1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 #include "llvm/Transforms/Utils/InstructionWorklist.h" 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. If the extract index \p EI is a constant integer then 56 /// some operations may be cheap to scalarize. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, Value *EI) { 60 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 61 62 // If we can pick a scalar constant value out of a vector, that is free. 63 if (auto *C = dyn_cast<Constant>(V)) 64 return CEI || C->getSplatValue(); 65 66 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 67 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 68 // Index needs to be lower than the minimum size of the vector, because 69 // for scalable vector, the vector size is known at run time. 70 return CEI->getValue().ult(EC.getKnownMinValue()); 71 } 72 73 // An insertelement to the same constant index as our extract will simplify 74 // to the scalar inserted element. An insertelement to a different constant 75 // index is irrelevant to our extract. 76 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 77 return CEI; 78 79 if (match(V, m_OneUse(m_Load(m_Value())))) 80 return true; 81 82 if (match(V, m_OneUse(m_UnOp()))) 83 return true; 84 85 Value *V0, *V1; 86 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 87 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 88 return true; 89 90 CmpInst::Predicate UnusedPred; 91 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 92 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 93 return true; 94 95 return false; 96 } 97 98 // If we have a PHI node with a vector type that is only used to feed 99 // itself and be an operand of extractelement at a constant location, 100 // try to replace the PHI of the vector type with a PHI of a scalar type. 101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 102 PHINode *PN) { 103 SmallVector<Instruction *, 2> Extracts; 104 // The users we want the PHI to have are: 105 // 1) The EI ExtractElement (we already know this) 106 // 2) Possibly more ExtractElements with the same index. 107 // 3) Another operand, which will feed back into the PHI. 108 Instruction *PHIUser = nullptr; 109 for (auto U : PN->users()) { 110 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 111 if (EI.getIndexOperand() == EU->getIndexOperand()) 112 Extracts.push_back(EU); 113 else 114 return nullptr; 115 } else if (!PHIUser) { 116 PHIUser = cast<Instruction>(U); 117 } else { 118 return nullptr; 119 } 120 } 121 122 if (!PHIUser) 123 return nullptr; 124 125 // Verify that this PHI user has one use, which is the PHI itself, 126 // and that it is a binary operation which is cheap to scalarize. 127 // otherwise return nullptr. 128 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 129 !(isa<BinaryOperator>(PHIUser)) || 130 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 131 return nullptr; 132 133 // Create a scalar PHI node that will replace the vector PHI node 134 // just before the current PHI node. 135 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 136 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 137 // Scalarize each PHI operand. 138 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 139 Value *PHIInVal = PN->getIncomingValue(i); 140 BasicBlock *inBB = PN->getIncomingBlock(i); 141 Value *Elt = EI.getIndexOperand(); 142 // If the operand is the PHI induction variable: 143 if (PHIInVal == PHIUser) { 144 // Scalarize the binary operation. Its first operand is the 145 // scalar PHI, and the second operand is extracted from the other 146 // vector operand. 147 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 148 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 149 Value *Op = InsertNewInstWith( 150 ExtractElementInst::Create(B0->getOperand(opId), Elt, 151 B0->getOperand(opId)->getName() + ".Elt"), 152 *B0); 153 Value *newPHIUser = InsertNewInstWith( 154 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 155 scalarPHI, Op, B0), *B0); 156 scalarPHI->addIncoming(newPHIUser, inBB); 157 } else { 158 // Scalarize PHI input: 159 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 160 // Insert the new instruction into the predecessor basic block. 161 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 162 BasicBlock::iterator InsertPos; 163 if (pos && !isa<PHINode>(pos)) { 164 InsertPos = ++pos->getIterator(); 165 } else { 166 InsertPos = inBB->getFirstInsertionPt(); 167 } 168 169 InsertNewInstWith(newEI, *InsertPos); 170 171 scalarPHI->addIncoming(newEI, inBB); 172 } 173 } 174 175 for (auto E : Extracts) 176 replaceInstUsesWith(*E, scalarPHI); 177 178 return &EI; 179 } 180 181 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 182 Value *X; 183 uint64_t ExtIndexC; 184 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 185 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 186 return nullptr; 187 188 ElementCount NumElts = 189 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 190 Type *DestTy = Ext.getType(); 191 bool IsBigEndian = DL.isBigEndian(); 192 193 // If we are casting an integer to vector and extracting a portion, that is 194 // a shift-right and truncate. 195 // TODO: Allow FP dest type by casting the trunc to FP? 196 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && 197 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { 198 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 199 "Expected fixed vector type for bitcast from scalar integer"); 200 201 // Big endian requires adjusting the extract index since MSB is at index 0. 202 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 203 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 204 if (IsBigEndian) 205 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 206 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); 207 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { 208 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 209 return new TruncInst(Lshr, DestTy); 210 } 211 } 212 213 if (!X->getType()->isVectorTy()) 214 return nullptr; 215 216 // If this extractelement is using a bitcast from a vector of the same number 217 // of elements, see if we can find the source element from the source vector: 218 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 219 auto *SrcTy = cast<VectorType>(X->getType()); 220 ElementCount NumSrcElts = SrcTy->getElementCount(); 221 if (NumSrcElts == NumElts) 222 if (Value *Elt = findScalarElement(X, ExtIndexC)) 223 return new BitCastInst(Elt, DestTy); 224 225 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 226 "Src and Dst must be the same sort of vector type"); 227 228 // If the source elements are wider than the destination, try to shift and 229 // truncate a subset of scalar bits of an insert op. 230 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 231 Value *Scalar; 232 uint64_t InsIndexC; 233 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 234 m_ConstantInt(InsIndexC)))) 235 return nullptr; 236 237 // The extract must be from the subset of vector elements that we inserted 238 // into. Example: if we inserted element 1 of a <2 x i64> and we are 239 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 240 // of elements 4-7 of the bitcasted vector. 241 unsigned NarrowingRatio = 242 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 243 if (ExtIndexC / NarrowingRatio != InsIndexC) 244 return nullptr; 245 246 // We are extracting part of the original scalar. How that scalar is 247 // inserted into the vector depends on the endian-ness. Example: 248 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 249 // +--+--+--+--+--+--+--+--+ 250 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 251 // extelt <4 x i16> V', 3: | |S2|S3| 252 // +--+--+--+--+--+--+--+--+ 253 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 254 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 255 // In this example, we must right-shift little-endian. Big-endian is just a 256 // truncate. 257 unsigned Chunk = ExtIndexC % NarrowingRatio; 258 if (IsBigEndian) 259 Chunk = NarrowingRatio - 1 - Chunk; 260 261 // Bail out if this is an FP vector to FP vector sequence. That would take 262 // more instructions than we started with unless there is no shift, and it 263 // may not be handled as well in the backend. 264 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 265 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 266 if (NeedSrcBitcast && NeedDestBitcast) 267 return nullptr; 268 269 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 270 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 271 unsigned ShAmt = Chunk * DestWidth; 272 273 // TODO: This limitation is more strict than necessary. We could sum the 274 // number of new instructions and subtract the number eliminated to know if 275 // we can proceed. 276 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 277 if (NeedSrcBitcast || NeedDestBitcast) 278 return nullptr; 279 280 if (NeedSrcBitcast) { 281 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 282 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 283 } 284 285 if (ShAmt) { 286 // Bail out if we could end with more instructions than we started with. 287 if (!Ext.getVectorOperand()->hasOneUse()) 288 return nullptr; 289 Scalar = Builder.CreateLShr(Scalar, ShAmt); 290 } 291 292 if (NeedDestBitcast) { 293 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 294 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 295 } 296 return new TruncInst(Scalar, DestTy); 297 } 298 299 return nullptr; 300 } 301 302 /// Find elements of V demanded by UserInstr. 303 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 304 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 305 306 // Conservatively assume that all elements are needed. 307 APInt UsedElts(APInt::getAllOnes(VWidth)); 308 309 switch (UserInstr->getOpcode()) { 310 case Instruction::ExtractElement: { 311 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 312 assert(EEI->getVectorOperand() == V); 313 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 314 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 315 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 316 } 317 break; 318 } 319 case Instruction::ShuffleVector: { 320 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 321 unsigned MaskNumElts = 322 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 323 324 UsedElts = APInt(VWidth, 0); 325 for (unsigned i = 0; i < MaskNumElts; i++) { 326 unsigned MaskVal = Shuffle->getMaskValue(i); 327 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 328 continue; 329 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 330 UsedElts.setBit(MaskVal); 331 if (Shuffle->getOperand(1) == V && 332 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 333 UsedElts.setBit(MaskVal - VWidth); 334 } 335 break; 336 } 337 default: 338 break; 339 } 340 return UsedElts; 341 } 342 343 /// Find union of elements of V demanded by all its users. 344 /// If it is known by querying findDemandedEltsBySingleUser that 345 /// no user demands an element of V, then the corresponding bit 346 /// remains unset in the returned value. 347 static APInt findDemandedEltsByAllUsers(Value *V) { 348 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 349 350 APInt UnionUsedElts(VWidth, 0); 351 for (const Use &U : V->uses()) { 352 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 353 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 354 } else { 355 UnionUsedElts = APInt::getAllOnes(VWidth); 356 break; 357 } 358 359 if (UnionUsedElts.isAllOnes()) 360 break; 361 } 362 363 return UnionUsedElts; 364 } 365 366 /// Given a constant index for a extractelement or insertelement instruction, 367 /// return it with the canonical type if it isn't already canonical. We 368 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 369 /// matter, we just want a consistent type to simplify CSE. 370 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 371 const unsigned IndexBW = IndexC->getType()->getBitWidth(); 372 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 373 return nullptr; 374 return ConstantInt::get(IndexC->getContext(), 375 IndexC->getValue().zextOrTrunc(64)); 376 } 377 378 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 379 Value *SrcVec = EI.getVectorOperand(); 380 Value *Index = EI.getIndexOperand(); 381 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 382 SQ.getWithInstruction(&EI))) 383 return replaceInstUsesWith(EI, V); 384 385 // If extracting a specified index from the vector, see if we can recursively 386 // find a previously computed scalar that was inserted into the vector. 387 auto *IndexC = dyn_cast<ConstantInt>(Index); 388 if (IndexC) { 389 // Canonicalize type of constant indices to i64 to simplify CSE 390 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 391 return replaceOperand(EI, 1, NewIdx); 392 393 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 394 unsigned NumElts = EC.getKnownMinValue(); 395 396 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 397 Intrinsic::ID IID = II->getIntrinsicID(); 398 // Index needs to be lower than the minimum size of the vector, because 399 // for scalable vector, the vector size is known at run time. 400 if (IID == Intrinsic::experimental_stepvector && 401 IndexC->getValue().ult(NumElts)) { 402 Type *Ty = EI.getType(); 403 unsigned BitWidth = Ty->getIntegerBitWidth(); 404 Value *Idx; 405 // Return index when its value does not exceed the allowed limit 406 // for the element type of the vector, otherwise return undefined. 407 if (IndexC->getValue().getActiveBits() <= BitWidth) 408 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 409 else 410 Idx = UndefValue::get(Ty); 411 return replaceInstUsesWith(EI, Idx); 412 } 413 } 414 415 // InstSimplify should handle cases where the index is invalid. 416 // For fixed-length vector, it's invalid to extract out-of-range element. 417 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 418 return nullptr; 419 420 if (Instruction *I = foldBitcastExtElt(EI)) 421 return I; 422 423 // If there's a vector PHI feeding a scalar use through this extractelement 424 // instruction, try to scalarize the PHI. 425 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 426 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 427 return ScalarPHI; 428 } 429 430 // TODO come up with a n-ary matcher that subsumes both unary and 431 // binary matchers. 432 UnaryOperator *UO; 433 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 434 // extelt (unop X), Index --> unop (extelt X, Index) 435 Value *X = UO->getOperand(0); 436 Value *E = Builder.CreateExtractElement(X, Index); 437 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 438 } 439 440 BinaryOperator *BO; 441 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 442 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 443 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 444 Value *E0 = Builder.CreateExtractElement(X, Index); 445 Value *E1 = Builder.CreateExtractElement(Y, Index); 446 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 447 } 448 449 Value *X, *Y; 450 CmpInst::Predicate Pred; 451 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 452 cheapToScalarize(SrcVec, Index)) { 453 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 454 Value *E0 = Builder.CreateExtractElement(X, Index); 455 Value *E1 = Builder.CreateExtractElement(Y, Index); 456 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 457 } 458 459 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 460 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 461 // instsimplify already handled the case where the indices are constants 462 // and equal by value, if both are constants, they must not be the same 463 // value, extract from the pre-inserted value instead. 464 if (isa<Constant>(IE->getOperand(2)) && IndexC) 465 return replaceOperand(EI, 0, IE->getOperand(0)); 466 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 467 auto *VecType = cast<VectorType>(GEP->getType()); 468 ElementCount EC = VecType->getElementCount(); 469 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 470 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 471 // Find out why we have a vector result - these are a few examples: 472 // 1. We have a scalar pointer and a vector of indices, or 473 // 2. We have a vector of pointers and a scalar index, or 474 // 3. We have a vector of pointers and a vector of indices, etc. 475 // Here we only consider combining when there is exactly one vector 476 // operand, since the optimization is less obviously a win due to 477 // needing more than one extractelements. 478 479 unsigned VectorOps = 480 llvm::count_if(GEP->operands(), [](const Value *V) { 481 return isa<VectorType>(V->getType()); 482 }); 483 if (VectorOps == 1) { 484 Value *NewPtr = GEP->getPointerOperand(); 485 if (isa<VectorType>(NewPtr->getType())) 486 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 487 488 SmallVector<Value *> NewOps; 489 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 490 Value *Op = GEP->getOperand(I); 491 if (isa<VectorType>(Op->getType())) 492 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 493 else 494 NewOps.push_back(Op); 495 } 496 497 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 498 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 499 NewOps); 500 NewGEP->setIsInBounds(GEP->isInBounds()); 501 return NewGEP; 502 } 503 } 504 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 505 // If this is extracting an element from a shufflevector, figure out where 506 // it came from and extract from the appropriate input element instead. 507 // Restrict the following transformation to fixed-length vector. 508 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 509 int SrcIdx = 510 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 511 Value *Src; 512 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 513 ->getNumElements(); 514 515 if (SrcIdx < 0) 516 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 517 if (SrcIdx < (int)LHSWidth) 518 Src = SVI->getOperand(0); 519 else { 520 SrcIdx -= LHSWidth; 521 Src = SVI->getOperand(1); 522 } 523 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 524 return ExtractElementInst::Create( 525 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 526 } 527 } else if (auto *CI = dyn_cast<CastInst>(I)) { 528 // Canonicalize extractelement(cast) -> cast(extractelement). 529 // Bitcasts can change the number of vector elements, and they cost 530 // nothing. 531 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 532 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 533 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 534 } 535 } 536 } 537 538 // Run demanded elements after other transforms as this can drop flags on 539 // binops. If there's two paths to the same final result, we prefer the 540 // one which doesn't force us to drop flags. 541 if (IndexC) { 542 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 543 unsigned NumElts = EC.getKnownMinValue(); 544 // This instruction only demands the single element from the input vector. 545 // Skip for scalable type, the number of elements is unknown at 546 // compile-time. 547 if (!EC.isScalable() && NumElts != 1) { 548 // If the input vector has a single use, simplify it based on this use 549 // property. 550 if (SrcVec->hasOneUse()) { 551 APInt UndefElts(NumElts, 0); 552 APInt DemandedElts(NumElts, 0); 553 DemandedElts.setBit(IndexC->getZExtValue()); 554 if (Value *V = 555 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 556 return replaceOperand(EI, 0, V); 557 } else { 558 // If the input vector has multiple uses, simplify it based on a union 559 // of all elements used. 560 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 561 if (!DemandedElts.isAllOnes()) { 562 APInt UndefElts(NumElts, 0); 563 if (Value *V = SimplifyDemandedVectorElts( 564 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 565 true /* AllowMultipleUsers */)) { 566 if (V != SrcVec) { 567 SrcVec->replaceAllUsesWith(V); 568 return &EI; 569 } 570 } 571 } 572 } 573 } 574 } 575 return nullptr; 576 } 577 578 /// If V is a shuffle of values that ONLY returns elements from either LHS or 579 /// RHS, return the shuffle mask and true. Otherwise, return false. 580 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 581 SmallVectorImpl<int> &Mask) { 582 assert(LHS->getType() == RHS->getType() && 583 "Invalid CollectSingleShuffleElements"); 584 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 585 586 if (match(V, m_Undef())) { 587 Mask.assign(NumElts, -1); 588 return true; 589 } 590 591 if (V == LHS) { 592 for (unsigned i = 0; i != NumElts; ++i) 593 Mask.push_back(i); 594 return true; 595 } 596 597 if (V == RHS) { 598 for (unsigned i = 0; i != NumElts; ++i) 599 Mask.push_back(i + NumElts); 600 return true; 601 } 602 603 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 604 // If this is an insert of an extract from some other vector, include it. 605 Value *VecOp = IEI->getOperand(0); 606 Value *ScalarOp = IEI->getOperand(1); 607 Value *IdxOp = IEI->getOperand(2); 608 609 if (!isa<ConstantInt>(IdxOp)) 610 return false; 611 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 612 613 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 614 // We can handle this if the vector we are inserting into is 615 // transitively ok. 616 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 617 // If so, update the mask to reflect the inserted undef. 618 Mask[InsertedIdx] = -1; 619 return true; 620 } 621 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 622 if (isa<ConstantInt>(EI->getOperand(1))) { 623 unsigned ExtractedIdx = 624 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 625 unsigned NumLHSElts = 626 cast<FixedVectorType>(LHS->getType())->getNumElements(); 627 628 // This must be extracting from either LHS or RHS. 629 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 630 // We can handle this if the vector we are inserting into is 631 // transitively ok. 632 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 633 // If so, update the mask to reflect the inserted value. 634 if (EI->getOperand(0) == LHS) { 635 Mask[InsertedIdx % NumElts] = ExtractedIdx; 636 } else { 637 assert(EI->getOperand(0) == RHS); 638 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 639 } 640 return true; 641 } 642 } 643 } 644 } 645 } 646 647 return false; 648 } 649 650 /// If we have insertion into a vector that is wider than the vector that we 651 /// are extracting from, try to widen the source vector to allow a single 652 /// shufflevector to replace one or more insert/extract pairs. 653 static void replaceExtractElements(InsertElementInst *InsElt, 654 ExtractElementInst *ExtElt, 655 InstCombinerImpl &IC) { 656 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 657 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 658 unsigned NumInsElts = InsVecType->getNumElements(); 659 unsigned NumExtElts = ExtVecType->getNumElements(); 660 661 // The inserted-to vector must be wider than the extracted-from vector. 662 if (InsVecType->getElementType() != ExtVecType->getElementType() || 663 NumExtElts >= NumInsElts) 664 return; 665 666 // Create a shuffle mask to widen the extended-from vector using poison 667 // values. The mask selects all of the values of the original vector followed 668 // by as many poison values as needed to create a vector of the same length 669 // as the inserted-to vector. 670 SmallVector<int, 16> ExtendMask; 671 for (unsigned i = 0; i < NumExtElts; ++i) 672 ExtendMask.push_back(i); 673 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 674 ExtendMask.push_back(-1); 675 676 Value *ExtVecOp = ExtElt->getVectorOperand(); 677 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 678 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 679 ? ExtVecOpInst->getParent() 680 : ExtElt->getParent(); 681 682 // TODO: This restriction matches the basic block check below when creating 683 // new extractelement instructions. If that limitation is removed, this one 684 // could also be removed. But for now, we just bail out to ensure that we 685 // will replace the extractelement instruction that is feeding our 686 // insertelement instruction. This allows the insertelement to then be 687 // replaced by a shufflevector. If the insertelement is not replaced, we can 688 // induce infinite looping because there's an optimization for extractelement 689 // that will delete our widening shuffle. This would trigger another attempt 690 // here to create that shuffle, and we spin forever. 691 if (InsertionBlock != InsElt->getParent()) 692 return; 693 694 // TODO: This restriction matches the check in visitInsertElementInst() and 695 // prevents an infinite loop caused by not turning the extract/insert pair 696 // into a shuffle. We really should not need either check, but we're lacking 697 // folds for shufflevectors because we're afraid to generate shuffle masks 698 // that the backend can't handle. 699 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 700 return; 701 702 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 703 704 // Insert the new shuffle after the vector operand of the extract is defined 705 // (as long as it's not a PHI) or at the start of the basic block of the 706 // extract, so any subsequent extracts in the same basic block can use it. 707 // TODO: Insert before the earliest ExtractElementInst that is replaced. 708 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 709 WideVec->insertAfter(ExtVecOpInst); 710 else 711 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 712 713 // Replace extracts from the original narrow vector with extracts from the new 714 // wide vector. 715 for (User *U : ExtVecOp->users()) { 716 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 717 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 718 continue; 719 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 720 NewExt->insertAfter(OldExt); 721 IC.replaceInstUsesWith(*OldExt, NewExt); 722 } 723 } 724 725 /// We are building a shuffle to create V, which is a sequence of insertelement, 726 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 727 /// not rely on the second vector source. Return a std::pair containing the 728 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 729 /// parameter as required. 730 /// 731 /// Note: we intentionally don't try to fold earlier shuffles since they have 732 /// often been chosen carefully to be efficiently implementable on the target. 733 using ShuffleOps = std::pair<Value *, Value *>; 734 735 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 736 Value *PermittedRHS, 737 InstCombinerImpl &IC) { 738 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 739 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 740 741 if (match(V, m_Undef())) { 742 Mask.assign(NumElts, -1); 743 return std::make_pair( 744 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 745 } 746 747 if (isa<ConstantAggregateZero>(V)) { 748 Mask.assign(NumElts, 0); 749 return std::make_pair(V, nullptr); 750 } 751 752 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 753 // If this is an insert of an extract from some other vector, include it. 754 Value *VecOp = IEI->getOperand(0); 755 Value *ScalarOp = IEI->getOperand(1); 756 Value *IdxOp = IEI->getOperand(2); 757 758 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 759 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 760 unsigned ExtractedIdx = 761 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 762 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 763 764 // Either the extracted from or inserted into vector must be RHSVec, 765 // otherwise we'd end up with a shuffle of three inputs. 766 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 767 Value *RHS = EI->getOperand(0); 768 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 769 assert(LR.second == nullptr || LR.second == RHS); 770 771 if (LR.first->getType() != RHS->getType()) { 772 // Although we are giving up for now, see if we can create extracts 773 // that match the inserts for another round of combining. 774 replaceExtractElements(IEI, EI, IC); 775 776 // We tried our best, but we can't find anything compatible with RHS 777 // further up the chain. Return a trivial shuffle. 778 for (unsigned i = 0; i < NumElts; ++i) 779 Mask[i] = i; 780 return std::make_pair(V, nullptr); 781 } 782 783 unsigned NumLHSElts = 784 cast<FixedVectorType>(RHS->getType())->getNumElements(); 785 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 786 return std::make_pair(LR.first, RHS); 787 } 788 789 if (VecOp == PermittedRHS) { 790 // We've gone as far as we can: anything on the other side of the 791 // extractelement will already have been converted into a shuffle. 792 unsigned NumLHSElts = 793 cast<FixedVectorType>(EI->getOperand(0)->getType()) 794 ->getNumElements(); 795 for (unsigned i = 0; i != NumElts; ++i) 796 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 797 return std::make_pair(EI->getOperand(0), PermittedRHS); 798 } 799 800 // If this insertelement is a chain that comes from exactly these two 801 // vectors, return the vector and the effective shuffle. 802 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 803 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 804 Mask)) 805 return std::make_pair(EI->getOperand(0), PermittedRHS); 806 } 807 } 808 } 809 810 // Otherwise, we can't do anything fancy. Return an identity vector. 811 for (unsigned i = 0; i != NumElts; ++i) 812 Mask.push_back(i); 813 return std::make_pair(V, nullptr); 814 } 815 816 /// Look for chain of insertvalue's that fully define an aggregate, and trace 817 /// back the values inserted, see if they are all were extractvalue'd from 818 /// the same source aggregate from the exact same element indexes. 819 /// If they were, just reuse the source aggregate. 820 /// This potentially deals with PHI indirections. 821 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 822 InsertValueInst &OrigIVI) { 823 Type *AggTy = OrigIVI.getType(); 824 unsigned NumAggElts; 825 switch (AggTy->getTypeID()) { 826 case Type::StructTyID: 827 NumAggElts = AggTy->getStructNumElements(); 828 break; 829 case Type::ArrayTyID: 830 NumAggElts = AggTy->getArrayNumElements(); 831 break; 832 default: 833 llvm_unreachable("Unhandled aggregate type?"); 834 } 835 836 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 837 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 838 // FIXME: any interesting patterns to be caught with larger limit? 839 assert(NumAggElts > 0 && "Aggregate should have elements."); 840 if (NumAggElts > 2) 841 return nullptr; 842 843 static constexpr auto NotFound = None; 844 static constexpr auto FoundMismatch = nullptr; 845 846 // Try to find a value of each element of an aggregate. 847 // FIXME: deal with more complex, not one-dimensional, aggregate types 848 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 849 850 // Do we know values for each element of the aggregate? 851 auto KnowAllElts = [&AggElts]() { 852 return all_of(AggElts, 853 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 854 }; 855 856 int Depth = 0; 857 858 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 859 // every element being overwritten twice, which should never happen. 860 static const int DepthLimit = 2 * NumAggElts; 861 862 // Recurse up the chain of `insertvalue` aggregate operands until either we've 863 // reconstructed full initializer or can't visit any more `insertvalue`'s. 864 for (InsertValueInst *CurrIVI = &OrigIVI; 865 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 866 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 867 ++Depth) { 868 auto *InsertedValue = 869 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 870 if (!InsertedValue) 871 return nullptr; // Inserted value must be produced by an instruction. 872 873 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 874 875 // Don't bother with more than single-level aggregates. 876 if (Indices.size() != 1) 877 return nullptr; // FIXME: deal with more complex aggregates? 878 879 // Now, we may have already previously recorded the value for this element 880 // of an aggregate. If we did, that means the CurrIVI will later be 881 // overwritten with the already-recorded value. But if not, let's record it! 882 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 883 Elt = Elt.getValueOr(InsertedValue); 884 885 // FIXME: should we handle chain-terminating undef base operand? 886 } 887 888 // Was that sufficient to deduce the full initializer for the aggregate? 889 if (!KnowAllElts()) 890 return nullptr; // Give up then. 891 892 // We now want to find the source[s] of the aggregate elements we've found. 893 // And with "source" we mean the original aggregate[s] from which 894 // the inserted elements were extracted. This may require PHI translation. 895 896 enum class AggregateDescription { 897 /// When analyzing the value that was inserted into an aggregate, we did 898 /// not manage to find defining `extractvalue` instruction to analyze. 899 NotFound, 900 /// When analyzing the value that was inserted into an aggregate, we did 901 /// manage to find defining `extractvalue` instruction[s], and everything 902 /// matched perfectly - aggregate type, element insertion/extraction index. 903 Found, 904 /// When analyzing the value that was inserted into an aggregate, we did 905 /// manage to find defining `extractvalue` instruction, but there was 906 /// a mismatch: either the source type from which the extraction was didn't 907 /// match the aggregate type into which the insertion was, 908 /// or the extraction/insertion channels mismatched, 909 /// or different elements had different source aggregates. 910 FoundMismatch 911 }; 912 auto Describe = [](Optional<Value *> SourceAggregate) { 913 if (SourceAggregate == NotFound) 914 return AggregateDescription::NotFound; 915 if (*SourceAggregate == FoundMismatch) 916 return AggregateDescription::FoundMismatch; 917 return AggregateDescription::Found; 918 }; 919 920 // Given the value \p Elt that was being inserted into element \p EltIdx of an 921 // aggregate AggTy, see if \p Elt was originally defined by an 922 // appropriate extractvalue (same element index, same aggregate type). 923 // If found, return the source aggregate from which the extraction was. 924 // If \p PredBB is provided, does PHI translation of an \p Elt first. 925 auto FindSourceAggregate = 926 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 927 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 928 // For now(?), only deal with, at most, a single level of PHI indirection. 929 if (UseBB && PredBB) 930 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 931 // FIXME: deal with multiple levels of PHI indirection? 932 933 // Did we find an extraction? 934 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 935 if (!EVI) 936 return NotFound; 937 938 Value *SourceAggregate = EVI->getAggregateOperand(); 939 940 // Is the extraction from the same type into which the insertion was? 941 if (SourceAggregate->getType() != AggTy) 942 return FoundMismatch; 943 // And the element index doesn't change between extraction and insertion? 944 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 945 return FoundMismatch; 946 947 return SourceAggregate; // AggregateDescription::Found 948 }; 949 950 // Given elements AggElts that were constructing an aggregate OrigIVI, 951 // see if we can find appropriate source aggregate for each of the elements, 952 // and see it's the same aggregate for each element. If so, return it. 953 auto FindCommonSourceAggregate = 954 [&](Optional<BasicBlock *> UseBB, 955 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 956 Optional<Value *> SourceAggregate; 957 958 for (auto I : enumerate(AggElts)) { 959 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 960 "We don't store nullptr in SourceAggregate!"); 961 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 962 (I.index() != 0) && 963 "SourceAggregate should be valid after the first element,"); 964 965 // For this element, is there a plausible source aggregate? 966 // FIXME: we could special-case undef element, IFF we know that in the 967 // source aggregate said element isn't poison. 968 Optional<Value *> SourceAggregateForElement = 969 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 970 971 // Okay, what have we found? Does that correlate with previous findings? 972 973 // Regardless of whether or not we have previously found source 974 // aggregate for previous elements (if any), if we didn't find one for 975 // this element, passthrough whatever we have just found. 976 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 977 return SourceAggregateForElement; 978 979 // Okay, we have found source aggregate for this element. 980 // Let's see what we already know from previous elements, if any. 981 switch (Describe(SourceAggregate)) { 982 case AggregateDescription::NotFound: 983 // This is apparently the first element that we have examined. 984 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 985 continue; // Great, now look at next element. 986 case AggregateDescription::Found: 987 // We have previously already successfully examined other elements. 988 // Is this the same source aggregate we've found for other elements? 989 if (*SourceAggregateForElement != *SourceAggregate) 990 return FoundMismatch; 991 continue; // Still the same aggregate, look at next element. 992 case AggregateDescription::FoundMismatch: 993 llvm_unreachable("Can't happen. We would have early-exited then."); 994 }; 995 } 996 997 assert(Describe(SourceAggregate) == AggregateDescription::Found && 998 "Must be a valid Value"); 999 return *SourceAggregate; 1000 }; 1001 1002 Optional<Value *> SourceAggregate; 1003 1004 // Can we find the source aggregate without looking at predecessors? 1005 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 1006 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1007 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1008 return nullptr; // Conflicting source aggregates! 1009 ++NumAggregateReconstructionsSimplified; 1010 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1011 } 1012 1013 // Okay, apparently we need to look at predecessors. 1014 1015 // We should be smart about picking the "use" basic block, which will be the 1016 // merge point for aggregate, where we'll insert the final PHI that will be 1017 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1018 // We should look in which blocks each of the AggElts is being defined, 1019 // they all should be defined in the same basic block. 1020 BasicBlock *UseBB = nullptr; 1021 1022 for (const Optional<Instruction *> &I : AggElts) { 1023 BasicBlock *BB = (*I)->getParent(); 1024 // If it's the first instruction we've encountered, record the basic block. 1025 if (!UseBB) { 1026 UseBB = BB; 1027 continue; 1028 } 1029 // Otherwise, this must be the same basic block we've seen previously. 1030 if (UseBB != BB) 1031 return nullptr; 1032 } 1033 1034 // If *all* of the elements are basic-block-independent, meaning they are 1035 // either function arguments, or constant expressions, then if we didn't 1036 // handle them without predecessor-aware handling, we won't handle them now. 1037 if (!UseBB) 1038 return nullptr; 1039 1040 // If we didn't manage to find source aggregate without looking at 1041 // predecessors, and there are no predecessors to look at, then we're done. 1042 if (pred_empty(UseBB)) 1043 return nullptr; 1044 1045 // Arbitrary predecessor count limit. 1046 static const int PredCountLimit = 64; 1047 1048 // Cache the (non-uniqified!) list of predecessors in a vector, 1049 // checking the limit at the same time for efficiency. 1050 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1051 for (BasicBlock *Pred : predecessors(UseBB)) { 1052 // Don't bother if there are too many predecessors. 1053 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1054 return nullptr; 1055 Preds.emplace_back(Pred); 1056 } 1057 1058 // For each predecessor, what is the source aggregate, 1059 // from which all the elements were originally extracted from? 1060 // Note that we want for the map to have stable iteration order! 1061 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1062 for (BasicBlock *Pred : Preds) { 1063 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1064 SourceAggregates.insert({Pred, nullptr}); 1065 // Did we already evaluate this predecessor? 1066 if (!IV.second) 1067 continue; 1068 1069 // Let's hope that when coming from predecessor Pred, all elements of the 1070 // aggregate produced by OrigIVI must have been originally extracted from 1071 // the same aggregate. Is that so? Can we find said original aggregate? 1072 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1073 if (Describe(SourceAggregate) != AggregateDescription::Found) 1074 return nullptr; // Give up. 1075 IV.first->second = *SourceAggregate; 1076 } 1077 1078 // All good! Now we just need to thread the source aggregates here. 1079 // Note that we have to insert the new PHI here, ourselves, because we can't 1080 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1081 // Note that the same block can be a predecessor more than once, 1082 // and we need to preserve that invariant for the PHI node. 1083 BuilderTy::InsertPointGuard Guard(Builder); 1084 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1085 auto *PHI = 1086 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1087 for (BasicBlock *Pred : Preds) 1088 PHI->addIncoming(SourceAggregates[Pred], Pred); 1089 1090 ++NumAggregateReconstructionsSimplified; 1091 return replaceInstUsesWith(OrigIVI, PHI); 1092 } 1093 1094 /// Try to find redundant insertvalue instructions, like the following ones: 1095 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1096 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1097 /// Here the second instruction inserts values at the same indices, as the 1098 /// first one, making the first one redundant. 1099 /// It should be transformed to: 1100 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1101 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1102 bool IsRedundant = false; 1103 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1104 1105 // If there is a chain of insertvalue instructions (each of them except the 1106 // last one has only one use and it's another insertvalue insn from this 1107 // chain), check if any of the 'children' uses the same indices as the first 1108 // instruction. In this case, the first one is redundant. 1109 Value *V = &I; 1110 unsigned Depth = 0; 1111 while (V->hasOneUse() && Depth < 10) { 1112 User *U = V->user_back(); 1113 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1114 if (!UserInsInst || U->getOperand(0) != V) 1115 break; 1116 if (UserInsInst->getIndices() == FirstIndices) { 1117 IsRedundant = true; 1118 break; 1119 } 1120 V = UserInsInst; 1121 Depth++; 1122 } 1123 1124 if (IsRedundant) 1125 return replaceInstUsesWith(I, I.getOperand(0)); 1126 1127 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1128 return NewI; 1129 1130 return nullptr; 1131 } 1132 1133 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1134 // Can not analyze scalable type, the number of elements is not a compile-time 1135 // constant. 1136 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1137 return false; 1138 1139 int MaskSize = Shuf.getShuffleMask().size(); 1140 int VecSize = 1141 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1142 1143 // A vector select does not change the size of the operands. 1144 if (MaskSize != VecSize) 1145 return false; 1146 1147 // Each mask element must be undefined or choose a vector element from one of 1148 // the source operands without crossing vector lanes. 1149 for (int i = 0; i != MaskSize; ++i) { 1150 int Elt = Shuf.getMaskValue(i); 1151 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1152 return false; 1153 } 1154 1155 return true; 1156 } 1157 1158 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1159 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1160 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1161 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1162 // We are interested in the last insert in a chain. So if this insert has a 1163 // single user and that user is an insert, bail. 1164 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1165 return nullptr; 1166 1167 VectorType *VecTy = InsElt.getType(); 1168 // Can not handle scalable type, the number of elements is not a compile-time 1169 // constant. 1170 if (isa<ScalableVectorType>(VecTy)) 1171 return nullptr; 1172 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1173 1174 // Do not try to do this for a one-element vector, since that's a nop, 1175 // and will cause an inf-loop. 1176 if (NumElements == 1) 1177 return nullptr; 1178 1179 Value *SplatVal = InsElt.getOperand(1); 1180 InsertElementInst *CurrIE = &InsElt; 1181 SmallBitVector ElementPresent(NumElements, false); 1182 InsertElementInst *FirstIE = nullptr; 1183 1184 // Walk the chain backwards, keeping track of which indices we inserted into, 1185 // until we hit something that isn't an insert of the splatted value. 1186 while (CurrIE) { 1187 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1188 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1189 return nullptr; 1190 1191 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1192 // Check none of the intermediate steps have any additional uses, except 1193 // for the root insertelement instruction, which can be re-used, if it 1194 // inserts at position 0. 1195 if (CurrIE != &InsElt && 1196 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1197 return nullptr; 1198 1199 ElementPresent[Idx->getZExtValue()] = true; 1200 FirstIE = CurrIE; 1201 CurrIE = NextIE; 1202 } 1203 1204 // If this is just a single insertelement (not a sequence), we are done. 1205 if (FirstIE == &InsElt) 1206 return nullptr; 1207 1208 // If we are not inserting into an undef vector, make sure we've seen an 1209 // insert into every element. 1210 // TODO: If the base vector is not undef, it might be better to create a splat 1211 // and then a select-shuffle (blend) with the base vector. 1212 if (!match(FirstIE->getOperand(0), m_Undef())) 1213 if (!ElementPresent.all()) 1214 return nullptr; 1215 1216 // Create the insert + shuffle. 1217 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1218 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1219 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1220 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1221 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1222 1223 // Splat from element 0, but replace absent elements with undef in the mask. 1224 SmallVector<int, 16> Mask(NumElements, 0); 1225 for (unsigned i = 0; i != NumElements; ++i) 1226 if (!ElementPresent[i]) 1227 Mask[i] = -1; 1228 1229 return new ShuffleVectorInst(FirstIE, Mask); 1230 } 1231 1232 /// Try to fold an insert element into an existing splat shuffle by changing 1233 /// the shuffle's mask to include the index of this insert element. 1234 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1235 // Check if the vector operand of this insert is a canonical splat shuffle. 1236 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1237 if (!Shuf || !Shuf->isZeroEltSplat()) 1238 return nullptr; 1239 1240 // Bail out early if shuffle is scalable type. The number of elements in 1241 // shuffle mask is unknown at compile-time. 1242 if (isa<ScalableVectorType>(Shuf->getType())) 1243 return nullptr; 1244 1245 // Check for a constant insertion index. 1246 uint64_t IdxC; 1247 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1248 return nullptr; 1249 1250 // Check if the splat shuffle's input is the same as this insert's scalar op. 1251 Value *X = InsElt.getOperand(1); 1252 Value *Op0 = Shuf->getOperand(0); 1253 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1254 return nullptr; 1255 1256 // Replace the shuffle mask element at the index of this insert with a zero. 1257 // For example: 1258 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1259 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1260 unsigned NumMaskElts = 1261 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1262 SmallVector<int, 16> NewMask(NumMaskElts); 1263 for (unsigned i = 0; i != NumMaskElts; ++i) 1264 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1265 1266 return new ShuffleVectorInst(Op0, NewMask); 1267 } 1268 1269 /// Try to fold an extract+insert element into an existing identity shuffle by 1270 /// changing the shuffle's mask to include the index of this insert element. 1271 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1272 // Check if the vector operand of this insert is an identity shuffle. 1273 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1274 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1275 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1276 return nullptr; 1277 1278 // Bail out early if shuffle is scalable type. The number of elements in 1279 // shuffle mask is unknown at compile-time. 1280 if (isa<ScalableVectorType>(Shuf->getType())) 1281 return nullptr; 1282 1283 // Check for a constant insertion index. 1284 uint64_t IdxC; 1285 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1286 return nullptr; 1287 1288 // Check if this insert's scalar op is extracted from the identity shuffle's 1289 // input vector. 1290 Value *Scalar = InsElt.getOperand(1); 1291 Value *X = Shuf->getOperand(0); 1292 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1293 return nullptr; 1294 1295 // Replace the shuffle mask element at the index of this extract+insert with 1296 // that same index value. 1297 // For example: 1298 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1299 unsigned NumMaskElts = 1300 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1301 SmallVector<int, 16> NewMask(NumMaskElts); 1302 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1303 for (unsigned i = 0; i != NumMaskElts; ++i) { 1304 if (i != IdxC) { 1305 // All mask elements besides the inserted element remain the same. 1306 NewMask[i] = OldMask[i]; 1307 } else if (OldMask[i] == (int)IdxC) { 1308 // If the mask element was already set, there's nothing to do 1309 // (demanded elements analysis may unset it later). 1310 return nullptr; 1311 } else { 1312 assert(OldMask[i] == UndefMaskElem && 1313 "Unexpected shuffle mask element for identity shuffle"); 1314 NewMask[i] = IdxC; 1315 } 1316 } 1317 1318 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1319 } 1320 1321 /// If we have an insertelement instruction feeding into another insertelement 1322 /// and the 2nd is inserting a constant into the vector, canonicalize that 1323 /// constant insertion before the insertion of a variable: 1324 /// 1325 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1326 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1327 /// 1328 /// This has the potential of eliminating the 2nd insertelement instruction 1329 /// via constant folding of the scalar constant into a vector constant. 1330 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1331 InstCombiner::BuilderTy &Builder) { 1332 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1333 if (!InsElt1 || !InsElt1->hasOneUse()) 1334 return nullptr; 1335 1336 Value *X, *Y; 1337 Constant *ScalarC; 1338 ConstantInt *IdxC1, *IdxC2; 1339 if (match(InsElt1->getOperand(0), m_Value(X)) && 1340 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1341 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1342 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1343 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1344 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1345 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1346 } 1347 1348 return nullptr; 1349 } 1350 1351 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1352 /// --> shufflevector X, CVec', Mask' 1353 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1354 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1355 // Bail out if the parent has more than one use. In that case, we'd be 1356 // replacing the insertelt with a shuffle, and that's not a clear win. 1357 if (!Inst || !Inst->hasOneUse()) 1358 return nullptr; 1359 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1360 // The shuffle must have a constant vector operand. The insertelt must have 1361 // a constant scalar being inserted at a constant position in the vector. 1362 Constant *ShufConstVec, *InsEltScalar; 1363 uint64_t InsEltIndex; 1364 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1365 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1366 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1367 return nullptr; 1368 1369 // Adding an element to an arbitrary shuffle could be expensive, but a 1370 // shuffle that selects elements from vectors without crossing lanes is 1371 // assumed cheap. 1372 // If we're just adding a constant into that shuffle, it will still be 1373 // cheap. 1374 if (!isShuffleEquivalentToSelect(*Shuf)) 1375 return nullptr; 1376 1377 // From the above 'select' check, we know that the mask has the same number 1378 // of elements as the vector input operands. We also know that each constant 1379 // input element is used in its lane and can not be used more than once by 1380 // the shuffle. Therefore, replace the constant in the shuffle's constant 1381 // vector with the insertelt constant. Replace the constant in the shuffle's 1382 // mask vector with the insertelt index plus the length of the vector 1383 // (because the constant vector operand of a shuffle is always the 2nd 1384 // operand). 1385 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1386 unsigned NumElts = Mask.size(); 1387 SmallVector<Constant *, 16> NewShufElts(NumElts); 1388 SmallVector<int, 16> NewMaskElts(NumElts); 1389 for (unsigned I = 0; I != NumElts; ++I) { 1390 if (I == InsEltIndex) { 1391 NewShufElts[I] = InsEltScalar; 1392 NewMaskElts[I] = InsEltIndex + NumElts; 1393 } else { 1394 // Copy over the existing values. 1395 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1396 NewMaskElts[I] = Mask[I]; 1397 } 1398 1399 // Bail if we failed to find an element. 1400 if (!NewShufElts[I]) 1401 return nullptr; 1402 } 1403 1404 // Create new operands for a shuffle that includes the constant of the 1405 // original insertelt. The old shuffle will be dead now. 1406 return new ShuffleVectorInst(Shuf->getOperand(0), 1407 ConstantVector::get(NewShufElts), NewMaskElts); 1408 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1409 // Transform sequences of insertelements ops with constant data/indexes into 1410 // a single shuffle op. 1411 // Can not handle scalable type, the number of elements needed to create 1412 // shuffle mask is not a compile-time constant. 1413 if (isa<ScalableVectorType>(InsElt.getType())) 1414 return nullptr; 1415 unsigned NumElts = 1416 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1417 1418 uint64_t InsertIdx[2]; 1419 Constant *Val[2]; 1420 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1421 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1422 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1423 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1424 return nullptr; 1425 SmallVector<Constant *, 16> Values(NumElts); 1426 SmallVector<int, 16> Mask(NumElts); 1427 auto ValI = std::begin(Val); 1428 // Generate new constant vector and mask. 1429 // We have 2 values/masks from the insertelements instructions. Insert them 1430 // into new value/mask vectors. 1431 for (uint64_t I : InsertIdx) { 1432 if (!Values[I]) { 1433 Values[I] = *ValI; 1434 Mask[I] = NumElts + I; 1435 } 1436 ++ValI; 1437 } 1438 // Remaining values are filled with 'undef' values. 1439 for (unsigned I = 0; I < NumElts; ++I) { 1440 if (!Values[I]) { 1441 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1442 Mask[I] = I; 1443 } 1444 } 1445 // Create new operands for a shuffle that includes the constant of the 1446 // original insertelt. 1447 return new ShuffleVectorInst(IEI->getOperand(0), 1448 ConstantVector::get(Values), Mask); 1449 } 1450 return nullptr; 1451 } 1452 1453 /// If both the base vector and the inserted element are extended from the same 1454 /// type, do the insert element in the narrow source type followed by extend. 1455 /// TODO: This can be extended to include other cast opcodes, but particularly 1456 /// if we create a wider insertelement, make sure codegen is not harmed. 1457 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1458 InstCombiner::BuilderTy &Builder) { 1459 // We are creating a vector extend. If the original vector extend has another 1460 // use, that would mean we end up with 2 vector extends, so avoid that. 1461 // TODO: We could ease the use-clause to "if at least one op has one use" 1462 // (assuming that the source types match - see next TODO comment). 1463 Value *Vec = InsElt.getOperand(0); 1464 if (!Vec->hasOneUse()) 1465 return nullptr; 1466 1467 Value *Scalar = InsElt.getOperand(1); 1468 Value *X, *Y; 1469 CastInst::CastOps CastOpcode; 1470 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1471 CastOpcode = Instruction::FPExt; 1472 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1473 CastOpcode = Instruction::SExt; 1474 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1475 CastOpcode = Instruction::ZExt; 1476 else 1477 return nullptr; 1478 1479 // TODO: We can allow mismatched types by creating an intermediate cast. 1480 if (X->getType()->getScalarType() != Y->getType()) 1481 return nullptr; 1482 1483 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1484 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1485 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1486 } 1487 1488 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1489 Value *VecOp = IE.getOperand(0); 1490 Value *ScalarOp = IE.getOperand(1); 1491 Value *IdxOp = IE.getOperand(2); 1492 1493 if (auto *V = SimplifyInsertElementInst( 1494 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1495 return replaceInstUsesWith(IE, V); 1496 1497 // Canonicalize type of constant indices to i64 to simplify CSE 1498 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) 1499 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1500 return replaceOperand(IE, 2, NewIdx); 1501 1502 // If the scalar is bitcast and inserted into undef, do the insert in the 1503 // source type followed by bitcast. 1504 // TODO: Generalize for insert into any constant, not just undef? 1505 Value *ScalarSrc; 1506 if (match(VecOp, m_Undef()) && 1507 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1508 (ScalarSrc->getType()->isIntegerTy() || 1509 ScalarSrc->getType()->isFloatingPointTy())) { 1510 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1511 // bitcast (inselt undef, ScalarSrc, IdxOp) 1512 Type *ScalarTy = ScalarSrc->getType(); 1513 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1514 UndefValue *NewUndef = UndefValue::get(VecTy); 1515 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1516 return new BitCastInst(NewInsElt, IE.getType()); 1517 } 1518 1519 // If the vector and scalar are both bitcast from the same element type, do 1520 // the insert in that source type followed by bitcast. 1521 Value *VecSrc; 1522 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1523 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1524 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1525 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1526 cast<VectorType>(VecSrc->getType())->getElementType() == 1527 ScalarSrc->getType()) { 1528 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1529 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1530 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1531 return new BitCastInst(NewInsElt, IE.getType()); 1532 } 1533 1534 // If the inserted element was extracted from some other fixed-length vector 1535 // and both indexes are valid constants, try to turn this into a shuffle. 1536 // Can not handle scalable vector type, the number of elements needed to 1537 // create shuffle mask is not a compile-time constant. 1538 uint64_t InsertedIdx, ExtractedIdx; 1539 Value *ExtVecOp; 1540 if (isa<FixedVectorType>(IE.getType()) && 1541 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1542 match(ScalarOp, 1543 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1544 isa<FixedVectorType>(ExtVecOp->getType()) && 1545 ExtractedIdx < 1546 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1547 // TODO: Looking at the user(s) to determine if this insert is a 1548 // fold-to-shuffle opportunity does not match the usual instcombine 1549 // constraints. We should decide if the transform is worthy based only 1550 // on this instruction and its operands, but that may not work currently. 1551 // 1552 // Here, we are trying to avoid creating shuffles before reaching 1553 // the end of a chain of extract-insert pairs. This is complicated because 1554 // we do not generally form arbitrary shuffle masks in instcombine 1555 // (because those may codegen poorly), but collectShuffleElements() does 1556 // exactly that. 1557 // 1558 // The rules for determining what is an acceptable target-independent 1559 // shuffle mask are fuzzy because they evolve based on the backend's 1560 // capabilities and real-world impact. 1561 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1562 if (!Insert.hasOneUse()) 1563 return true; 1564 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1565 if (!InsertUser) 1566 return true; 1567 return false; 1568 }; 1569 1570 // Try to form a shuffle from a chain of extract-insert ops. 1571 if (isShuffleRootCandidate(IE)) { 1572 SmallVector<int, 16> Mask; 1573 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1574 1575 // The proposed shuffle may be trivial, in which case we shouldn't 1576 // perform the combine. 1577 if (LR.first != &IE && LR.second != &IE) { 1578 // We now have a shuffle of LHS, RHS, Mask. 1579 if (LR.second == nullptr) 1580 LR.second = UndefValue::get(LR.first->getType()); 1581 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1582 } 1583 } 1584 } 1585 1586 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1587 unsigned VWidth = VecTy->getNumElements(); 1588 APInt UndefElts(VWidth, 0); 1589 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1590 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1591 if (V != &IE) 1592 return replaceInstUsesWith(IE, V); 1593 return &IE; 1594 } 1595 } 1596 1597 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1598 return Shuf; 1599 1600 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1601 return NewInsElt; 1602 1603 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1604 return Broadcast; 1605 1606 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1607 return Splat; 1608 1609 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1610 return IdentityShuf; 1611 1612 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1613 return Ext; 1614 1615 return nullptr; 1616 } 1617 1618 /// Return true if we can evaluate the specified expression tree if the vector 1619 /// elements were shuffled in a different order. 1620 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1621 unsigned Depth = 5) { 1622 // We can always reorder the elements of a constant. 1623 if (isa<Constant>(V)) 1624 return true; 1625 1626 // We won't reorder vector arguments. No IPO here. 1627 Instruction *I = dyn_cast<Instruction>(V); 1628 if (!I) return false; 1629 1630 // Two users may expect different orders of the elements. Don't try it. 1631 if (!I->hasOneUse()) 1632 return false; 1633 1634 if (Depth == 0) return false; 1635 1636 switch (I->getOpcode()) { 1637 case Instruction::UDiv: 1638 case Instruction::SDiv: 1639 case Instruction::URem: 1640 case Instruction::SRem: 1641 // Propagating an undefined shuffle mask element to integer div/rem is not 1642 // allowed because those opcodes can create immediate undefined behavior 1643 // from an undefined element in an operand. 1644 if (llvm::is_contained(Mask, -1)) 1645 return false; 1646 LLVM_FALLTHROUGH; 1647 case Instruction::Add: 1648 case Instruction::FAdd: 1649 case Instruction::Sub: 1650 case Instruction::FSub: 1651 case Instruction::Mul: 1652 case Instruction::FMul: 1653 case Instruction::FDiv: 1654 case Instruction::FRem: 1655 case Instruction::Shl: 1656 case Instruction::LShr: 1657 case Instruction::AShr: 1658 case Instruction::And: 1659 case Instruction::Or: 1660 case Instruction::Xor: 1661 case Instruction::ICmp: 1662 case Instruction::FCmp: 1663 case Instruction::Trunc: 1664 case Instruction::ZExt: 1665 case Instruction::SExt: 1666 case Instruction::FPToUI: 1667 case Instruction::FPToSI: 1668 case Instruction::UIToFP: 1669 case Instruction::SIToFP: 1670 case Instruction::FPTrunc: 1671 case Instruction::FPExt: 1672 case Instruction::GetElementPtr: { 1673 // Bail out if we would create longer vector ops. We could allow creating 1674 // longer vector ops, but that may result in more expensive codegen. 1675 Type *ITy = I->getType(); 1676 if (ITy->isVectorTy() && 1677 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1678 return false; 1679 for (Value *Operand : I->operands()) { 1680 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1681 return false; 1682 } 1683 return true; 1684 } 1685 case Instruction::InsertElement: { 1686 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1687 if (!CI) return false; 1688 int ElementNumber = CI->getLimitedValue(); 1689 1690 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1691 // can't put an element into multiple indices. 1692 bool SeenOnce = false; 1693 for (int i = 0, e = Mask.size(); i != e; ++i) { 1694 if (Mask[i] == ElementNumber) { 1695 if (SeenOnce) 1696 return false; 1697 SeenOnce = true; 1698 } 1699 } 1700 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1701 } 1702 } 1703 return false; 1704 } 1705 1706 /// Rebuild a new instruction just like 'I' but with the new operands given. 1707 /// In the event of type mismatch, the type of the operands is correct. 1708 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1709 // We don't want to use the IRBuilder here because we want the replacement 1710 // instructions to appear next to 'I', not the builder's insertion point. 1711 switch (I->getOpcode()) { 1712 case Instruction::Add: 1713 case Instruction::FAdd: 1714 case Instruction::Sub: 1715 case Instruction::FSub: 1716 case Instruction::Mul: 1717 case Instruction::FMul: 1718 case Instruction::UDiv: 1719 case Instruction::SDiv: 1720 case Instruction::FDiv: 1721 case Instruction::URem: 1722 case Instruction::SRem: 1723 case Instruction::FRem: 1724 case Instruction::Shl: 1725 case Instruction::LShr: 1726 case Instruction::AShr: 1727 case Instruction::And: 1728 case Instruction::Or: 1729 case Instruction::Xor: { 1730 BinaryOperator *BO = cast<BinaryOperator>(I); 1731 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1732 BinaryOperator *New = 1733 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1734 NewOps[0], NewOps[1], "", BO); 1735 if (isa<OverflowingBinaryOperator>(BO)) { 1736 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1737 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1738 } 1739 if (isa<PossiblyExactOperator>(BO)) { 1740 New->setIsExact(BO->isExact()); 1741 } 1742 if (isa<FPMathOperator>(BO)) 1743 New->copyFastMathFlags(I); 1744 return New; 1745 } 1746 case Instruction::ICmp: 1747 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1748 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1749 NewOps[0], NewOps[1]); 1750 case Instruction::FCmp: 1751 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1752 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1753 NewOps[0], NewOps[1]); 1754 case Instruction::Trunc: 1755 case Instruction::ZExt: 1756 case Instruction::SExt: 1757 case Instruction::FPToUI: 1758 case Instruction::FPToSI: 1759 case Instruction::UIToFP: 1760 case Instruction::SIToFP: 1761 case Instruction::FPTrunc: 1762 case Instruction::FPExt: { 1763 // It's possible that the mask has a different number of elements from 1764 // the original cast. We recompute the destination type to match the mask. 1765 Type *DestTy = VectorType::get( 1766 I->getType()->getScalarType(), 1767 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1768 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1769 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1770 "", I); 1771 } 1772 case Instruction::GetElementPtr: { 1773 Value *Ptr = NewOps[0]; 1774 ArrayRef<Value*> Idx = NewOps.slice(1); 1775 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1776 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1777 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1778 return GEP; 1779 } 1780 } 1781 llvm_unreachable("failed to rebuild vector instructions"); 1782 } 1783 1784 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1785 // Mask.size() does not need to be equal to the number of vector elements. 1786 1787 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1788 Type *EltTy = V->getType()->getScalarType(); 1789 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1790 if (match(V, m_Undef())) 1791 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1792 1793 if (isa<ConstantAggregateZero>(V)) 1794 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1795 1796 if (Constant *C = dyn_cast<Constant>(V)) 1797 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1798 Mask); 1799 1800 Instruction *I = cast<Instruction>(V); 1801 switch (I->getOpcode()) { 1802 case Instruction::Add: 1803 case Instruction::FAdd: 1804 case Instruction::Sub: 1805 case Instruction::FSub: 1806 case Instruction::Mul: 1807 case Instruction::FMul: 1808 case Instruction::UDiv: 1809 case Instruction::SDiv: 1810 case Instruction::FDiv: 1811 case Instruction::URem: 1812 case Instruction::SRem: 1813 case Instruction::FRem: 1814 case Instruction::Shl: 1815 case Instruction::LShr: 1816 case Instruction::AShr: 1817 case Instruction::And: 1818 case Instruction::Or: 1819 case Instruction::Xor: 1820 case Instruction::ICmp: 1821 case Instruction::FCmp: 1822 case Instruction::Trunc: 1823 case Instruction::ZExt: 1824 case Instruction::SExt: 1825 case Instruction::FPToUI: 1826 case Instruction::FPToSI: 1827 case Instruction::UIToFP: 1828 case Instruction::SIToFP: 1829 case Instruction::FPTrunc: 1830 case Instruction::FPExt: 1831 case Instruction::Select: 1832 case Instruction::GetElementPtr: { 1833 SmallVector<Value*, 8> NewOps; 1834 bool NeedsRebuild = 1835 (Mask.size() != 1836 cast<FixedVectorType>(I->getType())->getNumElements()); 1837 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1838 Value *V; 1839 // Recursively call evaluateInDifferentElementOrder on vector arguments 1840 // as well. E.g. GetElementPtr may have scalar operands even if the 1841 // return value is a vector, so we need to examine the operand type. 1842 if (I->getOperand(i)->getType()->isVectorTy()) 1843 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1844 else 1845 V = I->getOperand(i); 1846 NewOps.push_back(V); 1847 NeedsRebuild |= (V != I->getOperand(i)); 1848 } 1849 if (NeedsRebuild) { 1850 return buildNew(I, NewOps); 1851 } 1852 return I; 1853 } 1854 case Instruction::InsertElement: { 1855 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1856 1857 // The insertelement was inserting at Element. Figure out which element 1858 // that becomes after shuffling. The answer is guaranteed to be unique 1859 // by CanEvaluateShuffled. 1860 bool Found = false; 1861 int Index = 0; 1862 for (int e = Mask.size(); Index != e; ++Index) { 1863 if (Mask[Index] == Element) { 1864 Found = true; 1865 break; 1866 } 1867 } 1868 1869 // If element is not in Mask, no need to handle the operand 1 (element to 1870 // be inserted). Just evaluate values in operand 0 according to Mask. 1871 if (!Found) 1872 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1873 1874 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1875 return InsertElementInst::Create(V, I->getOperand(1), 1876 ConstantInt::get(I32Ty, Index), "", I); 1877 } 1878 } 1879 llvm_unreachable("failed to reorder elements of vector instruction!"); 1880 } 1881 1882 // Returns true if the shuffle is extracting a contiguous range of values from 1883 // LHS, for example: 1884 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1885 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1886 // Shuffles to: |EE|FF|GG|HH| 1887 // +--+--+--+--+ 1888 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1889 ArrayRef<int> Mask) { 1890 unsigned LHSElems = 1891 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1892 unsigned MaskElems = Mask.size(); 1893 unsigned BegIdx = Mask.front(); 1894 unsigned EndIdx = Mask.back(); 1895 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1896 return false; 1897 for (unsigned I = 0; I != MaskElems; ++I) 1898 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1899 return false; 1900 return true; 1901 } 1902 1903 /// These are the ingredients in an alternate form binary operator as described 1904 /// below. 1905 struct BinopElts { 1906 BinaryOperator::BinaryOps Opcode; 1907 Value *Op0; 1908 Value *Op1; 1909 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1910 Value *V0 = nullptr, Value *V1 = nullptr) : 1911 Opcode(Opc), Op0(V0), Op1(V1) {} 1912 operator bool() const { return Opcode != 0; } 1913 }; 1914 1915 /// Binops may be transformed into binops with different opcodes and operands. 1916 /// Reverse the usual canonicalization to enable folds with the non-canonical 1917 /// form of the binop. If a transform is possible, return the elements of the 1918 /// new binop. If not, return invalid elements. 1919 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1920 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1921 Type *Ty = BO->getType(); 1922 switch (BO->getOpcode()) { 1923 case Instruction::Shl: { 1924 // shl X, C --> mul X, (1 << C) 1925 Constant *C; 1926 if (match(BO1, m_Constant(C))) { 1927 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1928 return { Instruction::Mul, BO0, ShlOne }; 1929 } 1930 break; 1931 } 1932 case Instruction::Or: { 1933 // or X, C --> add X, C (when X and C have no common bits set) 1934 const APInt *C; 1935 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1936 return { Instruction::Add, BO0, BO1 }; 1937 break; 1938 } 1939 default: 1940 break; 1941 } 1942 return {}; 1943 } 1944 1945 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1946 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1947 1948 // Are we shuffling together some value and that same value after it has been 1949 // modified by a binop with a constant? 1950 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1951 Constant *C; 1952 bool Op0IsBinop; 1953 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1954 Op0IsBinop = true; 1955 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1956 Op0IsBinop = false; 1957 else 1958 return nullptr; 1959 1960 // The identity constant for a binop leaves a variable operand unchanged. For 1961 // a vector, this is a splat of something like 0, -1, or 1. 1962 // If there's no identity constant for this binop, we're done. 1963 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1964 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1965 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1966 if (!IdC) 1967 return nullptr; 1968 1969 // Shuffle identity constants into the lanes that return the original value. 1970 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1971 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1972 // The existing binop constant vector remains in the same operand position. 1973 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1974 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1975 ConstantExpr::getShuffleVector(IdC, C, Mask); 1976 1977 bool MightCreatePoisonOrUB = 1978 is_contained(Mask, UndefMaskElem) && 1979 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1980 if (MightCreatePoisonOrUB) 1981 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1982 1983 // shuf (bop X, C), X, M --> bop X, C' 1984 // shuf X, (bop X, C), M --> bop X, C' 1985 Value *X = Op0IsBinop ? Op1 : Op0; 1986 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1987 NewBO->copyIRFlags(BO); 1988 1989 // An undef shuffle mask element may propagate as an undef constant element in 1990 // the new binop. That would produce poison where the original code might not. 1991 // If we already made a safe constant, then there's no danger. 1992 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1993 NewBO->dropPoisonGeneratingFlags(); 1994 return NewBO; 1995 } 1996 1997 /// If we have an insert of a scalar to a non-zero element of an undefined 1998 /// vector and then shuffle that value, that's the same as inserting to the zero 1999 /// element and shuffling. Splatting from the zero element is recognized as the 2000 /// canonical form of splat. 2001 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2002 InstCombiner::BuilderTy &Builder) { 2003 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2004 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2005 Value *X; 2006 uint64_t IndexC; 2007 2008 // Match a shuffle that is a splat to a non-zero element. 2009 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 2010 m_ConstantInt(IndexC)))) || 2011 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2012 return nullptr; 2013 2014 // Insert into element 0 of an undef vector. 2015 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 2016 Constant *Zero = Builder.getInt32(0); 2017 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 2018 2019 // Splat from element 0. Any mask element that is undefined remains undefined. 2020 // For example: 2021 // shuf (inselt undef, X, 2), _, <2,2,undef> 2022 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2023 unsigned NumMaskElts = 2024 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2025 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2026 for (unsigned i = 0; i != NumMaskElts; ++i) 2027 if (Mask[i] == UndefMaskElem) 2028 NewMask[i] = Mask[i]; 2029 2030 return new ShuffleVectorInst(NewIns, NewMask); 2031 } 2032 2033 /// Try to fold shuffles that are the equivalent of a vector select. 2034 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2035 if (!Shuf.isSelect()) 2036 return nullptr; 2037 2038 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2039 // Commuting undef to operand 0 conflicts with another canonicalization. 2040 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2041 if (!match(Shuf.getOperand(1), m_Undef()) && 2042 Shuf.getMaskValue(0) >= (int)NumElts) { 2043 // TODO: Can we assert that both operands of a shuffle-select are not undef 2044 // (otherwise, it would have been folded by instsimplify? 2045 Shuf.commute(); 2046 return &Shuf; 2047 } 2048 2049 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2050 return I; 2051 2052 BinaryOperator *B0, *B1; 2053 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2054 !match(Shuf.getOperand(1), m_BinOp(B1))) 2055 return nullptr; 2056 2057 Value *X, *Y; 2058 Constant *C0, *C1; 2059 bool ConstantsAreOp1; 2060 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 2061 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 2062 ConstantsAreOp1 = true; 2063 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2064 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2065 ConstantsAreOp1 = false; 2066 else 2067 return nullptr; 2068 2069 // We need matching binops to fold the lanes together. 2070 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2071 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2072 bool DropNSW = false; 2073 if (ConstantsAreOp1 && Opc0 != Opc1) { 2074 // TODO: We drop "nsw" if shift is converted into multiply because it may 2075 // not be correct when the shift amount is BitWidth - 1. We could examine 2076 // each vector element to determine if it is safe to keep that flag. 2077 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2078 DropNSW = true; 2079 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2080 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2081 Opc0 = AltB0.Opcode; 2082 C0 = cast<Constant>(AltB0.Op1); 2083 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2084 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2085 Opc1 = AltB1.Opcode; 2086 C1 = cast<Constant>(AltB1.Op1); 2087 } 2088 } 2089 2090 if (Opc0 != Opc1) 2091 return nullptr; 2092 2093 // The opcodes must be the same. Use a new name to make that clear. 2094 BinaryOperator::BinaryOps BOpc = Opc0; 2095 2096 // Select the constant elements needed for the single binop. 2097 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2098 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2099 2100 // We are moving a binop after a shuffle. When a shuffle has an undefined 2101 // mask element, the result is undefined, but it is not poison or undefined 2102 // behavior. That is not necessarily true for div/rem/shift. 2103 bool MightCreatePoisonOrUB = 2104 is_contained(Mask, UndefMaskElem) && 2105 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2106 if (MightCreatePoisonOrUB) 2107 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2108 ConstantsAreOp1); 2109 2110 Value *V; 2111 if (X == Y) { 2112 // Remove a binop and the shuffle by rearranging the constant: 2113 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2114 // shuffle (op C0, V), (op C1, V), M --> op C', V 2115 V = X; 2116 } else { 2117 // If there are 2 different variable operands, we must create a new shuffle 2118 // (select) first, so check uses to ensure that we don't end up with more 2119 // instructions than we started with. 2120 if (!B0->hasOneUse() && !B1->hasOneUse()) 2121 return nullptr; 2122 2123 // If we use the original shuffle mask and op1 is *variable*, we would be 2124 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2125 // poison. We do not have to guard against UB when *constants* are op1 2126 // because safe constants guarantee that we do not overflow sdiv/srem (and 2127 // there's no danger for other opcodes). 2128 // TODO: To allow this case, create a new shuffle mask with no undefs. 2129 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2130 return nullptr; 2131 2132 // Note: In general, we do not create new shuffles in InstCombine because we 2133 // do not know if a target can lower an arbitrary shuffle optimally. In this 2134 // case, the shuffle uses the existing mask, so there is no additional risk. 2135 2136 // Select the variable vectors first, then perform the binop: 2137 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2138 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2139 V = Builder.CreateShuffleVector(X, Y, Mask); 2140 } 2141 2142 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2143 Builder.CreateBinOp(BOpc, NewC, V); 2144 2145 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2146 // 1. If we changed an opcode, poison conditions might have changed. 2147 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2148 // where the original code did not. But if we already made a safe constant, 2149 // then there's no danger. 2150 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2151 NewI->copyIRFlags(B0); 2152 NewI->andIRFlags(B1); 2153 if (DropNSW) 2154 NewI->setHasNoSignedWrap(false); 2155 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2156 NewI->dropPoisonGeneratingFlags(); 2157 } 2158 return replaceInstUsesWith(Shuf, NewBO); 2159 } 2160 2161 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2162 /// Example (little endian): 2163 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2164 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2165 bool IsBigEndian) { 2166 // This must be a bitcasted shuffle of 1 vector integer operand. 2167 Type *DestType = Shuf.getType(); 2168 Value *X; 2169 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2170 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2171 return nullptr; 2172 2173 // The source type must have the same number of elements as the shuffle, 2174 // and the source element type must be larger than the shuffle element type. 2175 Type *SrcType = X->getType(); 2176 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2177 cast<FixedVectorType>(SrcType)->getNumElements() != 2178 cast<FixedVectorType>(DestType)->getNumElements() || 2179 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2180 return nullptr; 2181 2182 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2183 "Expected a shuffle that decreases length"); 2184 2185 // Last, check that the mask chooses the correct low bits for each narrow 2186 // element in the result. 2187 uint64_t TruncRatio = 2188 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2189 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2190 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2191 if (Mask[i] == UndefMaskElem) 2192 continue; 2193 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2194 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2195 if (Mask[i] != (int)LSBIndex) 2196 return nullptr; 2197 } 2198 2199 return new TruncInst(X, DestType); 2200 } 2201 2202 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2203 /// narrowing (concatenating with undef and extracting back to the original 2204 /// length). This allows replacing the wide select with a narrow select. 2205 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2206 InstCombiner::BuilderTy &Builder) { 2207 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2208 // of the 1st vector operand of a shuffle. 2209 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2210 return nullptr; 2211 2212 // The vector being shuffled must be a vector select that we can eliminate. 2213 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2214 Value *Cond, *X, *Y; 2215 if (!match(Shuf.getOperand(0), 2216 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2217 return nullptr; 2218 2219 // We need a narrow condition value. It must be extended with undef elements 2220 // and have the same number of elements as this shuffle. 2221 unsigned NarrowNumElts = 2222 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2223 Value *NarrowCond; 2224 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2225 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2226 NarrowNumElts || 2227 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2228 return nullptr; 2229 2230 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2231 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2232 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2233 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2234 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2235 } 2236 2237 /// Try to fold an extract subvector operation. 2238 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2239 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2240 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2241 return nullptr; 2242 2243 // Check if we are extracting all bits of an inserted scalar: 2244 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2245 Value *X; 2246 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2247 X->getType()->getPrimitiveSizeInBits() == 2248 Shuf.getType()->getPrimitiveSizeInBits()) 2249 return new BitCastInst(X, Shuf.getType()); 2250 2251 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2252 Value *Y; 2253 ArrayRef<int> Mask; 2254 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2255 return nullptr; 2256 2257 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2258 // then combining may result in worse codegen. 2259 if (!Op0->hasOneUse()) 2260 return nullptr; 2261 2262 // We are extracting a subvector from a shuffle. Remove excess elements from 2263 // the 1st shuffle mask to eliminate the extract. 2264 // 2265 // This transform is conservatively limited to identity extracts because we do 2266 // not allow arbitrary shuffle mask creation as a target-independent transform 2267 // (because we can't guarantee that will lower efficiently). 2268 // 2269 // If the extracting shuffle has an undef mask element, it transfers to the 2270 // new shuffle mask. Otherwise, copy the original mask element. Example: 2271 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2272 // shuf X, Y, <C0, undef, C2, undef> 2273 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2274 SmallVector<int, 16> NewMask(NumElts); 2275 assert(NumElts < Mask.size() && 2276 "Identity with extract must have less elements than its inputs"); 2277 2278 for (unsigned i = 0; i != NumElts; ++i) { 2279 int ExtractMaskElt = Shuf.getMaskValue(i); 2280 int MaskElt = Mask[i]; 2281 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2282 } 2283 return new ShuffleVectorInst(X, Y, NewMask); 2284 } 2285 2286 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2287 /// operand with the operand of an insertelement. 2288 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2289 InstCombinerImpl &IC) { 2290 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2291 SmallVector<int, 16> Mask; 2292 Shuf.getShuffleMask(Mask); 2293 2294 int NumElts = Mask.size(); 2295 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2296 2297 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2298 // not be able to handle it there if the insertelement has >1 use. 2299 // If the shuffle has an insertelement operand but does not choose the 2300 // inserted scalar element from that value, then we can replace that shuffle 2301 // operand with the source vector of the insertelement. 2302 Value *X; 2303 uint64_t IdxC; 2304 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2305 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2306 if (!is_contained(Mask, (int)IdxC)) 2307 return IC.replaceOperand(Shuf, 0, X); 2308 } 2309 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2310 // Offset the index constant by the vector width because we are checking for 2311 // accesses to the 2nd vector input of the shuffle. 2312 IdxC += InpNumElts; 2313 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2314 if (!is_contained(Mask, (int)IdxC)) 2315 return IC.replaceOperand(Shuf, 1, X); 2316 } 2317 // For the rest of the transform, the shuffle must not change vector sizes. 2318 // TODO: This restriction could be removed if the insert has only one use 2319 // (because the transform would require a new length-changing shuffle). 2320 if (NumElts != InpNumElts) 2321 return nullptr; 2322 2323 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2324 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2325 // We need an insertelement with a constant index. 2326 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2327 m_ConstantInt(IndexC)))) 2328 return false; 2329 2330 // Test the shuffle mask to see if it splices the inserted scalar into the 2331 // operand 1 vector of the shuffle. 2332 int NewInsIndex = -1; 2333 for (int i = 0; i != NumElts; ++i) { 2334 // Ignore undef mask elements. 2335 if (Mask[i] == -1) 2336 continue; 2337 2338 // The shuffle takes elements of operand 1 without lane changes. 2339 if (Mask[i] == NumElts + i) 2340 continue; 2341 2342 // The shuffle must choose the inserted scalar exactly once. 2343 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2344 return false; 2345 2346 // The shuffle is placing the inserted scalar into element i. 2347 NewInsIndex = i; 2348 } 2349 2350 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2351 2352 // Index is updated to the potentially translated insertion lane. 2353 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2354 return true; 2355 }; 2356 2357 // If the shuffle is unnecessary, insert the scalar operand directly into 2358 // operand 1 of the shuffle. Example: 2359 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2360 Value *Scalar; 2361 ConstantInt *IndexC; 2362 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2363 return InsertElementInst::Create(V1, Scalar, IndexC); 2364 2365 // Try again after commuting shuffle. Example: 2366 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2367 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2368 std::swap(V0, V1); 2369 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2370 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2371 return InsertElementInst::Create(V1, Scalar, IndexC); 2372 2373 return nullptr; 2374 } 2375 2376 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2377 // Match the operands as identity with padding (also known as concatenation 2378 // with undef) shuffles of the same source type. The backend is expected to 2379 // recreate these concatenations from a shuffle of narrow operands. 2380 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2381 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2382 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2383 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2384 return nullptr; 2385 2386 // We limit this transform to power-of-2 types because we expect that the 2387 // backend can convert the simplified IR patterns to identical nodes as the 2388 // original IR. 2389 // TODO: If we can verify the same behavior for arbitrary types, the 2390 // power-of-2 checks can be removed. 2391 Value *X = Shuffle0->getOperand(0); 2392 Value *Y = Shuffle1->getOperand(0); 2393 if (X->getType() != Y->getType() || 2394 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2395 !isPowerOf2_32( 2396 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2397 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2398 match(X, m_Undef()) || match(Y, m_Undef())) 2399 return nullptr; 2400 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2401 match(Shuffle1->getOperand(1), m_Undef()) && 2402 "Unexpected operand for identity shuffle"); 2403 2404 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2405 // operands directly by adjusting the shuffle mask to account for the narrower 2406 // types: 2407 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2408 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2409 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2410 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2411 2412 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2413 SmallVector<int, 16> NewMask(Mask.size(), -1); 2414 for (int i = 0, e = Mask.size(); i != e; ++i) { 2415 if (Mask[i] == -1) 2416 continue; 2417 2418 // If this shuffle is choosing an undef element from 1 of the sources, that 2419 // element is undef. 2420 if (Mask[i] < WideElts) { 2421 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2422 continue; 2423 } else { 2424 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2425 continue; 2426 } 2427 2428 // If this shuffle is choosing from the 1st narrow op, the mask element is 2429 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2430 // element is offset down to adjust for the narrow vector widths. 2431 if (Mask[i] < WideElts) { 2432 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2433 NewMask[i] = Mask[i]; 2434 } else { 2435 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2436 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2437 } 2438 } 2439 return new ShuffleVectorInst(X, Y, NewMask); 2440 } 2441 2442 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2443 Value *LHS = SVI.getOperand(0); 2444 Value *RHS = SVI.getOperand(1); 2445 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2446 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2447 SVI.getType(), ShufQuery)) 2448 return replaceInstUsesWith(SVI, V); 2449 2450 // Bail out for scalable vectors 2451 if (isa<ScalableVectorType>(LHS->getType())) 2452 return nullptr; 2453 2454 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2455 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2456 2457 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2458 // 2459 // if X and Y are of the same (vector) type, and the element size is not 2460 // changed by the bitcasts, we can distribute the bitcasts through the 2461 // shuffle, hopefully reducing the number of instructions. We make sure that 2462 // at least one bitcast only has one use, so we don't *increase* the number of 2463 // instructions here. 2464 Value *X, *Y; 2465 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2466 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2467 X->getType()->getScalarSizeInBits() == 2468 SVI.getType()->getScalarSizeInBits() && 2469 (LHS->hasOneUse() || RHS->hasOneUse())) { 2470 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2471 SVI.getName() + ".uncasted"); 2472 return new BitCastInst(V, SVI.getType()); 2473 } 2474 2475 ArrayRef<int> Mask = SVI.getShuffleMask(); 2476 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2477 2478 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2479 // simulated shuffle can simplify, then this shuffle is unnecessary: 2480 // shuf (bitcast X), undef, Mask --> bitcast X' 2481 // TODO: This could be extended to allow length-changing shuffles. 2482 // The transform might also be obsoleted if we allowed canonicalization 2483 // of bitcasted shuffles. 2484 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2485 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2486 // Try to create a scaled mask constant. 2487 auto *XType = cast<FixedVectorType>(X->getType()); 2488 unsigned XNumElts = XType->getNumElements(); 2489 SmallVector<int, 16> ScaledMask; 2490 if (XNumElts >= VWidth) { 2491 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2492 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2493 } else { 2494 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2495 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2496 ScaledMask.clear(); 2497 } 2498 if (!ScaledMask.empty()) { 2499 // If the shuffled source vector simplifies, cast that value to this 2500 // shuffle's type. 2501 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2502 ScaledMask, XType, ShufQuery)) 2503 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2504 } 2505 } 2506 2507 // shuffle x, x, mask --> shuffle x, undef, mask' 2508 if (LHS == RHS) { 2509 assert(!match(RHS, m_Undef()) && 2510 "Shuffle with 2 undef ops not simplified?"); 2511 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2512 } 2513 2514 // shuffle undef, x, mask --> shuffle x, undef, mask' 2515 if (match(LHS, m_Undef())) { 2516 SVI.commute(); 2517 return &SVI; 2518 } 2519 2520 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2521 return I; 2522 2523 if (Instruction *I = foldSelectShuffle(SVI)) 2524 return I; 2525 2526 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2527 return I; 2528 2529 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2530 return I; 2531 2532 APInt UndefElts(VWidth, 0); 2533 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2534 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2535 if (V != &SVI) 2536 return replaceInstUsesWith(SVI, V); 2537 return &SVI; 2538 } 2539 2540 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2541 return I; 2542 2543 // These transforms have the potential to lose undef knowledge, so they are 2544 // intentionally placed after SimplifyDemandedVectorElts(). 2545 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2546 return I; 2547 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2548 return I; 2549 2550 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2551 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2552 return replaceInstUsesWith(SVI, V); 2553 } 2554 2555 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2556 // a non-vector type. We can instead bitcast the original vector followed by 2557 // an extract of the desired element: 2558 // 2559 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2560 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2561 // %1 = bitcast <4 x i8> %sroa to i32 2562 // Becomes: 2563 // %bc = bitcast <16 x i8> %in to <4 x i32> 2564 // %ext = extractelement <4 x i32> %bc, i32 0 2565 // 2566 // If the shuffle is extracting a contiguous range of values from the input 2567 // vector then each use which is a bitcast of the extracted size can be 2568 // replaced. This will work if the vector types are compatible, and the begin 2569 // index is aligned to a value in the casted vector type. If the begin index 2570 // isn't aligned then we can shuffle the original vector (keeping the same 2571 // vector type) before extracting. 2572 // 2573 // This code will bail out if the target type is fundamentally incompatible 2574 // with vectors of the source type. 2575 // 2576 // Example of <16 x i8>, target type i32: 2577 // Index range [4,8): v-----------v Will work. 2578 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2579 // <16 x i8>: | | | | | | | | | | | | | | | | | 2580 // <4 x i32>: | | | | | 2581 // +-----------+-----------+-----------+-----------+ 2582 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2583 // Target type i40: ^--------------^ Won't work, bail. 2584 bool MadeChange = false; 2585 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2586 Value *V = LHS; 2587 unsigned MaskElems = Mask.size(); 2588 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2589 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2590 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2591 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2592 unsigned SrcNumElems = SrcTy->getNumElements(); 2593 SmallVector<BitCastInst *, 8> BCs; 2594 DenseMap<Type *, Value *> NewBCs; 2595 for (User *U : SVI.users()) 2596 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2597 if (!BC->use_empty()) 2598 // Only visit bitcasts that weren't previously handled. 2599 BCs.push_back(BC); 2600 for (BitCastInst *BC : BCs) { 2601 unsigned BegIdx = Mask.front(); 2602 Type *TgtTy = BC->getDestTy(); 2603 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2604 if (!TgtElemBitWidth) 2605 continue; 2606 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2607 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2608 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2609 if (!VecBitWidthsEqual) 2610 continue; 2611 if (!VectorType::isValidElementType(TgtTy)) 2612 continue; 2613 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2614 if (!BegIsAligned) { 2615 // Shuffle the input so [0,NumElements) contains the output, and 2616 // [NumElems,SrcNumElems) is undef. 2617 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2618 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2619 ShuffleMask[I] = Idx; 2620 V = Builder.CreateShuffleVector(V, ShuffleMask, 2621 SVI.getName() + ".extract"); 2622 BegIdx = 0; 2623 } 2624 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2625 assert(SrcElemsPerTgtElem); 2626 BegIdx /= SrcElemsPerTgtElem; 2627 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2628 auto *NewBC = 2629 BCAlreadyExists 2630 ? NewBCs[CastSrcTy] 2631 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2632 if (!BCAlreadyExists) 2633 NewBCs[CastSrcTy] = NewBC; 2634 auto *Ext = Builder.CreateExtractElement( 2635 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2636 // The shufflevector isn't being replaced: the bitcast that used it 2637 // is. InstCombine will visit the newly-created instructions. 2638 replaceInstUsesWith(*BC, Ext); 2639 MadeChange = true; 2640 } 2641 } 2642 2643 // If the LHS is a shufflevector itself, see if we can combine it with this 2644 // one without producing an unusual shuffle. 2645 // Cases that might be simplified: 2646 // 1. 2647 // x1=shuffle(v1,v2,mask1) 2648 // x=shuffle(x1,undef,mask) 2649 // ==> 2650 // x=shuffle(v1,undef,newMask) 2651 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2652 // 2. 2653 // x1=shuffle(v1,undef,mask1) 2654 // x=shuffle(x1,x2,mask) 2655 // where v1.size() == mask1.size() 2656 // ==> 2657 // x=shuffle(v1,x2,newMask) 2658 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2659 // 3. 2660 // x2=shuffle(v2,undef,mask2) 2661 // x=shuffle(x1,x2,mask) 2662 // where v2.size() == mask2.size() 2663 // ==> 2664 // x=shuffle(x1,v2,newMask) 2665 // newMask[i] = (mask[i] < x1.size()) 2666 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2667 // 4. 2668 // x1=shuffle(v1,undef,mask1) 2669 // x2=shuffle(v2,undef,mask2) 2670 // x=shuffle(x1,x2,mask) 2671 // where v1.size() == v2.size() 2672 // ==> 2673 // x=shuffle(v1,v2,newMask) 2674 // newMask[i] = (mask[i] < x1.size()) 2675 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2676 // 2677 // Here we are really conservative: 2678 // we are absolutely afraid of producing a shuffle mask not in the input 2679 // program, because the code gen may not be smart enough to turn a merged 2680 // shuffle into two specific shuffles: it may produce worse code. As such, 2681 // we only merge two shuffles if the result is either a splat or one of the 2682 // input shuffle masks. In this case, merging the shuffles just removes 2683 // one instruction, which we know is safe. This is good for things like 2684 // turning: (splat(splat)) -> splat, or 2685 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2686 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2687 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2688 if (LHSShuffle) 2689 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2690 LHSShuffle = nullptr; 2691 if (RHSShuffle) 2692 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2693 RHSShuffle = nullptr; 2694 if (!LHSShuffle && !RHSShuffle) 2695 return MadeChange ? &SVI : nullptr; 2696 2697 Value* LHSOp0 = nullptr; 2698 Value* LHSOp1 = nullptr; 2699 Value* RHSOp0 = nullptr; 2700 unsigned LHSOp0Width = 0; 2701 unsigned RHSOp0Width = 0; 2702 if (LHSShuffle) { 2703 LHSOp0 = LHSShuffle->getOperand(0); 2704 LHSOp1 = LHSShuffle->getOperand(1); 2705 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2706 } 2707 if (RHSShuffle) { 2708 RHSOp0 = RHSShuffle->getOperand(0); 2709 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2710 } 2711 Value* newLHS = LHS; 2712 Value* newRHS = RHS; 2713 if (LHSShuffle) { 2714 // case 1 2715 if (match(RHS, m_Undef())) { 2716 newLHS = LHSOp0; 2717 newRHS = LHSOp1; 2718 } 2719 // case 2 or 4 2720 else if (LHSOp0Width == LHSWidth) { 2721 newLHS = LHSOp0; 2722 } 2723 } 2724 // case 3 or 4 2725 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2726 newRHS = RHSOp0; 2727 } 2728 // case 4 2729 if (LHSOp0 == RHSOp0) { 2730 newLHS = LHSOp0; 2731 newRHS = nullptr; 2732 } 2733 2734 if (newLHS == LHS && newRHS == RHS) 2735 return MadeChange ? &SVI : nullptr; 2736 2737 ArrayRef<int> LHSMask; 2738 ArrayRef<int> RHSMask; 2739 if (newLHS != LHS) 2740 LHSMask = LHSShuffle->getShuffleMask(); 2741 if (RHSShuffle && newRHS != RHS) 2742 RHSMask = RHSShuffle->getShuffleMask(); 2743 2744 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2745 SmallVector<int, 16> newMask; 2746 bool isSplat = true; 2747 int SplatElt = -1; 2748 // Create a new mask for the new ShuffleVectorInst so that the new 2749 // ShuffleVectorInst is equivalent to the original one. 2750 for (unsigned i = 0; i < VWidth; ++i) { 2751 int eltMask; 2752 if (Mask[i] < 0) { 2753 // This element is an undef value. 2754 eltMask = -1; 2755 } else if (Mask[i] < (int)LHSWidth) { 2756 // This element is from left hand side vector operand. 2757 // 2758 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2759 // new mask value for the element. 2760 if (newLHS != LHS) { 2761 eltMask = LHSMask[Mask[i]]; 2762 // If the value selected is an undef value, explicitly specify it 2763 // with a -1 mask value. 2764 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2765 eltMask = -1; 2766 } else 2767 eltMask = Mask[i]; 2768 } else { 2769 // This element is from right hand side vector operand 2770 // 2771 // If the value selected is an undef value, explicitly specify it 2772 // with a -1 mask value. (case 1) 2773 if (match(RHS, m_Undef())) 2774 eltMask = -1; 2775 // If RHS is going to be replaced (case 3 or 4), calculate the 2776 // new mask value for the element. 2777 else if (newRHS != RHS) { 2778 eltMask = RHSMask[Mask[i]-LHSWidth]; 2779 // If the value selected is an undef value, explicitly specify it 2780 // with a -1 mask value. 2781 if (eltMask >= (int)RHSOp0Width) { 2782 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2783 "should have been check above"); 2784 eltMask = -1; 2785 } 2786 } else 2787 eltMask = Mask[i]-LHSWidth; 2788 2789 // If LHS's width is changed, shift the mask value accordingly. 2790 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2791 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2792 // If newRHS == newLHS, we want to remap any references from newRHS to 2793 // newLHS so that we can properly identify splats that may occur due to 2794 // obfuscation across the two vectors. 2795 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2796 eltMask += newLHSWidth; 2797 } 2798 2799 // Check if this could still be a splat. 2800 if (eltMask >= 0) { 2801 if (SplatElt >= 0 && SplatElt != eltMask) 2802 isSplat = false; 2803 SplatElt = eltMask; 2804 } 2805 2806 newMask.push_back(eltMask); 2807 } 2808 2809 // If the result mask is equal to one of the original shuffle masks, 2810 // or is a splat, do the replacement. 2811 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2812 if (!newRHS) 2813 newRHS = UndefValue::get(newLHS->getType()); 2814 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2815 } 2816 2817 return MadeChange ? &SVI : nullptr; 2818 } 2819