xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
53                            SelectPatternFlavor SPF, Value *A, Value *B) {
54   CmpInst::Predicate Pred = getMinMaxPred(SPF);
55   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
56   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
57 }
58 
59 /// Replace a select operand based on an equality comparison with the identity
60 /// constant of a binop.
61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
62                                             const TargetLibraryInfo &TLI,
63                                             InstCombinerImpl &IC) {
64   // The select condition must be an equality compare with a constant operand.
65   Value *X;
66   Constant *C;
67   CmpInst::Predicate Pred;
68   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
69     return nullptr;
70 
71   bool IsEq;
72   if (ICmpInst::isEquality(Pred))
73     IsEq = Pred == ICmpInst::ICMP_EQ;
74   else if (Pred == FCmpInst::FCMP_OEQ)
75     IsEq = true;
76   else if (Pred == FCmpInst::FCMP_UNE)
77     IsEq = false;
78   else
79     return nullptr;
80 
81   // A select operand must be a binop.
82   BinaryOperator *BO;
83   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
84     return nullptr;
85 
86   // The compare constant must be the identity constant for that binop.
87   // If this a floating-point compare with 0.0, any zero constant will do.
88   Type *Ty = BO->getType();
89   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
90   if (IdC != C) {
91     if (!IdC || !CmpInst::isFPPredicate(Pred))
92       return nullptr;
93     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
94       return nullptr;
95   }
96 
97   // Last, match the compare variable operand with a binop operand.
98   Value *Y;
99   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
102     return nullptr;
103 
104   // +0.0 compares equal to -0.0, and so it does not behave as required for this
105   // transform. Bail out if we can not exclude that possibility.
106   if (isa<FPMathOperator>(BO))
107     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
108       return nullptr;
109 
110   // BO = binop Y, X
111   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112   // =>
113   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
114   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
115 }
116 
117 /// This folds:
118 ///  select (icmp eq (and X, C1)), TC, FC
119 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
120 /// To something like:
121 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// Or:
123 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
124 /// With some variations depending if FC is larger than TC, or the shift
125 /// isn't needed, or the bit widths don't match.
126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
127                                 InstCombiner::BuilderTy &Builder) {
128   const APInt *SelTC, *SelFC;
129   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
130       !match(Sel.getFalseValue(), m_APInt(SelFC)))
131     return nullptr;
132 
133   // If this is a vector select, we need a vector compare.
134   Type *SelType = Sel.getType();
135   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
136     return nullptr;
137 
138   Value *V;
139   APInt AndMask;
140   bool CreateAnd = false;
141   ICmpInst::Predicate Pred = Cmp->getPredicate();
142   if (ICmpInst::isEquality(Pred)) {
143     if (!match(Cmp->getOperand(1), m_Zero()))
144       return nullptr;
145 
146     V = Cmp->getOperand(0);
147     const APInt *AndRHS;
148     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
149       return nullptr;
150 
151     AndMask = *AndRHS;
152   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
153                                   Pred, V, AndMask)) {
154     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
155     if (!AndMask.isPowerOf2())
156       return nullptr;
157 
158     CreateAnd = true;
159   } else {
160     return nullptr;
161   }
162 
163   // In general, when both constants are non-zero, we would need an offset to
164   // replace the select. This would require more instructions than we started
165   // with. But there's one special-case that we handle here because it can
166   // simplify/reduce the instructions.
167   APInt TC = *SelTC;
168   APInt FC = *SelFC;
169   if (!TC.isZero() && !FC.isZero()) {
170     // If the select constants differ by exactly one bit and that's the same
171     // bit that is masked and checked by the select condition, the select can
172     // be replaced by bitwise logic to set/clear one bit of the constant result.
173     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
174       return nullptr;
175     if (CreateAnd) {
176       // If we have to create an 'and', then we must kill the cmp to not
177       // increase the instruction count.
178       if (!Cmp->hasOneUse())
179         return nullptr;
180       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
181     }
182     bool ExtraBitInTC = TC.ugt(FC);
183     if (Pred == ICmpInst::ICMP_EQ) {
184       // If the masked bit in V is clear, clear or set the bit in the result:
185       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
186       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
187       Constant *C = ConstantInt::get(SelType, TC);
188       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
189     }
190     if (Pred == ICmpInst::ICMP_NE) {
191       // If the masked bit in V is set, set or clear the bit in the result:
192       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
193       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
194       Constant *C = ConstantInt::get(SelType, FC);
195       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
196     }
197     llvm_unreachable("Only expecting equality predicates");
198   }
199 
200   // Make sure one of the select arms is a power-of-2.
201   if (!TC.isPowerOf2() && !FC.isPowerOf2())
202     return nullptr;
203 
204   // Determine which shift is needed to transform result of the 'and' into the
205   // desired result.
206   const APInt &ValC = !TC.isZero() ? TC : FC;
207   unsigned ValZeros = ValC.logBase2();
208   unsigned AndZeros = AndMask.logBase2();
209 
210   // Insert the 'and' instruction on the input to the truncate.
211   if (CreateAnd)
212     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
213 
214   // If types don't match, we can still convert the select by introducing a zext
215   // or a trunc of the 'and'.
216   if (ValZeros > AndZeros) {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218     V = Builder.CreateShl(V, ValZeros - AndZeros);
219   } else if (ValZeros < AndZeros) {
220     V = Builder.CreateLShr(V, AndZeros - ValZeros);
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   } else {
223     V = Builder.CreateZExtOrTrunc(V, SelType);
224   }
225 
226   // Okay, now we know that everything is set up, we just don't know whether we
227   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
228   bool ShouldNotVal = !TC.isZero();
229   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
230   if (ShouldNotVal)
231     V = Builder.CreateXor(V, ValC);
232 
233   return V;
234 }
235 
236 /// We want to turn code that looks like this:
237 ///   %C = or %A, %B
238 ///   %D = select %cond, %C, %A
239 /// into:
240 ///   %C = select %cond, %B, 0
241 ///   %D = or %A, %C
242 ///
243 /// Assuming that the specified instruction is an operand to the select, return
244 /// a bitmask indicating which operands of this instruction are foldable if they
245 /// equal the other incoming value of the select.
246 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
247   switch (I->getOpcode()) {
248   case Instruction::Add:
249   case Instruction::FAdd:
250   case Instruction::Mul:
251   case Instruction::FMul:
252   case Instruction::And:
253   case Instruction::Or:
254   case Instruction::Xor:
255     return 3;              // Can fold through either operand.
256   case Instruction::Sub:   // Can only fold on the amount subtracted.
257   case Instruction::FSub:
258   case Instruction::FDiv:  // Can only fold on the divisor amount.
259   case Instruction::Shl:   // Can only fold on the shift amount.
260   case Instruction::LShr:
261   case Instruction::AShr:
262     return 1;
263   default:
264     return 0;              // Cannot fold
265   }
266 }
267 
268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
270                                               Instruction *FI) {
271   // Don't break up min/max patterns. The hasOneUse checks below prevent that
272   // for most cases, but vector min/max with bitcasts can be transformed. If the
273   // one-use restrictions are eased for other patterns, we still don't want to
274   // obfuscate min/max.
275   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
276        match(&SI, m_SMax(m_Value(), m_Value())) ||
277        match(&SI, m_UMin(m_Value(), m_Value())) ||
278        match(&SI, m_UMax(m_Value(), m_Value()))))
279     return nullptr;
280 
281   // If this is a cast from the same type, merge.
282   Value *Cond = SI.getCondition();
283   Type *CondTy = Cond->getType();
284   if (TI->getNumOperands() == 1 && TI->isCast()) {
285     Type *FIOpndTy = FI->getOperand(0)->getType();
286     if (TI->getOperand(0)->getType() != FIOpndTy)
287       return nullptr;
288 
289     // The select condition may be a vector. We may only change the operand
290     // type if the vector width remains the same (and matches the condition).
291     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
292       if (!FIOpndTy->isVectorTy() ||
293           CondVTy->getElementCount() !=
294               cast<VectorType>(FIOpndTy)->getElementCount())
295         return nullptr;
296 
297       // TODO: If the backend knew how to deal with casts better, we could
298       // remove this limitation. For now, there's too much potential to create
299       // worse codegen by promoting the select ahead of size-altering casts
300       // (PR28160).
301       //
302       // Note that ValueTracking's matchSelectPattern() looks through casts
303       // without checking 'hasOneUse' when it matches min/max patterns, so this
304       // transform may end up happening anyway.
305       if (TI->getOpcode() != Instruction::BitCast &&
306           (!TI->hasOneUse() || !FI->hasOneUse()))
307         return nullptr;
308     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
309       // TODO: The one-use restrictions for a scalar select could be eased if
310       // the fold of a select in visitLoadInst() was enhanced to match a pattern
311       // that includes a cast.
312       return nullptr;
313     }
314 
315     // Fold this by inserting a select from the input values.
316     Value *NewSI =
317         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
318                              SI.getName() + ".v", &SI);
319     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
320                             TI->getType());
321   }
322 
323   // Cond ? -X : -Y --> -(Cond ? X : Y)
324   Value *X, *Y;
325   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
326       (TI->hasOneUse() || FI->hasOneUse())) {
327     // Intersect FMF from the fneg instructions and union those with the select.
328     FastMathFlags FMF = TI->getFastMathFlags();
329     FMF &= FI->getFastMathFlags();
330     FMF |= SI.getFastMathFlags();
331     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
332     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
333       NewSelI->setFastMathFlags(FMF);
334     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
335     NewFNeg->setFastMathFlags(FMF);
336     return NewFNeg;
337   }
338 
339   // Min/max intrinsic with a common operand can have the common operand pulled
340   // after the select. This is the same transform as below for binops, but
341   // specialized for intrinsic matching and without the restrictive uses clause.
342   auto *TII = dyn_cast<IntrinsicInst>(TI);
343   auto *FII = dyn_cast<IntrinsicInst>(FI);
344   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
345       (TII->hasOneUse() || FII->hasOneUse())) {
346     Value *T0, *T1, *F0, *F1;
347     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
348         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
349       if (T0 == F0) {
350         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
351         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
352       }
353       if (T0 == F1) {
354         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
355         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
356       }
357       if (T1 == F0) {
358         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
359         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
360       }
361       if (T1 == F1) {
362         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
363         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
364       }
365     }
366   }
367 
368   // Only handle binary operators (including two-operand getelementptr) with
369   // one-use here. As with the cast case above, it may be possible to relax the
370   // one-use constraint, but that needs be examined carefully since it may not
371   // reduce the total number of instructions.
372   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
373       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
374       !TI->hasOneUse() || !FI->hasOneUse())
375     return nullptr;
376 
377   // Figure out if the operations have any operands in common.
378   Value *MatchOp, *OtherOpT, *OtherOpF;
379   bool MatchIsOpZero;
380   if (TI->getOperand(0) == FI->getOperand(0)) {
381     MatchOp  = TI->getOperand(0);
382     OtherOpT = TI->getOperand(1);
383     OtherOpF = FI->getOperand(1);
384     MatchIsOpZero = true;
385   } else if (TI->getOperand(1) == FI->getOperand(1)) {
386     MatchOp  = TI->getOperand(1);
387     OtherOpT = TI->getOperand(0);
388     OtherOpF = FI->getOperand(0);
389     MatchIsOpZero = false;
390   } else if (!TI->isCommutative()) {
391     return nullptr;
392   } else if (TI->getOperand(0) == FI->getOperand(1)) {
393     MatchOp  = TI->getOperand(0);
394     OtherOpT = TI->getOperand(1);
395     OtherOpF = FI->getOperand(0);
396     MatchIsOpZero = true;
397   } else if (TI->getOperand(1) == FI->getOperand(0)) {
398     MatchOp  = TI->getOperand(1);
399     OtherOpT = TI->getOperand(0);
400     OtherOpF = FI->getOperand(1);
401     MatchIsOpZero = true;
402   } else {
403     return nullptr;
404   }
405 
406   // If the select condition is a vector, the operands of the original select's
407   // operands also must be vectors. This may not be the case for getelementptr
408   // for example.
409   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
410                                !OtherOpF->getType()->isVectorTy()))
411     return nullptr;
412 
413   // If we reach here, they do have operations in common.
414   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
415                                       SI.getName() + ".v", &SI);
416   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
417   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
418   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
419     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
420     NewBO->copyIRFlags(TI);
421     NewBO->andIRFlags(FI);
422     return NewBO;
423   }
424   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
425     auto *FGEP = cast<GetElementPtrInst>(FI);
426     Type *ElementType = TGEP->getResultElementType();
427     return TGEP->isInBounds() && FGEP->isInBounds()
428                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
429                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
430   }
431   llvm_unreachable("Expected BinaryOperator or GEP");
432   return nullptr;
433 }
434 
435 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
436   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
437     return false;
438   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
439 }
440 
441 /// Try to fold the select into one of the operands to allow further
442 /// optimization.
443 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
444                                                 Value *FalseVal) {
445   // See the comment above GetSelectFoldableOperands for a description of the
446   // transformation we are doing here.
447   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
448     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
449       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
450         unsigned OpToFold = 0;
451         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
452           OpToFold = 1;
453         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
454           OpToFold = 2;
455         }
456 
457         if (OpToFold) {
458           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
459                                                        TVI->getType(), true);
460           Value *OOp = TVI->getOperand(2-OpToFold);
461           // Avoid creating select between 2 constants unless it's selecting
462           // between 0, 1 and -1.
463           const APInt *OOpC;
464           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
465           if (!isa<Constant>(OOp) ||
466               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
467             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
468             NewSel->takeName(TVI);
469             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
470                                                         FalseVal, NewSel);
471             BO->copyIRFlags(TVI);
472             return BO;
473           }
474         }
475       }
476     }
477   }
478 
479   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
480     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
481       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
482         unsigned OpToFold = 0;
483         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
484           OpToFold = 1;
485         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
486           OpToFold = 2;
487         }
488 
489         if (OpToFold) {
490           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
491                                                        FVI->getType(), true);
492           Value *OOp = FVI->getOperand(2-OpToFold);
493           // Avoid creating select between 2 constants unless it's selecting
494           // between 0, 1 and -1.
495           const APInt *OOpC;
496           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
497           if (!isa<Constant>(OOp) ||
498               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
499             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
500             NewSel->takeName(FVI);
501             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
502                                                         TrueVal, NewSel);
503             BO->copyIRFlags(FVI);
504             return BO;
505           }
506         }
507       }
508     }
509   }
510 
511   return nullptr;
512 }
513 
514 /// We want to turn:
515 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
516 /// into:
517 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
518 /// Note:
519 ///   Z may be 0 if lshr is missing.
520 /// Worst-case scenario is that we will replace 5 instructions with 5 different
521 /// instructions, but we got rid of select.
522 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
523                                          Value *TVal, Value *FVal,
524                                          InstCombiner::BuilderTy &Builder) {
525   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
526         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
527         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
528     return nullptr;
529 
530   // The TrueVal has general form of:  and %B, 1
531   Value *B;
532   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
533     return nullptr;
534 
535   // Where %B may be optionally shifted:  lshr %X, %Z.
536   Value *X, *Z;
537   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
538   if (!HasShift)
539     X = B;
540 
541   Value *Y;
542   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
543     return nullptr;
544 
545   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
546   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
547   Constant *One = ConstantInt::get(SelType, 1);
548   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
549   Value *FullMask = Builder.CreateOr(Y, MaskB);
550   Value *MaskedX = Builder.CreateAnd(X, FullMask);
551   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
552   return new ZExtInst(ICmpNeZero, SelType);
553 }
554 
555 /// We want to turn:
556 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
557 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
558 /// into:
559 ///   ashr (X, Y)
560 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
561                                      Value *FalseVal,
562                                      InstCombiner::BuilderTy &Builder) {
563   ICmpInst::Predicate Pred = IC->getPredicate();
564   Value *CmpLHS = IC->getOperand(0);
565   Value *CmpRHS = IC->getOperand(1);
566   if (!CmpRHS->getType()->isIntOrIntVectorTy())
567     return nullptr;
568 
569   Value *X, *Y;
570   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
571   if ((Pred != ICmpInst::ICMP_SGT ||
572        !match(CmpRHS,
573               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
574       (Pred != ICmpInst::ICMP_SLT ||
575        !match(CmpRHS,
576               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
577     return nullptr;
578 
579   // Canonicalize so that ashr is in FalseVal.
580   if (Pred == ICmpInst::ICMP_SLT)
581     std::swap(TrueVal, FalseVal);
582 
583   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
584       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
585       match(CmpLHS, m_Specific(X))) {
586     const auto *Ashr = cast<Instruction>(FalseVal);
587     // if lshr is not exact and ashr is, this new ashr must not be exact.
588     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
589     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
590   }
591 
592   return nullptr;
593 }
594 
595 /// We want to turn:
596 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
597 /// into:
598 ///   (or (shl (and X, C1), C3), Y)
599 /// iff:
600 ///   C1 and C2 are both powers of 2
601 /// where:
602 ///   C3 = Log(C2) - Log(C1)
603 ///
604 /// This transform handles cases where:
605 /// 1. The icmp predicate is inverted
606 /// 2. The select operands are reversed
607 /// 3. The magnitude of C2 and C1 are flipped
608 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
609                                   Value *FalseVal,
610                                   InstCombiner::BuilderTy &Builder) {
611   // Only handle integer compares. Also, if this is a vector select, we need a
612   // vector compare.
613   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
614       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
615     return nullptr;
616 
617   Value *CmpLHS = IC->getOperand(0);
618   Value *CmpRHS = IC->getOperand(1);
619 
620   Value *V;
621   unsigned C1Log;
622   bool IsEqualZero;
623   bool NeedAnd = false;
624   if (IC->isEquality()) {
625     if (!match(CmpRHS, m_Zero()))
626       return nullptr;
627 
628     const APInt *C1;
629     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
630       return nullptr;
631 
632     V = CmpLHS;
633     C1Log = C1->logBase2();
634     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
635   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
636              IC->getPredicate() == ICmpInst::ICMP_SGT) {
637     // We also need to recognize (icmp slt (trunc (X)), 0) and
638     // (icmp sgt (trunc (X)), -1).
639     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
640     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
641         (!IsEqualZero && !match(CmpRHS, m_Zero())))
642       return nullptr;
643 
644     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
645       return nullptr;
646 
647     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
648     NeedAnd = true;
649   } else {
650     return nullptr;
651   }
652 
653   const APInt *C2;
654   bool OrOnTrueVal = false;
655   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
656   if (!OrOnFalseVal)
657     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
658 
659   if (!OrOnFalseVal && !OrOnTrueVal)
660     return nullptr;
661 
662   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
663 
664   unsigned C2Log = C2->logBase2();
665 
666   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
667   bool NeedShift = C1Log != C2Log;
668   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
669                        V->getType()->getScalarSizeInBits();
670 
671   // Make sure we don't create more instructions than we save.
672   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
673   if ((NeedShift + NeedXor + NeedZExtTrunc) >
674       (IC->hasOneUse() + Or->hasOneUse()))
675     return nullptr;
676 
677   if (NeedAnd) {
678     // Insert the AND instruction on the input to the truncate.
679     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
680     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
681   }
682 
683   if (C2Log > C1Log) {
684     V = Builder.CreateZExtOrTrunc(V, Y->getType());
685     V = Builder.CreateShl(V, C2Log - C1Log);
686   } else if (C1Log > C2Log) {
687     V = Builder.CreateLShr(V, C1Log - C2Log);
688     V = Builder.CreateZExtOrTrunc(V, Y->getType());
689   } else
690     V = Builder.CreateZExtOrTrunc(V, Y->getType());
691 
692   if (NeedXor)
693     V = Builder.CreateXor(V, *C2);
694 
695   return Builder.CreateOr(V, Y);
696 }
697 
698 /// Canonicalize a set or clear of a masked set of constant bits to
699 /// select-of-constants form.
700 static Instruction *foldSetClearBits(SelectInst &Sel,
701                                      InstCombiner::BuilderTy &Builder) {
702   Value *Cond = Sel.getCondition();
703   Value *T = Sel.getTrueValue();
704   Value *F = Sel.getFalseValue();
705   Type *Ty = Sel.getType();
706   Value *X;
707   const APInt *NotC, *C;
708 
709   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
710   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
711       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
712     Constant *Zero = ConstantInt::getNullValue(Ty);
713     Constant *OrC = ConstantInt::get(Ty, *C);
714     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
715     return BinaryOperator::CreateOr(T, NewSel);
716   }
717 
718   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
719   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
720       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
721     Constant *Zero = ConstantInt::getNullValue(Ty);
722     Constant *OrC = ConstantInt::get(Ty, *C);
723     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
724     return BinaryOperator::CreateOr(F, NewSel);
725   }
726 
727   return nullptr;
728 }
729 
730 //   select (x == 0), 0, x * y --> freeze(y) * x
731 //   select (y == 0), 0, x * y --> freeze(x) * y
732 //   select (x == 0), undef, x * y --> freeze(y) * x
733 //   select (x == undef), 0, x * y --> freeze(y) * x
734 // Usage of mul instead of 0 will make the result more poisonous,
735 // so the operand that was not checked in the condition should be frozen.
736 // The latter folding is applied only when a constant compared with x is
737 // is a vector consisting of 0 and undefs. If a constant compared with x
738 // is a scalar undefined value or undefined vector then an expression
739 // should be already folded into a constant.
740 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
741   auto *CondVal = SI.getCondition();
742   auto *TrueVal = SI.getTrueValue();
743   auto *FalseVal = SI.getFalseValue();
744   Value *X, *Y;
745   ICmpInst::Predicate Predicate;
746 
747   // Assuming that constant compared with zero is not undef (but it may be
748   // a vector with some undef elements). Otherwise (when a constant is undef)
749   // the select expression should be already simplified.
750   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
751       !ICmpInst::isEquality(Predicate))
752     return nullptr;
753 
754   if (Predicate == ICmpInst::ICMP_NE)
755     std::swap(TrueVal, FalseVal);
756 
757   // Check that TrueVal is a constant instead of matching it with m_Zero()
758   // to handle the case when it is a scalar undef value or a vector containing
759   // non-zero elements that are masked by undef elements in the compare
760   // constant.
761   auto *TrueValC = dyn_cast<Constant>(TrueVal);
762   if (TrueValC == nullptr ||
763       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
764       !isa<Instruction>(FalseVal))
765     return nullptr;
766 
767   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
768   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
769   // If X is compared with 0 then TrueVal could be either zero or undef.
770   // m_Zero match vectors containing some undef elements, but for scalars
771   // m_Undef should be used explicitly.
772   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
773     return nullptr;
774 
775   auto *FalseValI = cast<Instruction>(FalseVal);
776   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
777                                      *FalseValI);
778   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
779   return IC.replaceInstUsesWith(SI, FalseValI);
780 }
781 
782 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
783 /// There are 8 commuted/swapped variants of this pattern.
784 /// TODO: Also support a - UMIN(a,b) patterns.
785 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
786                                             const Value *TrueVal,
787                                             const Value *FalseVal,
788                                             InstCombiner::BuilderTy &Builder) {
789   ICmpInst::Predicate Pred = ICI->getPredicate();
790   if (!ICmpInst::isUnsigned(Pred))
791     return nullptr;
792 
793   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
794   if (match(TrueVal, m_Zero())) {
795     Pred = ICmpInst::getInversePredicate(Pred);
796     std::swap(TrueVal, FalseVal);
797   }
798   if (!match(FalseVal, m_Zero()))
799     return nullptr;
800 
801   Value *A = ICI->getOperand(0);
802   Value *B = ICI->getOperand(1);
803   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
804     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
805     std::swap(A, B);
806     Pred = ICmpInst::getSwappedPredicate(Pred);
807   }
808 
809   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
810          "Unexpected isUnsigned predicate!");
811 
812   // Ensure the sub is of the form:
813   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
814   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
815   // Checking for both a-b and a+(-b) as a constant.
816   bool IsNegative = false;
817   const APInt *C;
818   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
819       (match(A, m_APInt(C)) &&
820        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
821     IsNegative = true;
822   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
823            !(match(B, m_APInt(C)) &&
824              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
825     return nullptr;
826 
827   // If we are adding a negate and the sub and icmp are used anywhere else, we
828   // would end up with more instructions.
829   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
830     return nullptr;
831 
832   // (a > b) ? a - b : 0 -> usub.sat(a, b)
833   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
834   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
835   if (IsNegative)
836     Result = Builder.CreateNeg(Result);
837   return Result;
838 }
839 
840 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
841                                        InstCombiner::BuilderTy &Builder) {
842   if (!Cmp->hasOneUse())
843     return nullptr;
844 
845   // Match unsigned saturated add with constant.
846   Value *Cmp0 = Cmp->getOperand(0);
847   Value *Cmp1 = Cmp->getOperand(1);
848   ICmpInst::Predicate Pred = Cmp->getPredicate();
849   Value *X;
850   const APInt *C, *CmpC;
851   if (Pred == ICmpInst::ICMP_ULT &&
852       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
853       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
854     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
855     return Builder.CreateBinaryIntrinsic(
856         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
857   }
858 
859   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
860   // There are 8 commuted variants.
861   // Canonicalize -1 (saturated result) to true value of the select.
862   if (match(FVal, m_AllOnes())) {
863     std::swap(TVal, FVal);
864     Pred = CmpInst::getInversePredicate(Pred);
865   }
866   if (!match(TVal, m_AllOnes()))
867     return nullptr;
868 
869   // Canonicalize predicate to less-than or less-or-equal-than.
870   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
871     std::swap(Cmp0, Cmp1);
872     Pred = CmpInst::getSwappedPredicate(Pred);
873   }
874   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
875     return nullptr;
876 
877   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
878   // Strictness of the comparison is irrelevant.
879   Value *Y;
880   if (match(Cmp0, m_Not(m_Value(X))) &&
881       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
882     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
883     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
884     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
885   }
886   // The 'not' op may be included in the sum but not the compare.
887   // Strictness of the comparison is irrelevant.
888   X = Cmp0;
889   Y = Cmp1;
890   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
891     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
892     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
893     BinaryOperator *BO = cast<BinaryOperator>(FVal);
894     return Builder.CreateBinaryIntrinsic(
895         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
896   }
897   // The overflow may be detected via the add wrapping round.
898   // This is only valid for strict comparison!
899   if (Pred == ICmpInst::ICMP_ULT &&
900       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
901       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
902     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
903     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
904     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
905   }
906 
907   return nullptr;
908 }
909 
910 /// Fold the following code sequence:
911 /// \code
912 ///   int a = ctlz(x & -x);
913 //    x ? 31 - a : a;
914 /// \code
915 ///
916 /// into:
917 ///   cttz(x)
918 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
919                                          Value *FalseVal,
920                                          InstCombiner::BuilderTy &Builder) {
921   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
922   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
923     return nullptr;
924 
925   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
926     std::swap(TrueVal, FalseVal);
927 
928   if (!match(FalseVal,
929              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
930     return nullptr;
931 
932   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
933     return nullptr;
934 
935   Value *X = ICI->getOperand(0);
936   auto *II = cast<IntrinsicInst>(TrueVal);
937   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
938     return nullptr;
939 
940   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
941                                           II->getType());
942   return CallInst::Create(F, {X, II->getArgOperand(1)});
943 }
944 
945 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
946 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
947 ///
948 /// For example, we can fold the following code sequence:
949 /// \code
950 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
951 ///   %1 = icmp ne i32 %x, 0
952 ///   %2 = select i1 %1, i32 %0, i32 32
953 /// \code
954 ///
955 /// into:
956 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
957 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
958                                  InstCombiner::BuilderTy &Builder) {
959   ICmpInst::Predicate Pred = ICI->getPredicate();
960   Value *CmpLHS = ICI->getOperand(0);
961   Value *CmpRHS = ICI->getOperand(1);
962 
963   // Check if the condition value compares a value for equality against zero.
964   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
965     return nullptr;
966 
967   Value *SelectArg = FalseVal;
968   Value *ValueOnZero = TrueVal;
969   if (Pred == ICmpInst::ICMP_NE)
970     std::swap(SelectArg, ValueOnZero);
971 
972   // Skip zero extend/truncate.
973   Value *Count = nullptr;
974   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
975       !match(SelectArg, m_Trunc(m_Value(Count))))
976     Count = SelectArg;
977 
978   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
979   // input to the cttz/ctlz is used as LHS for the compare instruction.
980   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
981       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
982     return nullptr;
983 
984   IntrinsicInst *II = cast<IntrinsicInst>(Count);
985 
986   // Check if the value propagated on zero is a constant number equal to the
987   // sizeof in bits of 'Count'.
988   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
989   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
990     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
991     // true to false on this flag, so we can replace it for all users.
992     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
993     return SelectArg;
994   }
995 
996   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
997   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
998   // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
999   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1000       !match(II->getArgOperand(1), m_One()))
1001     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1002 
1003   return nullptr;
1004 }
1005 
1006 /// Return true if we find and adjust an icmp+select pattern where the compare
1007 /// is with a constant that can be incremented or decremented to match the
1008 /// minimum or maximum idiom.
1009 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1010   ICmpInst::Predicate Pred = Cmp.getPredicate();
1011   Value *CmpLHS = Cmp.getOperand(0);
1012   Value *CmpRHS = Cmp.getOperand(1);
1013   Value *TrueVal = Sel.getTrueValue();
1014   Value *FalseVal = Sel.getFalseValue();
1015 
1016   // We may move or edit the compare, so make sure the select is the only user.
1017   const APInt *CmpC;
1018   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1019     return false;
1020 
1021   // These transforms only work for selects of integers or vector selects of
1022   // integer vectors.
1023   Type *SelTy = Sel.getType();
1024   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1025   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1026     return false;
1027 
1028   Constant *AdjustedRHS;
1029   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1030     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1031   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1032     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1033   else
1034     return false;
1035 
1036   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1037   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1038   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1039       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1040     ; // Nothing to do here. Values match without any sign/zero extension.
1041   }
1042   // Types do not match. Instead of calculating this with mixed types, promote
1043   // all to the larger type. This enables scalar evolution to analyze this
1044   // expression.
1045   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1046     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1047 
1048     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1049     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1050     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1051     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1052     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1053       CmpLHS = TrueVal;
1054       AdjustedRHS = SextRHS;
1055     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1056                SextRHS == TrueVal) {
1057       CmpLHS = FalseVal;
1058       AdjustedRHS = SextRHS;
1059     } else if (Cmp.isUnsigned()) {
1060       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1061       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1062       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1063       // zext + signed compare cannot be changed:
1064       //    0xff <s 0x00, but 0x00ff >s 0x0000
1065       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1066         CmpLHS = TrueVal;
1067         AdjustedRHS = ZextRHS;
1068       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1069                  ZextRHS == TrueVal) {
1070         CmpLHS = FalseVal;
1071         AdjustedRHS = ZextRHS;
1072       } else {
1073         return false;
1074       }
1075     } else {
1076       return false;
1077     }
1078   } else {
1079     return false;
1080   }
1081 
1082   Pred = ICmpInst::getSwappedPredicate(Pred);
1083   CmpRHS = AdjustedRHS;
1084   std::swap(FalseVal, TrueVal);
1085   Cmp.setPredicate(Pred);
1086   Cmp.setOperand(0, CmpLHS);
1087   Cmp.setOperand(1, CmpRHS);
1088   Sel.setOperand(1, TrueVal);
1089   Sel.setOperand(2, FalseVal);
1090   Sel.swapProfMetadata();
1091 
1092   // Move the compare instruction right before the select instruction. Otherwise
1093   // the sext/zext value may be defined after the compare instruction uses it.
1094   Cmp.moveBefore(&Sel);
1095 
1096   return true;
1097 }
1098 
1099 /// If this is an integer min/max (icmp + select) with a constant operand,
1100 /// create the canonical icmp for the min/max operation and canonicalize the
1101 /// constant to the 'false' operand of the select:
1102 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1103 /// Note: if C1 != C2, this will change the icmp constant to the existing
1104 /// constant operand of the select.
1105 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1106                                                    ICmpInst &Cmp,
1107                                                    InstCombinerImpl &IC) {
1108   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1109     return nullptr;
1110 
1111   // Canonicalize the compare predicate based on whether we have min or max.
1112   Value *LHS, *RHS;
1113   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1114   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1115     return nullptr;
1116 
1117   // Is this already canonical?
1118   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1119   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1120       Cmp.getPredicate() == CanonicalPred)
1121     return nullptr;
1122 
1123   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1124   // as this may cause an infinite combine loop. Let the sub be folded first.
1125   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1126       match(RHS, m_Sub(m_Value(), m_Zero())))
1127     return nullptr;
1128 
1129   // Create the canonical compare and plug it into the select.
1130   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1131 
1132   // If the select operands did not change, we're done.
1133   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1134     return &Sel;
1135 
1136   // If we are swapping the select operands, swap the metadata too.
1137   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1138          "Unexpected results from matchSelectPattern");
1139   Sel.swapValues();
1140   Sel.swapProfMetadata();
1141   return &Sel;
1142 }
1143 
1144 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1145                                         InstCombinerImpl &IC) {
1146   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1147     return nullptr;
1148 
1149   Value *LHS, *RHS;
1150   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1151   if (SPF != SelectPatternFlavor::SPF_ABS &&
1152       SPF != SelectPatternFlavor::SPF_NABS)
1153     return nullptr;
1154 
1155   // Note that NSW flag can only be propagated for normal, non-negated abs!
1156   bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1157                         match(RHS, m_NSWNeg(m_Specific(LHS)));
1158   Constant *IntMinIsPoisonC =
1159       ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1160   Instruction *Abs =
1161       IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1162 
1163   if (SPF == SelectPatternFlavor::SPF_NABS)
1164     return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1165 
1166   return IC.replaceInstUsesWith(Sel, Abs);
1167 }
1168 
1169 /// If we have a select with an equality comparison, then we know the value in
1170 /// one of the arms of the select. See if substituting this value into an arm
1171 /// and simplifying the result yields the same value as the other arm.
1172 ///
1173 /// To make this transform safe, we must drop poison-generating flags
1174 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1175 /// that poison from propagating. If the existing binop already had no
1176 /// poison-generating flags, then this transform can be done by instsimplify.
1177 ///
1178 /// Consider:
1179 ///   %cmp = icmp eq i32 %x, 2147483647
1180 ///   %add = add nsw i32 %x, 1
1181 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1182 ///
1183 /// We can't replace %sel with %add unless we strip away the flags.
1184 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1185 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1186                                                           ICmpInst &Cmp) {
1187   // Value equivalence substitution requires an all-or-nothing replacement.
1188   // It does not make sense for a vector compare where each lane is chosen
1189   // independently.
1190   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1191     return nullptr;
1192 
1193   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1194   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1195   bool Swapped = false;
1196   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1197     std::swap(TrueVal, FalseVal);
1198     Swapped = true;
1199   }
1200 
1201   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1202   // Make sure Y cannot be undef though, as we might pick different values for
1203   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1204   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1205   // replacement cycle.
1206   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1207   if (TrueVal != CmpLHS &&
1208       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1209     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1210                                           /* AllowRefinement */ true))
1211       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1212 
1213     // Even if TrueVal does not simplify, we can directly replace a use of
1214     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1215     // else and is safe to speculatively execute (we may end up executing it
1216     // with different operands, which should not cause side-effects or trigger
1217     // undefined behavior). Only do this if CmpRHS is a constant, as
1218     // profitability is not clear for other cases.
1219     // FIXME: The replacement could be performed recursively.
1220     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1221       if (auto *I = dyn_cast<Instruction>(TrueVal))
1222         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1223           for (Use &U : I->operands())
1224             if (U == CmpLHS) {
1225               replaceUse(U, CmpRHS);
1226               return &Sel;
1227             }
1228   }
1229   if (TrueVal != CmpRHS &&
1230       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1231     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1232                                           /* AllowRefinement */ true))
1233       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1234 
1235   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1236   if (!FalseInst)
1237     return nullptr;
1238 
1239   // InstSimplify already performed this fold if it was possible subject to
1240   // current poison-generating flags. Try the transform again with
1241   // poison-generating flags temporarily dropped.
1242   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1243   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1244     WasNUW = OBO->hasNoUnsignedWrap();
1245     WasNSW = OBO->hasNoSignedWrap();
1246     FalseInst->setHasNoUnsignedWrap(false);
1247     FalseInst->setHasNoSignedWrap(false);
1248   }
1249   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1250     WasExact = PEO->isExact();
1251     FalseInst->setIsExact(false);
1252   }
1253   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1254     WasInBounds = GEP->isInBounds();
1255     GEP->setIsInBounds(false);
1256   }
1257 
1258   // Try each equivalence substitution possibility.
1259   // We have an 'EQ' comparison, so the select's false value will propagate.
1260   // Example:
1261   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1262   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1263                              /* AllowRefinement */ false) == TrueVal ||
1264       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1265                              /* AllowRefinement */ false) == TrueVal) {
1266     return replaceInstUsesWith(Sel, FalseVal);
1267   }
1268 
1269   // Restore poison-generating flags if the transform did not apply.
1270   if (WasNUW)
1271     FalseInst->setHasNoUnsignedWrap();
1272   if (WasNSW)
1273     FalseInst->setHasNoSignedWrap();
1274   if (WasExact)
1275     FalseInst->setIsExact();
1276   if (WasInBounds)
1277     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1278 
1279   return nullptr;
1280 }
1281 
1282 // See if this is a pattern like:
1283 //   %old_cmp1 = icmp slt i32 %x, C2
1284 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1285 //   %old_x_offseted = add i32 %x, C1
1286 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1287 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1288 // This can be rewritten as more canonical pattern:
1289 //   %new_cmp1 = icmp slt i32 %x, -C1
1290 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1291 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1292 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1293 // Iff -C1 s<= C2 s<= C0-C1
1294 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1295 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1296 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1297                                     InstCombiner::BuilderTy &Builder) {
1298   Value *X = Sel0.getTrueValue();
1299   Value *Sel1 = Sel0.getFalseValue();
1300 
1301   // First match the condition of the outermost select.
1302   // Said condition must be one-use.
1303   if (!Cmp0.hasOneUse())
1304     return nullptr;
1305   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1306   Value *Cmp00 = Cmp0.getOperand(0);
1307   Constant *C0;
1308   if (!match(Cmp0.getOperand(1),
1309              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1310     return nullptr;
1311 
1312   if (!isa<SelectInst>(Sel1)) {
1313     Pred0 = ICmpInst::getInversePredicate(Pred0);
1314     std::swap(X, Sel1);
1315   }
1316 
1317   // Canonicalize Cmp0 into ult or uge.
1318   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1319   switch (Pred0) {
1320   case ICmpInst::Predicate::ICMP_ULT:
1321   case ICmpInst::Predicate::ICMP_UGE:
1322     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1323     // have been simplified, it does not verify with undef inputs so ensure we
1324     // are not in a strange state.
1325     if (!match(C0, m_SpecificInt_ICMP(
1326                        ICmpInst::Predicate::ICMP_NE,
1327                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1328       return nullptr;
1329     break; // Great!
1330   case ICmpInst::Predicate::ICMP_ULE:
1331   case ICmpInst::Predicate::ICMP_UGT:
1332     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1333     // C0, which again means it must not have any all-ones elements.
1334     if (!match(C0,
1335                m_SpecificInt_ICMP(
1336                    ICmpInst::Predicate::ICMP_NE,
1337                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1338       return nullptr; // Can't do, have all-ones element[s].
1339     C0 = InstCombiner::AddOne(C0);
1340     break;
1341   default:
1342     return nullptr; // Unknown predicate.
1343   }
1344 
1345   // Now that we've canonicalized the ICmp, we know the X we expect;
1346   // the select in other hand should be one-use.
1347   if (!Sel1->hasOneUse())
1348     return nullptr;
1349 
1350   // If the types do not match, look through any truncs to the underlying
1351   // instruction.
1352   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1353     match(X, m_TruncOrSelf(m_Value(X)));
1354 
1355   // We now can finish matching the condition of the outermost select:
1356   // it should either be the X itself, or an addition of some constant to X.
1357   Constant *C1;
1358   if (Cmp00 == X)
1359     C1 = ConstantInt::getNullValue(X->getType());
1360   else if (!match(Cmp00,
1361                   m_Add(m_Specific(X),
1362                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1363     return nullptr;
1364 
1365   Value *Cmp1;
1366   ICmpInst::Predicate Pred1;
1367   Constant *C2;
1368   Value *ReplacementLow, *ReplacementHigh;
1369   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1370                             m_Value(ReplacementHigh))) ||
1371       !match(Cmp1,
1372              m_ICmp(Pred1, m_Specific(X),
1373                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1374     return nullptr;
1375 
1376   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1377     return nullptr; // Not enough one-use instructions for the fold.
1378   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1379   //        two comparisons we'll need to build.
1380 
1381   // Canonicalize Cmp1 into the form we expect.
1382   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1383   switch (Pred1) {
1384   case ICmpInst::Predicate::ICMP_SLT:
1385     break;
1386   case ICmpInst::Predicate::ICMP_SLE:
1387     // We'd have to increment C2 by one, and for that it must not have signed
1388     // max element, but then it would have been canonicalized to 'slt' before
1389     // we get here. So we can't do anything useful with 'sle'.
1390     return nullptr;
1391   case ICmpInst::Predicate::ICMP_SGT:
1392     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1393     // which again means it must not have any signed max elements.
1394     if (!match(C2,
1395                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1396                                   APInt::getSignedMaxValue(
1397                                       C2->getType()->getScalarSizeInBits()))))
1398       return nullptr; // Can't do, have signed max element[s].
1399     C2 = InstCombiner::AddOne(C2);
1400     LLVM_FALLTHROUGH;
1401   case ICmpInst::Predicate::ICMP_SGE:
1402     // Also non-canonical, but here we don't need to change C2,
1403     // so we don't have any restrictions on C2, so we can just handle it.
1404     std::swap(ReplacementLow, ReplacementHigh);
1405     break;
1406   default:
1407     return nullptr; // Unknown predicate.
1408   }
1409 
1410   // The thresholds of this clamp-like pattern.
1411   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1412   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1413   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1414     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1415 
1416   // The fold has a precondition 1: C2 s>= ThresholdLow
1417   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1418                                          ThresholdLowIncl);
1419   if (!match(Precond1, m_One()))
1420     return nullptr;
1421   // The fold has a precondition 2: C2 s<= ThresholdHigh
1422   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1423                                          ThresholdHighExcl);
1424   if (!match(Precond2, m_One()))
1425     return nullptr;
1426 
1427   // If we are matching from a truncated input, we need to sext the
1428   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1429   // are free to extend due to being constants.
1430   if (X->getType() != Sel0.getType()) {
1431     Constant *LowC, *HighC;
1432     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1433         !match(ReplacementHigh, m_ImmConstant(HighC)))
1434       return nullptr;
1435     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1436     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1437   }
1438 
1439   // All good, finally emit the new pattern.
1440   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1441   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1442   Value *MaybeReplacedLow =
1443       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1444 
1445   // Create the final select. If we looked through a truncate above, we will
1446   // need to retruncate the result.
1447   Value *MaybeReplacedHigh = Builder.CreateSelect(
1448       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1449   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1450 }
1451 
1452 // If we have
1453 //  %cmp = icmp [canonical predicate] i32 %x, C0
1454 //  %r = select i1 %cmp, i32 %y, i32 C1
1455 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1456 // will have if we flip the strictness of the predicate (i.e. without changing
1457 // the result) is identical to the C1 in select. If it matches we can change
1458 // original comparison to one with swapped predicate, reuse the constant,
1459 // and swap the hands of select.
1460 static Instruction *
1461 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1462                                          InstCombinerImpl &IC) {
1463   ICmpInst::Predicate Pred;
1464   Value *X;
1465   Constant *C0;
1466   if (!match(&Cmp, m_OneUse(m_ICmp(
1467                        Pred, m_Value(X),
1468                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1469     return nullptr;
1470 
1471   // If comparison predicate is non-relational, we won't be able to do anything.
1472   if (ICmpInst::isEquality(Pred))
1473     return nullptr;
1474 
1475   // If comparison predicate is non-canonical, then we certainly won't be able
1476   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1477   if (!InstCombiner::isCanonicalPredicate(Pred))
1478     return nullptr;
1479 
1480   // If the [input] type of comparison and select type are different, lets abort
1481   // for now. We could try to compare constants with trunc/[zs]ext though.
1482   if (C0->getType() != Sel.getType())
1483     return nullptr;
1484 
1485   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1486 
1487   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1488   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1489   // At least one of these values we are selecting between must be a constant
1490   // else we'll never succeed.
1491   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1492       !match(SelVal1, m_AnyIntegralConstant()))
1493     return nullptr;
1494 
1495   // Does this constant C match any of the `select` values?
1496   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1497     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1498   };
1499 
1500   // If C0 *already* matches true/false value of select, we are done.
1501   if (MatchesSelectValue(C0))
1502     return nullptr;
1503 
1504   // Check the constant we'd have with flipped-strictness predicate.
1505   auto FlippedStrictness =
1506       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1507   if (!FlippedStrictness)
1508     return nullptr;
1509 
1510   // If said constant doesn't match either, then there is no hope,
1511   if (!MatchesSelectValue(FlippedStrictness->second))
1512     return nullptr;
1513 
1514   // It matched! Lets insert the new comparison just before select.
1515   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1516   IC.Builder.SetInsertPoint(&Sel);
1517 
1518   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1519   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1520                                         Cmp.getName() + ".inv");
1521   IC.replaceOperand(Sel, 0, NewCmp);
1522   Sel.swapValues();
1523   Sel.swapProfMetadata();
1524 
1525   return &Sel;
1526 }
1527 
1528 /// Visit a SelectInst that has an ICmpInst as its first operand.
1529 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1530                                                       ICmpInst *ICI) {
1531   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1532     return NewSel;
1533 
1534   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1535     return NewSel;
1536 
1537   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1538     return NewAbs;
1539 
1540   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1541     return replaceInstUsesWith(SI, V);
1542 
1543   if (Instruction *NewSel =
1544           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1545     return NewSel;
1546 
1547   bool Changed = adjustMinMax(SI, *ICI);
1548 
1549   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1550     return replaceInstUsesWith(SI, V);
1551 
1552   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1553   Value *TrueVal = SI.getTrueValue();
1554   Value *FalseVal = SI.getFalseValue();
1555   ICmpInst::Predicate Pred = ICI->getPredicate();
1556   Value *CmpLHS = ICI->getOperand(0);
1557   Value *CmpRHS = ICI->getOperand(1);
1558   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1559     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1560       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1561       SI.setOperand(1, CmpRHS);
1562       Changed = true;
1563     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1564       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1565       SI.setOperand(2, CmpRHS);
1566       Changed = true;
1567     }
1568   }
1569 
1570   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1571   // decomposeBitTestICmp() might help.
1572   {
1573     unsigned BitWidth =
1574         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1575     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1576     Value *X;
1577     const APInt *Y, *C;
1578     bool TrueWhenUnset;
1579     bool IsBitTest = false;
1580     if (ICmpInst::isEquality(Pred) &&
1581         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1582         match(CmpRHS, m_Zero())) {
1583       IsBitTest = true;
1584       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1585     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1586       X = CmpLHS;
1587       Y = &MinSignedValue;
1588       IsBitTest = true;
1589       TrueWhenUnset = false;
1590     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1591       X = CmpLHS;
1592       Y = &MinSignedValue;
1593       IsBitTest = true;
1594       TrueWhenUnset = true;
1595     }
1596     if (IsBitTest) {
1597       Value *V = nullptr;
1598       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1599       if (TrueWhenUnset && TrueVal == X &&
1600           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1601         V = Builder.CreateAnd(X, ~(*Y));
1602       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1603       else if (!TrueWhenUnset && FalseVal == X &&
1604                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1605         V = Builder.CreateAnd(X, ~(*Y));
1606       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1607       else if (TrueWhenUnset && FalseVal == X &&
1608                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1609         V = Builder.CreateOr(X, *Y);
1610       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1611       else if (!TrueWhenUnset && TrueVal == X &&
1612                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1613         V = Builder.CreateOr(X, *Y);
1614 
1615       if (V)
1616         return replaceInstUsesWith(SI, V);
1617     }
1618   }
1619 
1620   if (Instruction *V =
1621           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1622     return V;
1623 
1624   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1625     return V;
1626 
1627   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1628     return replaceInstUsesWith(SI, V);
1629 
1630   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1631     return replaceInstUsesWith(SI, V);
1632 
1633   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1634     return replaceInstUsesWith(SI, V);
1635 
1636   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1637     return replaceInstUsesWith(SI, V);
1638 
1639   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1640     return replaceInstUsesWith(SI, V);
1641 
1642   return Changed ? &SI : nullptr;
1643 }
1644 
1645 /// SI is a select whose condition is a PHI node (but the two may be in
1646 /// different blocks). See if the true/false values (V) are live in all of the
1647 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1648 ///
1649 ///   X = phi [ C1, BB1], [C2, BB2]
1650 ///   Y = add
1651 ///   Z = select X, Y, 0
1652 ///
1653 /// because Y is not live in BB1/BB2.
1654 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1655                                                    const SelectInst &SI) {
1656   // If the value is a non-instruction value like a constant or argument, it
1657   // can always be mapped.
1658   const Instruction *I = dyn_cast<Instruction>(V);
1659   if (!I) return true;
1660 
1661   // If V is a PHI node defined in the same block as the condition PHI, we can
1662   // map the arguments.
1663   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1664 
1665   if (const PHINode *VP = dyn_cast<PHINode>(I))
1666     if (VP->getParent() == CondPHI->getParent())
1667       return true;
1668 
1669   // Otherwise, if the PHI and select are defined in the same block and if V is
1670   // defined in a different block, then we can transform it.
1671   if (SI.getParent() == CondPHI->getParent() &&
1672       I->getParent() != CondPHI->getParent())
1673     return true;
1674 
1675   // Otherwise we have a 'hard' case and we can't tell without doing more
1676   // detailed dominator based analysis, punt.
1677   return false;
1678 }
1679 
1680 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1681 ///   SPF2(SPF1(A, B), C)
1682 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1683                                             SelectPatternFlavor SPF1, Value *A,
1684                                             Value *B, Instruction &Outer,
1685                                             SelectPatternFlavor SPF2,
1686                                             Value *C) {
1687   if (Outer.getType() != Inner->getType())
1688     return nullptr;
1689 
1690   if (C == A || C == B) {
1691     // MAX(MAX(A, B), B) -> MAX(A, B)
1692     // MIN(MIN(a, b), a) -> MIN(a, b)
1693     // TODO: This could be done in instsimplify.
1694     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1695       return replaceInstUsesWith(Outer, Inner);
1696 
1697     // MAX(MIN(a, b), a) -> a
1698     // MIN(MAX(a, b), a) -> a
1699     // TODO: This could be done in instsimplify.
1700     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1701         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1702         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1703         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1704       return replaceInstUsesWith(Outer, C);
1705   }
1706 
1707   if (SPF1 == SPF2) {
1708     const APInt *CB, *CC;
1709     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1710       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1711       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1712       // TODO: This could be done in instsimplify.
1713       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1714           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1715           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1716           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1717         return replaceInstUsesWith(Outer, Inner);
1718 
1719       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1720       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1721       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1722           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1723           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1724           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1725         Outer.replaceUsesOfWith(Inner, A);
1726         return &Outer;
1727       }
1728     }
1729   }
1730 
1731   // max(max(A, B), min(A, B)) --> max(A, B)
1732   // min(min(A, B), max(A, B)) --> min(A, B)
1733   // TODO: This could be done in instsimplify.
1734   if (SPF1 == SPF2 &&
1735       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1736        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1737        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1738        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1739     return replaceInstUsesWith(Outer, Inner);
1740 
1741   // ABS(ABS(X)) -> ABS(X)
1742   // NABS(NABS(X)) -> NABS(X)
1743   // TODO: This could be done in instsimplify.
1744   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1745     return replaceInstUsesWith(Outer, Inner);
1746   }
1747 
1748   // ABS(NABS(X)) -> ABS(X)
1749   // NABS(ABS(X)) -> NABS(X)
1750   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1751       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1752     SelectInst *SI = cast<SelectInst>(Inner);
1753     Value *NewSI =
1754         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1755                              SI->getTrueValue(), SI->getName(), SI);
1756     return replaceInstUsesWith(Outer, NewSI);
1757   }
1758 
1759   auto IsFreeOrProfitableToInvert =
1760       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1761     if (match(V, m_Not(m_Value(NotV)))) {
1762       // If V has at most 2 uses then we can get rid of the xor operation
1763       // entirely.
1764       ElidesXor |= !V->hasNUsesOrMore(3);
1765       return true;
1766     }
1767 
1768     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1769       NotV = nullptr;
1770       return true;
1771     }
1772 
1773     return false;
1774   };
1775 
1776   Value *NotA, *NotB, *NotC;
1777   bool ElidesXor = false;
1778 
1779   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1780   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1781   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1782   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1783   //
1784   // This transform is performance neutral if we can elide at least one xor from
1785   // the set of three operands, since we'll be tacking on an xor at the very
1786   // end.
1787   if (SelectPatternResult::isMinOrMax(SPF1) &&
1788       SelectPatternResult::isMinOrMax(SPF2) &&
1789       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1790       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1791       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1792     if (!NotA)
1793       NotA = Builder.CreateNot(A);
1794     if (!NotB)
1795       NotB = Builder.CreateNot(B);
1796     if (!NotC)
1797       NotC = Builder.CreateNot(C);
1798 
1799     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1800                                    NotB);
1801     Value *NewOuter = Builder.CreateNot(
1802         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1803     return replaceInstUsesWith(Outer, NewOuter);
1804   }
1805 
1806   return nullptr;
1807 }
1808 
1809 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1810 /// This is even legal for FP.
1811 static Instruction *foldAddSubSelect(SelectInst &SI,
1812                                      InstCombiner::BuilderTy &Builder) {
1813   Value *CondVal = SI.getCondition();
1814   Value *TrueVal = SI.getTrueValue();
1815   Value *FalseVal = SI.getFalseValue();
1816   auto *TI = dyn_cast<Instruction>(TrueVal);
1817   auto *FI = dyn_cast<Instruction>(FalseVal);
1818   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1819     return nullptr;
1820 
1821   Instruction *AddOp = nullptr, *SubOp = nullptr;
1822   if ((TI->getOpcode() == Instruction::Sub &&
1823        FI->getOpcode() == Instruction::Add) ||
1824       (TI->getOpcode() == Instruction::FSub &&
1825        FI->getOpcode() == Instruction::FAdd)) {
1826     AddOp = FI;
1827     SubOp = TI;
1828   } else if ((FI->getOpcode() == Instruction::Sub &&
1829               TI->getOpcode() == Instruction::Add) ||
1830              (FI->getOpcode() == Instruction::FSub &&
1831               TI->getOpcode() == Instruction::FAdd)) {
1832     AddOp = TI;
1833     SubOp = FI;
1834   }
1835 
1836   if (AddOp) {
1837     Value *OtherAddOp = nullptr;
1838     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1839       OtherAddOp = AddOp->getOperand(1);
1840     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1841       OtherAddOp = AddOp->getOperand(0);
1842     }
1843 
1844     if (OtherAddOp) {
1845       // So at this point we know we have (Y -> OtherAddOp):
1846       //        select C, (add X, Y), (sub X, Z)
1847       Value *NegVal; // Compute -Z
1848       if (SI.getType()->isFPOrFPVectorTy()) {
1849         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1850         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1851           FastMathFlags Flags = AddOp->getFastMathFlags();
1852           Flags &= SubOp->getFastMathFlags();
1853           NegInst->setFastMathFlags(Flags);
1854         }
1855       } else {
1856         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1857       }
1858 
1859       Value *NewTrueOp = OtherAddOp;
1860       Value *NewFalseOp = NegVal;
1861       if (AddOp != TI)
1862         std::swap(NewTrueOp, NewFalseOp);
1863       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1864                                            SI.getName() + ".p", &SI);
1865 
1866       if (SI.getType()->isFPOrFPVectorTy()) {
1867         Instruction *RI =
1868             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1869 
1870         FastMathFlags Flags = AddOp->getFastMathFlags();
1871         Flags &= SubOp->getFastMathFlags();
1872         RI->setFastMathFlags(Flags);
1873         return RI;
1874       } else
1875         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1876     }
1877   }
1878   return nullptr;
1879 }
1880 
1881 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1882 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1883 /// Along with a number of patterns similar to:
1884 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1885 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1886 static Instruction *
1887 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1888   Value *CondVal = SI.getCondition();
1889   Value *TrueVal = SI.getTrueValue();
1890   Value *FalseVal = SI.getFalseValue();
1891 
1892   WithOverflowInst *II;
1893   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1894       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1895     return nullptr;
1896 
1897   Value *X = II->getLHS();
1898   Value *Y = II->getRHS();
1899 
1900   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1901     Type *Ty = Limit->getType();
1902 
1903     ICmpInst::Predicate Pred;
1904     Value *TrueVal, *FalseVal, *Op;
1905     const APInt *C;
1906     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1907                                m_Value(TrueVal), m_Value(FalseVal))))
1908       return false;
1909 
1910     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1911     auto IsMinMax = [&](Value *Min, Value *Max) {
1912       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1913       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1914       return match(Min, m_SpecificInt(MinVal)) &&
1915              match(Max, m_SpecificInt(MaxVal));
1916     };
1917 
1918     if (Op != X && Op != Y)
1919       return false;
1920 
1921     if (IsAdd) {
1922       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1923       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1924       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1925       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1926       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1927           IsMinMax(TrueVal, FalseVal))
1928         return true;
1929       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1930       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1931       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1932       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1933       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1934           IsMinMax(FalseVal, TrueVal))
1935         return true;
1936     } else {
1937       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1938       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1939       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1940           IsMinMax(TrueVal, FalseVal))
1941         return true;
1942       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1943       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1944       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1945           IsMinMax(FalseVal, TrueVal))
1946         return true;
1947       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1948       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1949       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1950           IsMinMax(FalseVal, TrueVal))
1951         return true;
1952       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1953       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1954       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1955           IsMinMax(TrueVal, FalseVal))
1956         return true;
1957     }
1958 
1959     return false;
1960   };
1961 
1962   Intrinsic::ID NewIntrinsicID;
1963   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1964       match(TrueVal, m_AllOnes()))
1965     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1966     NewIntrinsicID = Intrinsic::uadd_sat;
1967   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1968            match(TrueVal, m_Zero()))
1969     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1970     NewIntrinsicID = Intrinsic::usub_sat;
1971   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1972            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1973     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1974     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1975     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1976     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1977     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1978     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1979     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1980     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1981     NewIntrinsicID = Intrinsic::sadd_sat;
1982   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1983            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1984     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1985     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1986     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1987     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1988     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1989     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1990     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1991     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1992     NewIntrinsicID = Intrinsic::ssub_sat;
1993   else
1994     return nullptr;
1995 
1996   Function *F =
1997       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1998   return CallInst::Create(F, {X, Y});
1999 }
2000 
2001 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2002   Constant *C;
2003   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2004       !match(Sel.getFalseValue(), m_Constant(C)))
2005     return nullptr;
2006 
2007   Instruction *ExtInst;
2008   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2009       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2010     return nullptr;
2011 
2012   auto ExtOpcode = ExtInst->getOpcode();
2013   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2014     return nullptr;
2015 
2016   // If we are extending from a boolean type or if we can create a select that
2017   // has the same size operands as its condition, try to narrow the select.
2018   Value *X = ExtInst->getOperand(0);
2019   Type *SmallType = X->getType();
2020   Value *Cond = Sel.getCondition();
2021   auto *Cmp = dyn_cast<CmpInst>(Cond);
2022   if (!SmallType->isIntOrIntVectorTy(1) &&
2023       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2024     return nullptr;
2025 
2026   // If the constant is the same after truncation to the smaller type and
2027   // extension to the original type, we can narrow the select.
2028   Type *SelType = Sel.getType();
2029   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2030   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2031   if (ExtC == C && ExtInst->hasOneUse()) {
2032     Value *TruncCVal = cast<Value>(TruncC);
2033     if (ExtInst == Sel.getFalseValue())
2034       std::swap(X, TruncCVal);
2035 
2036     // select Cond, (ext X), C --> ext(select Cond, X, C')
2037     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2038     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2039     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2040   }
2041 
2042   // If one arm of the select is the extend of the condition, replace that arm
2043   // with the extension of the appropriate known bool value.
2044   if (Cond == X) {
2045     if (ExtInst == Sel.getTrueValue()) {
2046       // select X, (sext X), C --> select X, -1, C
2047       // select X, (zext X), C --> select X,  1, C
2048       Constant *One = ConstantInt::getTrue(SmallType);
2049       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2050       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2051     } else {
2052       // select X, C, (sext X) --> select X, C, 0
2053       // select X, C, (zext X) --> select X, C, 0
2054       Constant *Zero = ConstantInt::getNullValue(SelType);
2055       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2056     }
2057   }
2058 
2059   return nullptr;
2060 }
2061 
2062 /// Try to transform a vector select with a constant condition vector into a
2063 /// shuffle for easier combining with other shuffles and insert/extract.
2064 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2065   Value *CondVal = SI.getCondition();
2066   Constant *CondC;
2067   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2068   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2069     return nullptr;
2070 
2071   unsigned NumElts = CondValTy->getNumElements();
2072   SmallVector<int, 16> Mask;
2073   Mask.reserve(NumElts);
2074   for (unsigned i = 0; i != NumElts; ++i) {
2075     Constant *Elt = CondC->getAggregateElement(i);
2076     if (!Elt)
2077       return nullptr;
2078 
2079     if (Elt->isOneValue()) {
2080       // If the select condition element is true, choose from the 1st vector.
2081       Mask.push_back(i);
2082     } else if (Elt->isNullValue()) {
2083       // If the select condition element is false, choose from the 2nd vector.
2084       Mask.push_back(i + NumElts);
2085     } else if (isa<UndefValue>(Elt)) {
2086       // Undef in a select condition (choose one of the operands) does not mean
2087       // the same thing as undef in a shuffle mask (any value is acceptable), so
2088       // give up.
2089       return nullptr;
2090     } else {
2091       // Bail out on a constant expression.
2092       return nullptr;
2093     }
2094   }
2095 
2096   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2097 }
2098 
2099 /// If we have a select of vectors with a scalar condition, try to convert that
2100 /// to a vector select by splatting the condition. A splat may get folded with
2101 /// other operations in IR and having all operands of a select be vector types
2102 /// is likely better for vector codegen.
2103 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2104                                                    InstCombinerImpl &IC) {
2105   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2106   if (!Ty)
2107     return nullptr;
2108 
2109   // We can replace a single-use extract with constant index.
2110   Value *Cond = Sel.getCondition();
2111   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2112     return nullptr;
2113 
2114   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2115   // Splatting the extracted condition reduces code (we could directly create a
2116   // splat shuffle of the source vector to eliminate the intermediate step).
2117   return IC.replaceOperand(
2118       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2119 }
2120 
2121 /// Reuse bitcasted operands between a compare and select:
2122 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2123 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2124 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2125                                           InstCombiner::BuilderTy &Builder) {
2126   Value *Cond = Sel.getCondition();
2127   Value *TVal = Sel.getTrueValue();
2128   Value *FVal = Sel.getFalseValue();
2129 
2130   CmpInst::Predicate Pred;
2131   Value *A, *B;
2132   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2133     return nullptr;
2134 
2135   // The select condition is a compare instruction. If the select's true/false
2136   // values are already the same as the compare operands, there's nothing to do.
2137   if (TVal == A || TVal == B || FVal == A || FVal == B)
2138     return nullptr;
2139 
2140   Value *C, *D;
2141   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2142     return nullptr;
2143 
2144   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2145   Value *TSrc, *FSrc;
2146   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2147       !match(FVal, m_BitCast(m_Value(FSrc))))
2148     return nullptr;
2149 
2150   // If the select true/false values are *different bitcasts* of the same source
2151   // operands, make the select operands the same as the compare operands and
2152   // cast the result. This is the canonical select form for min/max.
2153   Value *NewSel;
2154   if (TSrc == C && FSrc == D) {
2155     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2156     // bitcast (select (cmp A, B), A, B)
2157     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2158   } else if (TSrc == D && FSrc == C) {
2159     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2160     // bitcast (select (cmp A, B), B, A)
2161     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2162   } else {
2163     return nullptr;
2164   }
2165   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2166 }
2167 
2168 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2169 /// instructions.
2170 ///
2171 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2172 /// selects between the returned value of the cmpxchg instruction its compare
2173 /// operand, the result of the select will always be equal to its false value.
2174 /// For example:
2175 ///
2176 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2177 ///   %1 = extractvalue { i64, i1 } %0, 1
2178 ///   %2 = extractvalue { i64, i1 } %0, 0
2179 ///   %3 = select i1 %1, i64 %compare, i64 %2
2180 ///   ret i64 %3
2181 ///
2182 /// The returned value of the cmpxchg instruction (%2) is the original value
2183 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2184 /// must have been equal to %compare. Thus, the result of the select is always
2185 /// equal to %2, and the code can be simplified to:
2186 ///
2187 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2188 ///   %1 = extractvalue { i64, i1 } %0, 0
2189 ///   ret i64 %1
2190 ///
2191 static Value *foldSelectCmpXchg(SelectInst &SI) {
2192   // A helper that determines if V is an extractvalue instruction whose
2193   // aggregate operand is a cmpxchg instruction and whose single index is equal
2194   // to I. If such conditions are true, the helper returns the cmpxchg
2195   // instruction; otherwise, a nullptr is returned.
2196   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2197     auto *Extract = dyn_cast<ExtractValueInst>(V);
2198     if (!Extract)
2199       return nullptr;
2200     if (Extract->getIndices()[0] != I)
2201       return nullptr;
2202     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2203   };
2204 
2205   // If the select has a single user, and this user is a select instruction that
2206   // we can simplify, skip the cmpxchg simplification for now.
2207   if (SI.hasOneUse())
2208     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2209       if (Select->getCondition() == SI.getCondition())
2210         if (Select->getFalseValue() == SI.getTrueValue() ||
2211             Select->getTrueValue() == SI.getFalseValue())
2212           return nullptr;
2213 
2214   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2215   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2216   if (!CmpXchg)
2217     return nullptr;
2218 
2219   // Check the true value case: The true value of the select is the returned
2220   // value of the same cmpxchg used by the condition, and the false value is the
2221   // cmpxchg instruction's compare operand.
2222   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2223     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2224       return SI.getFalseValue();
2225 
2226   // Check the false value case: The false value of the select is the returned
2227   // value of the same cmpxchg used by the condition, and the true value is the
2228   // cmpxchg instruction's compare operand.
2229   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2230     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2231       return SI.getFalseValue();
2232 
2233   return nullptr;
2234 }
2235 
2236 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2237                                        Value *Y,
2238                                        InstCombiner::BuilderTy &Builder) {
2239   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2240   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2241                     SPF == SelectPatternFlavor::SPF_UMAX;
2242   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2243   // the constant value check to an assert.
2244   Value *A;
2245   const APInt *C1, *C2;
2246   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2247       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2248     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2249     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2250     Value *NewMinMax = createMinMax(Builder, SPF, A,
2251                                     ConstantInt::get(X->getType(), *C2 - *C1));
2252     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2253                                      ConstantInt::get(X->getType(), *C1));
2254   }
2255 
2256   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2257       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2258     bool Overflow;
2259     APInt Diff = C2->ssub_ov(*C1, Overflow);
2260     if (!Overflow) {
2261       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2262       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2263       Value *NewMinMax = createMinMax(Builder, SPF, A,
2264                                       ConstantInt::get(X->getType(), Diff));
2265       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2266                                        ConstantInt::get(X->getType(), *C1));
2267     }
2268   }
2269 
2270   return nullptr;
2271 }
2272 
2273 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2274 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
2275   Type *Ty = MinMax1.getType();
2276 
2277   // We are looking for a tree of:
2278   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2279   // Where the min and max could be reversed
2280   Instruction *MinMax2;
2281   BinaryOperator *AddSub;
2282   const APInt *MinValue, *MaxValue;
2283   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2284     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2285       return nullptr;
2286   } else if (match(&MinMax1,
2287                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2288     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2289       return nullptr;
2290   } else
2291     return nullptr;
2292 
2293   // Check that the constants clamp a saturate, and that the new type would be
2294   // sensible to convert to.
2295   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2296     return nullptr;
2297   // In what bitwidth can this be treated as saturating arithmetics?
2298   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2299   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2300   // good first approximation for what should be done there.
2301   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2302     return nullptr;
2303 
2304   // Also make sure that the number of uses is as expected. The 3 is for the
2305   // the two items of the compare and the select, or 2 from a min/max.
2306   unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
2307   if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
2308     return nullptr;
2309 
2310   // Create the new type (which can be a vector type)
2311   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2312 
2313   Intrinsic::ID IntrinsicID;
2314   if (AddSub->getOpcode() == Instruction::Add)
2315     IntrinsicID = Intrinsic::sadd_sat;
2316   else if (AddSub->getOpcode() == Instruction::Sub)
2317     IntrinsicID = Intrinsic::ssub_sat;
2318   else
2319     return nullptr;
2320 
2321   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
2322   // is usually achieved via a sext from a smaller type.
2323   if (ComputeMinSignedBits(AddSub->getOperand(0), 0, AddSub) > NewBitWidth ||
2324       ComputeMinSignedBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
2325     return nullptr;
2326 
2327   // Finally create and return the sat intrinsic, truncated to the new type
2328   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2329   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
2330   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
2331   Value *Sat = Builder.CreateCall(F, {AT, BT});
2332   return CastInst::Create(Instruction::SExt, Sat, Ty);
2333 }
2334 
2335 /// Reduce a sequence of min/max with a common operand.
2336 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2337                                         Value *RHS,
2338                                         InstCombiner::BuilderTy &Builder) {
2339   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2340   // TODO: Allow FP min/max with nnan/nsz.
2341   if (!LHS->getType()->isIntOrIntVectorTy())
2342     return nullptr;
2343 
2344   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2345   Value *A, *B, *C, *D;
2346   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2347   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2348   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2349     return nullptr;
2350 
2351   // Look for a common operand. The use checks are different than usual because
2352   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2353   // the select.
2354   Value *MinMaxOp = nullptr;
2355   Value *ThirdOp = nullptr;
2356   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2357     // If the LHS is only used in this chain and the RHS is used outside of it,
2358     // reuse the RHS min/max because that will eliminate the LHS.
2359     if (D == A || C == A) {
2360       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2361       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2362       MinMaxOp = RHS;
2363       ThirdOp = B;
2364     } else if (D == B || C == B) {
2365       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2366       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2367       MinMaxOp = RHS;
2368       ThirdOp = A;
2369     }
2370   } else if (!RHS->hasNUsesOrMore(3)) {
2371     // Reuse the LHS. This will eliminate the RHS.
2372     if (D == A || D == B) {
2373       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2374       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2375       MinMaxOp = LHS;
2376       ThirdOp = C;
2377     } else if (C == A || C == B) {
2378       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2379       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2380       MinMaxOp = LHS;
2381       ThirdOp = D;
2382     }
2383   }
2384   if (!MinMaxOp || !ThirdOp)
2385     return nullptr;
2386 
2387   CmpInst::Predicate P = getMinMaxPred(SPF);
2388   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2389   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2390 }
2391 
2392 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2393 /// into a funnel shift intrinsic. Example:
2394 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2395 ///              --> call llvm.fshl.i32(a, a, b)
2396 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2397 ///                 --> call llvm.fshl.i32(a, b, c)
2398 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2399 ///                 --> call llvm.fshr.i32(a, b, c)
2400 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2401                                           InstCombiner::BuilderTy &Builder) {
2402   // This must be a power-of-2 type for a bitmasking transform to be valid.
2403   unsigned Width = Sel.getType()->getScalarSizeInBits();
2404   if (!isPowerOf2_32(Width))
2405     return nullptr;
2406 
2407   BinaryOperator *Or0, *Or1;
2408   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2409     return nullptr;
2410 
2411   Value *SV0, *SV1, *SA0, *SA1;
2412   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2413                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2414       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2415                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2416       Or0->getOpcode() == Or1->getOpcode())
2417     return nullptr;
2418 
2419   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2420   if (Or0->getOpcode() == BinaryOperator::LShr) {
2421     std::swap(Or0, Or1);
2422     std::swap(SV0, SV1);
2423     std::swap(SA0, SA1);
2424   }
2425   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2426          Or1->getOpcode() == BinaryOperator::LShr &&
2427          "Illegal or(shift,shift) pair");
2428 
2429   // Check the shift amounts to see if they are an opposite pair.
2430   Value *ShAmt;
2431   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2432     ShAmt = SA0;
2433   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2434     ShAmt = SA1;
2435   else
2436     return nullptr;
2437 
2438   // We should now have this pattern:
2439   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2440   // The false value of the select must be a funnel-shift of the true value:
2441   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2442   bool IsFshl = (ShAmt == SA0);
2443   Value *TVal = Sel.getTrueValue();
2444   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2445     return nullptr;
2446 
2447   // Finally, see if the select is filtering out a shift-by-zero.
2448   Value *Cond = Sel.getCondition();
2449   ICmpInst::Predicate Pred;
2450   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2451       Pred != ICmpInst::ICMP_EQ)
2452     return nullptr;
2453 
2454   // If this is not a rotate then the select was blocking poison from the
2455   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2456   if (SV0 != SV1) {
2457     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2458       SV1 = Builder.CreateFreeze(SV1);
2459     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2460       SV0 = Builder.CreateFreeze(SV0);
2461   }
2462 
2463   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2464   // Convert to funnel shift intrinsic.
2465   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2466   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2467   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2468   return CallInst::Create(F, { SV0, SV1, ShAmt });
2469 }
2470 
2471 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2472                                          InstCombiner::BuilderTy &Builder) {
2473   Value *Cond = Sel.getCondition();
2474   Value *TVal = Sel.getTrueValue();
2475   Value *FVal = Sel.getFalseValue();
2476   Type *SelType = Sel.getType();
2477 
2478   // Match select ?, TC, FC where the constants are equal but negated.
2479   // TODO: Generalize to handle a negated variable operand?
2480   const APFloat *TC, *FC;
2481   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2482       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2483     return nullptr;
2484 
2485   assert(TC != FC && "Expected equal select arms to simplify");
2486 
2487   Value *X;
2488   const APInt *C;
2489   bool IsTrueIfSignSet;
2490   ICmpInst::Predicate Pred;
2491   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2492       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2493       X->getType() != SelType)
2494     return nullptr;
2495 
2496   // If needed, negate the value that will be the sign argument of the copysign:
2497   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2498   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2499   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2500   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2501   if (IsTrueIfSignSet ^ TC->isNegative())
2502     X = Builder.CreateFNegFMF(X, &Sel);
2503 
2504   // Canonicalize the magnitude argument as the positive constant since we do
2505   // not care about its sign.
2506   Value *MagArg = TC->isNegative() ? FVal : TVal;
2507   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2508                                           Sel.getType());
2509   Instruction *CopySign = CallInst::Create(F, { MagArg, X });
2510   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2511   return CopySign;
2512 }
2513 
2514 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2515   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2516   if (!VecTy)
2517     return nullptr;
2518 
2519   unsigned NumElts = VecTy->getNumElements();
2520   APInt UndefElts(NumElts, 0);
2521   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2522   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2523     if (V != &Sel)
2524       return replaceInstUsesWith(Sel, V);
2525     return &Sel;
2526   }
2527 
2528   // A select of a "select shuffle" with a common operand can be rearranged
2529   // to select followed by "select shuffle". Because of poison, this only works
2530   // in the case of a shuffle with no undefined mask elements.
2531   Value *Cond = Sel.getCondition();
2532   Value *TVal = Sel.getTrueValue();
2533   Value *FVal = Sel.getFalseValue();
2534   Value *X, *Y;
2535   ArrayRef<int> Mask;
2536   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2537       !is_contained(Mask, UndefMaskElem) &&
2538       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2539     if (X == FVal) {
2540       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2541       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2542       return new ShuffleVectorInst(X, NewSel, Mask);
2543     }
2544     if (Y == FVal) {
2545       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2546       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2547       return new ShuffleVectorInst(NewSel, Y, Mask);
2548     }
2549   }
2550   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2551       !is_contained(Mask, UndefMaskElem) &&
2552       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2553     if (X == TVal) {
2554       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2555       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2556       return new ShuffleVectorInst(X, NewSel, Mask);
2557     }
2558     if (Y == TVal) {
2559       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2560       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2561       return new ShuffleVectorInst(NewSel, Y, Mask);
2562     }
2563   }
2564 
2565   return nullptr;
2566 }
2567 
2568 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2569                                         const DominatorTree &DT,
2570                                         InstCombiner::BuilderTy &Builder) {
2571   // Find the block's immediate dominator that ends with a conditional branch
2572   // that matches select's condition (maybe inverted).
2573   auto *IDomNode = DT[BB]->getIDom();
2574   if (!IDomNode)
2575     return nullptr;
2576   BasicBlock *IDom = IDomNode->getBlock();
2577 
2578   Value *Cond = Sel.getCondition();
2579   Value *IfTrue, *IfFalse;
2580   BasicBlock *TrueSucc, *FalseSucc;
2581   if (match(IDom->getTerminator(),
2582             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2583                  m_BasicBlock(FalseSucc)))) {
2584     IfTrue = Sel.getTrueValue();
2585     IfFalse = Sel.getFalseValue();
2586   } else if (match(IDom->getTerminator(),
2587                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2588                         m_BasicBlock(FalseSucc)))) {
2589     IfTrue = Sel.getFalseValue();
2590     IfFalse = Sel.getTrueValue();
2591   } else
2592     return nullptr;
2593 
2594   // Make sure the branches are actually different.
2595   if (TrueSucc == FalseSucc)
2596     return nullptr;
2597 
2598   // We want to replace select %cond, %a, %b with a phi that takes value %a
2599   // for all incoming edges that are dominated by condition `%cond == true`,
2600   // and value %b for edges dominated by condition `%cond == false`. If %a
2601   // or %b are also phis from the same basic block, we can go further and take
2602   // their incoming values from the corresponding blocks.
2603   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2604   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2605   DenseMap<BasicBlock *, Value *> Inputs;
2606   for (auto *Pred : predecessors(BB)) {
2607     // Check implication.
2608     BasicBlockEdge Incoming(Pred, BB);
2609     if (DT.dominates(TrueEdge, Incoming))
2610       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2611     else if (DT.dominates(FalseEdge, Incoming))
2612       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2613     else
2614       return nullptr;
2615     // Check availability.
2616     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2617       if (!DT.dominates(Insn, Pred->getTerminator()))
2618         return nullptr;
2619   }
2620 
2621   Builder.SetInsertPoint(&*BB->begin());
2622   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2623   for (auto *Pred : predecessors(BB))
2624     PN->addIncoming(Inputs[Pred], Pred);
2625   PN->takeName(&Sel);
2626   return PN;
2627 }
2628 
2629 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2630                                     InstCombiner::BuilderTy &Builder) {
2631   // Try to replace this select with Phi in one of these blocks.
2632   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2633   CandidateBlocks.insert(Sel.getParent());
2634   for (Value *V : Sel.operands())
2635     if (auto *I = dyn_cast<Instruction>(V))
2636       CandidateBlocks.insert(I->getParent());
2637 
2638   for (BasicBlock *BB : CandidateBlocks)
2639     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2640       return PN;
2641   return nullptr;
2642 }
2643 
2644 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2645   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2646   if (!FI)
2647     return nullptr;
2648 
2649   Value *Cond = FI->getOperand(0);
2650   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2651 
2652   //   select (freeze(x == y)), x, y --> y
2653   //   select (freeze(x != y)), x, y --> x
2654   // The freeze should be only used by this select. Otherwise, remaining uses of
2655   // the freeze can observe a contradictory value.
2656   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2657   //   a = select c, x, y   ;
2658   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2659   //                        ; to y, this can happen.
2660   CmpInst::Predicate Pred;
2661   if (FI->hasOneUse() &&
2662       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2663       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2664     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2665   }
2666 
2667   return nullptr;
2668 }
2669 
2670 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2671                                                                  SelectInst &SI,
2672                                                                  bool IsAnd) {
2673   Value *CondVal = SI.getCondition();
2674   Value *A = SI.getTrueValue();
2675   Value *B = SI.getFalseValue();
2676 
2677   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2678          "Op must be either i1 or vector of i1.");
2679 
2680   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2681   if (!Res)
2682     return nullptr;
2683 
2684   Value *Zero = Constant::getNullValue(A->getType());
2685   Value *One = Constant::getAllOnesValue(A->getType());
2686 
2687   if (*Res == true) {
2688     if (IsAnd)
2689       // select op, (select cond, A, B), false => select op, A, false
2690       // and    op, (select cond, A, B)        => select op, A, false
2691       //   if op = true implies condval = true.
2692       return SelectInst::Create(Op, A, Zero);
2693     else
2694       // select op, true, (select cond, A, B) => select op, true, A
2695       // or     op, (select cond, A, B)       => select op, true, A
2696       //   if op = false implies condval = true.
2697       return SelectInst::Create(Op, One, A);
2698   } else {
2699     if (IsAnd)
2700       // select op, (select cond, A, B), false => select op, B, false
2701       // and    op, (select cond, A, B)        => select op, B, false
2702       //   if op = true implies condval = false.
2703       return SelectInst::Create(Op, B, Zero);
2704     else
2705       // select op, true, (select cond, A, B) => select op, true, B
2706       // or     op, (select cond, A, B)       => select op, true, B
2707       //   if op = false implies condval = false.
2708       return SelectInst::Create(Op, One, B);
2709   }
2710 }
2711 
2712 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2713   Value *CondVal = SI.getCondition();
2714   Value *TrueVal = SI.getTrueValue();
2715   Value *FalseVal = SI.getFalseValue();
2716   Type *SelType = SI.getType();
2717 
2718   // FIXME: Remove this workaround when freeze related patches are done.
2719   // For select with undef operand which feeds into an equality comparison,
2720   // don't simplify it so loop unswitch can know the equality comparison
2721   // may have an undef operand. This is a workaround for PR31652 caused by
2722   // descrepancy about branch on undef between LoopUnswitch and GVN.
2723   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2724     if (llvm::any_of(SI.users(), [&](User *U) {
2725           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2726           if (CI && CI->isEquality())
2727             return true;
2728           return false;
2729         })) {
2730       return nullptr;
2731     }
2732   }
2733 
2734   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2735                                     SQ.getWithInstruction(&SI)))
2736     return replaceInstUsesWith(SI, V);
2737 
2738   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2739     return I;
2740 
2741   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2742     return I;
2743 
2744   CmpInst::Predicate Pred;
2745 
2746   // Avoid potential infinite loops by checking for non-constant condition.
2747   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2748   //       Scalar select must have simplified?
2749   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2750       TrueVal->getType() == CondVal->getType()) {
2751     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2752     // checks whether folding it does not convert a well-defined value into
2753     // poison.
2754     if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
2755       // Change: A = select B, true, C --> A = or B, C
2756       return BinaryOperator::CreateOr(CondVal, FalseVal);
2757     }
2758     if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
2759       // Change: A = select B, C, false --> A = and B, C
2760       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2761     }
2762 
2763     auto *One = ConstantInt::getTrue(SelType);
2764     auto *Zero = ConstantInt::getFalse(SelType);
2765 
2766     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2767     // loop with vectors that may have undefined/poison elements.
2768     // select a, false, b -> select !a, b, false
2769     if (match(TrueVal, m_Specific(Zero))) {
2770       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2771       return SelectInst::Create(NotCond, FalseVal, Zero);
2772     }
2773     // select a, b, true -> select !a, true, b
2774     if (match(FalseVal, m_Specific(One))) {
2775       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2776       return SelectInst::Create(NotCond, One, TrueVal);
2777     }
2778 
2779     // select a, a, b -> select a, true, b
2780     if (CondVal == TrueVal)
2781       return replaceOperand(SI, 1, One);
2782     // select a, b, a -> select a, b, false
2783     if (CondVal == FalseVal)
2784       return replaceOperand(SI, 2, Zero);
2785 
2786     // select a, !a, b -> select !a, b, false
2787     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2788       return SelectInst::Create(TrueVal, FalseVal, Zero);
2789     // select a, b, !a -> select !a, true, b
2790     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2791       return SelectInst::Create(FalseVal, One, TrueVal);
2792 
2793     Value *A, *B;
2794 
2795     // DeMorgan in select form: !a && !b --> !(a || b)
2796     // select !a, !b, false --> not (select a, true, b)
2797     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2798         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2799         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2800       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2801 
2802     // DeMorgan in select form: !a || !b --> !(a && b)
2803     // select !a, true, !b --> not (select a, b, false)
2804     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2805         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2806         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2807       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2808 
2809     // select (select a, true, b), true, b -> select a, true, b
2810     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2811         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2812       return replaceOperand(SI, 0, A);
2813     // select (select a, b, false), b, false -> select a, b, false
2814     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2815         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2816       return replaceOperand(SI, 0, A);
2817 
2818     if (!SelType->isVectorTy()) {
2819       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2820                                             /* AllowRefinement */ true))
2821         return replaceOperand(SI, 1, S);
2822       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2823                                             /* AllowRefinement */ true))
2824         return replaceOperand(SI, 2, S);
2825     }
2826 
2827     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2828       Use *Y = nullptr;
2829       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2830       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2831       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2832         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2833         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2834         replaceUse(*Y, FI);
2835         return replaceInstUsesWith(SI, Op1);
2836       }
2837 
2838       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2839         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2840                                                         /* IsAnd */ IsAnd))
2841           return I;
2842 
2843       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2844         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2845           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2846                                                       /* IsLogical */ true))
2847             return replaceInstUsesWith(SI, V);
2848 
2849           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2850             return replaceInstUsesWith(SI, V);
2851         }
2852       }
2853     }
2854 
2855     // select (select a, true, b), c, false -> select a, c, false
2856     // select c, (select a, true, b), false -> select c, a, false
2857     //   if c implies that b is false.
2858     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2859         match(FalseVal, m_Zero())) {
2860       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2861       if (Res && *Res == false)
2862         return replaceOperand(SI, 0, A);
2863     }
2864     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2865         match(FalseVal, m_Zero())) {
2866       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2867       if (Res && *Res == false)
2868         return replaceOperand(SI, 1, A);
2869     }
2870     // select c, true, (select a, b, false)  -> select c, true, a
2871     // select (select a, b, false), true, c  -> select a, true, c
2872     //   if c = false implies that b = true
2873     if (match(TrueVal, m_One()) &&
2874         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2875       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2876       if (Res && *Res == true)
2877         return replaceOperand(SI, 2, A);
2878     }
2879     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2880         match(TrueVal, m_One())) {
2881       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2882       if (Res && *Res == true)
2883         return replaceOperand(SI, 0, A);
2884     }
2885 
2886     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2887     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2888     Value *C1, *C2;
2889     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2890         match(TrueVal, m_One()) &&
2891         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2892       if (match(C2, m_Not(m_Specific(C1)))) // first case
2893         return SelectInst::Create(C1, A, B);
2894       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2895         return SelectInst::Create(C2, B, A);
2896     }
2897   }
2898 
2899   // Selecting between two integer or vector splat integer constants?
2900   //
2901   // Note that we don't handle a scalar select of vectors:
2902   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2903   // because that may need 3 instructions to splat the condition value:
2904   // extend, insertelement, shufflevector.
2905   //
2906   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2907   // zext/sext i1 to i1.
2908   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2909       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2910     // select C, 1, 0 -> zext C to int
2911     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2912       return new ZExtInst(CondVal, SelType);
2913 
2914     // select C, -1, 0 -> sext C to int
2915     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2916       return new SExtInst(CondVal, SelType);
2917 
2918     // select C, 0, 1 -> zext !C to int
2919     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2920       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2921       return new ZExtInst(NotCond, SelType);
2922     }
2923 
2924     // select C, 0, -1 -> sext !C to int
2925     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2926       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2927       return new SExtInst(NotCond, SelType);
2928     }
2929   }
2930 
2931   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2932     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2933     // Are we selecting a value based on a comparison of the two values?
2934     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2935         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2936       // Canonicalize to use ordered comparisons by swapping the select
2937       // operands.
2938       //
2939       // e.g.
2940       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2941       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2942         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2943         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2944         // FIXME: The FMF should propagate from the select, not the fcmp.
2945         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2946         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2947                                             FCmp->getName() + ".inv");
2948         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2949         return replaceInstUsesWith(SI, NewSel);
2950       }
2951 
2952       // NOTE: if we wanted to, this is where to detect MIN/MAX
2953     }
2954   }
2955 
2956   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2957   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2958   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2959   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2960       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2961       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2962     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2963     return replaceInstUsesWith(SI, Fabs);
2964   }
2965   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2966   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2967       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2968       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2969     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2970     return replaceInstUsesWith(SI, Fabs);
2971   }
2972   // With nnan and nsz:
2973   // (X <  +/-0.0) ? -X : X --> fabs(X)
2974   // (X <= +/-0.0) ? -X : X --> fabs(X)
2975   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2976       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2977       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2978        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2979     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2980     return replaceInstUsesWith(SI, Fabs);
2981   }
2982   // With nnan and nsz:
2983   // (X >  +/-0.0) ? X : -X --> fabs(X)
2984   // (X >= +/-0.0) ? X : -X --> fabs(X)
2985   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2986       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2987       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2988        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2989     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2990     return replaceInstUsesWith(SI, Fabs);
2991   }
2992 
2993   // See if we are selecting two values based on a comparison of the two values.
2994   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2995     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2996       return Result;
2997 
2998   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2999     return Add;
3000   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3001     return Add;
3002   if (Instruction *Or = foldSetClearBits(SI, Builder))
3003     return Or;
3004   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3005     return Mul;
3006 
3007   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3008   auto *TI = dyn_cast<Instruction>(TrueVal);
3009   auto *FI = dyn_cast<Instruction>(FalseVal);
3010   if (TI && FI && TI->getOpcode() == FI->getOpcode())
3011     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3012       return IV;
3013 
3014   if (Instruction *I = foldSelectExtConst(SI))
3015     return I;
3016 
3017   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3018   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3019   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3020                                bool Swap) -> GetElementPtrInst * {
3021     Value *Ptr = Gep->getPointerOperand();
3022     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3023         !Gep->hasOneUse())
3024       return nullptr;
3025     Value *Idx = Gep->getOperand(1);
3026     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3027       return nullptr;
3028     Type *ElementType = Gep->getResultElementType();
3029     Value *NewT = Idx;
3030     Value *NewF = Constant::getNullValue(Idx->getType());
3031     if (Swap)
3032       std::swap(NewT, NewF);
3033     Value *NewSI =
3034         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3035     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3036   };
3037   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3038     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3039       return NewGep;
3040   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3041     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3042       return NewGep;
3043 
3044   // See if we can fold the select into one of our operands.
3045   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3046     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3047       return FoldI;
3048 
3049     Value *LHS, *RHS;
3050     Instruction::CastOps CastOp;
3051     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3052     auto SPF = SPR.Flavor;
3053     if (SPF) {
3054       Value *LHS2, *RHS2;
3055       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3056         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3057                                           RHS2, SI, SPF, RHS))
3058           return R;
3059       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3060         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3061                                           RHS2, SI, SPF, LHS))
3062           return R;
3063       // TODO.
3064       // ABS(-X) -> ABS(X)
3065     }
3066 
3067     if (SelectPatternResult::isMinOrMax(SPF)) {
3068       // Canonicalize so that
3069       // - type casts are outside select patterns.
3070       // - float clamp is transformed to min/max pattern
3071 
3072       bool IsCastNeeded = LHS->getType() != SelType;
3073       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3074       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3075       if (IsCastNeeded ||
3076           (LHS->getType()->isFPOrFPVectorTy() &&
3077            ((CmpLHS != LHS && CmpLHS != RHS) ||
3078             (CmpRHS != LHS && CmpRHS != RHS)))) {
3079         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3080 
3081         Value *Cmp;
3082         if (CmpInst::isIntPredicate(MinMaxPred)) {
3083           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3084         } else {
3085           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3086           auto FMF =
3087               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3088           Builder.setFastMathFlags(FMF);
3089           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3090         }
3091 
3092         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3093         if (!IsCastNeeded)
3094           return replaceInstUsesWith(SI, NewSI);
3095 
3096         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3097         return replaceInstUsesWith(SI, NewCast);
3098       }
3099 
3100       // MAX(~a, ~b) -> ~MIN(a, b)
3101       // MAX(~a, C)  -> ~MIN(a, ~C)
3102       // MIN(~a, ~b) -> ~MAX(a, b)
3103       // MIN(~a, C)  -> ~MAX(a, ~C)
3104       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
3105         Value *A;
3106         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
3107             !isFreeToInvert(A, A->hasOneUse()) &&
3108             // Passing false to only consider m_Not and constants.
3109             isFreeToInvert(Y, false)) {
3110           Value *B = Builder.CreateNot(Y);
3111           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
3112                                           A, B);
3113           // Copy the profile metadata.
3114           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
3115             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
3116             // Swap the metadata if the operands are swapped.
3117             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
3118               cast<SelectInst>(NewMinMax)->swapProfMetadata();
3119           }
3120 
3121           return BinaryOperator::CreateNot(NewMinMax);
3122         }
3123 
3124         return nullptr;
3125       };
3126 
3127       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
3128         return I;
3129       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
3130         return I;
3131 
3132       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
3133         return I;
3134 
3135       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
3136         return I;
3137       if (Instruction *I = matchSAddSubSat(SI))
3138         return I;
3139     }
3140   }
3141 
3142   // Canonicalize select of FP values where NaN and -0.0 are not valid as
3143   // minnum/maxnum intrinsics.
3144   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3145     Value *X, *Y;
3146     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3147       return replaceInstUsesWith(
3148           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3149 
3150     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3151       return replaceInstUsesWith(
3152           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3153   }
3154 
3155   // See if we can fold the select into a phi node if the condition is a select.
3156   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3157     // The true/false values have to be live in the PHI predecessor's blocks.
3158     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3159         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3160       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3161         return NV;
3162 
3163   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3164     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3165       // select(C, select(C, a, b), c) -> select(C, a, c)
3166       if (TrueSI->getCondition() == CondVal) {
3167         if (SI.getTrueValue() == TrueSI->getTrueValue())
3168           return nullptr;
3169         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3170       }
3171       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3172       // We choose this as normal form to enable folding on the And and
3173       // shortening paths for the values (this helps getUnderlyingObjects() for
3174       // example).
3175       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3176         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3177         replaceOperand(SI, 0, And);
3178         replaceOperand(SI, 1, TrueSI->getTrueValue());
3179         return &SI;
3180       }
3181     }
3182   }
3183   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3184     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3185       // select(C, a, select(C, b, c)) -> select(C, a, c)
3186       if (FalseSI->getCondition() == CondVal) {
3187         if (SI.getFalseValue() == FalseSI->getFalseValue())
3188           return nullptr;
3189         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3190       }
3191       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3192       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3193         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3194         replaceOperand(SI, 0, Or);
3195         replaceOperand(SI, 2, FalseSI->getFalseValue());
3196         return &SI;
3197       }
3198     }
3199   }
3200 
3201   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3202     // The select might be preventing a division by 0.
3203     switch (BO->getOpcode()) {
3204     default:
3205       return true;
3206     case Instruction::SRem:
3207     case Instruction::URem:
3208     case Instruction::SDiv:
3209     case Instruction::UDiv:
3210       return false;
3211     }
3212   };
3213 
3214   // Try to simplify a binop sandwiched between 2 selects with the same
3215   // condition.
3216   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3217   BinaryOperator *TrueBO;
3218   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3219       canMergeSelectThroughBinop(TrueBO)) {
3220     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3221       if (TrueBOSI->getCondition() == CondVal) {
3222         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3223         Worklist.push(TrueBO);
3224         return &SI;
3225       }
3226     }
3227     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3228       if (TrueBOSI->getCondition() == CondVal) {
3229         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3230         Worklist.push(TrueBO);
3231         return &SI;
3232       }
3233     }
3234   }
3235 
3236   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3237   BinaryOperator *FalseBO;
3238   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3239       canMergeSelectThroughBinop(FalseBO)) {
3240     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3241       if (FalseBOSI->getCondition() == CondVal) {
3242         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3243         Worklist.push(FalseBO);
3244         return &SI;
3245       }
3246     }
3247     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3248       if (FalseBOSI->getCondition() == CondVal) {
3249         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3250         Worklist.push(FalseBO);
3251         return &SI;
3252       }
3253     }
3254   }
3255 
3256   Value *NotCond;
3257   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3258       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3259     replaceOperand(SI, 0, NotCond);
3260     SI.swapValues();
3261     SI.swapProfMetadata();
3262     return &SI;
3263   }
3264 
3265   if (Instruction *I = foldVectorSelect(SI))
3266     return I;
3267 
3268   // If we can compute the condition, there's no need for a select.
3269   // Like the above fold, we are attempting to reduce compile-time cost by
3270   // putting this fold here with limitations rather than in InstSimplify.
3271   // The motivation for this call into value tracking is to take advantage of
3272   // the assumption cache, so make sure that is populated.
3273   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3274     KnownBits Known(1);
3275     computeKnownBits(CondVal, Known, 0, &SI);
3276     if (Known.One.isOne())
3277       return replaceInstUsesWith(SI, TrueVal);
3278     if (Known.Zero.isOne())
3279       return replaceInstUsesWith(SI, FalseVal);
3280   }
3281 
3282   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3283     return BitCastSel;
3284 
3285   // Simplify selects that test the returned flag of cmpxchg instructions.
3286   if (Value *V = foldSelectCmpXchg(SI))
3287     return replaceInstUsesWith(SI, V);
3288 
3289   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3290     return Select;
3291 
3292   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3293     return Funnel;
3294 
3295   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3296     return Copysign;
3297 
3298   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3299     return replaceInstUsesWith(SI, PN);
3300 
3301   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3302     return replaceInstUsesWith(SI, Fr);
3303 
3304   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3305   // Load inst is intentionally not checked for hasOneUse()
3306   if (match(FalseVal, m_Zero()) &&
3307       match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3308                                   m_CombineOr(m_Undef(), m_Zero())))) {
3309     auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
3310     if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3311       MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
3312     return replaceInstUsesWith(SI, MaskedLoad);
3313   }
3314 
3315   Value *Mask;
3316   if (match(TrueVal, m_Zero()) &&
3317       match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3318                                    m_CombineOr(m_Undef(), m_Zero()))) &&
3319       (CondVal->getType() == Mask->getType())) {
3320     // We can remove the select by ensuring the load zeros all lanes the
3321     // select would have.  We determine this by proving there is no overlap
3322     // between the load and select masks.
3323     // (i.e (load_mask & select_mask) == 0 == no overlap)
3324     bool CanMergeSelectIntoLoad = false;
3325     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3326       CanMergeSelectIntoLoad = match(V, m_Zero());
3327 
3328     if (CanMergeSelectIntoLoad) {
3329       auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
3330       if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3331         MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
3332       return replaceInstUsesWith(SI, MaskedLoad);
3333     }
3334   }
3335 
3336   return nullptr;
3337 }
3338