xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineInternal.h (revision 647cbc5de815c5651677bf8582797f716ec7b48d)
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstVisitor.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <cassert>
32 
33 #define DEBUG_TYPE "instcombine"
34 #include "llvm/Transforms/Utils/InstructionWorklist.h"
35 
36 using namespace llvm::PatternMatch;
37 
38 // As a default, let's assume that we want to be aggressive,
39 // and attempt to traverse with no limits in attempt to sink negation.
40 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
41 
42 // Let's guesstimate that most often we will end up visiting/producing
43 // fairly small number of new instructions.
44 static constexpr unsigned NegatorMaxNodesSSO = 16;
45 
46 namespace llvm {
47 
48 class AAResults;
49 class APInt;
50 class AssumptionCache;
51 class BlockFrequencyInfo;
52 class DataLayout;
53 class DominatorTree;
54 class GEPOperator;
55 class GlobalVariable;
56 class LoopInfo;
57 class OptimizationRemarkEmitter;
58 class ProfileSummaryInfo;
59 class TargetLibraryInfo;
60 class User;
61 
62 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
63     : public InstCombiner,
64       public InstVisitor<InstCombinerImpl, Instruction *> {
65 public:
66   InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
67                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
68                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
69                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
70                    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
71                    const DataLayout &DL, LoopInfo *LI)
72       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
73                      BFI, PSI, DL, LI) {}
74 
75   virtual ~InstCombinerImpl() = default;
76 
77   /// Perform early cleanup and prepare the InstCombine worklist.
78   bool prepareWorklist(Function &F,
79                        ReversePostOrderTraversal<BasicBlock *> &RPOT);
80 
81   /// Run the combiner over the entire worklist until it is empty.
82   ///
83   /// \returns true if the IR is changed.
84   bool run();
85 
86   // Visitation implementation - Implement instruction combining for different
87   // instruction types.  The semantics are as follows:
88   // Return Value:
89   //    null        - No change was made
90   //     I          - Change was made, I is still valid, I may be dead though
91   //   otherwise    - Change was made, replace I with returned instruction
92   //
93   Instruction *visitFNeg(UnaryOperator &I);
94   Instruction *visitAdd(BinaryOperator &I);
95   Instruction *visitFAdd(BinaryOperator &I);
96   Value *OptimizePointerDifference(
97       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
98   Instruction *visitSub(BinaryOperator &I);
99   Instruction *visitFSub(BinaryOperator &I);
100   Instruction *visitMul(BinaryOperator &I);
101   Instruction *foldFMulReassoc(BinaryOperator &I);
102   Instruction *visitFMul(BinaryOperator &I);
103   Instruction *visitURem(BinaryOperator &I);
104   Instruction *visitSRem(BinaryOperator &I);
105   Instruction *visitFRem(BinaryOperator &I);
106   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
107   Instruction *commonIRemTransforms(BinaryOperator &I);
108   Instruction *commonIDivTransforms(BinaryOperator &I);
109   Instruction *visitUDiv(BinaryOperator &I);
110   Instruction *visitSDiv(BinaryOperator &I);
111   Instruction *visitFDiv(BinaryOperator &I);
112   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
113   Instruction *visitAnd(BinaryOperator &I);
114   Instruction *visitOr(BinaryOperator &I);
115   bool sinkNotIntoLogicalOp(Instruction &I);
116   bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I);
117   Instruction *visitXor(BinaryOperator &I);
118   Instruction *visitShl(BinaryOperator &I);
119   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
120       BinaryOperator *Sh0, const SimplifyQuery &SQ,
121       bool AnalyzeForSignBitExtraction = false);
122   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
123       BinaryOperator &I);
124   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
125       BinaryOperator &OldAShr);
126   Instruction *visitAShr(BinaryOperator &I);
127   Instruction *visitLShr(BinaryOperator &I);
128   Instruction *commonShiftTransforms(BinaryOperator &I);
129   Instruction *visitFCmpInst(FCmpInst &I);
130   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
131   Instruction *visitICmpInst(ICmpInst &I);
132   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
133                                    BinaryOperator &I);
134   Instruction *commonCastTransforms(CastInst &CI);
135   Instruction *visitTrunc(TruncInst &CI);
136   Instruction *visitZExt(ZExtInst &Zext);
137   Instruction *visitSExt(SExtInst &Sext);
138   Instruction *visitFPTrunc(FPTruncInst &CI);
139   Instruction *visitFPExt(CastInst &CI);
140   Instruction *visitFPToUI(FPToUIInst &FI);
141   Instruction *visitFPToSI(FPToSIInst &FI);
142   Instruction *visitUIToFP(CastInst &CI);
143   Instruction *visitSIToFP(CastInst &CI);
144   Instruction *visitPtrToInt(PtrToIntInst &CI);
145   Instruction *visitIntToPtr(IntToPtrInst &CI);
146   Instruction *visitBitCast(BitCastInst &CI);
147   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
148   Instruction *foldItoFPtoI(CastInst &FI);
149   Instruction *visitSelectInst(SelectInst &SI);
150   Instruction *visitCallInst(CallInst &CI);
151   Instruction *visitInvokeInst(InvokeInst &II);
152   Instruction *visitCallBrInst(CallBrInst &CBI);
153 
154   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
155   Instruction *visitPHINode(PHINode &PN);
156   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
157   Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
158   Instruction *visitAllocaInst(AllocaInst &AI);
159   Instruction *visitAllocSite(Instruction &FI);
160   Instruction *visitFree(CallInst &FI, Value *FreedOp);
161   Instruction *visitLoadInst(LoadInst &LI);
162   Instruction *visitStoreInst(StoreInst &SI);
163   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
164   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
165   Instruction *visitBranchInst(BranchInst &BI);
166   Instruction *visitFenceInst(FenceInst &FI);
167   Instruction *visitSwitchInst(SwitchInst &SI);
168   Instruction *visitReturnInst(ReturnInst &RI);
169   Instruction *visitUnreachableInst(UnreachableInst &I);
170   Instruction *
171   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
172   Instruction *visitInsertValueInst(InsertValueInst &IV);
173   Instruction *visitInsertElementInst(InsertElementInst &IE);
174   Instruction *visitExtractElementInst(ExtractElementInst &EI);
175   Instruction *simplifyBinOpSplats(ShuffleVectorInst &SVI);
176   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
177   Instruction *visitExtractValueInst(ExtractValueInst &EV);
178   Instruction *visitLandingPadInst(LandingPadInst &LI);
179   Instruction *visitVAEndInst(VAEndInst &I);
180   Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
181   bool freezeOtherUses(FreezeInst &FI);
182   Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
183   Instruction *visitFreeze(FreezeInst &I);
184 
185   /// Specify what to return for unhandled instructions.
186   Instruction *visitInstruction(Instruction &I) { return nullptr; }
187 
188   /// True when DB dominates all uses of DI except UI.
189   /// UI must be in the same block as DI.
190   /// The routine checks that the DI parent and DB are different.
191   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
192                         const BasicBlock *DB) const;
193 
194   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
195   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
196                                  const unsigned SIOpd);
197 
198   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
199                                  const Twine &Suffix = "");
200 
201   KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF,
202                                    FPClassTest Interested = fcAllFlags,
203                                    const Instruction *CtxI = nullptr,
204                                    unsigned Depth = 0) const {
205     return llvm::computeKnownFPClass(Val, FMF, DL, Interested, Depth, &TLI, &AC,
206                                      CtxI, &DT);
207   }
208 
209   KnownFPClass computeKnownFPClass(Value *Val,
210                                    FPClassTest Interested = fcAllFlags,
211                                    const Instruction *CtxI = nullptr,
212                                    unsigned Depth = 0) const {
213     return llvm::computeKnownFPClass(Val, DL, Interested, Depth, &TLI, &AC,
214                                      CtxI, &DT);
215   }
216 
217   /// Check if fmul \p MulVal, +0.0 will yield +0.0 (or signed zero is
218   /// ignorable).
219   bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
220                         const Instruction *CtxI) const;
221 
222   Constant *getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp) {
223     Constant *TruncC = ConstantExpr::getTrunc(C, TruncTy);
224     Constant *ExtTruncC =
225         ConstantFoldCastOperand(ExtOp, TruncC, C->getType(), DL);
226     if (ExtTruncC && ExtTruncC == C)
227       return TruncC;
228     return nullptr;
229   }
230 
231   Constant *getLosslessUnsignedTrunc(Constant *C, Type *TruncTy) {
232     return getLosslessTrunc(C, TruncTy, Instruction::ZExt);
233   }
234 
235   Constant *getLosslessSignedTrunc(Constant *C, Type *TruncTy) {
236     return getLosslessTrunc(C, TruncTy, Instruction::SExt);
237   }
238 
239 private:
240   bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
241   bool isDesirableIntType(unsigned BitWidth) const;
242   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
243   bool shouldChangeType(Type *From, Type *To) const;
244   Value *dyn_castNegVal(Value *V) const;
245 
246   /// Classify whether a cast is worth optimizing.
247   ///
248   /// This is a helper to decide whether the simplification of
249   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
250   ///
251   /// \param CI The cast we are interested in.
252   ///
253   /// \return true if this cast actually results in any code being generated and
254   /// if it cannot already be eliminated by some other transformation.
255   bool shouldOptimizeCast(CastInst *CI);
256 
257   /// Try to optimize a sequence of instructions checking if an operation
258   /// on LHS and RHS overflows.
259   ///
260   /// If this overflow check is done via one of the overflow check intrinsics,
261   /// then CtxI has to be the call instruction calling that intrinsic.  If this
262   /// overflow check is done by arithmetic followed by a compare, then CtxI has
263   /// to be the arithmetic instruction.
264   ///
265   /// If a simplification is possible, stores the simplified result of the
266   /// operation in OperationResult and result of the overflow check in
267   /// OverflowResult, and return true.  If no simplification is possible,
268   /// returns false.
269   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
270                              Value *LHS, Value *RHS,
271                              Instruction &CtxI, Value *&OperationResult,
272                              Constant *&OverflowResult);
273 
274   Instruction *visitCallBase(CallBase &Call);
275   Instruction *tryOptimizeCall(CallInst *CI);
276   bool transformConstExprCastCall(CallBase &Call);
277   Instruction *transformCallThroughTrampoline(CallBase &Call,
278                                               IntrinsicInst &Tramp);
279   Instruction *foldCommutativeIntrinsicOverSelects(IntrinsicInst &II);
280 
281   // Match a pair of Phi Nodes like
282   // phi [a, BB0], [b, BB1] & phi [b, BB0], [a, BB1]
283   // Return the matched two operands.
284   std::optional<std::pair<Value *, Value *>>
285   matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS);
286 
287   // Tries to fold (op phi(a, b) phi(b, a)) -> (op a, b)
288   // while op is a commutative intrinsic call.
289   Instruction *foldCommutativeIntrinsicOverPhis(IntrinsicInst &II);
290 
291   Value *simplifyMaskedLoad(IntrinsicInst &II);
292   Instruction *simplifyMaskedStore(IntrinsicInst &II);
293   Instruction *simplifyMaskedGather(IntrinsicInst &II);
294   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
295 
296   /// Transform (zext icmp) to bitwise / integer operations in order to
297   /// eliminate it.
298   ///
299   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
300   /// \parem CI The zext of the (zext icmp) pair we are interested in.
301   ///
302   /// \return null if the transformation cannot be performed. If the
303   /// transformation can be performed the new instruction that replaces the
304   /// (zext icmp) pair will be returned.
305   Instruction *transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext);
306 
307   Instruction *transformSExtICmp(ICmpInst *Cmp, SExtInst &Sext);
308 
309   bool willNotOverflowSignedAdd(const WithCache<const Value *> &LHS,
310                                 const WithCache<const Value *> &RHS,
311                                 const Instruction &CxtI) const {
312     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
313            OverflowResult::NeverOverflows;
314   }
315 
316   bool willNotOverflowUnsignedAdd(const WithCache<const Value *> &LHS,
317                                   const WithCache<const Value *> &RHS,
318                                   const Instruction &CxtI) const {
319     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
320            OverflowResult::NeverOverflows;
321   }
322 
323   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
324                           const Instruction &CxtI, bool IsSigned) const {
325     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
326                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
327   }
328 
329   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
330                                 const Instruction &CxtI) const {
331     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
332            OverflowResult::NeverOverflows;
333   }
334 
335   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
336                                   const Instruction &CxtI) const {
337     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
338            OverflowResult::NeverOverflows;
339   }
340 
341   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
342                           const Instruction &CxtI, bool IsSigned) const {
343     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
344                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
345   }
346 
347   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
348                                 const Instruction &CxtI) const {
349     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
350            OverflowResult::NeverOverflows;
351   }
352 
353   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
354                                   const Instruction &CxtI) const {
355     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
356            OverflowResult::NeverOverflows;
357   }
358 
359   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
360                           const Instruction &CxtI, bool IsSigned) const {
361     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
362                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
363   }
364 
365   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
366                        const Value *RHS, const Instruction &CxtI,
367                        bool IsSigned) const {
368     switch (Opcode) {
369     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
370     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
371     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
372     default: llvm_unreachable("Unexpected opcode for overflow query");
373     }
374   }
375 
376   Value *EmitGEPOffset(User *GEP);
377   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
378   Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
379   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
380   Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
381   Instruction *narrowBinOp(TruncInst &Trunc);
382   Instruction *narrowMaskedBinOp(BinaryOperator &And);
383   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
384   Instruction *narrowFunnelShift(TruncInst &Trunc);
385   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
386   Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
387   Instruction *foldNot(BinaryOperator &I);
388   Instruction *foldBinOpOfDisplacedShifts(BinaryOperator &I);
389 
390   /// Determine if a pair of casts can be replaced by a single cast.
391   ///
392   /// \param CI1 The first of a pair of casts.
393   /// \param CI2 The second of a pair of casts.
394   ///
395   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
396   /// Instruction::CastOps value for a cast that can replace the pair, casting
397   /// CI1->getSrcTy() to CI2->getDstTy().
398   ///
399   /// \see CastInst::isEliminableCastPair
400   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
401                                             const CastInst *CI2);
402   Value *simplifyIntToPtrRoundTripCast(Value *Val);
403 
404   Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
405                           bool IsAnd, bool IsLogical = false);
406   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
407 
408   Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
409 
410   Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
411                                      bool IsAnd);
412 
413   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
414   /// NOTE: Unlike most of instcombine, this returns a Value which should
415   /// already be inserted into the function.
416   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
417                           bool IsLogicalSelect = false);
418 
419   Instruction *foldLogicOfIsFPClass(BinaryOperator &Operator, Value *LHS,
420                                     Value *RHS);
421 
422   Instruction *
423   canonicalizeConditionalNegationViaMathToSelect(BinaryOperator &i);
424 
425   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
426                                        Instruction *CxtI, bool IsAnd,
427                                        bool IsLogical = false);
428   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D,
429                               bool InvertFalseVal = false);
430   Value *getSelectCondition(Value *A, Value *B, bool ABIsTheSame);
431 
432   Instruction *foldLShrOverflowBit(BinaryOperator &I);
433   Instruction *foldExtractOfOverflowIntrinsic(ExtractValueInst &EV);
434   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
435   Instruction *foldIntrinsicIsFPClass(IntrinsicInst &II);
436   Instruction *foldFPSignBitOps(BinaryOperator &I);
437   Instruction *foldFDivConstantDivisor(BinaryOperator &I);
438 
439   // Optimize one of these forms:
440   //   and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
441   //   or i1 Op, SI  / select i1 Op, i1 true, i1 SI  (if IsAnd = false)
442   // into simplier select instruction using isImpliedCondition.
443   Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
444                                                  bool IsAnd);
445 
446   Instruction *hoistFNegAboveFMulFDiv(Value *FNegOp, Instruction &FMFSource);
447 
448 public:
449   /// Create and insert the idiom we use to indicate a block is unreachable
450   /// without having to rewrite the CFG from within InstCombine.
451   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
452     auto &Ctx = InsertAt->getContext();
453     auto *SI = new StoreInst(ConstantInt::getTrue(Ctx),
454                              PoisonValue::get(PointerType::getUnqual(Ctx)),
455                              /*isVolatile*/ false, Align(1));
456     InsertNewInstBefore(SI, InsertAt->getIterator());
457   }
458 
459   /// Combiner aware instruction erasure.
460   ///
461   /// When dealing with an instruction that has side effects or produces a void
462   /// value, we can't rely on DCE to delete the instruction. Instead, visit
463   /// methods should return the value returned by this function.
464   Instruction *eraseInstFromFunction(Instruction &I) override {
465     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
466     assert(I.use_empty() && "Cannot erase instruction that is used!");
467     salvageDebugInfo(I);
468 
469     // Make sure that we reprocess all operands now that we reduced their
470     // use counts.
471     SmallVector<Value *> Ops(I.operands());
472     Worklist.remove(&I);
473     DC.removeValue(&I);
474     I.eraseFromParent();
475     for (Value *Op : Ops)
476       Worklist.handleUseCountDecrement(Op);
477     MadeIRChange = true;
478     return nullptr; // Don't do anything with FI
479   }
480 
481   OverflowResult computeOverflow(
482       Instruction::BinaryOps BinaryOp, bool IsSigned,
483       Value *LHS, Value *RHS, Instruction *CxtI) const;
484 
485   /// Performs a few simplifications for operators which are associative
486   /// or commutative.
487   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
488 
489   /// Tries to simplify binary operations which some other binary
490   /// operation distributes over.
491   ///
492   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
493   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
494   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
495   /// value, or null if it didn't simplify.
496   Value *foldUsingDistributiveLaws(BinaryOperator &I);
497 
498   /// Tries to simplify add operations using the definition of remainder.
499   ///
500   /// The definition of remainder is X % C = X - (X / C ) * C. The add
501   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
502   /// X % (C0 * C1)
503   Value *SimplifyAddWithRemainder(BinaryOperator &I);
504 
505   // Tries to fold (Binop phi(a, b) phi(b, a)) -> (Binop a, b)
506   // while Binop is commutative.
507   Value *SimplifyPhiCommutativeBinaryOp(BinaryOperator &I, Value *LHS,
508                                         Value *RHS);
509 
510   // Binary Op helper for select operations where the expression can be
511   // efficiently reorganized.
512   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
513                                         Value *RHS);
514 
515   // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
516   //    -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
517   // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
518   //    -> (BinOp (logic_shift (BinOp X, Y)), Mask)
519   Instruction *foldBinOpShiftWithShift(BinaryOperator &I);
520 
521   /// Tries to simplify binops of select and cast of the select condition.
522   ///
523   /// (Binop (cast C), (select C, T, F))
524   ///    -> (select C, C0, C1)
525   Instruction *foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I);
526 
527   /// This tries to simplify binary operations by factorizing out common terms
528   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
529   Value *tryFactorizationFolds(BinaryOperator &I);
530 
531   /// Match a select chain which produces one of three values based on whether
532   /// the LHS is less than, equal to, or greater than RHS respectively.
533   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
534   /// Equal and Greater values are saved in the matching process and returned to
535   /// the caller.
536   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
537                                ConstantInt *&Less, ConstantInt *&Equal,
538                                ConstantInt *&Greater);
539 
540   /// Attempts to replace V with a simpler value based on the demanded
541   /// bits.
542   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
543                                  unsigned Depth, Instruction *CxtI);
544   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
545                             const APInt &DemandedMask, KnownBits &Known,
546                             unsigned Depth = 0) override;
547 
548   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
549   /// bits. It also tries to handle simplifications that can be done based on
550   /// DemandedMask, but without modifying the Instruction.
551   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
552                                          const APInt &DemandedMask,
553                                          KnownBits &Known,
554                                          unsigned Depth, Instruction *CxtI);
555 
556   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
557   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
558   Value *simplifyShrShlDemandedBits(
559       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
560       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
561 
562   /// Tries to simplify operands to an integer instruction based on its
563   /// demanded bits.
564   bool SimplifyDemandedInstructionBits(Instruction &Inst);
565   bool SimplifyDemandedInstructionBits(Instruction &Inst, KnownBits &Known);
566 
567   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
568                                     APInt &PoisonElts, unsigned Depth = 0,
569                                     bool AllowMultipleUsers = false) override;
570 
571   /// Canonicalize the position of binops relative to shufflevector.
572   Instruction *foldVectorBinop(BinaryOperator &Inst);
573   Instruction *foldVectorSelect(SelectInst &Sel);
574   Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
575 
576   /// Given a binary operator, cast instruction, or select which has a PHI node
577   /// as operand #0, see if we can fold the instruction into the PHI (which is
578   /// only possible if all operands to the PHI are constants).
579   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
580 
581   /// For a binary operator with 2 phi operands, try to hoist the binary
582   /// operation before the phi. This can result in fewer instructions in
583   /// patterns where at least one set of phi operands simplifies.
584   /// Example:
585   /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
586   /// -->
587   /// BB1: BO = binop X, Y
588   /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
589   Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
590 
591   /// Given an instruction with a select as one operand and a constant as the
592   /// other operand, try to fold the binary operator into the select arguments.
593   /// This also works for Cast instructions, which obviously do not have a
594   /// second operand.
595   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
596                                 bool FoldWithMultiUse = false);
597 
598   /// This is a convenience wrapper function for the above two functions.
599   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
600 
601   Instruction *foldAddWithConstant(BinaryOperator &Add);
602 
603   Instruction *foldSquareSumInt(BinaryOperator &I);
604   Instruction *foldSquareSumFP(BinaryOperator &I);
605 
606   /// Try to rotate an operation below a PHI node, using PHI nodes for
607   /// its operands.
608   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
609   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
610   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
611   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
612   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
613   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
614   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
615   Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
616 
617   /// If an integer typed PHI has only one use which is an IntToPtr operation,
618   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
619   /// insert a new pointer typed PHI and replace the original one.
620   bool foldIntegerTypedPHI(PHINode &PN);
621 
622   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
623   /// folded operation.
624   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
625 
626   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
627                            ICmpInst::Predicate Cond, Instruction &I);
628   Instruction *foldSelectICmp(ICmpInst::Predicate Pred, SelectInst *SI,
629                               Value *RHS, const ICmpInst &I);
630   bool foldAllocaCmp(AllocaInst *Alloca);
631   Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
632                                             GetElementPtrInst *GEP,
633                                             GlobalVariable *GV, CmpInst &ICI,
634                                             ConstantInt *AndCst = nullptr);
635   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
636                                     Constant *RHSC);
637   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
638                                   ICmpInst::Predicate Pred);
639   Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
640   Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
641 
642   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
643   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
644   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
645   Instruction *foldICmpUsingBoolRange(ICmpInst &I);
646   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
647   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
648   Instruction *foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
649                                                   const APInt &C);
650   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
651   Instruction *foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax,
652                                   Value *Z, ICmpInst::Predicate Pred);
653   Instruction *foldICmpEquality(ICmpInst &Cmp);
654   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
655   Instruction *foldSignBitTest(ICmpInst &I);
656   Instruction *foldICmpWithZero(ICmpInst &Cmp);
657 
658   Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
659 
660   Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
661                                          const APInt &C);
662   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
663                                       ConstantInt *C);
664   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
665                                      const APInt &C);
666   Instruction *foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
667                                            const SimplifyQuery &Q);
668   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
669                                    const APInt &C);
670   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
671                                    const APInt &C);
672   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
673                                   const APInt &C);
674   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
675                                    const APInt &C);
676   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
677                                    const APInt &C);
678   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
679                                    const APInt &C);
680   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
681                                     const APInt &C);
682   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
683                                     const APInt &C);
684   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
685                                    const APInt &C);
686   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
687                                    const APInt &C);
688   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
689                                    const APInt &C);
690   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
691                                      const APInt &C1);
692   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
693                                 const APInt &C1, const APInt &C2);
694   Instruction *foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor,
695                                      const APInt &C);
696   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
697                                      const APInt &C2);
698   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
699                                      const APInt &C2);
700 
701   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
702                                                  BinaryOperator *BO,
703                                                  const APInt &C);
704   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
705                                              const APInt &C);
706   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
707                                                const APInt &C);
708   Instruction *foldICmpBitCast(ICmpInst &Cmp);
709   Instruction *foldICmpWithTrunc(ICmpInst &Cmp);
710   Instruction *foldICmpCommutative(ICmpInst::Predicate Pred, Value *Op0,
711                                    Value *Op1, ICmpInst &CxtI);
712 
713   // Helpers of visitSelectInst().
714   Instruction *foldSelectOfBools(SelectInst &SI);
715   Instruction *foldSelectExtConst(SelectInst &Sel);
716   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
717   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
718   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
719                             Value *A, Value *B, Instruction &Outer,
720                             SelectPatternFlavor SPF2, Value *C);
721   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
722   Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
723   bool replaceInInstruction(Value *V, Value *Old, Value *New,
724                             unsigned Depth = 0);
725 
726   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
727                          bool isSigned, bool Inside);
728   bool mergeStoreIntoSuccessor(StoreInst &SI);
729 
730   /// Given an initial instruction, check to see if it is the root of a
731   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
732   /// intrinsic.
733   Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
734                                       bool MatchBitReversals);
735 
736   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
737   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
738 
739   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
740 
741   bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock);
742 
743   bool removeInstructionsBeforeUnreachable(Instruction &I);
744   void addDeadEdge(BasicBlock *From, BasicBlock *To,
745                    SmallVectorImpl<BasicBlock *> &Worklist);
746   void handleUnreachableFrom(Instruction *I,
747                              SmallVectorImpl<BasicBlock *> &Worklist);
748   void handlePotentiallyDeadBlocks(SmallVectorImpl<BasicBlock *> &Worklist);
749   void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc);
750   void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser = nullptr);
751 };
752 
753 class Negator final {
754   /// Top-to-bottom, def-to-use negated instruction tree we produced.
755   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
756 
757   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
758   BuilderTy Builder;
759 
760   const bool IsTrulyNegation;
761 
762   SmallDenseMap<Value *, Value *> NegationsCache;
763 
764   Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation);
765 
766 #if LLVM_ENABLE_STATS
767   unsigned NumValuesVisitedInThisNegator = 0;
768   ~Negator();
769 #endif
770 
771   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
772                            Value * /*NegatedRoot*/>;
773 
774   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
775 
776   [[nodiscard]] Value *visitImpl(Value *V, bool IsNSW, unsigned Depth);
777 
778   [[nodiscard]] Value *negate(Value *V, bool IsNSW, unsigned Depth);
779 
780   /// Recurse depth-first and attempt to sink the negation.
781   /// FIXME: use worklist?
782   [[nodiscard]] std::optional<Result> run(Value *Root, bool IsNSW);
783 
784   Negator(const Negator &) = delete;
785   Negator(Negator &&) = delete;
786   Negator &operator=(const Negator &) = delete;
787   Negator &operator=(Negator &&) = delete;
788 
789 public:
790   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
791   /// otherwise returns negated value.
792   [[nodiscard]] static Value *Negate(bool LHSIsZero, bool IsNSW, Value *Root,
793                                      InstCombinerImpl &IC);
794 };
795 
796 } // end namespace llvm
797 
798 #undef DEBUG_TYPE
799 
800 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
801