1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/CaptureTracking.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/Utils/Local.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/KnownBits.h" 29 #include "llvm/Transforms/InstCombine/InstCombiner.h" 30 #include <bitset> 31 32 using namespace llvm; 33 using namespace PatternMatch; 34 35 #define DEBUG_TYPE "instcombine" 36 37 // How many times is a select replaced by one of its operands? 38 STATISTIC(NumSel, "Number of select opts"); 39 40 41 /// Compute Result = In1+In2, returning true if the result overflowed for this 42 /// type. 43 static bool addWithOverflow(APInt &Result, const APInt &In1, 44 const APInt &In2, bool IsSigned = false) { 45 bool Overflow; 46 if (IsSigned) 47 Result = In1.sadd_ov(In2, Overflow); 48 else 49 Result = In1.uadd_ov(In2, Overflow); 50 51 return Overflow; 52 } 53 54 /// Compute Result = In1-In2, returning true if the result overflowed for this 55 /// type. 56 static bool subWithOverflow(APInt &Result, const APInt &In1, 57 const APInt &In2, bool IsSigned = false) { 58 bool Overflow; 59 if (IsSigned) 60 Result = In1.ssub_ov(In2, Overflow); 61 else 62 Result = In1.usub_ov(In2, Overflow); 63 64 return Overflow; 65 } 66 67 /// Given an icmp instruction, return true if any use of this comparison is a 68 /// branch on sign bit comparison. 69 static bool hasBranchUse(ICmpInst &I) { 70 for (auto *U : I.users()) 71 if (isa<BranchInst>(U)) 72 return true; 73 return false; 74 } 75 76 /// Returns true if the exploded icmp can be expressed as a signed comparison 77 /// to zero and updates the predicate accordingly. 78 /// The signedness of the comparison is preserved. 79 /// TODO: Refactor with decomposeBitTestICmp()? 80 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 81 if (!ICmpInst::isSigned(Pred)) 82 return false; 83 84 if (C.isZero()) 85 return ICmpInst::isRelational(Pred); 86 87 if (C.isOne()) { 88 if (Pred == ICmpInst::ICMP_SLT) { 89 Pred = ICmpInst::ICMP_SLE; 90 return true; 91 } 92 } else if (C.isAllOnes()) { 93 if (Pred == ICmpInst::ICMP_SGT) { 94 Pred = ICmpInst::ICMP_SGE; 95 return true; 96 } 97 } 98 99 return false; 100 } 101 102 /// This is called when we see this pattern: 103 /// cmp pred (load (gep GV, ...)), cmpcst 104 /// where GV is a global variable with a constant initializer. Try to simplify 105 /// this into some simple computation that does not need the load. For example 106 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 107 /// 108 /// If AndCst is non-null, then the loaded value is masked with that constant 109 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 110 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 111 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 112 ConstantInt *AndCst) { 113 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 114 GV->getValueType() != GEP->getSourceElementType() || 115 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 116 return nullptr; 117 118 Constant *Init = GV->getInitializer(); 119 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 120 return nullptr; 121 122 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 123 // Don't blow up on huge arrays. 124 if (ArrayElementCount > MaxArraySizeForCombine) 125 return nullptr; 126 127 // There are many forms of this optimization we can handle, for now, just do 128 // the simple index into a single-dimensional array. 129 // 130 // Require: GEP GV, 0, i {{, constant indices}} 131 if (GEP->getNumOperands() < 3 || 132 !isa<ConstantInt>(GEP->getOperand(1)) || 133 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 134 isa<Constant>(GEP->getOperand(2))) 135 return nullptr; 136 137 // Check that indices after the variable are constants and in-range for the 138 // type they index. Collect the indices. This is typically for arrays of 139 // structs. 140 SmallVector<unsigned, 4> LaterIndices; 141 142 Type *EltTy = Init->getType()->getArrayElementType(); 143 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 144 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 145 if (!Idx) return nullptr; // Variable index. 146 147 uint64_t IdxVal = Idx->getZExtValue(); 148 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 149 150 if (StructType *STy = dyn_cast<StructType>(EltTy)) 151 EltTy = STy->getElementType(IdxVal); 152 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 153 if (IdxVal >= ATy->getNumElements()) return nullptr; 154 EltTy = ATy->getElementType(); 155 } else { 156 return nullptr; // Unknown type. 157 } 158 159 LaterIndices.push_back(IdxVal); 160 } 161 162 enum { Overdefined = -3, Undefined = -2 }; 163 164 // Variables for our state machines. 165 166 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 167 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 168 // and 87 is the second (and last) index. FirstTrueElement is -2 when 169 // undefined, otherwise set to the first true element. SecondTrueElement is 170 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 171 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 172 173 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 174 // form "i != 47 & i != 87". Same state transitions as for true elements. 175 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 176 177 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 178 /// define a state machine that triggers for ranges of values that the index 179 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 180 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 181 /// index in the range (inclusive). We use -2 for undefined here because we 182 /// use relative comparisons and don't want 0-1 to match -1. 183 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 184 185 // MagicBitvector - This is a magic bitvector where we set a bit if the 186 // comparison is true for element 'i'. If there are 64 elements or less in 187 // the array, this will fully represent all the comparison results. 188 uint64_t MagicBitvector = 0; 189 190 // Scan the array and see if one of our patterns matches. 191 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 192 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 193 Constant *Elt = Init->getAggregateElement(i); 194 if (!Elt) return nullptr; 195 196 // If this is indexing an array of structures, get the structure element. 197 if (!LaterIndices.empty()) { 198 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 199 if (!Elt) 200 return nullptr; 201 } 202 203 // If the element is masked, handle it. 204 if (AndCst) { 205 Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL); 206 if (!Elt) 207 return nullptr; 208 } 209 210 // Find out if the comparison would be true or false for the i'th element. 211 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 212 CompareRHS, DL, &TLI); 213 // If the result is undef for this element, ignore it. 214 if (isa<UndefValue>(C)) { 215 // Extend range state machines to cover this element in case there is an 216 // undef in the middle of the range. 217 if (TrueRangeEnd == (int)i-1) 218 TrueRangeEnd = i; 219 if (FalseRangeEnd == (int)i-1) 220 FalseRangeEnd = i; 221 continue; 222 } 223 224 // If we can't compute the result for any of the elements, we have to give 225 // up evaluating the entire conditional. 226 if (!isa<ConstantInt>(C)) return nullptr; 227 228 // Otherwise, we know if the comparison is true or false for this element, 229 // update our state machines. 230 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 231 232 // State machine for single/double/range index comparison. 233 if (IsTrueForElt) { 234 // Update the TrueElement state machine. 235 if (FirstTrueElement == Undefined) 236 FirstTrueElement = TrueRangeEnd = i; // First true element. 237 else { 238 // Update double-compare state machine. 239 if (SecondTrueElement == Undefined) 240 SecondTrueElement = i; 241 else 242 SecondTrueElement = Overdefined; 243 244 // Update range state machine. 245 if (TrueRangeEnd == (int)i-1) 246 TrueRangeEnd = i; 247 else 248 TrueRangeEnd = Overdefined; 249 } 250 } else { 251 // Update the FalseElement state machine. 252 if (FirstFalseElement == Undefined) 253 FirstFalseElement = FalseRangeEnd = i; // First false element. 254 else { 255 // Update double-compare state machine. 256 if (SecondFalseElement == Undefined) 257 SecondFalseElement = i; 258 else 259 SecondFalseElement = Overdefined; 260 261 // Update range state machine. 262 if (FalseRangeEnd == (int)i-1) 263 FalseRangeEnd = i; 264 else 265 FalseRangeEnd = Overdefined; 266 } 267 } 268 269 // If this element is in range, update our magic bitvector. 270 if (i < 64 && IsTrueForElt) 271 MagicBitvector |= 1ULL << i; 272 273 // If all of our states become overdefined, bail out early. Since the 274 // predicate is expensive, only check it every 8 elements. This is only 275 // really useful for really huge arrays. 276 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 277 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 278 FalseRangeEnd == Overdefined) 279 return nullptr; 280 } 281 282 // Now that we've scanned the entire array, emit our new comparison(s). We 283 // order the state machines in complexity of the generated code. 284 Value *Idx = GEP->getOperand(2); 285 286 // If the index is larger than the pointer offset size of the target, truncate 287 // the index down like the GEP would do implicitly. We don't have to do this 288 // for an inbounds GEP because the index can't be out of range. 289 if (!GEP->isInBounds()) { 290 Type *PtrIdxTy = DL.getIndexType(GEP->getType()); 291 unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth(); 292 if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize) 293 Idx = Builder.CreateTrunc(Idx, PtrIdxTy); 294 } 295 296 // If inbounds keyword is not present, Idx * ElementSize can overflow. 297 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 298 // Then, there are two possible values for Idx to match offset 0: 299 // 0x00..00, 0x80..00. 300 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 301 // comparison is false if Idx was 0x80..00. 302 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 303 unsigned ElementSize = 304 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 305 auto MaskIdx = [&](Value *Idx) { 306 if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) { 307 Value *Mask = ConstantInt::get(Idx->getType(), -1); 308 Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize)); 309 Idx = Builder.CreateAnd(Idx, Mask); 310 } 311 return Idx; 312 }; 313 314 // If the comparison is only true for one or two elements, emit direct 315 // comparisons. 316 if (SecondTrueElement != Overdefined) { 317 Idx = MaskIdx(Idx); 318 // None true -> false. 319 if (FirstTrueElement == Undefined) 320 return replaceInstUsesWith(ICI, Builder.getFalse()); 321 322 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 323 324 // True for one element -> 'i == 47'. 325 if (SecondTrueElement == Undefined) 326 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 327 328 // True for two elements -> 'i == 47 | i == 72'. 329 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 330 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 331 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 332 return BinaryOperator::CreateOr(C1, C2); 333 } 334 335 // If the comparison is only false for one or two elements, emit direct 336 // comparisons. 337 if (SecondFalseElement != Overdefined) { 338 Idx = MaskIdx(Idx); 339 // None false -> true. 340 if (FirstFalseElement == Undefined) 341 return replaceInstUsesWith(ICI, Builder.getTrue()); 342 343 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 344 345 // False for one element -> 'i != 47'. 346 if (SecondFalseElement == Undefined) 347 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 348 349 // False for two elements -> 'i != 47 & i != 72'. 350 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 351 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 352 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 353 return BinaryOperator::CreateAnd(C1, C2); 354 } 355 356 // If the comparison can be replaced with a range comparison for the elements 357 // where it is true, emit the range check. 358 if (TrueRangeEnd != Overdefined) { 359 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 360 Idx = MaskIdx(Idx); 361 362 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 363 if (FirstTrueElement) { 364 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 365 Idx = Builder.CreateAdd(Idx, Offs); 366 } 367 368 Value *End = ConstantInt::get(Idx->getType(), 369 TrueRangeEnd-FirstTrueElement+1); 370 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 371 } 372 373 // False range check. 374 if (FalseRangeEnd != Overdefined) { 375 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 376 Idx = MaskIdx(Idx); 377 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 378 if (FirstFalseElement) { 379 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 380 Idx = Builder.CreateAdd(Idx, Offs); 381 } 382 383 Value *End = ConstantInt::get(Idx->getType(), 384 FalseRangeEnd-FirstFalseElement); 385 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 386 } 387 388 // If a magic bitvector captures the entire comparison state 389 // of this load, replace it with computation that does: 390 // ((magic_cst >> i) & 1) != 0 391 { 392 Type *Ty = nullptr; 393 394 // Look for an appropriate type: 395 // - The type of Idx if the magic fits 396 // - The smallest fitting legal type 397 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 398 Ty = Idx->getType(); 399 else 400 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 401 402 if (Ty) { 403 Idx = MaskIdx(Idx); 404 Value *V = Builder.CreateIntCast(Idx, Ty, false); 405 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 406 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 407 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 408 } 409 } 410 411 return nullptr; 412 } 413 414 /// Returns true if we can rewrite Start as a GEP with pointer Base 415 /// and some integer offset. The nodes that need to be re-written 416 /// for this transformation will be added to Explored. 417 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 418 const DataLayout &DL, 419 SetVector<Value *> &Explored) { 420 SmallVector<Value *, 16> WorkList(1, Start); 421 Explored.insert(Base); 422 423 // The following traversal gives us an order which can be used 424 // when doing the final transformation. Since in the final 425 // transformation we create the PHI replacement instructions first, 426 // we don't have to get them in any particular order. 427 // 428 // However, for other instructions we will have to traverse the 429 // operands of an instruction first, which means that we have to 430 // do a post-order traversal. 431 while (!WorkList.empty()) { 432 SetVector<PHINode *> PHIs; 433 434 while (!WorkList.empty()) { 435 if (Explored.size() >= 100) 436 return false; 437 438 Value *V = WorkList.back(); 439 440 if (Explored.contains(V)) { 441 WorkList.pop_back(); 442 continue; 443 } 444 445 if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 446 // We've found some value that we can't explore which is different from 447 // the base. Therefore we can't do this transformation. 448 return false; 449 450 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 451 // Only allow inbounds GEPs with at most one variable offset. 452 auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); }; 453 if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1) 454 return false; 455 456 if (!Explored.contains(GEP->getOperand(0))) 457 WorkList.push_back(GEP->getOperand(0)); 458 } 459 460 if (WorkList.back() == V) { 461 WorkList.pop_back(); 462 // We've finished visiting this node, mark it as such. 463 Explored.insert(V); 464 } 465 466 if (auto *PN = dyn_cast<PHINode>(V)) { 467 // We cannot transform PHIs on unsplittable basic blocks. 468 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 469 return false; 470 Explored.insert(PN); 471 PHIs.insert(PN); 472 } 473 } 474 475 // Explore the PHI nodes further. 476 for (auto *PN : PHIs) 477 for (Value *Op : PN->incoming_values()) 478 if (!Explored.contains(Op)) 479 WorkList.push_back(Op); 480 } 481 482 // Make sure that we can do this. Since we can't insert GEPs in a basic 483 // block before a PHI node, we can't easily do this transformation if 484 // we have PHI node users of transformed instructions. 485 for (Value *Val : Explored) { 486 for (Value *Use : Val->uses()) { 487 488 auto *PHI = dyn_cast<PHINode>(Use); 489 auto *Inst = dyn_cast<Instruction>(Val); 490 491 if (Inst == Base || Inst == PHI || !Inst || !PHI || 492 !Explored.contains(PHI)) 493 continue; 494 495 if (PHI->getParent() == Inst->getParent()) 496 return false; 497 } 498 } 499 return true; 500 } 501 502 // Sets the appropriate insert point on Builder where we can add 503 // a replacement Instruction for V (if that is possible). 504 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 505 bool Before = true) { 506 if (auto *PHI = dyn_cast<PHINode>(V)) { 507 BasicBlock *Parent = PHI->getParent(); 508 Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt()); 509 return; 510 } 511 if (auto *I = dyn_cast<Instruction>(V)) { 512 if (!Before) 513 I = &*std::next(I->getIterator()); 514 Builder.SetInsertPoint(I); 515 return; 516 } 517 if (auto *A = dyn_cast<Argument>(V)) { 518 // Set the insertion point in the entry block. 519 BasicBlock &Entry = A->getParent()->getEntryBlock(); 520 Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt()); 521 return; 522 } 523 // Otherwise, this is a constant and we don't need to set a new 524 // insertion point. 525 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 526 } 527 528 /// Returns a re-written value of Start as an indexed GEP using Base as a 529 /// pointer. 530 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 531 const DataLayout &DL, 532 SetVector<Value *> &Explored, 533 InstCombiner &IC) { 534 // Perform all the substitutions. This is a bit tricky because we can 535 // have cycles in our use-def chains. 536 // 1. Create the PHI nodes without any incoming values. 537 // 2. Create all the other values. 538 // 3. Add the edges for the PHI nodes. 539 // 4. Emit GEPs to get the original pointers. 540 // 5. Remove the original instructions. 541 Type *IndexType = IntegerType::get( 542 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 543 544 DenseMap<Value *, Value *> NewInsts; 545 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 546 547 // Create the new PHI nodes, without adding any incoming values. 548 for (Value *Val : Explored) { 549 if (Val == Base) 550 continue; 551 // Create empty phi nodes. This avoids cyclic dependencies when creating 552 // the remaining instructions. 553 if (auto *PHI = dyn_cast<PHINode>(Val)) 554 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 555 PHI->getName() + ".idx", PHI); 556 } 557 IRBuilder<> Builder(Base->getContext()); 558 559 // Create all the other instructions. 560 for (Value *Val : Explored) { 561 if (NewInsts.contains(Val)) 562 continue; 563 564 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 565 setInsertionPoint(Builder, GEP); 566 Value *Op = NewInsts[GEP->getOperand(0)]; 567 Value *OffsetV = emitGEPOffset(&Builder, DL, GEP); 568 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 569 NewInsts[GEP] = OffsetV; 570 else 571 NewInsts[GEP] = Builder.CreateNSWAdd( 572 Op, OffsetV, GEP->getOperand(0)->getName() + ".add"); 573 continue; 574 } 575 if (isa<PHINode>(Val)) 576 continue; 577 578 llvm_unreachable("Unexpected instruction type"); 579 } 580 581 // Add the incoming values to the PHI nodes. 582 for (Value *Val : Explored) { 583 if (Val == Base) 584 continue; 585 // All the instructions have been created, we can now add edges to the 586 // phi nodes. 587 if (auto *PHI = dyn_cast<PHINode>(Val)) { 588 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 589 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 590 Value *NewIncoming = PHI->getIncomingValue(I); 591 592 if (NewInsts.contains(NewIncoming)) 593 NewIncoming = NewInsts[NewIncoming]; 594 595 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 596 } 597 } 598 } 599 600 for (Value *Val : Explored) { 601 if (Val == Base) 602 continue; 603 604 setInsertionPoint(Builder, Val, false); 605 // Create GEP for external users. 606 Value *NewVal = Builder.CreateInBoundsGEP( 607 Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr"); 608 IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal); 609 // Add old instruction to worklist for DCE. We don't directly remove it 610 // here because the original compare is one of the users. 611 IC.addToWorklist(cast<Instruction>(Val)); 612 } 613 614 return NewInsts[Start]; 615 } 616 617 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 618 /// We can look through PHIs, GEPs and casts in order to determine a common base 619 /// between GEPLHS and RHS. 620 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 621 ICmpInst::Predicate Cond, 622 const DataLayout &DL, 623 InstCombiner &IC) { 624 // FIXME: Support vector of pointers. 625 if (GEPLHS->getType()->isVectorTy()) 626 return nullptr; 627 628 if (!GEPLHS->hasAllConstantIndices()) 629 return nullptr; 630 631 APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0); 632 Value *PtrBase = 633 GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset, 634 /*AllowNonInbounds*/ false); 635 636 // Bail if we looked through addrspacecast. 637 if (PtrBase->getType() != GEPLHS->getType()) 638 return nullptr; 639 640 // The set of nodes that will take part in this transformation. 641 SetVector<Value *> Nodes; 642 643 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 644 return nullptr; 645 646 // We know we can re-write this as 647 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 648 // Since we've only looked through inbouds GEPs we know that we 649 // can't have overflow on either side. We can therefore re-write 650 // this as: 651 // OFFSET1 cmp OFFSET2 652 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC); 653 654 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 655 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 656 // offset. Since Index is the offset of LHS to the base pointer, we will now 657 // compare the offsets instead of comparing the pointers. 658 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), 659 IC.Builder.getInt(Offset), NewRHS); 660 } 661 662 /// Fold comparisons between a GEP instruction and something else. At this point 663 /// we know that the GEP is on the LHS of the comparison. 664 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 665 ICmpInst::Predicate Cond, 666 Instruction &I) { 667 // Don't transform signed compares of GEPs into index compares. Even if the 668 // GEP is inbounds, the final add of the base pointer can have signed overflow 669 // and would change the result of the icmp. 670 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 671 // the maximum signed value for the pointer type. 672 if (ICmpInst::isSigned(Cond)) 673 return nullptr; 674 675 // Look through bitcasts and addrspacecasts. We do not however want to remove 676 // 0 GEPs. 677 if (!isa<GetElementPtrInst>(RHS)) 678 RHS = RHS->stripPointerCasts(); 679 680 Value *PtrBase = GEPLHS->getOperand(0); 681 if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) { 682 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 683 Value *Offset = EmitGEPOffset(GEPLHS); 684 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 685 Constant::getNullValue(Offset->getType())); 686 } 687 688 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 689 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 690 !NullPointerIsDefined(I.getFunction(), 691 RHS->getType()->getPointerAddressSpace())) { 692 // For most address spaces, an allocation can't be placed at null, but null 693 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 694 // the only valid inbounds address derived from null, is null itself. 695 // Thus, we have four cases to consider: 696 // 1) Base == nullptr, Offset == 0 -> inbounds, null 697 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 698 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 699 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 700 // 701 // (Note if we're indexing a type of size 0, that simply collapses into one 702 // of the buckets above.) 703 // 704 // In general, we're allowed to make values less poison (i.e. remove 705 // sources of full UB), so in this case, we just select between the two 706 // non-poison cases (1 and 4 above). 707 // 708 // For vectors, we apply the same reasoning on a per-lane basis. 709 auto *Base = GEPLHS->getPointerOperand(); 710 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 711 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 712 Base = Builder.CreateVectorSplat(EC, Base); 713 } 714 return new ICmpInst(Cond, Base, 715 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 716 cast<Constant>(RHS), Base->getType())); 717 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 718 // If the base pointers are different, but the indices are the same, just 719 // compare the base pointer. 720 if (PtrBase != GEPRHS->getOperand(0)) { 721 bool IndicesTheSame = 722 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 723 GEPLHS->getPointerOperand()->getType() == 724 GEPRHS->getPointerOperand()->getType() && 725 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 726 if (IndicesTheSame) 727 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 728 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 729 IndicesTheSame = false; 730 break; 731 } 732 733 // If all indices are the same, just compare the base pointers. 734 Type *BaseType = GEPLHS->getOperand(0)->getType(); 735 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 736 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 737 738 // If we're comparing GEPs with two base pointers that only differ in type 739 // and both GEPs have only constant indices or just one use, then fold 740 // the compare with the adjusted indices. 741 // FIXME: Support vector of pointers. 742 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 743 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 744 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 745 PtrBase->stripPointerCasts() == 746 GEPRHS->getOperand(0)->stripPointerCasts() && 747 !GEPLHS->getType()->isVectorTy()) { 748 Value *LOffset = EmitGEPOffset(GEPLHS); 749 Value *ROffset = EmitGEPOffset(GEPRHS); 750 751 // If we looked through an addrspacecast between different sized address 752 // spaces, the LHS and RHS pointers are different sized 753 // integers. Truncate to the smaller one. 754 Type *LHSIndexTy = LOffset->getType(); 755 Type *RHSIndexTy = ROffset->getType(); 756 if (LHSIndexTy != RHSIndexTy) { 757 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() < 758 RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) { 759 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 760 } else 761 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 762 } 763 764 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 765 LOffset, ROffset); 766 return replaceInstUsesWith(I, Cmp); 767 } 768 769 // Otherwise, the base pointers are different and the indices are 770 // different. Try convert this to an indexed compare by looking through 771 // PHIs/casts. 772 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 773 } 774 775 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 776 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 777 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 778 // If the GEPs only differ by one index, compare it. 779 unsigned NumDifferences = 0; // Keep track of # differences. 780 unsigned DiffOperand = 0; // The operand that differs. 781 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 782 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 783 Type *LHSType = GEPLHS->getOperand(i)->getType(); 784 Type *RHSType = GEPRHS->getOperand(i)->getType(); 785 // FIXME: Better support for vector of pointers. 786 if (LHSType->getPrimitiveSizeInBits() != 787 RHSType->getPrimitiveSizeInBits() || 788 (GEPLHS->getType()->isVectorTy() && 789 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 790 // Irreconcilable differences. 791 NumDifferences = 2; 792 break; 793 } 794 795 if (NumDifferences++) break; 796 DiffOperand = i; 797 } 798 799 if (NumDifferences == 0) // SAME GEP? 800 return replaceInstUsesWith(I, // No comparison is needed here. 801 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 802 803 else if (NumDifferences == 1 && GEPsInBounds) { 804 Value *LHSV = GEPLHS->getOperand(DiffOperand); 805 Value *RHSV = GEPRHS->getOperand(DiffOperand); 806 // Make sure we do a signed comparison here. 807 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 808 } 809 } 810 811 // Only lower this if the icmp is the only user of the GEP or if we expect 812 // the result to fold to a constant! 813 if ((GEPsInBounds || CmpInst::isEquality(Cond)) && 814 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 815 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse())) { 816 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 817 Value *L = EmitGEPOffset(GEPLHS); 818 Value *R = EmitGEPOffset(GEPRHS); 819 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 820 } 821 } 822 823 // Try convert this to an indexed compare by looking through PHIs/casts as a 824 // last resort. 825 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 826 } 827 828 bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) { 829 // It would be tempting to fold away comparisons between allocas and any 830 // pointer not based on that alloca (e.g. an argument). However, even 831 // though such pointers cannot alias, they can still compare equal. 832 // 833 // But LLVM doesn't specify where allocas get their memory, so if the alloca 834 // doesn't escape we can argue that it's impossible to guess its value, and we 835 // can therefore act as if any such guesses are wrong. 836 // 837 // However, we need to ensure that this folding is consistent: We can't fold 838 // one comparison to false, and then leave a different comparison against the 839 // same value alone (as it might evaluate to true at runtime, leading to a 840 // contradiction). As such, this code ensures that all comparisons are folded 841 // at the same time, and there are no other escapes. 842 843 struct CmpCaptureTracker : public CaptureTracker { 844 AllocaInst *Alloca; 845 bool Captured = false; 846 /// The value of the map is a bit mask of which icmp operands the alloca is 847 /// used in. 848 SmallMapVector<ICmpInst *, unsigned, 4> ICmps; 849 850 CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {} 851 852 void tooManyUses() override { Captured = true; } 853 854 bool captured(const Use *U) override { 855 auto *ICmp = dyn_cast<ICmpInst>(U->getUser()); 856 // We need to check that U is based *only* on the alloca, and doesn't 857 // have other contributions from a select/phi operand. 858 // TODO: We could check whether getUnderlyingObjects() reduces to one 859 // object, which would allow looking through phi nodes. 860 if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) { 861 // Collect equality icmps of the alloca, and don't treat them as 862 // captures. 863 auto Res = ICmps.insert({ICmp, 0}); 864 Res.first->second |= 1u << U->getOperandNo(); 865 return false; 866 } 867 868 Captured = true; 869 return true; 870 } 871 }; 872 873 CmpCaptureTracker Tracker(Alloca); 874 PointerMayBeCaptured(Alloca, &Tracker); 875 if (Tracker.Captured) 876 return false; 877 878 bool Changed = false; 879 for (auto [ICmp, Operands] : Tracker.ICmps) { 880 switch (Operands) { 881 case 1: 882 case 2: { 883 // The alloca is only used in one icmp operand. Assume that the 884 // equality is false. 885 auto *Res = ConstantInt::get( 886 ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE); 887 replaceInstUsesWith(*ICmp, Res); 888 eraseInstFromFunction(*ICmp); 889 Changed = true; 890 break; 891 } 892 case 3: 893 // Both icmp operands are based on the alloca, so this is comparing 894 // pointer offsets, without leaking any information about the address 895 // of the alloca. Ignore such comparisons. 896 break; 897 default: 898 llvm_unreachable("Cannot happen"); 899 } 900 } 901 902 return Changed; 903 } 904 905 /// Fold "icmp pred (X+C), X". 906 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 907 ICmpInst::Predicate Pred) { 908 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 909 // so the values can never be equal. Similarly for all other "or equals" 910 // operators. 911 assert(!!C && "C should not be zero!"); 912 913 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 914 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 915 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 916 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 917 Constant *R = ConstantInt::get(X->getType(), 918 APInt::getMaxValue(C.getBitWidth()) - C); 919 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 920 } 921 922 // (X+1) >u X --> X <u (0-1) --> X != 255 923 // (X+2) >u X --> X <u (0-2) --> X <u 254 924 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 925 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 926 return new ICmpInst(ICmpInst::ICMP_ULT, X, 927 ConstantInt::get(X->getType(), -C)); 928 929 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 930 931 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 932 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 933 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 934 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 935 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 936 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 937 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 938 return new ICmpInst(ICmpInst::ICMP_SGT, X, 939 ConstantInt::get(X->getType(), SMax - C)); 940 941 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 942 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 943 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 944 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 945 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 946 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 947 948 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 949 return new ICmpInst(ICmpInst::ICMP_SLT, X, 950 ConstantInt::get(X->getType(), SMax - (C - 1))); 951 } 952 953 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 954 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 955 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 956 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 957 const APInt &AP1, 958 const APInt &AP2) { 959 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 960 961 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 962 if (I.getPredicate() == I.ICMP_NE) 963 Pred = CmpInst::getInversePredicate(Pred); 964 return new ICmpInst(Pred, LHS, RHS); 965 }; 966 967 // Don't bother doing any work for cases which InstSimplify handles. 968 if (AP2.isZero()) 969 return nullptr; 970 971 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 972 if (IsAShr) { 973 if (AP2.isAllOnes()) 974 return nullptr; 975 if (AP2.isNegative() != AP1.isNegative()) 976 return nullptr; 977 if (AP2.sgt(AP1)) 978 return nullptr; 979 } 980 981 if (!AP1) 982 // 'A' must be large enough to shift out the highest set bit. 983 return getICmp(I.ICMP_UGT, A, 984 ConstantInt::get(A->getType(), AP2.logBase2())); 985 986 if (AP1 == AP2) 987 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 988 989 int Shift; 990 if (IsAShr && AP1.isNegative()) 991 Shift = AP1.countl_one() - AP2.countl_one(); 992 else 993 Shift = AP1.countl_zero() - AP2.countl_zero(); 994 995 if (Shift > 0) { 996 if (IsAShr && AP1 == AP2.ashr(Shift)) { 997 // There are multiple solutions if we are comparing against -1 and the LHS 998 // of the ashr is not a power of two. 999 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1000 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1001 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1002 } else if (AP1 == AP2.lshr(Shift)) { 1003 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1004 } 1005 } 1006 1007 // Shifting const2 will never be equal to const1. 1008 // FIXME: This should always be handled by InstSimplify? 1009 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1010 return replaceInstUsesWith(I, TorF); 1011 } 1012 1013 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1014 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1015 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1016 const APInt &AP1, 1017 const APInt &AP2) { 1018 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1019 1020 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1021 if (I.getPredicate() == I.ICMP_NE) 1022 Pred = CmpInst::getInversePredicate(Pred); 1023 return new ICmpInst(Pred, LHS, RHS); 1024 }; 1025 1026 // Don't bother doing any work for cases which InstSimplify handles. 1027 if (AP2.isZero()) 1028 return nullptr; 1029 1030 unsigned AP2TrailingZeros = AP2.countr_zero(); 1031 1032 if (!AP1 && AP2TrailingZeros != 0) 1033 return getICmp( 1034 I.ICMP_UGE, A, 1035 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1036 1037 if (AP1 == AP2) 1038 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1039 1040 // Get the distance between the lowest bits that are set. 1041 int Shift = AP1.countr_zero() - AP2TrailingZeros; 1042 1043 if (Shift > 0 && AP2.shl(Shift) == AP1) 1044 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1045 1046 // Shifting const2 will never be equal to const1. 1047 // FIXME: This should always be handled by InstSimplify? 1048 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1049 return replaceInstUsesWith(I, TorF); 1050 } 1051 1052 /// The caller has matched a pattern of the form: 1053 /// I = icmp ugt (add (add A, B), CI2), CI1 1054 /// If this is of the form: 1055 /// sum = a + b 1056 /// if (sum+128 >u 255) 1057 /// Then replace it with llvm.sadd.with.overflow.i8. 1058 /// 1059 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1060 ConstantInt *CI2, ConstantInt *CI1, 1061 InstCombinerImpl &IC) { 1062 // The transformation we're trying to do here is to transform this into an 1063 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1064 // with a narrower add, and discard the add-with-constant that is part of the 1065 // range check (if we can't eliminate it, this isn't profitable). 1066 1067 // In order to eliminate the add-with-constant, the compare can be its only 1068 // use. 1069 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1070 if (!AddWithCst->hasOneUse()) 1071 return nullptr; 1072 1073 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1074 if (!CI2->getValue().isPowerOf2()) 1075 return nullptr; 1076 unsigned NewWidth = CI2->getValue().countr_zero(); 1077 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1078 return nullptr; 1079 1080 // The width of the new add formed is 1 more than the bias. 1081 ++NewWidth; 1082 1083 // Check to see that CI1 is an all-ones value with NewWidth bits. 1084 if (CI1->getBitWidth() == NewWidth || 1085 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1086 return nullptr; 1087 1088 // This is only really a signed overflow check if the inputs have been 1089 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1090 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1091 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1092 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1093 return nullptr; 1094 1095 // In order to replace the original add with a narrower 1096 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1097 // and truncates that discard the high bits of the add. Verify that this is 1098 // the case. 1099 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1100 for (User *U : OrigAdd->users()) { 1101 if (U == AddWithCst) 1102 continue; 1103 1104 // Only accept truncates for now. We would really like a nice recursive 1105 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1106 // chain to see which bits of a value are actually demanded. If the 1107 // original add had another add which was then immediately truncated, we 1108 // could still do the transformation. 1109 TruncInst *TI = dyn_cast<TruncInst>(U); 1110 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1111 return nullptr; 1112 } 1113 1114 // If the pattern matches, truncate the inputs to the narrower type and 1115 // use the sadd_with_overflow intrinsic to efficiently compute both the 1116 // result and the overflow bit. 1117 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1118 Function *F = Intrinsic::getDeclaration( 1119 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1120 1121 InstCombiner::BuilderTy &Builder = IC.Builder; 1122 1123 // Put the new code above the original add, in case there are any uses of the 1124 // add between the add and the compare. 1125 Builder.SetInsertPoint(OrigAdd); 1126 1127 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1128 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1129 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1130 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1131 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1132 1133 // The inner add was the result of the narrow add, zero extended to the 1134 // wider type. Replace it with the result computed by the intrinsic. 1135 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1136 IC.eraseInstFromFunction(*OrigAdd); 1137 1138 // The original icmp gets replaced with the overflow value. 1139 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1140 } 1141 1142 /// If we have: 1143 /// icmp eq/ne (urem/srem %x, %y), 0 1144 /// iff %y is a power-of-two, we can replace this with a bit test: 1145 /// icmp eq/ne (and %x, (add %y, -1)), 0 1146 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1147 // This fold is only valid for equality predicates. 1148 if (!I.isEquality()) 1149 return nullptr; 1150 ICmpInst::Predicate Pred; 1151 Value *X, *Y, *Zero; 1152 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1153 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1154 return nullptr; 1155 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1156 return nullptr; 1157 // This may increase instruction count, we don't enforce that Y is a constant. 1158 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1159 Value *Masked = Builder.CreateAnd(X, Mask); 1160 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1161 } 1162 1163 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1164 /// by one-less-than-bitwidth into a sign test on the original value. 1165 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1166 Instruction *Val; 1167 ICmpInst::Predicate Pred; 1168 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1169 return nullptr; 1170 1171 Value *X; 1172 Type *XTy; 1173 1174 Constant *C; 1175 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1176 XTy = X->getType(); 1177 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1178 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1179 APInt(XBitWidth, XBitWidth - 1)))) 1180 return nullptr; 1181 } else if (isa<BinaryOperator>(Val) && 1182 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1183 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1184 /*AnalyzeForSignBitExtraction=*/true))) { 1185 XTy = X->getType(); 1186 } else 1187 return nullptr; 1188 1189 return ICmpInst::Create(Instruction::ICmp, 1190 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1191 : ICmpInst::ICMP_SLT, 1192 X, ConstantInt::getNullValue(XTy)); 1193 } 1194 1195 // Handle icmp pred X, 0 1196 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1197 CmpInst::Predicate Pred = Cmp.getPredicate(); 1198 if (!match(Cmp.getOperand(1), m_Zero())) 1199 return nullptr; 1200 1201 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1202 if (Pred == ICmpInst::ICMP_SGT) { 1203 Value *A, *B; 1204 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1205 if (isKnownPositive(A, SQ.getWithInstruction(&Cmp))) 1206 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1207 if (isKnownPositive(B, SQ.getWithInstruction(&Cmp))) 1208 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1209 } 1210 } 1211 1212 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1213 return New; 1214 1215 // Given: 1216 // icmp eq/ne (urem %x, %y), 0 1217 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1218 // icmp eq/ne %x, 0 1219 Value *X, *Y; 1220 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1221 ICmpInst::isEquality(Pred)) { 1222 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1223 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1224 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1225 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1226 } 1227 1228 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are 1229 // odd/non-zero/there is no overflow. 1230 if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) && 1231 ICmpInst::isEquality(Pred)) { 1232 1233 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1234 // if X % 2 != 0 1235 // (icmp eq/ne Y) 1236 if (XKnown.countMaxTrailingZeros() == 0) 1237 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1238 1239 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1240 // if Y % 2 != 0 1241 // (icmp eq/ne X) 1242 if (YKnown.countMaxTrailingZeros() == 0) 1243 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1244 1245 auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0)); 1246 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) { 1247 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 1248 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()` 1249 // but to avoid unnecessary work, first just if this is an obvious case. 1250 1251 // if X non-zero and NoOverflow(X * Y) 1252 // (icmp eq/ne Y) 1253 if (!XKnown.One.isZero() || isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 1254 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1255 1256 // if Y non-zero and NoOverflow(X * Y) 1257 // (icmp eq/ne X) 1258 if (!YKnown.One.isZero() || isKnownNonZero(Y, DL, 0, Q.AC, Q.CxtI, Q.DT)) 1259 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1260 } 1261 // Note, we are skipping cases: 1262 // if Y % 2 != 0 AND X % 2 != 0 1263 // (false/true) 1264 // if X non-zero and Y non-zero and NoOverflow(X * Y) 1265 // (false/true) 1266 // Those can be simplified later as we would have already replaced the (icmp 1267 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that 1268 // will fold to a constant elsewhere. 1269 } 1270 return nullptr; 1271 } 1272 1273 /// Fold icmp Pred X, C. 1274 /// TODO: This code structure does not make sense. The saturating add fold 1275 /// should be moved to some other helper and extended as noted below (it is also 1276 /// possible that code has been made unnecessary - do we canonicalize IR to 1277 /// overflow/saturating intrinsics or not?). 1278 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1279 // Match the following pattern, which is a common idiom when writing 1280 // overflow-safe integer arithmetic functions. The source performs an addition 1281 // in wider type and explicitly checks for overflow using comparisons against 1282 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1283 // 1284 // TODO: This could probably be generalized to handle other overflow-safe 1285 // operations if we worked out the formulas to compute the appropriate magic 1286 // constants. 1287 // 1288 // sum = a + b 1289 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1290 CmpInst::Predicate Pred = Cmp.getPredicate(); 1291 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1292 Value *A, *B; 1293 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1294 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1295 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1296 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1297 return Res; 1298 1299 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1300 Constant *C = dyn_cast<Constant>(Op1); 1301 if (!C) 1302 return nullptr; 1303 1304 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1305 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1306 SmallVector<Constant *> Ops; 1307 for (Value *V : Phi->incoming_values()) { 1308 Constant *Res = 1309 ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL); 1310 if (!Res) 1311 return nullptr; 1312 Ops.push_back(Res); 1313 } 1314 Builder.SetInsertPoint(Phi); 1315 PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands()); 1316 for (auto [V, Pred] : zip(Ops, Phi->blocks())) 1317 NewPhi->addIncoming(V, Pred); 1318 return replaceInstUsesWith(Cmp, NewPhi); 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Canonicalize icmp instructions based on dominating conditions. 1325 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1326 // We already checked simple implication in InstSimplify, only handle complex 1327 // cases here. 1328 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1329 ICmpInst::Predicate DomPred; 1330 const APInt *C; 1331 if (!match(Y, m_APInt(C))) 1332 return nullptr; 1333 1334 CmpInst::Predicate Pred = Cmp.getPredicate(); 1335 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1336 1337 auto handleDomCond = [&](Value *DomCond, bool CondIsTrue) -> Instruction * { 1338 const APInt *DomC; 1339 if (!match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC)))) 1340 return nullptr; 1341 // We have 2 compares of a variable with constants. Calculate the constant 1342 // ranges of those compares to see if we can transform the 2nd compare: 1343 // DomBB: 1344 // DomCond = icmp DomPred X, DomC 1345 // br DomCond, CmpBB, FalseBB 1346 // CmpBB: 1347 // Cmp = icmp Pred X, C 1348 if (!CondIsTrue) 1349 DomPred = CmpInst::getInversePredicate(DomPred); 1350 ConstantRange DominatingCR = 1351 ConstantRange::makeExactICmpRegion(DomPred, *DomC); 1352 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1353 ConstantRange Difference = DominatingCR.difference(CR); 1354 if (Intersection.isEmptySet()) 1355 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1356 if (Difference.isEmptySet()) 1357 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1358 1359 // Canonicalizing a sign bit comparison that gets used in a branch, 1360 // pessimizes codegen by generating branch on zero instruction instead 1361 // of a test and branch. So we avoid canonicalizing in such situations 1362 // because test and branch instruction has better branch displacement 1363 // than compare and branch instruction. 1364 bool UnusedBit; 1365 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1366 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1367 return nullptr; 1368 1369 // Avoid an infinite loop with min/max canonicalization. 1370 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1371 if (Cmp.hasOneUse() && 1372 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1373 return nullptr; 1374 1375 if (const APInt *EqC = Intersection.getSingleElement()) 1376 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1377 if (const APInt *NeC = Difference.getSingleElement()) 1378 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1379 return nullptr; 1380 }; 1381 1382 for (BranchInst *BI : DC.conditionsFor(X)) { 1383 auto *Cond = BI->getCondition(); 1384 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); 1385 if (DT.dominates(Edge0, Cmp.getParent())) { 1386 if (auto *V = handleDomCond(Cond, true)) 1387 return V; 1388 } else { 1389 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); 1390 if (DT.dominates(Edge1, Cmp.getParent())) 1391 if (auto *V = handleDomCond(Cond, false)) 1392 return V; 1393 } 1394 } 1395 1396 return nullptr; 1397 } 1398 1399 /// Fold icmp (trunc X), C. 1400 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1401 TruncInst *Trunc, 1402 const APInt &C) { 1403 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1404 Value *X = Trunc->getOperand(0); 1405 if (C.isOne() && C.getBitWidth() > 1) { 1406 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1407 Value *V = nullptr; 1408 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1409 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1410 ConstantInt::get(V->getType(), 1)); 1411 } 1412 1413 Type *SrcTy = X->getType(); 1414 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1415 SrcBits = SrcTy->getScalarSizeInBits(); 1416 1417 // TODO: Handle any shifted constant by subtracting trailing zeros. 1418 // TODO: Handle non-equality predicates. 1419 Value *Y; 1420 if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) { 1421 // (trunc (1 << Y) to iN) == 0 --> Y u>= N 1422 // (trunc (1 << Y) to iN) != 0 --> Y u< N 1423 if (C.isZero()) { 1424 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT; 1425 return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits)); 1426 } 1427 // (trunc (1 << Y) to iN) == 2**C --> Y == C 1428 // (trunc (1 << Y) to iN) != 2**C --> Y != C 1429 if (C.isPowerOf2()) 1430 return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2())); 1431 } 1432 1433 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1434 // Canonicalize to a mask and wider compare if the wide type is suitable: 1435 // (trunc X to i8) == C --> (X & 0xff) == (zext C) 1436 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { 1437 Constant *Mask = 1438 ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits)); 1439 Value *And = Builder.CreateAnd(X, Mask); 1440 Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits)); 1441 return new ICmpInst(Pred, And, WideC); 1442 } 1443 1444 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1445 // of the high bits truncated out of x are known. 1446 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1447 1448 // If all the high bits are known, we can do this xform. 1449 if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) { 1450 // Pull in the high bits from known-ones set. 1451 APInt NewRHS = C.zext(SrcBits); 1452 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1453 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS)); 1454 } 1455 } 1456 1457 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1458 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1459 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1460 Value *ShOp; 1461 const APInt *ShAmtC; 1462 bool TrueIfSigned; 1463 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1464 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1465 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1466 return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1467 ConstantInt::getNullValue(SrcTy)) 1468 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1469 ConstantInt::getAllOnesValue(SrcTy)); 1470 } 1471 1472 return nullptr; 1473 } 1474 1475 /// Fold icmp (trunc X), (trunc Y). 1476 /// Fold icmp (trunc X), (zext Y). 1477 Instruction * 1478 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp, 1479 const SimplifyQuery &Q) { 1480 if (Cmp.isSigned()) 1481 return nullptr; 1482 1483 Value *X, *Y; 1484 ICmpInst::Predicate Pred; 1485 bool YIsZext = false; 1486 // Try to match icmp (trunc X), (trunc Y) 1487 if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) { 1488 if (X->getType() != Y->getType() && 1489 (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse())) 1490 return nullptr; 1491 if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) && 1492 isDesirableIntType(Y->getType()->getScalarSizeInBits())) { 1493 std::swap(X, Y); 1494 Pred = Cmp.getSwappedPredicate(Pred); 1495 } 1496 } 1497 // Try to match icmp (trunc X), (zext Y) 1498 else if (match(&Cmp, m_c_ICmp(Pred, m_Trunc(m_Value(X)), 1499 m_OneUse(m_ZExt(m_Value(Y)))))) 1500 1501 YIsZext = true; 1502 else 1503 return nullptr; 1504 1505 Type *TruncTy = Cmp.getOperand(0)->getType(); 1506 unsigned TruncBits = TruncTy->getScalarSizeInBits(); 1507 1508 // If this transform will end up changing from desirable types -> undesirable 1509 // types skip it. 1510 if (isDesirableIntType(TruncBits) && 1511 !isDesirableIntType(X->getType()->getScalarSizeInBits())) 1512 return nullptr; 1513 1514 // Check if the trunc is unneeded. 1515 KnownBits KnownX = llvm::computeKnownBits(X, /*Depth*/ 0, Q); 1516 if (KnownX.countMaxActiveBits() > TruncBits) 1517 return nullptr; 1518 1519 if (!YIsZext) { 1520 // If Y is also a trunc, make sure it is unneeded. 1521 KnownBits KnownY = llvm::computeKnownBits(Y, /*Depth*/ 0, Q); 1522 if (KnownY.countMaxActiveBits() > TruncBits) 1523 return nullptr; 1524 } 1525 1526 Value *NewY = Builder.CreateZExtOrTrunc(Y, X->getType()); 1527 return new ICmpInst(Pred, X, NewY); 1528 } 1529 1530 /// Fold icmp (xor X, Y), C. 1531 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1532 BinaryOperator *Xor, 1533 const APInt &C) { 1534 if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C)) 1535 return I; 1536 1537 Value *X = Xor->getOperand(0); 1538 Value *Y = Xor->getOperand(1); 1539 const APInt *XorC; 1540 if (!match(Y, m_APInt(XorC))) 1541 return nullptr; 1542 1543 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1544 // fold the xor. 1545 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1546 bool TrueIfSigned = false; 1547 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1548 1549 // If the sign bit of the XorCst is not set, there is no change to 1550 // the operation, just stop using the Xor. 1551 if (!XorC->isNegative()) 1552 return replaceOperand(Cmp, 0, X); 1553 1554 // Emit the opposite comparison. 1555 if (TrueIfSigned) 1556 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1557 ConstantInt::getAllOnesValue(X->getType())); 1558 else 1559 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1560 ConstantInt::getNullValue(X->getType())); 1561 } 1562 1563 if (Xor->hasOneUse()) { 1564 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1565 if (!Cmp.isEquality() && XorC->isSignMask()) { 1566 Pred = Cmp.getFlippedSignednessPredicate(); 1567 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1568 } 1569 1570 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1571 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1572 Pred = Cmp.getFlippedSignednessPredicate(); 1573 Pred = Cmp.getSwappedPredicate(Pred); 1574 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1575 } 1576 } 1577 1578 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1579 if (Pred == ICmpInst::ICMP_UGT) { 1580 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1581 if (*XorC == ~C && (C + 1).isPowerOf2()) 1582 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1583 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1584 if (*XorC == C && (C + 1).isPowerOf2()) 1585 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1586 } 1587 if (Pred == ICmpInst::ICMP_ULT) { 1588 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1589 if (*XorC == -C && C.isPowerOf2()) 1590 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1591 ConstantInt::get(X->getType(), ~C)); 1592 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1593 if (*XorC == C && (-C).isPowerOf2()) 1594 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1595 ConstantInt::get(X->getType(), ~C)); 1596 } 1597 return nullptr; 1598 } 1599 1600 /// For power-of-2 C: 1601 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) 1602 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1) 1603 Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp, 1604 BinaryOperator *Xor, 1605 const APInt &C) { 1606 CmpInst::Predicate Pred = Cmp.getPredicate(); 1607 APInt PowerOf2; 1608 if (Pred == ICmpInst::ICMP_ULT) 1609 PowerOf2 = C; 1610 else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue()) 1611 PowerOf2 = C + 1; 1612 else 1613 return nullptr; 1614 if (!PowerOf2.isPowerOf2()) 1615 return nullptr; 1616 Value *X; 1617 const APInt *ShiftC; 1618 if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X), 1619 m_AShr(m_Deferred(X), m_APInt(ShiftC)))))) 1620 return nullptr; 1621 uint64_t Shift = ShiftC->getLimitedValue(); 1622 Type *XType = X->getType(); 1623 if (Shift == 0 || PowerOf2.isMinSignedValue()) 1624 return nullptr; 1625 Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2)); 1626 APInt Bound = 1627 Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1); 1628 return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound)); 1629 } 1630 1631 /// Fold icmp (and (sh X, Y), C2), C1. 1632 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1633 BinaryOperator *And, 1634 const APInt &C1, 1635 const APInt &C2) { 1636 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1637 if (!Shift || !Shift->isShift()) 1638 return nullptr; 1639 1640 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1641 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1642 // code produced by the clang front-end, for bitfield access. 1643 // This seemingly simple opportunity to fold away a shift turns out to be 1644 // rather complicated. See PR17827 for details. 1645 unsigned ShiftOpcode = Shift->getOpcode(); 1646 bool IsShl = ShiftOpcode == Instruction::Shl; 1647 const APInt *C3; 1648 if (match(Shift->getOperand(1), m_APInt(C3))) { 1649 APInt NewAndCst, NewCmpCst; 1650 bool AnyCmpCstBitsShiftedOut; 1651 if (ShiftOpcode == Instruction::Shl) { 1652 // For a left shift, we can fold if the comparison is not signed. We can 1653 // also fold a signed comparison if the mask value and comparison value 1654 // are not negative. These constraints may not be obvious, but we can 1655 // prove that they are correct using an SMT solver. 1656 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1657 return nullptr; 1658 1659 NewCmpCst = C1.lshr(*C3); 1660 NewAndCst = C2.lshr(*C3); 1661 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1662 } else if (ShiftOpcode == Instruction::LShr) { 1663 // For a logical right shift, we can fold if the comparison is not signed. 1664 // We can also fold a signed comparison if the shifted mask value and the 1665 // shifted comparison value are not negative. These constraints may not be 1666 // obvious, but we can prove that they are correct using an SMT solver. 1667 NewCmpCst = C1.shl(*C3); 1668 NewAndCst = C2.shl(*C3); 1669 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1670 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1671 return nullptr; 1672 } else { 1673 // For an arithmetic shift, check that both constants don't use (in a 1674 // signed sense) the top bits being shifted out. 1675 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1676 NewCmpCst = C1.shl(*C3); 1677 NewAndCst = C2.shl(*C3); 1678 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1679 if (NewAndCst.ashr(*C3) != C2) 1680 return nullptr; 1681 } 1682 1683 if (AnyCmpCstBitsShiftedOut) { 1684 // If we shifted bits out, the fold is not going to work out. As a 1685 // special case, check to see if this means that the result is always 1686 // true or false now. 1687 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1688 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1689 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1690 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1691 } else { 1692 Value *NewAnd = Builder.CreateAnd( 1693 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1694 return new ICmpInst(Cmp.getPredicate(), 1695 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1696 } 1697 } 1698 1699 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1700 // preferable because it allows the C2 << Y expression to be hoisted out of a 1701 // loop if Y is invariant and X is not. 1702 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1703 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1704 // Compute C2 << Y. 1705 Value *NewShift = 1706 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1707 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1708 1709 // Compute X & (C2 << Y). 1710 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1711 return replaceOperand(Cmp, 0, NewAnd); 1712 } 1713 1714 return nullptr; 1715 } 1716 1717 /// Fold icmp (and X, C2), C1. 1718 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1719 BinaryOperator *And, 1720 const APInt &C1) { 1721 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1722 1723 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1724 // TODO: We canonicalize to the longer form for scalars because we have 1725 // better analysis/folds for icmp, and codegen may be better with icmp. 1726 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1727 match(And->getOperand(1), m_One())) 1728 return new TruncInst(And->getOperand(0), Cmp.getType()); 1729 1730 const APInt *C2; 1731 Value *X; 1732 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1733 return nullptr; 1734 1735 // Don't perform the following transforms if the AND has multiple uses 1736 if (!And->hasOneUse()) 1737 return nullptr; 1738 1739 if (Cmp.isEquality() && C1.isZero()) { 1740 // Restrict this fold to single-use 'and' (PR10267). 1741 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1742 if (C2->isSignMask()) { 1743 Constant *Zero = Constant::getNullValue(X->getType()); 1744 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1745 return new ICmpInst(NewPred, X, Zero); 1746 } 1747 1748 APInt NewC2 = *C2; 1749 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); 1750 // Set high zeros of C2 to allow matching negated power-of-2. 1751 NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(), 1752 Know.countMinLeadingZeros()); 1753 1754 // Restrict this fold only for single-use 'and' (PR10267). 1755 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1756 if (NewC2.isNegatedPowerOf2()) { 1757 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); 1758 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1759 return new ICmpInst(NewPred, X, NegBOC); 1760 } 1761 } 1762 1763 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1764 // the input width without changing the value produced, eliminate the cast: 1765 // 1766 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1767 // 1768 // We can do this transformation if the constants do not have their sign bits 1769 // set or if it is an equality comparison. Extending a relational comparison 1770 // when we're checking the sign bit would not work. 1771 Value *W; 1772 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1773 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1774 // TODO: Is this a good transform for vectors? Wider types may reduce 1775 // throughput. Should this transform be limited (even for scalars) by using 1776 // shouldChangeType()? 1777 if (!Cmp.getType()->isVectorTy()) { 1778 Type *WideType = W->getType(); 1779 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1780 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1781 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1782 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1783 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1784 } 1785 } 1786 1787 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1788 return I; 1789 1790 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1791 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1792 // 1793 // iff pred isn't signed 1794 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1795 match(And->getOperand(1), m_One())) { 1796 Constant *One = cast<Constant>(And->getOperand(1)); 1797 Value *Or = And->getOperand(0); 1798 Value *A, *B, *LShr; 1799 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1800 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1801 unsigned UsesRemoved = 0; 1802 if (And->hasOneUse()) 1803 ++UsesRemoved; 1804 if (Or->hasOneUse()) 1805 ++UsesRemoved; 1806 if (LShr->hasOneUse()) 1807 ++UsesRemoved; 1808 1809 // Compute A & ((1 << B) | 1) 1810 unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3; 1811 if (UsesRemoved >= RequireUsesRemoved) { 1812 Value *NewOr = 1813 Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1814 /*HasNUW=*/true), 1815 One, Or->getName()); 1816 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1817 return replaceOperand(Cmp, 0, NewAnd); 1818 } 1819 } 1820 } 1821 1822 return nullptr; 1823 } 1824 1825 /// Fold icmp (and X, Y), C. 1826 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1827 BinaryOperator *And, 1828 const APInt &C) { 1829 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1830 return I; 1831 1832 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1833 bool TrueIfNeg; 1834 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1835 // ((X - 1) & ~X) < 0 --> X == 0 1836 // ((X - 1) & ~X) >= 0 --> X != 0 1837 Value *X; 1838 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1839 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1840 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1841 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1842 } 1843 // (X & X) < 0 --> X == MinSignedC 1844 // (X & X) > -1 --> X != MinSignedC 1845 if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) { 1846 Constant *MinSignedC = ConstantInt::get( 1847 X->getType(), 1848 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits())); 1849 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1850 return new ICmpInst(NewPred, X, MinSignedC); 1851 } 1852 } 1853 1854 // TODO: These all require that Y is constant too, so refactor with the above. 1855 1856 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1857 Value *X = And->getOperand(0); 1858 Value *Y = And->getOperand(1); 1859 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1860 if (auto *LI = dyn_cast<LoadInst>(X)) 1861 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1862 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1863 if (Instruction *Res = 1864 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1865 return Res; 1866 1867 if (!Cmp.isEquality()) 1868 return nullptr; 1869 1870 // X & -C == -C -> X > u ~C 1871 // X & -C != -C -> X <= u ~C 1872 // iff C is a power of 2 1873 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1874 auto NewPred = 1875 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1876 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1877 } 1878 1879 // If we are testing the intersection of 2 select-of-nonzero-constants with no 1880 // common bits set, it's the same as checking if exactly one select condition 1881 // is set: 1882 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B 1883 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B) 1884 // TODO: Generalize for non-constant values. 1885 // TODO: Handle signed/unsigned predicates. 1886 // TODO: Handle other bitwise logic connectors. 1887 // TODO: Extend to handle a non-zero compare constant. 1888 if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) { 1889 assert(Cmp.isEquality() && "Not expecting non-equality predicates"); 1890 Value *A, *B; 1891 const APInt *TC, *FC; 1892 if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) && 1893 match(Y, 1894 m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) && 1895 !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) { 1896 Value *R = Builder.CreateXor(A, B); 1897 if (Pred == CmpInst::ICMP_NE) 1898 R = Builder.CreateNot(R); 1899 return replaceInstUsesWith(Cmp, R); 1900 } 1901 } 1902 1903 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X) 1904 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X) 1905 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X) 1906 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X) 1907 if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) && 1908 X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) { 1909 Value *TruncY = Builder.CreateTrunc(Y, X->getType()); 1910 if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) { 1911 Value *And = Builder.CreateAnd(TruncY, X); 1912 return BinaryOperator::CreateNot(And); 1913 } 1914 return BinaryOperator::CreateAnd(TruncY, X); 1915 } 1916 1917 return nullptr; 1918 } 1919 1920 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0. 1921 static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or, 1922 InstCombiner::BuilderTy &Builder) { 1923 // Are we using xors or subs to bitwise check for a pair or pairs of 1924 // (in)equalities? Convert to a shorter form that has more potential to be 1925 // folded even further. 1926 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4) 1927 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4) 1928 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 --> 1929 // (X1 == X2) && (X3 == X4) && (X5 == X6) 1930 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 --> 1931 // (X1 != X2) || (X3 != X4) || (X5 != X6) 1932 SmallVector<std::pair<Value *, Value *>, 2> CmpValues; 1933 SmallVector<Value *, 16> WorkList(1, Or); 1934 1935 while (!WorkList.empty()) { 1936 auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) { 1937 Value *Lhs, *Rhs; 1938 1939 if (match(OrOperatorArgument, 1940 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) { 1941 CmpValues.emplace_back(Lhs, Rhs); 1942 return; 1943 } 1944 1945 if (match(OrOperatorArgument, 1946 m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) { 1947 CmpValues.emplace_back(Lhs, Rhs); 1948 return; 1949 } 1950 1951 WorkList.push_back(OrOperatorArgument); 1952 }; 1953 1954 Value *CurrentValue = WorkList.pop_back_val(); 1955 Value *OrOperatorLhs, *OrOperatorRhs; 1956 1957 if (!match(CurrentValue, 1958 m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) { 1959 return nullptr; 1960 } 1961 1962 MatchOrOperatorArgument(OrOperatorRhs); 1963 MatchOrOperatorArgument(OrOperatorLhs); 1964 } 1965 1966 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1967 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1968 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first, 1969 CmpValues.rbegin()->second); 1970 1971 for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) { 1972 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second); 1973 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp); 1974 } 1975 1976 return LhsCmp; 1977 } 1978 1979 /// Fold icmp (or X, Y), C. 1980 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1981 BinaryOperator *Or, 1982 const APInt &C) { 1983 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1984 if (C.isOne()) { 1985 // icmp slt signum(V) 1 --> icmp slt V, 1 1986 Value *V = nullptr; 1987 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1988 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1989 ConstantInt::get(V->getType(), 1)); 1990 } 1991 1992 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1993 const APInt *MaskC; 1994 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1995 if (*MaskC == C && (C + 1).isPowerOf2()) { 1996 // X | C == C --> X <=u C 1997 // X | C != C --> X >u C 1998 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1999 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 2000 return new ICmpInst(Pred, OrOp0, OrOp1); 2001 } 2002 2003 // More general: canonicalize 'equality with set bits mask' to 2004 // 'equality with clear bits mask'. 2005 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 2006 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 2007 if (Or->hasOneUse()) { 2008 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 2009 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 2010 return new ICmpInst(Pred, And, NewC); 2011 } 2012 } 2013 2014 // (X | (X-1)) s< 0 --> X s< 1 2015 // (X | (X-1)) s> -1 --> X s> 0 2016 Value *X; 2017 bool TrueIfSigned; 2018 if (isSignBitCheck(Pred, C, TrueIfSigned) && 2019 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 2020 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 2021 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 2022 return new ICmpInst(NewPred, X, NewC); 2023 } 2024 2025 const APInt *OrC; 2026 // icmp(X | OrC, C) --> icmp(X, 0) 2027 if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) { 2028 switch (Pred) { 2029 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0 2030 case ICmpInst::ICMP_SLT: 2031 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0 2032 case ICmpInst::ICMP_SGE: 2033 if (OrC->sge(C)) 2034 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2035 break; 2036 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0 2037 case ICmpInst::ICMP_SLE: 2038 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0 2039 case ICmpInst::ICMP_SGT: 2040 if (OrC->sgt(C)) 2041 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X, 2042 ConstantInt::getNullValue(X->getType())); 2043 break; 2044 default: 2045 break; 2046 } 2047 } 2048 2049 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 2050 return nullptr; 2051 2052 Value *P, *Q; 2053 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 2054 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 2055 // -> and (icmp eq P, null), (icmp eq Q, null). 2056 Value *CmpP = 2057 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 2058 Value *CmpQ = 2059 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 2060 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2061 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 2062 } 2063 2064 if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder)) 2065 return replaceInstUsesWith(Cmp, V); 2066 2067 return nullptr; 2068 } 2069 2070 /// Fold icmp (mul X, Y), C. 2071 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 2072 BinaryOperator *Mul, 2073 const APInt &C) { 2074 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2075 Type *MulTy = Mul->getType(); 2076 Value *X = Mul->getOperand(0); 2077 2078 // If there's no overflow: 2079 // X * X == 0 --> X == 0 2080 // X * X != 0 --> X != 0 2081 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) && 2082 (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap())) 2083 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2084 2085 const APInt *MulC; 2086 if (!match(Mul->getOperand(1), m_APInt(MulC))) 2087 return nullptr; 2088 2089 // If this is a test of the sign bit and the multiply is sign-preserving with 2090 // a constant operand, use the multiply LHS operand instead: 2091 // (X * +MulC) < 0 --> X < 0 2092 // (X * -MulC) < 0 --> X > 0 2093 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 2094 if (MulC->isNegative()) 2095 Pred = ICmpInst::getSwappedPredicate(Pred); 2096 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2097 } 2098 2099 if (MulC->isZero()) 2100 return nullptr; 2101 2102 // If the multiply does not wrap or the constant is odd, try to divide the 2103 // compare constant by the multiplication factor. 2104 if (Cmp.isEquality()) { 2105 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC 2106 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2107 Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC)); 2108 return new ICmpInst(Pred, X, NewC); 2109 } 2110 2111 // C % MulC == 0 is weaker than we could use if MulC is odd because it 2112 // correct to transform if MulC * N == C including overflow. I.e with i8 2113 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we 2114 // miss that case. 2115 if (C.urem(*MulC).isZero()) { 2116 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC 2117 // (mul X, OddC) eq/ne N * C --> X eq/ne N 2118 if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) { 2119 Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC)); 2120 return new ICmpInst(Pred, X, NewC); 2121 } 2122 } 2123 } 2124 2125 // With a matching no-overflow guarantee, fold the constants: 2126 // (X * MulC) < C --> X < (C / MulC) 2127 // (X * MulC) > C --> X > (C / MulC) 2128 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE? 2129 Constant *NewC = nullptr; 2130 if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) { 2131 // MININT / -1 --> overflow. 2132 if (C.isMinSignedValue() && MulC->isAllOnes()) 2133 return nullptr; 2134 if (MulC->isNegative()) 2135 Pred = ICmpInst::getSwappedPredicate(Pred); 2136 2137 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2138 NewC = ConstantInt::get( 2139 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); 2140 } else { 2141 assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) && 2142 "Unexpected predicate"); 2143 NewC = ConstantInt::get( 2144 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); 2145 } 2146 } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) { 2147 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) { 2148 NewC = ConstantInt::get( 2149 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); 2150 } else { 2151 assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 2152 "Unexpected predicate"); 2153 NewC = ConstantInt::get( 2154 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); 2155 } 2156 } 2157 2158 return NewC ? new ICmpInst(Pred, X, NewC) : nullptr; 2159 } 2160 2161 /// Fold icmp (shl 1, Y), C. 2162 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2163 const APInt &C) { 2164 Value *Y; 2165 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2166 return nullptr; 2167 2168 Type *ShiftType = Shl->getType(); 2169 unsigned TypeBits = C.getBitWidth(); 2170 bool CIsPowerOf2 = C.isPowerOf2(); 2171 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2172 if (Cmp.isUnsigned()) { 2173 // (1 << Y) pred C -> Y pred Log2(C) 2174 if (!CIsPowerOf2) { 2175 // (1 << Y) < 30 -> Y <= 4 2176 // (1 << Y) <= 30 -> Y <= 4 2177 // (1 << Y) >= 30 -> Y > 4 2178 // (1 << Y) > 30 -> Y > 4 2179 if (Pred == ICmpInst::ICMP_ULT) 2180 Pred = ICmpInst::ICMP_ULE; 2181 else if (Pred == ICmpInst::ICMP_UGE) 2182 Pred = ICmpInst::ICMP_UGT; 2183 } 2184 2185 unsigned CLog2 = C.logBase2(); 2186 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2187 } else if (Cmp.isSigned()) { 2188 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2189 // (1 << Y) > 0 -> Y != 31 2190 // (1 << Y) > C -> Y != 31 if C is negative. 2191 if (Pred == ICmpInst::ICMP_SGT && C.sle(0)) 2192 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2193 2194 // (1 << Y) < 0 -> Y == 31 2195 // (1 << Y) < 1 -> Y == 31 2196 // (1 << Y) < C -> Y == 31 if C is negative and not signed min. 2197 // Exclude signed min by subtracting 1 and lower the upper bound to 0. 2198 if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0)) 2199 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2200 } 2201 2202 return nullptr; 2203 } 2204 2205 /// Fold icmp (shl X, Y), C. 2206 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2207 BinaryOperator *Shl, 2208 const APInt &C) { 2209 const APInt *ShiftVal; 2210 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2211 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2212 2213 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2214 // (icmp pred (shl nuw&nsw X, Y), Csle0) 2215 // -> (icmp pred X, Csle0) 2216 // 2217 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op 2218 // so X's must be what is used. 2219 if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap()) 2220 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2221 2222 // (icmp eq/ne (shl nuw|nsw X, Y), 0) 2223 // -> (icmp eq/ne X, 0) 2224 if (ICmpInst::isEquality(Pred) && C.isZero() && 2225 (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap())) 2226 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2227 2228 // (icmp slt (shl nsw X, Y), 0/1) 2229 // -> (icmp slt X, 0/1) 2230 // (icmp sgt (shl nsw X, Y), 0/-1) 2231 // -> (icmp sgt X, 0/-1) 2232 // 2233 // NB: sge/sle with a constant will canonicalize to sgt/slt. 2234 if (Shl->hasNoSignedWrap() && 2235 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) 2236 if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne())) 2237 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2238 2239 const APInt *ShiftAmt; 2240 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2241 return foldICmpShlOne(Cmp, Shl, C); 2242 2243 // Check that the shift amount is in range. If not, don't perform undefined 2244 // shifts. When the shift is visited, it will be simplified. 2245 unsigned TypeBits = C.getBitWidth(); 2246 if (ShiftAmt->uge(TypeBits)) 2247 return nullptr; 2248 2249 Value *X = Shl->getOperand(0); 2250 Type *ShType = Shl->getType(); 2251 2252 // NSW guarantees that we are only shifting out sign bits from the high bits, 2253 // so we can ASHR the compare constant without needing a mask and eliminate 2254 // the shift. 2255 if (Shl->hasNoSignedWrap()) { 2256 if (Pred == ICmpInst::ICMP_SGT) { 2257 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2258 APInt ShiftedC = C.ashr(*ShiftAmt); 2259 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2260 } 2261 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2262 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2263 APInt ShiftedC = C.ashr(*ShiftAmt); 2264 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2265 } 2266 if (Pred == ICmpInst::ICMP_SLT) { 2267 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2268 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2269 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2270 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2271 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2272 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2273 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2274 } 2275 } 2276 2277 // NUW guarantees that we are only shifting out zero bits from the high bits, 2278 // so we can LSHR the compare constant without needing a mask and eliminate 2279 // the shift. 2280 if (Shl->hasNoUnsignedWrap()) { 2281 if (Pred == ICmpInst::ICMP_UGT) { 2282 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2283 APInt ShiftedC = C.lshr(*ShiftAmt); 2284 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2285 } 2286 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2287 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2288 APInt ShiftedC = C.lshr(*ShiftAmt); 2289 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2290 } 2291 if (Pred == ICmpInst::ICMP_ULT) { 2292 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2293 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2294 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2295 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2296 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2297 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2298 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2299 } 2300 } 2301 2302 if (Cmp.isEquality() && Shl->hasOneUse()) { 2303 // Strength-reduce the shift into an 'and'. 2304 Constant *Mask = ConstantInt::get( 2305 ShType, 2306 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2307 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2308 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2309 return new ICmpInst(Pred, And, LShrC); 2310 } 2311 2312 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2313 bool TrueIfSigned = false; 2314 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2315 // (X << 31) <s 0 --> (X & 1) != 0 2316 Constant *Mask = ConstantInt::get( 2317 ShType, 2318 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2319 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2320 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2321 And, Constant::getNullValue(ShType)); 2322 } 2323 2324 // Simplify 'shl' inequality test into 'and' equality test. 2325 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2326 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2327 if ((C + 1).isPowerOf2() && 2328 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2329 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2330 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2331 : ICmpInst::ICMP_NE, 2332 And, Constant::getNullValue(ShType)); 2333 } 2334 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2335 if (C.isPowerOf2() && 2336 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2337 Value *And = 2338 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2339 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2340 : ICmpInst::ICMP_NE, 2341 And, Constant::getNullValue(ShType)); 2342 } 2343 } 2344 2345 // Transform (icmp pred iM (shl iM %v, N), C) 2346 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2347 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2348 // This enables us to get rid of the shift in favor of a trunc that may be 2349 // free on the target. It has the additional benefit of comparing to a 2350 // smaller constant that may be more target-friendly. 2351 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2352 if (Shl->hasOneUse() && Amt != 0 && C.countr_zero() >= Amt && 2353 DL.isLegalInteger(TypeBits - Amt)) { 2354 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2355 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2356 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2357 Constant *NewC = 2358 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2359 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2360 } 2361 2362 return nullptr; 2363 } 2364 2365 /// Fold icmp ({al}shr X, Y), C. 2366 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2367 BinaryOperator *Shr, 2368 const APInt &C) { 2369 // An exact shr only shifts out zero bits, so: 2370 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2371 Value *X = Shr->getOperand(0); 2372 CmpInst::Predicate Pred = Cmp.getPredicate(); 2373 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2374 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2375 2376 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2377 const APInt *ShiftValC; 2378 if (match(X, m_APInt(ShiftValC))) { 2379 if (Cmp.isEquality()) 2380 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2381 2382 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 2383 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 2384 bool TrueIfSigned; 2385 if (!IsAShr && ShiftValC->isNegative() && 2386 isSignBitCheck(Pred, C, TrueIfSigned)) 2387 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, 2388 Shr->getOperand(1), 2389 ConstantInt::getNullValue(X->getType())); 2390 2391 // If the shifted constant is a power-of-2, test the shift amount directly: 2392 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2393 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2394 if (!IsAShr && ShiftValC->isPowerOf2() && 2395 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2396 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2397 assert(ShiftValC->uge(C) && "Expected simplify of compare"); 2398 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); 2399 2400 unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero(); 2401 unsigned ShiftLZ = ShiftValC->countl_zero(); 2402 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2403 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2404 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2405 } 2406 } 2407 2408 const APInt *ShiftAmtC; 2409 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2410 return nullptr; 2411 2412 // Check that the shift amount is in range. If not, don't perform undefined 2413 // shifts. When the shift is visited it will be simplified. 2414 unsigned TypeBits = C.getBitWidth(); 2415 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2416 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2417 return nullptr; 2418 2419 bool IsExact = Shr->isExact(); 2420 Type *ShrTy = Shr->getType(); 2421 // TODO: If we could guarantee that InstSimplify would handle all of the 2422 // constant-value-based preconditions in the folds below, then we could assert 2423 // those conditions rather than checking them. This is difficult because of 2424 // undef/poison (PR34838). 2425 if (IsAShr && Shr->hasOneUse()) { 2426 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2427 // When ShAmtC can be shifted losslessly: 2428 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2429 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2430 APInt ShiftedC = C.shl(ShAmtVal); 2431 if (ShiftedC.ashr(ShAmtVal) == C) 2432 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2433 } 2434 if (Pred == CmpInst::ICMP_SGT) { 2435 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2436 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2437 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2438 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2439 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2440 } 2441 if (Pred == CmpInst::ICMP_UGT) { 2442 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2443 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2444 // clause accounts for that pattern. 2445 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2446 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2447 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2448 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2449 } 2450 2451 // If the compare constant has significant bits above the lowest sign-bit, 2452 // then convert an unsigned cmp to a test of the sign-bit: 2453 // (ashr X, ShiftC) u> C --> X s< 0 2454 // (ashr X, ShiftC) u< C --> X s> -1 2455 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2456 if (Pred == CmpInst::ICMP_UGT) { 2457 return new ICmpInst(CmpInst::ICMP_SLT, X, 2458 ConstantInt::getNullValue(ShrTy)); 2459 } 2460 if (Pred == CmpInst::ICMP_ULT) { 2461 return new ICmpInst(CmpInst::ICMP_SGT, X, 2462 ConstantInt::getAllOnesValue(ShrTy)); 2463 } 2464 } 2465 } else if (!IsAShr) { 2466 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2467 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2468 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2469 APInt ShiftedC = C.shl(ShAmtVal); 2470 if (ShiftedC.lshr(ShAmtVal) == C) 2471 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2472 } 2473 if (Pred == CmpInst::ICMP_UGT) { 2474 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2475 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2476 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2477 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2478 } 2479 } 2480 2481 if (!Cmp.isEquality()) 2482 return nullptr; 2483 2484 // Handle equality comparisons of shift-by-constant. 2485 2486 // If the comparison constant changes with the shift, the comparison cannot 2487 // succeed (bits of the comparison constant cannot match the shifted value). 2488 // This should be known by InstSimplify and already be folded to true/false. 2489 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2490 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2491 "Expected icmp+shr simplify did not occur."); 2492 2493 // If the bits shifted out are known zero, compare the unshifted value: 2494 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2495 if (Shr->isExact()) 2496 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2497 2498 if (C.isZero()) { 2499 // == 0 is u< 1. 2500 if (Pred == CmpInst::ICMP_EQ) 2501 return new ICmpInst(CmpInst::ICMP_ULT, X, 2502 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2503 else 2504 return new ICmpInst(CmpInst::ICMP_UGT, X, 2505 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2506 } 2507 2508 if (Shr->hasOneUse()) { 2509 // Canonicalize the shift into an 'and': 2510 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2511 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2512 Constant *Mask = ConstantInt::get(ShrTy, Val); 2513 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2514 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2515 } 2516 2517 return nullptr; 2518 } 2519 2520 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2521 BinaryOperator *SRem, 2522 const APInt &C) { 2523 // Match an 'is positive' or 'is negative' comparison of remainder by a 2524 // constant power-of-2 value: 2525 // (X % pow2C) sgt/slt 0 2526 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2527 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2528 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2529 return nullptr; 2530 2531 // TODO: The one-use check is standard because we do not typically want to 2532 // create longer instruction sequences, but this might be a special-case 2533 // because srem is not good for analysis or codegen. 2534 if (!SRem->hasOneUse()) 2535 return nullptr; 2536 2537 const APInt *DivisorC; 2538 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2539 return nullptr; 2540 2541 // For cmp_sgt/cmp_slt only zero valued C is handled. 2542 // For cmp_eq/cmp_ne only positive valued C is handled. 2543 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2544 !C.isZero()) || 2545 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2546 !C.isStrictlyPositive())) 2547 return nullptr; 2548 2549 // Mask off the sign bit and the modulo bits (low-bits). 2550 Type *Ty = SRem->getType(); 2551 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2552 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2553 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2554 2555 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2556 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2557 2558 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2559 // bit is set. Example: 2560 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2561 if (Pred == ICmpInst::ICMP_SGT) 2562 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2563 2564 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2565 // bit is set. Example: 2566 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2567 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2568 } 2569 2570 /// Fold icmp (udiv X, Y), C. 2571 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2572 BinaryOperator *UDiv, 2573 const APInt &C) { 2574 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2575 Value *X = UDiv->getOperand(0); 2576 Value *Y = UDiv->getOperand(1); 2577 Type *Ty = UDiv->getType(); 2578 2579 const APInt *C2; 2580 if (!match(X, m_APInt(C2))) 2581 return nullptr; 2582 2583 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2584 2585 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2586 if (Pred == ICmpInst::ICMP_UGT) { 2587 assert(!C.isMaxValue() && 2588 "icmp ugt X, UINT_MAX should have been simplified already."); 2589 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2590 ConstantInt::get(Ty, C2->udiv(C + 1))); 2591 } 2592 2593 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2594 if (Pred == ICmpInst::ICMP_ULT) { 2595 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2596 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2597 ConstantInt::get(Ty, C2->udiv(C))); 2598 } 2599 2600 return nullptr; 2601 } 2602 2603 /// Fold icmp ({su}div X, Y), C. 2604 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2605 BinaryOperator *Div, 2606 const APInt &C) { 2607 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2608 Value *X = Div->getOperand(0); 2609 Value *Y = Div->getOperand(1); 2610 Type *Ty = Div->getType(); 2611 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2612 2613 // If unsigned division and the compare constant is bigger than 2614 // UMAX/2 (negative), there's only one pair of values that satisfies an 2615 // equality check, so eliminate the division: 2616 // (X u/ Y) == C --> (X == C) && (Y == 1) 2617 // (X u/ Y) != C --> (X != C) || (Y != 1) 2618 // Similarly, if signed division and the compare constant is exactly SMIN: 2619 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2620 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2621 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2622 (!DivIsSigned || C.isMinSignedValue())) { 2623 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2624 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2625 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2626 return BinaryOperator::Create(Logic, XBig, YOne); 2627 } 2628 2629 // Fold: icmp pred ([us]div X, C2), C -> range test 2630 // Fold this div into the comparison, producing a range check. 2631 // Determine, based on the divide type, what the range is being 2632 // checked. If there is an overflow on the low or high side, remember 2633 // it, otherwise compute the range [low, hi) bounding the new value. 2634 // See: InsertRangeTest above for the kinds of replacements possible. 2635 const APInt *C2; 2636 if (!match(Y, m_APInt(C2))) 2637 return nullptr; 2638 2639 // FIXME: If the operand types don't match the type of the divide 2640 // then don't attempt this transform. The code below doesn't have the 2641 // logic to deal with a signed divide and an unsigned compare (and 2642 // vice versa). This is because (x /s C2) <s C produces different 2643 // results than (x /s C2) <u C or (x /u C2) <s C or even 2644 // (x /u C2) <u C. Simply casting the operands and result won't 2645 // work. :( The if statement below tests that condition and bails 2646 // if it finds it. 2647 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2648 return nullptr; 2649 2650 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2651 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2652 // division-by-constant cases should be present, we can not assert that they 2653 // have happened before we reach this icmp instruction. 2654 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2655 return nullptr; 2656 2657 // Compute Prod = C * C2. We are essentially solving an equation of 2658 // form X / C2 = C. We solve for X by multiplying C2 and C. 2659 // By solving for X, we can turn this into a range check instead of computing 2660 // a divide. 2661 APInt Prod = C * *C2; 2662 2663 // Determine if the product overflows by seeing if the product is not equal to 2664 // the divide. Make sure we do the same kind of divide as in the LHS 2665 // instruction that we're folding. 2666 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2667 2668 // If the division is known to be exact, then there is no remainder from the 2669 // divide, so the covered range size is unit, otherwise it is the divisor. 2670 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2671 2672 // Figure out the interval that is being checked. For example, a comparison 2673 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2674 // Compute this interval based on the constants involved and the signedness of 2675 // the compare/divide. This computes a half-open interval, keeping track of 2676 // whether either value in the interval overflows. After analysis each 2677 // overflow variable is set to 0 if it's corresponding bound variable is valid 2678 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2679 int LoOverflow = 0, HiOverflow = 0; 2680 APInt LoBound, HiBound; 2681 2682 if (!DivIsSigned) { // udiv 2683 // e.g. X/5 op 3 --> [15, 20) 2684 LoBound = Prod; 2685 HiOverflow = LoOverflow = ProdOV; 2686 if (!HiOverflow) { 2687 // If this is not an exact divide, then many values in the range collapse 2688 // to the same result value. 2689 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2690 } 2691 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2692 if (C.isZero()) { // (X / pos) op 0 2693 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2694 LoBound = -(RangeSize - 1); 2695 HiBound = RangeSize; 2696 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2697 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2698 HiOverflow = LoOverflow = ProdOV; 2699 if (!HiOverflow) 2700 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2701 } else { // (X / pos) op neg 2702 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2703 HiBound = Prod + 1; 2704 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2705 if (!LoOverflow) { 2706 APInt DivNeg = -RangeSize; 2707 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2708 } 2709 } 2710 } else if (C2->isNegative()) { // Divisor is < 0. 2711 if (Div->isExact()) 2712 RangeSize.negate(); 2713 if (C.isZero()) { // (X / neg) op 0 2714 // e.g. X/-5 op 0 --> [-4, 5) 2715 LoBound = RangeSize + 1; 2716 HiBound = -RangeSize; 2717 if (HiBound == *C2) { // -INTMIN = INTMIN 2718 HiOverflow = 1; // [INTMIN+1, overflow) 2719 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2720 } 2721 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2722 // e.g. X/-5 op 3 --> [-19, -14) 2723 HiBound = Prod + 1; 2724 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2725 if (!LoOverflow) 2726 LoOverflow = 2727 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2728 } else { // (X / neg) op neg 2729 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2730 LoOverflow = HiOverflow = ProdOV; 2731 if (!HiOverflow) 2732 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2733 } 2734 2735 // Dividing by a negative swaps the condition. LT <-> GT 2736 Pred = ICmpInst::getSwappedPredicate(Pred); 2737 } 2738 2739 switch (Pred) { 2740 default: 2741 llvm_unreachable("Unhandled icmp predicate!"); 2742 case ICmpInst::ICMP_EQ: 2743 if (LoOverflow && HiOverflow) 2744 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2745 if (HiOverflow) 2746 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2747 X, ConstantInt::get(Ty, LoBound)); 2748 if (LoOverflow) 2749 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2750 X, ConstantInt::get(Ty, HiBound)); 2751 return replaceInstUsesWith( 2752 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2753 case ICmpInst::ICMP_NE: 2754 if (LoOverflow && HiOverflow) 2755 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2756 if (HiOverflow) 2757 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2758 X, ConstantInt::get(Ty, LoBound)); 2759 if (LoOverflow) 2760 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2761 X, ConstantInt::get(Ty, HiBound)); 2762 return replaceInstUsesWith( 2763 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2764 case ICmpInst::ICMP_ULT: 2765 case ICmpInst::ICMP_SLT: 2766 if (LoOverflow == +1) // Low bound is greater than input range. 2767 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2768 if (LoOverflow == -1) // Low bound is less than input range. 2769 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2770 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2771 case ICmpInst::ICMP_UGT: 2772 case ICmpInst::ICMP_SGT: 2773 if (HiOverflow == +1) // High bound greater than input range. 2774 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2775 if (HiOverflow == -1) // High bound less than input range. 2776 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2777 if (Pred == ICmpInst::ICMP_UGT) 2778 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2779 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2780 } 2781 2782 return nullptr; 2783 } 2784 2785 /// Fold icmp (sub X, Y), C. 2786 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2787 BinaryOperator *Sub, 2788 const APInt &C) { 2789 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2790 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2791 Type *Ty = Sub->getType(); 2792 2793 // (SubC - Y) == C) --> Y == (SubC - C) 2794 // (SubC - Y) != C) --> Y != (SubC - C) 2795 Constant *SubC; 2796 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2797 return new ICmpInst(Pred, Y, 2798 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2799 } 2800 2801 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2802 const APInt *C2; 2803 APInt SubResult; 2804 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2805 bool HasNSW = Sub->hasNoSignedWrap(); 2806 bool HasNUW = Sub->hasNoUnsignedWrap(); 2807 if (match(X, m_APInt(C2)) && 2808 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2809 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2810 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2811 2812 // X - Y == 0 --> X == Y. 2813 // X - Y != 0 --> X != Y. 2814 // TODO: We allow this with multiple uses as long as the other uses are not 2815 // in phis. The phi use check is guarding against a codegen regression 2816 // for a loop test. If the backend could undo this (and possibly 2817 // subsequent transforms), we would not need this hack. 2818 if (Cmp.isEquality() && C.isZero() && 2819 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2820 return new ICmpInst(Pred, X, Y); 2821 2822 // The following transforms are only worth it if the only user of the subtract 2823 // is the icmp. 2824 // TODO: This is an artificial restriction for all of the transforms below 2825 // that only need a single replacement icmp. Can these use the phi test 2826 // like the transform above here? 2827 if (!Sub->hasOneUse()) 2828 return nullptr; 2829 2830 if (Sub->hasNoSignedWrap()) { 2831 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2832 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2833 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2834 2835 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2836 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2837 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2838 2839 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2840 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2841 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2842 2843 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2844 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2845 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2846 } 2847 2848 if (!match(X, m_APInt(C2))) 2849 return nullptr; 2850 2851 // C2 - Y <u C -> (Y | (C - 1)) == C2 2852 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2853 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2854 (*C2 & (C - 1)) == (C - 1)) 2855 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2856 2857 // C2 - Y >u C -> (Y | C) != C2 2858 // iff C2 & C == C and C + 1 is a power of 2 2859 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2860 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2861 2862 // We have handled special cases that reduce. 2863 // Canonicalize any remaining sub to add as: 2864 // (C2 - Y) > C --> (Y + ~C2) < ~C 2865 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2866 HasNUW, HasNSW); 2867 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2868 } 2869 2870 static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0, 2871 Value *Op1, IRBuilderBase &Builder, 2872 bool HasOneUse) { 2873 auto FoldConstant = [&](bool Val) { 2874 Constant *Res = Val ? Builder.getTrue() : Builder.getFalse(); 2875 if (Op0->getType()->isVectorTy()) 2876 Res = ConstantVector::getSplat( 2877 cast<VectorType>(Op0->getType())->getElementCount(), Res); 2878 return Res; 2879 }; 2880 2881 switch (Table.to_ulong()) { 2882 case 0: // 0 0 0 0 2883 return FoldConstant(false); 2884 case 1: // 0 0 0 1 2885 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr; 2886 case 2: // 0 0 1 0 2887 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr; 2888 case 3: // 0 0 1 1 2889 return Builder.CreateNot(Op0); 2890 case 4: // 0 1 0 0 2891 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr; 2892 case 5: // 0 1 0 1 2893 return Builder.CreateNot(Op1); 2894 case 6: // 0 1 1 0 2895 return Builder.CreateXor(Op0, Op1); 2896 case 7: // 0 1 1 1 2897 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr; 2898 case 8: // 1 0 0 0 2899 return Builder.CreateAnd(Op0, Op1); 2900 case 9: // 1 0 0 1 2901 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr; 2902 case 10: // 1 0 1 0 2903 return Op1; 2904 case 11: // 1 0 1 1 2905 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr; 2906 case 12: // 1 1 0 0 2907 return Op0; 2908 case 13: // 1 1 0 1 2909 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr; 2910 case 14: // 1 1 1 0 2911 return Builder.CreateOr(Op0, Op1); 2912 case 15: // 1 1 1 1 2913 return FoldConstant(true); 2914 default: 2915 llvm_unreachable("Invalid Operation"); 2916 } 2917 return nullptr; 2918 } 2919 2920 /// Fold icmp (add X, Y), C. 2921 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2922 BinaryOperator *Add, 2923 const APInt &C) { 2924 Value *Y = Add->getOperand(1); 2925 Value *X = Add->getOperand(0); 2926 2927 Value *Op0, *Op1; 2928 Instruction *Ext0, *Ext1; 2929 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2930 if (match(Add, 2931 m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))), 2932 m_CombineAnd(m_Instruction(Ext1), 2933 m_ZExtOrSExt(m_Value(Op1))))) && 2934 Op0->getType()->isIntOrIntVectorTy(1) && 2935 Op1->getType()->isIntOrIntVectorTy(1)) { 2936 unsigned BW = C.getBitWidth(); 2937 std::bitset<4> Table; 2938 auto ComputeTable = [&](bool Op0Val, bool Op1Val) { 2939 int Res = 0; 2940 if (Op0Val) 2941 Res += isa<ZExtInst>(Ext0) ? 1 : -1; 2942 if (Op1Val) 2943 Res += isa<ZExtInst>(Ext1) ? 1 : -1; 2944 return ICmpInst::compare(APInt(BW, Res, true), C, Pred); 2945 }; 2946 2947 Table[0] = ComputeTable(false, false); 2948 Table[1] = ComputeTable(false, true); 2949 Table[2] = ComputeTable(true, false); 2950 Table[3] = ComputeTable(true, true); 2951 if (auto *Cond = 2952 createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse())) 2953 return replaceInstUsesWith(Cmp, Cond); 2954 } 2955 const APInt *C2; 2956 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2957 return nullptr; 2958 2959 // Fold icmp pred (add X, C2), C. 2960 Type *Ty = Add->getType(); 2961 2962 // If the add does not wrap, we can always adjust the compare by subtracting 2963 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2964 // are canonicalized to SGT/SLT/UGT/ULT. 2965 if ((Add->hasNoSignedWrap() && 2966 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2967 (Add->hasNoUnsignedWrap() && 2968 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2969 bool Overflow; 2970 APInt NewC = 2971 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2972 // If there is overflow, the result must be true or false. 2973 // TODO: Can we assert there is no overflow because InstSimplify always 2974 // handles those cases? 2975 if (!Overflow) 2976 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2977 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2978 } 2979 2980 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2981 const APInt &Upper = CR.getUpper(); 2982 const APInt &Lower = CR.getLower(); 2983 if (Cmp.isSigned()) { 2984 if (Lower.isSignMask()) 2985 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2986 if (Upper.isSignMask()) 2987 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2988 } else { 2989 if (Lower.isMinValue()) 2990 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2991 if (Upper.isMinValue()) 2992 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2993 } 2994 2995 // This set of folds is intentionally placed after folds that use no-wrapping 2996 // flags because those folds are likely better for later analysis/codegen. 2997 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2998 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2999 3000 // Fold compare with offset to opposite sign compare if it eliminates offset: 3001 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 3002 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 3003 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 3004 3005 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 3006 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 3007 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 3008 3009 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 3010 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 3011 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 3012 3013 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 3014 if (Pred == CmpInst::ICMP_SLT && C == *C2) 3015 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 3016 3017 // (X + -1) <u C --> X <=u C (if X is never null) 3018 if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) { 3019 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 3020 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 3021 return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C)); 3022 } 3023 3024 if (!Add->hasOneUse()) 3025 return nullptr; 3026 3027 // X+C <u C2 -> (X & -C2) == C 3028 // iff C & (C2-1) == 0 3029 // C2 is a power of 2 3030 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 3031 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 3032 ConstantExpr::getNeg(cast<Constant>(Y))); 3033 3034 // X+C >u C2 -> (X & ~C2) != C 3035 // iff C & C2 == 0 3036 // C2+1 is a power of 2 3037 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 3038 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 3039 ConstantExpr::getNeg(cast<Constant>(Y))); 3040 3041 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 3042 // to the ult form. 3043 // X+C2 >u C -> X+(C2-C-1) <u ~C 3044 if (Pred == ICmpInst::ICMP_UGT) 3045 return new ICmpInst(ICmpInst::ICMP_ULT, 3046 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 3047 ConstantInt::get(Ty, ~C)); 3048 3049 return nullptr; 3050 } 3051 3052 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 3053 Value *&RHS, ConstantInt *&Less, 3054 ConstantInt *&Equal, 3055 ConstantInt *&Greater) { 3056 // TODO: Generalize this to work with other comparison idioms or ensure 3057 // they get canonicalized into this form. 3058 3059 // select i1 (a == b), 3060 // i32 Equal, 3061 // i32 (select i1 (a < b), i32 Less, i32 Greater) 3062 // where Equal, Less and Greater are placeholders for any three constants. 3063 ICmpInst::Predicate PredA; 3064 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 3065 !ICmpInst::isEquality(PredA)) 3066 return false; 3067 Value *EqualVal = SI->getTrueValue(); 3068 Value *UnequalVal = SI->getFalseValue(); 3069 // We still can get non-canonical predicate here, so canonicalize. 3070 if (PredA == ICmpInst::ICMP_NE) 3071 std::swap(EqualVal, UnequalVal); 3072 if (!match(EqualVal, m_ConstantInt(Equal))) 3073 return false; 3074 ICmpInst::Predicate PredB; 3075 Value *LHS2, *RHS2; 3076 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 3077 m_ConstantInt(Less), m_ConstantInt(Greater)))) 3078 return false; 3079 // We can get predicate mismatch here, so canonicalize if possible: 3080 // First, ensure that 'LHS' match. 3081 if (LHS2 != LHS) { 3082 // x sgt y <--> y slt x 3083 std::swap(LHS2, RHS2); 3084 PredB = ICmpInst::getSwappedPredicate(PredB); 3085 } 3086 if (LHS2 != LHS) 3087 return false; 3088 // We also need to canonicalize 'RHS'. 3089 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 3090 // x sgt C-1 <--> x sge C <--> not(x slt C) 3091 auto FlippedStrictness = 3092 InstCombiner::getFlippedStrictnessPredicateAndConstant( 3093 PredB, cast<Constant>(RHS2)); 3094 if (!FlippedStrictness) 3095 return false; 3096 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 3097 "basic correctness failure"); 3098 RHS2 = FlippedStrictness->second; 3099 // And kind-of perform the result swap. 3100 std::swap(Less, Greater); 3101 PredB = ICmpInst::ICMP_SLT; 3102 } 3103 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 3104 } 3105 3106 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 3107 SelectInst *Select, 3108 ConstantInt *C) { 3109 3110 assert(C && "Cmp RHS should be a constant int!"); 3111 // If we're testing a constant value against the result of a three way 3112 // comparison, the result can be expressed directly in terms of the 3113 // original values being compared. Note: We could possibly be more 3114 // aggressive here and remove the hasOneUse test. The original select is 3115 // really likely to simplify or sink when we remove a test of the result. 3116 Value *OrigLHS, *OrigRHS; 3117 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 3118 if (Cmp.hasOneUse() && 3119 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 3120 C3GreaterThan)) { 3121 assert(C1LessThan && C2Equal && C3GreaterThan); 3122 3123 bool TrueWhenLessThan = 3124 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 3125 ->isAllOnesValue(); 3126 bool TrueWhenEqual = 3127 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 3128 ->isAllOnesValue(); 3129 bool TrueWhenGreaterThan = 3130 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 3131 ->isAllOnesValue(); 3132 3133 // This generates the new instruction that will replace the original Cmp 3134 // Instruction. Instead of enumerating the various combinations when 3135 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 3136 // false, we rely on chaining of ORs and future passes of InstCombine to 3137 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 3138 3139 // When none of the three constants satisfy the predicate for the RHS (C), 3140 // the entire original Cmp can be simplified to a false. 3141 Value *Cond = Builder.getFalse(); 3142 if (TrueWhenLessThan) 3143 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 3144 OrigLHS, OrigRHS)); 3145 if (TrueWhenEqual) 3146 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 3147 OrigLHS, OrigRHS)); 3148 if (TrueWhenGreaterThan) 3149 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 3150 OrigLHS, OrigRHS)); 3151 3152 return replaceInstUsesWith(Cmp, Cond); 3153 } 3154 return nullptr; 3155 } 3156 3157 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 3158 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 3159 if (!Bitcast) 3160 return nullptr; 3161 3162 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3163 Value *Op1 = Cmp.getOperand(1); 3164 Value *BCSrcOp = Bitcast->getOperand(0); 3165 Type *SrcType = Bitcast->getSrcTy(); 3166 Type *DstType = Bitcast->getType(); 3167 3168 // Make sure the bitcast doesn't change between scalar and vector and 3169 // doesn't change the number of vector elements. 3170 if (SrcType->isVectorTy() == DstType->isVectorTy() && 3171 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 3172 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 3173 Value *X; 3174 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 3175 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 3176 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 3177 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 3178 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 3179 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 3180 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 3181 match(Op1, m_Zero())) 3182 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3183 3184 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 3185 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 3186 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 3187 3188 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 3189 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 3190 return new ICmpInst(Pred, X, 3191 ConstantInt::getAllOnesValue(X->getType())); 3192 } 3193 3194 // Zero-equality checks are preserved through unsigned floating-point casts: 3195 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 3196 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 3197 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 3198 if (Cmp.isEquality() && match(Op1, m_Zero())) 3199 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3200 3201 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 3202 // the FP extend/truncate because that cast does not change the sign-bit. 3203 // This is true for all standard IEEE-754 types and the X86 80-bit type. 3204 // The sign-bit is always the most significant bit in those types. 3205 const APInt *C; 3206 bool TrueIfSigned; 3207 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 3208 isSignBitCheck(Pred, *C, TrueIfSigned)) { 3209 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 3210 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 3211 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 3212 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 3213 Type *XType = X->getType(); 3214 3215 // We can't currently handle Power style floating point operations here. 3216 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 3217 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 3218 if (auto *XVTy = dyn_cast<VectorType>(XType)) 3219 NewType = VectorType::get(NewType, XVTy->getElementCount()); 3220 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 3221 if (TrueIfSigned) 3222 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 3223 ConstantInt::getNullValue(NewType)); 3224 else 3225 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 3226 ConstantInt::getAllOnesValue(NewType)); 3227 } 3228 } 3229 } 3230 } 3231 3232 const APInt *C; 3233 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 3234 !SrcType->isIntOrIntVectorTy()) 3235 return nullptr; 3236 3237 // If this is checking if all elements of a vector compare are set or not, 3238 // invert the casted vector equality compare and test if all compare 3239 // elements are clear or not. Compare against zero is generally easier for 3240 // analysis and codegen. 3241 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3242 // Example: are all elements equal? --> are zero elements not equal? 3243 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3244 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) { 3245 if (Value *NotBCSrcOp = 3246 getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) { 3247 Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType); 3248 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3249 } 3250 } 3251 3252 // If this is checking if all elements of an extended vector are clear or not, 3253 // compare in a narrow type to eliminate the extend: 3254 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3255 Value *X; 3256 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3257 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3258 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3259 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3260 Value *NewCast = Builder.CreateBitCast(X, NewType); 3261 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3262 } 3263 } 3264 3265 // Folding: icmp <pred> iN X, C 3266 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3267 // and C is a splat of a K-bit pattern 3268 // and SC is a constant vector = <C', C', C', ..., C'> 3269 // Into: 3270 // %E = extractelement <M x iK> %vec, i32 C' 3271 // icmp <pred> iK %E, trunc(C) 3272 Value *Vec; 3273 ArrayRef<int> Mask; 3274 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3275 // Check whether every element of Mask is the same constant 3276 if (all_equal(Mask)) { 3277 auto *VecTy = cast<VectorType>(SrcType); 3278 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3279 if (C->isSplat(EltTy->getBitWidth())) { 3280 // Fold the icmp based on the value of C 3281 // If C is M copies of an iK sized bit pattern, 3282 // then: 3283 // => %E = extractelement <N x iK> %vec, i32 Elem 3284 // icmp <pred> iK %SplatVal, <pattern> 3285 Value *Elem = Builder.getInt32(Mask[0]); 3286 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3287 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3288 return new ICmpInst(Pred, Extract, NewC); 3289 } 3290 } 3291 } 3292 return nullptr; 3293 } 3294 3295 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3296 /// where X is some kind of instruction. 3297 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3298 const APInt *C; 3299 3300 if (match(Cmp.getOperand(1), m_APInt(C))) { 3301 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3302 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3303 return I; 3304 3305 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3306 // For now, we only support constant integers while folding the 3307 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3308 // similar to the cases handled by binary ops above. 3309 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3310 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3311 return I; 3312 3313 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3314 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3315 return I; 3316 3317 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3318 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3319 return I; 3320 3321 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y 3322 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y 3323 // TODO: This checks one-use, but that is not strictly necessary. 3324 Value *Cmp0 = Cmp.getOperand(0); 3325 Value *X, *Y; 3326 if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() && 3327 (match(Cmp0, 3328 m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>( 3329 m_Value(X), m_Value(Y)))) || 3330 match(Cmp0, 3331 m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 3332 m_Value(X), m_Value(Y)))))) 3333 return new ICmpInst(Cmp.getPredicate(), X, Y); 3334 } 3335 3336 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3337 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3338 3339 return nullptr; 3340 } 3341 3342 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3343 /// icmp eq/ne BO, C. 3344 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3345 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3346 // TODO: Some of these folds could work with arbitrary constants, but this 3347 // function is limited to scalar and vector splat constants. 3348 if (!Cmp.isEquality()) 3349 return nullptr; 3350 3351 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3352 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3353 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3354 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3355 3356 switch (BO->getOpcode()) { 3357 case Instruction::SRem: 3358 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3359 if (C.isZero() && BO->hasOneUse()) { 3360 const APInt *BOC; 3361 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3362 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3363 return new ICmpInst(Pred, NewRem, 3364 Constant::getNullValue(BO->getType())); 3365 } 3366 } 3367 break; 3368 case Instruction::Add: { 3369 // (A + C2) == C --> A == (C - C2) 3370 // (A + C2) != C --> A != (C - C2) 3371 // TODO: Remove the one-use limitation? See discussion in D58633. 3372 if (Constant *C2 = dyn_cast<Constant>(BOp1)) { 3373 if (BO->hasOneUse()) 3374 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2)); 3375 } else if (C.isZero()) { 3376 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3377 // efficiently invertible, or if the add has just this one use. 3378 if (Value *NegVal = dyn_castNegVal(BOp1)) 3379 return new ICmpInst(Pred, BOp0, NegVal); 3380 if (Value *NegVal = dyn_castNegVal(BOp0)) 3381 return new ICmpInst(Pred, NegVal, BOp1); 3382 if (BO->hasOneUse()) { 3383 Value *Neg = Builder.CreateNeg(BOp1); 3384 Neg->takeName(BO); 3385 return new ICmpInst(Pred, BOp0, Neg); 3386 } 3387 } 3388 break; 3389 } 3390 case Instruction::Xor: 3391 if (BO->hasOneUse()) { 3392 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3393 // For the xor case, we can xor two constants together, eliminating 3394 // the explicit xor. 3395 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3396 } else if (C.isZero()) { 3397 // Replace ((xor A, B) != 0) with (A != B) 3398 return new ICmpInst(Pred, BOp0, BOp1); 3399 } 3400 } 3401 break; 3402 case Instruction::Or: { 3403 const APInt *BOC; 3404 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3405 // Comparing if all bits outside of a constant mask are set? 3406 // Replace (X | C) == -1 with (X & ~C) == ~C. 3407 // This removes the -1 constant. 3408 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3409 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3410 return new ICmpInst(Pred, And, NotBOC); 3411 } 3412 break; 3413 } 3414 case Instruction::UDiv: 3415 case Instruction::SDiv: 3416 if (BO->isExact()) { 3417 // div exact X, Y eq/ne 0 -> X eq/ne 0 3418 // div exact X, Y eq/ne 1 -> X eq/ne Y 3419 // div exact X, Y eq/ne C -> 3420 // if Y * C never-overflow && OneUse: 3421 // -> Y * C eq/ne X 3422 if (C.isZero()) 3423 return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType())); 3424 else if (C.isOne()) 3425 return new ICmpInst(Pred, BOp0, BOp1); 3426 else if (BO->hasOneUse()) { 3427 OverflowResult OR = computeOverflow( 3428 Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1, 3429 Cmp.getOperand(1), BO); 3430 if (OR == OverflowResult::NeverOverflows) { 3431 Value *YC = 3432 Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C)); 3433 return new ICmpInst(Pred, YC, BOp0); 3434 } 3435 } 3436 } 3437 if (BO->getOpcode() == Instruction::UDiv && C.isZero()) { 3438 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3439 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3440 return new ICmpInst(NewPred, BOp1, BOp0); 3441 } 3442 break; 3443 default: 3444 break; 3445 } 3446 return nullptr; 3447 } 3448 3449 static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, 3450 const APInt &CRhs, 3451 InstCombiner::BuilderTy &Builder, 3452 const SimplifyQuery &Q) { 3453 assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop && 3454 "Non-ctpop intrin in ctpop fold"); 3455 if (!CtpopLhs->hasOneUse()) 3456 return nullptr; 3457 3458 // Power of 2 test: 3459 // isPow2OrZero : ctpop(X) u< 2 3460 // isPow2 : ctpop(X) == 1 3461 // NotPow2OrZero: ctpop(X) u> 1 3462 // NotPow2 : ctpop(X) != 1 3463 // If we know any bit of X can be folded to: 3464 // IsPow2 : X & (~Bit) == 0 3465 // NotPow2 : X & (~Bit) != 0 3466 const ICmpInst::Predicate Pred = I.getPredicate(); 3467 if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) || 3468 (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) { 3469 Value *Op = CtpopLhs->getArgOperand(0); 3470 KnownBits OpKnown = computeKnownBits(Op, Q.DL, 3471 /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT); 3472 // No need to check for count > 1, that should be already constant folded. 3473 if (OpKnown.countMinPopulation() == 1) { 3474 Value *And = Builder.CreateAnd( 3475 Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One))); 3476 return new ICmpInst( 3477 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT) 3478 ? ICmpInst::ICMP_EQ 3479 : ICmpInst::ICMP_NE, 3480 And, Constant::getNullValue(Op->getType())); 3481 } 3482 } 3483 3484 return nullptr; 3485 } 3486 3487 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3488 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3489 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3490 Type *Ty = II->getType(); 3491 unsigned BitWidth = C.getBitWidth(); 3492 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3493 3494 switch (II->getIntrinsicID()) { 3495 case Intrinsic::abs: 3496 // abs(A) == 0 -> A == 0 3497 // abs(A) == INT_MIN -> A == INT_MIN 3498 if (C.isZero() || C.isMinSignedValue()) 3499 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3500 break; 3501 3502 case Intrinsic::bswap: 3503 // bswap(A) == C -> A == bswap(C) 3504 return new ICmpInst(Pred, II->getArgOperand(0), 3505 ConstantInt::get(Ty, C.byteSwap())); 3506 3507 case Intrinsic::bitreverse: 3508 // bitreverse(A) == C -> A == bitreverse(C) 3509 return new ICmpInst(Pred, II->getArgOperand(0), 3510 ConstantInt::get(Ty, C.reverseBits())); 3511 3512 case Intrinsic::ctlz: 3513 case Intrinsic::cttz: { 3514 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3515 if (C == BitWidth) 3516 return new ICmpInst(Pred, II->getArgOperand(0), 3517 ConstantInt::getNullValue(Ty)); 3518 3519 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3520 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3521 // Limit to one use to ensure we don't increase instruction count. 3522 unsigned Num = C.getLimitedValue(BitWidth); 3523 if (Num != BitWidth && II->hasOneUse()) { 3524 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3525 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3526 : APInt::getHighBitsSet(BitWidth, Num + 1); 3527 APInt Mask2 = IsTrailing 3528 ? APInt::getOneBitSet(BitWidth, Num) 3529 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3530 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3531 ConstantInt::get(Ty, Mask2)); 3532 } 3533 break; 3534 } 3535 3536 case Intrinsic::ctpop: { 3537 // popcount(A) == 0 -> A == 0 and likewise for != 3538 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3539 bool IsZero = C.isZero(); 3540 if (IsZero || C == BitWidth) 3541 return new ICmpInst(Pred, II->getArgOperand(0), 3542 IsZero ? Constant::getNullValue(Ty) 3543 : Constant::getAllOnesValue(Ty)); 3544 3545 break; 3546 } 3547 3548 case Intrinsic::fshl: 3549 case Intrinsic::fshr: 3550 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3551 const APInt *RotAmtC; 3552 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3553 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3554 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3555 return new ICmpInst(Pred, II->getArgOperand(0), 3556 II->getIntrinsicID() == Intrinsic::fshl 3557 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3558 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3559 } 3560 break; 3561 3562 case Intrinsic::umax: 3563 case Intrinsic::uadd_sat: { 3564 // uadd.sat(a, b) == 0 -> (a | b) == 0 3565 // umax(a, b) == 0 -> (a | b) == 0 3566 if (C.isZero() && II->hasOneUse()) { 3567 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3568 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3569 } 3570 break; 3571 } 3572 3573 case Intrinsic::ssub_sat: 3574 // ssub.sat(a, b) == 0 -> a == b 3575 if (C.isZero()) 3576 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3577 break; 3578 case Intrinsic::usub_sat: { 3579 // usub.sat(a, b) == 0 -> a <= b 3580 if (C.isZero()) { 3581 ICmpInst::Predicate NewPred = 3582 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3583 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3584 } 3585 break; 3586 } 3587 default: 3588 break; 3589 } 3590 3591 return nullptr; 3592 } 3593 3594 /// Fold an icmp with LLVM intrinsics 3595 static Instruction * 3596 foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, 3597 InstCombiner::BuilderTy &Builder) { 3598 assert(Cmp.isEquality()); 3599 3600 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3601 Value *Op0 = Cmp.getOperand(0); 3602 Value *Op1 = Cmp.getOperand(1); 3603 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3604 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3605 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3606 return nullptr; 3607 3608 switch (IIOp0->getIntrinsicID()) { 3609 case Intrinsic::bswap: 3610 case Intrinsic::bitreverse: 3611 // If both operands are byte-swapped or bit-reversed, just compare the 3612 // original values. 3613 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3614 case Intrinsic::fshl: 3615 case Intrinsic::fshr: { 3616 // If both operands are rotated by same amount, just compare the 3617 // original values. 3618 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3619 break; 3620 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3621 break; 3622 if (IIOp0->getOperand(2) == IIOp1->getOperand(2)) 3623 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3624 3625 // rotate(X, AmtX) == rotate(Y, AmtY) 3626 // -> rotate(X, AmtX - AmtY) == Y 3627 // Do this if either both rotates have one use or if only one has one use 3628 // and AmtX/AmtY are constants. 3629 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse(); 3630 if (OneUses == 2 || 3631 (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) && 3632 match(IIOp1->getOperand(2), m_ImmConstant()))) { 3633 Value *SubAmt = 3634 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2)); 3635 Value *CombinedRotate = Builder.CreateIntrinsic( 3636 Op0->getType(), IIOp0->getIntrinsicID(), 3637 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt}); 3638 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate); 3639 } 3640 } break; 3641 default: 3642 break; 3643 } 3644 3645 return nullptr; 3646 } 3647 3648 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3649 /// where X is some kind of instruction and C is AllowUndef. 3650 /// TODO: Move more folds which allow undef to this function. 3651 Instruction * 3652 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3653 const APInt &C) { 3654 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3655 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3656 switch (II->getIntrinsicID()) { 3657 default: 3658 break; 3659 case Intrinsic::fshl: 3660 case Intrinsic::fshr: 3661 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3662 // (rot X, ?) == 0/-1 --> X == 0/-1 3663 if (C.isZero() || C.isAllOnes()) 3664 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3665 } 3666 break; 3667 } 3668 } 3669 3670 return nullptr; 3671 } 3672 3673 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3674 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3675 BinaryOperator *BO, 3676 const APInt &C) { 3677 switch (BO->getOpcode()) { 3678 case Instruction::Xor: 3679 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3680 return I; 3681 break; 3682 case Instruction::And: 3683 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3684 return I; 3685 break; 3686 case Instruction::Or: 3687 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3688 return I; 3689 break; 3690 case Instruction::Mul: 3691 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3692 return I; 3693 break; 3694 case Instruction::Shl: 3695 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3696 return I; 3697 break; 3698 case Instruction::LShr: 3699 case Instruction::AShr: 3700 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3701 return I; 3702 break; 3703 case Instruction::SRem: 3704 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3705 return I; 3706 break; 3707 case Instruction::UDiv: 3708 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3709 return I; 3710 [[fallthrough]]; 3711 case Instruction::SDiv: 3712 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3713 return I; 3714 break; 3715 case Instruction::Sub: 3716 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3717 return I; 3718 break; 3719 case Instruction::Add: 3720 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3721 return I; 3722 break; 3723 default: 3724 break; 3725 } 3726 3727 // TODO: These folds could be refactored to be part of the above calls. 3728 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3729 } 3730 3731 static Instruction * 3732 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred, 3733 SaturatingInst *II, const APInt &C, 3734 InstCombiner::BuilderTy &Builder) { 3735 // This transform may end up producing more than one instruction for the 3736 // intrinsic, so limit it to one user of the intrinsic. 3737 if (!II->hasOneUse()) 3738 return nullptr; 3739 3740 // Let Y = [add/sub]_sat(X, C) pred C2 3741 // SatVal = The saturating value for the operation 3742 // WillWrap = Whether or not the operation will underflow / overflow 3743 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2 3744 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2) 3745 // 3746 // When (SatVal pred C2) is true, then 3747 // Y = WillWrap ? true : ((X binop C) pred C2) 3748 // => Y = WillWrap || ((X binop C) pred C2) 3749 // else 3750 // Y = WillWrap ? false : ((X binop C) pred C2) 3751 // => Y = !WillWrap ? ((X binop C) pred C2) : false 3752 // => Y = !WillWrap && ((X binop C) pred C2) 3753 Value *Op0 = II->getOperand(0); 3754 Value *Op1 = II->getOperand(1); 3755 3756 const APInt *COp1; 3757 // This transform only works when the intrinsic has an integral constant or 3758 // splat vector as the second operand. 3759 if (!match(Op1, m_APInt(COp1))) 3760 return nullptr; 3761 3762 APInt SatVal; 3763 switch (II->getIntrinsicID()) { 3764 default: 3765 llvm_unreachable( 3766 "This function only works with usub_sat and uadd_sat for now!"); 3767 case Intrinsic::uadd_sat: 3768 SatVal = APInt::getAllOnes(C.getBitWidth()); 3769 break; 3770 case Intrinsic::usub_sat: 3771 SatVal = APInt::getZero(C.getBitWidth()); 3772 break; 3773 } 3774 3775 // Check (SatVal pred C2) 3776 bool SatValCheck = ICmpInst::compare(SatVal, C, Pred); 3777 3778 // !WillWrap. 3779 ConstantRange C1 = ConstantRange::makeExactNoWrapRegion( 3780 II->getBinaryOp(), *COp1, II->getNoWrapKind()); 3781 3782 // WillWrap. 3783 if (SatValCheck) 3784 C1 = C1.inverse(); 3785 3786 ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C); 3787 if (II->getBinaryOp() == Instruction::Add) 3788 C2 = C2.sub(*COp1); 3789 else 3790 C2 = C2.add(*COp1); 3791 3792 Instruction::BinaryOps CombiningOp = 3793 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And; 3794 3795 std::optional<ConstantRange> Combination; 3796 if (CombiningOp == Instruction::BinaryOps::Or) 3797 Combination = C1.exactUnionWith(C2); 3798 else /* CombiningOp == Instruction::BinaryOps::And */ 3799 Combination = C1.exactIntersectWith(C2); 3800 3801 if (!Combination) 3802 return nullptr; 3803 3804 CmpInst::Predicate EquivPred; 3805 APInt EquivInt; 3806 APInt EquivOffset; 3807 3808 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset); 3809 3810 return new ICmpInst( 3811 EquivPred, 3812 Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)), 3813 ConstantInt::get(Op1->getType(), EquivInt)); 3814 } 3815 3816 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3817 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3818 IntrinsicInst *II, 3819 const APInt &C) { 3820 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3821 3822 // Handle folds that apply for any kind of icmp. 3823 switch (II->getIntrinsicID()) { 3824 default: 3825 break; 3826 case Intrinsic::uadd_sat: 3827 case Intrinsic::usub_sat: 3828 if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant( 3829 Pred, cast<SaturatingInst>(II), C, Builder)) 3830 return Folded; 3831 break; 3832 case Intrinsic::ctpop: { 3833 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 3834 if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q)) 3835 return R; 3836 } break; 3837 } 3838 3839 if (Cmp.isEquality()) 3840 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3841 3842 Type *Ty = II->getType(); 3843 unsigned BitWidth = C.getBitWidth(); 3844 switch (II->getIntrinsicID()) { 3845 case Intrinsic::ctpop: { 3846 // (ctpop X > BitWidth - 1) --> X == -1 3847 Value *X = II->getArgOperand(0); 3848 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3849 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3850 ConstantInt::getAllOnesValue(Ty)); 3851 // (ctpop X < BitWidth) --> X != -1 3852 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3853 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3854 ConstantInt::getAllOnesValue(Ty)); 3855 break; 3856 } 3857 case Intrinsic::ctlz: { 3858 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3859 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3860 unsigned Num = C.getLimitedValue(); 3861 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3862 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3863 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3864 } 3865 3866 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3867 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3868 unsigned Num = C.getLimitedValue(); 3869 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3870 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3871 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3872 } 3873 break; 3874 } 3875 case Intrinsic::cttz: { 3876 // Limit to one use to ensure we don't increase instruction count. 3877 if (!II->hasOneUse()) 3878 return nullptr; 3879 3880 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3881 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3882 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3883 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3884 Builder.CreateAnd(II->getArgOperand(0), Mask), 3885 ConstantInt::getNullValue(Ty)); 3886 } 3887 3888 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3889 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3890 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3891 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3892 Builder.CreateAnd(II->getArgOperand(0), Mask), 3893 ConstantInt::getNullValue(Ty)); 3894 } 3895 break; 3896 } 3897 case Intrinsic::ssub_sat: 3898 // ssub.sat(a, b) spred 0 -> a spred b 3899 if (ICmpInst::isSigned(Pred)) { 3900 if (C.isZero()) 3901 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3902 // X s<= 0 is cannonicalized to X s< 1 3903 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 3904 return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0), 3905 II->getArgOperand(1)); 3906 // X s>= 0 is cannonicalized to X s> -1 3907 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 3908 return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0), 3909 II->getArgOperand(1)); 3910 } 3911 break; 3912 default: 3913 break; 3914 } 3915 3916 return nullptr; 3917 } 3918 3919 /// Handle icmp with constant (but not simple integer constant) RHS. 3920 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3921 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3922 Constant *RHSC = dyn_cast<Constant>(Op1); 3923 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3924 if (!RHSC || !LHSI) 3925 return nullptr; 3926 3927 switch (LHSI->getOpcode()) { 3928 case Instruction::PHI: 3929 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3930 return NV; 3931 break; 3932 case Instruction::IntToPtr: 3933 // icmp pred inttoptr(X), null -> icmp pred X, 0 3934 if (RHSC->isNullValue() && 3935 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3936 return new ICmpInst( 3937 I.getPredicate(), LHSI->getOperand(0), 3938 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3939 break; 3940 3941 case Instruction::Load: 3942 // Try to optimize things like "A[i] > 4" to index computations. 3943 if (GetElementPtrInst *GEP = 3944 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3945 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3946 if (Instruction *Res = 3947 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3948 return Res; 3949 break; 3950 } 3951 3952 return nullptr; 3953 } 3954 3955 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3956 SelectInst *SI, Value *RHS, 3957 const ICmpInst &I) { 3958 // Try to fold the comparison into the select arms, which will cause the 3959 // select to be converted into a logical and/or. 3960 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3961 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 3962 return Res; 3963 if (std::optional<bool> Impl = isImpliedCondition( 3964 SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue)) 3965 return ConstantInt::get(I.getType(), *Impl); 3966 return nullptr; 3967 }; 3968 3969 ConstantInt *CI = nullptr; 3970 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3971 if (Op1) 3972 CI = dyn_cast<ConstantInt>(Op1); 3973 3974 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3975 if (Op2) 3976 CI = dyn_cast<ConstantInt>(Op2); 3977 3978 // We only want to perform this transformation if it will not lead to 3979 // additional code. This is true if either both sides of the select 3980 // fold to a constant (in which case the icmp is replaced with a select 3981 // which will usually simplify) or this is the only user of the 3982 // select (in which case we are trading a select+icmp for a simpler 3983 // select+icmp) or all uses of the select can be replaced based on 3984 // dominance information ("Global cases"). 3985 bool Transform = false; 3986 if (Op1 && Op2) 3987 Transform = true; 3988 else if (Op1 || Op2) { 3989 // Local case 3990 if (SI->hasOneUse()) 3991 Transform = true; 3992 // Global cases 3993 else if (CI && !CI->isZero()) 3994 // When Op1 is constant try replacing select with second operand. 3995 // Otherwise Op2 is constant and try replacing select with first 3996 // operand. 3997 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3998 } 3999 if (Transform) { 4000 if (!Op1) 4001 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 4002 if (!Op2) 4003 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 4004 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 4005 } 4006 4007 return nullptr; 4008 } 4009 4010 /// Some comparisons can be simplified. 4011 /// In this case, we are looking for comparisons that look like 4012 /// a check for a lossy truncation. 4013 /// Folds: 4014 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 4015 /// Where Mask is some pattern that produces all-ones in low bits: 4016 /// (-1 >> y) 4017 /// ((-1 << y) >> y) <- non-canonical, has extra uses 4018 /// ~(-1 << y) 4019 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 4020 /// The Mask can be a constant, too. 4021 /// For some predicates, the operands are commutative. 4022 /// For others, x can only be on a specific side. 4023 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 4024 InstCombiner::BuilderTy &Builder) { 4025 ICmpInst::Predicate SrcPred; 4026 Value *X, *M, *Y; 4027 auto m_VariableMask = m_CombineOr( 4028 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 4029 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 4030 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 4031 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 4032 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 4033 if (!match(&I, m_c_ICmp(SrcPred, 4034 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 4035 m_Deferred(X)))) 4036 return nullptr; 4037 4038 ICmpInst::Predicate DstPred; 4039 switch (SrcPred) { 4040 case ICmpInst::Predicate::ICMP_EQ: 4041 // x & (-1 >> y) == x -> x u<= (-1 >> y) 4042 DstPred = ICmpInst::Predicate::ICMP_ULE; 4043 break; 4044 case ICmpInst::Predicate::ICMP_NE: 4045 // x & (-1 >> y) != x -> x u> (-1 >> y) 4046 DstPred = ICmpInst::Predicate::ICMP_UGT; 4047 break; 4048 case ICmpInst::Predicate::ICMP_ULT: 4049 // x & (-1 >> y) u< x -> x u> (-1 >> y) 4050 // x u> x & (-1 >> y) -> x u> (-1 >> y) 4051 DstPred = ICmpInst::Predicate::ICMP_UGT; 4052 break; 4053 case ICmpInst::Predicate::ICMP_UGE: 4054 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 4055 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 4056 DstPred = ICmpInst::Predicate::ICMP_ULE; 4057 break; 4058 case ICmpInst::Predicate::ICMP_SLT: 4059 // x & (-1 >> y) s< x -> x s> (-1 >> y) 4060 // x s> x & (-1 >> y) -> x s> (-1 >> y) 4061 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 4062 return nullptr; 4063 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 4064 return nullptr; 4065 DstPred = ICmpInst::Predicate::ICMP_SGT; 4066 break; 4067 case ICmpInst::Predicate::ICMP_SGE: 4068 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 4069 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 4070 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 4071 return nullptr; 4072 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 4073 return nullptr; 4074 DstPred = ICmpInst::Predicate::ICMP_SLE; 4075 break; 4076 case ICmpInst::Predicate::ICMP_SGT: 4077 case ICmpInst::Predicate::ICMP_SLE: 4078 return nullptr; 4079 case ICmpInst::Predicate::ICMP_UGT: 4080 case ICmpInst::Predicate::ICMP_ULE: 4081 llvm_unreachable("Instsimplify took care of commut. variant"); 4082 break; 4083 default: 4084 llvm_unreachable("All possible folds are handled."); 4085 } 4086 4087 // The mask value may be a vector constant that has undefined elements. But it 4088 // may not be safe to propagate those undefs into the new compare, so replace 4089 // those elements by copying an existing, defined, and safe scalar constant. 4090 Type *OpTy = M->getType(); 4091 auto *VecC = dyn_cast<Constant>(M); 4092 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 4093 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 4094 Constant *SafeReplacementConstant = nullptr; 4095 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 4096 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 4097 SafeReplacementConstant = VecC->getAggregateElement(i); 4098 break; 4099 } 4100 } 4101 assert(SafeReplacementConstant && "Failed to find undef replacement"); 4102 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 4103 } 4104 4105 return Builder.CreateICmp(DstPred, X, M); 4106 } 4107 4108 /// Some comparisons can be simplified. 4109 /// In this case, we are looking for comparisons that look like 4110 /// a check for a lossy signed truncation. 4111 /// Folds: (MaskedBits is a constant.) 4112 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 4113 /// Into: 4114 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 4115 /// Where KeptBits = bitwidth(%x) - MaskedBits 4116 static Value * 4117 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 4118 InstCombiner::BuilderTy &Builder) { 4119 ICmpInst::Predicate SrcPred; 4120 Value *X; 4121 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 4122 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 4123 if (!match(&I, m_c_ICmp(SrcPred, 4124 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 4125 m_APInt(C1))), 4126 m_Deferred(X)))) 4127 return nullptr; 4128 4129 // Potential handling of non-splats: for each element: 4130 // * if both are undef, replace with constant 0. 4131 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 4132 // * if both are not undef, and are different, bailout. 4133 // * else, only one is undef, then pick the non-undef one. 4134 4135 // The shift amount must be equal. 4136 if (*C0 != *C1) 4137 return nullptr; 4138 const APInt &MaskedBits = *C0; 4139 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 4140 4141 ICmpInst::Predicate DstPred; 4142 switch (SrcPred) { 4143 case ICmpInst::Predicate::ICMP_EQ: 4144 // ((%x << MaskedBits) a>> MaskedBits) == %x 4145 // => 4146 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 4147 DstPred = ICmpInst::Predicate::ICMP_ULT; 4148 break; 4149 case ICmpInst::Predicate::ICMP_NE: 4150 // ((%x << MaskedBits) a>> MaskedBits) != %x 4151 // => 4152 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 4153 DstPred = ICmpInst::Predicate::ICMP_UGE; 4154 break; 4155 // FIXME: are more folds possible? 4156 default: 4157 return nullptr; 4158 } 4159 4160 auto *XType = X->getType(); 4161 const unsigned XBitWidth = XType->getScalarSizeInBits(); 4162 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 4163 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 4164 4165 // KeptBits = bitwidth(%x) - MaskedBits 4166 const APInt KeptBits = BitWidth - MaskedBits; 4167 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 4168 // ICmpCst = (1 << KeptBits) 4169 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 4170 assert(ICmpCst.isPowerOf2()); 4171 // AddCst = (1 << (KeptBits-1)) 4172 const APInt AddCst = ICmpCst.lshr(1); 4173 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 4174 4175 // T0 = add %x, AddCst 4176 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 4177 // T1 = T0 DstPred ICmpCst 4178 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 4179 4180 return T1; 4181 } 4182 4183 // Given pattern: 4184 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4185 // we should move shifts to the same hand of 'and', i.e. rewrite as 4186 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4187 // We are only interested in opposite logical shifts here. 4188 // One of the shifts can be truncated. 4189 // If we can, we want to end up creating 'lshr' shift. 4190 static Value * 4191 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 4192 InstCombiner::BuilderTy &Builder) { 4193 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 4194 !I.getOperand(0)->hasOneUse()) 4195 return nullptr; 4196 4197 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 4198 4199 // Look for an 'and' of two logical shifts, one of which may be truncated. 4200 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 4201 Instruction *XShift, *MaybeTruncation, *YShift; 4202 if (!match( 4203 I.getOperand(0), 4204 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 4205 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 4206 m_AnyLogicalShift, m_Instruction(YShift))), 4207 m_Instruction(MaybeTruncation))))) 4208 return nullptr; 4209 4210 // We potentially looked past 'trunc', but only when matching YShift, 4211 // therefore YShift must have the widest type. 4212 Instruction *WidestShift = YShift; 4213 // Therefore XShift must have the shallowest type. 4214 // Or they both have identical types if there was no truncation. 4215 Instruction *NarrowestShift = XShift; 4216 4217 Type *WidestTy = WidestShift->getType(); 4218 Type *NarrowestTy = NarrowestShift->getType(); 4219 assert(NarrowestTy == I.getOperand(0)->getType() && 4220 "We did not look past any shifts while matching XShift though."); 4221 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 4222 4223 // If YShift is a 'lshr', swap the shifts around. 4224 if (match(YShift, m_LShr(m_Value(), m_Value()))) 4225 std::swap(XShift, YShift); 4226 4227 // The shifts must be in opposite directions. 4228 auto XShiftOpcode = XShift->getOpcode(); 4229 if (XShiftOpcode == YShift->getOpcode()) 4230 return nullptr; // Do not care about same-direction shifts here. 4231 4232 Value *X, *XShAmt, *Y, *YShAmt; 4233 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 4234 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 4235 4236 // If one of the values being shifted is a constant, then we will end with 4237 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 4238 // however, we will need to ensure that we won't increase instruction count. 4239 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 4240 // At least one of the hands of the 'and' should be one-use shift. 4241 if (!match(I.getOperand(0), 4242 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 4243 return nullptr; 4244 if (HadTrunc) { 4245 // Due to the 'trunc', we will need to widen X. For that either the old 4246 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 4247 if (!MaybeTruncation->hasOneUse() && 4248 !NarrowestShift->getOperand(1)->hasOneUse()) 4249 return nullptr; 4250 } 4251 } 4252 4253 // We have two shift amounts from two different shifts. The types of those 4254 // shift amounts may not match. If that's the case let's bailout now. 4255 if (XShAmt->getType() != YShAmt->getType()) 4256 return nullptr; 4257 4258 // As input, we have the following pattern: 4259 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4260 // We want to rewrite that as: 4261 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4262 // While we know that originally (Q+K) would not overflow 4263 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 4264 // shift amounts. so it may now overflow in smaller bitwidth. 4265 // To ensure that does not happen, we need to ensure that the total maximal 4266 // shift amount is still representable in that smaller bit width. 4267 unsigned MaximalPossibleTotalShiftAmount = 4268 (WidestTy->getScalarSizeInBits() - 1) + 4269 (NarrowestTy->getScalarSizeInBits() - 1); 4270 APInt MaximalRepresentableShiftAmount = 4271 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 4272 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 4273 return nullptr; 4274 4275 // Can we fold (XShAmt+YShAmt) ? 4276 auto *NewShAmt = dyn_cast_or_null<Constant>( 4277 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 4278 /*isNUW=*/false, SQ.getWithInstruction(&I))); 4279 if (!NewShAmt) 4280 return nullptr; 4281 if (NewShAmt->getType() != WidestTy) { 4282 NewShAmt = 4283 ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL); 4284 if (!NewShAmt) 4285 return nullptr; 4286 } 4287 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 4288 4289 // Is the new shift amount smaller than the bit width? 4290 // FIXME: could also rely on ConstantRange. 4291 if (!match(NewShAmt, 4292 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 4293 APInt(WidestBitWidth, WidestBitWidth)))) 4294 return nullptr; 4295 4296 // An extra legality check is needed if we had trunc-of-lshr. 4297 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 4298 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 4299 WidestShift]() { 4300 // It isn't obvious whether it's worth it to analyze non-constants here. 4301 // Also, let's basically give up on non-splat cases, pessimizing vectors. 4302 // If *any* of these preconditions matches we can perform the fold. 4303 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 4304 ? NewShAmt->getSplatValue() 4305 : NewShAmt; 4306 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 4307 if (NewShAmtSplat && 4308 (NewShAmtSplat->isNullValue() || 4309 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 4310 return true; 4311 // We consider *min* leading zeros so a single outlier 4312 // blocks the transform as opposed to allowing it. 4313 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 4314 KnownBits Known = computeKnownBits(C, SQ.DL); 4315 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4316 // If the value being shifted has at most lowest bit set we can fold. 4317 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4318 if (MaxActiveBits <= 1) 4319 return true; 4320 // Precondition: NewShAmt u<= countLeadingZeros(C) 4321 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 4322 return true; 4323 } 4324 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 4325 KnownBits Known = computeKnownBits(C, SQ.DL); 4326 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4327 // If the value being shifted has at most lowest bit set we can fold. 4328 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4329 if (MaxActiveBits <= 1) 4330 return true; 4331 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 4332 if (NewShAmtSplat) { 4333 APInt AdjNewShAmt = 4334 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 4335 if (AdjNewShAmt.ule(MinLeadZero)) 4336 return true; 4337 } 4338 } 4339 return false; // Can't tell if it's ok. 4340 }; 4341 if (!CanFold()) 4342 return nullptr; 4343 } 4344 4345 // All good, we can do this fold. 4346 X = Builder.CreateZExt(X, WidestTy); 4347 Y = Builder.CreateZExt(Y, WidestTy); 4348 // The shift is the same that was for X. 4349 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 4350 ? Builder.CreateLShr(X, NewShAmt) 4351 : Builder.CreateShl(X, NewShAmt); 4352 Value *T1 = Builder.CreateAnd(T0, Y); 4353 return Builder.CreateICmp(I.getPredicate(), T1, 4354 Constant::getNullValue(WidestTy)); 4355 } 4356 4357 /// Fold 4358 /// (-1 u/ x) u< y 4359 /// ((x * y) ?/ x) != y 4360 /// to 4361 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 4362 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 4363 /// will mean that we are looking for the opposite answer. 4364 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 4365 ICmpInst::Predicate Pred; 4366 Value *X, *Y; 4367 Instruction *Mul; 4368 Instruction *Div; 4369 bool NeedNegation; 4370 // Look for: (-1 u/ x) u</u>= y 4371 if (!I.isEquality() && 4372 match(&I, m_c_ICmp(Pred, 4373 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 4374 m_Instruction(Div)), 4375 m_Value(Y)))) { 4376 Mul = nullptr; 4377 4378 // Are we checking that overflow does not happen, or does happen? 4379 switch (Pred) { 4380 case ICmpInst::Predicate::ICMP_ULT: 4381 NeedNegation = false; 4382 break; // OK 4383 case ICmpInst::Predicate::ICMP_UGE: 4384 NeedNegation = true; 4385 break; // OK 4386 default: 4387 return nullptr; // Wrong predicate. 4388 } 4389 } else // Look for: ((x * y) / x) !=/== y 4390 if (I.isEquality() && 4391 match(&I, 4392 m_c_ICmp(Pred, m_Value(Y), 4393 m_CombineAnd( 4394 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 4395 m_Value(X)), 4396 m_Instruction(Mul)), 4397 m_Deferred(X))), 4398 m_Instruction(Div))))) { 4399 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 4400 } else 4401 return nullptr; 4402 4403 BuilderTy::InsertPointGuard Guard(Builder); 4404 // If the pattern included (x * y), we'll want to insert new instructions 4405 // right before that original multiplication so that we can replace it. 4406 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 4407 if (MulHadOtherUses) 4408 Builder.SetInsertPoint(Mul); 4409 4410 Function *F = Intrinsic::getDeclaration(I.getModule(), 4411 Div->getOpcode() == Instruction::UDiv 4412 ? Intrinsic::umul_with_overflow 4413 : Intrinsic::smul_with_overflow, 4414 X->getType()); 4415 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 4416 4417 // If the multiplication was used elsewhere, to ensure that we don't leave 4418 // "duplicate" instructions, replace uses of that original multiplication 4419 // with the multiplication result from the with.overflow intrinsic. 4420 if (MulHadOtherUses) 4421 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 4422 4423 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 4424 if (NeedNegation) // This technically increases instruction count. 4425 Res = Builder.CreateNot(Res, "mul.not.ov"); 4426 4427 // If we replaced the mul, erase it. Do this after all uses of Builder, 4428 // as the mul is used as insertion point. 4429 if (MulHadOtherUses) 4430 eraseInstFromFunction(*Mul); 4431 4432 return Res; 4433 } 4434 4435 static Instruction *foldICmpXNegX(ICmpInst &I, 4436 InstCombiner::BuilderTy &Builder) { 4437 CmpInst::Predicate Pred; 4438 Value *X; 4439 if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) { 4440 4441 if (ICmpInst::isSigned(Pred)) 4442 Pred = ICmpInst::getSwappedPredicate(Pred); 4443 else if (ICmpInst::isUnsigned(Pred)) 4444 Pred = ICmpInst::getSignedPredicate(Pred); 4445 // else for equality-comparisons just keep the predicate. 4446 4447 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4448 Constant::getNullValue(X->getType()), I.getName()); 4449 } 4450 4451 // A value is not equal to its negation unless that value is 0 or 4452 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0 4453 if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) && 4454 ICmpInst::isEquality(Pred)) { 4455 Type *Ty = X->getType(); 4456 uint32_t BitWidth = Ty->getScalarSizeInBits(); 4457 Constant *MaxSignedVal = 4458 ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 4459 Value *And = Builder.CreateAnd(X, MaxSignedVal); 4460 Constant *Zero = Constant::getNullValue(Ty); 4461 return CmpInst::Create(Instruction::ICmp, Pred, And, Zero); 4462 } 4463 4464 return nullptr; 4465 } 4466 4467 static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q, 4468 InstCombinerImpl &IC) { 4469 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4470 // Normalize and operand as operand 0. 4471 CmpInst::Predicate Pred = I.getPredicate(); 4472 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) { 4473 std::swap(Op0, Op1); 4474 Pred = ICmpInst::getSwappedPredicate(Pred); 4475 } 4476 4477 if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A)))) 4478 return nullptr; 4479 4480 // (icmp (X & Y) u< X --> (X & Y) != X 4481 if (Pred == ICmpInst::ICMP_ULT) 4482 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4483 4484 // (icmp (X & Y) u>= X --> (X & Y) == X 4485 if (Pred == ICmpInst::ICMP_UGE) 4486 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4487 4488 return nullptr; 4489 } 4490 4491 static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q, 4492 InstCombinerImpl &IC) { 4493 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4494 4495 // Normalize or operand as operand 0. 4496 CmpInst::Predicate Pred = I.getPredicate(); 4497 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) { 4498 std::swap(Op0, Op1); 4499 Pred = ICmpInst::getSwappedPredicate(Pred); 4500 } else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) { 4501 return nullptr; 4502 } 4503 4504 // icmp (X | Y) u<= X --> (X | Y) == X 4505 if (Pred == ICmpInst::ICMP_ULE) 4506 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4507 4508 // icmp (X | Y) u> X --> (X | Y) != X 4509 if (Pred == ICmpInst::ICMP_UGT) 4510 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4511 4512 if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) { 4513 // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible 4514 if (Value *NotOp1 = 4515 IC.getFreelyInverted(Op1, Op1->hasOneUse(), &IC.Builder)) 4516 return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1), 4517 Constant::getNullValue(Op1->getType())); 4518 // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible. 4519 if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder)) 4520 return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA), 4521 Constant::getAllOnesValue(Op1->getType())); 4522 } 4523 return nullptr; 4524 } 4525 4526 static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, 4527 InstCombinerImpl &IC) { 4528 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4529 // Normalize xor operand as operand 0. 4530 CmpInst::Predicate Pred = I.getPredicate(); 4531 if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) { 4532 std::swap(Op0, Op1); 4533 Pred = ICmpInst::getSwappedPredicate(Pred); 4534 } 4535 if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A)))) 4536 return nullptr; 4537 4538 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X 4539 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X 4540 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X 4541 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X 4542 CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred); 4543 if (PredOut != Pred && 4544 isKnownNonZero(A, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4545 return new ICmpInst(PredOut, Op0, Op1); 4546 4547 return nullptr; 4548 } 4549 4550 /// Try to fold icmp (binop), X or icmp X, (binop). 4551 /// TODO: A large part of this logic is duplicated in InstSimplify's 4552 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4553 /// duplication. 4554 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4555 const SimplifyQuery &SQ) { 4556 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4557 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4558 4559 // Special logic for binary operators. 4560 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4561 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4562 if (!BO0 && !BO1) 4563 return nullptr; 4564 4565 if (Instruction *NewICmp = foldICmpXNegX(I, Builder)) 4566 return NewICmp; 4567 4568 const CmpInst::Predicate Pred = I.getPredicate(); 4569 Value *X; 4570 4571 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4572 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4573 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4574 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4575 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4576 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4577 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4578 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4579 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4580 4581 { 4582 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4583 Constant *C; 4584 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4585 m_ImmConstant(C)))) && 4586 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4587 Constant *C2 = ConstantExpr::getNot(C); 4588 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4589 } 4590 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4591 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4592 m_ImmConstant(C)))) && 4593 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4594 Constant *C2 = ConstantExpr::getNot(C); 4595 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4596 } 4597 } 4598 4599 { 4600 // Similar to above: an unsigned overflow comparison may use offset + mask: 4601 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4602 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4603 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4604 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4605 BinaryOperator *BO; 4606 const APInt *C; 4607 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4608 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4609 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4610 CmpInst::Predicate NewPred = 4611 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4612 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4613 return new ICmpInst(NewPred, Op1, Zero); 4614 } 4615 4616 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4617 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4618 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4619 CmpInst::Predicate NewPred = 4620 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4621 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4622 return new ICmpInst(NewPred, Op0, Zero); 4623 } 4624 } 4625 4626 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4627 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4628 NoOp0WrapProblem = 4629 ICmpInst::isEquality(Pred) || 4630 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4631 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4632 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4633 NoOp1WrapProblem = 4634 ICmpInst::isEquality(Pred) || 4635 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4636 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4637 4638 // Analyze the case when either Op0 or Op1 is an add instruction. 4639 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4640 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4641 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4642 A = BO0->getOperand(0); 4643 B = BO0->getOperand(1); 4644 } 4645 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4646 C = BO1->getOperand(0); 4647 D = BO1->getOperand(1); 4648 } 4649 4650 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4651 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4652 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4653 return new ICmpInst(Pred, A == Op1 ? B : A, 4654 Constant::getNullValue(Op1->getType())); 4655 4656 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4657 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4658 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4659 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4660 C == Op0 ? D : C); 4661 4662 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4663 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4664 NoOp1WrapProblem) { 4665 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4666 Value *Y, *Z; 4667 if (A == C) { 4668 // C + B == C + D -> B == D 4669 Y = B; 4670 Z = D; 4671 } else if (A == D) { 4672 // D + B == C + D -> B == C 4673 Y = B; 4674 Z = C; 4675 } else if (B == C) { 4676 // A + C == C + D -> A == D 4677 Y = A; 4678 Z = D; 4679 } else { 4680 assert(B == D); 4681 // A + D == C + D -> A == C 4682 Y = A; 4683 Z = C; 4684 } 4685 return new ICmpInst(Pred, Y, Z); 4686 } 4687 4688 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4689 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4690 match(B, m_AllOnes())) 4691 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4692 4693 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4694 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4695 match(B, m_AllOnes())) 4696 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4697 4698 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4699 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4700 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4701 4702 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4703 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4704 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4705 4706 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4707 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4708 match(D, m_AllOnes())) 4709 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4710 4711 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4712 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4713 match(D, m_AllOnes())) 4714 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4715 4716 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4717 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4718 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4719 4720 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4721 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4722 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4723 4724 // TODO: The subtraction-related identities shown below also hold, but 4725 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4726 // wouldn't happen even if they were implemented. 4727 // 4728 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4729 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4730 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4731 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4732 4733 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4734 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4735 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4736 4737 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4738 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4739 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4740 4741 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4742 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4743 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4744 4745 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4746 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4747 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4748 4749 // if C1 has greater magnitude than C2: 4750 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4751 // s.t. C3 = C1 - C2 4752 // 4753 // if C2 has greater magnitude than C1: 4754 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4755 // s.t. C3 = C2 - C1 4756 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4757 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4758 const APInt *AP1, *AP2; 4759 // TODO: Support non-uniform vectors. 4760 // TODO: Allow undef passthrough if B AND D's element is undef. 4761 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4762 AP1->isNegative() == AP2->isNegative()) { 4763 APInt AP1Abs = AP1->abs(); 4764 APInt AP2Abs = AP2->abs(); 4765 if (AP1Abs.uge(AP2Abs)) { 4766 APInt Diff = *AP1 - *AP2; 4767 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4768 bool HasNSW = BO0->hasNoSignedWrap(); 4769 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4770 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4771 return new ICmpInst(Pred, NewAdd, C); 4772 } else { 4773 APInt Diff = *AP2 - *AP1; 4774 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4775 bool HasNSW = BO1->hasNoSignedWrap(); 4776 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4777 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4778 return new ICmpInst(Pred, A, NewAdd); 4779 } 4780 } 4781 Constant *Cst1, *Cst2; 4782 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4783 ICmpInst::isEquality(Pred)) { 4784 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4785 Value *NewAdd = Builder.CreateAdd(C, Diff); 4786 return new ICmpInst(Pred, A, NewAdd); 4787 } 4788 } 4789 4790 // Analyze the case when either Op0 or Op1 is a sub instruction. 4791 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4792 A = nullptr; 4793 B = nullptr; 4794 C = nullptr; 4795 D = nullptr; 4796 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4797 A = BO0->getOperand(0); 4798 B = BO0->getOperand(1); 4799 } 4800 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4801 C = BO1->getOperand(0); 4802 D = BO1->getOperand(1); 4803 } 4804 4805 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4806 if (A == Op1 && NoOp0WrapProblem) 4807 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4808 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4809 if (C == Op0 && NoOp1WrapProblem) 4810 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4811 4812 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4813 // (A - B) u>/u<= A --> B u>/u<= A 4814 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4815 return new ICmpInst(Pred, B, A); 4816 // C u</u>= (C - D) --> C u</u>= D 4817 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4818 return new ICmpInst(Pred, C, D); 4819 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4820 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4821 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4822 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4823 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4824 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4825 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4826 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4827 4828 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4829 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4830 return new ICmpInst(Pred, A, C); 4831 4832 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4833 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4834 return new ICmpInst(Pred, D, B); 4835 4836 // icmp (0-X) < cst --> x > -cst 4837 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4838 Value *X; 4839 if (match(BO0, m_Neg(m_Value(X)))) 4840 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4841 if (RHSC->isNotMinSignedValue()) 4842 return new ICmpInst(I.getSwappedPredicate(), X, 4843 ConstantExpr::getNeg(RHSC)); 4844 } 4845 4846 if (Instruction * R = foldICmpXorXX(I, Q, *this)) 4847 return R; 4848 if (Instruction *R = foldICmpOrXX(I, Q, *this)) 4849 return R; 4850 4851 { 4852 // Try to remove shared multiplier from comparison: 4853 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z 4854 Value *X, *Y, *Z; 4855 if (Pred == ICmpInst::getUnsignedPredicate(Pred) && 4856 ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) && 4857 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) || 4858 (match(Op0, m_Mul(m_Value(Z), m_Value(X))) && 4859 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) { 4860 bool NonZero; 4861 if (ICmpInst::isEquality(Pred)) { 4862 KnownBits ZKnown = computeKnownBits(Z, 0, &I); 4863 // if Z % 2 != 0 4864 // X * Z eq/ne Y * Z -> X eq/ne Y 4865 if (ZKnown.countMaxTrailingZeros() == 0) 4866 return new ICmpInst(Pred, X, Y); 4867 NonZero = !ZKnown.One.isZero() || 4868 isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 4869 // if Z != 0 and nsw(X * Z) and nsw(Y * Z) 4870 // X * Z eq/ne Y * Z -> X eq/ne Y 4871 if (NonZero && BO0 && BO1 && BO0->hasNoSignedWrap() && 4872 BO1->hasNoSignedWrap()) 4873 return new ICmpInst(Pred, X, Y); 4874 } else 4875 NonZero = isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 4876 4877 // If Z != 0 and nuw(X * Z) and nuw(Y * Z) 4878 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y 4879 if (NonZero && BO0 && BO1 && BO0->hasNoUnsignedWrap() && 4880 BO1->hasNoUnsignedWrap()) 4881 return new ICmpInst(Pred, X, Y); 4882 } 4883 } 4884 4885 BinaryOperator *SRem = nullptr; 4886 // icmp (srem X, Y), Y 4887 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4888 SRem = BO0; 4889 // icmp Y, (srem X, Y) 4890 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4891 Op0 == BO1->getOperand(1)) 4892 SRem = BO1; 4893 if (SRem) { 4894 // We don't check hasOneUse to avoid increasing register pressure because 4895 // the value we use is the same value this instruction was already using. 4896 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4897 default: 4898 break; 4899 case ICmpInst::ICMP_EQ: 4900 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4901 case ICmpInst::ICMP_NE: 4902 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4903 case ICmpInst::ICMP_SGT: 4904 case ICmpInst::ICMP_SGE: 4905 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4906 Constant::getAllOnesValue(SRem->getType())); 4907 case ICmpInst::ICMP_SLT: 4908 case ICmpInst::ICMP_SLE: 4909 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4910 Constant::getNullValue(SRem->getType())); 4911 } 4912 } 4913 4914 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4915 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4916 switch (BO0->getOpcode()) { 4917 default: 4918 break; 4919 case Instruction::Add: 4920 case Instruction::Sub: 4921 case Instruction::Xor: { 4922 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4923 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4924 4925 const APInt *C; 4926 if (match(BO0->getOperand(1), m_APInt(C))) { 4927 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4928 if (C->isSignMask()) { 4929 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4930 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4931 } 4932 4933 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4934 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4935 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4936 NewPred = I.getSwappedPredicate(NewPred); 4937 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4938 } 4939 } 4940 break; 4941 } 4942 case Instruction::Mul: { 4943 if (!I.isEquality()) 4944 break; 4945 4946 const APInt *C; 4947 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4948 !C->isOne()) { 4949 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4950 // Mask = -1 >> count-trailing-zeros(C). 4951 if (unsigned TZs = C->countr_zero()) { 4952 Constant *Mask = ConstantInt::get( 4953 BO0->getType(), 4954 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4955 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4956 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4957 return new ICmpInst(Pred, And1, And2); 4958 } 4959 } 4960 break; 4961 } 4962 case Instruction::UDiv: 4963 case Instruction::LShr: 4964 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4965 break; 4966 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4967 4968 case Instruction::SDiv: 4969 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4970 break; 4971 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4972 4973 case Instruction::AShr: 4974 if (!BO0->isExact() || !BO1->isExact()) 4975 break; 4976 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4977 4978 case Instruction::Shl: { 4979 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4980 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4981 if (!NUW && !NSW) 4982 break; 4983 if (!NSW && I.isSigned()) 4984 break; 4985 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4986 } 4987 } 4988 } 4989 4990 if (BO0) { 4991 // Transform A & (L - 1) `ult` L --> L != 0 4992 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4993 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4994 4995 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4996 auto *Zero = Constant::getNullValue(BO0->getType()); 4997 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4998 } 4999 } 5000 5001 // For unsigned predicates / eq / ne: 5002 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0 5003 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x 5004 if (!ICmpInst::isSigned(Pred)) { 5005 if (match(Op0, m_Shl(m_Specific(Op1), m_One()))) 5006 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1, 5007 Constant::getNullValue(Op1->getType())); 5008 else if (match(Op1, m_Shl(m_Specific(Op0), m_One()))) 5009 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), 5010 Constant::getNullValue(Op0->getType()), Op0); 5011 } 5012 5013 if (Value *V = foldMultiplicationOverflowCheck(I)) 5014 return replaceInstUsesWith(I, V); 5015 5016 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 5017 return replaceInstUsesWith(I, V); 5018 5019 if (Instruction *R = foldICmpAndXX(I, Q, *this)) 5020 return R; 5021 5022 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 5023 return replaceInstUsesWith(I, V); 5024 5025 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 5026 return replaceInstUsesWith(I, V); 5027 5028 return nullptr; 5029 } 5030 5031 /// Fold icmp Pred min|max(X, Y), Z. 5032 Instruction * 5033 InstCombinerImpl::foldICmpWithMinMaxImpl(Instruction &I, 5034 MinMaxIntrinsic *MinMax, Value *Z, 5035 ICmpInst::Predicate Pred) { 5036 Value *X = MinMax->getLHS(); 5037 Value *Y = MinMax->getRHS(); 5038 if (ICmpInst::isSigned(Pred) && !MinMax->isSigned()) 5039 return nullptr; 5040 if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) 5041 return nullptr; 5042 SimplifyQuery Q = SQ.getWithInstruction(&I); 5043 auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> { 5044 if (!Val) 5045 return std::nullopt; 5046 if (match(Val, m_One())) 5047 return true; 5048 if (match(Val, m_Zero())) 5049 return false; 5050 return std::nullopt; 5051 }; 5052 auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q)); 5053 auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q)); 5054 if (!CmpXZ.has_value() && !CmpYZ.has_value()) 5055 return nullptr; 5056 if (!CmpXZ.has_value()) { 5057 std::swap(X, Y); 5058 std::swap(CmpXZ, CmpYZ); 5059 } 5060 5061 auto FoldIntoCmpYZ = [&]() -> Instruction * { 5062 if (CmpYZ.has_value()) 5063 return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ)); 5064 return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z); 5065 }; 5066 5067 switch (Pred) { 5068 case ICmpInst::ICMP_EQ: 5069 case ICmpInst::ICMP_NE: { 5070 // If X == Z: 5071 // Expr Result 5072 // min(X, Y) == Z X <= Y 5073 // max(X, Y) == Z X >= Y 5074 // min(X, Y) != Z X > Y 5075 // max(X, Y) != Z X < Y 5076 if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) { 5077 ICmpInst::Predicate NewPred = 5078 ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 5079 if (Pred == ICmpInst::ICMP_NE) 5080 NewPred = ICmpInst::getInversePredicate(NewPred); 5081 return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y); 5082 } 5083 // Otherwise (X != Z): 5084 ICmpInst::Predicate NewPred = MinMax->getPredicate(); 5085 auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); 5086 if (!MinMaxCmpXZ.has_value()) { 5087 std::swap(X, Y); 5088 std::swap(CmpXZ, CmpYZ); 5089 // Re-check pre-condition X != Z 5090 if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ) 5091 break; 5092 MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); 5093 } 5094 if (!MinMaxCmpXZ.has_value()) 5095 break; 5096 if (*MinMaxCmpXZ) { 5097 // Expr Fact Result 5098 // min(X, Y) == Z X < Z false 5099 // max(X, Y) == Z X > Z false 5100 // min(X, Y) != Z X < Z true 5101 // max(X, Y) != Z X > Z true 5102 return replaceInstUsesWith( 5103 I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE)); 5104 } else { 5105 // Expr Fact Result 5106 // min(X, Y) == Z X > Z Y == Z 5107 // max(X, Y) == Z X < Z Y == Z 5108 // min(X, Y) != Z X > Z Y != Z 5109 // max(X, Y) != Z X < Z Y != Z 5110 return FoldIntoCmpYZ(); 5111 } 5112 break; 5113 } 5114 case ICmpInst::ICMP_SLT: 5115 case ICmpInst::ICMP_ULT: 5116 case ICmpInst::ICMP_SLE: 5117 case ICmpInst::ICMP_ULE: 5118 case ICmpInst::ICMP_SGT: 5119 case ICmpInst::ICMP_UGT: 5120 case ICmpInst::ICMP_SGE: 5121 case ICmpInst::ICMP_UGE: { 5122 bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred); 5123 if (*CmpXZ) { 5124 if (IsSame) { 5125 // Expr Fact Result 5126 // min(X, Y) < Z X < Z true 5127 // min(X, Y) <= Z X <= Z true 5128 // max(X, Y) > Z X > Z true 5129 // max(X, Y) >= Z X >= Z true 5130 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5131 } else { 5132 // Expr Fact Result 5133 // max(X, Y) < Z X < Z Y < Z 5134 // max(X, Y) <= Z X <= Z Y <= Z 5135 // min(X, Y) > Z X > Z Y > Z 5136 // min(X, Y) >= Z X >= Z Y >= Z 5137 return FoldIntoCmpYZ(); 5138 } 5139 } else { 5140 if (IsSame) { 5141 // Expr Fact Result 5142 // min(X, Y) < Z X >= Z Y < Z 5143 // min(X, Y) <= Z X > Z Y <= Z 5144 // max(X, Y) > Z X <= Z Y > Z 5145 // max(X, Y) >= Z X < Z Y >= Z 5146 return FoldIntoCmpYZ(); 5147 } else { 5148 // Expr Fact Result 5149 // max(X, Y) < Z X >= Z false 5150 // max(X, Y) <= Z X > Z false 5151 // min(X, Y) > Z X <= Z false 5152 // min(X, Y) >= Z X < Z false 5153 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5154 } 5155 } 5156 break; 5157 } 5158 default: 5159 break; 5160 } 5161 5162 return nullptr; 5163 } 5164 Instruction *InstCombinerImpl::foldICmpWithMinMax(ICmpInst &Cmp) { 5165 ICmpInst::Predicate Pred = Cmp.getPredicate(); 5166 Value *Lhs = Cmp.getOperand(0); 5167 Value *Rhs = Cmp.getOperand(1); 5168 5169 if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(Lhs)) { 5170 if (Instruction *Res = foldICmpWithMinMaxImpl(Cmp, MinMax, Rhs, Pred)) 5171 return Res; 5172 } 5173 5174 if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(Rhs)) { 5175 if (Instruction *Res = foldICmpWithMinMaxImpl( 5176 Cmp, MinMax, Lhs, ICmpInst::getSwappedPredicate(Pred))) 5177 return Res; 5178 } 5179 5180 return nullptr; 5181 } 5182 5183 // Canonicalize checking for a power-of-2-or-zero value: 5184 static Instruction *foldICmpPow2Test(ICmpInst &I, 5185 InstCombiner::BuilderTy &Builder) { 5186 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5187 const CmpInst::Predicate Pred = I.getPredicate(); 5188 Value *A = nullptr; 5189 bool CheckIs; 5190 if (I.isEquality()) { 5191 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 5192 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 5193 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 5194 m_Deferred(A)))) || 5195 !match(Op1, m_ZeroInt())) 5196 A = nullptr; 5197 5198 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 5199 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 5200 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 5201 A = Op1; 5202 else if (match(Op1, 5203 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 5204 A = Op0; 5205 5206 CheckIs = Pred == ICmpInst::ICMP_EQ; 5207 } else if (ICmpInst::isUnsigned(Pred)) { 5208 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants) 5209 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants) 5210 5211 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 5212 match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()), 5213 m_Specific(Op1))))) { 5214 A = Op1; 5215 CheckIs = Pred == ICmpInst::ICMP_UGE; 5216 } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 5217 match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()), 5218 m_Specific(Op0))))) { 5219 A = Op0; 5220 CheckIs = Pred == ICmpInst::ICMP_ULE; 5221 } 5222 } 5223 5224 if (A) { 5225 Type *Ty = A->getType(); 5226 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 5227 return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, 5228 ConstantInt::get(Ty, 2)) 5229 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, 5230 ConstantInt::get(Ty, 1)); 5231 } 5232 5233 return nullptr; 5234 } 5235 5236 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 5237 if (!I.isEquality()) 5238 return nullptr; 5239 5240 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5241 const CmpInst::Predicate Pred = I.getPredicate(); 5242 Value *A, *B, *C, *D; 5243 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 5244 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 5245 Value *OtherVal = A == Op1 ? B : A; 5246 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5247 } 5248 5249 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 5250 // A^c1 == C^c2 --> A == C^(c1^c2) 5251 ConstantInt *C1, *C2; 5252 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 5253 Op1->hasOneUse()) { 5254 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 5255 Value *Xor = Builder.CreateXor(C, NC); 5256 return new ICmpInst(Pred, A, Xor); 5257 } 5258 5259 // A^B == A^D -> B == D 5260 if (A == C) 5261 return new ICmpInst(Pred, B, D); 5262 if (A == D) 5263 return new ICmpInst(Pred, B, C); 5264 if (B == C) 5265 return new ICmpInst(Pred, A, D); 5266 if (B == D) 5267 return new ICmpInst(Pred, A, C); 5268 } 5269 } 5270 5271 // canoncalize: 5272 // (icmp eq/ne (and X, C), X) 5273 // -> (icmp eq/ne (and X, ~C), 0) 5274 { 5275 Constant *CMask; 5276 A = nullptr; 5277 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_ImmConstant(CMask))))) 5278 A = Op1; 5279 else if (match(Op1, m_OneUse(m_And(m_Specific(Op0), m_ImmConstant(CMask))))) 5280 A = Op0; 5281 if (A) 5282 return new ICmpInst(Pred, Builder.CreateAnd(A, Builder.CreateNot(CMask)), 5283 Constant::getNullValue(A->getType())); 5284 } 5285 5286 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 5287 // A == (A^B) -> B == 0 5288 Value *OtherVal = A == Op0 ? B : A; 5289 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5290 } 5291 5292 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 5293 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 5294 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 5295 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 5296 5297 if (A == C) { 5298 X = B; 5299 Y = D; 5300 Z = A; 5301 } else if (A == D) { 5302 X = B; 5303 Y = C; 5304 Z = A; 5305 } else if (B == C) { 5306 X = A; 5307 Y = D; 5308 Z = B; 5309 } else if (B == D) { 5310 X = A; 5311 Y = C; 5312 Z = B; 5313 } 5314 5315 if (X) { // Build (X^Y) & Z 5316 Op1 = Builder.CreateXor(X, Y); 5317 Op1 = Builder.CreateAnd(Op1, Z); 5318 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 5319 } 5320 } 5321 5322 { 5323 // Similar to above, but specialized for constant because invert is needed: 5324 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 5325 Value *X, *Y; 5326 Constant *C; 5327 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 5328 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 5329 Value *Xor = Builder.CreateXor(X, Y); 5330 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 5331 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 5332 } 5333 } 5334 5335 if (match(Op1, m_ZExt(m_Value(A))) && 5336 (Op0->hasOneUse() || Op1->hasOneUse())) { 5337 // (B & (Pow2C-1)) == zext A --> A == trunc B 5338 // (B & (Pow2C-1)) != zext A --> A != trunc B 5339 const APInt *MaskC; 5340 if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) && 5341 MaskC->countr_one() == A->getType()->getScalarSizeInBits()) 5342 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 5343 } 5344 5345 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 5346 // For lshr and ashr pairs. 5347 const APInt *AP1, *AP2; 5348 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 5349 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) || 5350 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 5351 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) { 5352 if (AP1 != AP2) 5353 return nullptr; 5354 unsigned TypeBits = AP1->getBitWidth(); 5355 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 5356 if (ShAmt < TypeBits && ShAmt != 0) { 5357 ICmpInst::Predicate NewPred = 5358 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 5359 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5360 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 5361 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 5362 } 5363 } 5364 5365 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 5366 ConstantInt *Cst1; 5367 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 5368 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 5369 unsigned TypeBits = Cst1->getBitWidth(); 5370 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 5371 if (ShAmt < TypeBits && ShAmt != 0) { 5372 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5373 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 5374 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 5375 I.getName() + ".mask"); 5376 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 5377 } 5378 } 5379 5380 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 5381 // "icmp (and X, mask), cst" 5382 uint64_t ShAmt = 0; 5383 if (Op0->hasOneUse() && 5384 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 5385 match(Op1, m_ConstantInt(Cst1)) && 5386 // Only do this when A has multiple uses. This is most important to do 5387 // when it exposes other optimizations. 5388 !A->hasOneUse()) { 5389 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 5390 5391 if (ShAmt < ASize) { 5392 APInt MaskV = 5393 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 5394 MaskV <<= ShAmt; 5395 5396 APInt CmpV = Cst1->getValue().zext(ASize); 5397 CmpV <<= ShAmt; 5398 5399 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 5400 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 5401 } 5402 } 5403 5404 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder)) 5405 return ICmp; 5406 5407 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 5408 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 5409 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 5410 // of instcombine. 5411 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5412 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 5413 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 5414 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 5415 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 5416 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 5417 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 5418 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 5419 : ICmpInst::ICMP_UGE, 5420 Add, ConstantInt::get(A->getType(), C.shl(1))); 5421 } 5422 5423 // Canonicalize: 5424 // Assume B_Pow2 != 0 5425 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0 5426 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0 5427 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) && 5428 isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I)) 5429 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 5430 ConstantInt::getNullValue(Op0->getType())); 5431 5432 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) && 5433 isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I)) 5434 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1, 5435 ConstantInt::getNullValue(Op1->getType())); 5436 5437 // Canonicalize: 5438 // icmp eq/ne X, OneUse(rotate-right(X)) 5439 // -> icmp eq/ne X, rotate-left(X) 5440 // We generally try to convert rotate-right -> rotate-left, this just 5441 // canonicalizes another case. 5442 CmpInst::Predicate PredUnused = Pred; 5443 if (match(&I, m_c_ICmp(PredUnused, m_Value(A), 5444 m_OneUse(m_Intrinsic<Intrinsic::fshr>( 5445 m_Deferred(A), m_Deferred(A), m_Value(B)))))) 5446 return new ICmpInst( 5447 Pred, A, 5448 Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B})); 5449 5450 // Canonicalize: 5451 // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst 5452 Constant *Cst; 5453 if (match(&I, m_c_ICmp(PredUnused, 5454 m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))), 5455 m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant()))))) 5456 return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst); 5457 5458 { 5459 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) 5460 auto m_Matcher = 5461 m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)), 5462 m_c_Xor(m_Value(B), m_Deferred(A))), 5463 m_Sub(m_Value(B), m_Deferred(A))); 5464 std::optional<bool> IsZero = std::nullopt; 5465 if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), 5466 m_Deferred(A)))) 5467 IsZero = false; 5468 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) 5469 else if (match(&I, 5470 m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), 5471 m_Zero()))) 5472 IsZero = true; 5473 5474 if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I)) 5475 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) 5476 // -> (icmp eq/ne (and X, P2), 0) 5477 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) 5478 // -> (icmp eq/ne (and X, P2), P2) 5479 return new ICmpInst(Pred, Builder.CreateAnd(B, A), 5480 *IsZero ? A 5481 : ConstantInt::getNullValue(A->getType())); 5482 } 5483 5484 return nullptr; 5485 } 5486 5487 Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) { 5488 ICmpInst::Predicate Pred = ICmp.getPredicate(); 5489 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 5490 5491 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 5492 // The trunc masks high bits while the compare may effectively mask low bits. 5493 Value *X; 5494 const APInt *C; 5495 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 5496 return nullptr; 5497 5498 // This matches patterns corresponding to tests of the signbit as well as: 5499 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 5500 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 5501 APInt Mask; 5502 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 5503 Value *And = Builder.CreateAnd(X, Mask); 5504 Constant *Zero = ConstantInt::getNullValue(X->getType()); 5505 return new ICmpInst(Pred, And, Zero); 5506 } 5507 5508 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 5509 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 5510 // If C is a negative power-of-2 (high-bit mask): 5511 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 5512 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 5513 Value *And = Builder.CreateAnd(X, MaskC); 5514 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 5515 } 5516 5517 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 5518 // If C is not-of-power-of-2 (one clear bit): 5519 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 5520 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 5521 Value *And = Builder.CreateAnd(X, MaskC); 5522 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 5523 } 5524 5525 if (auto *II = dyn_cast<IntrinsicInst>(X)) { 5526 if (II->getIntrinsicID() == Intrinsic::cttz || 5527 II->getIntrinsicID() == Intrinsic::ctlz) { 5528 unsigned MaxRet = SrcBits; 5529 // If the "is_zero_poison" argument is set, then we know at least 5530 // one bit is set in the input, so the result is always at least one 5531 // less than the full bitwidth of that input. 5532 if (match(II->getArgOperand(1), m_One())) 5533 MaxRet--; 5534 5535 // Make sure the destination is wide enough to hold the largest output of 5536 // the intrinsic. 5537 if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits()) 5538 if (Instruction *I = 5539 foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits))) 5540 return I; 5541 } 5542 } 5543 5544 return nullptr; 5545 } 5546 5547 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 5548 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 5549 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 5550 Value *X; 5551 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 5552 return nullptr; 5553 5554 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 5555 bool IsSignedCmp = ICmp.isSigned(); 5556 5557 // icmp Pred (ext X), (ext Y) 5558 Value *Y; 5559 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 5560 bool IsZext0 = isa<ZExtInst>(ICmp.getOperand(0)); 5561 bool IsZext1 = isa<ZExtInst>(ICmp.getOperand(1)); 5562 5563 if (IsZext0 != IsZext1) { 5564 // If X and Y and both i1 5565 // (icmp eq/ne (zext X) (sext Y)) 5566 // eq -> (icmp eq (or X, Y), 0) 5567 // ne -> (icmp ne (or X, Y), 0) 5568 if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) && 5569 Y->getType()->isIntOrIntVectorTy(1)) 5570 return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y), 5571 Constant::getNullValue(X->getType())); 5572 5573 // If we have mismatched casts and zext has the nneg flag, we can 5574 // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit. 5575 5576 auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(0)); 5577 auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(1)); 5578 5579 bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg(); 5580 bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg(); 5581 5582 if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1)) 5583 IsSignedExt = true; 5584 else 5585 return nullptr; 5586 } 5587 5588 // Not an extension from the same type? 5589 Type *XTy = X->getType(), *YTy = Y->getType(); 5590 if (XTy != YTy) { 5591 // One of the casts must have one use because we are creating a new cast. 5592 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 5593 return nullptr; 5594 // Extend the narrower operand to the type of the wider operand. 5595 CastInst::CastOps CastOpcode = 5596 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 5597 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 5598 X = Builder.CreateCast(CastOpcode, X, YTy); 5599 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 5600 Y = Builder.CreateCast(CastOpcode, Y, XTy); 5601 else 5602 return nullptr; 5603 } 5604 5605 // (zext X) == (zext Y) --> X == Y 5606 // (sext X) == (sext Y) --> X == Y 5607 if (ICmp.isEquality()) 5608 return new ICmpInst(ICmp.getPredicate(), X, Y); 5609 5610 // A signed comparison of sign extended values simplifies into a 5611 // signed comparison. 5612 if (IsSignedCmp && IsSignedExt) 5613 return new ICmpInst(ICmp.getPredicate(), X, Y); 5614 5615 // The other three cases all fold into an unsigned comparison. 5616 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 5617 } 5618 5619 // Below here, we are only folding a compare with constant. 5620 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 5621 if (!C) 5622 return nullptr; 5623 5624 // If a lossless truncate is possible... 5625 Type *SrcTy = CastOp0->getSrcTy(); 5626 Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode()); 5627 if (Res) { 5628 if (ICmp.isEquality()) 5629 return new ICmpInst(ICmp.getPredicate(), X, Res); 5630 5631 // A signed comparison of sign extended values simplifies into a 5632 // signed comparison. 5633 if (IsSignedExt && IsSignedCmp) 5634 return new ICmpInst(ICmp.getPredicate(), X, Res); 5635 5636 // The other three cases all fold into an unsigned comparison. 5637 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res); 5638 } 5639 5640 // The re-extended constant changed, partly changed (in the case of a vector), 5641 // or could not be determined to be equal (in the case of a constant 5642 // expression), so the constant cannot be represented in the shorter type. 5643 // All the cases that fold to true or false will have already been handled 5644 // by simplifyICmpInst, so only deal with the tricky case. 5645 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 5646 return nullptr; 5647 5648 // Is source op positive? 5649 // icmp ult (sext X), C --> icmp sgt X, -1 5650 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 5651 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 5652 5653 // Is source op negative? 5654 // icmp ugt (sext X), C --> icmp slt X, 0 5655 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 5656 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 5657 } 5658 5659 /// Handle icmp (cast x), (cast or constant). 5660 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 5661 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 5662 // icmp compares only pointer's value. 5663 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 5664 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 5665 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 5666 if (SimplifiedOp0 || SimplifiedOp1) 5667 return new ICmpInst(ICmp.getPredicate(), 5668 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 5669 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 5670 5671 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 5672 if (!CastOp0) 5673 return nullptr; 5674 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 5675 return nullptr; 5676 5677 Value *Op0Src = CastOp0->getOperand(0); 5678 Type *SrcTy = CastOp0->getSrcTy(); 5679 Type *DestTy = CastOp0->getDestTy(); 5680 5681 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 5682 // integer type is the same size as the pointer type. 5683 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 5684 if (isa<VectorType>(SrcTy)) { 5685 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 5686 DestTy = cast<VectorType>(DestTy)->getElementType(); 5687 } 5688 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 5689 }; 5690 if (CastOp0->getOpcode() == Instruction::PtrToInt && 5691 CompatibleSizes(SrcTy, DestTy)) { 5692 Value *NewOp1 = nullptr; 5693 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 5694 Value *PtrSrc = PtrToIntOp1->getOperand(0); 5695 if (PtrSrc->getType() == Op0Src->getType()) 5696 NewOp1 = PtrToIntOp1->getOperand(0); 5697 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 5698 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 5699 } 5700 5701 if (NewOp1) 5702 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 5703 } 5704 5705 if (Instruction *R = foldICmpWithTrunc(ICmp)) 5706 return R; 5707 5708 return foldICmpWithZextOrSext(ICmp); 5709 } 5710 5711 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) { 5712 switch (BinaryOp) { 5713 default: 5714 llvm_unreachable("Unsupported binary op"); 5715 case Instruction::Add: 5716 case Instruction::Sub: 5717 return match(RHS, m_Zero()); 5718 case Instruction::Mul: 5719 return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) && 5720 match(RHS, m_One()); 5721 } 5722 } 5723 5724 OverflowResult 5725 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 5726 bool IsSigned, Value *LHS, Value *RHS, 5727 Instruction *CxtI) const { 5728 switch (BinaryOp) { 5729 default: 5730 llvm_unreachable("Unsupported binary op"); 5731 case Instruction::Add: 5732 if (IsSigned) 5733 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 5734 else 5735 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 5736 case Instruction::Sub: 5737 if (IsSigned) 5738 return computeOverflowForSignedSub(LHS, RHS, CxtI); 5739 else 5740 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 5741 case Instruction::Mul: 5742 if (IsSigned) 5743 return computeOverflowForSignedMul(LHS, RHS, CxtI); 5744 else 5745 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 5746 } 5747 } 5748 5749 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 5750 bool IsSigned, Value *LHS, 5751 Value *RHS, Instruction &OrigI, 5752 Value *&Result, 5753 Constant *&Overflow) { 5754 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 5755 std::swap(LHS, RHS); 5756 5757 // If the overflow check was an add followed by a compare, the insertion point 5758 // may be pointing to the compare. We want to insert the new instructions 5759 // before the add in case there are uses of the add between the add and the 5760 // compare. 5761 Builder.SetInsertPoint(&OrigI); 5762 5763 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 5764 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 5765 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 5766 5767 if (isNeutralValue(BinaryOp, RHS, IsSigned)) { 5768 Result = LHS; 5769 Overflow = ConstantInt::getFalse(OverflowTy); 5770 return true; 5771 } 5772 5773 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 5774 case OverflowResult::MayOverflow: 5775 return false; 5776 case OverflowResult::AlwaysOverflowsLow: 5777 case OverflowResult::AlwaysOverflowsHigh: 5778 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5779 Result->takeName(&OrigI); 5780 Overflow = ConstantInt::getTrue(OverflowTy); 5781 return true; 5782 case OverflowResult::NeverOverflows: 5783 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5784 Result->takeName(&OrigI); 5785 Overflow = ConstantInt::getFalse(OverflowTy); 5786 if (auto *Inst = dyn_cast<Instruction>(Result)) { 5787 if (IsSigned) 5788 Inst->setHasNoSignedWrap(); 5789 else 5790 Inst->setHasNoUnsignedWrap(); 5791 } 5792 return true; 5793 } 5794 5795 llvm_unreachable("Unexpected overflow result"); 5796 } 5797 5798 /// Recognize and process idiom involving test for multiplication 5799 /// overflow. 5800 /// 5801 /// The caller has matched a pattern of the form: 5802 /// I = cmp u (mul(zext A, zext B), V 5803 /// The function checks if this is a test for overflow and if so replaces 5804 /// multiplication with call to 'mul.with.overflow' intrinsic. 5805 /// 5806 /// \param I Compare instruction. 5807 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5808 /// the compare instruction. Must be of integer type. 5809 /// \param OtherVal The other argument of compare instruction. 5810 /// \returns Instruction which must replace the compare instruction, NULL if no 5811 /// replacement required. 5812 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5813 const APInt *OtherVal, 5814 InstCombinerImpl &IC) { 5815 // Don't bother doing this transformation for pointers, don't do it for 5816 // vectors. 5817 if (!isa<IntegerType>(MulVal->getType())) 5818 return nullptr; 5819 5820 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5821 if (!MulInstr) 5822 return nullptr; 5823 assert(MulInstr->getOpcode() == Instruction::Mul); 5824 5825 auto *LHS = cast<ZExtInst>(MulInstr->getOperand(0)), 5826 *RHS = cast<ZExtInst>(MulInstr->getOperand(1)); 5827 assert(LHS->getOpcode() == Instruction::ZExt); 5828 assert(RHS->getOpcode() == Instruction::ZExt); 5829 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5830 5831 // Calculate type and width of the result produced by mul.with.overflow. 5832 Type *TyA = A->getType(), *TyB = B->getType(); 5833 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5834 WidthB = TyB->getPrimitiveSizeInBits(); 5835 unsigned MulWidth; 5836 Type *MulType; 5837 if (WidthB > WidthA) { 5838 MulWidth = WidthB; 5839 MulType = TyB; 5840 } else { 5841 MulWidth = WidthA; 5842 MulType = TyA; 5843 } 5844 5845 // In order to replace the original mul with a narrower mul.with.overflow, 5846 // all uses must ignore upper bits of the product. The number of used low 5847 // bits must be not greater than the width of mul.with.overflow. 5848 if (MulVal->hasNUsesOrMore(2)) 5849 for (User *U : MulVal->users()) { 5850 if (U == &I) 5851 continue; 5852 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5853 // Check if truncation ignores bits above MulWidth. 5854 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5855 if (TruncWidth > MulWidth) 5856 return nullptr; 5857 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5858 // Check if AND ignores bits above MulWidth. 5859 if (BO->getOpcode() != Instruction::And) 5860 return nullptr; 5861 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5862 const APInt &CVal = CI->getValue(); 5863 if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth) 5864 return nullptr; 5865 } else { 5866 // In this case we could have the operand of the binary operation 5867 // being defined in another block, and performing the replacement 5868 // could break the dominance relation. 5869 return nullptr; 5870 } 5871 } else { 5872 // Other uses prohibit this transformation. 5873 return nullptr; 5874 } 5875 } 5876 5877 // Recognize patterns 5878 switch (I.getPredicate()) { 5879 case ICmpInst::ICMP_UGT: { 5880 // Recognize pattern: 5881 // mulval = mul(zext A, zext B) 5882 // cmp ugt mulval, max 5883 APInt MaxVal = APInt::getMaxValue(MulWidth); 5884 MaxVal = MaxVal.zext(OtherVal->getBitWidth()); 5885 if (MaxVal.eq(*OtherVal)) 5886 break; // Recognized 5887 return nullptr; 5888 } 5889 5890 case ICmpInst::ICMP_ULT: { 5891 // Recognize pattern: 5892 // mulval = mul(zext A, zext B) 5893 // cmp ule mulval, max + 1 5894 APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth); 5895 if (MaxVal.eq(*OtherVal)) 5896 break; // Recognized 5897 return nullptr; 5898 } 5899 5900 default: 5901 return nullptr; 5902 } 5903 5904 InstCombiner::BuilderTy &Builder = IC.Builder; 5905 Builder.SetInsertPoint(MulInstr); 5906 5907 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5908 Value *MulA = A, *MulB = B; 5909 if (WidthA < MulWidth) 5910 MulA = Builder.CreateZExt(A, MulType); 5911 if (WidthB < MulWidth) 5912 MulB = Builder.CreateZExt(B, MulType); 5913 Function *F = Intrinsic::getDeclaration( 5914 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5915 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5916 IC.addToWorklist(MulInstr); 5917 5918 // If there are uses of mul result other than the comparison, we know that 5919 // they are truncation or binary AND. Change them to use result of 5920 // mul.with.overflow and adjust properly mask/size. 5921 if (MulVal->hasNUsesOrMore(2)) { 5922 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5923 for (User *U : make_early_inc_range(MulVal->users())) { 5924 if (U == &I) 5925 continue; 5926 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5927 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5928 IC.replaceInstUsesWith(*TI, Mul); 5929 else 5930 TI->setOperand(0, Mul); 5931 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5932 assert(BO->getOpcode() == Instruction::And); 5933 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5934 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5935 APInt ShortMask = CI->getValue().trunc(MulWidth); 5936 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5937 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5938 IC.replaceInstUsesWith(*BO, Zext); 5939 } else { 5940 llvm_unreachable("Unexpected Binary operation"); 5941 } 5942 IC.addToWorklist(cast<Instruction>(U)); 5943 } 5944 } 5945 5946 // The original icmp gets replaced with the overflow value, maybe inverted 5947 // depending on predicate. 5948 if (I.getPredicate() == ICmpInst::ICMP_ULT) { 5949 Value *Res = Builder.CreateExtractValue(Call, 1); 5950 return BinaryOperator::CreateNot(Res); 5951 } 5952 5953 return ExtractValueInst::Create(Call, 1); 5954 } 5955 5956 /// When performing a comparison against a constant, it is possible that not all 5957 /// the bits in the LHS are demanded. This helper method computes the mask that 5958 /// IS demanded. 5959 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5960 const APInt *RHS; 5961 if (!match(I.getOperand(1), m_APInt(RHS))) 5962 return APInt::getAllOnes(BitWidth); 5963 5964 // If this is a normal comparison, it demands all bits. If it is a sign bit 5965 // comparison, it only demands the sign bit. 5966 bool UnusedBit; 5967 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5968 return APInt::getSignMask(BitWidth); 5969 5970 switch (I.getPredicate()) { 5971 // For a UGT comparison, we don't care about any bits that 5972 // correspond to the trailing ones of the comparand. The value of these 5973 // bits doesn't impact the outcome of the comparison, because any value 5974 // greater than the RHS must differ in a bit higher than these due to carry. 5975 case ICmpInst::ICMP_UGT: 5976 return APInt::getBitsSetFrom(BitWidth, RHS->countr_one()); 5977 5978 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5979 // Any value less than the RHS must differ in a higher bit because of carries. 5980 case ICmpInst::ICMP_ULT: 5981 return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero()); 5982 5983 default: 5984 return APInt::getAllOnes(BitWidth); 5985 } 5986 } 5987 5988 /// Check that one use is in the same block as the definition and all 5989 /// other uses are in blocks dominated by a given block. 5990 /// 5991 /// \param DI Definition 5992 /// \param UI Use 5993 /// \param DB Block that must dominate all uses of \p DI outside 5994 /// the parent block 5995 /// \return true when \p UI is the only use of \p DI in the parent block 5996 /// and all other uses of \p DI are in blocks dominated by \p DB. 5997 /// 5998 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5999 const Instruction *UI, 6000 const BasicBlock *DB) const { 6001 assert(DI && UI && "Instruction not defined\n"); 6002 // Ignore incomplete definitions. 6003 if (!DI->getParent()) 6004 return false; 6005 // DI and UI must be in the same block. 6006 if (DI->getParent() != UI->getParent()) 6007 return false; 6008 // Protect from self-referencing blocks. 6009 if (DI->getParent() == DB) 6010 return false; 6011 for (const User *U : DI->users()) { 6012 auto *Usr = cast<Instruction>(U); 6013 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 6014 return false; 6015 } 6016 return true; 6017 } 6018 6019 /// Return true when the instruction sequence within a block is select-cmp-br. 6020 static bool isChainSelectCmpBranch(const SelectInst *SI) { 6021 const BasicBlock *BB = SI->getParent(); 6022 if (!BB) 6023 return false; 6024 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 6025 if (!BI || BI->getNumSuccessors() != 2) 6026 return false; 6027 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 6028 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 6029 return false; 6030 return true; 6031 } 6032 6033 /// True when a select result is replaced by one of its operands 6034 /// in select-icmp sequence. This will eventually result in the elimination 6035 /// of the select. 6036 /// 6037 /// \param SI Select instruction 6038 /// \param Icmp Compare instruction 6039 /// \param SIOpd Operand that replaces the select 6040 /// 6041 /// Notes: 6042 /// - The replacement is global and requires dominator information 6043 /// - The caller is responsible for the actual replacement 6044 /// 6045 /// Example: 6046 /// 6047 /// entry: 6048 /// %4 = select i1 %3, %C* %0, %C* null 6049 /// %5 = icmp eq %C* %4, null 6050 /// br i1 %5, label %9, label %7 6051 /// ... 6052 /// ; <label>:7 ; preds = %entry 6053 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 6054 /// ... 6055 /// 6056 /// can be transformed to 6057 /// 6058 /// %5 = icmp eq %C* %0, null 6059 /// %6 = select i1 %3, i1 %5, i1 true 6060 /// br i1 %6, label %9, label %7 6061 /// ... 6062 /// ; <label>:7 ; preds = %entry 6063 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 6064 /// 6065 /// Similar when the first operand of the select is a constant or/and 6066 /// the compare is for not equal rather than equal. 6067 /// 6068 /// NOTE: The function is only called when the select and compare constants 6069 /// are equal, the optimization can work only for EQ predicates. This is not a 6070 /// major restriction since a NE compare should be 'normalized' to an equal 6071 /// compare, which usually happens in the combiner and test case 6072 /// select-cmp-br.ll checks for it. 6073 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 6074 const ICmpInst *Icmp, 6075 const unsigned SIOpd) { 6076 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 6077 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 6078 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 6079 // The check for the single predecessor is not the best that can be 6080 // done. But it protects efficiently against cases like when SI's 6081 // home block has two successors, Succ and Succ1, and Succ1 predecessor 6082 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 6083 // replaced can be reached on either path. So the uniqueness check 6084 // guarantees that the path all uses of SI (outside SI's parent) are on 6085 // is disjoint from all other paths out of SI. But that information 6086 // is more expensive to compute, and the trade-off here is in favor 6087 // of compile-time. It should also be noticed that we check for a single 6088 // predecessor and not only uniqueness. This to handle the situation when 6089 // Succ and Succ1 points to the same basic block. 6090 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 6091 NumSel++; 6092 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 6093 return true; 6094 } 6095 } 6096 return false; 6097 } 6098 6099 /// Try to fold the comparison based on range information we can get by checking 6100 /// whether bits are known to be zero or one in the inputs. 6101 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 6102 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6103 Type *Ty = Op0->getType(); 6104 ICmpInst::Predicate Pred = I.getPredicate(); 6105 6106 // Get scalar or pointer size. 6107 unsigned BitWidth = Ty->isIntOrIntVectorTy() 6108 ? Ty->getScalarSizeInBits() 6109 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 6110 6111 if (!BitWidth) 6112 return nullptr; 6113 6114 KnownBits Op0Known(BitWidth); 6115 KnownBits Op1Known(BitWidth); 6116 6117 { 6118 // Don't use dominating conditions when folding icmp using known bits. This 6119 // may convert signed into unsigned predicates in ways that other passes 6120 // (especially IndVarSimplify) may not be able to reliably undo. 6121 SQ.DC = nullptr; 6122 auto _ = make_scope_exit([&]() { SQ.DC = &DC; }); 6123 if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth), 6124 Op0Known, 0)) 6125 return &I; 6126 6127 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 6128 return &I; 6129 } 6130 6131 // Given the known and unknown bits, compute a range that the LHS could be 6132 // in. Compute the Min, Max and RHS values based on the known bits. For the 6133 // EQ and NE we use unsigned values. 6134 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 6135 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 6136 if (I.isSigned()) { 6137 Op0Min = Op0Known.getSignedMinValue(); 6138 Op0Max = Op0Known.getSignedMaxValue(); 6139 Op1Min = Op1Known.getSignedMinValue(); 6140 Op1Max = Op1Known.getSignedMaxValue(); 6141 } else { 6142 Op0Min = Op0Known.getMinValue(); 6143 Op0Max = Op0Known.getMaxValue(); 6144 Op1Min = Op1Known.getMinValue(); 6145 Op1Max = Op1Known.getMaxValue(); 6146 } 6147 6148 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 6149 // out that the LHS or RHS is a constant. Constant fold this now, so that 6150 // code below can assume that Min != Max. 6151 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 6152 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 6153 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 6154 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 6155 6156 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 6157 // min/max canonical compare with some other compare. That could lead to 6158 // conflict with select canonicalization and infinite looping. 6159 // FIXME: This constraint may go away if min/max intrinsics are canonical. 6160 auto isMinMaxCmp = [&](Instruction &Cmp) { 6161 if (!Cmp.hasOneUse()) 6162 return false; 6163 Value *A, *B; 6164 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 6165 if (!SelectPatternResult::isMinOrMax(SPF)) 6166 return false; 6167 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 6168 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 6169 }; 6170 if (!isMinMaxCmp(I)) { 6171 switch (Pred) { 6172 default: 6173 break; 6174 case ICmpInst::ICMP_ULT: { 6175 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 6176 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6177 const APInt *CmpC; 6178 if (match(Op1, m_APInt(CmpC))) { 6179 // A <u C -> A == C-1 if min(A)+1 == C 6180 if (*CmpC == Op0Min + 1) 6181 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6182 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6183 // X <u C --> X == 0, if the number of zero bits in the bottom of X 6184 // exceeds the log2 of C. 6185 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 6186 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6187 Constant::getNullValue(Op1->getType())); 6188 } 6189 break; 6190 } 6191 case ICmpInst::ICMP_UGT: { 6192 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 6193 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6194 const APInt *CmpC; 6195 if (match(Op1, m_APInt(CmpC))) { 6196 // A >u C -> A == C+1 if max(a)-1 == C 6197 if (*CmpC == Op0Max - 1) 6198 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6199 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6200 // X >u C --> X != 0, if the number of zero bits in the bottom of X 6201 // exceeds the log2 of C. 6202 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 6203 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 6204 Constant::getNullValue(Op1->getType())); 6205 } 6206 break; 6207 } 6208 case ICmpInst::ICMP_SLT: { 6209 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 6210 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6211 const APInt *CmpC; 6212 if (match(Op1, m_APInt(CmpC))) { 6213 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 6214 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6215 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6216 } 6217 break; 6218 } 6219 case ICmpInst::ICMP_SGT: { 6220 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 6221 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6222 const APInt *CmpC; 6223 if (match(Op1, m_APInt(CmpC))) { 6224 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 6225 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6226 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6227 } 6228 break; 6229 } 6230 } 6231 } 6232 6233 // Based on the range information we know about the LHS, see if we can 6234 // simplify this comparison. For example, (x&4) < 8 is always true. 6235 switch (Pred) { 6236 default: 6237 llvm_unreachable("Unknown icmp opcode!"); 6238 case ICmpInst::ICMP_EQ: 6239 case ICmpInst::ICMP_NE: { 6240 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 6241 return replaceInstUsesWith( 6242 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 6243 6244 // If all bits are known zero except for one, then we know at most one bit 6245 // is set. If the comparison is against zero, then this is a check to see if 6246 // *that* bit is set. 6247 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 6248 if (Op1Known.isZero()) { 6249 // If the LHS is an AND with the same constant, look through it. 6250 Value *LHS = nullptr; 6251 const APInt *LHSC; 6252 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 6253 *LHSC != Op0KnownZeroInverted) 6254 LHS = Op0; 6255 6256 Value *X; 6257 const APInt *C1; 6258 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 6259 Type *XTy = X->getType(); 6260 unsigned Log2C1 = C1->countr_zero(); 6261 APInt C2 = Op0KnownZeroInverted; 6262 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 6263 if (C2Pow2.isPowerOf2()) { 6264 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 6265 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 6266 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 6267 unsigned Log2C2 = C2Pow2.countr_zero(); 6268 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 6269 auto NewPred = 6270 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 6271 return new ICmpInst(NewPred, X, CmpC); 6272 } 6273 } 6274 } 6275 6276 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero. 6277 if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() && 6278 (Op0Known & Op1Known) == Op0Known) 6279 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 6280 ConstantInt::getNullValue(Op1->getType())); 6281 break; 6282 } 6283 case ICmpInst::ICMP_ULT: { 6284 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 6285 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6286 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 6287 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6288 break; 6289 } 6290 case ICmpInst::ICMP_UGT: { 6291 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 6292 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6293 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 6294 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6295 break; 6296 } 6297 case ICmpInst::ICMP_SLT: { 6298 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 6299 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6300 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 6301 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6302 break; 6303 } 6304 case ICmpInst::ICMP_SGT: { 6305 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 6306 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6307 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 6308 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6309 break; 6310 } 6311 case ICmpInst::ICMP_SGE: 6312 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 6313 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 6314 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6315 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 6316 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6317 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 6318 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6319 break; 6320 case ICmpInst::ICMP_SLE: 6321 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 6322 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 6323 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6324 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 6325 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6326 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 6327 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6328 break; 6329 case ICmpInst::ICMP_UGE: 6330 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 6331 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 6332 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6333 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 6334 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6335 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 6336 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6337 break; 6338 case ICmpInst::ICMP_ULE: 6339 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 6340 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 6341 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6342 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 6343 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6344 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 6345 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6346 break; 6347 } 6348 6349 // Turn a signed comparison into an unsigned one if both operands are known to 6350 // have the same sign. 6351 if (I.isSigned() && 6352 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 6353 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 6354 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 6355 6356 return nullptr; 6357 } 6358 6359 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 6360 /// then try to reduce patterns based on that limit. 6361 Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) { 6362 Value *X, *Y; 6363 ICmpInst::Predicate Pred; 6364 6365 // X must be 0 and bool must be true for "ULT": 6366 // X <u (zext i1 Y) --> (X == 0) & Y 6367 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 6368 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 6369 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 6370 6371 // X must be 0 or bool must be true for "ULE": 6372 // X <=u (sext i1 Y) --> (X == 0) | Y 6373 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 6374 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 6375 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 6376 6377 // icmp eq/ne X, (zext/sext (icmp eq/ne X, C)) 6378 ICmpInst::Predicate Pred1, Pred2; 6379 const APInt *C; 6380 Instruction *ExtI; 6381 if (match(&I, m_c_ICmp(Pred1, m_Value(X), 6382 m_CombineAnd(m_Instruction(ExtI), 6383 m_ZExtOrSExt(m_ICmp(Pred2, m_Deferred(X), 6384 m_APInt(C)))))) && 6385 ICmpInst::isEquality(Pred1) && ICmpInst::isEquality(Pred2)) { 6386 bool IsSExt = ExtI->getOpcode() == Instruction::SExt; 6387 bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(0)->hasOneUse(); 6388 auto CreateRangeCheck = [&] { 6389 Value *CmpV1 = 6390 Builder.CreateICmp(Pred1, X, Constant::getNullValue(X->getType())); 6391 Value *CmpV2 = Builder.CreateICmp( 6392 Pred1, X, ConstantInt::getSigned(X->getType(), IsSExt ? -1 : 1)); 6393 return BinaryOperator::Create( 6394 Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And, 6395 CmpV1, CmpV2); 6396 }; 6397 if (C->isZero()) { 6398 if (Pred2 == ICmpInst::ICMP_EQ) { 6399 // icmp eq X, (zext/sext (icmp eq X, 0)) --> false 6400 // icmp ne X, (zext/sext (icmp eq X, 0)) --> true 6401 return replaceInstUsesWith( 6402 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE)); 6403 } else if (!IsSExt || HasOneUse) { 6404 // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1 6405 // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1 6406 // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1 6407 // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1 6408 return CreateRangeCheck(); 6409 } 6410 } else if (IsSExt ? C->isAllOnes() : C->isOne()) { 6411 if (Pred2 == ICmpInst::ICMP_NE) { 6412 // icmp eq X, (zext (icmp ne X, 1)) --> false 6413 // icmp ne X, (zext (icmp ne X, 1)) --> true 6414 // icmp eq X, (sext (icmp ne X, -1)) --> false 6415 // icmp ne X, (sext (icmp ne X, -1)) --> true 6416 return replaceInstUsesWith( 6417 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE)); 6418 } else if (!IsSExt || HasOneUse) { 6419 // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1 6420 // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1 6421 // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1 6422 // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1 6423 return CreateRangeCheck(); 6424 } 6425 } else { 6426 // when C != 0 && C != 1: 6427 // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0 6428 // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1 6429 // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0 6430 // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1 6431 // when C != 0 && C != -1: 6432 // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0 6433 // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1 6434 // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0 6435 // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1 6436 return ICmpInst::Create( 6437 Instruction::ICmp, Pred1, X, 6438 ConstantInt::getSigned(X->getType(), Pred2 == ICmpInst::ICMP_NE 6439 ? (IsSExt ? -1 : 1) 6440 : 0)); 6441 } 6442 } 6443 6444 return nullptr; 6445 } 6446 6447 std::optional<std::pair<CmpInst::Predicate, Constant *>> 6448 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 6449 Constant *C) { 6450 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 6451 "Only for relational integer predicates."); 6452 6453 Type *Type = C->getType(); 6454 bool IsSigned = ICmpInst::isSigned(Pred); 6455 6456 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 6457 bool WillIncrement = 6458 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 6459 6460 // Check if the constant operand can be safely incremented/decremented 6461 // without overflowing/underflowing. 6462 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 6463 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 6464 }; 6465 6466 Constant *SafeReplacementConstant = nullptr; 6467 if (auto *CI = dyn_cast<ConstantInt>(C)) { 6468 // Bail out if the constant can't be safely incremented/decremented. 6469 if (!ConstantIsOk(CI)) 6470 return std::nullopt; 6471 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 6472 unsigned NumElts = FVTy->getNumElements(); 6473 for (unsigned i = 0; i != NumElts; ++i) { 6474 Constant *Elt = C->getAggregateElement(i); 6475 if (!Elt) 6476 return std::nullopt; 6477 6478 if (isa<UndefValue>(Elt)) 6479 continue; 6480 6481 // Bail out if we can't determine if this constant is min/max or if we 6482 // know that this constant is min/max. 6483 auto *CI = dyn_cast<ConstantInt>(Elt); 6484 if (!CI || !ConstantIsOk(CI)) 6485 return std::nullopt; 6486 6487 if (!SafeReplacementConstant) 6488 SafeReplacementConstant = CI; 6489 } 6490 } else { 6491 // ConstantExpr? 6492 return std::nullopt; 6493 } 6494 6495 // It may not be safe to change a compare predicate in the presence of 6496 // undefined elements, so replace those elements with the first safe constant 6497 // that we found. 6498 // TODO: in case of poison, it is safe; let's replace undefs only. 6499 if (C->containsUndefOrPoisonElement()) { 6500 assert(SafeReplacementConstant && "Replacement constant not set"); 6501 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 6502 } 6503 6504 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 6505 6506 // Increment or decrement the constant. 6507 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 6508 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 6509 6510 return std::make_pair(NewPred, NewC); 6511 } 6512 6513 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 6514 /// it into the appropriate icmp lt or icmp gt instruction. This transform 6515 /// allows them to be folded in visitICmpInst. 6516 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 6517 ICmpInst::Predicate Pred = I.getPredicate(); 6518 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 6519 InstCombiner::isCanonicalPredicate(Pred)) 6520 return nullptr; 6521 6522 Value *Op0 = I.getOperand(0); 6523 Value *Op1 = I.getOperand(1); 6524 auto *Op1C = dyn_cast<Constant>(Op1); 6525 if (!Op1C) 6526 return nullptr; 6527 6528 auto FlippedStrictness = 6529 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 6530 if (!FlippedStrictness) 6531 return nullptr; 6532 6533 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 6534 } 6535 6536 /// If we have a comparison with a non-canonical predicate, if we can update 6537 /// all the users, invert the predicate and adjust all the users. 6538 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 6539 // Is the predicate already canonical? 6540 CmpInst::Predicate Pred = I.getPredicate(); 6541 if (InstCombiner::isCanonicalPredicate(Pred)) 6542 return nullptr; 6543 6544 // Can all users be adjusted to predicate inversion? 6545 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 6546 return nullptr; 6547 6548 // Ok, we can canonicalize comparison! 6549 // Let's first invert the comparison's predicate. 6550 I.setPredicate(CmpInst::getInversePredicate(Pred)); 6551 I.setName(I.getName() + ".not"); 6552 6553 // And, adapt users. 6554 freelyInvertAllUsersOf(&I); 6555 6556 return &I; 6557 } 6558 6559 /// Integer compare with boolean values can always be turned into bitwise ops. 6560 static Instruction *canonicalizeICmpBool(ICmpInst &I, 6561 InstCombiner::BuilderTy &Builder) { 6562 Value *A = I.getOperand(0), *B = I.getOperand(1); 6563 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 6564 6565 // A boolean compared to true/false can be simplified to Op0/true/false in 6566 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 6567 // Cases not handled by InstSimplify are always 'not' of Op0. 6568 if (match(B, m_Zero())) { 6569 switch (I.getPredicate()) { 6570 case CmpInst::ICMP_EQ: // A == 0 -> !A 6571 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 6572 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 6573 return BinaryOperator::CreateNot(A); 6574 default: 6575 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6576 } 6577 } else if (match(B, m_One())) { 6578 switch (I.getPredicate()) { 6579 case CmpInst::ICMP_NE: // A != 1 -> !A 6580 case CmpInst::ICMP_ULT: // A <u 1 -> !A 6581 case CmpInst::ICMP_SGT: // A >s -1 -> !A 6582 return BinaryOperator::CreateNot(A); 6583 default: 6584 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6585 } 6586 } 6587 6588 switch (I.getPredicate()) { 6589 default: 6590 llvm_unreachable("Invalid icmp instruction!"); 6591 case ICmpInst::ICMP_EQ: 6592 // icmp eq i1 A, B -> ~(A ^ B) 6593 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 6594 6595 case ICmpInst::ICMP_NE: 6596 // icmp ne i1 A, B -> A ^ B 6597 return BinaryOperator::CreateXor(A, B); 6598 6599 case ICmpInst::ICMP_UGT: 6600 // icmp ugt -> icmp ult 6601 std::swap(A, B); 6602 [[fallthrough]]; 6603 case ICmpInst::ICMP_ULT: 6604 // icmp ult i1 A, B -> ~A & B 6605 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 6606 6607 case ICmpInst::ICMP_SGT: 6608 // icmp sgt -> icmp slt 6609 std::swap(A, B); 6610 [[fallthrough]]; 6611 case ICmpInst::ICMP_SLT: 6612 // icmp slt i1 A, B -> A & ~B 6613 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 6614 6615 case ICmpInst::ICMP_UGE: 6616 // icmp uge -> icmp ule 6617 std::swap(A, B); 6618 [[fallthrough]]; 6619 case ICmpInst::ICMP_ULE: 6620 // icmp ule i1 A, B -> ~A | B 6621 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 6622 6623 case ICmpInst::ICMP_SGE: 6624 // icmp sge -> icmp sle 6625 std::swap(A, B); 6626 [[fallthrough]]; 6627 case ICmpInst::ICMP_SLE: 6628 // icmp sle i1 A, B -> A | ~B 6629 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 6630 } 6631 } 6632 6633 // Transform pattern like: 6634 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 6635 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 6636 // Into: 6637 // (X l>> Y) != 0 6638 // (X l>> Y) == 0 6639 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 6640 InstCombiner::BuilderTy &Builder) { 6641 ICmpInst::Predicate Pred, NewPred; 6642 Value *X, *Y; 6643 if (match(&Cmp, 6644 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 6645 switch (Pred) { 6646 case ICmpInst::ICMP_ULE: 6647 NewPred = ICmpInst::ICMP_NE; 6648 break; 6649 case ICmpInst::ICMP_UGT: 6650 NewPred = ICmpInst::ICMP_EQ; 6651 break; 6652 default: 6653 return nullptr; 6654 } 6655 } else if (match(&Cmp, m_c_ICmp(Pred, 6656 m_OneUse(m_CombineOr( 6657 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 6658 m_Add(m_Shl(m_One(), m_Value(Y)), 6659 m_AllOnes()))), 6660 m_Value(X)))) { 6661 // The variant with 'add' is not canonical, (the variant with 'not' is) 6662 // we only get it because it has extra uses, and can't be canonicalized, 6663 6664 switch (Pred) { 6665 case ICmpInst::ICMP_ULT: 6666 NewPred = ICmpInst::ICMP_NE; 6667 break; 6668 case ICmpInst::ICMP_UGE: 6669 NewPred = ICmpInst::ICMP_EQ; 6670 break; 6671 default: 6672 return nullptr; 6673 } 6674 } else 6675 return nullptr; 6676 6677 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 6678 Constant *Zero = Constant::getNullValue(NewX->getType()); 6679 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 6680 } 6681 6682 static Instruction *foldVectorCmp(CmpInst &Cmp, 6683 InstCombiner::BuilderTy &Builder) { 6684 const CmpInst::Predicate Pred = Cmp.getPredicate(); 6685 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 6686 Value *V1, *V2; 6687 6688 auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) { 6689 Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName()); 6690 if (auto *I = dyn_cast<Instruction>(V)) 6691 I->copyIRFlags(&Cmp); 6692 Module *M = Cmp.getModule(); 6693 Function *F = Intrinsic::getDeclaration( 6694 M, Intrinsic::experimental_vector_reverse, V->getType()); 6695 return CallInst::Create(F, V); 6696 }; 6697 6698 if (match(LHS, m_VecReverse(m_Value(V1)))) { 6699 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2) 6700 if (match(RHS, m_VecReverse(m_Value(V2))) && 6701 (LHS->hasOneUse() || RHS->hasOneUse())) 6702 return createCmpReverse(Pred, V1, V2); 6703 6704 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat) 6705 if (LHS->hasOneUse() && isSplatValue(RHS)) 6706 return createCmpReverse(Pred, V1, RHS); 6707 } 6708 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2) 6709 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 6710 return createCmpReverse(Pred, LHS, V2); 6711 6712 ArrayRef<int> M; 6713 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 6714 return nullptr; 6715 6716 // If both arguments of the cmp are shuffles that use the same mask and 6717 // shuffle within a single vector, move the shuffle after the cmp: 6718 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 6719 Type *V1Ty = V1->getType(); 6720 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 6721 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 6722 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 6723 return new ShuffleVectorInst(NewCmp, M); 6724 } 6725 6726 // Try to canonicalize compare with splatted operand and splat constant. 6727 // TODO: We could generalize this for more than splats. See/use the code in 6728 // InstCombiner::foldVectorBinop(). 6729 Constant *C; 6730 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 6731 return nullptr; 6732 6733 // Length-changing splats are ok, so adjust the constants as needed: 6734 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 6735 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 6736 int MaskSplatIndex; 6737 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 6738 // We allow undefs in matching, but this transform removes those for safety. 6739 // Demanded elements analysis should be able to recover some/all of that. 6740 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 6741 ScalarC); 6742 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 6743 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 6744 return new ShuffleVectorInst(NewCmp, NewM); 6745 } 6746 6747 return nullptr; 6748 } 6749 6750 // extract(uadd.with.overflow(A, B), 0) ult A 6751 // -> extract(uadd.with.overflow(A, B), 1) 6752 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 6753 CmpInst::Predicate Pred = I.getPredicate(); 6754 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6755 6756 Value *UAddOv; 6757 Value *A, *B; 6758 auto UAddOvResultPat = m_ExtractValue<0>( 6759 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 6760 if (match(Op0, UAddOvResultPat) && 6761 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 6762 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 6763 (match(A, m_One()) || match(B, m_One()))) || 6764 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 6765 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 6766 // extract(uadd.with.overflow(A, B), 0) < A 6767 // extract(uadd.with.overflow(A, 1), 0) == 0 6768 // extract(uadd.with.overflow(A, -1), 0) != -1 6769 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 6770 else if (match(Op1, UAddOvResultPat) && 6771 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 6772 // A > extract(uadd.with.overflow(A, B), 0) 6773 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 6774 else 6775 return nullptr; 6776 6777 return ExtractValueInst::Create(UAddOv, 1); 6778 } 6779 6780 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 6781 if (!I.getOperand(0)->getType()->isPointerTy() || 6782 NullPointerIsDefined( 6783 I.getParent()->getParent(), 6784 I.getOperand(0)->getType()->getPointerAddressSpace())) { 6785 return nullptr; 6786 } 6787 Instruction *Op; 6788 if (match(I.getOperand(0), m_Instruction(Op)) && 6789 match(I.getOperand(1), m_Zero()) && 6790 Op->isLaunderOrStripInvariantGroup()) { 6791 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 6792 Op->getOperand(0), I.getOperand(1)); 6793 } 6794 return nullptr; 6795 } 6796 6797 /// This function folds patterns produced by lowering of reduce idioms, such as 6798 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6799 /// attempts to generate fewer number of scalar comparisons instead of vector 6800 /// comparisons when possible. 6801 static Instruction *foldReductionIdiom(ICmpInst &I, 6802 InstCombiner::BuilderTy &Builder, 6803 const DataLayout &DL) { 6804 if (I.getType()->isVectorTy()) 6805 return nullptr; 6806 ICmpInst::Predicate OuterPred, InnerPred; 6807 Value *LHS, *RHS; 6808 6809 // Match lowering of @llvm.vector.reduce.and. Turn 6810 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6811 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6812 /// %res = icmp <pred> i8 %scalar_ne, 0 6813 /// 6814 /// into 6815 /// 6816 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6817 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6818 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6819 /// 6820 /// for <pred> in {ne, eq}. 6821 if (!match(&I, m_ICmp(OuterPred, 6822 m_OneUse(m_BitCast(m_OneUse( 6823 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6824 m_Zero()))) 6825 return nullptr; 6826 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6827 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6828 return nullptr; 6829 unsigned NumBits = 6830 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6831 // TODO: Relax this to "not wider than max legal integer type"? 6832 if (!DL.isLegalInteger(NumBits)) 6833 return nullptr; 6834 6835 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6836 auto *ScalarTy = Builder.getIntNTy(NumBits); 6837 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6838 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6839 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6840 I.getName()); 6841 } 6842 6843 return nullptr; 6844 } 6845 6846 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6847 bool Changed = false; 6848 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6849 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6850 unsigned Op0Cplxity = getComplexity(Op0); 6851 unsigned Op1Cplxity = getComplexity(Op1); 6852 6853 /// Orders the operands of the compare so that they are listed from most 6854 /// complex to least complex. This puts constants before unary operators, 6855 /// before binary operators. 6856 if (Op0Cplxity < Op1Cplxity) { 6857 I.swapOperands(); 6858 std::swap(Op0, Op1); 6859 Changed = true; 6860 } 6861 6862 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6863 return replaceInstUsesWith(I, V); 6864 6865 // Comparing -val or val with non-zero is the same as just comparing val 6866 // ie, abs(val) != 0 -> val != 0 6867 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6868 Value *Cond, *SelectTrue, *SelectFalse; 6869 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6870 m_Value(SelectFalse)))) { 6871 if (Value *V = dyn_castNegVal(SelectTrue)) { 6872 if (V == SelectFalse) 6873 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6874 } 6875 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6876 if (V == SelectTrue) 6877 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6878 } 6879 } 6880 } 6881 6882 if (Op0->getType()->isIntOrIntVectorTy(1)) 6883 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6884 return Res; 6885 6886 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6887 return Res; 6888 6889 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6890 return Res; 6891 6892 if (Instruction *Res = foldICmpWithConstant(I)) 6893 return Res; 6894 6895 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6896 return Res; 6897 6898 if (Instruction *Res = foldICmpUsingBoolRange(I)) 6899 return Res; 6900 6901 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6902 return Res; 6903 6904 if (Instruction *Res = foldICmpTruncWithTruncOrExt(I, Q)) 6905 return Res; 6906 6907 // Test if the ICmpInst instruction is used exclusively by a select as 6908 // part of a minimum or maximum operation. If so, refrain from doing 6909 // any other folding. This helps out other analyses which understand 6910 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6911 // and CodeGen. And in this case, at least one of the comparison 6912 // operands has at least one user besides the compare (the select), 6913 // which would often largely negate the benefit of folding anyway. 6914 // 6915 // Do the same for the other patterns recognized by matchSelectPattern. 6916 if (I.hasOneUse()) 6917 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6918 Value *A, *B; 6919 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6920 if (SPR.Flavor != SPF_UNKNOWN) 6921 return nullptr; 6922 } 6923 6924 // Do this after checking for min/max to prevent infinite looping. 6925 if (Instruction *Res = foldICmpWithZero(I)) 6926 return Res; 6927 6928 // FIXME: We only do this after checking for min/max to prevent infinite 6929 // looping caused by a reverse canonicalization of these patterns for min/max. 6930 // FIXME: The organization of folds is a mess. These would naturally go into 6931 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6932 // down here after the min/max restriction. 6933 ICmpInst::Predicate Pred = I.getPredicate(); 6934 const APInt *C; 6935 if (match(Op1, m_APInt(C))) { 6936 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6937 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6938 Constant *Zero = Constant::getNullValue(Op0->getType()); 6939 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6940 } 6941 6942 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6943 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6944 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6945 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6946 } 6947 } 6948 6949 // The folds in here may rely on wrapping flags and special constants, so 6950 // they can break up min/max idioms in some cases but not seemingly similar 6951 // patterns. 6952 // FIXME: It may be possible to enhance select folding to make this 6953 // unnecessary. It may also be moot if we canonicalize to min/max 6954 // intrinsics. 6955 if (Instruction *Res = foldICmpBinOp(I, Q)) 6956 return Res; 6957 6958 if (Instruction *Res = foldICmpInstWithConstant(I)) 6959 return Res; 6960 6961 // Try to match comparison as a sign bit test. Intentionally do this after 6962 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6963 if (Instruction *New = foldSignBitTest(I)) 6964 return New; 6965 6966 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6967 return Res; 6968 6969 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6970 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6971 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6972 return NI; 6973 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6974 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6975 return NI; 6976 6977 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6978 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6979 return NI; 6980 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6981 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6982 return NI; 6983 6984 // In case of a comparison with two select instructions having the same 6985 // condition, check whether one of the resulting branches can be simplified. 6986 // If so, just compare the other branch and select the appropriate result. 6987 // For example: 6988 // %tmp1 = select i1 %cmp, i32 %y, i32 %x 6989 // %tmp2 = select i1 %cmp, i32 %z, i32 %x 6990 // %cmp2 = icmp slt i32 %tmp2, %tmp1 6991 // The icmp will result false for the false value of selects and the result 6992 // will depend upon the comparison of true values of selects if %cmp is 6993 // true. Thus, transform this into: 6994 // %cmp = icmp slt i32 %y, %z 6995 // %sel = select i1 %cond, i1 %cmp, i1 false 6996 // This handles similar cases to transform. 6997 { 6998 Value *Cond, *A, *B, *C, *D; 6999 if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 7000 match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) && 7001 (Op0->hasOneUse() || Op1->hasOneUse())) { 7002 // Check whether comparison of TrueValues can be simplified 7003 if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) { 7004 Value *NewICMP = Builder.CreateICmp(Pred, B, D); 7005 return SelectInst::Create(Cond, Res, NewICMP); 7006 } 7007 // Check whether comparison of FalseValues can be simplified 7008 if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) { 7009 Value *NewICMP = Builder.CreateICmp(Pred, A, C); 7010 return SelectInst::Create(Cond, NewICMP, Res); 7011 } 7012 } 7013 } 7014 7015 // Try to optimize equality comparisons against alloca-based pointers. 7016 if (Op0->getType()->isPointerTy() && I.isEquality()) { 7017 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 7018 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 7019 if (foldAllocaCmp(Alloca)) 7020 return nullptr; 7021 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 7022 if (foldAllocaCmp(Alloca)) 7023 return nullptr; 7024 } 7025 7026 if (Instruction *Res = foldICmpBitCast(I)) 7027 return Res; 7028 7029 // TODO: Hoist this above the min/max bailout. 7030 if (Instruction *R = foldICmpWithCastOp(I)) 7031 return R; 7032 7033 if (Instruction *Res = foldICmpWithMinMax(I)) 7034 return Res; 7035 7036 { 7037 Value *X, *Y; 7038 // Transform (X & ~Y) == 0 --> (X & Y) != 0 7039 // and (X & ~Y) != 0 --> (X & Y) == 0 7040 // if A is a power of 2. 7041 if (match(Op0, m_And(m_Value(X), m_Not(m_Value(Y)))) && 7042 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(X, false, 0, &I) && 7043 I.isEquality()) 7044 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(X, Y), 7045 Op1); 7046 7047 // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction. 7048 if (Op0->getType()->isIntOrIntVectorTy()) { 7049 bool ConsumesOp0, ConsumesOp1; 7050 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 7051 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 7052 (ConsumesOp0 || ConsumesOp1)) { 7053 Value *InvOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 7054 Value *InvOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 7055 assert(InvOp0 && InvOp1 && 7056 "Mismatch between isFreeToInvert and getFreelyInverted"); 7057 return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1); 7058 } 7059 } 7060 7061 Instruction *AddI = nullptr; 7062 if (match(&I, m_UAddWithOverflow(m_Value(X), m_Value(Y), 7063 m_Instruction(AddI))) && 7064 isa<IntegerType>(X->getType())) { 7065 Value *Result; 7066 Constant *Overflow; 7067 // m_UAddWithOverflow can match patterns that do not include an explicit 7068 // "add" instruction, so check the opcode of the matched op. 7069 if (AddI->getOpcode() == Instruction::Add && 7070 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, X, Y, *AddI, 7071 Result, Overflow)) { 7072 replaceInstUsesWith(*AddI, Result); 7073 eraseInstFromFunction(*AddI); 7074 return replaceInstUsesWith(I, Overflow); 7075 } 7076 } 7077 7078 // (zext X) * (zext Y) --> llvm.umul.with.overflow. 7079 if (match(Op0, m_NUWMul(m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) && 7080 match(Op1, m_APInt(C))) { 7081 if (Instruction *R = processUMulZExtIdiom(I, Op0, C, *this)) 7082 return R; 7083 } 7084 7085 // Signbit test folds 7086 // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1 7087 // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1 7088 Instruction *ExtI; 7089 if ((I.isUnsigned() || I.isEquality()) && 7090 match(Op1, 7091 m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(Y)))) && 7092 Y->getType()->getScalarSizeInBits() == 1 && 7093 (Op0->hasOneUse() || Op1->hasOneUse())) { 7094 unsigned OpWidth = Op0->getType()->getScalarSizeInBits(); 7095 Instruction *ShiftI; 7096 if (match(Op0, m_CombineAnd(m_Instruction(ShiftI), 7097 m_Shr(m_Value(X), m_SpecificIntAllowUndef( 7098 OpWidth - 1))))) { 7099 unsigned ExtOpc = ExtI->getOpcode(); 7100 unsigned ShiftOpc = ShiftI->getOpcode(); 7101 if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) || 7102 (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) { 7103 Value *SLTZero = 7104 Builder.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 7105 Value *Cmp = Builder.CreateICmp(Pred, SLTZero, Y, I.getName()); 7106 return replaceInstUsesWith(I, Cmp); 7107 } 7108 } 7109 } 7110 } 7111 7112 if (Instruction *Res = foldICmpEquality(I)) 7113 return Res; 7114 7115 if (Instruction *Res = foldICmpPow2Test(I, Builder)) 7116 return Res; 7117 7118 if (Instruction *Res = foldICmpOfUAddOv(I)) 7119 return Res; 7120 7121 // The 'cmpxchg' instruction returns an aggregate containing the old value and 7122 // an i1 which indicates whether or not we successfully did the swap. 7123 // 7124 // Replace comparisons between the old value and the expected value with the 7125 // indicator that 'cmpxchg' returns. 7126 // 7127 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 7128 // spuriously fail. In those cases, the old value may equal the expected 7129 // value but it is possible for the swap to not occur. 7130 if (I.getPredicate() == ICmpInst::ICMP_EQ) 7131 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 7132 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 7133 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 7134 !ACXI->isWeak()) 7135 return ExtractValueInst::Create(ACXI, 1); 7136 7137 { 7138 Value *X; 7139 const APInt *C; 7140 // icmp X+Cst, X 7141 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 7142 return foldICmpAddOpConst(X, *C, I.getPredicate()); 7143 7144 // icmp X, X+Cst 7145 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 7146 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 7147 } 7148 7149 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 7150 return Res; 7151 7152 if (I.getType()->isVectorTy()) 7153 if (Instruction *Res = foldVectorCmp(I, Builder)) 7154 return Res; 7155 7156 if (Instruction *Res = foldICmpInvariantGroup(I)) 7157 return Res; 7158 7159 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 7160 return Res; 7161 7162 return Changed ? &I : nullptr; 7163 } 7164 7165 /// Fold fcmp ([us]itofp x, cst) if possible. 7166 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 7167 Instruction *LHSI, 7168 Constant *RHSC) { 7169 if (!isa<ConstantFP>(RHSC)) return nullptr; 7170 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 7171 7172 // Get the width of the mantissa. We don't want to hack on conversions that 7173 // might lose information from the integer, e.g. "i64 -> float" 7174 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 7175 if (MantissaWidth == -1) return nullptr; // Unknown. 7176 7177 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 7178 7179 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 7180 7181 if (I.isEquality()) { 7182 FCmpInst::Predicate P = I.getPredicate(); 7183 bool IsExact = false; 7184 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 7185 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 7186 7187 // If the floating point constant isn't an integer value, we know if we will 7188 // ever compare equal / not equal to it. 7189 if (!IsExact) { 7190 // TODO: Can never be -0.0 and other non-representable values 7191 APFloat RHSRoundInt(RHS); 7192 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 7193 if (RHS != RHSRoundInt) { 7194 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 7195 return replaceInstUsesWith(I, Builder.getFalse()); 7196 7197 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 7198 return replaceInstUsesWith(I, Builder.getTrue()); 7199 } 7200 } 7201 7202 // TODO: If the constant is exactly representable, is it always OK to do 7203 // equality compares as integer? 7204 } 7205 7206 // Check to see that the input is converted from an integer type that is small 7207 // enough that preserves all bits. TODO: check here for "known" sign bits. 7208 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 7209 unsigned InputSize = IntTy->getScalarSizeInBits(); 7210 7211 // Following test does NOT adjust InputSize downwards for signed inputs, 7212 // because the most negative value still requires all the mantissa bits 7213 // to distinguish it from one less than that value. 7214 if ((int)InputSize > MantissaWidth) { 7215 // Conversion would lose accuracy. Check if loss can impact comparison. 7216 int Exp = ilogb(RHS); 7217 if (Exp == APFloat::IEK_Inf) { 7218 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 7219 if (MaxExponent < (int)InputSize - !LHSUnsigned) 7220 // Conversion could create infinity. 7221 return nullptr; 7222 } else { 7223 // Note that if RHS is zero or NaN, then Exp is negative 7224 // and first condition is trivially false. 7225 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 7226 // Conversion could affect comparison. 7227 return nullptr; 7228 } 7229 } 7230 7231 // Otherwise, we can potentially simplify the comparison. We know that it 7232 // will always come through as an integer value and we know the constant is 7233 // not a NAN (it would have been previously simplified). 7234 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 7235 7236 ICmpInst::Predicate Pred; 7237 switch (I.getPredicate()) { 7238 default: llvm_unreachable("Unexpected predicate!"); 7239 case FCmpInst::FCMP_UEQ: 7240 case FCmpInst::FCMP_OEQ: 7241 Pred = ICmpInst::ICMP_EQ; 7242 break; 7243 case FCmpInst::FCMP_UGT: 7244 case FCmpInst::FCMP_OGT: 7245 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 7246 break; 7247 case FCmpInst::FCMP_UGE: 7248 case FCmpInst::FCMP_OGE: 7249 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 7250 break; 7251 case FCmpInst::FCMP_ULT: 7252 case FCmpInst::FCMP_OLT: 7253 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 7254 break; 7255 case FCmpInst::FCMP_ULE: 7256 case FCmpInst::FCMP_OLE: 7257 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 7258 break; 7259 case FCmpInst::FCMP_UNE: 7260 case FCmpInst::FCMP_ONE: 7261 Pred = ICmpInst::ICMP_NE; 7262 break; 7263 case FCmpInst::FCMP_ORD: 7264 return replaceInstUsesWith(I, Builder.getTrue()); 7265 case FCmpInst::FCMP_UNO: 7266 return replaceInstUsesWith(I, Builder.getFalse()); 7267 } 7268 7269 // Now we know that the APFloat is a normal number, zero or inf. 7270 7271 // See if the FP constant is too large for the integer. For example, 7272 // comparing an i8 to 300.0. 7273 unsigned IntWidth = IntTy->getScalarSizeInBits(); 7274 7275 if (!LHSUnsigned) { 7276 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 7277 // and large values. 7278 APFloat SMax(RHS.getSemantics()); 7279 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 7280 APFloat::rmNearestTiesToEven); 7281 if (SMax < RHS) { // smax < 13123.0 7282 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 7283 Pred == ICmpInst::ICMP_SLE) 7284 return replaceInstUsesWith(I, Builder.getTrue()); 7285 return replaceInstUsesWith(I, Builder.getFalse()); 7286 } 7287 } else { 7288 // If the RHS value is > UnsignedMax, fold the comparison. This handles 7289 // +INF and large values. 7290 APFloat UMax(RHS.getSemantics()); 7291 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 7292 APFloat::rmNearestTiesToEven); 7293 if (UMax < RHS) { // umax < 13123.0 7294 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 7295 Pred == ICmpInst::ICMP_ULE) 7296 return replaceInstUsesWith(I, Builder.getTrue()); 7297 return replaceInstUsesWith(I, Builder.getFalse()); 7298 } 7299 } 7300 7301 if (!LHSUnsigned) { 7302 // See if the RHS value is < SignedMin. 7303 APFloat SMin(RHS.getSemantics()); 7304 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 7305 APFloat::rmNearestTiesToEven); 7306 if (SMin > RHS) { // smin > 12312.0 7307 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 7308 Pred == ICmpInst::ICMP_SGE) 7309 return replaceInstUsesWith(I, Builder.getTrue()); 7310 return replaceInstUsesWith(I, Builder.getFalse()); 7311 } 7312 } else { 7313 // See if the RHS value is < UnsignedMin. 7314 APFloat UMin(RHS.getSemantics()); 7315 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 7316 APFloat::rmNearestTiesToEven); 7317 if (UMin > RHS) { // umin > 12312.0 7318 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 7319 Pred == ICmpInst::ICMP_UGE) 7320 return replaceInstUsesWith(I, Builder.getTrue()); 7321 return replaceInstUsesWith(I, Builder.getFalse()); 7322 } 7323 } 7324 7325 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 7326 // [0, UMAX], but it may still be fractional. Check whether this is the case 7327 // using the IsExact flag. 7328 // Don't do this for zero, because -0.0 is not fractional. 7329 APSInt RHSInt(IntWidth, LHSUnsigned); 7330 bool IsExact; 7331 RHS.convertToInteger(RHSInt, APFloat::rmTowardZero, &IsExact); 7332 if (!RHS.isZero()) { 7333 if (!IsExact) { 7334 // If we had a comparison against a fractional value, we have to adjust 7335 // the compare predicate and sometimes the value. RHSC is rounded towards 7336 // zero at this point. 7337 switch (Pred) { 7338 default: llvm_unreachable("Unexpected integer comparison!"); 7339 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 7340 return replaceInstUsesWith(I, Builder.getTrue()); 7341 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 7342 return replaceInstUsesWith(I, Builder.getFalse()); 7343 case ICmpInst::ICMP_ULE: 7344 // (float)int <= 4.4 --> int <= 4 7345 // (float)int <= -4.4 --> false 7346 if (RHS.isNegative()) 7347 return replaceInstUsesWith(I, Builder.getFalse()); 7348 break; 7349 case ICmpInst::ICMP_SLE: 7350 // (float)int <= 4.4 --> int <= 4 7351 // (float)int <= -4.4 --> int < -4 7352 if (RHS.isNegative()) 7353 Pred = ICmpInst::ICMP_SLT; 7354 break; 7355 case ICmpInst::ICMP_ULT: 7356 // (float)int < -4.4 --> false 7357 // (float)int < 4.4 --> int <= 4 7358 if (RHS.isNegative()) 7359 return replaceInstUsesWith(I, Builder.getFalse()); 7360 Pred = ICmpInst::ICMP_ULE; 7361 break; 7362 case ICmpInst::ICMP_SLT: 7363 // (float)int < -4.4 --> int < -4 7364 // (float)int < 4.4 --> int <= 4 7365 if (!RHS.isNegative()) 7366 Pred = ICmpInst::ICMP_SLE; 7367 break; 7368 case ICmpInst::ICMP_UGT: 7369 // (float)int > 4.4 --> int > 4 7370 // (float)int > -4.4 --> true 7371 if (RHS.isNegative()) 7372 return replaceInstUsesWith(I, Builder.getTrue()); 7373 break; 7374 case ICmpInst::ICMP_SGT: 7375 // (float)int > 4.4 --> int > 4 7376 // (float)int > -4.4 --> int >= -4 7377 if (RHS.isNegative()) 7378 Pred = ICmpInst::ICMP_SGE; 7379 break; 7380 case ICmpInst::ICMP_UGE: 7381 // (float)int >= -4.4 --> true 7382 // (float)int >= 4.4 --> int > 4 7383 if (RHS.isNegative()) 7384 return replaceInstUsesWith(I, Builder.getTrue()); 7385 Pred = ICmpInst::ICMP_UGT; 7386 break; 7387 case ICmpInst::ICMP_SGE: 7388 // (float)int >= -4.4 --> int >= -4 7389 // (float)int >= 4.4 --> int > 4 7390 if (!RHS.isNegative()) 7391 Pred = ICmpInst::ICMP_SGT; 7392 break; 7393 } 7394 } 7395 } 7396 7397 // Lower this FP comparison into an appropriate integer version of the 7398 // comparison. 7399 return new ICmpInst(Pred, LHSI->getOperand(0), Builder.getInt(RHSInt)); 7400 } 7401 7402 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 7403 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 7404 Constant *RHSC) { 7405 // When C is not 0.0 and infinities are not allowed: 7406 // (C / X) < 0.0 is a sign-bit test of X 7407 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 7408 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 7409 // 7410 // Proof: 7411 // Multiply (C / X) < 0.0 by X * X / C. 7412 // - X is non zero, if it is the flag 'ninf' is violated. 7413 // - C defines the sign of X * X * C. Thus it also defines whether to swap 7414 // the predicate. C is also non zero by definition. 7415 // 7416 // Thus X * X / C is non zero and the transformation is valid. [qed] 7417 7418 FCmpInst::Predicate Pred = I.getPredicate(); 7419 7420 // Check that predicates are valid. 7421 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 7422 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 7423 return nullptr; 7424 7425 // Check that RHS operand is zero. 7426 if (!match(RHSC, m_AnyZeroFP())) 7427 return nullptr; 7428 7429 // Check fastmath flags ('ninf'). 7430 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 7431 return nullptr; 7432 7433 // Check the properties of the dividend. It must not be zero to avoid a 7434 // division by zero (see Proof). 7435 const APFloat *C; 7436 if (!match(LHSI->getOperand(0), m_APFloat(C))) 7437 return nullptr; 7438 7439 if (C->isZero()) 7440 return nullptr; 7441 7442 // Get swapped predicate if necessary. 7443 if (C->isNegative()) 7444 Pred = I.getSwappedPredicate(); 7445 7446 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 7447 } 7448 7449 /// Optimize fabs(X) compared with zero. 7450 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 7451 Value *X; 7452 if (!match(I.getOperand(0), m_FAbs(m_Value(X)))) 7453 return nullptr; 7454 7455 const APFloat *C; 7456 if (!match(I.getOperand(1), m_APFloat(C))) 7457 return nullptr; 7458 7459 if (!C->isPosZero()) { 7460 if (!C->isSmallestNormalized()) 7461 return nullptr; 7462 7463 const Function *F = I.getFunction(); 7464 DenormalMode Mode = F->getDenormalMode(C->getSemantics()); 7465 if (Mode.Input == DenormalMode::PreserveSign || 7466 Mode.Input == DenormalMode::PositiveZero) { 7467 7468 auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7469 Constant *Zero = ConstantFP::getZero(X->getType()); 7470 return new FCmpInst(P, X, Zero, "", I); 7471 }; 7472 7473 switch (I.getPredicate()) { 7474 case FCmpInst::FCMP_OLT: 7475 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0 7476 return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X); 7477 case FCmpInst::FCMP_UGE: 7478 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0 7479 return replaceFCmp(&I, FCmpInst::FCMP_UNE, X); 7480 case FCmpInst::FCMP_OGE: 7481 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0 7482 return replaceFCmp(&I, FCmpInst::FCMP_ONE, X); 7483 case FCmpInst::FCMP_ULT: 7484 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0 7485 return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X); 7486 default: 7487 break; 7488 } 7489 } 7490 7491 return nullptr; 7492 } 7493 7494 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7495 I->setPredicate(P); 7496 return IC.replaceOperand(*I, 0, X); 7497 }; 7498 7499 switch (I.getPredicate()) { 7500 case FCmpInst::FCMP_UGE: 7501 case FCmpInst::FCMP_OLT: 7502 // fabs(X) >= 0.0 --> true 7503 // fabs(X) < 0.0 --> false 7504 llvm_unreachable("fcmp should have simplified"); 7505 7506 case FCmpInst::FCMP_OGT: 7507 // fabs(X) > 0.0 --> X != 0.0 7508 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 7509 7510 case FCmpInst::FCMP_UGT: 7511 // fabs(X) u> 0.0 --> X u!= 0.0 7512 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 7513 7514 case FCmpInst::FCMP_OLE: 7515 // fabs(X) <= 0.0 --> X == 0.0 7516 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 7517 7518 case FCmpInst::FCMP_ULE: 7519 // fabs(X) u<= 0.0 --> X u== 0.0 7520 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 7521 7522 case FCmpInst::FCMP_OGE: 7523 // fabs(X) >= 0.0 --> !isnan(X) 7524 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7525 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 7526 7527 case FCmpInst::FCMP_ULT: 7528 // fabs(X) u< 0.0 --> isnan(X) 7529 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7530 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 7531 7532 case FCmpInst::FCMP_OEQ: 7533 case FCmpInst::FCMP_UEQ: 7534 case FCmpInst::FCMP_ONE: 7535 case FCmpInst::FCMP_UNE: 7536 case FCmpInst::FCMP_ORD: 7537 case FCmpInst::FCMP_UNO: 7538 // Look through the fabs() because it doesn't change anything but the sign. 7539 // fabs(X) == 0.0 --> X == 0.0, 7540 // fabs(X) != 0.0 --> X != 0.0 7541 // isnan(fabs(X)) --> isnan(X) 7542 // !isnan(fabs(X) --> !isnan(X) 7543 return replacePredAndOp0(&I, I.getPredicate(), X); 7544 7545 default: 7546 return nullptr; 7547 } 7548 } 7549 7550 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 7551 CmpInst::Predicate Pred = I.getPredicate(); 7552 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7553 7554 // Canonicalize fneg as Op1. 7555 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 7556 std::swap(Op0, Op1); 7557 Pred = I.getSwappedPredicate(); 7558 } 7559 7560 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 7561 return nullptr; 7562 7563 // Replace the negated operand with 0.0: 7564 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 7565 Constant *Zero = ConstantFP::getZero(Op0->getType()); 7566 return new FCmpInst(Pred, Op0, Zero, "", &I); 7567 } 7568 7569 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 7570 bool Changed = false; 7571 7572 /// Orders the operands of the compare so that they are listed from most 7573 /// complex to least complex. This puts constants before unary operators, 7574 /// before binary operators. 7575 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 7576 I.swapOperands(); 7577 Changed = true; 7578 } 7579 7580 const CmpInst::Predicate Pred = I.getPredicate(); 7581 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7582 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 7583 SQ.getWithInstruction(&I))) 7584 return replaceInstUsesWith(I, V); 7585 7586 // Simplify 'fcmp pred X, X' 7587 Type *OpType = Op0->getType(); 7588 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 7589 if (Op0 == Op1) { 7590 switch (Pred) { 7591 default: break; 7592 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 7593 case FCmpInst::FCMP_ULT: // True if unordered or less than 7594 case FCmpInst::FCMP_UGT: // True if unordered or greater than 7595 case FCmpInst::FCMP_UNE: // True if unordered or not equal 7596 // Canonicalize these to be 'fcmp uno %X, 0.0'. 7597 I.setPredicate(FCmpInst::FCMP_UNO); 7598 I.setOperand(1, Constant::getNullValue(OpType)); 7599 return &I; 7600 7601 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 7602 case FCmpInst::FCMP_OEQ: // True if ordered and equal 7603 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 7604 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 7605 // Canonicalize these to be 'fcmp ord %X, 0.0'. 7606 I.setPredicate(FCmpInst::FCMP_ORD); 7607 I.setOperand(1, Constant::getNullValue(OpType)); 7608 return &I; 7609 } 7610 } 7611 7612 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 7613 // then canonicalize the operand to 0.0. 7614 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 7615 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, DL, &TLI, 0, 7616 &AC, &I, &DT)) 7617 return replaceOperand(I, 0, ConstantFP::getZero(OpType)); 7618 7619 if (!match(Op1, m_PosZeroFP()) && 7620 isKnownNeverNaN(Op1, DL, &TLI, 0, &AC, &I, &DT)) 7621 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 7622 } 7623 7624 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 7625 Value *X, *Y; 7626 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 7627 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 7628 7629 if (Instruction *R = foldFCmpFNegCommonOp(I)) 7630 return R; 7631 7632 // Test if the FCmpInst instruction is used exclusively by a select as 7633 // part of a minimum or maximum operation. If so, refrain from doing 7634 // any other folding. This helps out other analyses which understand 7635 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 7636 // and CodeGen. And in this case, at least one of the comparison 7637 // operands has at least one user besides the compare (the select), 7638 // which would often largely negate the benefit of folding anyway. 7639 if (I.hasOneUse()) 7640 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 7641 Value *A, *B; 7642 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 7643 if (SPR.Flavor != SPF_UNKNOWN) 7644 return nullptr; 7645 } 7646 7647 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 7648 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 7649 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 7650 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 7651 7652 // Ignore signbit of bitcasted int when comparing equality to FP 0.0: 7653 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0 7654 if (match(Op1, m_PosZeroFP()) && 7655 match(Op0, m_OneUse(m_BitCast(m_Value(X)))) && 7656 X->getType()->isVectorTy() == OpType->isVectorTy() && 7657 X->getType()->getScalarSizeInBits() == OpType->getScalarSizeInBits()) { 7658 ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE; 7659 if (Pred == FCmpInst::FCMP_OEQ) 7660 IntPred = ICmpInst::ICMP_EQ; 7661 else if (Pred == FCmpInst::FCMP_UNE) 7662 IntPred = ICmpInst::ICMP_NE; 7663 7664 if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) { 7665 Type *IntTy = X->getType(); 7666 const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits()); 7667 Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask)); 7668 return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy)); 7669 } 7670 } 7671 7672 // Handle fcmp with instruction LHS and constant RHS. 7673 Instruction *LHSI; 7674 Constant *RHSC; 7675 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 7676 switch (LHSI->getOpcode()) { 7677 case Instruction::PHI: 7678 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 7679 return NV; 7680 break; 7681 case Instruction::SIToFP: 7682 case Instruction::UIToFP: 7683 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 7684 return NV; 7685 break; 7686 case Instruction::FDiv: 7687 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 7688 return NV; 7689 break; 7690 case Instruction::Load: 7691 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 7692 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 7693 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 7694 cast<LoadInst>(LHSI), GEP, GV, I)) 7695 return Res; 7696 break; 7697 } 7698 } 7699 7700 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 7701 return R; 7702 7703 if (match(Op0, m_FNeg(m_Value(X)))) { 7704 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 7705 Constant *C; 7706 if (match(Op1, m_Constant(C))) 7707 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 7708 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 7709 } 7710 7711 if (match(Op0, m_FPExt(m_Value(X)))) { 7712 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 7713 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 7714 return new FCmpInst(Pred, X, Y, "", &I); 7715 7716 const APFloat *C; 7717 if (match(Op1, m_APFloat(C))) { 7718 const fltSemantics &FPSem = 7719 X->getType()->getScalarType()->getFltSemantics(); 7720 bool Lossy; 7721 APFloat TruncC = *C; 7722 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 7723 7724 if (Lossy) { 7725 // X can't possibly equal the higher-precision constant, so reduce any 7726 // equality comparison. 7727 // TODO: Other predicates can be handled via getFCmpCode(). 7728 switch (Pred) { 7729 case FCmpInst::FCMP_OEQ: 7730 // X is ordered and equal to an impossible constant --> false 7731 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7732 case FCmpInst::FCMP_ONE: 7733 // X is ordered and not equal to an impossible constant --> ordered 7734 return new FCmpInst(FCmpInst::FCMP_ORD, X, 7735 ConstantFP::getZero(X->getType())); 7736 case FCmpInst::FCMP_UEQ: 7737 // X is unordered or equal to an impossible constant --> unordered 7738 return new FCmpInst(FCmpInst::FCMP_UNO, X, 7739 ConstantFP::getZero(X->getType())); 7740 case FCmpInst::FCMP_UNE: 7741 // X is unordered or not equal to an impossible constant --> true 7742 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7743 default: 7744 break; 7745 } 7746 } 7747 7748 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 7749 // Avoid lossy conversions and denormals. 7750 // Zero is a special case that's OK to convert. 7751 APFloat Fabs = TruncC; 7752 Fabs.clearSign(); 7753 if (!Lossy && 7754 (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) { 7755 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 7756 return new FCmpInst(Pred, X, NewC, "", &I); 7757 } 7758 } 7759 } 7760 7761 // Convert a sign-bit test of an FP value into a cast and integer compare. 7762 // TODO: Simplify if the copysign constant is 0.0 or NaN. 7763 // TODO: Handle non-zero compare constants. 7764 // TODO: Handle other predicates. 7765 const APFloat *C; 7766 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 7767 m_Value(X)))) && 7768 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 7769 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 7770 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 7771 IntType = VectorType::get(IntType, VecTy->getElementCount()); 7772 7773 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 7774 if (Pred == FCmpInst::FCMP_OLT) { 7775 Value *IntX = Builder.CreateBitCast(X, IntType); 7776 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 7777 ConstantInt::getNullValue(IntType)); 7778 } 7779 } 7780 7781 { 7782 Value *CanonLHS = nullptr, *CanonRHS = nullptr; 7783 match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS))); 7784 match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS))); 7785 7786 // (canonicalize(x) == x) => (x == x) 7787 if (CanonLHS == Op1) 7788 return new FCmpInst(Pred, Op1, Op1, "", &I); 7789 7790 // (x == canonicalize(x)) => (x == x) 7791 if (CanonRHS == Op0) 7792 return new FCmpInst(Pred, Op0, Op0, "", &I); 7793 7794 // (canonicalize(x) == canonicalize(y)) => (x == y) 7795 if (CanonLHS && CanonRHS) 7796 return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I); 7797 } 7798 7799 if (I.getType()->isVectorTy()) 7800 if (Instruction *Res = foldVectorCmp(I, Builder)) 7801 return Res; 7802 7803 return Changed ? &I : nullptr; 7804 } 7805