clear win. 1339 if (!Inst || !Inst->hasOneUse()) 1340 return nullptr; 1341 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1342 // The shuffle must have a constant vector operand. The insertelt must have 1343 // a constant scalar being inserted at a constant position in the vector. 1344 Constant *ShufConstVec, *InsEltScalar; 1345 uint64_t InsEltIndex; 1346 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1347 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1348 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1349 return nullptr; 1350 1351 // Adding an element to an arbitrary shuffle could be expensive, but a 1352 // shuffle that selects elements from vectors without crossing lanes is 1353 // assumed cheap. 1354 // If we're just adding a constant into that shuffle, it will still be 1355 // cheap. 1356 if (!isShuffleEquivalentToSelect(*Shuf)) 1357 return nullptr; 1358 1359 // From the above 'select' check, we know that the mask has the same number 1360 // of elements as the vector input operands. We also know that each constant 1361 // input element is used in its lane and can not be used more than once by 1362 // the shuffle. Therefore, replace the constant in the shuffle's constant 1363 // vector with the insertelt constant. Replace the constant in the shuffle's 1364 // mask vector with the insertelt index plus the length of the vector 1365 // (because the constant vector operand of a shuffle is always the 2nd 1366 // operand). 1367 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1368 unsigned NumElts = Mask.size(); 1369 SmallVector<Constant *, 16> NewShufElts(NumElts); 1370 SmallVector<int, 16> NewMaskElts(NumElts); 1371 for (unsigned I = 0; I != NumElts; ++I) { 1372 if (I == InsEltIndex) { 1373 NewShufElts[I] = InsEltScalar; 1374 NewMaskElts[I] = InsEltIndex + NumElts; 1375 } else { 1376 // Copy over the existing values. 1377 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1378 NewMaskElts[I] = Mask[I]; 1379 } 1380 1381 // Bail if we failed to find an element. 1382 if (!NewShufElts[I]) 1383 return nullptr; 1384 } 1385 1386 // Create new operands for a shuffle that includes the constant of the 1387 // original insertelt. The old shuffle will be dead now. 1388 return new ShuffleVectorInst(Shuf->getOperand(0), 1389 ConstantVector::get(NewShufElts), NewMaskElts); 1390 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1391 // Transform sequences of insertelements ops with constant data/indexes into 1392 // a single shuffle op. 1393 // Can not handle scalable type, the number of elements needed to create 1394 // shuffle mask is not a compile-time constant. 1395 if (isa<ScalableVectorType>(InsElt.getType())) 1396 return nullptr; 1397 unsigned NumElts = 1398 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1399 1400 uint64_t InsertIdx[2]; 1401 Constant *Val[2]; 1402 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1403 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1404 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1405 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1406 return nullptr; 1407 SmallVector<Constant *, 16> Values(NumElts); 1408 SmallVector<int, 16> Mask(NumElts); 1409 auto ValI = std::begin(Val); 1410 // Generate new constant vector and mask. 1411 // We have 2 values/masks from the insertelements instructions. Insert them 1412 // into new value/mask vectors. 1413 for (uint64_t I : InsertIdx) { 1414 if (!Values[I]) { 1415 Values[I] = *ValI; 1416 Mask[I] = NumElts + I; 1417 } 1418 ++ValI; 1419 } 1420 // Remaining values are filled with 'undef' values. 1421 for (unsigned I = 0; I < NumElts; ++I) { 1422 if (!Values[I]) { 1423 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1424 Mask[I] = I; 1425 } 1426 } 1427 // Create new operands for a shuffle that includes the constant of the 1428 // original insertelt. 1429 return new ShuffleVectorInst(IEI->getOperand(0), 1430 ConstantVector::get(Values), Mask); 1431 } 1432 return nullptr; 1433 } 1434 1435 /// If both the base vector and the inserted element are extended from the same 1436 /// type, do the insert element in the narrow source type followed by extend. 1437 /// TODO: This can be extended to include other cast opcodes, but particularly 1438 /// if we create a wider insertelement, make sure codegen is not harmed. 1439 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1440 InstCombiner::BuilderTy &Builder) { 1441 // We are creating a vector extend. If the original vector extend has another 1442 // use, that would mean we end up with 2 vector extends, so avoid that. 1443 // TODO: We could ease the use-clause to "if at least one op has one use" 1444 // (assuming that the source types match - see next TODO comment). 1445 Value *Vec = InsElt.getOperand(0); 1446 if (!Vec->hasOneUse()) 1447 return nullptr; 1448 1449 Value *Scalar = InsElt.getOperand(1); 1450 Value *X, *Y; 1451 CastInst::CastOps CastOpcode; 1452 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1453 CastOpcode = Instruction::FPExt; 1454 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1455 CastOpcode = Instruction::SExt; 1456 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1457 CastOpcode = Instruction::ZExt; 1458 else 1459 return nullptr; 1460 1461 // TODO: We can allow mismatched types by creating an intermediate cast. 1462 if (X->getType()->getScalarType() != Y->getType()) 1463 return nullptr; 1464 1465 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1466 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1467 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1468 } 1469 1470 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1471 Value *VecOp = IE.getOperand(0); 1472 Value *ScalarOp = IE.getOperand(1); 1473 Value *IdxOp = IE.getOperand(2); 1474 1475 if (auto *V = SimplifyInsertElementInst( 1476 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1477 return replaceInstUsesWith(IE, V); 1478 1479 // If the scalar is bitcast and inserted into undef, do the insert in the 1480 // source type followed by bitcast. 1481 // TODO: Generalize for insert into any constant, not just undef? 1482 Value *ScalarSrc; 1483 if (match(VecOp, m_Undef()) && 1484 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1485 (ScalarSrc->getType()->isIntegerTy() || 1486 ScalarSrc->getType()->isFloatingPointTy())) { 1487 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1488 // bitcast (inselt undef, ScalarSrc, IdxOp) 1489 Type *ScalarTy = ScalarSrc->getType(); 1490 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1491 UndefValue *NewUndef = UndefValue::get(VecTy); 1492 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1493 return new BitCastInst(NewInsElt, IE.getType()); 1494 } 1495 1496 // If the vector and scalar are both bitcast from the same element type, do 1497 // the insert in that source type followed by bitcast. 1498 Value *VecSrc; 1499 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1500 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1501 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1502 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1503 cast<VectorType>(VecSrc->getType())->getElementType() == 1504 ScalarSrc->getType()) { 1505 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1506 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1507 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1508 return new BitCastInst(NewInsElt, IE.getType()); 1509 } 1510 1511 // If the inserted element was extracted from some other fixed-length vector 1512 // and both indexes are valid constants, try to turn this into a shuffle. 1513 // Can not handle scalable vector type, the number of elements needed to 1514 // create shuffle mask is not a compile-time constant. 1515 uint64_t InsertedIdx, ExtractedIdx; 1516 Value *ExtVecOp; 1517 if (isa<FixedVectorType>(IE.getType()) && 1518 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1519 match(ScalarOp, 1520 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1521 isa<FixedVectorType>(ExtVecOp->getType()) && 1522 ExtractedIdx < 1523 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1524 // TODO: Looking at the user(s) to determine if this insert is a 1525 // fold-to-shuffle opportunity does not match the usual instcombine 1526 // constraints. We should decide if the transform is worthy based only 1527 // on this instruction and its operands, but that may not work currently. 1528 // 1529 // Here, we are trying to avoid creating shuffles before reaching 1530 // the end of a chain of extract-insert pairs. This is complicated because 1531 // we do not generally form arbitrary shuffle masks in instcombine 1532 // (because those may codegen poorly), but collectShuffleElements() does 1533 // exactly that. 1534 // 1535 // The rules for determining what is an acceptable target-independent 1536 // shuffle mask are fuzzy because they evolve based on the backend's 1537 // capabilities and real-world impact. 1538 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1539 if (!Insert.hasOneUse()) 1540 return true; 1541 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1542 if (!InsertUser) 1543 return true; 1544 return false; 1545 }; 1546 1547 // Try to form a shuffle from a chain of extract-insert ops. 1548 if (isShuffleRootCandidate(IE)) { 1549 SmallVector<int, 16> Mask; 1550 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1551 1552 // The proposed shuffle may be trivial, in which case we shouldn't 1553 // perform the combine. 1554 if (LR.first != &IE && LR.second != &IE) { 1555 // We now have a shuffle of LHS, RHS, Mask. 1556 if (LR.second == nullptr) 1557 LR.second = UndefValue::get(LR.first->getType()); 1558 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1559 } 1560 } 1561 } 1562 1563 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1564 unsigned VWidth = VecTy->getNumElements(); 1565 APInt UndefElts(VWidth, 0); 1566 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1567 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1568 if (V != &IE) 1569 return replaceInstUsesWith(IE, V); 1570 return &IE; 1571 } 1572 } 1573 1574 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1575 return Shuf; 1576 1577 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1578 return NewInsElt; 1579 1580 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1581 return Broadcast; 1582 1583 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1584 return Splat; 1585 1586 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1587 return IdentityShuf; 1588 1589 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1590 return Ext; 1591 1592 return nullptr; 1593 } 1594 1595 /// Return true if we can evaluate the specified expression tree if the vector 1596 /// elements were shuffled in a different order. 1597 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1598 unsigned Depth = 5) { 1599 // We can always reorder the elements of a constant. 1600 if (isa<Constant>(V)) 1601 return true; 1602 1603 // We won't reorder vector arguments. No IPO here. 1604 Instruction *I = dyn_cast<Instruction>(V); 1605 if (!I) return false; 1606 1607 // Two users may expect different orders of the elements. Don't try it. 1608 if (!I->hasOneUse()) 1609 return false; 1610 1611 if (Depth == 0) return false; 1612 1613 switch (I->getOpcode()) { 1614 case Instruction::UDiv: 1615 case Instruction::SDiv: 1616 case Instruction::URem: 1617 case Instruction::SRem: 1618 // Propagating an undefined shuffle mask element to integer div/rem is not 1619 // allowed because those opcodes can create immediate undefined behavior 1620 // from an undefined element in an operand. 1621 if (llvm::is_contained(Mask, -1)) 1622 return false; 1623 LLVM_FALLTHROUGH; 1624 case Instruction::Add: 1625 case Instruction::FAdd: 1626 case Instruction::Sub: 1627 case Instruction::FSub: 1628 case Instruction::Mul: 1629 case Instruction::FMul: 1630 case Instruction::FDiv: 1631 case Instruction::FRem: 1632 case Instruction::Shl: 1633 case Instruction::LShr: 1634 case Instruction::AShr: 1635 case Instruction::And: 1636 case Instruction::Or: 1637 case Instruction::Xor: 1638 case Instruction::ICmp: 1639 case Instruction::FCmp: 1640 case Instruction::Trunc: 1641 case Instruction::ZExt: 1642 case Instruction::SExt: 1643 case Instruction::FPToUI: 1644 case Instruction::FPToSI: 1645 case Instruction::UIToFP: 1646 case Instruction::SIToFP: 1647 case Instruction::FPTrunc: 1648 case Instruction::FPExt: 1649 case Instruction::GetElementPtr: { 1650 // Bail out if we would create longer vector ops. We could allow creating 1651 // longer vector ops, but that may result in more expensive codegen. 1652 Type *ITy = I->getType(); 1653 if (ITy->isVectorTy() && 1654 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1655 return false; 1656 for (Value *Operand : I->operands()) { 1657 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1658 return false; 1659 } 1660 return true; 1661 } 1662 case Instruction::InsertElement: { 1663 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1664 if (!CI) return false; 1665 int ElementNumber = CI->getLimitedValue(); 1666 1667 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1668 // can't put an element into multiple indices. 1669 bool SeenOnce = false; 1670 for (int i = 0, e = Mask.size(); i != e; ++i) { 1671 if (Mask[i] == ElementNumber) { 1672 if (SeenOnce) 1673 return false; 1674 SeenOnce = true; 1675 } 1676 } 1677 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1678 } 1679 } 1680 return false; 1681 } 1682 1683 /// Rebuild a new instruction just like 'I' but with the new operands given. 1684 /// In the event of type mismatch, the type of the operands is correct. 1685 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1686 // We don't want to use the IRBuilder here because we want the replacement 1687 // instructions to appear next to 'I', not the builder's insertion point. 1688 switch (I->getOpcode()) { 1689 case Instruction::Add: 1690 case Instruction::FAdd: 1691 case Instruction::Sub: 1692 case Instruction::FSub: 1693 case Instruction::Mul: 1694 case Instruction::FMul: 1695 case Instruction::UDiv: 1696 case Instruction::SDiv: 1697 case Instruction::FDiv: 1698 case Instruction::URem: 1699 case Instruction::SRem: 1700 case Instruction::FRem: 1701 case Instruction::Shl: 1702 case Instruction::LShr: 1703 case Instruction::AShr: 1704 case Instruction::And: 1705 case Instruction::Or: 1706 case Instruction::Xor: { 1707 BinaryOperator *BO = cast<BinaryOperator>(I); 1708 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1709 BinaryOperator *New = 1710 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1711 NewOps[0], NewOps[1], "", BO); 1712 if (isa<OverflowingBinaryOperator>(BO)) { 1713 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1714 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1715 } 1716 if (isa<PossiblyExactOperator>(BO)) { 1717 New->setIsExact(BO->isExact()); 1718 } 1719 if (isa<FPMathOperator>(BO)) 1720 New->copyFastMathFlags(I); 1721 return New; 1722 } 1723 case Instruction::ICmp: 1724 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1725 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1726 NewOps[0], NewOps[1]); 1727 case Instruction::FCmp: 1728 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1729 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1730 NewOps[0], NewOps[1]); 1731 case Instruction::Trunc: 1732 case Instruction::ZExt: 1733 case Instruction::SExt: 1734 case Instruction::FPToUI: 1735 case Instruction::FPToSI: 1736 case Instruction::UIToFP: 1737 case Instruction::SIToFP: 1738 case Instruction::FPTrunc: 1739 case Instruction::FPExt: { 1740 // It's possible that the mask has a different number of elements from 1741 // the original cast. We recompute the destination type to match the mask. 1742 Type *DestTy = VectorType::get( 1743 I->getType()->getScalarType(), 1744 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1745 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1746 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1747 "", I); 1748 } 1749 case Instruction::GetElementPtr: { 1750 Value *Ptr = NewOps[0]; 1751 ArrayRef<Value*> Idx = NewOps.slice(1); 1752 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1753 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1754 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1755 return GEP; 1756 } 1757 } 1758 llvm_unreachable("failed to rebuild vector instructions"); 1759 } 1760 1761 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1762 // Mask.size() does not need to be equal to the number of vector elements. 1763 1764 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1765 Type *EltTy = V->getType()->getScalarType(); 1766 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1767 if (match(V, m_Undef())) 1768 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1769 1770 if (isa<ConstantAggregateZero>(V)) 1771 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1772 1773 if (Constant *C = dyn_cast<Constant>(V)) 1774 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1775 Mask); 1776 1777 Instruction *I = cast<Instruction>(V); 1778 switch (I->getOpcode()) { 1779 case Instruction::Add: 1780 case Instruction::FAdd: 1781 case Instruction::Sub: 1782 case Instruction::FSub: 1783 case Instruction::Mul: 1784 case Instruction::FMul: 1785 case Instruction::UDiv: 1786 case Instruction::SDiv: 1787 case Instruction::FDiv: 1788 case Instruction::URem: 1789 case Instruction::SRem: 1790 case Instruction::FRem: 1791 case Instruction::Shl: 1792 case Instruction::LShr: 1793 case Instruction::AShr: 1794 case Instruction::And: 1795 case Instruction::Or: 1796 case Instruction::Xor: 1797 case Instruction::ICmp: 1798 case Instruction::FCmp: 1799 case Instruction::Trunc: 1800 case Instruction::ZExt: 1801 case Instruction::SExt: 1802 case Instruction::FPToUI: 1803 case Instruction::FPToSI: 1804 case Instruction::UIToFP: 1805 case Instruction::SIToFP: 1806 case Instruction::FPTrunc: 1807 case Instruction::FPExt: 1808 case Instruction::Select: 1809 case Instruction::GetElementPtr: { 1810 SmallVector<Value*, 8> NewOps; 1811 bool NeedsRebuild = 1812 (Mask.size() != 1813 cast<FixedVectorType>(I->getType())->getNumElements()); 1814 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1815 Value *V; 1816 // Recursively call evaluateInDifferentElementOrder on vector arguments 1817 // as well. E.g. GetElementPtr may have scalar operands even if the 1818 // return value is a vector, so we need to examine the operand type. 1819 if (I->getOperand(i)->getType()->isVectorTy()) 1820 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1821 else 1822 V = I->getOperand(i); 1823 NewOps.push_back(V); 1824 NeedsRebuild |= (V != I->getOperand(i)); 1825 } 1826 if (NeedsRebuild) { 1827 return buildNew(I, NewOps); 1828 } 1829 return I; 1830 } 1831 case Instruction::InsertElement: { 1832 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1833 1834 // The insertelement was inserting at Element. Figure out which element 1835 // that becomes after shuffling. The answer is guaranteed to be unique 1836 // by CanEvaluateShuffled. 1837 bool Found = false; 1838 int Index = 0; 1839 for (int e = Mask.size(); Index != e; ++Index) { 1840 if (Mask[Index] == Element) { 1841 Found = true; 1842 break; 1843 } 1844 } 1845 1846 // If element is not in Mask, no need to handle the operand 1 (element to 1847 // be inserted). Just evaluate values in operand 0 according to Mask. 1848 if (!Found) 1849 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1850 1851 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1852 return InsertElementInst::Create(V, I->getOperand(1), 1853 ConstantInt::get(I32Ty, Index), "", I); 1854 } 1855 } 1856 llvm_unreachable("failed to reorder elements of vector instruction!"); 1857 } 1858 1859 // Returns true if the shuffle is extracting a contiguous range of values from 1860 // LHS, for example: 1861 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1862 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1863 // Shuffles to: |EE|FF|GG|HH| 1864 // +--+--+--+--+ 1865 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1866 ArrayRef<int> Mask) { 1867 unsigned LHSElems = 1868 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1869 unsigned MaskElems = Mask.size(); 1870 unsigned BegIdx = Mask.front(); 1871 unsigned EndIdx = Mask.back(); 1872 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1873 return false; 1874 for (unsigned I = 0; I != MaskElems; ++I) 1875 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1876 return false; 1877 return true; 1878 } 1879 1880 /// These are the ingredients in an alternate form binary operator as described 1881 /// below. 1882 struct BinopElts { 1883 BinaryOperator::BinaryOps Opcode; 1884 Value *Op0; 1885 Value *Op1; 1886 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1887 Value *V0 = nullptr, Value *V1 = nullptr) : 1888 Opcode(Opc), Op0(V0), Op1(V1) {} 1889 operator bool() const { return Opcode != 0; } 1890 }; 1891 1892 /// Binops may be transformed into binops with different opcodes and operands. 1893 /// Reverse the usual canonicalization to enable folds with the non-canonical 1894 /// form of the binop. If a transform is possible, return the elements of the 1895 /// new binop. If not, return invalid elements. 1896 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1897 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1898 Type *Ty = BO->getType(); 1899 switch (BO->getOpcode()) { 1900 case Instruction::Shl: { 1901 // shl X, C --> mul X, (1 << C) 1902 Constant *C; 1903 if (match(BO1, m_Constant(C))) { 1904 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1905 return { Instruction::Mul, BO0, ShlOne }; 1906 } 1907 break; 1908 } 1909 case Instruction::Or: { 1910 // or X, C --> add X, C (when X and C have no common bits set) 1911 const APInt *C; 1912 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1913 return { Instruction::Add, BO0, BO1 }; 1914 break; 1915 } 1916 default: 1917 break; 1918 } 1919 return {}; 1920 } 1921 1922 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1923 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1924 1925 // Are we shuffling together some value and that same value after it has been 1926 // modified by a binop with a constant? 1927 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1928 Constant *C; 1929 bool Op0IsBinop; 1930 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1931 Op0IsBinop = true; 1932 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1933 Op0IsBinop = false; 1934 else 1935 return nullptr; 1936 1937 // The identity constant for a binop leaves a variable operand unchanged. For 1938 // a vector, this is a splat of something like 0, -1, or 1. 1939 // If there's no identity constant for this binop, we're done. 1940 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1941 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1942 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1943 if (!IdC) 1944 return nullptr; 1945 1946 // Shuffle identity constants into the lanes that return the original value. 1947 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1948 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1949 // The existing binop constant vector remains in the same operand position. 1950 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1951 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1952 ConstantExpr::getShuffleVector(IdC, C, Mask); 1953 1954 bool MightCreatePoisonOrUB = 1955 is_contained(Mask, UndefMaskElem) && 1956 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1957 if (MightCreatePoisonOrUB) 1958 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1959 1960 // shuf (bop X, C), X, M --> bop X, C' 1961 // shuf X, (bop X, C), M --> bop X, C' 1962 Value *X = Op0IsBinop ? Op1 : Op0; 1963 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1964 NewBO->copyIRFlags(BO); 1965 1966 // An undef shuffle mask element may propagate as an undef constant element in 1967 // the new binop. That would produce poison where the original code might not. 1968 // If we already made a safe constant, then there's no danger. 1969 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1970 NewBO->dropPoisonGeneratingFlags(); 1971 return NewBO; 1972 } 1973 1974 /// If we have an insert of a scalar to a non-zero element of an undefined 1975 /// vector and then shuffle that value, that's the same as inserting to the zero 1976 /// element and shuffling. Splatting from the zero element is recognized as the 1977 /// canonical form of splat. 1978 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1979 InstCombiner::BuilderTy &Builder) { 1980 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1981 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1982 Value *X; 1983 uint64_t IndexC; 1984 1985 // Match a shuffle that is a splat to a non-zero element. 1986 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1987 m_ConstantInt(IndexC)))) || 1988 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1989 return nullptr; 1990 1991 // Insert into element 0 of an undef vector. 1992 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1993 Constant *Zero = Builder.getInt32(0); 1994 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1995 1996 // Splat from element 0. Any mask element that is undefined remains undefined. 1997 // For example: 1998 // shuf (inselt undef, X, 2), _, <2,2,undef> 1999 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2000 unsigned NumMaskElts = 2001 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2002 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2003 for (unsigned i = 0; i != NumMaskElts; ++i) 2004 if (Mask[i] == UndefMaskElem) 2005 NewMask[i] = Mask[i]; 2006 2007 return new ShuffleVectorInst(NewIns, NewMask); 2008 } 2009 2010 /// Try to fold shuffles that are the equivalent of a vector select. 2011 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 2012 InstCombiner::BuilderTy &Builder, 2013 const DataLayout &DL) { 2014 if (!Shuf.isSelect()) 2015 return nullptr; 2016 2017 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2018 // Commuting undef to operand 0 conflicts with another canonicalization. 2019 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2020 if (!match(Shuf.getOperand(1), m_Undef()) && 2021 Shuf.getMaskValue(0) >= (int)NumElts) { 2022 // TODO: Can we assert that both operands of a shuffle-select are not undef 2023 // (otherwise, it would have been folded by instsimplify? 2024 Shuf.commute(); 2025 return &Shuf; 2026 } 2027 2028 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2029 return I; 2030 2031 BinaryOperator *B0, *B1; 2032 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2033 !match(Shuf.getOperand(1), m_BinOp(B1))) 2034 return nullptr; 2035 2036 Value *X, *Y; 2037 Constant *C0, *C1; 2038 bool ConstantsAreOp1; 2039 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 2040 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 2041 ConstantsAreOp1 = true; 2042 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2043 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2044 ConstantsAreOp1 = false; 2045 else 2046 return nullptr; 2047 2048 // We need matching binops to fold the lanes together. 2049 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2050 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2051 bool DropNSW = false; 2052 if (ConstantsAreOp1 && Opc0 != Opc1) { 2053 // TODO: We drop "nsw" if shift is converted into multiply because it may 2054 // not be correct when the shift amount is BitWidth - 1. We could examine 2055 // each vector element to determine if it is safe to keep that flag. 2056 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2057 DropNSW = true; 2058 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2059 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2060 Opc0 = AltB0.Opcode; 2061 C0 = cast<Constant>(AltB0.Op1); 2062 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2063 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2064 Opc1 = AltB1.Opcode; 2065 C1 = cast<Constant>(AltB1.Op1); 2066 } 2067 } 2068 2069 if (Opc0 != Opc1) 2070 return nullptr; 2071 2072 // The opcodes must be the same. Use a new name to make that clear. 2073 BinaryOperator::BinaryOps BOpc = Opc0; 2074 2075 // Select the constant elements needed for the single binop. 2076 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2077 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2078 2079 // We are moving a binop after a shuffle. When a shuffle has an undefined 2080 // mask element, the result is undefined, but it is not poison or undefined 2081 // behavior. That is not necessarily true for div/rem/shift. 2082 bool MightCreatePoisonOrUB = 2083 is_contained(Mask, UndefMaskElem) && 2084 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2085 if (MightCreatePoisonOrUB) 2086 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2087 ConstantsAreOp1); 2088 2089 Value *V; 2090 if (X == Y) { 2091 // Remove a binop and the shuffle by rearranging the constant: 2092 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2093 // shuffle (op C0, V), (op C1, V), M --> op C', V 2094 V = X; 2095 } else { 2096 // If there are 2 different variable operands, we must create a new shuffle 2097 // (select) first, so check uses to ensure that we don't end up with more 2098 // instructions than we started with. 2099 if (!B0->hasOneUse() && !B1->hasOneUse()) 2100 return nullptr; 2101 2102 // If we use the original shuffle mask and op1 is *variable*, we would be 2103 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2104 // poison. We do not have to guard against UB when *constants* are op1 2105 // because safe constants guarantee that we do not overflow sdiv/srem (and 2106 // there's no danger for other opcodes). 2107 // TODO: To allow this case, create a new shuffle mask with no undefs. 2108 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2109 return nullptr; 2110 2111 // Note: In general, we do not create new shuffles in InstCombine because we 2112 // do not know if a target can lower an arbitrary shuffle optimally. In this 2113 // case, the shuffle uses the existing mask, so there is no additional risk. 2114 2115 // Select the variable vectors first, then perform the binop: 2116 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2117 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2118 V = Builder.CreateShuffleVector(X, Y, Mask); 2119 } 2120 2121 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 2122 BinaryOperator::Create(BOpc, NewC, V); 2123 2124 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2125 // 1. If we changed an opcode, poison conditions might have changed. 2126 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2127 // where the original code did not. But if we already made a safe constant, 2128 // then there's no danger. 2129 NewBO->copyIRFlags(B0); 2130 NewBO->andIRFlags(B1); 2131 if (DropNSW) 2132 NewBO->setHasNoSignedWrap(false); 2133 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2134 NewBO->dropPoisonGeneratingFlags(); 2135 return NewBO; 2136 } 2137 2138 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2139 /// Example (little endian): 2140 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2141 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2142 bool IsBigEndian) { 2143 // This must be a bitcasted shuffle of 1 vector integer operand. 2144 Type *DestType = Shuf.getType(); 2145 Value *X; 2146 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2147 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2148 return nullptr; 2149 2150 // The source type must have the same number of elements as the shuffle, 2151 // and the source element type must be larger than the shuffle element type. 2152 Type *SrcType = X->getType(); 2153 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2154 cast<FixedVectorType>(SrcType)->getNumElements() != 2155 cast<FixedVectorType>(DestType)->getNumElements() || 2156 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2157 return nullptr; 2158 2159 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2160 "Expected a shuffle that decreases length"); 2161 2162 // Last, check that the mask chooses the correct low bits for each narrow 2163 // element in the result. 2164 uint64_t TruncRatio = 2165 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2166 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2167 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2168 if (Mask[i] == UndefMaskElem) 2169 continue; 2170 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2171 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2172 if (Mask[i] != (int)LSBIndex) 2173 return nullptr; 2174 } 2175 2176 return new TruncInst(X, DestType); 2177 } 2178 2179 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2180 /// narrowing (concatenating with undef and extracting back to the original 2181 /// length). This allows replacing the wide select with a narrow select. 2182 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2183 InstCombiner::BuilderTy &Builder) { 2184 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2185 // of the 1st vector operand of a shuffle. 2186 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2187 return nullptr; 2188 2189 // The vector being shuffled must be a vector select that we can eliminate. 2190 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2191 Value *Cond, *X, *Y; 2192 if (!match(Shuf.getOperand(0), 2193 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2194 return nullptr; 2195 2196 // We need a narrow condition value. It must be extended with undef elements 2197 // and have the same number of elements as this shuffle. 2198 unsigned NarrowNumElts = 2199 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2200 Value *NarrowCond; 2201 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2202 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2203 NarrowNumElts || 2204 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2205 return nullptr; 2206 2207 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2208 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2209 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2210 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2211 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2212 } 2213 2214 /// Try to fold an extract subvector operation. 2215 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2216 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2217 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2218 return nullptr; 2219 2220 // Check if we are extracting all bits of an inserted scalar: 2221 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2222 Value *X; 2223 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2224 X->getType()->getPrimitiveSizeInBits() == 2225 Shuf.getType()->getPrimitiveSizeInBits()) 2226 return new BitCastInst(X, Shuf.getType()); 2227 2228 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2229 Value *Y; 2230 ArrayRef<int> Mask; 2231 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2232 return nullptr; 2233 2234 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2235 // then combining may result in worse codegen. 2236 if (!Op0->hasOneUse()) 2237 return nullptr; 2238 2239 // We are extracting a subvector from a shuffle. Remove excess elements from 2240 // the 1st shuffle mask to eliminate the extract. 2241 // 2242 // This transform is conservatively limited to identity extracts because we do 2243 // not allow arbitrary shuffle mask creation as a target-independent transform 2244 // (because we can't guarantee that will lower efficiently). 2245 // 2246 // If the extracting shuffle has an undef mask element, it transfers to the 2247 // new shuffle mask. Otherwise, copy the original mask element. Example: 2248 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2249 // shuf X, Y, <C0, undef, C2, undef> 2250 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2251 SmallVector<int, 16> NewMask(NumElts); 2252 assert(NumElts < Mask.size() && 2253 "Identity with extract must have less elements than its inputs"); 2254 2255 for (unsigned i = 0; i != NumElts; ++i) { 2256 int ExtractMaskElt = Shuf.getMaskValue(i); 2257 int MaskElt = Mask[i]; 2258 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2259 } 2260 return new ShuffleVectorInst(X, Y, NewMask); 2261 } 2262 2263 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2264 /// operand with the operand of an insertelement. 2265 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2266 InstCombinerImpl &IC) { 2267 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2268 SmallVector<int, 16> Mask; 2269 Shuf.getShuffleMask(Mask); 2270 2271 int NumElts = Mask.size(); 2272 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2273 2274 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2275 // not be able to handle it there if the insertelement has >1 use. 2276 // If the shuffle has an insertelement operand but does not choose the 2277 // inserted scalar element from that value, then we can replace that shuffle 2278 // operand with the source vector of the insertelement. 2279 Value *X; 2280 uint64_t IdxC; 2281 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2282 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2283 if (!is_contained(Mask, (int)IdxC)) 2284 return IC.replaceOperand(Shuf, 0, X); 2285 } 2286 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2287 // Offset the index constant by the vector width because we are checking for 2288 // accesses to the 2nd vector input of the shuffle. 2289 IdxC += InpNumElts; 2290 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2291 if (!is_contained(Mask, (int)IdxC)) 2292 return IC.replaceOperand(Shuf, 1, X); 2293 } 2294 // For the rest of the transform, the shuffle must not change vector sizes. 2295 // TODO: This restriction could be removed if the insert has only one use 2296 // (because the transform would require a new length-changing shuffle). 2297 if (NumElts != InpNumElts) 2298 return nullptr; 2299 2300 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2301 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2302 // We need an insertelement with a constant index. 2303 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2304 m_ConstantInt(IndexC)))) 2305 return false; 2306 2307 // Test the shuffle mask to see if it splices the inserted scalar into the 2308 // operand 1 vector of the shuffle. 2309 int NewInsIndex = -1; 2310 for (int i = 0; i != NumElts; ++i) { 2311 // Ignore undef mask elements. 2312 if (Mask[i] == -1) 2313 continue; 2314 2315 // The shuffle takes elements of operand 1 without lane changes. 2316 if (Mask[i] == NumElts + i) 2317 continue; 2318 2319 // The shuffle must choose the inserted scalar exactly once. 2320 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2321 return false; 2322 2323 // The shuffle is placing the inserted scalar into element i. 2324 NewInsIndex = i; 2325 } 2326 2327 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2328 2329 // Index is updated to the potentially translated insertion lane. 2330 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2331 return true; 2332 }; 2333 2334 // If the shuffle is unnecessary, insert the scalar operand directly into 2335 // operand 1 of the shuffle. Example: 2336 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2337 Value *Scalar; 2338 ConstantInt *IndexC; 2339 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2340 return InsertElementInst::Create(V1, Scalar, IndexC); 2341 2342 // Try again after commuting shuffle. Example: 2343 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2344 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2345 std::swap(V0, V1); 2346 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2347 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2348 return InsertElementInst::Create(V1, Scalar, IndexC); 2349 2350 return nullptr; 2351 } 2352 2353 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2354 // Match the operands as identity with padding (also known as concatenation 2355 // with undef) shuffles of the same source type. The backend is expected to 2356 // recreate these concatenations from a shuffle of narrow operands. 2357 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2358 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2359 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2360 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2361 return nullptr; 2362 2363 // We limit this transform to power-of-2 types because we expect that the 2364 // backend can convert the simplified IR patterns to identical nodes as the 2365 // original IR. 2366 // TODO: If we can verify the same behavior for arbitrary types, the 2367 // power-of-2 checks can be removed. 2368 Value *X = Shuffle0->getOperand(0); 2369 Value *Y = Shuffle1->getOperand(0); 2370 if (X->getType() != Y->getType() || 2371 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2372 !isPowerOf2_32( 2373 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2374 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2375 match(X, m_Undef()) || match(Y, m_Undef())) 2376 return nullptr; 2377 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2378 match(Shuffle1->getOperand(1), m_Undef()) && 2379 "Unexpected operand for identity shuffle"); 2380 2381 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2382 // operands directly by adjusting the shuffle mask to account for the narrower 2383 // types: 2384 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2385 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2386 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2387 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2388 2389 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2390 SmallVector<int, 16> NewMask(Mask.size(), -1); 2391 for (int i = 0, e = Mask.size(); i != e; ++i) { 2392 if (Mask[i] == -1) 2393 continue; 2394 2395 // If this shuffle is choosing an undef element from 1 of the sources, that 2396 // element is undef. 2397 if (Mask[i] < WideElts) { 2398 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2399 continue; 2400 } else { 2401 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2402 continue; 2403 } 2404 2405 // If this shuffle is choosing from the 1st narrow op, the mask element is 2406 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2407 // element is offset down to adjust for the narrow vector widths. 2408 if (Mask[i] < WideElts) { 2409 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2410 NewMask[i] = Mask[i]; 2411 } else { 2412 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2413 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2414 } 2415 } 2416 return new ShuffleVectorInst(X, Y, NewMask); 2417 } 2418 2419 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2420 Value *LHS = SVI.getOperand(0); 2421 Value *RHS = SVI.getOperand(1); 2422 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2423 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2424 SVI.getType(), ShufQuery)) 2425 return replaceInstUsesWith(SVI, V); 2426 2427 // Bail out for scalable vectors 2428 if (isa<ScalableVectorType>(LHS->getType())) 2429 return nullptr; 2430 2431 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2432 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2433 2434 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2435 // 2436 // if X and Y are of the same (vector) type, and the element size is not 2437 // changed by the bitcasts, we can distribute the bitcasts through the 2438 // shuffle, hopefully reducing the number of instructions. We make sure that 2439 // at least one bitcast only has one use, so we don't *increase* the number of 2440 // instructions here. 2441 Value *X, *Y; 2442 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2443 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2444 X->getType()->getScalarSizeInBits() == 2445 SVI.getType()->getScalarSizeInBits() && 2446 (LHS->hasOneUse() || RHS->hasOneUse())) { 2447 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2448 SVI.getName() + ".uncasted"); 2449 return new BitCastInst(V, SVI.getType()); 2450 } 2451 2452 ArrayRef<int> Mask = SVI.getShuffleMask(); 2453 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2454 2455 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2456 // simulated shuffle can simplify, then this shuffle is unnecessary: 2457 // shuf (bitcast X), undef, Mask --> bitcast X' 2458 // TODO: This could be extended to allow length-changing shuffles. 2459 // The transform might also be obsoleted if we allowed canonicalization 2460 // of bitcasted shuffles. 2461 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2462 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2463 // Try to create a scaled mask constant. 2464 auto *XType = cast<FixedVectorType>(X->getType()); 2465 unsigned XNumElts = XType->getNumElements(); 2466 SmallVector<int, 16> ScaledMask; 2467 if (XNumElts >= VWidth) { 2468 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2469 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2470 } else { 2471 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2472 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2473 ScaledMask.clear(); 2474 } 2475 if (!ScaledMask.empty()) { 2476 // If the shuffled source vector simplifies, cast that value to this 2477 // shuffle's type. 2478 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2479 ScaledMask, XType, ShufQuery)) 2480 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2481 } 2482 } 2483 2484 // shuffle x, x, mask --> shuffle x, undef, mask' 2485 if (LHS == RHS) { 2486 assert(!match(RHS, m_Undef()) && 2487 "Shuffle with 2 undef ops not simplified?"); 2488 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2489 } 2490 2491 // shuffle undef, x, mask --> shuffle x, undef, mask' 2492 if (match(LHS, m_Undef())) { 2493 SVI.commute(); 2494 return &SVI; 2495 } 2496 2497 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2498 return I; 2499 2500 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2501 return I; 2502 2503 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2504 return I; 2505 2506 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2507 return I; 2508 2509 APInt UndefElts(VWidth, 0); 2510 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2511 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2512 if (V != &SVI) 2513 return replaceInstUsesWith(SVI, V); 2514 return &SVI; 2515 } 2516 2517 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2518 return I; 2519 2520 // These transforms have the potential to lose undef knowledge, so they are 2521 // intentionally placed after SimplifyDemandedVectorElts(). 2522 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2523 return I; 2524 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2525 return I; 2526 2527 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2528 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2529 return replaceInstUsesWith(SVI, V); 2530 } 2531 2532 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2533 // a non-vector type. We can instead bitcast the original vector followed by 2534 // an extract of the desired element: 2535 // 2536 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2537 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2538 // %1 = bitcast <4 x i8> %sroa to i32 2539 // Becomes: 2540 // %bc = bitcast <16 x i8> %in to <4 x i32> 2541 // %ext = extractelement <4 x i32> %bc, i32 0 2542 // 2543 // If the shuffle is extracting a contiguous range of values from the input 2544 // vector then each use which is a bitcast of the extracted size can be 2545 // replaced. This will work if the vector types are compatible, and the begin 2546 // index is aligned to a value in the casted vector type. If the begin index 2547 // isn't aligned then we can shuffle the original vector (keeping the same 2548 // vector type) before extracting. 2549 // 2550 // This code will bail out if the target type is fundamentally incompatible 2551 // with vectors of the source type. 2552 // 2553 // Example of <16 x i8>, target type i32: 2554 // Index range [4,8): v-----------v Will work. 2555 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2556 // <16 x i8>: | | | | | | | | | | | | | | | | | 2557 // <4 x i32>: | | | | | 2558 // +-----------+-----------+-----------+-----------+ 2559 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2560 // Target type i40: ^--------------^ Won't work, bail. 2561 bool MadeChange = false; 2562 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2563 Value *V = LHS; 2564 unsigned MaskElems = Mask.size(); 2565 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2566 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2567 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2568 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2569 unsigned SrcNumElems = SrcTy->getNumElements(); 2570 SmallVector<BitCastInst *, 8> BCs; 2571 DenseMap<Type *, Value *> NewBCs; 2572 for (User *U : SVI.users()) 2573 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2574 if (!BC->use_empty()) 2575 // Only visit bitcasts that weren't previously handled. 2576 BCs.push_back(BC); 2577 for (BitCastInst *BC : BCs) { 2578 unsigned BegIdx = Mask.front(); 2579 Type *TgtTy = BC->getDestTy(); 2580 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2581 if (!TgtElemBitWidth) 2582 continue; 2583 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2584 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2585 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2586 if (!VecBitWidthsEqual) 2587 continue; 2588 if (!VectorType::isValidElementType(TgtTy)) 2589 continue; 2590 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2591 if (!BegIsAligned) { 2592 // Shuffle the input so [0,NumElements) contains the output, and 2593 // [NumElems,SrcNumElems) is undef. 2594 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2595 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2596 ShuffleMask[I] = Idx; 2597 V = Builder.CreateShuffleVector(V, ShuffleMask, 2598 SVI.getName() + ".extract"); 2599 BegIdx = 0; 2600 } 2601 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2602 assert(SrcElemsPerTgtElem); 2603 BegIdx /= SrcElemsPerTgtElem; 2604 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2605 auto *NewBC = 2606 BCAlreadyExists 2607 ? NewBCs[CastSrcTy] 2608 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2609 if (!BCAlreadyExists) 2610 NewBCs[CastSrcTy] = NewBC; 2611 auto *Ext = Builder.CreateExtractElement( 2612 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2613 // The shufflevector isn't being replaced: the bitcast that used it 2614 // is. InstCombine will visit the newly-created instructions. 2615 replaceInstUsesWith(*BC, Ext); 2616 MadeChange = true; 2617 } 2618 } 2619 2620 // If the LHS is a shufflevector itself, see if we can combine it with this 2621 // one without producing an unusual shuffle. 2622 // Cases that might be simplified: 2623 // 1. 2624 // x1=shuffle(v1,v2,mask1) 2625 // x=shuffle(x1,undef,mask) 2626 // ==> 2627 // x=shuffle(v1,undef,newMask) 2628 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2629 // 2. 2630 // x1=shuffle(v1,undef,mask1) 2631 // x=shuffle(x1,x2,mask) 2632 // where v1.size() == mask1.size() 2633 // ==> 2634 // x=shuffle(v1,x2,newMask) 2635 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2636 // 3. 2637 // x2=shuffle(v2,undef,mask2) 2638 // x=shuffle(x1,x2,mask) 2639 // where v2.size() == mask2.size() 2640 // ==> 2641 // x=shuffle(x1,v2,newMask) 2642 // newMask[i] = (mask[i] < x1.size()) 2643 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2644 // 4. 2645 // x1=shuffle(v1,undef,mask1) 2646 // x2=shuffle(v2,undef,mask2) 2647 // x=shuffle(x1,x2,mask) 2648 // where v1.size() == v2.size() 2649 // ==> 2650 // x=shuffle(v1,v2,newMask) 2651 // newMask[i] = (mask[i] < x1.size()) 2652 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2653 // 2654 // Here we are really conservative: 2655 // we are absolutely afraid of producing a shuffle mask not in the input 2656 // program, because the code gen may not be smart enough to turn a merged 2657 // shuffle into two specific shuffles: it may produce worse code. As such, 2658 // we only merge two shuffles if the result is either a splat or one of the 2659 // input shuffle masks. In this case, merging the shuffles just removes 2660 // one instruction, which we know is safe. This is good for things like 2661 // turning: (splat(splat)) -> splat, or 2662 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2663 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2664 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2665 if (LHSShuffle) 2666 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2667 LHSShuffle = nullptr; 2668 if (RHSShuffle) 2669 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2670 RHSShuffle = nullptr; 2671 if (!LHSShuffle && !RHSShuffle) 2672 return MadeChange ? &SVI : nullptr; 2673 2674 Value* LHSOp0 = nullptr; 2675 Value* LHSOp1 = nullptr; 2676 Value* RHSOp0 = nullptr; 2677 unsigned LHSOp0Width = 0; 2678 unsigned RHSOp0Width = 0; 2679 if (LHSShuffle) { 2680 LHSOp0 = LHSShuffle->getOperand(0); 2681 LHSOp1 = LHSShuffle->getOperand(1); 2682 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2683 } 2684 if (RHSShuffle) { 2685 RHSOp0 = RHSShuffle->getOperand(0); 2686 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2687 } 2688 Value* newLHS = LHS; 2689 Value* newRHS = RHS; 2690 if (LHSShuffle) { 2691 // case 1 2692 if (match(RHS, m_Undef())) { 2693 newLHS = LHSOp0; 2694 newRHS = LHSOp1; 2695 } 2696 // case 2 or 4 2697 else if (LHSOp0Width == LHSWidth) { 2698 newLHS = LHSOp0; 2699 } 2700 } 2701 // case 3 or 4 2702 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2703 newRHS = RHSOp0; 2704 } 2705 // case 4 2706 if (LHSOp0 == RHSOp0) { 2707 newLHS = LHSOp0; 2708 newRHS = nullptr; 2709 } 2710 2711 if (newLHS == LHS && newRHS == RHS) 2712 return MadeChange ? &SVI : nullptr; 2713 2714 ArrayRef<int> LHSMask; 2715 ArrayRef<int> RHSMask; 2716 if (newLHS != LHS) 2717 LHSMask = LHSShuffle->getShuffleMask(); 2718 if (RHSShuffle && newRHS != RHS) 2719 RHSMask = RHSShuffle->getShuffleMask(); 2720 2721 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2722 SmallVector<int, 16> newMask; 2723 bool isSplat = true; 2724 int SplatElt = -1; 2725 // Create a new mask for the new ShuffleVectorInst so that the new 2726 // ShuffleVectorInst is equivalent to the original one. 2727 for (unsigned i = 0; i < VWidth; ++i) { 2728 int eltMask; 2729 if (Mask[i] < 0) { 2730 // This element is an undef value. 2731 eltMask = -1; 2732 } else if (Mask[i] < (int)LHSWidth) { 2733 // This element is from left hand side vector operand. 2734 // 2735 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2736 // new mask value for the element. 2737 if (newLHS != LHS) { 2738 eltMask = LHSMask[Mask[i]]; 2739 // If the value selected is an undef value, explicitly specify it 2740 // with a -1 mask value. 2741 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2742 eltMask = -1; 2743 } else 2744 eltMask = Mask[i]; 2745 } else { 2746 // This element is from right hand side vector operand 2747 // 2748 // If the value selected is an undef value, explicitly specify it 2749 // with a -1 mask value. (case 1) 2750 if (match(RHS, m_Undef())) 2751 eltMask = -1; 2752 // If RHS is going to be replaced (case 3 or 4), calculate the 2753 // new mask value for the element. 2754 else if (newRHS != RHS) { 2755 eltMask = RHSMask[Mask[i]-LHSWidth]; 2756 // If the value selected is an undef value, explicitly specify it 2757 // with a -1 mask value. 2758 if (eltMask >= (int)RHSOp0Width) { 2759 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2760 "should have been check above"); 2761 eltMask = -1; 2762 } 2763 } else 2764 eltMask = Mask[i]-LHSWidth; 2765 2766 // If LHS's width is changed, shift the mask value accordingly. 2767 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2768 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2769 // If newRHS == newLHS, we want to remap any references from newRHS to 2770 // newLHS so that we can properly identify splats that may occur due to 2771 // obfuscation across the two vectors. 2772 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2773 eltMask += newLHSWidth; 2774 } 2775 2776 // Check if this could still be a splat. 2777 if (eltMask >= 0) { 2778 if (SplatElt >= 0 && SplatElt != eltMask) 2779 isSplat = false; 2780 SplatElt = eltMask; 2781 } 2782 2783 newMask.push_back(eltMask); 2784 } 2785 2786 // If the result mask is equal to one of the original shuffle masks, 2787 // or is a splat, do the replacement. 2788 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2789 if (!newRHS) 2790 newRHS = UndefValue::get(newLHS->getType()); 2791 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2792 } 2793 2794 return MadeChange ? &SVI : nullptr; 2795 } 2796