xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 
24 using namespace llvm;
25 using namespace llvm::PatternMatch;
26 
27 #define DEBUG_TYPE "instcombine"
28 
29 static cl::opt<unsigned>
30 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
31            cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
32 
33 STATISTIC(NumPHIsOfInsertValues,
34           "Number of phi-of-insertvalue turned into insertvalue-of-phis");
35 STATISTIC(NumPHIsOfExtractValues,
36           "Number of phi-of-extractvalue turned into extractvalue-of-phi");
37 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
38 
39 /// The PHI arguments will be folded into a single operation with a PHI node
40 /// as input. The debug location of the single operation will be the merged
41 /// locations of the original PHI node arguments.
42 void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
43   auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
44   Inst->setDebugLoc(FirstInst->getDebugLoc());
45   // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
46   // will be inefficient.
47   assert(!isa<CallInst>(Inst));
48 
49   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
50     auto *I = cast<Instruction>(PN.getIncomingValue(i));
51     Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
52   }
53 }
54 
55 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
56 // If there is an existing pointer typed PHI that produces the same value as PN,
57 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
58 // PHI node:
59 //
60 // Case-1:
61 // bb1:
62 //     int_init = PtrToInt(ptr_init)
63 //     br label %bb2
64 // bb2:
65 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
66 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
67 //    ptr_val2 = IntToPtr(int_val)
68 //    ...
69 //    use(ptr_val2)
70 //    ptr_val_inc = ...
71 //    inc_val_inc = PtrToInt(ptr_val_inc)
72 //
73 // ==>
74 // bb1:
75 //     br label %bb2
76 // bb2:
77 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
78 //    ...
79 //    use(ptr_val)
80 //    ptr_val_inc = ...
81 //
82 // Case-2:
83 // bb1:
84 //    int_ptr = BitCast(ptr_ptr)
85 //    int_init = Load(int_ptr)
86 //    br label %bb2
87 // bb2:
88 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
89 //    ptr_val2 = IntToPtr(int_val)
90 //    ...
91 //    use(ptr_val2)
92 //    ptr_val_inc = ...
93 //    inc_val_inc = PtrToInt(ptr_val_inc)
94 // ==>
95 // bb1:
96 //    ptr_init = Load(ptr_ptr)
97 //    br label %bb2
98 // bb2:
99 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
100 //    ...
101 //    use(ptr_val)
102 //    ptr_val_inc = ...
103 //    ...
104 //
105 Instruction *InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
106   if (!PN.getType()->isIntegerTy())
107     return nullptr;
108   if (!PN.hasOneUse())
109     return nullptr;
110 
111   auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
112   if (!IntToPtr)
113     return nullptr;
114 
115   // Check if the pointer is actually used as pointer:
116   auto HasPointerUse = [](Instruction *IIP) {
117     for (User *U : IIP->users()) {
118       Value *Ptr = nullptr;
119       if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
120         Ptr = LoadI->getPointerOperand();
121       } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
122         Ptr = SI->getPointerOperand();
123       } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
124         Ptr = GI->getPointerOperand();
125       }
126 
127       if (Ptr && Ptr == IIP)
128         return true;
129     }
130     return false;
131   };
132 
133   if (!HasPointerUse(IntToPtr))
134     return nullptr;
135 
136   if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
137       DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
138     return nullptr;
139 
140   SmallVector<Value *, 4> AvailablePtrVals;
141   for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
142     Value *Arg = PN.getIncomingValue(i);
143 
144     // First look backward:
145     if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
146       AvailablePtrVals.emplace_back(PI->getOperand(0));
147       continue;
148     }
149 
150     // Next look forward:
151     Value *ArgIntToPtr = nullptr;
152     for (User *U : Arg->users()) {
153       if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
154           (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
155            cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
156         ArgIntToPtr = U;
157         break;
158       }
159     }
160 
161     if (ArgIntToPtr) {
162       AvailablePtrVals.emplace_back(ArgIntToPtr);
163       continue;
164     }
165 
166     // If Arg is defined by a PHI, allow it. This will also create
167     // more opportunities iteratively.
168     if (isa<PHINode>(Arg)) {
169       AvailablePtrVals.emplace_back(Arg);
170       continue;
171     }
172 
173     // For a single use integer load:
174     auto *LoadI = dyn_cast<LoadInst>(Arg);
175     if (!LoadI)
176       return nullptr;
177 
178     if (!LoadI->hasOneUse())
179       return nullptr;
180 
181     // Push the integer typed Load instruction into the available
182     // value set, and fix it up later when the pointer typed PHI
183     // is synthesized.
184     AvailablePtrVals.emplace_back(LoadI);
185   }
186 
187   // Now search for a matching PHI
188   auto *BB = PN.getParent();
189   assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
190          "Not enough available ptr typed incoming values");
191   PHINode *MatchingPtrPHI = nullptr;
192   unsigned NumPhis = 0;
193   for (auto II = BB->begin(); II != BB->end(); II++, NumPhis++) {
194     // FIXME: consider handling this in AggressiveInstCombine
195     PHINode *PtrPHI = dyn_cast<PHINode>(II);
196     if (!PtrPHI)
197       break;
198     if (NumPhis > MaxNumPhis)
199       return nullptr;
200     if (PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
201       continue;
202     MatchingPtrPHI = PtrPHI;
203     for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
204       if (AvailablePtrVals[i] !=
205           PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
206         MatchingPtrPHI = nullptr;
207         break;
208       }
209     }
210 
211     if (MatchingPtrPHI)
212       break;
213   }
214 
215   if (MatchingPtrPHI) {
216     assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
217            "Phi's Type does not match with IntToPtr");
218     // The PtrToCast + IntToPtr will be simplified later
219     return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
220                                             IntToPtr->getOperand(0)->getType());
221   }
222 
223   // If it requires a conversion for every PHI operand, do not do it.
224   if (all_of(AvailablePtrVals, [&](Value *V) {
225         return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
226       }))
227     return nullptr;
228 
229   // If any of the operand that requires casting is a terminator
230   // instruction, do not do it. Similarly, do not do the transform if the value
231   // is PHI in a block with no insertion point, for example, a catchswitch
232   // block, since we will not be able to insert a cast after the PHI.
233   if (any_of(AvailablePtrVals, [&](Value *V) {
234         if (V->getType() == IntToPtr->getType())
235           return false;
236         auto *Inst = dyn_cast<Instruction>(V);
237         if (!Inst)
238           return false;
239         if (Inst->isTerminator())
240           return true;
241         auto *BB = Inst->getParent();
242         if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
243           return true;
244         return false;
245       }))
246     return nullptr;
247 
248   PHINode *NewPtrPHI = PHINode::Create(
249       IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
250 
251   InsertNewInstBefore(NewPtrPHI, PN);
252   SmallDenseMap<Value *, Instruction *> Casts;
253   for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
254     auto *IncomingBB = PN.getIncomingBlock(i);
255     auto *IncomingVal = AvailablePtrVals[i];
256 
257     if (IncomingVal->getType() == IntToPtr->getType()) {
258       NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
259       continue;
260     }
261 
262 #ifndef NDEBUG
263     LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
264     assert((isa<PHINode>(IncomingVal) ||
265             IncomingVal->getType()->isPointerTy() ||
266             (LoadI && LoadI->hasOneUse())) &&
267            "Can not replace LoadInst with multiple uses");
268 #endif
269     // Need to insert a BitCast.
270     // For an integer Load instruction with a single use, the load + IntToPtr
271     // cast will be simplified into a pointer load:
272     // %v = load i64, i64* %a.ip, align 8
273     // %v.cast = inttoptr i64 %v to float **
274     // ==>
275     // %v.ptrp = bitcast i64 * %a.ip to float **
276     // %v.cast = load float *, float ** %v.ptrp, align 8
277     Instruction *&CI = Casts[IncomingVal];
278     if (!CI) {
279       CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
280                                             IncomingVal->getName() + ".ptr");
281       if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
282         BasicBlock::iterator InsertPos(IncomingI);
283         InsertPos++;
284         BasicBlock *BB = IncomingI->getParent();
285         if (isa<PHINode>(IncomingI))
286           InsertPos = BB->getFirstInsertionPt();
287         assert(InsertPos != BB->end() && "should have checked above");
288         InsertNewInstBefore(CI, *InsertPos);
289       } else {
290         auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
291         InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
292       }
293     }
294     NewPtrPHI->addIncoming(CI, IncomingBB);
295   }
296 
297   // The PtrToCast + IntToPtr will be simplified later
298   return CastInst::CreateBitOrPointerCast(NewPtrPHI,
299                                           IntToPtr->getOperand(0)->getType());
300 }
301 
302 // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
303 // fold Phi-operand to bitcast.
304 Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
305   // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
306   // Make sure all uses of phi are ptr2int.
307   if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
308     return nullptr;
309 
310   // Iterating over all operands to check presence of target pointers for
311   // optimization.
312   bool OperandWithRoundTripCast = false;
313   for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
314     if (auto *NewOp =
315             simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
316       PN.setIncomingValue(OpNum, NewOp);
317       OperandWithRoundTripCast = true;
318     }
319   }
320   if (!OperandWithRoundTripCast)
321     return nullptr;
322   return &PN;
323 }
324 
325 /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
326 /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
327 Instruction *
328 InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
329   auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
330 
331   // Scan to see if all operands are `insertvalue`'s with the same indicies,
332   // and all have a single use.
333   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
334     auto *I = dyn_cast<InsertValueInst>(PN.getIncomingValue(i));
335     if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
336       return nullptr;
337   }
338 
339   // For each operand of an `insertvalue`
340   std::array<PHINode *, 2> NewOperands;
341   for (int OpIdx : {0, 1}) {
342     auto *&NewOperand = NewOperands[OpIdx];
343     // Create a new PHI node to receive the values the operand has in each
344     // incoming basic block.
345     NewOperand = PHINode::Create(
346         FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
347         FirstIVI->getOperand(OpIdx)->getName() + ".pn");
348     // And populate each operand's PHI with said values.
349     for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
350       NewOperand->addIncoming(
351           cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
352           std::get<0>(Incoming));
353     InsertNewInstBefore(NewOperand, PN);
354   }
355 
356   // And finally, create `insertvalue` over the newly-formed PHI nodes.
357   auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
358                                          FirstIVI->getIndices(), PN.getName());
359 
360   PHIArgMergedDebugLoc(NewIVI, PN);
361   ++NumPHIsOfInsertValues;
362   return NewIVI;
363 }
364 
365 /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
366 /// turn this into a phi[a,b] and a single extractvalue.
367 Instruction *
368 InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
369   auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
370 
371   // Scan to see if all operands are `extractvalue`'s with the same indicies,
372   // and all have a single use.
373   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
374     auto *I = dyn_cast<ExtractValueInst>(PN.getIncomingValue(i));
375     if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
376         I->getAggregateOperand()->getType() !=
377             FirstEVI->getAggregateOperand()->getType())
378       return nullptr;
379   }
380 
381   // Create a new PHI node to receive the values the aggregate operand has
382   // in each incoming basic block.
383   auto *NewAggregateOperand = PHINode::Create(
384       FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
385       FirstEVI->getAggregateOperand()->getName() + ".pn");
386   // And populate the PHI with said values.
387   for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
388     NewAggregateOperand->addIncoming(
389         cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
390         std::get<0>(Incoming));
391   InsertNewInstBefore(NewAggregateOperand, PN);
392 
393   // And finally, create `extractvalue` over the newly-formed PHI nodes.
394   auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
395                                           FirstEVI->getIndices(), PN.getName());
396 
397   PHIArgMergedDebugLoc(NewEVI, PN);
398   ++NumPHIsOfExtractValues;
399   return NewEVI;
400 }
401 
402 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
403 /// adds all have a single user, turn this into a phi and a single binop.
404 Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
405   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
406   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
407   unsigned Opc = FirstInst->getOpcode();
408   Value *LHSVal = FirstInst->getOperand(0);
409   Value *RHSVal = FirstInst->getOperand(1);
410 
411   Type *LHSType = LHSVal->getType();
412   Type *RHSType = RHSVal->getType();
413 
414   // Scan to see if all operands are the same opcode, and all have one user.
415   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
416     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
417     if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
418         // Verify type of the LHS matches so we don't fold cmp's of different
419         // types.
420         I->getOperand(0)->getType() != LHSType ||
421         I->getOperand(1)->getType() != RHSType)
422       return nullptr;
423 
424     // If they are CmpInst instructions, check their predicates
425     if (CmpInst *CI = dyn_cast<CmpInst>(I))
426       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
427         return nullptr;
428 
429     // Keep track of which operand needs a phi node.
430     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
431     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
432   }
433 
434   // If both LHS and RHS would need a PHI, don't do this transformation,
435   // because it would increase the number of PHIs entering the block,
436   // which leads to higher register pressure. This is especially
437   // bad when the PHIs are in the header of a loop.
438   if (!LHSVal && !RHSVal)
439     return nullptr;
440 
441   // Otherwise, this is safe to transform!
442 
443   Value *InLHS = FirstInst->getOperand(0);
444   Value *InRHS = FirstInst->getOperand(1);
445   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
446   if (!LHSVal) {
447     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
448                              FirstInst->getOperand(0)->getName() + ".pn");
449     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
450     InsertNewInstBefore(NewLHS, PN);
451     LHSVal = NewLHS;
452   }
453 
454   if (!RHSVal) {
455     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
456                              FirstInst->getOperand(1)->getName() + ".pn");
457     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
458     InsertNewInstBefore(NewRHS, PN);
459     RHSVal = NewRHS;
460   }
461 
462   // Add all operands to the new PHIs.
463   if (NewLHS || NewRHS) {
464     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
465       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
466       if (NewLHS) {
467         Value *NewInLHS = InInst->getOperand(0);
468         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
469       }
470       if (NewRHS) {
471         Value *NewInRHS = InInst->getOperand(1);
472         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
473       }
474     }
475   }
476 
477   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
478     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
479                                      LHSVal, RHSVal);
480     PHIArgMergedDebugLoc(NewCI, PN);
481     return NewCI;
482   }
483 
484   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
485   BinaryOperator *NewBinOp =
486     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
487 
488   NewBinOp->copyIRFlags(PN.getIncomingValue(0));
489 
490   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
491     NewBinOp->andIRFlags(PN.getIncomingValue(i));
492 
493   PHIArgMergedDebugLoc(NewBinOp, PN);
494   return NewBinOp;
495 }
496 
497 Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
498   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
499 
500   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
501                                         FirstInst->op_end());
502   // This is true if all GEP bases are allocas and if all indices into them are
503   // constants.
504   bool AllBasePointersAreAllocas = true;
505 
506   // We don't want to replace this phi if the replacement would require
507   // more than one phi, which leads to higher register pressure. This is
508   // especially bad when the PHIs are in the header of a loop.
509   bool NeededPhi = false;
510 
511   bool AllInBounds = true;
512 
513   // Scan to see if all operands are the same opcode, and all have one user.
514   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
515     GetElementPtrInst *GEP =
516         dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
517     if (!GEP || !GEP->hasOneUser() || GEP->getType() != FirstInst->getType() ||
518         GEP->getNumOperands() != FirstInst->getNumOperands())
519       return nullptr;
520 
521     AllInBounds &= GEP->isInBounds();
522 
523     // Keep track of whether or not all GEPs are of alloca pointers.
524     if (AllBasePointersAreAllocas &&
525         (!isa<AllocaInst>(GEP->getOperand(0)) ||
526          !GEP->hasAllConstantIndices()))
527       AllBasePointersAreAllocas = false;
528 
529     // Compare the operand lists.
530     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
531       if (FirstInst->getOperand(op) == GEP->getOperand(op))
532         continue;
533 
534       // Don't merge two GEPs when two operands differ (introducing phi nodes)
535       // if one of the PHIs has a constant for the index.  The index may be
536       // substantially cheaper to compute for the constants, so making it a
537       // variable index could pessimize the path.  This also handles the case
538       // for struct indices, which must always be constant.
539       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
540           isa<ConstantInt>(GEP->getOperand(op)))
541         return nullptr;
542 
543       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
544         return nullptr;
545 
546       // If we already needed a PHI for an earlier operand, and another operand
547       // also requires a PHI, we'd be introducing more PHIs than we're
548       // eliminating, which increases register pressure on entry to the PHI's
549       // block.
550       if (NeededPhi)
551         return nullptr;
552 
553       FixedOperands[op] = nullptr;  // Needs a PHI.
554       NeededPhi = true;
555     }
556   }
557 
558   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
559   // bother doing this transformation.  At best, this will just save a bit of
560   // offset calculation, but all the predecessors will have to materialize the
561   // stack address into a register anyway.  We'd actually rather *clone* the
562   // load up into the predecessors so that we have a load of a gep of an alloca,
563   // which can usually all be folded into the load.
564   if (AllBasePointersAreAllocas)
565     return nullptr;
566 
567   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
568   // that is variable.
569   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
570 
571   bool HasAnyPHIs = false;
572   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
573     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
574     Value *FirstOp = FirstInst->getOperand(i);
575     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
576                                      FirstOp->getName()+".pn");
577     InsertNewInstBefore(NewPN, PN);
578 
579     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
580     OperandPhis[i] = NewPN;
581     FixedOperands[i] = NewPN;
582     HasAnyPHIs = true;
583   }
584 
585 
586   // Add all operands to the new PHIs.
587   if (HasAnyPHIs) {
588     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
589       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
590       BasicBlock *InBB = PN.getIncomingBlock(i);
591 
592       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
593         if (PHINode *OpPhi = OperandPhis[op])
594           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
595     }
596   }
597 
598   Value *Base = FixedOperands[0];
599   GetElementPtrInst *NewGEP =
600       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
601                                 makeArrayRef(FixedOperands).slice(1));
602   if (AllInBounds) NewGEP->setIsInBounds();
603   PHIArgMergedDebugLoc(NewGEP, PN);
604   return NewGEP;
605 }
606 
607 /// Return true if we know that it is safe to sink the load out of the block
608 /// that defines it. This means that it must be obvious the value of the load is
609 /// not changed from the point of the load to the end of the block it is in.
610 ///
611 /// Finally, it is safe, but not profitable, to sink a load targeting a
612 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
613 /// to a register.
614 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
615   BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
616 
617   for (++BBI; BBI != E; ++BBI)
618     if (BBI->mayWriteToMemory()) {
619       // Calls that only access inaccessible memory do not block sinking the
620       // load.
621       if (auto *CB = dyn_cast<CallBase>(BBI))
622         if (CB->onlyAccessesInaccessibleMemory())
623           continue;
624       return false;
625     }
626 
627   // Check for non-address taken alloca.  If not address-taken already, it isn't
628   // profitable to do this xform.
629   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
630     bool isAddressTaken = false;
631     for (User *U : AI->users()) {
632       if (isa<LoadInst>(U)) continue;
633       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
634         // If storing TO the alloca, then the address isn't taken.
635         if (SI->getOperand(1) == AI) continue;
636       }
637       isAddressTaken = true;
638       break;
639     }
640 
641     if (!isAddressTaken && AI->isStaticAlloca())
642       return false;
643   }
644 
645   // If this load is a load from a GEP with a constant offset from an alloca,
646   // then we don't want to sink it.  In its present form, it will be
647   // load [constant stack offset].  Sinking it will cause us to have to
648   // materialize the stack addresses in each predecessor in a register only to
649   // do a shared load from register in the successor.
650   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
651     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
652       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
653         return false;
654 
655   return true;
656 }
657 
658 Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
659   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
660 
661   // FIXME: This is overconservative; this transform is allowed in some cases
662   // for atomic operations.
663   if (FirstLI->isAtomic())
664     return nullptr;
665 
666   // When processing loads, we need to propagate two bits of information to the
667   // sunk load: whether it is volatile, and what its alignment is.
668   bool isVolatile = FirstLI->isVolatile();
669   Align LoadAlignment = FirstLI->getAlign();
670   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
671 
672   // We can't sink the load if the loaded value could be modified between the
673   // load and the PHI.
674   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
675       !isSafeAndProfitableToSinkLoad(FirstLI))
676     return nullptr;
677 
678   // If the PHI is of volatile loads and the load block has multiple
679   // successors, sinking it would remove a load of the volatile value from
680   // the path through the other successor.
681   if (isVolatile &&
682       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
683     return nullptr;
684 
685   // Check to see if all arguments are the same operation.
686   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
687     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
688     if (!LI || !LI->hasOneUser())
689       return nullptr;
690 
691     // We can't sink the load if the loaded value could be modified between
692     // the load and the PHI.
693     if (LI->isVolatile() != isVolatile ||
694         LI->getParent() != PN.getIncomingBlock(i) ||
695         LI->getPointerAddressSpace() != LoadAddrSpace ||
696         !isSafeAndProfitableToSinkLoad(LI))
697       return nullptr;
698 
699     LoadAlignment = std::min(LoadAlignment, LI->getAlign());
700 
701     // If the PHI is of volatile loads and the load block has multiple
702     // successors, sinking it would remove a load of the volatile value from
703     // the path through the other successor.
704     if (isVolatile &&
705         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
706       return nullptr;
707   }
708 
709   // Okay, they are all the same operation.  Create a new PHI node of the
710   // correct type, and PHI together all of the LHS's of the instructions.
711   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
712                                    PN.getNumIncomingValues(),
713                                    PN.getName()+".in");
714 
715   Value *InVal = FirstLI->getOperand(0);
716   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
717   LoadInst *NewLI =
718       new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment);
719 
720   unsigned KnownIDs[] = {
721     LLVMContext::MD_tbaa,
722     LLVMContext::MD_range,
723     LLVMContext::MD_invariant_load,
724     LLVMContext::MD_alias_scope,
725     LLVMContext::MD_noalias,
726     LLVMContext::MD_nonnull,
727     LLVMContext::MD_align,
728     LLVMContext::MD_dereferenceable,
729     LLVMContext::MD_dereferenceable_or_null,
730     LLVMContext::MD_access_group,
731   };
732 
733   for (unsigned ID : KnownIDs)
734     NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
735 
736   // Add all operands to the new PHI and combine TBAA metadata.
737   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
738     LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
739     combineMetadata(NewLI, LI, KnownIDs, true);
740     Value *NewInVal = LI->getOperand(0);
741     if (NewInVal != InVal)
742       InVal = nullptr;
743     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
744   }
745 
746   if (InVal) {
747     // The new PHI unions all of the same values together.  This is really
748     // common, so we handle it intelligently here for compile-time speed.
749     NewLI->setOperand(0, InVal);
750     delete NewPN;
751   } else {
752     InsertNewInstBefore(NewPN, PN);
753   }
754 
755   // If this was a volatile load that we are merging, make sure to loop through
756   // and mark all the input loads as non-volatile.  If we don't do this, we will
757   // insert a new volatile load and the old ones will not be deletable.
758   if (isVolatile)
759     for (Value *IncValue : PN.incoming_values())
760       cast<LoadInst>(IncValue)->setVolatile(false);
761 
762   PHIArgMergedDebugLoc(NewLI, PN);
763   return NewLI;
764 }
765 
766 /// TODO: This function could handle other cast types, but then it might
767 /// require special-casing a cast from the 'i1' type. See the comment in
768 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
769 Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
770   // We cannot create a new instruction after the PHI if the terminator is an
771   // EHPad because there is no valid insertion point.
772   if (Instruction *TI = Phi.getParent()->getTerminator())
773     if (TI->isEHPad())
774       return nullptr;
775 
776   // Early exit for the common case of a phi with two operands. These are
777   // handled elsewhere. See the comment below where we check the count of zexts
778   // and constants for more details.
779   unsigned NumIncomingValues = Phi.getNumIncomingValues();
780   if (NumIncomingValues < 3)
781     return nullptr;
782 
783   // Find the narrower type specified by the first zext.
784   Type *NarrowType = nullptr;
785   for (Value *V : Phi.incoming_values()) {
786     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
787       NarrowType = Zext->getSrcTy();
788       break;
789     }
790   }
791   if (!NarrowType)
792     return nullptr;
793 
794   // Walk the phi operands checking that we only have zexts or constants that
795   // we can shrink for free. Store the new operands for the new phi.
796   SmallVector<Value *, 4> NewIncoming;
797   unsigned NumZexts = 0;
798   unsigned NumConsts = 0;
799   for (Value *V : Phi.incoming_values()) {
800     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
801       // All zexts must be identical and have one user.
802       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
803         return nullptr;
804       NewIncoming.push_back(Zext->getOperand(0));
805       NumZexts++;
806     } else if (auto *C = dyn_cast<Constant>(V)) {
807       // Make sure that constants can fit in the new type.
808       Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
809       if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
810         return nullptr;
811       NewIncoming.push_back(Trunc);
812       NumConsts++;
813     } else {
814       // If it's not a cast or a constant, bail out.
815       return nullptr;
816     }
817   }
818 
819   // The more common cases of a phi with no constant operands or just one
820   // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
821   // respectively. foldOpIntoPhi() wants to do the opposite transform that is
822   // performed here. It tries to replicate a cast in the phi operand's basic
823   // block to expose other folding opportunities. Thus, InstCombine will
824   // infinite loop without this check.
825   if (NumConsts == 0 || NumZexts < 2)
826     return nullptr;
827 
828   // All incoming values are zexts or constants that are safe to truncate.
829   // Create a new phi node of the narrow type, phi together all of the new
830   // operands, and zext the result back to the original type.
831   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
832                                     Phi.getName() + ".shrunk");
833   for (unsigned i = 0; i != NumIncomingValues; ++i)
834     NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
835 
836   InsertNewInstBefore(NewPhi, Phi);
837   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
838 }
839 
840 /// If all operands to a PHI node are the same "unary" operator and they all are
841 /// only used by the PHI, PHI together their inputs, and do the operation once,
842 /// to the result of the PHI.
843 Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
844   // We cannot create a new instruction after the PHI if the terminator is an
845   // EHPad because there is no valid insertion point.
846   if (Instruction *TI = PN.getParent()->getTerminator())
847     if (TI->isEHPad())
848       return nullptr;
849 
850   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
851 
852   if (isa<GetElementPtrInst>(FirstInst))
853     return foldPHIArgGEPIntoPHI(PN);
854   if (isa<LoadInst>(FirstInst))
855     return foldPHIArgLoadIntoPHI(PN);
856   if (isa<InsertValueInst>(FirstInst))
857     return foldPHIArgInsertValueInstructionIntoPHI(PN);
858   if (isa<ExtractValueInst>(FirstInst))
859     return foldPHIArgExtractValueInstructionIntoPHI(PN);
860 
861   // Scan the instruction, looking for input operations that can be folded away.
862   // If all input operands to the phi are the same instruction (e.g. a cast from
863   // the same type or "+42") we can pull the operation through the PHI, reducing
864   // code size and simplifying code.
865   Constant *ConstantOp = nullptr;
866   Type *CastSrcTy = nullptr;
867 
868   if (isa<CastInst>(FirstInst)) {
869     CastSrcTy = FirstInst->getOperand(0)->getType();
870 
871     // Be careful about transforming integer PHIs.  We don't want to pessimize
872     // the code by turning an i32 into an i1293.
873     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
874       if (!shouldChangeType(PN.getType(), CastSrcTy))
875         return nullptr;
876     }
877   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
878     // Can fold binop, compare or shift here if the RHS is a constant,
879     // otherwise call FoldPHIArgBinOpIntoPHI.
880     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
881     if (!ConstantOp)
882       return foldPHIArgBinOpIntoPHI(PN);
883   } else {
884     return nullptr;  // Cannot fold this operation.
885   }
886 
887   // Check to see if all arguments are the same operation.
888   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
889     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
890     if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
891       return nullptr;
892     if (CastSrcTy) {
893       if (I->getOperand(0)->getType() != CastSrcTy)
894         return nullptr;  // Cast operation must match.
895     } else if (I->getOperand(1) != ConstantOp) {
896       return nullptr;
897     }
898   }
899 
900   // Okay, they are all the same operation.  Create a new PHI node of the
901   // correct type, and PHI together all of the LHS's of the instructions.
902   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
903                                    PN.getNumIncomingValues(),
904                                    PN.getName()+".in");
905 
906   Value *InVal = FirstInst->getOperand(0);
907   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
908 
909   // Add all operands to the new PHI.
910   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
911     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
912     if (NewInVal != InVal)
913       InVal = nullptr;
914     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
915   }
916 
917   Value *PhiVal;
918   if (InVal) {
919     // The new PHI unions all of the same values together.  This is really
920     // common, so we handle it intelligently here for compile-time speed.
921     PhiVal = InVal;
922     delete NewPN;
923   } else {
924     InsertNewInstBefore(NewPN, PN);
925     PhiVal = NewPN;
926   }
927 
928   // Insert and return the new operation.
929   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
930     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
931                                        PN.getType());
932     PHIArgMergedDebugLoc(NewCI, PN);
933     return NewCI;
934   }
935 
936   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
937     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
938     BinOp->copyIRFlags(PN.getIncomingValue(0));
939 
940     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
941       BinOp->andIRFlags(PN.getIncomingValue(i));
942 
943     PHIArgMergedDebugLoc(BinOp, PN);
944     return BinOp;
945   }
946 
947   CmpInst *CIOp = cast<CmpInst>(FirstInst);
948   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
949                                    PhiVal, ConstantOp);
950   PHIArgMergedDebugLoc(NewCI, PN);
951   return NewCI;
952 }
953 
954 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
955 static bool DeadPHICycle(PHINode *PN,
956                          SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
957   if (PN->use_empty()) return true;
958   if (!PN->hasOneUse()) return false;
959 
960   // Remember this node, and if we find the cycle, return.
961   if (!PotentiallyDeadPHIs.insert(PN).second)
962     return true;
963 
964   // Don't scan crazily complex things.
965   if (PotentiallyDeadPHIs.size() == 16)
966     return false;
967 
968   if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
969     return DeadPHICycle(PU, PotentiallyDeadPHIs);
970 
971   return false;
972 }
973 
974 /// Return true if this phi node is always equal to NonPhiInVal.
975 /// This happens with mutually cyclic phi nodes like:
976 ///   z = some value; x = phi (y, z); y = phi (x, z)
977 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
978                            SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
979   // See if we already saw this PHI node.
980   if (!ValueEqualPHIs.insert(PN).second)
981     return true;
982 
983   // Don't scan crazily complex things.
984   if (ValueEqualPHIs.size() == 16)
985     return false;
986 
987   // Scan the operands to see if they are either phi nodes or are equal to
988   // the value.
989   for (Value *Op : PN->incoming_values()) {
990     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
991       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
992         return false;
993     } else if (Op != NonPhiInVal)
994       return false;
995   }
996 
997   return true;
998 }
999 
1000 /// Return an existing non-zero constant if this phi node has one, otherwise
1001 /// return constant 1.
1002 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
1003   assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
1004   for (Value *V : PN.operands())
1005     if (auto *ConstVA = dyn_cast<ConstantInt>(V))
1006       if (!ConstVA->isZero())
1007         return ConstVA;
1008   return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
1009 }
1010 
1011 namespace {
1012 struct PHIUsageRecord {
1013   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
1014   unsigned Shift;     // The amount shifted.
1015   Instruction *Inst;  // The trunc instruction.
1016 
1017   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
1018     : PHIId(pn), Shift(Sh), Inst(User) {}
1019 
1020   bool operator<(const PHIUsageRecord &RHS) const {
1021     if (PHIId < RHS.PHIId) return true;
1022     if (PHIId > RHS.PHIId) return false;
1023     if (Shift < RHS.Shift) return true;
1024     if (Shift > RHS.Shift) return false;
1025     return Inst->getType()->getPrimitiveSizeInBits() <
1026            RHS.Inst->getType()->getPrimitiveSizeInBits();
1027   }
1028 };
1029 
1030 struct LoweredPHIRecord {
1031   PHINode *PN;        // The PHI that was lowered.
1032   unsigned Shift;     // The amount shifted.
1033   unsigned Width;     // The width extracted.
1034 
1035   LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
1036     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
1037 
1038   // Ctor form used by DenseMap.
1039   LoweredPHIRecord(PHINode *pn, unsigned Sh)
1040     : PN(pn), Shift(Sh), Width(0) {}
1041 };
1042 } // namespace
1043 
1044 namespace llvm {
1045   template<>
1046   struct DenseMapInfo<LoweredPHIRecord> {
1047     static inline LoweredPHIRecord getEmptyKey() {
1048       return LoweredPHIRecord(nullptr, 0);
1049     }
1050     static inline LoweredPHIRecord getTombstoneKey() {
1051       return LoweredPHIRecord(nullptr, 1);
1052     }
1053     static unsigned getHashValue(const LoweredPHIRecord &Val) {
1054       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
1055              (Val.Width>>3);
1056     }
1057     static bool isEqual(const LoweredPHIRecord &LHS,
1058                         const LoweredPHIRecord &RHS) {
1059       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
1060              LHS.Width == RHS.Width;
1061     }
1062   };
1063 } // namespace llvm
1064 
1065 
1066 /// This is an integer PHI and we know that it has an illegal type: see if it is
1067 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
1068 /// the various pieces being extracted. This sort of thing is introduced when
1069 /// SROA promotes an aggregate to large integer values.
1070 ///
1071 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
1072 /// inttoptr.  We should produce new PHIs in the right type.
1073 ///
1074 Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
1075   // PHIUsers - Keep track of all of the truncated values extracted from a set
1076   // of PHIs, along with their offset.  These are the things we want to rewrite.
1077   SmallVector<PHIUsageRecord, 16> PHIUsers;
1078 
1079   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
1080   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
1081   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
1082   // check the uses of (to ensure they are all extracts).
1083   SmallVector<PHINode*, 8> PHIsToSlice;
1084   SmallPtrSet<PHINode*, 8> PHIsInspected;
1085 
1086   PHIsToSlice.push_back(&FirstPhi);
1087   PHIsInspected.insert(&FirstPhi);
1088 
1089   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
1090     PHINode *PN = PHIsToSlice[PHIId];
1091 
1092     // Scan the input list of the PHI.  If any input is an invoke, and if the
1093     // input is defined in the predecessor, then we won't be split the critical
1094     // edge which is required to insert a truncate.  Because of this, we have to
1095     // bail out.
1096     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1097       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
1098       if (!II) continue;
1099       if (II->getParent() != PN->getIncomingBlock(i))
1100         continue;
1101 
1102       // If we have a phi, and if it's directly in the predecessor, then we have
1103       // a critical edge where we need to put the truncate.  Since we can't
1104       // split the edge in instcombine, we have to bail out.
1105       return nullptr;
1106     }
1107 
1108     for (User *U : PN->users()) {
1109       Instruction *UserI = cast<Instruction>(U);
1110 
1111       // If the user is a PHI, inspect its uses recursively.
1112       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1113         if (PHIsInspected.insert(UserPN).second)
1114           PHIsToSlice.push_back(UserPN);
1115         continue;
1116       }
1117 
1118       // Truncates are always ok.
1119       if (isa<TruncInst>(UserI)) {
1120         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1121         continue;
1122       }
1123 
1124       // Otherwise it must be a lshr which can only be used by one trunc.
1125       if (UserI->getOpcode() != Instruction::LShr ||
1126           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1127           !isa<ConstantInt>(UserI->getOperand(1)))
1128         return nullptr;
1129 
1130       // Bail on out of range shifts.
1131       unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1132       if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1133         return nullptr;
1134 
1135       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1136       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1137     }
1138   }
1139 
1140   // If we have no users, they must be all self uses, just nuke the PHI.
1141   if (PHIUsers.empty())
1142     return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
1143 
1144   // If this phi node is transformable, create new PHIs for all the pieces
1145   // extracted out of it.  First, sort the users by their offset and size.
1146   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1147 
1148   LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1149              for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
1150              << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
1151 
1152   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
1153   // hoisted out here to avoid construction/destruction thrashing.
1154   DenseMap<BasicBlock*, Value*> PredValues;
1155 
1156   // ExtractedVals - Each new PHI we introduce is saved here so we don't
1157   // introduce redundant PHIs.
1158   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1159 
1160   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1161     unsigned PHIId = PHIUsers[UserI].PHIId;
1162     PHINode *PN = PHIsToSlice[PHIId];
1163     unsigned Offset = PHIUsers[UserI].Shift;
1164     Type *Ty = PHIUsers[UserI].Inst->getType();
1165 
1166     PHINode *EltPHI;
1167 
1168     // If we've already lowered a user like this, reuse the previously lowered
1169     // value.
1170     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1171 
1172       // Otherwise, Create the new PHI node for this user.
1173       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1174                                PN->getName()+".off"+Twine(Offset), PN);
1175       assert(EltPHI->getType() != PN->getType() &&
1176              "Truncate didn't shrink phi?");
1177 
1178       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1179         BasicBlock *Pred = PN->getIncomingBlock(i);
1180         Value *&PredVal = PredValues[Pred];
1181 
1182         // If we already have a value for this predecessor, reuse it.
1183         if (PredVal) {
1184           EltPHI->addIncoming(PredVal, Pred);
1185           continue;
1186         }
1187 
1188         // Handle the PHI self-reuse case.
1189         Value *InVal = PN->getIncomingValue(i);
1190         if (InVal == PN) {
1191           PredVal = EltPHI;
1192           EltPHI->addIncoming(PredVal, Pred);
1193           continue;
1194         }
1195 
1196         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1197           // If the incoming value was a PHI, and if it was one of the PHIs we
1198           // already rewrote it, just use the lowered value.
1199           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1200             PredVal = Res;
1201             EltPHI->addIncoming(PredVal, Pred);
1202             continue;
1203           }
1204         }
1205 
1206         // Otherwise, do an extract in the predecessor.
1207         Builder.SetInsertPoint(Pred->getTerminator());
1208         Value *Res = InVal;
1209         if (Offset)
1210           Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
1211                                                           Offset), "extract");
1212         Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1213         PredVal = Res;
1214         EltPHI->addIncoming(Res, Pred);
1215 
1216         // If the incoming value was a PHI, and if it was one of the PHIs we are
1217         // rewriting, we will ultimately delete the code we inserted.  This
1218         // means we need to revisit that PHI to make sure we extract out the
1219         // needed piece.
1220         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
1221           if (PHIsInspected.count(OldInVal)) {
1222             unsigned RefPHIId =
1223                 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1224             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
1225                                               cast<Instruction>(Res)));
1226             ++UserE;
1227           }
1228       }
1229       PredValues.clear();
1230 
1231       LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
1232                         << *EltPHI << '\n');
1233       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1234     }
1235 
1236     // Replace the use of this piece with the PHI node.
1237     replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1238   }
1239 
1240   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1241   // with poison.
1242   Value *Poison = PoisonValue::get(FirstPhi.getType());
1243   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
1244     replaceInstUsesWith(*PHIsToSlice[i], Poison);
1245   return replaceInstUsesWith(FirstPhi, Poison);
1246 }
1247 
1248 static Value *SimplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
1249                                        const DominatorTree &DT) {
1250   // Simplify the following patterns:
1251   //       if (cond)
1252   //       /       \
1253   //      ...      ...
1254   //       \       /
1255   //    phi [true] [false]
1256   if (!PN.getType()->isIntegerTy(1))
1257     return nullptr;
1258 
1259   if (PN.getNumOperands() != 2)
1260     return nullptr;
1261 
1262   // Make sure all inputs are constants.
1263   if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1264     return nullptr;
1265 
1266   BasicBlock *BB = PN.getParent();
1267   // Do not bother with unreachable instructions.
1268   if (!DT.isReachableFromEntry(BB))
1269     return nullptr;
1270 
1271   // Same inputs.
1272   if (PN.getOperand(0) == PN.getOperand(1))
1273     return PN.getOperand(0);
1274 
1275   BasicBlock *TruePred = nullptr, *FalsePred = nullptr;
1276   for (auto *Pred : predecessors(BB)) {
1277     auto *Input = cast<ConstantInt>(PN.getIncomingValueForBlock(Pred));
1278     if (Input->isAllOnesValue())
1279       TruePred = Pred;
1280     else
1281       FalsePred = Pred;
1282   }
1283   assert(TruePred && FalsePred && "Must be!");
1284 
1285   // Check which edge of the dominator dominates the true input. If it is the
1286   // false edge, we should invert the condition.
1287   auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
1288   auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
1289   if (!BI || BI->isUnconditional())
1290     return nullptr;
1291 
1292   // Check that edges outgoing from the idom's terminators dominate respective
1293   // inputs of the Phi.
1294   BasicBlockEdge TrueOutEdge(IDom, BI->getSuccessor(0));
1295   BasicBlockEdge FalseOutEdge(IDom, BI->getSuccessor(1));
1296 
1297   BasicBlockEdge TrueIncEdge(TruePred, BB);
1298   BasicBlockEdge FalseIncEdge(FalsePred, BB);
1299 
1300   auto *Cond = BI->getCondition();
1301   if (DT.dominates(TrueOutEdge, TrueIncEdge) &&
1302       DT.dominates(FalseOutEdge, FalseIncEdge))
1303     // This Phi is actually equivalent to branching condition of IDom.
1304     return Cond;
1305   else if (DT.dominates(TrueOutEdge, FalseIncEdge) &&
1306            DT.dominates(FalseOutEdge, TrueIncEdge)) {
1307     // This Phi is actually opposite to branching condition of IDom. We invert
1308     // the condition that will potentially open up some opportunities for
1309     // sinking.
1310     auto InsertPt = BB->getFirstInsertionPt();
1311     if (InsertPt != BB->end()) {
1312       Self.Builder.SetInsertPoint(&*InsertPt);
1313       return Self.Builder.CreateNot(Cond);
1314     }
1315   }
1316 
1317   return nullptr;
1318 }
1319 
1320 // PHINode simplification
1321 //
1322 Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
1323   if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1324     return replaceInstUsesWith(PN, V);
1325 
1326   if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
1327     return Result;
1328 
1329   if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1330     return Result;
1331 
1332   // If all PHI operands are the same operation, pull them through the PHI,
1333   // reducing code size.
1334   if (isa<Instruction>(PN.getIncomingValue(0)) &&
1335       isa<Instruction>(PN.getIncomingValue(1)) &&
1336       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
1337           cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
1338       PN.getIncomingValue(0)->hasOneUser())
1339     if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
1340       return Result;
1341 
1342   // If the incoming values are pointer casts of the same original value,
1343   // replace the phi with a single cast iff we can insert a non-PHI instruction.
1344   if (PN.getType()->isPointerTy() &&
1345       PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1346     Value *IV0 = PN.getIncomingValue(0);
1347     Value *IV0Stripped = IV0->stripPointerCasts();
1348     // Set to keep track of values known to be equal to IV0Stripped after
1349     // stripping pointer casts.
1350     SmallPtrSet<Value *, 4> CheckedIVs;
1351     CheckedIVs.insert(IV0);
1352     if (IV0 != IV0Stripped &&
1353         all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1354           return !CheckedIVs.insert(IV).second ||
1355                  IV0Stripped == IV->stripPointerCasts();
1356         })) {
1357       return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1358     }
1359   }
1360 
1361   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
1362   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1363   // PHI)... break the cycle.
1364   if (PN.hasOneUse()) {
1365     if (Instruction *Result = foldIntegerTypedPHI(PN))
1366       return Result;
1367 
1368     Instruction *PHIUser = cast<Instruction>(PN.user_back());
1369     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1370       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1371       PotentiallyDeadPHIs.insert(&PN);
1372       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
1373         return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1374     }
1375 
1376     // If this phi has a single use, and if that use just computes a value for
1377     // the next iteration of a loop, delete the phi.  This occurs with unused
1378     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
1379     // common case here is good because the only other things that catch this
1380     // are induction variable analysis (sometimes) and ADCE, which is only run
1381     // late.
1382     if (PHIUser->hasOneUse() &&
1383         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
1384         PHIUser->user_back() == &PN) {
1385       return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1386     }
1387     // When a PHI is used only to be compared with zero, it is safe to replace
1388     // an incoming value proved as known nonzero with any non-zero constant.
1389     // For example, in the code below, the incoming value %v can be replaced
1390     // with any non-zero constant based on the fact that the PHI is only used to
1391     // be compared with zero and %v is a known non-zero value:
1392     // %v = select %cond, 1, 2
1393     // %p = phi [%v, BB] ...
1394     //      icmp eq, %p, 0
1395     auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
1396     // FIXME: To be simple, handle only integer type for now.
1397     if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
1398         match(CmpInst->getOperand(1), m_Zero())) {
1399       ConstantInt *NonZeroConst = nullptr;
1400       bool MadeChange = false;
1401       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1402         Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
1403         Value *VA = PN.getIncomingValue(i);
1404         if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1405           if (!NonZeroConst)
1406             NonZeroConst = GetAnyNonZeroConstInt(PN);
1407 
1408           if (NonZeroConst != VA) {
1409             replaceOperand(PN, i, NonZeroConst);
1410             MadeChange = true;
1411           }
1412         }
1413       }
1414       if (MadeChange)
1415         return &PN;
1416     }
1417   }
1418 
1419   // We sometimes end up with phi cycles that non-obviously end up being the
1420   // same value, for example:
1421   //   z = some value; x = phi (y, z); y = phi (x, z)
1422   // where the phi nodes don't necessarily need to be in the same block.  Do a
1423   // quick check to see if the PHI node only contains a single non-phi value, if
1424   // so, scan to see if the phi cycle is actually equal to that value.
1425   {
1426     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1427     // Scan for the first non-phi operand.
1428     while (InValNo != NumIncomingVals &&
1429            isa<PHINode>(PN.getIncomingValue(InValNo)))
1430       ++InValNo;
1431 
1432     if (InValNo != NumIncomingVals) {
1433       Value *NonPhiInVal = PN.getIncomingValue(InValNo);
1434 
1435       // Scan the rest of the operands to see if there are any conflicts, if so
1436       // there is no need to recursively scan other phis.
1437       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1438         Value *OpVal = PN.getIncomingValue(InValNo);
1439         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1440           break;
1441       }
1442 
1443       // If we scanned over all operands, then we have one unique value plus
1444       // phi values.  Scan PHI nodes to see if they all merge in each other or
1445       // the value.
1446       if (InValNo == NumIncomingVals) {
1447         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
1448         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1449           return replaceInstUsesWith(PN, NonPhiInVal);
1450       }
1451     }
1452   }
1453 
1454   // If there are multiple PHIs, sort their operands so that they all list
1455   // the blocks in the same order. This will help identical PHIs be eliminated
1456   // by other passes. Other passes shouldn't depend on this for correctness
1457   // however.
1458   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
1459   if (&PN != FirstPN)
1460     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
1461       BasicBlock *BBA = PN.getIncomingBlock(i);
1462       BasicBlock *BBB = FirstPN->getIncomingBlock(i);
1463       if (BBA != BBB) {
1464         Value *VA = PN.getIncomingValue(i);
1465         unsigned j = PN.getBasicBlockIndex(BBB);
1466         Value *VB = PN.getIncomingValue(j);
1467         PN.setIncomingBlock(i, BBB);
1468         PN.setIncomingValue(i, VB);
1469         PN.setIncomingBlock(j, BBA);
1470         PN.setIncomingValue(j, VA);
1471         // NOTE: Instcombine normally would want us to "return &PN" if we
1472         // modified any of the operands of an instruction.  However, since we
1473         // aren't adding or removing uses (just rearranging them) we don't do
1474         // this in this case.
1475       }
1476     }
1477 
1478   // Is there an identical PHI node in this basic block?
1479   for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1480     // Ignore the PHI node itself.
1481     if (&IdenticalPN == &PN)
1482       continue;
1483     // Note that even though we've just canonicalized this PHI, due to the
1484     // worklist visitation order, there are no guarantess that *every* PHI
1485     // has been canonicalized, so we can't just compare operands ranges.
1486     if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1487       continue;
1488     // Just use that PHI instead then.
1489     ++NumPHICSEs;
1490     return replaceInstUsesWith(PN, &IdenticalPN);
1491   }
1492 
1493   // If this is an integer PHI and we know that it has an illegal type, see if
1494   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
1495   // PHI into the various pieces being extracted.  This sort of thing is
1496   // introduced when SROA promotes an aggregate to a single large integer type.
1497   if (PN.getType()->isIntegerTy() &&
1498       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1499     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1500       return Res;
1501 
1502   // Ultimately, try to replace this Phi with a dominating condition.
1503   if (auto *V = SimplifyUsingControlFlow(*this, PN, DT))
1504     return replaceInstUsesWith(PN, V);
1505 
1506   return nullptr;
1507 }
1508