xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (revision 480093f4440d54b30b3025afeac24b48f2ba7a2e)
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20 
21 #define DEBUG_TYPE "instcombine"
22 
23 // Given pattern:
24 //   (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 //   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x)
27 // This is valid for any shift, but they must be identical.
28 //
29 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
30 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
31 Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
32     BinaryOperator *Sh0, const SimplifyQuery &SQ,
33     bool AnalyzeForSignBitExtraction) {
34   // Look for a shift of some instruction, ignore zext of shift amount if any.
35   Instruction *Sh0Op0;
36   Value *ShAmt0;
37   if (!match(Sh0,
38              m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
39     return nullptr;
40 
41   // If there is a truncation between the two shifts, we must make note of it
42   // and look through it. The truncation imposes additional constraints on the
43   // transform.
44   Instruction *Sh1;
45   Value *Trunc = nullptr;
46   match(Sh0Op0,
47         m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
48                     m_Instruction(Sh1)));
49 
50   // Inner shift: (x shiftopcode ShAmt1)
51   // Like with other shift, ignore zext of shift amount if any.
52   Value *X, *ShAmt1;
53   if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
54     return nullptr;
55 
56   // We have two shift amounts from two different shifts. The types of those
57   // shift amounts may not match. If that's the case let's bailout now..
58   if (ShAmt0->getType() != ShAmt1->getType())
59     return nullptr;
60 
61   // We are only looking for signbit extraction if we have two right shifts.
62   bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
63                            match(Sh1, m_Shr(m_Value(), m_Value()));
64   // ... and if it's not two right-shifts, we know the answer already.
65   if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
66     return nullptr;
67 
68   // The shift opcodes must be identical, unless we are just checking whether
69   // this pattern can be interpreted as a sign-bit-extraction.
70   Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
71   bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
72   if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
73     return nullptr;
74 
75   // If we saw truncation, we'll need to produce extra instruction,
76   // and for that one of the operands of the shift must be one-use,
77   // unless of course we don't actually plan to produce any instructions here.
78   if (Trunc && !AnalyzeForSignBitExtraction &&
79       !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
80     return nullptr;
81 
82   // Can we fold (ShAmt0+ShAmt1) ?
83   auto *NewShAmt = dyn_cast_or_null<Constant>(
84       SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
85                       SQ.getWithInstruction(Sh0)));
86   if (!NewShAmt)
87     return nullptr; // Did not simplify.
88   unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
89   unsigned XBitWidth = X->getType()->getScalarSizeInBits();
90   // Is the new shift amount smaller than the bit width of inner/new shift?
91   if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
92                                           APInt(NewShAmtBitWidth, XBitWidth))))
93     return nullptr; // FIXME: could perform constant-folding.
94 
95   // If there was a truncation, and we have a right-shift, we can only fold if
96   // we are left with the original sign bit. Likewise, if we were just checking
97   // that this is a sighbit extraction, this is the place to check it.
98   // FIXME: zero shift amount is also legal here, but we can't *easily* check
99   // more than one predicate so it's not really worth it.
100   if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
101     // If it's not a sign bit extraction, then we're done.
102     if (!match(NewShAmt,
103                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
104                                   APInt(NewShAmtBitWidth, XBitWidth - 1))))
105       return nullptr;
106     // If it is, and that was the question, return the base value.
107     if (AnalyzeForSignBitExtraction)
108       return X;
109   }
110 
111   assert(IdenticalShOpcodes && "Should not get here with different shifts.");
112 
113   // All good, we can do this fold.
114   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
115 
116   BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
117 
118   // The flags can only be propagated if there wasn't a trunc.
119   if (!Trunc) {
120     // If the pattern did not involve trunc, and both of the original shifts
121     // had the same flag set, preserve the flag.
122     if (ShiftOpcode == Instruction::BinaryOps::Shl) {
123       NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
124                                      Sh1->hasNoUnsignedWrap());
125       NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
126                                    Sh1->hasNoSignedWrap());
127     } else {
128       NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
129     }
130   }
131 
132   Instruction *Ret = NewShift;
133   if (Trunc) {
134     Builder.Insert(NewShift);
135     Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
136   }
137 
138   return Ret;
139 }
140 
141 // If we have some pattern that leaves only some low bits set, and then performs
142 // left-shift of those bits, if none of the bits that are left after the final
143 // shift are modified by the mask, we can omit the mask.
144 //
145 // There are many variants to this pattern:
146 //   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
147 //   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
148 //   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt
149 //   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
150 //   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
151 //   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
152 // All these patterns can be simplified to just:
153 //   x << ShiftShAmt
154 // iff:
155 //   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
156 //   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
157 static Instruction *
158 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
159                                      const SimplifyQuery &Q,
160                                      InstCombiner::BuilderTy &Builder) {
161   assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
162          "The input must be 'shl'!");
163 
164   Value *Masked, *ShiftShAmt;
165   match(OuterShift,
166         m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
167 
168   // *If* there is a truncation between an outer shift and a possibly-mask,
169   // then said truncation *must* be one-use, else we can't perform the fold.
170   Value *Trunc;
171   if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
172       !Trunc->hasOneUse())
173     return nullptr;
174 
175   Type *NarrowestTy = OuterShift->getType();
176   Type *WidestTy = Masked->getType();
177   bool HadTrunc = WidestTy != NarrowestTy;
178 
179   // The mask must be computed in a type twice as wide to ensure
180   // that no bits are lost if the sum-of-shifts is wider than the base type.
181   Type *ExtendedTy = WidestTy->getExtendedType();
182 
183   Value *MaskShAmt;
184 
185   // ((1 << MaskShAmt) - 1)
186   auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
187   // (~(-1 << maskNbits))
188   auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
189   // (-1 >> MaskShAmt)
190   auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
191   // ((-1 << MaskShAmt) >> MaskShAmt)
192   auto MaskD =
193       m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
194 
195   Value *X;
196   Constant *NewMask;
197 
198   if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
199     // Peek through an optional zext of the shift amount.
200     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
201 
202     // We have two shift amounts from two different shifts. The types of those
203     // shift amounts may not match. If that's the case let's bailout now.
204     if (MaskShAmt->getType() != ShiftShAmt->getType())
205       return nullptr;
206 
207     // Can we simplify (MaskShAmt+ShiftShAmt) ?
208     auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
209         MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
210     if (!SumOfShAmts)
211       return nullptr; // Did not simplify.
212     // In this pattern SumOfShAmts correlates with the number of low bits
213     // that shall remain in the root value (OuterShift).
214 
215     // An extend of an undef value becomes zero because the high bits are never
216     // completely unknown. Replace the the `undef` shift amounts with final
217     // shift bitwidth to ensure that the value remains undef when creating the
218     // subsequent shift op.
219     SumOfShAmts = Constant::replaceUndefsWith(
220         SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
221                                       ExtendedTy->getScalarSizeInBits()));
222     auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
223     // And compute the mask as usual: ~(-1 << (SumOfShAmts))
224     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
225     auto *ExtendedInvertedMask =
226         ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
227     NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
228   } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
229              match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
230                                  m_Deferred(MaskShAmt)))) {
231     // Peek through an optional zext of the shift amount.
232     match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
233 
234     // We have two shift amounts from two different shifts. The types of those
235     // shift amounts may not match. If that's the case let's bailout now.
236     if (MaskShAmt->getType() != ShiftShAmt->getType())
237       return nullptr;
238 
239     // Can we simplify (ShiftShAmt-MaskShAmt) ?
240     auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
241         ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
242     if (!ShAmtsDiff)
243       return nullptr; // Did not simplify.
244     // In this pattern ShAmtsDiff correlates with the number of high bits that
245     // shall be unset in the root value (OuterShift).
246 
247     // An extend of an undef value becomes zero because the high bits are never
248     // completely unknown. Replace the the `undef` shift amounts with negated
249     // bitwidth of innermost shift to ensure that the value remains undef when
250     // creating the subsequent shift op.
251     unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
252     ShAmtsDiff = Constant::replaceUndefsWith(
253         ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
254                                      -WidestTyBitWidth));
255     auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
256         ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
257                                               WidestTyBitWidth,
258                                               /*isSigned=*/false),
259                              ShAmtsDiff),
260         ExtendedTy);
261     // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
262     auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
263     NewMask =
264         ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
265   } else
266     return nullptr; // Don't know anything about this pattern.
267 
268   NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
269 
270   // Does this mask has any unset bits? If not then we can just not apply it.
271   bool NeedMask = !match(NewMask, m_AllOnes());
272 
273   // If we need to apply a mask, there are several more restrictions we have.
274   if (NeedMask) {
275     // The old masking instruction must go away.
276     if (!Masked->hasOneUse())
277       return nullptr;
278     // The original "masking" instruction must not have been`ashr`.
279     if (match(Masked, m_AShr(m_Value(), m_Value())))
280       return nullptr;
281   }
282 
283   // If we need to apply truncation, let's do it first, since we can.
284   // We have already ensured that the old truncation will go away.
285   if (HadTrunc)
286     X = Builder.CreateTrunc(X, NarrowestTy);
287 
288   // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
289   // We didn't change the Type of this outermost shift, so we can just do it.
290   auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
291                                           OuterShift->getOperand(1));
292   if (!NeedMask)
293     return NewShift;
294 
295   Builder.Insert(NewShift);
296   return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
297 }
298 
299 /// If we have a shift-by-constant of a bitwise logic op that itself has a
300 /// shift-by-constant operand with identical opcode, we may be able to convert
301 /// that into 2 independent shifts followed by the logic op. This eliminates a
302 /// a use of an intermediate value (reduces dependency chain).
303 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
304                                             InstCombiner::BuilderTy &Builder) {
305   assert(I.isShift() && "Expected a shift as input");
306   auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
307   if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
308     return nullptr;
309 
310   const APInt *C0, *C1;
311   if (!match(I.getOperand(1), m_APInt(C1)))
312     return nullptr;
313 
314   Instruction::BinaryOps ShiftOpcode = I.getOpcode();
315   Type *Ty = I.getType();
316 
317   // Find a matching one-use shift by constant. The fold is not valid if the sum
318   // of the shift values equals or exceeds bitwidth.
319   // TODO: Remove the one-use check if the other logic operand (Y) is constant.
320   Value *X, *Y;
321   auto matchFirstShift = [&](Value *V) {
322     return !isa<ConstantExpr>(V) &&
323            match(V, m_OneUse(m_Shift(m_Value(X), m_APInt(C0)))) &&
324            cast<BinaryOperator>(V)->getOpcode() == ShiftOpcode &&
325            (*C0 + *C1).ult(Ty->getScalarSizeInBits());
326   };
327 
328   // Logic ops are commutative, so check each operand for a match.
329   if (matchFirstShift(LogicInst->getOperand(0)))
330     Y = LogicInst->getOperand(1);
331   else if (matchFirstShift(LogicInst->getOperand(1)))
332     Y = LogicInst->getOperand(0);
333   else
334     return nullptr;
335 
336   // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
337   Constant *ShiftSumC = ConstantInt::get(Ty, *C0 + *C1);
338   Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
339   Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
340   return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
341 }
342 
343 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
344   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
345   assert(Op0->getType() == Op1->getType());
346 
347   // If the shift amount is a one-use `sext`, we can demote it to `zext`.
348   Value *Y;
349   if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
350     Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
351     return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
352   }
353 
354   // See if we can fold away this shift.
355   if (SimplifyDemandedInstructionBits(I))
356     return &I;
357 
358   // Try to fold constant and into select arguments.
359   if (isa<Constant>(Op0))
360     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
361       if (Instruction *R = FoldOpIntoSelect(I, SI))
362         return R;
363 
364   if (Constant *CUI = dyn_cast<Constant>(Op1))
365     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
366       return Res;
367 
368   if (auto *NewShift = cast_or_null<Instruction>(
369           reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
370     return NewShift;
371 
372   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
373   // iff A and C2 are both positive.
374   Value *A;
375   Constant *C;
376   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
377     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
378         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
379       return BinaryOperator::Create(
380           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
381 
382   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
383   // Because shifts by negative values (which could occur if A were negative)
384   // are undefined.
385   const APInt *B;
386   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
387     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
388     // demand the sign bit (and many others) here??
389     Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
390                                    Op1->getName());
391     I.setOperand(1, Rem);
392     return &I;
393   }
394 
395   if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
396     return Logic;
397 
398   return nullptr;
399 }
400 
401 /// Return true if we can simplify two logical (either left or right) shifts
402 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
403 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
404                                     Instruction *InnerShift, InstCombiner &IC,
405                                     Instruction *CxtI) {
406   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
407 
408   // We need constant scalar or constant splat shifts.
409   const APInt *InnerShiftConst;
410   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
411     return false;
412 
413   // Two logical shifts in the same direction:
414   // shl (shl X, C1), C2 -->  shl X, C1 + C2
415   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
416   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
417   if (IsInnerShl == IsOuterShl)
418     return true;
419 
420   // Equal shift amounts in opposite directions become bitwise 'and':
421   // lshr (shl X, C), C --> and X, C'
422   // shl (lshr X, C), C --> and X, C'
423   if (*InnerShiftConst == OuterShAmt)
424     return true;
425 
426   // If the 2nd shift is bigger than the 1st, we can fold:
427   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
428   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
429   // but it isn't profitable unless we know the and'd out bits are already zero.
430   // Also, check that the inner shift is valid (less than the type width) or
431   // we'll crash trying to produce the bit mask for the 'and'.
432   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
433   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
434     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
435     unsigned MaskShift =
436         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
437     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
438     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
439       return true;
440   }
441 
442   return false;
443 }
444 
445 /// See if we can compute the specified value, but shifted logically to the left
446 /// or right by some number of bits. This should return true if the expression
447 /// can be computed for the same cost as the current expression tree. This is
448 /// used to eliminate extraneous shifting from things like:
449 ///      %C = shl i128 %A, 64
450 ///      %D = shl i128 %B, 96
451 ///      %E = or i128 %C, %D
452 ///      %F = lshr i128 %E, 64
453 /// where the client will ask if E can be computed shifted right by 64-bits. If
454 /// this succeeds, getShiftedValue() will be called to produce the value.
455 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
456                                InstCombiner &IC, Instruction *CxtI) {
457   // We can always evaluate constants shifted.
458   if (isa<Constant>(V))
459     return true;
460 
461   Instruction *I = dyn_cast<Instruction>(V);
462   if (!I) return false;
463 
464   // If this is the opposite shift, we can directly reuse the input of the shift
465   // if the needed bits are already zero in the input.  This allows us to reuse
466   // the value which means that we don't care if the shift has multiple uses.
467   //  TODO:  Handle opposite shift by exact value.
468   ConstantInt *CI = nullptr;
469   if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
470       (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
471     if (CI->getValue() == NumBits) {
472       // TODO: Check that the input bits are already zero with MaskedValueIsZero
473 #if 0
474       // If this is a truncate of a logical shr, we can truncate it to a smaller
475       // lshr iff we know that the bits we would otherwise be shifting in are
476       // already zeros.
477       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
478       uint32_t BitWidth = Ty->getScalarSizeInBits();
479       if (MaskedValueIsZero(I->getOperand(0),
480             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
481           CI->getLimitedValue(BitWidth) < BitWidth) {
482         return CanEvaluateTruncated(I->getOperand(0), Ty);
483       }
484 #endif
485 
486     }
487   }
488 
489   // We can't mutate something that has multiple uses: doing so would
490   // require duplicating the instruction in general, which isn't profitable.
491   if (!I->hasOneUse()) return false;
492 
493   switch (I->getOpcode()) {
494   default: return false;
495   case Instruction::And:
496   case Instruction::Or:
497   case Instruction::Xor:
498     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
499     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
500            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
501 
502   case Instruction::Shl:
503   case Instruction::LShr:
504     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
505 
506   case Instruction::Select: {
507     SelectInst *SI = cast<SelectInst>(I);
508     Value *TrueVal = SI->getTrueValue();
509     Value *FalseVal = SI->getFalseValue();
510     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
511            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
512   }
513   case Instruction::PHI: {
514     // We can change a phi if we can change all operands.  Note that we never
515     // get into trouble with cyclic PHIs here because we only consider
516     // instructions with a single use.
517     PHINode *PN = cast<PHINode>(I);
518     for (Value *IncValue : PN->incoming_values())
519       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
520         return false;
521     return true;
522   }
523   }
524 }
525 
526 /// Fold OuterShift (InnerShift X, C1), C2.
527 /// See canEvaluateShiftedShift() for the constraints on these instructions.
528 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
529                                bool IsOuterShl,
530                                InstCombiner::BuilderTy &Builder) {
531   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
532   Type *ShType = InnerShift->getType();
533   unsigned TypeWidth = ShType->getScalarSizeInBits();
534 
535   // We only accept shifts-by-a-constant in canEvaluateShifted().
536   const APInt *C1;
537   match(InnerShift->getOperand(1), m_APInt(C1));
538   unsigned InnerShAmt = C1->getZExtValue();
539 
540   // Change the shift amount and clear the appropriate IR flags.
541   auto NewInnerShift = [&](unsigned ShAmt) {
542     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
543     if (IsInnerShl) {
544       InnerShift->setHasNoUnsignedWrap(false);
545       InnerShift->setHasNoSignedWrap(false);
546     } else {
547       InnerShift->setIsExact(false);
548     }
549     return InnerShift;
550   };
551 
552   // Two logical shifts in the same direction:
553   // shl (shl X, C1), C2 -->  shl X, C1 + C2
554   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
555   if (IsInnerShl == IsOuterShl) {
556     // If this is an oversized composite shift, then unsigned shifts get 0.
557     if (InnerShAmt + OuterShAmt >= TypeWidth)
558       return Constant::getNullValue(ShType);
559 
560     return NewInnerShift(InnerShAmt + OuterShAmt);
561   }
562 
563   // Equal shift amounts in opposite directions become bitwise 'and':
564   // lshr (shl X, C), C --> and X, C'
565   // shl (lshr X, C), C --> and X, C'
566   if (InnerShAmt == OuterShAmt) {
567     APInt Mask = IsInnerShl
568                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
569                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
570     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
571                                    ConstantInt::get(ShType, Mask));
572     if (auto *AndI = dyn_cast<Instruction>(And)) {
573       AndI->moveBefore(InnerShift);
574       AndI->takeName(InnerShift);
575     }
576     return And;
577   }
578 
579   assert(InnerShAmt > OuterShAmt &&
580          "Unexpected opposite direction logical shift pair");
581 
582   // In general, we would need an 'and' for this transform, but
583   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
584   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
585   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
586   return NewInnerShift(InnerShAmt - OuterShAmt);
587 }
588 
589 /// When canEvaluateShifted() returns true for an expression, this function
590 /// inserts the new computation that produces the shifted value.
591 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
592                               InstCombiner &IC, const DataLayout &DL) {
593   // We can always evaluate constants shifted.
594   if (Constant *C = dyn_cast<Constant>(V)) {
595     if (isLeftShift)
596       V = IC.Builder.CreateShl(C, NumBits);
597     else
598       V = IC.Builder.CreateLShr(C, NumBits);
599     // If we got a constantexpr back, try to simplify it with TD info.
600     if (auto *C = dyn_cast<Constant>(V))
601       if (auto *FoldedC =
602               ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
603         V = FoldedC;
604     return V;
605   }
606 
607   Instruction *I = cast<Instruction>(V);
608   IC.Worklist.Add(I);
609 
610   switch (I->getOpcode()) {
611   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
612   case Instruction::And:
613   case Instruction::Or:
614   case Instruction::Xor:
615     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
616     I->setOperand(
617         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
618     I->setOperand(
619         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
620     return I;
621 
622   case Instruction::Shl:
623   case Instruction::LShr:
624     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
625                             IC.Builder);
626 
627   case Instruction::Select:
628     I->setOperand(
629         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
630     I->setOperand(
631         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
632     return I;
633   case Instruction::PHI: {
634     // We can change a phi if we can change all operands.  Note that we never
635     // get into trouble with cyclic PHIs here because we only consider
636     // instructions with a single use.
637     PHINode *PN = cast<PHINode>(I);
638     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
639       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
640                                               isLeftShift, IC, DL));
641     return PN;
642   }
643   }
644 }
645 
646 // If this is a bitwise operator or add with a constant RHS we might be able
647 // to pull it through a shift.
648 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
649                                          BinaryOperator *BO) {
650   switch (BO->getOpcode()) {
651   default:
652     return false; // Do not perform transform!
653   case Instruction::Add:
654     return Shift.getOpcode() == Instruction::Shl;
655   case Instruction::Or:
656   case Instruction::Xor:
657   case Instruction::And:
658     return true;
659   }
660 }
661 
662 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
663                                                BinaryOperator &I) {
664   bool isLeftShift = I.getOpcode() == Instruction::Shl;
665 
666   const APInt *Op1C;
667   if (!match(Op1, m_APInt(Op1C)))
668     return nullptr;
669 
670   // See if we can propagate this shift into the input, this covers the trivial
671   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
672   if (I.getOpcode() != Instruction::AShr &&
673       canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
674     LLVM_DEBUG(
675         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
676                   " to eliminate shift:\n  IN: "
677                << *Op0 << "\n  SH: " << I << "\n");
678 
679     return replaceInstUsesWith(
680         I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
681   }
682 
683   // See if we can simplify any instructions used by the instruction whose sole
684   // purpose is to compute bits we don't care about.
685   unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
686 
687   assert(!Op1C->uge(TypeBits) &&
688          "Shift over the type width should have been removed already");
689 
690   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
691     return FoldedShift;
692 
693   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
694   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
695     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
696     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
697     // place.  Don't try to do this transformation in this case.  Also, we
698     // require that the input operand is a shift-by-constant so that we have
699     // confidence that the shifts will get folded together.  We could do this
700     // xform in more cases, but it is unlikely to be profitable.
701     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
702         isa<ConstantInt>(TrOp->getOperand(1))) {
703       // Okay, we'll do this xform.  Make the shift of shift.
704       Constant *ShAmt =
705           ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
706       // (shift2 (shift1 & 0x00FF), c2)
707       Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
708 
709       // For logical shifts, the truncation has the effect of making the high
710       // part of the register be zeros.  Emulate this by inserting an AND to
711       // clear the top bits as needed.  This 'and' will usually be zapped by
712       // other xforms later if dead.
713       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
714       unsigned DstSize = TI->getType()->getScalarSizeInBits();
715       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
716 
717       // The mask we constructed says what the trunc would do if occurring
718       // between the shifts.  We want to know the effect *after* the second
719       // shift.  We know that it is a logical shift by a constant, so adjust the
720       // mask as appropriate.
721       if (I.getOpcode() == Instruction::Shl)
722         MaskV <<= Op1C->getZExtValue();
723       else {
724         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
725         MaskV.lshrInPlace(Op1C->getZExtValue());
726       }
727 
728       // shift1 & 0x00FF
729       Value *And = Builder.CreateAnd(NSh,
730                                      ConstantInt::get(I.getContext(), MaskV),
731                                      TI->getName());
732 
733       // Return the value truncated to the interesting size.
734       return new TruncInst(And, I.getType());
735     }
736   }
737 
738   if (Op0->hasOneUse()) {
739     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
740       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
741       Value *V1, *V2;
742       ConstantInt *CC;
743       switch (Op0BO->getOpcode()) {
744       default: break;
745       case Instruction::Add:
746       case Instruction::And:
747       case Instruction::Or:
748       case Instruction::Xor: {
749         // These operators commute.
750         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
751         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
752             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
753                   m_Specific(Op1)))) {
754           Value *YS =         // (Y << C)
755             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
756           // (X + (Y << C))
757           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
758                                          Op0BO->getOperand(1)->getName());
759           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
760 
761           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
762           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
763           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
764             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
765           return BinaryOperator::CreateAnd(X, Mask);
766         }
767 
768         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
769         Value *Op0BOOp1 = Op0BO->getOperand(1);
770         if (isLeftShift && Op0BOOp1->hasOneUse() &&
771             match(Op0BOOp1,
772                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
773                         m_ConstantInt(CC)))) {
774           Value *YS =   // (Y << C)
775             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
776           // X & (CC << C)
777           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
778                                         V1->getName()+".mask");
779           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
780         }
781         LLVM_FALLTHROUGH;
782       }
783 
784       case Instruction::Sub: {
785         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
786         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
787             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
788                   m_Specific(Op1)))) {
789           Value *YS =  // (Y << C)
790             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
791           // (X + (Y << C))
792           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
793                                          Op0BO->getOperand(0)->getName());
794           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
795 
796           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
797           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
798           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
799             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
800           return BinaryOperator::CreateAnd(X, Mask);
801         }
802 
803         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
804         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
805             match(Op0BO->getOperand(0),
806                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
807                         m_ConstantInt(CC))) && V2 == Op1) {
808           Value *YS = // (Y << C)
809             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
810           // X & (CC << C)
811           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
812                                         V1->getName()+".mask");
813 
814           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
815         }
816 
817         break;
818       }
819       }
820 
821 
822       // If the operand is a bitwise operator with a constant RHS, and the
823       // shift is the only use, we can pull it out of the shift.
824       const APInt *Op0C;
825       if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
826         if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
827           Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
828                                      cast<Constant>(Op0BO->getOperand(1)), Op1);
829 
830           Value *NewShift =
831             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
832           NewShift->takeName(Op0BO);
833 
834           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
835                                         NewRHS);
836         }
837       }
838 
839       // If the operand is a subtract with a constant LHS, and the shift
840       // is the only use, we can pull it out of the shift.
841       // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
842       if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
843           match(Op0BO->getOperand(0), m_APInt(Op0C))) {
844         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
845                                    cast<Constant>(Op0BO->getOperand(0)), Op1);
846 
847         Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
848         NewShift->takeName(Op0BO);
849 
850         return BinaryOperator::CreateSub(NewRHS, NewShift);
851       }
852     }
853 
854     // If we have a select that conditionally executes some binary operator,
855     // see if we can pull it the select and operator through the shift.
856     //
857     // For example, turning:
858     //   shl (select C, (add X, C1), X), C2
859     // Into:
860     //   Y = shl X, C2
861     //   select C, (add Y, C1 << C2), Y
862     Value *Cond;
863     BinaryOperator *TBO;
864     Value *FalseVal;
865     if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
866                             m_Value(FalseVal)))) {
867       const APInt *C;
868       if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
869           match(TBO->getOperand(1), m_APInt(C)) &&
870           canShiftBinOpWithConstantRHS(I, TBO)) {
871         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
872                                        cast<Constant>(TBO->getOperand(1)), Op1);
873 
874         Value *NewShift =
875           Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
876         Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
877                                            NewRHS);
878         return SelectInst::Create(Cond, NewOp, NewShift);
879       }
880     }
881 
882     BinaryOperator *FBO;
883     Value *TrueVal;
884     if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
885                             m_OneUse(m_BinOp(FBO))))) {
886       const APInt *C;
887       if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
888           match(FBO->getOperand(1), m_APInt(C)) &&
889           canShiftBinOpWithConstantRHS(I, FBO)) {
890         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
891                                        cast<Constant>(FBO->getOperand(1)), Op1);
892 
893         Value *NewShift =
894           Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
895         Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
896                                            NewRHS);
897         return SelectInst::Create(Cond, NewShift, NewOp);
898       }
899     }
900   }
901 
902   return nullptr;
903 }
904 
905 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
906   const SimplifyQuery Q = SQ.getWithInstruction(&I);
907 
908   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
909                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
910     return replaceInstUsesWith(I, V);
911 
912   if (Instruction *X = foldVectorBinop(I))
913     return X;
914 
915   if (Instruction *V = commonShiftTransforms(I))
916     return V;
917 
918   if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
919     return V;
920 
921   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
922   Type *Ty = I.getType();
923   unsigned BitWidth = Ty->getScalarSizeInBits();
924 
925   const APInt *ShAmtAPInt;
926   if (match(Op1, m_APInt(ShAmtAPInt))) {
927     unsigned ShAmt = ShAmtAPInt->getZExtValue();
928 
929     // shl (zext X), ShAmt --> zext (shl X, ShAmt)
930     // This is only valid if X would have zeros shifted out.
931     Value *X;
932     if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
933       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
934       if (ShAmt < SrcWidth &&
935           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
936         return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
937     }
938 
939     // (X >> C) << C --> X & (-1 << C)
940     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
941       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
942       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
943     }
944 
945     // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
946     // needs a few fixes for the rotate pattern recognition first.
947     const APInt *ShOp1;
948     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
949       unsigned ShrAmt = ShOp1->getZExtValue();
950       if (ShrAmt < ShAmt) {
951         // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
952         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
953         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
954         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
955         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
956         return NewShl;
957       }
958       if (ShrAmt > ShAmt) {
959         // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
960         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
961         auto *NewShr = BinaryOperator::Create(
962             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
963         NewShr->setIsExact(true);
964         return NewShr;
965       }
966     }
967 
968     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
969       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
970       // Oversized shifts are simplified to zero in InstSimplify.
971       if (AmtSum < BitWidth)
972         // (X << C1) << C2 --> X << (C1 + C2)
973         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
974     }
975 
976     // If the shifted-out value is known-zero, then this is a NUW shift.
977     if (!I.hasNoUnsignedWrap() &&
978         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
979       I.setHasNoUnsignedWrap();
980       return &I;
981     }
982 
983     // If the shifted-out value is all signbits, then this is a NSW shift.
984     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
985       I.setHasNoSignedWrap();
986       return &I;
987     }
988   }
989 
990   // Transform  (x >> y) << y  to  x & (-1 << y)
991   // Valid for any type of right-shift.
992   Value *X;
993   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
994     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
995     Value *Mask = Builder.CreateShl(AllOnes, Op1);
996     return BinaryOperator::CreateAnd(Mask, X);
997   }
998 
999   Constant *C1;
1000   if (match(Op1, m_Constant(C1))) {
1001     Constant *C2;
1002     Value *X;
1003     // (C2 << X) << C1 --> (C2 << C1) << X
1004     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
1005       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
1006 
1007     // (X * C2) << C1 --> X * (C2 << C1)
1008     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1009       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1010 
1011     // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1012     if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1013       auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1014       return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1015     }
1016   }
1017 
1018   // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1019   if (match(Op0, m_One()) &&
1020       match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1021     return BinaryOperator::CreateLShr(
1022         ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1023 
1024   return nullptr;
1025 }
1026 
1027 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
1028   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1029                                   SQ.getWithInstruction(&I)))
1030     return replaceInstUsesWith(I, V);
1031 
1032   if (Instruction *X = foldVectorBinop(I))
1033     return X;
1034 
1035   if (Instruction *R = commonShiftTransforms(I))
1036     return R;
1037 
1038   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1039   Type *Ty = I.getType();
1040   const APInt *ShAmtAPInt;
1041   if (match(Op1, m_APInt(ShAmtAPInt))) {
1042     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1043     unsigned BitWidth = Ty->getScalarSizeInBits();
1044     auto *II = dyn_cast<IntrinsicInst>(Op0);
1045     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
1046         (II->getIntrinsicID() == Intrinsic::ctlz ||
1047          II->getIntrinsicID() == Intrinsic::cttz ||
1048          II->getIntrinsicID() == Intrinsic::ctpop)) {
1049       // ctlz.i32(x)>>5  --> zext(x == 0)
1050       // cttz.i32(x)>>5  --> zext(x == 0)
1051       // ctpop.i32(x)>>5 --> zext(x == -1)
1052       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1053       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1054       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1055       return new ZExtInst(Cmp, Ty);
1056     }
1057 
1058     Value *X;
1059     const APInt *ShOp1;
1060     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
1061       if (ShOp1->ult(ShAmt)) {
1062         unsigned ShlAmt = ShOp1->getZExtValue();
1063         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1064         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1065           // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1066           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1067           NewLShr->setIsExact(I.isExact());
1068           return NewLShr;
1069         }
1070         // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
1071         Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1072         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1073         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1074       }
1075       if (ShOp1->ugt(ShAmt)) {
1076         unsigned ShlAmt = ShOp1->getZExtValue();
1077         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1078         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1079           // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1080           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1081           NewShl->setHasNoUnsignedWrap(true);
1082           return NewShl;
1083         }
1084         // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
1085         Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1086         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1087         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1088       }
1089       assert(*ShOp1 == ShAmt);
1090       // (X << C) >>u C --> X & (-1 >>u C)
1091       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1092       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1093     }
1094 
1095     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1096         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1097       assert(ShAmt < X->getType()->getScalarSizeInBits() &&
1098              "Big shift not simplified to zero?");
1099       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1100       Value *NewLShr = Builder.CreateLShr(X, ShAmt);
1101       return new ZExtInst(NewLShr, Ty);
1102     }
1103 
1104     if (match(Op0, m_SExt(m_Value(X))) &&
1105         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1106       // Are we moving the sign bit to the low bit and widening with high zeros?
1107       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1108       if (ShAmt == BitWidth - 1) {
1109         // lshr (sext i1 X to iN), N-1 --> zext X to iN
1110         if (SrcTyBitWidth == 1)
1111           return new ZExtInst(X, Ty);
1112 
1113         // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1114         if (Op0->hasOneUse()) {
1115           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1116           return new ZExtInst(NewLShr, Ty);
1117         }
1118       }
1119 
1120       // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1121       if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1122         // The new shift amount can't be more than the narrow source type.
1123         unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
1124         Value *AShr = Builder.CreateAShr(X, NewShAmt);
1125         return new ZExtInst(AShr, Ty);
1126       }
1127     }
1128 
1129     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
1130       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1131       // Oversized shifts are simplified to zero in InstSimplify.
1132       if (AmtSum < BitWidth)
1133         // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1134         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1135     }
1136 
1137     // If the shifted-out value is known-zero, then this is an exact shift.
1138     if (!I.isExact() &&
1139         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1140       I.setIsExact();
1141       return &I;
1142     }
1143   }
1144 
1145   // Transform  (x << y) >> y  to  x & (-1 >> y)
1146   Value *X;
1147   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1148     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1149     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1150     return BinaryOperator::CreateAnd(Mask, X);
1151   }
1152 
1153   return nullptr;
1154 }
1155 
1156 Instruction *
1157 InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1158     BinaryOperator &OldAShr) {
1159   assert(OldAShr.getOpcode() == Instruction::AShr &&
1160          "Must be called with arithmetic right-shift instruction only.");
1161 
1162   // Check that constant C is a splat of the element-wise bitwidth of V.
1163   auto BitWidthSplat = [](Constant *C, Value *V) {
1164     return match(
1165         C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1166                               APInt(C->getType()->getScalarSizeInBits(),
1167                                     V->getType()->getScalarSizeInBits())));
1168   };
1169 
1170   // It should look like variable-length sign-extension on the outside:
1171   //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1172   Value *NBits;
1173   Instruction *MaybeTrunc;
1174   Constant *C1, *C2;
1175   if (!match(&OldAShr,
1176              m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1177                           m_ZExtOrSelf(m_Sub(m_Constant(C1),
1178                                              m_ZExtOrSelf(m_Value(NBits))))),
1179                     m_ZExtOrSelf(m_Sub(m_Constant(C2),
1180                                        m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1181       !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1182     return nullptr;
1183 
1184   // There may or may not be a truncation after outer two shifts.
1185   Instruction *HighBitExtract;
1186   match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1187   bool HadTrunc = MaybeTrunc != HighBitExtract;
1188 
1189   // And finally, the innermost part of the pattern must be a right-shift.
1190   Value *X, *NumLowBitsToSkip;
1191   if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1192     return nullptr;
1193 
1194   // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1195   Constant *C0;
1196   if (!match(NumLowBitsToSkip,
1197              m_ZExtOrSelf(
1198                  m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1199       !BitWidthSplat(C0, HighBitExtract))
1200     return nullptr;
1201 
1202   // Since the NBits is identical for all shifts, if the outermost and
1203   // innermost shifts are identical, then outermost shifts are redundant.
1204   // If we had truncation, do keep it though.
1205   if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1206     return replaceInstUsesWith(OldAShr, MaybeTrunc);
1207 
1208   // Else, if there was a truncation, then we need to ensure that one
1209   // instruction will go away.
1210   if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1211     return nullptr;
1212 
1213   // Finally, bypass two innermost shifts, and perform the outermost shift on
1214   // the operands of the innermost shift.
1215   Instruction *NewAShr =
1216       BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1217   NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1218   if (!HadTrunc)
1219     return NewAShr;
1220 
1221   Builder.Insert(NewAShr);
1222   return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1223 }
1224 
1225 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
1226   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1227                                   SQ.getWithInstruction(&I)))
1228     return replaceInstUsesWith(I, V);
1229 
1230   if (Instruction *X = foldVectorBinop(I))
1231     return X;
1232 
1233   if (Instruction *R = commonShiftTransforms(I))
1234     return R;
1235 
1236   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1237   Type *Ty = I.getType();
1238   unsigned BitWidth = Ty->getScalarSizeInBits();
1239   const APInt *ShAmtAPInt;
1240   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1241     unsigned ShAmt = ShAmtAPInt->getZExtValue();
1242 
1243     // If the shift amount equals the difference in width of the destination
1244     // and source scalar types:
1245     // ashr (shl (zext X), C), C --> sext X
1246     Value *X;
1247     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1248         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1249       return new SExtInst(X, Ty);
1250 
1251     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1252     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1253     const APInt *ShOp1;
1254     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1255         ShOp1->ult(BitWidth)) {
1256       unsigned ShlAmt = ShOp1->getZExtValue();
1257       if (ShlAmt < ShAmt) {
1258         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1259         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1260         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1261         NewAShr->setIsExact(I.isExact());
1262         return NewAShr;
1263       }
1264       if (ShlAmt > ShAmt) {
1265         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1266         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1267         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1268         NewShl->setHasNoSignedWrap(true);
1269         return NewShl;
1270       }
1271     }
1272 
1273     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1274         ShOp1->ult(BitWidth)) {
1275       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1276       // Oversized arithmetic shifts replicate the sign bit.
1277       AmtSum = std::min(AmtSum, BitWidth - 1);
1278       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1279       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1280     }
1281 
1282     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1283         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1284       // ashr (sext X), C --> sext (ashr X, C')
1285       Type *SrcTy = X->getType();
1286       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1287       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1288       return new SExtInst(NewSh, Ty);
1289     }
1290 
1291     // If the shifted-out value is known-zero, then this is an exact shift.
1292     if (!I.isExact() &&
1293         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1294       I.setIsExact();
1295       return &I;
1296     }
1297   }
1298 
1299   if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1300     return R;
1301 
1302   // See if we can turn a signed shr into an unsigned shr.
1303   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1304     return BinaryOperator::CreateLShr(Op0, Op1);
1305 
1306   return nullptr;
1307 }
1308