1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) { 194 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 195 if (!Elt) 196 return nullptr; 197 } 198 199 // If the element is masked, handle it. 200 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 201 202 // Find out if the comparison would be true or false for the i'th element. 203 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 204 CompareRHS, DL, &TLI); 205 // If the result is undef for this element, ignore it. 206 if (isa<UndefValue>(C)) { 207 // Extend range state machines to cover this element in case there is an 208 // undef in the middle of the range. 209 if (TrueRangeEnd == (int)i-1) 210 TrueRangeEnd = i; 211 if (FalseRangeEnd == (int)i-1) 212 FalseRangeEnd = i; 213 continue; 214 } 215 216 // If we can't compute the result for any of the elements, we have to give 217 // up evaluating the entire conditional. 218 if (!isa<ConstantInt>(C)) return nullptr; 219 220 // Otherwise, we know if the comparison is true or false for this element, 221 // update our state machines. 222 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 223 224 // State machine for single/double/range index comparison. 225 if (IsTrueForElt) { 226 // Update the TrueElement state machine. 227 if (FirstTrueElement == Undefined) 228 FirstTrueElement = TrueRangeEnd = i; // First true element. 229 else { 230 // Update double-compare state machine. 231 if (SecondTrueElement == Undefined) 232 SecondTrueElement = i; 233 else 234 SecondTrueElement = Overdefined; 235 236 // Update range state machine. 237 if (TrueRangeEnd == (int)i-1) 238 TrueRangeEnd = i; 239 else 240 TrueRangeEnd = Overdefined; 241 } 242 } else { 243 // Update the FalseElement state machine. 244 if (FirstFalseElement == Undefined) 245 FirstFalseElement = FalseRangeEnd = i; // First false element. 246 else { 247 // Update double-compare state machine. 248 if (SecondFalseElement == Undefined) 249 SecondFalseElement = i; 250 else 251 SecondFalseElement = Overdefined; 252 253 // Update range state machine. 254 if (FalseRangeEnd == (int)i-1) 255 FalseRangeEnd = i; 256 else 257 FalseRangeEnd = Overdefined; 258 } 259 } 260 261 // If this element is in range, update our magic bitvector. 262 if (i < 64 && IsTrueForElt) 263 MagicBitvector |= 1ULL << i; 264 265 // If all of our states become overdefined, bail out early. Since the 266 // predicate is expensive, only check it every 8 elements. This is only 267 // really useful for really huge arrays. 268 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 269 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 270 FalseRangeEnd == Overdefined) 271 return nullptr; 272 } 273 274 // Now that we've scanned the entire array, emit our new comparison(s). We 275 // order the state machines in complexity of the generated code. 276 Value *Idx = GEP->getOperand(2); 277 278 // If the index is larger than the pointer size of the target, truncate the 279 // index down like the GEP would do implicitly. We don't have to do this for 280 // an inbounds GEP because the index can't be out of range. 281 if (!GEP->isInBounds()) { 282 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 283 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 284 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 285 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 286 } 287 288 // If inbounds keyword is not present, Idx * ElementSize can overflow. 289 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 290 // Then, there are two possible values for Idx to match offset 0: 291 // 0x00..00, 0x80..00. 292 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 293 // comparison is false if Idx was 0x80..00. 294 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 295 unsigned ElementSize = 296 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 297 auto MaskIdx = [&](Value* Idx){ 298 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 299 Value *Mask = ConstantInt::get(Idx->getType(), -1); 300 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 301 Idx = Builder.CreateAnd(Idx, Mask); 302 } 303 return Idx; 304 }; 305 306 // If the comparison is only true for one or two elements, emit direct 307 // comparisons. 308 if (SecondTrueElement != Overdefined) { 309 Idx = MaskIdx(Idx); 310 // None true -> false. 311 if (FirstTrueElement == Undefined) 312 return replaceInstUsesWith(ICI, Builder.getFalse()); 313 314 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 315 316 // True for one element -> 'i == 47'. 317 if (SecondTrueElement == Undefined) 318 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 319 320 // True for two elements -> 'i == 47 | i == 72'. 321 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 322 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 323 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 324 return BinaryOperator::CreateOr(C1, C2); 325 } 326 327 // If the comparison is only false for one or two elements, emit direct 328 // comparisons. 329 if (SecondFalseElement != Overdefined) { 330 Idx = MaskIdx(Idx); 331 // None false -> true. 332 if (FirstFalseElement == Undefined) 333 return replaceInstUsesWith(ICI, Builder.getTrue()); 334 335 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 336 337 // False for one element -> 'i != 47'. 338 if (SecondFalseElement == Undefined) 339 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 340 341 // False for two elements -> 'i != 47 & i != 72'. 342 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 343 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 344 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 345 return BinaryOperator::CreateAnd(C1, C2); 346 } 347 348 // If the comparison can be replaced with a range comparison for the elements 349 // where it is true, emit the range check. 350 if (TrueRangeEnd != Overdefined) { 351 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 352 Idx = MaskIdx(Idx); 353 354 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 355 if (FirstTrueElement) { 356 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 357 Idx = Builder.CreateAdd(Idx, Offs); 358 } 359 360 Value *End = ConstantInt::get(Idx->getType(), 361 TrueRangeEnd-FirstTrueElement+1); 362 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 363 } 364 365 // False range check. 366 if (FalseRangeEnd != Overdefined) { 367 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 368 Idx = MaskIdx(Idx); 369 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 370 if (FirstFalseElement) { 371 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 372 Idx = Builder.CreateAdd(Idx, Offs); 373 } 374 375 Value *End = ConstantInt::get(Idx->getType(), 376 FalseRangeEnd-FirstFalseElement); 377 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 378 } 379 380 // If a magic bitvector captures the entire comparison state 381 // of this load, replace it with computation that does: 382 // ((magic_cst >> i) & 1) != 0 383 { 384 Type *Ty = nullptr; 385 386 // Look for an appropriate type: 387 // - The type of Idx if the magic fits 388 // - The smallest fitting legal type 389 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 390 Ty = Idx->getType(); 391 else 392 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 393 394 if (Ty) { 395 Idx = MaskIdx(Idx); 396 Value *V = Builder.CreateIntCast(Idx, Ty, false); 397 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 398 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 399 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 400 } 401 } 402 403 return nullptr; 404 } 405 406 /// Return a value that can be used to compare the *offset* implied by a GEP to 407 /// zero. For example, if we have &A[i], we want to return 'i' for 408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 409 /// are involved. The above expression would also be legal to codegen as 410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 411 /// This latter form is less amenable to optimization though, and we are allowed 412 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 413 /// 414 /// If we can't emit an optimized form for this expression, this returns null. 415 /// 416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 417 const DataLayout &DL) { 418 gep_type_iterator GTI = gep_type_begin(GEP); 419 420 // Check to see if this gep only has a single variable index. If so, and if 421 // any constant indices are a multiple of its scale, then we can compute this 422 // in terms of the scale of the variable index. For example, if the GEP 423 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 424 // because the expression will cross zero at the same point. 425 unsigned i, e = GEP->getNumOperands(); 426 int64_t Offset = 0; 427 for (i = 1; i != e; ++i, ++GTI) { 428 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 429 // Compute the aggregate offset of constant indices. 430 if (CI->isZero()) continue; 431 432 // Handle a struct index, which adds its field offset to the pointer. 433 if (StructType *STy = GTI.getStructTypeOrNull()) { 434 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 435 } else { 436 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 437 Offset += Size*CI->getSExtValue(); 438 } 439 } else { 440 // Found our variable index. 441 break; 442 } 443 } 444 445 // If there are no variable indices, we must have a constant offset, just 446 // evaluate it the general way. 447 if (i == e) return nullptr; 448 449 Value *VariableIdx = GEP->getOperand(i); 450 // Determine the scale factor of the variable element. For example, this is 451 // 4 if the variable index is into an array of i32. 452 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 453 454 // Verify that there are no other variable indices. If so, emit the hard way. 455 for (++i, ++GTI; i != e; ++i, ++GTI) { 456 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 457 if (!CI) return nullptr; 458 459 // Compute the aggregate offset of constant indices. 460 if (CI->isZero()) continue; 461 462 // Handle a struct index, which adds its field offset to the pointer. 463 if (StructType *STy = GTI.getStructTypeOrNull()) { 464 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 465 } else { 466 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 467 Offset += Size*CI->getSExtValue(); 468 } 469 } 470 471 // Okay, we know we have a single variable index, which must be a 472 // pointer/array/vector index. If there is no offset, life is simple, return 473 // the index. 474 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 475 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 476 if (Offset == 0) { 477 // Cast to intptrty in case a truncation occurs. If an extension is needed, 478 // we don't need to bother extending: the extension won't affect where the 479 // computation crosses zero. 480 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 481 IntPtrWidth) { 482 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 483 } 484 return VariableIdx; 485 } 486 487 // Otherwise, there is an index. The computation we will do will be modulo 488 // the pointer size. 489 Offset = SignExtend64(Offset, IntPtrWidth); 490 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 491 492 // To do this transformation, any constant index must be a multiple of the 493 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 494 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 495 // multiple of the variable scale. 496 int64_t NewOffs = Offset / (int64_t)VariableScale; 497 if (Offset != NewOffs*(int64_t)VariableScale) 498 return nullptr; 499 500 // Okay, we can do this evaluation. Start by converting the index to intptr. 501 if (VariableIdx->getType() != IntPtrTy) 502 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 503 true /*Signed*/); 504 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 505 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 506 } 507 508 /// Returns true if we can rewrite Start as a GEP with pointer Base 509 /// and some integer offset. The nodes that need to be re-written 510 /// for this transformation will be added to Explored. 511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 512 const DataLayout &DL, 513 SetVector<Value *> &Explored) { 514 SmallVector<Value *, 16> WorkList(1, Start); 515 Explored.insert(Base); 516 517 // The following traversal gives us an order which can be used 518 // when doing the final transformation. Since in the final 519 // transformation we create the PHI replacement instructions first, 520 // we don't have to get them in any particular order. 521 // 522 // However, for other instructions we will have to traverse the 523 // operands of an instruction first, which means that we have to 524 // do a post-order traversal. 525 while (!WorkList.empty()) { 526 SetVector<PHINode *> PHIs; 527 528 while (!WorkList.empty()) { 529 if (Explored.size() >= 100) 530 return false; 531 532 Value *V = WorkList.back(); 533 534 if (Explored.contains(V)) { 535 WorkList.pop_back(); 536 continue; 537 } 538 539 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 540 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 541 // We've found some value that we can't explore which is different from 542 // the base. Therefore we can't do this transformation. 543 return false; 544 545 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 546 auto *CI = cast<CastInst>(V); 547 if (!CI->isNoopCast(DL)) 548 return false; 549 550 if (!Explored.contains(CI->getOperand(0))) 551 WorkList.push_back(CI->getOperand(0)); 552 } 553 554 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 555 // We're limiting the GEP to having one index. This will preserve 556 // the original pointer type. We could handle more cases in the 557 // future. 558 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 559 GEP->getSourceElementType() != ElemTy) 560 return false; 561 562 if (!Explored.contains(GEP->getOperand(0))) 563 WorkList.push_back(GEP->getOperand(0)); 564 } 565 566 if (WorkList.back() == V) { 567 WorkList.pop_back(); 568 // We've finished visiting this node, mark it as such. 569 Explored.insert(V); 570 } 571 572 if (auto *PN = dyn_cast<PHINode>(V)) { 573 // We cannot transform PHIs on unsplittable basic blocks. 574 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 575 return false; 576 Explored.insert(PN); 577 PHIs.insert(PN); 578 } 579 } 580 581 // Explore the PHI nodes further. 582 for (auto *PN : PHIs) 583 for (Value *Op : PN->incoming_values()) 584 if (!Explored.contains(Op)) 585 WorkList.push_back(Op); 586 } 587 588 // Make sure that we can do this. Since we can't insert GEPs in a basic 589 // block before a PHI node, we can't easily do this transformation if 590 // we have PHI node users of transformed instructions. 591 for (Value *Val : Explored) { 592 for (Value *Use : Val->uses()) { 593 594 auto *PHI = dyn_cast<PHINode>(Use); 595 auto *Inst = dyn_cast<Instruction>(Val); 596 597 if (Inst == Base || Inst == PHI || !Inst || !PHI || 598 !Explored.contains(PHI)) 599 continue; 600 601 if (PHI->getParent() == Inst->getParent()) 602 return false; 603 } 604 } 605 return true; 606 } 607 608 // Sets the appropriate insert point on Builder where we can add 609 // a replacement Instruction for V (if that is possible). 610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 611 bool Before = true) { 612 if (auto *PHI = dyn_cast<PHINode>(V)) { 613 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 614 return; 615 } 616 if (auto *I = dyn_cast<Instruction>(V)) { 617 if (!Before) 618 I = &*std::next(I->getIterator()); 619 Builder.SetInsertPoint(I); 620 return; 621 } 622 if (auto *A = dyn_cast<Argument>(V)) { 623 // Set the insertion point in the entry block. 624 BasicBlock &Entry = A->getParent()->getEntryBlock(); 625 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 626 return; 627 } 628 // Otherwise, this is a constant and we don't need to set a new 629 // insertion point. 630 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 631 } 632 633 /// Returns a re-written value of Start as an indexed GEP using Base as a 634 /// pointer. 635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 636 const DataLayout &DL, 637 SetVector<Value *> &Explored) { 638 // Perform all the substitutions. This is a bit tricky because we can 639 // have cycles in our use-def chains. 640 // 1. Create the PHI nodes without any incoming values. 641 // 2. Create all the other values. 642 // 3. Add the edges for the PHI nodes. 643 // 4. Emit GEPs to get the original pointers. 644 // 5. Remove the original instructions. 645 Type *IndexType = IntegerType::get( 646 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 647 648 DenseMap<Value *, Value *> NewInsts; 649 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 650 651 // Create the new PHI nodes, without adding any incoming values. 652 for (Value *Val : Explored) { 653 if (Val == Base) 654 continue; 655 // Create empty phi nodes. This avoids cyclic dependencies when creating 656 // the remaining instructions. 657 if (auto *PHI = dyn_cast<PHINode>(Val)) 658 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 659 PHI->getName() + ".idx", PHI); 660 } 661 IRBuilder<> Builder(Base->getContext()); 662 663 // Create all the other instructions. 664 for (Value *Val : Explored) { 665 666 if (NewInsts.find(Val) != NewInsts.end()) 667 continue; 668 669 if (auto *CI = dyn_cast<CastInst>(Val)) { 670 // Don't get rid of the intermediate variable here; the store can grow 671 // the map which will invalidate the reference to the input value. 672 Value *V = NewInsts[CI->getOperand(0)]; 673 NewInsts[CI] = V; 674 continue; 675 } 676 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 677 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 678 : GEP->getOperand(1); 679 setInsertionPoint(Builder, GEP); 680 // Indices might need to be sign extended. GEPs will magically do 681 // this, but we need to do it ourselves here. 682 if (Index->getType()->getScalarSizeInBits() != 683 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 684 Index = Builder.CreateSExtOrTrunc( 685 Index, NewInsts[GEP->getOperand(0)]->getType(), 686 GEP->getOperand(0)->getName() + ".sext"); 687 } 688 689 auto *Op = NewInsts[GEP->getOperand(0)]; 690 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 691 NewInsts[GEP] = Index; 692 else 693 NewInsts[GEP] = Builder.CreateNSWAdd( 694 Op, Index, GEP->getOperand(0)->getName() + ".add"); 695 continue; 696 } 697 if (isa<PHINode>(Val)) 698 continue; 699 700 llvm_unreachable("Unexpected instruction type"); 701 } 702 703 // Add the incoming values to the PHI nodes. 704 for (Value *Val : Explored) { 705 if (Val == Base) 706 continue; 707 // All the instructions have been created, we can now add edges to the 708 // phi nodes. 709 if (auto *PHI = dyn_cast<PHINode>(Val)) { 710 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 711 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 712 Value *NewIncoming = PHI->getIncomingValue(I); 713 714 if (NewInsts.find(NewIncoming) != NewInsts.end()) 715 NewIncoming = NewInsts[NewIncoming]; 716 717 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 718 } 719 } 720 } 721 722 PointerType *PtrTy = 723 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 724 for (Value *Val : Explored) { 725 if (Val == Base) 726 continue; 727 728 // Depending on the type, for external users we have to emit 729 // a GEP or a GEP + ptrtoint. 730 setInsertionPoint(Builder, Val, false); 731 732 // Cast base to the expected type. 733 Value *NewVal = Builder.CreateBitOrPointerCast( 734 Base, PtrTy, Start->getName() + "to.ptr"); 735 NewVal = Builder.CreateInBoundsGEP( 736 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 737 NewVal = Builder.CreateBitOrPointerCast( 738 NewVal, Val->getType(), Val->getName() + ".conv"); 739 Val->replaceAllUsesWith(NewVal); 740 } 741 742 return NewInsts[Start]; 743 } 744 745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 746 /// the input Value as a constant indexed GEP. Returns a pair containing 747 /// the GEPs Pointer and Index. 748 static std::pair<Value *, Value *> 749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 750 Type *IndexType = IntegerType::get(V->getContext(), 751 DL.getIndexTypeSizeInBits(V->getType())); 752 753 Constant *Index = ConstantInt::getNullValue(IndexType); 754 while (true) { 755 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 // We accept only inbouds GEPs here to exclude the possibility of 757 // overflow. 758 if (!GEP->isInBounds()) 759 break; 760 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 761 GEP->getSourceElementType() == ElemTy) { 762 V = GEP->getOperand(0); 763 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 764 Index = ConstantExpr::getAdd( 765 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 766 continue; 767 } 768 break; 769 } 770 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 771 if (!CI->isNoopCast(DL)) 772 break; 773 V = CI->getOperand(0); 774 continue; 775 } 776 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 777 if (!CI->isNoopCast(DL)) 778 break; 779 V = CI->getOperand(0); 780 continue; 781 } 782 break; 783 } 784 return {V, Index}; 785 } 786 787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 788 /// We can look through PHIs, GEPs and casts in order to determine a common base 789 /// between GEPLHS and RHS. 790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 791 ICmpInst::Predicate Cond, 792 const DataLayout &DL) { 793 // FIXME: Support vector of pointers. 794 if (GEPLHS->getType()->isVectorTy()) 795 return nullptr; 796 797 if (!GEPLHS->hasAllConstantIndices()) 798 return nullptr; 799 800 Type *ElemTy = GEPLHS->getSourceElementType(); 801 Value *PtrBase, *Index; 802 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 803 804 // The set of nodes that will take part in this transformation. 805 SetVector<Value *> Nodes; 806 807 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 808 return nullptr; 809 810 // We know we can re-write this as 811 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 812 // Since we've only looked through inbouds GEPs we know that we 813 // can't have overflow on either side. We can therefore re-write 814 // this as: 815 // OFFSET1 cmp OFFSET2 816 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 817 818 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 819 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 820 // offset. Since Index is the offset of LHS to the base pointer, we will now 821 // compare the offsets instead of comparing the pointers. 822 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 823 } 824 825 /// Fold comparisons between a GEP instruction and something else. At this point 826 /// we know that the GEP is on the LHS of the comparison. 827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 828 ICmpInst::Predicate Cond, 829 Instruction &I) { 830 // Don't transform signed compares of GEPs into index compares. Even if the 831 // GEP is inbounds, the final add of the base pointer can have signed overflow 832 // and would change the result of the icmp. 833 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 834 // the maximum signed value for the pointer type. 835 if (ICmpInst::isSigned(Cond)) 836 return nullptr; 837 838 // Look through bitcasts and addrspacecasts. We do not however want to remove 839 // 0 GEPs. 840 if (!isa<GetElementPtrInst>(RHS)) 841 RHS = RHS->stripPointerCasts(); 842 843 Value *PtrBase = GEPLHS->getOperand(0); 844 // FIXME: Support vector pointer GEPs. 845 if (PtrBase == RHS && GEPLHS->isInBounds() && 846 !GEPLHS->getType()->isVectorTy()) { 847 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 848 // This transformation (ignoring the base and scales) is valid because we 849 // know pointers can't overflow since the gep is inbounds. See if we can 850 // output an optimized form. 851 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 852 853 // If not, synthesize the offset the hard way. 854 if (!Offset) 855 Offset = EmitGEPOffset(GEPLHS); 856 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 857 Constant::getNullValue(Offset->getType())); 858 } 859 860 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 861 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 862 !NullPointerIsDefined(I.getFunction(), 863 RHS->getType()->getPointerAddressSpace())) { 864 // For most address spaces, an allocation can't be placed at null, but null 865 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 866 // the only valid inbounds address derived from null, is null itself. 867 // Thus, we have four cases to consider: 868 // 1) Base == nullptr, Offset == 0 -> inbounds, null 869 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 870 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 871 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 872 // 873 // (Note if we're indexing a type of size 0, that simply collapses into one 874 // of the buckets above.) 875 // 876 // In general, we're allowed to make values less poison (i.e. remove 877 // sources of full UB), so in this case, we just select between the two 878 // non-poison cases (1 and 4 above). 879 // 880 // For vectors, we apply the same reasoning on a per-lane basis. 881 auto *Base = GEPLHS->getPointerOperand(); 882 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 883 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 884 Base = Builder.CreateVectorSplat(EC, Base); 885 } 886 return new ICmpInst(Cond, Base, 887 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 888 cast<Constant>(RHS), Base->getType())); 889 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 890 // If the base pointers are different, but the indices are the same, just 891 // compare the base pointer. 892 if (PtrBase != GEPRHS->getOperand(0)) { 893 bool IndicesTheSame = 894 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 895 GEPLHS->getPointerOperand()->getType() == 896 GEPRHS->getPointerOperand()->getType() && 897 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 898 if (IndicesTheSame) 899 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 900 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 901 IndicesTheSame = false; 902 break; 903 } 904 905 // If all indices are the same, just compare the base pointers. 906 Type *BaseType = GEPLHS->getOperand(0)->getType(); 907 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 908 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 909 910 // If we're comparing GEPs with two base pointers that only differ in type 911 // and both GEPs have only constant indices or just one use, then fold 912 // the compare with the adjusted indices. 913 // FIXME: Support vector of pointers. 914 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 915 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 916 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 917 PtrBase->stripPointerCasts() == 918 GEPRHS->getOperand(0)->stripPointerCasts() && 919 !GEPLHS->getType()->isVectorTy()) { 920 Value *LOffset = EmitGEPOffset(GEPLHS); 921 Value *ROffset = EmitGEPOffset(GEPRHS); 922 923 // If we looked through an addrspacecast between different sized address 924 // spaces, the LHS and RHS pointers are different sized 925 // integers. Truncate to the smaller one. 926 Type *LHSIndexTy = LOffset->getType(); 927 Type *RHSIndexTy = ROffset->getType(); 928 if (LHSIndexTy != RHSIndexTy) { 929 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 930 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 931 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 932 } else 933 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 934 } 935 936 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 937 LOffset, ROffset); 938 return replaceInstUsesWith(I, Cmp); 939 } 940 941 // Otherwise, the base pointers are different and the indices are 942 // different. Try convert this to an indexed compare by looking through 943 // PHIs/casts. 944 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 945 } 946 947 // If one of the GEPs has all zero indices, recurse. 948 // FIXME: Handle vector of pointers. 949 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 951 ICmpInst::getSwappedPredicate(Cond), I); 952 953 // If the other GEP has all zero indices, recurse. 954 // FIXME: Handle vector of pointers. 955 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 956 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 957 958 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 959 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 960 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 Type *LHSType = GEPLHS->getOperand(i)->getType(); 967 Type *RHSType = GEPRHS->getOperand(i)->getType(); 968 // FIXME: Better support for vector of pointers. 969 if (LHSType->getPrimitiveSizeInBits() != 970 RHSType->getPrimitiveSizeInBits() || 971 (GEPLHS->getType()->isVectorTy() && 972 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 973 // Irreconcilable differences. 974 NumDifferences = 2; 975 break; 976 } 977 978 if (NumDifferences++) break; 979 DiffOperand = i; 980 } 981 982 if (NumDifferences == 0) // SAME GEP? 983 return replaceInstUsesWith(I, // No comparison is needed here. 984 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 985 986 else if (NumDifferences == 1 && GEPsInBounds) { 987 Value *LHSV = GEPLHS->getOperand(DiffOperand); 988 Value *RHSV = GEPRHS->getOperand(DiffOperand); 989 // Make sure we do a signed comparison here. 990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 991 } 992 } 993 994 // Only lower this if the icmp is the only user of the GEP or if we expect 995 // the result to fold to a constant! 996 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 997 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 999 Value *L = EmitGEPOffset(GEPLHS); 1000 Value *R = EmitGEPOffset(GEPRHS); 1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1002 } 1003 } 1004 1005 // Try convert this to an indexed compare by looking through PHIs/casts as a 1006 // last resort. 1007 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1008 } 1009 1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1011 const AllocaInst *Alloca) { 1012 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1013 1014 // It would be tempting to fold away comparisons between allocas and any 1015 // pointer not based on that alloca (e.g. an argument). However, even 1016 // though such pointers cannot alias, they can still compare equal. 1017 // 1018 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1019 // doesn't escape we can argue that it's impossible to guess its value, and we 1020 // can therefore act as if any such guesses are wrong. 1021 // 1022 // The code below checks that the alloca doesn't escape, and that it's only 1023 // used in a comparison once (the current instruction). The 1024 // single-comparison-use condition ensures that we're trivially folding all 1025 // comparisons against the alloca consistently, and avoids the risk of 1026 // erroneously folding a comparison of the pointer with itself. 1027 1028 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1029 1030 SmallVector<const Use *, 32> Worklist; 1031 for (const Use &U : Alloca->uses()) { 1032 if (Worklist.size() >= MaxIter) 1033 return nullptr; 1034 Worklist.push_back(&U); 1035 } 1036 1037 unsigned NumCmps = 0; 1038 while (!Worklist.empty()) { 1039 assert(Worklist.size() <= MaxIter); 1040 const Use *U = Worklist.pop_back_val(); 1041 const Value *V = U->getUser(); 1042 --MaxIter; 1043 1044 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1045 isa<SelectInst>(V)) { 1046 // Track the uses. 1047 } else if (isa<LoadInst>(V)) { 1048 // Loading from the pointer doesn't escape it. 1049 continue; 1050 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1051 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1052 if (SI->getValueOperand() == U->get()) 1053 return nullptr; 1054 continue; 1055 } else if (isa<ICmpInst>(V)) { 1056 if (NumCmps++) 1057 return nullptr; // Found more than one cmp. 1058 continue; 1059 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1060 switch (Intrin->getIntrinsicID()) { 1061 // These intrinsics don't escape or compare the pointer. Memset is safe 1062 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1063 // we don't allow stores, so src cannot point to V. 1064 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1065 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1066 continue; 1067 default: 1068 return nullptr; 1069 } 1070 } else { 1071 return nullptr; 1072 } 1073 for (const Use &U : V->uses()) { 1074 if (Worklist.size() >= MaxIter) 1075 return nullptr; 1076 Worklist.push_back(&U); 1077 } 1078 } 1079 1080 auto *Res = ConstantInt::get(ICI.getType(), 1081 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1082 return replaceInstUsesWith(ICI, Res); 1083 } 1084 1085 /// Fold "icmp pred (X+C), X". 1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1087 ICmpInst::Predicate Pred) { 1088 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1089 // so the values can never be equal. Similarly for all other "or equals" 1090 // operators. 1091 assert(!!C && "C should not be zero!"); 1092 1093 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1094 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1095 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1096 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1097 Constant *R = ConstantInt::get(X->getType(), 1098 APInt::getMaxValue(C.getBitWidth()) - C); 1099 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1100 } 1101 1102 // (X+1) >u X --> X <u (0-1) --> X != 255 1103 // (X+2) >u X --> X <u (0-2) --> X <u 254 1104 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1105 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1106 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1107 ConstantInt::get(X->getType(), -C)); 1108 1109 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1110 1111 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1112 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1113 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1114 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1115 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1116 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1117 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1118 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1119 ConstantInt::get(X->getType(), SMax - C)); 1120 1121 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1122 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1123 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1124 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1125 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1126 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1127 1128 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1129 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1130 ConstantInt::get(X->getType(), SMax - (C - 1))); 1131 } 1132 1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1134 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1137 const APInt &AP1, 1138 const APInt &AP2) { 1139 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1140 1141 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1142 if (I.getPredicate() == I.ICMP_NE) 1143 Pred = CmpInst::getInversePredicate(Pred); 1144 return new ICmpInst(Pred, LHS, RHS); 1145 }; 1146 1147 // Don't bother doing any work for cases which InstSimplify handles. 1148 if (AP2.isZero()) 1149 return nullptr; 1150 1151 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1152 if (IsAShr) { 1153 if (AP2.isAllOnes()) 1154 return nullptr; 1155 if (AP2.isNegative() != AP1.isNegative()) 1156 return nullptr; 1157 if (AP2.sgt(AP1)) 1158 return nullptr; 1159 } 1160 1161 if (!AP1) 1162 // 'A' must be large enough to shift out the highest set bit. 1163 return getICmp(I.ICMP_UGT, A, 1164 ConstantInt::get(A->getType(), AP2.logBase2())); 1165 1166 if (AP1 == AP2) 1167 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1168 1169 int Shift; 1170 if (IsAShr && AP1.isNegative()) 1171 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1172 else 1173 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1174 1175 if (Shift > 0) { 1176 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1177 // There are multiple solutions if we are comparing against -1 and the LHS 1178 // of the ashr is not a power of two. 1179 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1180 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } else if (AP1 == AP2.lshr(Shift)) { 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1184 } 1185 } 1186 1187 // Shifting const2 will never be equal to const1. 1188 // FIXME: This should always be handled by InstSimplify? 1189 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1190 return replaceInstUsesWith(I, TorF); 1191 } 1192 1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1196 const APInt &AP1, 1197 const APInt &AP2) { 1198 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1199 1200 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1201 if (I.getPredicate() == I.ICMP_NE) 1202 Pred = CmpInst::getInversePredicate(Pred); 1203 return new ICmpInst(Pred, LHS, RHS); 1204 }; 1205 1206 // Don't bother doing any work for cases which InstSimplify handles. 1207 if (AP2.isZero()) 1208 return nullptr; 1209 1210 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1211 1212 if (!AP1 && AP2TrailingZeros != 0) 1213 return getICmp( 1214 I.ICMP_UGE, A, 1215 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1216 1217 if (AP1 == AP2) 1218 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1219 1220 // Get the distance between the lowest bits that are set. 1221 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1222 1223 if (Shift > 0 && AP2.shl(Shift) == AP1) 1224 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1225 1226 // Shifting const2 will never be equal to const1. 1227 // FIXME: This should always be handled by InstSimplify? 1228 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1229 return replaceInstUsesWith(I, TorF); 1230 } 1231 1232 /// The caller has matched a pattern of the form: 1233 /// I = icmp ugt (add (add A, B), CI2), CI1 1234 /// If this is of the form: 1235 /// sum = a + b 1236 /// if (sum+128 >u 255) 1237 /// Then replace it with llvm.sadd.with.overflow.i8. 1238 /// 1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1240 ConstantInt *CI2, ConstantInt *CI1, 1241 InstCombinerImpl &IC) { 1242 // The transformation we're trying to do here is to transform this into an 1243 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1244 // with a narrower add, and discard the add-with-constant that is part of the 1245 // range check (if we can't eliminate it, this isn't profitable). 1246 1247 // In order to eliminate the add-with-constant, the compare can be its only 1248 // use. 1249 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1250 if (!AddWithCst->hasOneUse()) 1251 return nullptr; 1252 1253 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1254 if (!CI2->getValue().isPowerOf2()) 1255 return nullptr; 1256 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1257 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1258 return nullptr; 1259 1260 // The width of the new add formed is 1 more than the bias. 1261 ++NewWidth; 1262 1263 // Check to see that CI1 is an all-ones value with NewWidth bits. 1264 if (CI1->getBitWidth() == NewWidth || 1265 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1266 return nullptr; 1267 1268 // This is only really a signed overflow check if the inputs have been 1269 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1270 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1271 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1272 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1273 return nullptr; 1274 1275 // In order to replace the original add with a narrower 1276 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1277 // and truncates that discard the high bits of the add. Verify that this is 1278 // the case. 1279 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1280 for (User *U : OrigAdd->users()) { 1281 if (U == AddWithCst) 1282 continue; 1283 1284 // Only accept truncates for now. We would really like a nice recursive 1285 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1286 // chain to see which bits of a value are actually demanded. If the 1287 // original add had another add which was then immediately truncated, we 1288 // could still do the transformation. 1289 TruncInst *TI = dyn_cast<TruncInst>(U); 1290 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1291 return nullptr; 1292 } 1293 1294 // If the pattern matches, truncate the inputs to the narrower type and 1295 // use the sadd_with_overflow intrinsic to efficiently compute both the 1296 // result and the overflow bit. 1297 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1298 Function *F = Intrinsic::getDeclaration( 1299 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1300 1301 InstCombiner::BuilderTy &Builder = IC.Builder; 1302 1303 // Put the new code above the original add, in case there are any uses of the 1304 // add between the add and the compare. 1305 Builder.SetInsertPoint(OrigAdd); 1306 1307 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1308 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1309 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1310 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1311 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1312 1313 // The inner add was the result of the narrow add, zero extended to the 1314 // wider type. Replace it with the result computed by the intrinsic. 1315 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1316 IC.eraseInstFromFunction(*OrigAdd); 1317 1318 // The original icmp gets replaced with the overflow value. 1319 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1320 } 1321 1322 /// If we have: 1323 /// icmp eq/ne (urem/srem %x, %y), 0 1324 /// iff %y is a power-of-two, we can replace this with a bit test: 1325 /// icmp eq/ne (and %x, (add %y, -1)), 0 1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1327 // This fold is only valid for equality predicates. 1328 if (!I.isEquality()) 1329 return nullptr; 1330 ICmpInst::Predicate Pred; 1331 Value *X, *Y, *Zero; 1332 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1333 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1334 return nullptr; 1335 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1336 return nullptr; 1337 // This may increase instruction count, we don't enforce that Y is a constant. 1338 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1339 Value *Masked = Builder.CreateAnd(X, Mask); 1340 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1341 } 1342 1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1344 /// by one-less-than-bitwidth into a sign test on the original value. 1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1346 Instruction *Val; 1347 ICmpInst::Predicate Pred; 1348 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1349 return nullptr; 1350 1351 Value *X; 1352 Type *XTy; 1353 1354 Constant *C; 1355 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1356 XTy = X->getType(); 1357 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1358 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1359 APInt(XBitWidth, XBitWidth - 1)))) 1360 return nullptr; 1361 } else if (isa<BinaryOperator>(Val) && 1362 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1363 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1364 /*AnalyzeForSignBitExtraction=*/true))) { 1365 XTy = X->getType(); 1366 } else 1367 return nullptr; 1368 1369 return ICmpInst::Create(Instruction::ICmp, 1370 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1371 : ICmpInst::ICMP_SLT, 1372 X, ConstantInt::getNullValue(XTy)); 1373 } 1374 1375 // Handle icmp pred X, 0 1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1377 CmpInst::Predicate Pred = Cmp.getPredicate(); 1378 if (!match(Cmp.getOperand(1), m_Zero())) 1379 return nullptr; 1380 1381 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1382 if (Pred == ICmpInst::ICMP_SGT) { 1383 Value *A, *B; 1384 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1385 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1386 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1387 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1388 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1389 } 1390 } 1391 1392 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1393 return New; 1394 1395 // Given: 1396 // icmp eq/ne (urem %x, %y), 0 1397 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1398 // icmp eq/ne %x, 0 1399 Value *X, *Y; 1400 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1401 ICmpInst::isEquality(Pred)) { 1402 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1403 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1404 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1405 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1406 } 1407 1408 return nullptr; 1409 } 1410 1411 /// Fold icmp Pred X, C. 1412 /// TODO: This code structure does not make sense. The saturating add fold 1413 /// should be moved to some other helper and extended as noted below (it is also 1414 /// possible that code has been made unnecessary - do we canonicalize IR to 1415 /// overflow/saturating intrinsics or not?). 1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1417 // Match the following pattern, which is a common idiom when writing 1418 // overflow-safe integer arithmetic functions. The source performs an addition 1419 // in wider type and explicitly checks for overflow using comparisons against 1420 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1421 // 1422 // TODO: This could probably be generalized to handle other overflow-safe 1423 // operations if we worked out the formulas to compute the appropriate magic 1424 // constants. 1425 // 1426 // sum = a + b 1427 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1428 CmpInst::Predicate Pred = Cmp.getPredicate(); 1429 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1430 Value *A, *B; 1431 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1432 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1433 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1434 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1435 return Res; 1436 1437 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1438 Constant *C = dyn_cast<Constant>(Op1); 1439 if (!C) 1440 return nullptr; 1441 1442 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1443 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1444 Type *Ty = Cmp.getType(); 1445 Builder.SetInsertPoint(Phi); 1446 PHINode *NewPhi = 1447 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1448 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1449 auto *Input = 1450 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1451 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1452 NewPhi->addIncoming(BoolInput, Predecessor); 1453 } 1454 NewPhi->takeName(&Cmp); 1455 return replaceInstUsesWith(Cmp, NewPhi); 1456 } 1457 1458 return nullptr; 1459 } 1460 1461 /// Canonicalize icmp instructions based on dominating conditions. 1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1463 // This is a cheap/incomplete check for dominance - just match a single 1464 // predecessor with a conditional branch. 1465 BasicBlock *CmpBB = Cmp.getParent(); 1466 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1467 if (!DomBB) 1468 return nullptr; 1469 1470 Value *DomCond; 1471 BasicBlock *TrueBB, *FalseBB; 1472 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1473 return nullptr; 1474 1475 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1476 "Predecessor block does not point to successor?"); 1477 1478 // The branch should get simplified. Don't bother simplifying this condition. 1479 if (TrueBB == FalseBB) 1480 return nullptr; 1481 1482 // Try to simplify this compare to T/F based on the dominating condition. 1483 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1484 if (Imp) 1485 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1486 1487 CmpInst::Predicate Pred = Cmp.getPredicate(); 1488 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1489 ICmpInst::Predicate DomPred; 1490 const APInt *C, *DomC; 1491 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1492 match(Y, m_APInt(C))) { 1493 // We have 2 compares of a variable with constants. Calculate the constant 1494 // ranges of those compares to see if we can transform the 2nd compare: 1495 // DomBB: 1496 // DomCond = icmp DomPred X, DomC 1497 // br DomCond, CmpBB, FalseBB 1498 // CmpBB: 1499 // Cmp = icmp Pred X, C 1500 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1501 ConstantRange DominatingCR = 1502 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1503 : ConstantRange::makeExactICmpRegion( 1504 CmpInst::getInversePredicate(DomPred), *DomC); 1505 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1506 ConstantRange Difference = DominatingCR.difference(CR); 1507 if (Intersection.isEmptySet()) 1508 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1509 if (Difference.isEmptySet()) 1510 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1511 1512 // Canonicalizing a sign bit comparison that gets used in a branch, 1513 // pessimizes codegen by generating branch on zero instruction instead 1514 // of a test and branch. So we avoid canonicalizing in such situations 1515 // because test and branch instruction has better branch displacement 1516 // than compare and branch instruction. 1517 bool UnusedBit; 1518 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1519 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1520 return nullptr; 1521 1522 // Avoid an infinite loop with min/max canonicalization. 1523 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1524 if (Cmp.hasOneUse() && 1525 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1526 return nullptr; 1527 1528 if (const APInt *EqC = Intersection.getSingleElement()) 1529 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1530 if (const APInt *NeC = Difference.getSingleElement()) 1531 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1532 } 1533 1534 return nullptr; 1535 } 1536 1537 /// Fold icmp (trunc X), C. 1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1539 TruncInst *Trunc, 1540 const APInt &C) { 1541 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1542 Value *X = Trunc->getOperand(0); 1543 if (C.isOne() && C.getBitWidth() > 1) { 1544 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1545 Value *V = nullptr; 1546 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1547 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1548 ConstantInt::get(V->getType(), 1)); 1549 } 1550 1551 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1552 SrcBits = X->getType()->getScalarSizeInBits(); 1553 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1554 // Canonicalize to a mask and wider compare if the wide type is suitable: 1555 // (trunc X to i8) == C --> (X & 0xff) == (zext C) 1556 if (!X->getType()->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { 1557 Constant *Mask = ConstantInt::get(X->getType(), 1558 APInt::getLowBitsSet(SrcBits, DstBits)); 1559 Value *And = Builder.CreateAnd(X, Mask); 1560 Constant *WideC = ConstantInt::get(X->getType(), C.zext(SrcBits)); 1561 return new ICmpInst(Pred, And, WideC); 1562 } 1563 1564 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1565 // of the high bits truncated out of x are known. 1566 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1567 1568 // If all the high bits are known, we can do this xform. 1569 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1570 // Pull in the high bits from known-ones set. 1571 APInt NewRHS = C.zext(SrcBits); 1572 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1573 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1574 } 1575 } 1576 1577 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1578 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1579 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1580 Value *ShOp; 1581 const APInt *ShAmtC; 1582 bool TrueIfSigned; 1583 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1584 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1585 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1586 return TrueIfSigned 1587 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1588 ConstantInt::getNullValue(X->getType())) 1589 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1590 ConstantInt::getAllOnesValue(X->getType())); 1591 } 1592 1593 return nullptr; 1594 } 1595 1596 /// Fold icmp (xor X, Y), C. 1597 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1598 BinaryOperator *Xor, 1599 const APInt &C) { 1600 Value *X = Xor->getOperand(0); 1601 Value *Y = Xor->getOperand(1); 1602 const APInt *XorC; 1603 if (!match(Y, m_APInt(XorC))) 1604 return nullptr; 1605 1606 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1607 // fold the xor. 1608 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1609 bool TrueIfSigned = false; 1610 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1611 1612 // If the sign bit of the XorCst is not set, there is no change to 1613 // the operation, just stop using the Xor. 1614 if (!XorC->isNegative()) 1615 return replaceOperand(Cmp, 0, X); 1616 1617 // Emit the opposite comparison. 1618 if (TrueIfSigned) 1619 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1620 ConstantInt::getAllOnesValue(X->getType())); 1621 else 1622 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1623 ConstantInt::getNullValue(X->getType())); 1624 } 1625 1626 if (Xor->hasOneUse()) { 1627 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1628 if (!Cmp.isEquality() && XorC->isSignMask()) { 1629 Pred = Cmp.getFlippedSignednessPredicate(); 1630 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1631 } 1632 1633 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1634 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1635 Pred = Cmp.getFlippedSignednessPredicate(); 1636 Pred = Cmp.getSwappedPredicate(Pred); 1637 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1638 } 1639 } 1640 1641 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1642 if (Pred == ICmpInst::ICMP_UGT) { 1643 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1644 if (*XorC == ~C && (C + 1).isPowerOf2()) 1645 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1646 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1647 if (*XorC == C && (C + 1).isPowerOf2()) 1648 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1649 } 1650 if (Pred == ICmpInst::ICMP_ULT) { 1651 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1652 if (*XorC == -C && C.isPowerOf2()) 1653 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1654 ConstantInt::get(X->getType(), ~C)); 1655 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1656 if (*XorC == C && (-C).isPowerOf2()) 1657 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1658 ConstantInt::get(X->getType(), ~C)); 1659 } 1660 return nullptr; 1661 } 1662 1663 /// Fold icmp (and (sh X, Y), C2), C1. 1664 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1665 BinaryOperator *And, 1666 const APInt &C1, 1667 const APInt &C2) { 1668 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1669 if (!Shift || !Shift->isShift()) 1670 return nullptr; 1671 1672 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1673 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1674 // code produced by the clang front-end, for bitfield access. 1675 // This seemingly simple opportunity to fold away a shift turns out to be 1676 // rather complicated. See PR17827 for details. 1677 unsigned ShiftOpcode = Shift->getOpcode(); 1678 bool IsShl = ShiftOpcode == Instruction::Shl; 1679 const APInt *C3; 1680 if (match(Shift->getOperand(1), m_APInt(C3))) { 1681 APInt NewAndCst, NewCmpCst; 1682 bool AnyCmpCstBitsShiftedOut; 1683 if (ShiftOpcode == Instruction::Shl) { 1684 // For a left shift, we can fold if the comparison is not signed. We can 1685 // also fold a signed comparison if the mask value and comparison value 1686 // are not negative. These constraints may not be obvious, but we can 1687 // prove that they are correct using an SMT solver. 1688 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1689 return nullptr; 1690 1691 NewCmpCst = C1.lshr(*C3); 1692 NewAndCst = C2.lshr(*C3); 1693 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1694 } else if (ShiftOpcode == Instruction::LShr) { 1695 // For a logical right shift, we can fold if the comparison is not signed. 1696 // We can also fold a signed comparison if the shifted mask value and the 1697 // shifted comparison value are not negative. These constraints may not be 1698 // obvious, but we can prove that they are correct using an SMT solver. 1699 NewCmpCst = C1.shl(*C3); 1700 NewAndCst = C2.shl(*C3); 1701 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1702 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1703 return nullptr; 1704 } else { 1705 // For an arithmetic shift, check that both constants don't use (in a 1706 // signed sense) the top bits being shifted out. 1707 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1708 NewCmpCst = C1.shl(*C3); 1709 NewAndCst = C2.shl(*C3); 1710 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1711 if (NewAndCst.ashr(*C3) != C2) 1712 return nullptr; 1713 } 1714 1715 if (AnyCmpCstBitsShiftedOut) { 1716 // If we shifted bits out, the fold is not going to work out. As a 1717 // special case, check to see if this means that the result is always 1718 // true or false now. 1719 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1720 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1721 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1722 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1723 } else { 1724 Value *NewAnd = Builder.CreateAnd( 1725 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1726 return new ICmpInst(Cmp.getPredicate(), 1727 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1728 } 1729 } 1730 1731 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1732 // preferable because it allows the C2 << Y expression to be hoisted out of a 1733 // loop if Y is invariant and X is not. 1734 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1735 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1736 // Compute C2 << Y. 1737 Value *NewShift = 1738 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1739 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1740 1741 // Compute X & (C2 << Y). 1742 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1743 return replaceOperand(Cmp, 0, NewAnd); 1744 } 1745 1746 return nullptr; 1747 } 1748 1749 /// Fold icmp (and X, C2), C1. 1750 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1751 BinaryOperator *And, 1752 const APInt &C1) { 1753 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1754 1755 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1756 // TODO: We canonicalize to the longer form for scalars because we have 1757 // better analysis/folds for icmp, and codegen may be better with icmp. 1758 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1759 match(And->getOperand(1), m_One())) 1760 return new TruncInst(And->getOperand(0), Cmp.getType()); 1761 1762 const APInt *C2; 1763 Value *X; 1764 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1765 return nullptr; 1766 1767 // Don't perform the following transforms if the AND has multiple uses 1768 if (!And->hasOneUse()) 1769 return nullptr; 1770 1771 if (Cmp.isEquality() && C1.isZero()) { 1772 // Restrict this fold to single-use 'and' (PR10267). 1773 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1774 if (C2->isSignMask()) { 1775 Constant *Zero = Constant::getNullValue(X->getType()); 1776 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1777 return new ICmpInst(NewPred, X, Zero); 1778 } 1779 1780 APInt NewC2 = *C2; 1781 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); 1782 // Set high zeros of C2 to allow matching negated power-of-2. 1783 NewC2 = *C2 + APInt::getHighBitsSet(C2->getBitWidth(), 1784 Know.countMinLeadingZeros()); 1785 1786 // Restrict this fold only for single-use 'and' (PR10267). 1787 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1788 if (NewC2.isNegatedPowerOf2()) { 1789 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); 1790 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1791 return new ICmpInst(NewPred, X, NegBOC); 1792 } 1793 } 1794 1795 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1796 // the input width without changing the value produced, eliminate the cast: 1797 // 1798 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1799 // 1800 // We can do this transformation if the constants do not have their sign bits 1801 // set or if it is an equality comparison. Extending a relational comparison 1802 // when we're checking the sign bit would not work. 1803 Value *W; 1804 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1805 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1806 // TODO: Is this a good transform for vectors? Wider types may reduce 1807 // throughput. Should this transform be limited (even for scalars) by using 1808 // shouldChangeType()? 1809 if (!Cmp.getType()->isVectorTy()) { 1810 Type *WideType = W->getType(); 1811 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1812 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1813 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1814 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1815 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1816 } 1817 } 1818 1819 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1820 return I; 1821 1822 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1823 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1824 // 1825 // iff pred isn't signed 1826 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1827 match(And->getOperand(1), m_One())) { 1828 Constant *One = cast<Constant>(And->getOperand(1)); 1829 Value *Or = And->getOperand(0); 1830 Value *A, *B, *LShr; 1831 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1832 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1833 unsigned UsesRemoved = 0; 1834 if (And->hasOneUse()) 1835 ++UsesRemoved; 1836 if (Or->hasOneUse()) 1837 ++UsesRemoved; 1838 if (LShr->hasOneUse()) 1839 ++UsesRemoved; 1840 1841 // Compute A & ((1 << B) | 1) 1842 Value *NewOr = nullptr; 1843 if (auto *C = dyn_cast<Constant>(B)) { 1844 if (UsesRemoved >= 1) 1845 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1846 } else { 1847 if (UsesRemoved >= 3) 1848 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1849 /*HasNUW=*/true), 1850 One, Or->getName()); 1851 } 1852 if (NewOr) { 1853 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1854 return replaceOperand(Cmp, 0, NewAnd); 1855 } 1856 } 1857 } 1858 1859 return nullptr; 1860 } 1861 1862 /// Fold icmp (and X, Y), C. 1863 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1864 BinaryOperator *And, 1865 const APInt &C) { 1866 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1867 return I; 1868 1869 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1870 bool TrueIfNeg; 1871 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1872 // ((X - 1) & ~X) < 0 --> X == 0 1873 // ((X - 1) & ~X) >= 0 --> X != 0 1874 Value *X; 1875 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1876 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1877 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1878 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1879 } 1880 } 1881 1882 // TODO: These all require that Y is constant too, so refactor with the above. 1883 1884 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1885 Value *X = And->getOperand(0); 1886 Value *Y = And->getOperand(1); 1887 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1888 if (auto *LI = dyn_cast<LoadInst>(X)) 1889 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1890 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1891 if (Instruction *Res = 1892 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1893 return Res; 1894 1895 if (!Cmp.isEquality()) 1896 return nullptr; 1897 1898 // X & -C == -C -> X > u ~C 1899 // X & -C != -C -> X <= u ~C 1900 // iff C is a power of 2 1901 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1902 auto NewPred = 1903 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1904 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1905 } 1906 1907 return nullptr; 1908 } 1909 1910 /// Fold icmp (or X, Y), C. 1911 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1912 BinaryOperator *Or, 1913 const APInt &C) { 1914 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1915 if (C.isOne()) { 1916 // icmp slt signum(V) 1 --> icmp slt V, 1 1917 Value *V = nullptr; 1918 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1919 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1920 ConstantInt::get(V->getType(), 1)); 1921 } 1922 1923 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1924 const APInt *MaskC; 1925 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1926 if (*MaskC == C && (C + 1).isPowerOf2()) { 1927 // X | C == C --> X <=u C 1928 // X | C != C --> X >u C 1929 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1930 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1931 return new ICmpInst(Pred, OrOp0, OrOp1); 1932 } 1933 1934 // More general: canonicalize 'equality with set bits mask' to 1935 // 'equality with clear bits mask'. 1936 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1937 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1938 if (Or->hasOneUse()) { 1939 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1940 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1941 return new ICmpInst(Pred, And, NewC); 1942 } 1943 } 1944 1945 // (X | (X-1)) s< 0 --> X s< 1 1946 // (X | (X-1)) s> -1 --> X s> 0 1947 Value *X; 1948 bool TrueIfSigned; 1949 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1950 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1951 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1952 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1953 return new ICmpInst(NewPred, X, NewC); 1954 } 1955 1956 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1957 return nullptr; 1958 1959 Value *P, *Q; 1960 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1961 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1962 // -> and (icmp eq P, null), (icmp eq Q, null). 1963 Value *CmpP = 1964 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1965 Value *CmpQ = 1966 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1967 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1968 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1969 } 1970 1971 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1972 // a shorter form that has more potential to be folded even further. 1973 Value *X1, *X2, *X3, *X4; 1974 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1975 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1976 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1977 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1978 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1979 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1980 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1981 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1982 } 1983 1984 return nullptr; 1985 } 1986 1987 /// Fold icmp (mul X, Y), C. 1988 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1989 BinaryOperator *Mul, 1990 const APInt &C) { 1991 const APInt *MulC; 1992 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1993 return nullptr; 1994 1995 // If this is a test of the sign bit and the multiply is sign-preserving with 1996 // a constant operand, use the multiply LHS operand instead. 1997 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1998 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1999 if (MulC->isNegative()) 2000 Pred = ICmpInst::getSwappedPredicate(Pred); 2001 return new ICmpInst(Pred, Mul->getOperand(0), 2002 Constant::getNullValue(Mul->getType())); 2003 } 2004 2005 if (MulC->isZero() || !(Mul->hasNoSignedWrap() || Mul->hasNoUnsignedWrap())) 2006 return nullptr; 2007 2008 // If the multiply does not wrap, try to divide the compare constant by the 2009 // multiplication factor. 2010 if (Cmp.isEquality()) { 2011 // (mul nsw X, MulC) == C --> X == C /s MulC 2012 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2013 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 2014 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2015 } 2016 // (mul nuw X, MulC) == C --> X == C /u MulC 2017 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 2018 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2019 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2020 } 2021 } 2022 2023 Constant *NewC = nullptr; 2024 2025 // FIXME: Add assert that Pred is not equal to ICMP_SGE, ICMP_SLE, 2026 // ICMP_UGE, ICMP_ULE. 2027 2028 if (Mul->hasNoSignedWrap()) { 2029 if (MulC->isNegative()) { 2030 // MININT / -1 --> overflow. 2031 if (C.isMinSignedValue() && MulC->isAllOnes()) 2032 return nullptr; 2033 Pred = ICmpInst::getSwappedPredicate(Pred); 2034 } 2035 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) 2036 NewC = ConstantInt::get( 2037 Mul->getType(), 2038 APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); 2039 if (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) 2040 NewC = ConstantInt::get( 2041 Mul->getType(), 2042 APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); 2043 } 2044 2045 if (Mul->hasNoUnsignedWrap()) { 2046 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) 2047 NewC = ConstantInt::get( 2048 Mul->getType(), 2049 APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); 2050 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) 2051 NewC = ConstantInt::get( 2052 Mul->getType(), 2053 APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); 2054 } 2055 2056 return NewC ? new ICmpInst(Pred, Mul->getOperand(0), NewC) : nullptr; 2057 } 2058 2059 /// Fold icmp (shl 1, Y), C. 2060 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2061 const APInt &C) { 2062 Value *Y; 2063 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2064 return nullptr; 2065 2066 Type *ShiftType = Shl->getType(); 2067 unsigned TypeBits = C.getBitWidth(); 2068 bool CIsPowerOf2 = C.isPowerOf2(); 2069 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2070 if (Cmp.isUnsigned()) { 2071 // (1 << Y) pred C -> Y pred Log2(C) 2072 if (!CIsPowerOf2) { 2073 // (1 << Y) < 30 -> Y <= 4 2074 // (1 << Y) <= 30 -> Y <= 4 2075 // (1 << Y) >= 30 -> Y > 4 2076 // (1 << Y) > 30 -> Y > 4 2077 if (Pred == ICmpInst::ICMP_ULT) 2078 Pred = ICmpInst::ICMP_ULE; 2079 else if (Pred == ICmpInst::ICMP_UGE) 2080 Pred = ICmpInst::ICMP_UGT; 2081 } 2082 2083 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2084 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2085 unsigned CLog2 = C.logBase2(); 2086 if (CLog2 == TypeBits - 1) { 2087 if (Pred == ICmpInst::ICMP_UGE) 2088 Pred = ICmpInst::ICMP_EQ; 2089 else if (Pred == ICmpInst::ICMP_ULT) 2090 Pred = ICmpInst::ICMP_NE; 2091 } 2092 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2093 } else if (Cmp.isSigned()) { 2094 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2095 if (C.isAllOnes()) { 2096 // (1 << Y) <= -1 -> Y == 31 2097 if (Pred == ICmpInst::ICMP_SLE) 2098 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2099 2100 // (1 << Y) > -1 -> Y != 31 2101 if (Pred == ICmpInst::ICMP_SGT) 2102 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2103 } else if (!C) { 2104 // (1 << Y) < 0 -> Y == 31 2105 // (1 << Y) <= 0 -> Y == 31 2106 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2107 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2108 2109 // (1 << Y) >= 0 -> Y != 31 2110 // (1 << Y) > 0 -> Y != 31 2111 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2112 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2113 } 2114 } else if (Cmp.isEquality() && CIsPowerOf2) { 2115 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2116 } 2117 2118 return nullptr; 2119 } 2120 2121 /// Fold icmp (shl X, Y), C. 2122 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2123 BinaryOperator *Shl, 2124 const APInt &C) { 2125 const APInt *ShiftVal; 2126 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2127 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2128 2129 const APInt *ShiftAmt; 2130 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2131 return foldICmpShlOne(Cmp, Shl, C); 2132 2133 // Check that the shift amount is in range. If not, don't perform undefined 2134 // shifts. When the shift is visited, it will be simplified. 2135 unsigned TypeBits = C.getBitWidth(); 2136 if (ShiftAmt->uge(TypeBits)) 2137 return nullptr; 2138 2139 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2140 Value *X = Shl->getOperand(0); 2141 Type *ShType = Shl->getType(); 2142 2143 // NSW guarantees that we are only shifting out sign bits from the high bits, 2144 // so we can ASHR the compare constant without needing a mask and eliminate 2145 // the shift. 2146 if (Shl->hasNoSignedWrap()) { 2147 if (Pred == ICmpInst::ICMP_SGT) { 2148 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2149 APInt ShiftedC = C.ashr(*ShiftAmt); 2150 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2151 } 2152 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2153 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2154 APInt ShiftedC = C.ashr(*ShiftAmt); 2155 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2156 } 2157 if (Pred == ICmpInst::ICMP_SLT) { 2158 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2159 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2160 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2161 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2162 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2163 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2164 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2165 } 2166 // If this is a signed comparison to 0 and the shift is sign preserving, 2167 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2168 // do that if we're sure to not continue on in this function. 2169 if (isSignTest(Pred, C)) 2170 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2171 } 2172 2173 // NUW guarantees that we are only shifting out zero bits from the high bits, 2174 // so we can LSHR the compare constant without needing a mask and eliminate 2175 // the shift. 2176 if (Shl->hasNoUnsignedWrap()) { 2177 if (Pred == ICmpInst::ICMP_UGT) { 2178 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2179 APInt ShiftedC = C.lshr(*ShiftAmt); 2180 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2181 } 2182 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2183 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2184 APInt ShiftedC = C.lshr(*ShiftAmt); 2185 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2186 } 2187 if (Pred == ICmpInst::ICMP_ULT) { 2188 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2189 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2190 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2191 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2192 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2193 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2194 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2195 } 2196 } 2197 2198 if (Cmp.isEquality() && Shl->hasOneUse()) { 2199 // Strength-reduce the shift into an 'and'. 2200 Constant *Mask = ConstantInt::get( 2201 ShType, 2202 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2203 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2204 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2205 return new ICmpInst(Pred, And, LShrC); 2206 } 2207 2208 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2209 bool TrueIfSigned = false; 2210 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2211 // (X << 31) <s 0 --> (X & 1) != 0 2212 Constant *Mask = ConstantInt::get( 2213 ShType, 2214 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2215 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2216 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2217 And, Constant::getNullValue(ShType)); 2218 } 2219 2220 // Simplify 'shl' inequality test into 'and' equality test. 2221 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2222 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2223 if ((C + 1).isPowerOf2() && 2224 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2225 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2226 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2227 : ICmpInst::ICMP_NE, 2228 And, Constant::getNullValue(ShType)); 2229 } 2230 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2231 if (C.isPowerOf2() && 2232 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2233 Value *And = 2234 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2235 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2236 : ICmpInst::ICMP_NE, 2237 And, Constant::getNullValue(ShType)); 2238 } 2239 } 2240 2241 // Transform (icmp pred iM (shl iM %v, N), C) 2242 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2243 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2244 // This enables us to get rid of the shift in favor of a trunc that may be 2245 // free on the target. It has the additional benefit of comparing to a 2246 // smaller constant that may be more target-friendly. 2247 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2248 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2249 DL.isLegalInteger(TypeBits - Amt)) { 2250 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2251 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2252 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2253 Constant *NewC = 2254 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2255 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2256 } 2257 2258 return nullptr; 2259 } 2260 2261 /// Fold icmp ({al}shr X, Y), C. 2262 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2263 BinaryOperator *Shr, 2264 const APInt &C) { 2265 // An exact shr only shifts out zero bits, so: 2266 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2267 Value *X = Shr->getOperand(0); 2268 CmpInst::Predicate Pred = Cmp.getPredicate(); 2269 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2270 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2271 2272 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2273 const APInt *ShiftValC; 2274 if (match(X, m_APInt(ShiftValC))) { 2275 if (Cmp.isEquality()) 2276 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2277 2278 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 2279 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 2280 bool TrueIfSigned; 2281 if (!IsAShr && ShiftValC->isNegative() && 2282 isSignBitCheck(Pred, C, TrueIfSigned)) 2283 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, 2284 Shr->getOperand(1), 2285 ConstantInt::getNullValue(X->getType())); 2286 2287 // If the shifted constant is a power-of-2, test the shift amount directly: 2288 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2289 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2290 if (!IsAShr && ShiftValC->isPowerOf2() && 2291 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2292 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2293 assert(ShiftValC->uge(C) && "Expected simplify of compare"); 2294 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); 2295 2296 unsigned CmpLZ = 2297 IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros(); 2298 unsigned ShiftLZ = ShiftValC->countLeadingZeros(); 2299 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2300 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2301 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2302 } 2303 } 2304 2305 const APInt *ShiftAmtC; 2306 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2307 return nullptr; 2308 2309 // Check that the shift amount is in range. If not, don't perform undefined 2310 // shifts. When the shift is visited it will be simplified. 2311 unsigned TypeBits = C.getBitWidth(); 2312 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2313 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2314 return nullptr; 2315 2316 bool IsExact = Shr->isExact(); 2317 Type *ShrTy = Shr->getType(); 2318 // TODO: If we could guarantee that InstSimplify would handle all of the 2319 // constant-value-based preconditions in the folds below, then we could assert 2320 // those conditions rather than checking them. This is difficult because of 2321 // undef/poison (PR34838). 2322 if (IsAShr) { 2323 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2324 // When ShAmtC can be shifted losslessly: 2325 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2326 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2327 APInt ShiftedC = C.shl(ShAmtVal); 2328 if (ShiftedC.ashr(ShAmtVal) == C) 2329 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2330 } 2331 if (Pred == CmpInst::ICMP_SGT) { 2332 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2333 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2334 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2335 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2336 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2337 } 2338 if (Pred == CmpInst::ICMP_UGT) { 2339 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2340 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2341 // clause accounts for that pattern. 2342 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2343 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2344 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2345 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2346 } 2347 2348 // If the compare constant has significant bits above the lowest sign-bit, 2349 // then convert an unsigned cmp to a test of the sign-bit: 2350 // (ashr X, ShiftC) u> C --> X s< 0 2351 // (ashr X, ShiftC) u< C --> X s> -1 2352 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2353 if (Pred == CmpInst::ICMP_UGT) { 2354 return new ICmpInst(CmpInst::ICMP_SLT, X, 2355 ConstantInt::getNullValue(ShrTy)); 2356 } 2357 if (Pred == CmpInst::ICMP_ULT) { 2358 return new ICmpInst(CmpInst::ICMP_SGT, X, 2359 ConstantInt::getAllOnesValue(ShrTy)); 2360 } 2361 } 2362 } else { 2363 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2364 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2365 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2366 APInt ShiftedC = C.shl(ShAmtVal); 2367 if (ShiftedC.lshr(ShAmtVal) == C) 2368 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2369 } 2370 if (Pred == CmpInst::ICMP_UGT) { 2371 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2372 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2373 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2374 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2375 } 2376 } 2377 2378 if (!Cmp.isEquality()) 2379 return nullptr; 2380 2381 // Handle equality comparisons of shift-by-constant. 2382 2383 // If the comparison constant changes with the shift, the comparison cannot 2384 // succeed (bits of the comparison constant cannot match the shifted value). 2385 // This should be known by InstSimplify and already be folded to true/false. 2386 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2387 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2388 "Expected icmp+shr simplify did not occur."); 2389 2390 // If the bits shifted out are known zero, compare the unshifted value: 2391 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2392 if (Shr->isExact()) 2393 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2394 2395 if (C.isZero()) { 2396 // == 0 is u< 1. 2397 if (Pred == CmpInst::ICMP_EQ) 2398 return new ICmpInst(CmpInst::ICMP_ULT, X, 2399 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2400 else 2401 return new ICmpInst(CmpInst::ICMP_UGT, X, 2402 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2403 } 2404 2405 if (Shr->hasOneUse()) { 2406 // Canonicalize the shift into an 'and': 2407 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2408 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2409 Constant *Mask = ConstantInt::get(ShrTy, Val); 2410 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2411 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2412 } 2413 2414 return nullptr; 2415 } 2416 2417 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2418 BinaryOperator *SRem, 2419 const APInt &C) { 2420 // Match an 'is positive' or 'is negative' comparison of remainder by a 2421 // constant power-of-2 value: 2422 // (X % pow2C) sgt/slt 0 2423 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2424 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2425 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2426 return nullptr; 2427 2428 // TODO: The one-use check is standard because we do not typically want to 2429 // create longer instruction sequences, but this might be a special-case 2430 // because srem is not good for analysis or codegen. 2431 if (!SRem->hasOneUse()) 2432 return nullptr; 2433 2434 const APInt *DivisorC; 2435 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2436 return nullptr; 2437 2438 // For cmp_sgt/cmp_slt only zero valued C is handled. 2439 // For cmp_eq/cmp_ne only positive valued C is handled. 2440 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2441 !C.isZero()) || 2442 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2443 !C.isStrictlyPositive())) 2444 return nullptr; 2445 2446 // Mask off the sign bit and the modulo bits (low-bits). 2447 Type *Ty = SRem->getType(); 2448 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2449 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2450 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2451 2452 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2453 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2454 2455 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2456 // bit is set. Example: 2457 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2458 if (Pred == ICmpInst::ICMP_SGT) 2459 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2460 2461 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2462 // bit is set. Example: 2463 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2464 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2465 } 2466 2467 /// Fold icmp (udiv X, Y), C. 2468 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2469 BinaryOperator *UDiv, 2470 const APInt &C) { 2471 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2472 Value *X = UDiv->getOperand(0); 2473 Value *Y = UDiv->getOperand(1); 2474 Type *Ty = UDiv->getType(); 2475 2476 const APInt *C2; 2477 if (!match(X, m_APInt(C2))) 2478 return nullptr; 2479 2480 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2481 2482 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2483 if (Pred == ICmpInst::ICMP_UGT) { 2484 assert(!C.isMaxValue() && 2485 "icmp ugt X, UINT_MAX should have been simplified already."); 2486 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2487 ConstantInt::get(Ty, C2->udiv(C + 1))); 2488 } 2489 2490 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2491 if (Pred == ICmpInst::ICMP_ULT) { 2492 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2493 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2494 ConstantInt::get(Ty, C2->udiv(C))); 2495 } 2496 2497 return nullptr; 2498 } 2499 2500 /// Fold icmp ({su}div X, Y), C. 2501 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2502 BinaryOperator *Div, 2503 const APInt &C) { 2504 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2505 Value *X = Div->getOperand(0); 2506 Value *Y = Div->getOperand(1); 2507 Type *Ty = Div->getType(); 2508 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2509 2510 // If unsigned division and the compare constant is bigger than 2511 // UMAX/2 (negative), there's only one pair of values that satisfies an 2512 // equality check, so eliminate the division: 2513 // (X u/ Y) == C --> (X == C) && (Y == 1) 2514 // (X u/ Y) != C --> (X != C) || (Y != 1) 2515 // Similarly, if signed division and the compare constant is exactly SMIN: 2516 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2517 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2518 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2519 (!DivIsSigned || C.isMinSignedValue())) { 2520 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2521 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2522 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2523 return BinaryOperator::Create(Logic, XBig, YOne); 2524 } 2525 2526 // Fold: icmp pred ([us]div X, C2), C -> range test 2527 // Fold this div into the comparison, producing a range check. 2528 // Determine, based on the divide type, what the range is being 2529 // checked. If there is an overflow on the low or high side, remember 2530 // it, otherwise compute the range [low, hi) bounding the new value. 2531 // See: InsertRangeTest above for the kinds of replacements possible. 2532 const APInt *C2; 2533 if (!match(Y, m_APInt(C2))) 2534 return nullptr; 2535 2536 // FIXME: If the operand types don't match the type of the divide 2537 // then don't attempt this transform. The code below doesn't have the 2538 // logic to deal with a signed divide and an unsigned compare (and 2539 // vice versa). This is because (x /s C2) <s C produces different 2540 // results than (x /s C2) <u C or (x /u C2) <s C or even 2541 // (x /u C2) <u C. Simply casting the operands and result won't 2542 // work. :( The if statement below tests that condition and bails 2543 // if it finds it. 2544 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2545 return nullptr; 2546 2547 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2548 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2549 // division-by-constant cases should be present, we can not assert that they 2550 // have happened before we reach this icmp instruction. 2551 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2552 return nullptr; 2553 2554 // Compute Prod = C * C2. We are essentially solving an equation of 2555 // form X / C2 = C. We solve for X by multiplying C2 and C. 2556 // By solving for X, we can turn this into a range check instead of computing 2557 // a divide. 2558 APInt Prod = C * *C2; 2559 2560 // Determine if the product overflows by seeing if the product is not equal to 2561 // the divide. Make sure we do the same kind of divide as in the LHS 2562 // instruction that we're folding. 2563 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2564 2565 // If the division is known to be exact, then there is no remainder from the 2566 // divide, so the covered range size is unit, otherwise it is the divisor. 2567 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2568 2569 // Figure out the interval that is being checked. For example, a comparison 2570 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2571 // Compute this interval based on the constants involved and the signedness of 2572 // the compare/divide. This computes a half-open interval, keeping track of 2573 // whether either value in the interval overflows. After analysis each 2574 // overflow variable is set to 0 if it's corresponding bound variable is valid 2575 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2576 int LoOverflow = 0, HiOverflow = 0; 2577 APInt LoBound, HiBound; 2578 2579 if (!DivIsSigned) { // udiv 2580 // e.g. X/5 op 3 --> [15, 20) 2581 LoBound = Prod; 2582 HiOverflow = LoOverflow = ProdOV; 2583 if (!HiOverflow) { 2584 // If this is not an exact divide, then many values in the range collapse 2585 // to the same result value. 2586 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2587 } 2588 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2589 if (C.isZero()) { // (X / pos) op 0 2590 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2591 LoBound = -(RangeSize - 1); 2592 HiBound = RangeSize; 2593 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2594 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2595 HiOverflow = LoOverflow = ProdOV; 2596 if (!HiOverflow) 2597 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2598 } else { // (X / pos) op neg 2599 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2600 HiBound = Prod + 1; 2601 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2602 if (!LoOverflow) { 2603 APInt DivNeg = -RangeSize; 2604 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2605 } 2606 } 2607 } else if (C2->isNegative()) { // Divisor is < 0. 2608 if (Div->isExact()) 2609 RangeSize.negate(); 2610 if (C.isZero()) { // (X / neg) op 0 2611 // e.g. X/-5 op 0 --> [-4, 5) 2612 LoBound = RangeSize + 1; 2613 HiBound = -RangeSize; 2614 if (HiBound == *C2) { // -INTMIN = INTMIN 2615 HiOverflow = 1; // [INTMIN+1, overflow) 2616 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2617 } 2618 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2619 // e.g. X/-5 op 3 --> [-19, -14) 2620 HiBound = Prod + 1; 2621 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2622 if (!LoOverflow) 2623 LoOverflow = 2624 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2625 } else { // (X / neg) op neg 2626 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2627 LoOverflow = HiOverflow = ProdOV; 2628 if (!HiOverflow) 2629 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2630 } 2631 2632 // Dividing by a negative swaps the condition. LT <-> GT 2633 Pred = ICmpInst::getSwappedPredicate(Pred); 2634 } 2635 2636 switch (Pred) { 2637 default: 2638 llvm_unreachable("Unhandled icmp predicate!"); 2639 case ICmpInst::ICMP_EQ: 2640 if (LoOverflow && HiOverflow) 2641 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2642 if (HiOverflow) 2643 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2644 X, ConstantInt::get(Ty, LoBound)); 2645 if (LoOverflow) 2646 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2647 X, ConstantInt::get(Ty, HiBound)); 2648 return replaceInstUsesWith( 2649 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2650 case ICmpInst::ICMP_NE: 2651 if (LoOverflow && HiOverflow) 2652 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2653 if (HiOverflow) 2654 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2655 X, ConstantInt::get(Ty, LoBound)); 2656 if (LoOverflow) 2657 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2658 X, ConstantInt::get(Ty, HiBound)); 2659 return replaceInstUsesWith( 2660 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2661 case ICmpInst::ICMP_ULT: 2662 case ICmpInst::ICMP_SLT: 2663 if (LoOverflow == +1) // Low bound is greater than input range. 2664 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2665 if (LoOverflow == -1) // Low bound is less than input range. 2666 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2667 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2668 case ICmpInst::ICMP_UGT: 2669 case ICmpInst::ICMP_SGT: 2670 if (HiOverflow == +1) // High bound greater than input range. 2671 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2672 if (HiOverflow == -1) // High bound less than input range. 2673 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2674 if (Pred == ICmpInst::ICMP_UGT) 2675 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2676 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2677 } 2678 2679 return nullptr; 2680 } 2681 2682 /// Fold icmp (sub X, Y), C. 2683 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2684 BinaryOperator *Sub, 2685 const APInt &C) { 2686 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2687 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2688 Type *Ty = Sub->getType(); 2689 2690 // (SubC - Y) == C) --> Y == (SubC - C) 2691 // (SubC - Y) != C) --> Y != (SubC - C) 2692 Constant *SubC; 2693 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2694 return new ICmpInst(Pred, Y, 2695 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2696 } 2697 2698 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2699 const APInt *C2; 2700 APInt SubResult; 2701 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2702 bool HasNSW = Sub->hasNoSignedWrap(); 2703 bool HasNUW = Sub->hasNoUnsignedWrap(); 2704 if (match(X, m_APInt(C2)) && 2705 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2706 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2707 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2708 2709 // X - Y == 0 --> X == Y. 2710 // X - Y != 0 --> X != Y. 2711 // TODO: We allow this with multiple uses as long as the other uses are not 2712 // in phis. The phi use check is guarding against a codegen regression 2713 // for a loop test. If the backend could undo this (and possibly 2714 // subsequent transforms), we would not need this hack. 2715 if (Cmp.isEquality() && C.isZero() && 2716 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2717 return new ICmpInst(Pred, X, Y); 2718 2719 // The following transforms are only worth it if the only user of the subtract 2720 // is the icmp. 2721 // TODO: This is an artificial restriction for all of the transforms below 2722 // that only need a single replacement icmp. Can these use the phi test 2723 // like the transform above here? 2724 if (!Sub->hasOneUse()) 2725 return nullptr; 2726 2727 if (Sub->hasNoSignedWrap()) { 2728 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2729 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2730 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2731 2732 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2733 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2734 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2735 2736 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2737 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2738 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2739 2740 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2741 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2742 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2743 } 2744 2745 if (!match(X, m_APInt(C2))) 2746 return nullptr; 2747 2748 // C2 - Y <u C -> (Y | (C - 1)) == C2 2749 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2750 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2751 (*C2 & (C - 1)) == (C - 1)) 2752 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2753 2754 // C2 - Y >u C -> (Y | C) != C2 2755 // iff C2 & C == C and C + 1 is a power of 2 2756 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2757 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2758 2759 // We have handled special cases that reduce. 2760 // Canonicalize any remaining sub to add as: 2761 // (C2 - Y) > C --> (Y + ~C2) < ~C 2762 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2763 HasNUW, HasNSW); 2764 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2765 } 2766 2767 /// Fold icmp (add X, Y), C. 2768 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2769 BinaryOperator *Add, 2770 const APInt &C) { 2771 Value *Y = Add->getOperand(1); 2772 const APInt *C2; 2773 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2774 return nullptr; 2775 2776 // Fold icmp pred (add X, C2), C. 2777 Value *X = Add->getOperand(0); 2778 Type *Ty = Add->getType(); 2779 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2780 2781 // If the add does not wrap, we can always adjust the compare by subtracting 2782 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2783 // are canonicalized to SGT/SLT/UGT/ULT. 2784 if ((Add->hasNoSignedWrap() && 2785 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2786 (Add->hasNoUnsignedWrap() && 2787 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2788 bool Overflow; 2789 APInt NewC = 2790 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2791 // If there is overflow, the result must be true or false. 2792 // TODO: Can we assert there is no overflow because InstSimplify always 2793 // handles those cases? 2794 if (!Overflow) 2795 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2796 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2797 } 2798 2799 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2800 const APInt &Upper = CR.getUpper(); 2801 const APInt &Lower = CR.getLower(); 2802 if (Cmp.isSigned()) { 2803 if (Lower.isSignMask()) 2804 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2805 if (Upper.isSignMask()) 2806 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2807 } else { 2808 if (Lower.isMinValue()) 2809 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2810 if (Upper.isMinValue()) 2811 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2812 } 2813 2814 // This set of folds is intentionally placed after folds that use no-wrapping 2815 // flags because those folds are likely better for later analysis/codegen. 2816 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2817 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2818 2819 // Fold compare with offset to opposite sign compare if it eliminates offset: 2820 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2821 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2822 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2823 2824 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2825 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2826 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2827 2828 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2829 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2830 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2831 2832 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2833 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2834 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2835 2836 if (!Add->hasOneUse()) 2837 return nullptr; 2838 2839 // X+C <u C2 -> (X & -C2) == C 2840 // iff C & (C2-1) == 0 2841 // C2 is a power of 2 2842 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2843 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2844 ConstantExpr::getNeg(cast<Constant>(Y))); 2845 2846 // X+C >u C2 -> (X & ~C2) != C 2847 // iff C & C2 == 0 2848 // C2+1 is a power of 2 2849 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2850 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2851 ConstantExpr::getNeg(cast<Constant>(Y))); 2852 2853 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2854 // to the ult form. 2855 // X+C2 >u C -> X+(C2-C-1) <u ~C 2856 if (Pred == ICmpInst::ICMP_UGT) 2857 return new ICmpInst(ICmpInst::ICMP_ULT, 2858 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2859 ConstantInt::get(Ty, ~C)); 2860 2861 return nullptr; 2862 } 2863 2864 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2865 Value *&RHS, ConstantInt *&Less, 2866 ConstantInt *&Equal, 2867 ConstantInt *&Greater) { 2868 // TODO: Generalize this to work with other comparison idioms or ensure 2869 // they get canonicalized into this form. 2870 2871 // select i1 (a == b), 2872 // i32 Equal, 2873 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2874 // where Equal, Less and Greater are placeholders for any three constants. 2875 ICmpInst::Predicate PredA; 2876 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2877 !ICmpInst::isEquality(PredA)) 2878 return false; 2879 Value *EqualVal = SI->getTrueValue(); 2880 Value *UnequalVal = SI->getFalseValue(); 2881 // We still can get non-canonical predicate here, so canonicalize. 2882 if (PredA == ICmpInst::ICMP_NE) 2883 std::swap(EqualVal, UnequalVal); 2884 if (!match(EqualVal, m_ConstantInt(Equal))) 2885 return false; 2886 ICmpInst::Predicate PredB; 2887 Value *LHS2, *RHS2; 2888 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2889 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2890 return false; 2891 // We can get predicate mismatch here, so canonicalize if possible: 2892 // First, ensure that 'LHS' match. 2893 if (LHS2 != LHS) { 2894 // x sgt y <--> y slt x 2895 std::swap(LHS2, RHS2); 2896 PredB = ICmpInst::getSwappedPredicate(PredB); 2897 } 2898 if (LHS2 != LHS) 2899 return false; 2900 // We also need to canonicalize 'RHS'. 2901 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2902 // x sgt C-1 <--> x sge C <--> not(x slt C) 2903 auto FlippedStrictness = 2904 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2905 PredB, cast<Constant>(RHS2)); 2906 if (!FlippedStrictness) 2907 return false; 2908 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2909 "basic correctness failure"); 2910 RHS2 = FlippedStrictness->second; 2911 // And kind-of perform the result swap. 2912 std::swap(Less, Greater); 2913 PredB = ICmpInst::ICMP_SLT; 2914 } 2915 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2916 } 2917 2918 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2919 SelectInst *Select, 2920 ConstantInt *C) { 2921 2922 assert(C && "Cmp RHS should be a constant int!"); 2923 // If we're testing a constant value against the result of a three way 2924 // comparison, the result can be expressed directly in terms of the 2925 // original values being compared. Note: We could possibly be more 2926 // aggressive here and remove the hasOneUse test. The original select is 2927 // really likely to simplify or sink when we remove a test of the result. 2928 Value *OrigLHS, *OrigRHS; 2929 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2930 if (Cmp.hasOneUse() && 2931 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2932 C3GreaterThan)) { 2933 assert(C1LessThan && C2Equal && C3GreaterThan); 2934 2935 bool TrueWhenLessThan = 2936 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2937 ->isAllOnesValue(); 2938 bool TrueWhenEqual = 2939 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2940 ->isAllOnesValue(); 2941 bool TrueWhenGreaterThan = 2942 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2943 ->isAllOnesValue(); 2944 2945 // This generates the new instruction that will replace the original Cmp 2946 // Instruction. Instead of enumerating the various combinations when 2947 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2948 // false, we rely on chaining of ORs and future passes of InstCombine to 2949 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2950 2951 // When none of the three constants satisfy the predicate for the RHS (C), 2952 // the entire original Cmp can be simplified to a false. 2953 Value *Cond = Builder.getFalse(); 2954 if (TrueWhenLessThan) 2955 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2956 OrigLHS, OrigRHS)); 2957 if (TrueWhenEqual) 2958 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2959 OrigLHS, OrigRHS)); 2960 if (TrueWhenGreaterThan) 2961 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2962 OrigLHS, OrigRHS)); 2963 2964 return replaceInstUsesWith(Cmp, Cond); 2965 } 2966 return nullptr; 2967 } 2968 2969 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2970 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2971 if (!Bitcast) 2972 return nullptr; 2973 2974 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2975 Value *Op1 = Cmp.getOperand(1); 2976 Value *BCSrcOp = Bitcast->getOperand(0); 2977 Type *SrcType = Bitcast->getSrcTy(); 2978 Type *DstType = Bitcast->getType(); 2979 2980 // Make sure the bitcast doesn't change between scalar and vector and 2981 // doesn't change the number of vector elements. 2982 if (SrcType->isVectorTy() == DstType->isVectorTy() && 2983 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 2984 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2985 Value *X; 2986 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2987 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2988 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2989 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2990 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2991 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2992 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2993 match(Op1, m_Zero())) 2994 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2995 2996 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2997 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2998 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2999 3000 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 3001 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 3002 return new ICmpInst(Pred, X, 3003 ConstantInt::getAllOnesValue(X->getType())); 3004 } 3005 3006 // Zero-equality checks are preserved through unsigned floating-point casts: 3007 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 3008 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 3009 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 3010 if (Cmp.isEquality() && match(Op1, m_Zero())) 3011 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3012 3013 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 3014 // the FP extend/truncate because that cast does not change the sign-bit. 3015 // This is true for all standard IEEE-754 types and the X86 80-bit type. 3016 // The sign-bit is always the most significant bit in those types. 3017 const APInt *C; 3018 bool TrueIfSigned; 3019 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 3020 isSignBitCheck(Pred, *C, TrueIfSigned)) { 3021 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 3022 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 3023 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 3024 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 3025 Type *XType = X->getType(); 3026 3027 // We can't currently handle Power style floating point operations here. 3028 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 3029 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 3030 if (auto *XVTy = dyn_cast<VectorType>(XType)) 3031 NewType = VectorType::get(NewType, XVTy->getElementCount()); 3032 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 3033 if (TrueIfSigned) 3034 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 3035 ConstantInt::getNullValue(NewType)); 3036 else 3037 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 3038 ConstantInt::getAllOnesValue(NewType)); 3039 } 3040 } 3041 } 3042 } 3043 3044 // Test to see if the operands of the icmp are casted versions of other 3045 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 3046 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3047 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3048 // so eliminate it as well. 3049 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 3050 Op1 = BC2->getOperand(0); 3051 3052 Op1 = Builder.CreateBitCast(Op1, SrcType); 3053 return new ICmpInst(Pred, BCSrcOp, Op1); 3054 } 3055 3056 const APInt *C; 3057 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 3058 !SrcType->isIntOrIntVectorTy()) 3059 return nullptr; 3060 3061 // If this is checking if all elements of a vector compare are set or not, 3062 // invert the casted vector equality compare and test if all compare 3063 // elements are clear or not. Compare against zero is generally easier for 3064 // analysis and codegen. 3065 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3066 // Example: are all elements equal? --> are zero elements not equal? 3067 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3068 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 3069 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 3070 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 3071 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3072 } 3073 3074 // If this is checking if all elements of an extended vector are clear or not, 3075 // compare in a narrow type to eliminate the extend: 3076 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3077 Value *X; 3078 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3079 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3080 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3081 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3082 Value *NewCast = Builder.CreateBitCast(X, NewType); 3083 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3084 } 3085 } 3086 3087 // Folding: icmp <pred> iN X, C 3088 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3089 // and C is a splat of a K-bit pattern 3090 // and SC is a constant vector = <C', C', C', ..., C'> 3091 // Into: 3092 // %E = extractelement <M x iK> %vec, i32 C' 3093 // icmp <pred> iK %E, trunc(C) 3094 Value *Vec; 3095 ArrayRef<int> Mask; 3096 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3097 // Check whether every element of Mask is the same constant 3098 if (is_splat(Mask)) { 3099 auto *VecTy = cast<VectorType>(SrcType); 3100 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3101 if (C->isSplat(EltTy->getBitWidth())) { 3102 // Fold the icmp based on the value of C 3103 // If C is M copies of an iK sized bit pattern, 3104 // then: 3105 // => %E = extractelement <N x iK> %vec, i32 Elem 3106 // icmp <pred> iK %SplatVal, <pattern> 3107 Value *Elem = Builder.getInt32(Mask[0]); 3108 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3109 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3110 return new ICmpInst(Pred, Extract, NewC); 3111 } 3112 } 3113 } 3114 return nullptr; 3115 } 3116 3117 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3118 /// where X is some kind of instruction. 3119 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3120 const APInt *C; 3121 3122 if (match(Cmp.getOperand(1), m_APInt(C))) { 3123 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3124 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3125 return I; 3126 3127 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3128 // For now, we only support constant integers while folding the 3129 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3130 // similar to the cases handled by binary ops above. 3131 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3132 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3133 return I; 3134 3135 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3136 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3137 return I; 3138 3139 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3140 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3141 return I; 3142 } 3143 3144 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3145 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3146 3147 return nullptr; 3148 } 3149 3150 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3151 /// icmp eq/ne BO, C. 3152 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3153 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3154 // TODO: Some of these folds could work with arbitrary constants, but this 3155 // function is limited to scalar and vector splat constants. 3156 if (!Cmp.isEquality()) 3157 return nullptr; 3158 3159 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3160 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3161 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3162 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3163 3164 switch (BO->getOpcode()) { 3165 case Instruction::SRem: 3166 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3167 if (C.isZero() && BO->hasOneUse()) { 3168 const APInt *BOC; 3169 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3170 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3171 return new ICmpInst(Pred, NewRem, 3172 Constant::getNullValue(BO->getType())); 3173 } 3174 } 3175 break; 3176 case Instruction::Add: { 3177 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3178 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3179 if (BO->hasOneUse()) 3180 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3181 } else if (C.isZero()) { 3182 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3183 // efficiently invertible, or if the add has just this one use. 3184 if (Value *NegVal = dyn_castNegVal(BOp1)) 3185 return new ICmpInst(Pred, BOp0, NegVal); 3186 if (Value *NegVal = dyn_castNegVal(BOp0)) 3187 return new ICmpInst(Pred, NegVal, BOp1); 3188 if (BO->hasOneUse()) { 3189 Value *Neg = Builder.CreateNeg(BOp1); 3190 Neg->takeName(BO); 3191 return new ICmpInst(Pred, BOp0, Neg); 3192 } 3193 } 3194 break; 3195 } 3196 case Instruction::Xor: 3197 if (BO->hasOneUse()) { 3198 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3199 // For the xor case, we can xor two constants together, eliminating 3200 // the explicit xor. 3201 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3202 } else if (C.isZero()) { 3203 // Replace ((xor A, B) != 0) with (A != B) 3204 return new ICmpInst(Pred, BOp0, BOp1); 3205 } 3206 } 3207 break; 3208 case Instruction::Or: { 3209 const APInt *BOC; 3210 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3211 // Comparing if all bits outside of a constant mask are set? 3212 // Replace (X | C) == -1 with (X & ~C) == ~C. 3213 // This removes the -1 constant. 3214 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3215 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3216 return new ICmpInst(Pred, And, NotBOC); 3217 } 3218 break; 3219 } 3220 case Instruction::And: { 3221 const APInt *BOC; 3222 if (match(BOp1, m_APInt(BOC))) { 3223 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3224 if (C == *BOC && C.isPowerOf2()) 3225 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3226 BO, Constant::getNullValue(RHS->getType())); 3227 } 3228 break; 3229 } 3230 case Instruction::UDiv: 3231 if (C.isZero()) { 3232 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3233 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3234 return new ICmpInst(NewPred, BOp1, BOp0); 3235 } 3236 break; 3237 default: 3238 break; 3239 } 3240 return nullptr; 3241 } 3242 3243 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3244 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3245 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3246 Type *Ty = II->getType(); 3247 unsigned BitWidth = C.getBitWidth(); 3248 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3249 3250 switch (II->getIntrinsicID()) { 3251 case Intrinsic::abs: 3252 // abs(A) == 0 -> A == 0 3253 // abs(A) == INT_MIN -> A == INT_MIN 3254 if (C.isZero() || C.isMinSignedValue()) 3255 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3256 break; 3257 3258 case Intrinsic::bswap: 3259 // bswap(A) == C -> A == bswap(C) 3260 return new ICmpInst(Pred, II->getArgOperand(0), 3261 ConstantInt::get(Ty, C.byteSwap())); 3262 3263 case Intrinsic::ctlz: 3264 case Intrinsic::cttz: { 3265 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3266 if (C == BitWidth) 3267 return new ICmpInst(Pred, II->getArgOperand(0), 3268 ConstantInt::getNullValue(Ty)); 3269 3270 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3271 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3272 // Limit to one use to ensure we don't increase instruction count. 3273 unsigned Num = C.getLimitedValue(BitWidth); 3274 if (Num != BitWidth && II->hasOneUse()) { 3275 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3276 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3277 : APInt::getHighBitsSet(BitWidth, Num + 1); 3278 APInt Mask2 = IsTrailing 3279 ? APInt::getOneBitSet(BitWidth, Num) 3280 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3281 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3282 ConstantInt::get(Ty, Mask2)); 3283 } 3284 break; 3285 } 3286 3287 case Intrinsic::ctpop: { 3288 // popcount(A) == 0 -> A == 0 and likewise for != 3289 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3290 bool IsZero = C.isZero(); 3291 if (IsZero || C == BitWidth) 3292 return new ICmpInst(Pred, II->getArgOperand(0), 3293 IsZero ? Constant::getNullValue(Ty) 3294 : Constant::getAllOnesValue(Ty)); 3295 3296 break; 3297 } 3298 3299 case Intrinsic::fshl: 3300 case Intrinsic::fshr: 3301 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3302 const APInt *RotAmtC; 3303 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3304 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3305 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3306 return new ICmpInst(Pred, II->getArgOperand(0), 3307 II->getIntrinsicID() == Intrinsic::fshl 3308 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3309 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3310 } 3311 break; 3312 3313 case Intrinsic::uadd_sat: { 3314 // uadd.sat(a, b) == 0 -> (a | b) == 0 3315 if (C.isZero()) { 3316 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3317 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3318 } 3319 break; 3320 } 3321 3322 case Intrinsic::usub_sat: { 3323 // usub.sat(a, b) == 0 -> a <= b 3324 if (C.isZero()) { 3325 ICmpInst::Predicate NewPred = 3326 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3327 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3328 } 3329 break; 3330 } 3331 default: 3332 break; 3333 } 3334 3335 return nullptr; 3336 } 3337 3338 /// Fold an icmp with LLVM intrinsics 3339 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3340 assert(Cmp.isEquality()); 3341 3342 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3343 Value *Op0 = Cmp.getOperand(0); 3344 Value *Op1 = Cmp.getOperand(1); 3345 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3346 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3347 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3348 return nullptr; 3349 3350 switch (IIOp0->getIntrinsicID()) { 3351 case Intrinsic::bswap: 3352 case Intrinsic::bitreverse: 3353 // If both operands are byte-swapped or bit-reversed, just compare the 3354 // original values. 3355 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3356 case Intrinsic::fshl: 3357 case Intrinsic::fshr: 3358 // If both operands are rotated by same amount, just compare the 3359 // original values. 3360 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3361 break; 3362 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3363 break; 3364 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3365 break; 3366 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3367 default: 3368 break; 3369 } 3370 3371 return nullptr; 3372 } 3373 3374 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3375 /// where X is some kind of instruction and C is AllowUndef. 3376 /// TODO: Move more folds which allow undef to this function. 3377 Instruction * 3378 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3379 const APInt &C) { 3380 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3381 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3382 switch (II->getIntrinsicID()) { 3383 default: 3384 break; 3385 case Intrinsic::fshl: 3386 case Intrinsic::fshr: 3387 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3388 // (rot X, ?) == 0/-1 --> X == 0/-1 3389 if (C.isZero() || C.isAllOnes()) 3390 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3391 } 3392 break; 3393 } 3394 } 3395 3396 return nullptr; 3397 } 3398 3399 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3400 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3401 BinaryOperator *BO, 3402 const APInt &C) { 3403 switch (BO->getOpcode()) { 3404 case Instruction::Xor: 3405 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3406 return I; 3407 break; 3408 case Instruction::And: 3409 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3410 return I; 3411 break; 3412 case Instruction::Or: 3413 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3414 return I; 3415 break; 3416 case Instruction::Mul: 3417 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3418 return I; 3419 break; 3420 case Instruction::Shl: 3421 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3422 return I; 3423 break; 3424 case Instruction::LShr: 3425 case Instruction::AShr: 3426 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3427 return I; 3428 break; 3429 case Instruction::SRem: 3430 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3431 return I; 3432 break; 3433 case Instruction::UDiv: 3434 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3435 return I; 3436 LLVM_FALLTHROUGH; 3437 case Instruction::SDiv: 3438 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3439 return I; 3440 break; 3441 case Instruction::Sub: 3442 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3443 return I; 3444 break; 3445 case Instruction::Add: 3446 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3447 return I; 3448 break; 3449 default: 3450 break; 3451 } 3452 3453 // TODO: These folds could be refactored to be part of the above calls. 3454 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3455 } 3456 3457 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3458 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3459 IntrinsicInst *II, 3460 const APInt &C) { 3461 if (Cmp.isEquality()) 3462 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3463 3464 Type *Ty = II->getType(); 3465 unsigned BitWidth = C.getBitWidth(); 3466 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3467 switch (II->getIntrinsicID()) { 3468 case Intrinsic::ctpop: { 3469 // (ctpop X > BitWidth - 1) --> X == -1 3470 Value *X = II->getArgOperand(0); 3471 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3472 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3473 ConstantInt::getAllOnesValue(Ty)); 3474 // (ctpop X < BitWidth) --> X != -1 3475 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3476 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3477 ConstantInt::getAllOnesValue(Ty)); 3478 break; 3479 } 3480 case Intrinsic::ctlz: { 3481 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3482 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3483 unsigned Num = C.getLimitedValue(); 3484 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3485 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3486 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3487 } 3488 3489 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3490 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3491 unsigned Num = C.getLimitedValue(); 3492 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3493 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3494 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3495 } 3496 break; 3497 } 3498 case Intrinsic::cttz: { 3499 // Limit to one use to ensure we don't increase instruction count. 3500 if (!II->hasOneUse()) 3501 return nullptr; 3502 3503 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3504 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3505 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3506 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3507 Builder.CreateAnd(II->getArgOperand(0), Mask), 3508 ConstantInt::getNullValue(Ty)); 3509 } 3510 3511 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3512 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3513 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3514 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3515 Builder.CreateAnd(II->getArgOperand(0), Mask), 3516 ConstantInt::getNullValue(Ty)); 3517 } 3518 break; 3519 } 3520 default: 3521 break; 3522 } 3523 3524 return nullptr; 3525 } 3526 3527 /// Handle icmp with constant (but not simple integer constant) RHS. 3528 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3529 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3530 Constant *RHSC = dyn_cast<Constant>(Op1); 3531 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3532 if (!RHSC || !LHSI) 3533 return nullptr; 3534 3535 switch (LHSI->getOpcode()) { 3536 case Instruction::GetElementPtr: 3537 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3538 if (RHSC->isNullValue() && 3539 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3540 return new ICmpInst( 3541 I.getPredicate(), LHSI->getOperand(0), 3542 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3543 break; 3544 case Instruction::PHI: 3545 // Only fold icmp into the PHI if the phi and icmp are in the same 3546 // block. If in the same block, we're encouraging jump threading. If 3547 // not, we are just pessimizing the code by making an i1 phi. 3548 if (LHSI->getParent() == I.getParent()) 3549 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3550 return NV; 3551 break; 3552 case Instruction::IntToPtr: 3553 // icmp pred inttoptr(X), null -> icmp pred X, 0 3554 if (RHSC->isNullValue() && 3555 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3556 return new ICmpInst( 3557 I.getPredicate(), LHSI->getOperand(0), 3558 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3559 break; 3560 3561 case Instruction::Load: 3562 // Try to optimize things like "A[i] > 4" to index computations. 3563 if (GetElementPtrInst *GEP = 3564 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3565 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3566 if (Instruction *Res = 3567 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3568 return Res; 3569 break; 3570 } 3571 3572 return nullptr; 3573 } 3574 3575 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3576 SelectInst *SI, Value *RHS, 3577 const ICmpInst &I) { 3578 // Try to fold the comparison into the select arms, which will cause the 3579 // select to be converted into a logical and/or. 3580 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3581 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 3582 return Res; 3583 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3584 RHS, DL, SelectCondIsTrue)) 3585 return ConstantInt::get(I.getType(), *Impl); 3586 return nullptr; 3587 }; 3588 3589 ConstantInt *CI = nullptr; 3590 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3591 if (Op1) 3592 CI = dyn_cast<ConstantInt>(Op1); 3593 3594 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3595 if (Op2) 3596 CI = dyn_cast<ConstantInt>(Op2); 3597 3598 // We only want to perform this transformation if it will not lead to 3599 // additional code. This is true if either both sides of the select 3600 // fold to a constant (in which case the icmp is replaced with a select 3601 // which will usually simplify) or this is the only user of the 3602 // select (in which case we are trading a select+icmp for a simpler 3603 // select+icmp) or all uses of the select can be replaced based on 3604 // dominance information ("Global cases"). 3605 bool Transform = false; 3606 if (Op1 && Op2) 3607 Transform = true; 3608 else if (Op1 || Op2) { 3609 // Local case 3610 if (SI->hasOneUse()) 3611 Transform = true; 3612 // Global cases 3613 else if (CI && !CI->isZero()) 3614 // When Op1 is constant try replacing select with second operand. 3615 // Otherwise Op2 is constant and try replacing select with first 3616 // operand. 3617 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3618 } 3619 if (Transform) { 3620 if (!Op1) 3621 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3622 if (!Op2) 3623 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3624 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3625 } 3626 3627 return nullptr; 3628 } 3629 3630 /// Some comparisons can be simplified. 3631 /// In this case, we are looking for comparisons that look like 3632 /// a check for a lossy truncation. 3633 /// Folds: 3634 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3635 /// Where Mask is some pattern that produces all-ones in low bits: 3636 /// (-1 >> y) 3637 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3638 /// ~(-1 << y) 3639 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3640 /// The Mask can be a constant, too. 3641 /// For some predicates, the operands are commutative. 3642 /// For others, x can only be on a specific side. 3643 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3644 InstCombiner::BuilderTy &Builder) { 3645 ICmpInst::Predicate SrcPred; 3646 Value *X, *M, *Y; 3647 auto m_VariableMask = m_CombineOr( 3648 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3649 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3650 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3651 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3652 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3653 if (!match(&I, m_c_ICmp(SrcPred, 3654 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3655 m_Deferred(X)))) 3656 return nullptr; 3657 3658 ICmpInst::Predicate DstPred; 3659 switch (SrcPred) { 3660 case ICmpInst::Predicate::ICMP_EQ: 3661 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3662 DstPred = ICmpInst::Predicate::ICMP_ULE; 3663 break; 3664 case ICmpInst::Predicate::ICMP_NE: 3665 // x & (-1 >> y) != x -> x u> (-1 >> y) 3666 DstPred = ICmpInst::Predicate::ICMP_UGT; 3667 break; 3668 case ICmpInst::Predicate::ICMP_ULT: 3669 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3670 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3671 DstPred = ICmpInst::Predicate::ICMP_UGT; 3672 break; 3673 case ICmpInst::Predicate::ICMP_UGE: 3674 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3675 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3676 DstPred = ICmpInst::Predicate::ICMP_ULE; 3677 break; 3678 case ICmpInst::Predicate::ICMP_SLT: 3679 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3680 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3681 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3682 return nullptr; 3683 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3684 return nullptr; 3685 DstPred = ICmpInst::Predicate::ICMP_SGT; 3686 break; 3687 case ICmpInst::Predicate::ICMP_SGE: 3688 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3689 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3690 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3691 return nullptr; 3692 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3693 return nullptr; 3694 DstPred = ICmpInst::Predicate::ICMP_SLE; 3695 break; 3696 case ICmpInst::Predicate::ICMP_SGT: 3697 case ICmpInst::Predicate::ICMP_SLE: 3698 return nullptr; 3699 case ICmpInst::Predicate::ICMP_UGT: 3700 case ICmpInst::Predicate::ICMP_ULE: 3701 llvm_unreachable("Instsimplify took care of commut. variant"); 3702 break; 3703 default: 3704 llvm_unreachable("All possible folds are handled."); 3705 } 3706 3707 // The mask value may be a vector constant that has undefined elements. But it 3708 // may not be safe to propagate those undefs into the new compare, so replace 3709 // those elements by copying an existing, defined, and safe scalar constant. 3710 Type *OpTy = M->getType(); 3711 auto *VecC = dyn_cast<Constant>(M); 3712 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3713 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3714 Constant *SafeReplacementConstant = nullptr; 3715 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3716 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3717 SafeReplacementConstant = VecC->getAggregateElement(i); 3718 break; 3719 } 3720 } 3721 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3722 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3723 } 3724 3725 return Builder.CreateICmp(DstPred, X, M); 3726 } 3727 3728 /// Some comparisons can be simplified. 3729 /// In this case, we are looking for comparisons that look like 3730 /// a check for a lossy signed truncation. 3731 /// Folds: (MaskedBits is a constant.) 3732 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3733 /// Into: 3734 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3735 /// Where KeptBits = bitwidth(%x) - MaskedBits 3736 static Value * 3737 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3738 InstCombiner::BuilderTy &Builder) { 3739 ICmpInst::Predicate SrcPred; 3740 Value *X; 3741 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3742 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3743 if (!match(&I, m_c_ICmp(SrcPred, 3744 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3745 m_APInt(C1))), 3746 m_Deferred(X)))) 3747 return nullptr; 3748 3749 // Potential handling of non-splats: for each element: 3750 // * if both are undef, replace with constant 0. 3751 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3752 // * if both are not undef, and are different, bailout. 3753 // * else, only one is undef, then pick the non-undef one. 3754 3755 // The shift amount must be equal. 3756 if (*C0 != *C1) 3757 return nullptr; 3758 const APInt &MaskedBits = *C0; 3759 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3760 3761 ICmpInst::Predicate DstPred; 3762 switch (SrcPred) { 3763 case ICmpInst::Predicate::ICMP_EQ: 3764 // ((%x << MaskedBits) a>> MaskedBits) == %x 3765 // => 3766 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3767 DstPred = ICmpInst::Predicate::ICMP_ULT; 3768 break; 3769 case ICmpInst::Predicate::ICMP_NE: 3770 // ((%x << MaskedBits) a>> MaskedBits) != %x 3771 // => 3772 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3773 DstPred = ICmpInst::Predicate::ICMP_UGE; 3774 break; 3775 // FIXME: are more folds possible? 3776 default: 3777 return nullptr; 3778 } 3779 3780 auto *XType = X->getType(); 3781 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3782 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3783 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3784 3785 // KeptBits = bitwidth(%x) - MaskedBits 3786 const APInt KeptBits = BitWidth - MaskedBits; 3787 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3788 // ICmpCst = (1 << KeptBits) 3789 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3790 assert(ICmpCst.isPowerOf2()); 3791 // AddCst = (1 << (KeptBits-1)) 3792 const APInt AddCst = ICmpCst.lshr(1); 3793 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3794 3795 // T0 = add %x, AddCst 3796 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3797 // T1 = T0 DstPred ICmpCst 3798 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3799 3800 return T1; 3801 } 3802 3803 // Given pattern: 3804 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3805 // we should move shifts to the same hand of 'and', i.e. rewrite as 3806 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3807 // We are only interested in opposite logical shifts here. 3808 // One of the shifts can be truncated. 3809 // If we can, we want to end up creating 'lshr' shift. 3810 static Value * 3811 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3812 InstCombiner::BuilderTy &Builder) { 3813 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3814 !I.getOperand(0)->hasOneUse()) 3815 return nullptr; 3816 3817 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3818 3819 // Look for an 'and' of two logical shifts, one of which may be truncated. 3820 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3821 Instruction *XShift, *MaybeTruncation, *YShift; 3822 if (!match( 3823 I.getOperand(0), 3824 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3825 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3826 m_AnyLogicalShift, m_Instruction(YShift))), 3827 m_Instruction(MaybeTruncation))))) 3828 return nullptr; 3829 3830 // We potentially looked past 'trunc', but only when matching YShift, 3831 // therefore YShift must have the widest type. 3832 Instruction *WidestShift = YShift; 3833 // Therefore XShift must have the shallowest type. 3834 // Or they both have identical types if there was no truncation. 3835 Instruction *NarrowestShift = XShift; 3836 3837 Type *WidestTy = WidestShift->getType(); 3838 Type *NarrowestTy = NarrowestShift->getType(); 3839 assert(NarrowestTy == I.getOperand(0)->getType() && 3840 "We did not look past any shifts while matching XShift though."); 3841 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3842 3843 // If YShift is a 'lshr', swap the shifts around. 3844 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3845 std::swap(XShift, YShift); 3846 3847 // The shifts must be in opposite directions. 3848 auto XShiftOpcode = XShift->getOpcode(); 3849 if (XShiftOpcode == YShift->getOpcode()) 3850 return nullptr; // Do not care about same-direction shifts here. 3851 3852 Value *X, *XShAmt, *Y, *YShAmt; 3853 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3854 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3855 3856 // If one of the values being shifted is a constant, then we will end with 3857 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3858 // however, we will need to ensure that we won't increase instruction count. 3859 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3860 // At least one of the hands of the 'and' should be one-use shift. 3861 if (!match(I.getOperand(0), 3862 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3863 return nullptr; 3864 if (HadTrunc) { 3865 // Due to the 'trunc', we will need to widen X. For that either the old 3866 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3867 if (!MaybeTruncation->hasOneUse() && 3868 !NarrowestShift->getOperand(1)->hasOneUse()) 3869 return nullptr; 3870 } 3871 } 3872 3873 // We have two shift amounts from two different shifts. The types of those 3874 // shift amounts may not match. If that's the case let's bailout now. 3875 if (XShAmt->getType() != YShAmt->getType()) 3876 return nullptr; 3877 3878 // As input, we have the following pattern: 3879 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3880 // We want to rewrite that as: 3881 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3882 // While we know that originally (Q+K) would not overflow 3883 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3884 // shift amounts. so it may now overflow in smaller bitwidth. 3885 // To ensure that does not happen, we need to ensure that the total maximal 3886 // shift amount is still representable in that smaller bit width. 3887 unsigned MaximalPossibleTotalShiftAmount = 3888 (WidestTy->getScalarSizeInBits() - 1) + 3889 (NarrowestTy->getScalarSizeInBits() - 1); 3890 APInt MaximalRepresentableShiftAmount = 3891 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3892 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3893 return nullptr; 3894 3895 // Can we fold (XShAmt+YShAmt) ? 3896 auto *NewShAmt = dyn_cast_or_null<Constant>( 3897 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3898 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3899 if (!NewShAmt) 3900 return nullptr; 3901 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3902 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3903 3904 // Is the new shift amount smaller than the bit width? 3905 // FIXME: could also rely on ConstantRange. 3906 if (!match(NewShAmt, 3907 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3908 APInt(WidestBitWidth, WidestBitWidth)))) 3909 return nullptr; 3910 3911 // An extra legality check is needed if we had trunc-of-lshr. 3912 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3913 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3914 WidestShift]() { 3915 // It isn't obvious whether it's worth it to analyze non-constants here. 3916 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3917 // If *any* of these preconditions matches we can perform the fold. 3918 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3919 ? NewShAmt->getSplatValue() 3920 : NewShAmt; 3921 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3922 if (NewShAmtSplat && 3923 (NewShAmtSplat->isNullValue() || 3924 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3925 return true; 3926 // We consider *min* leading zeros so a single outlier 3927 // blocks the transform as opposed to allowing it. 3928 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3929 KnownBits Known = computeKnownBits(C, SQ.DL); 3930 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3931 // If the value being shifted has at most lowest bit set we can fold. 3932 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3933 if (MaxActiveBits <= 1) 3934 return true; 3935 // Precondition: NewShAmt u<= countLeadingZeros(C) 3936 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3937 return true; 3938 } 3939 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3940 KnownBits Known = computeKnownBits(C, SQ.DL); 3941 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3942 // If the value being shifted has at most lowest bit set we can fold. 3943 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3944 if (MaxActiveBits <= 1) 3945 return true; 3946 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3947 if (NewShAmtSplat) { 3948 APInt AdjNewShAmt = 3949 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3950 if (AdjNewShAmt.ule(MinLeadZero)) 3951 return true; 3952 } 3953 } 3954 return false; // Can't tell if it's ok. 3955 }; 3956 if (!CanFold()) 3957 return nullptr; 3958 } 3959 3960 // All good, we can do this fold. 3961 X = Builder.CreateZExt(X, WidestTy); 3962 Y = Builder.CreateZExt(Y, WidestTy); 3963 // The shift is the same that was for X. 3964 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3965 ? Builder.CreateLShr(X, NewShAmt) 3966 : Builder.CreateShl(X, NewShAmt); 3967 Value *T1 = Builder.CreateAnd(T0, Y); 3968 return Builder.CreateICmp(I.getPredicate(), T1, 3969 Constant::getNullValue(WidestTy)); 3970 } 3971 3972 /// Fold 3973 /// (-1 u/ x) u< y 3974 /// ((x * y) ?/ x) != y 3975 /// to 3976 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3977 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3978 /// will mean that we are looking for the opposite answer. 3979 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3980 ICmpInst::Predicate Pred; 3981 Value *X, *Y; 3982 Instruction *Mul; 3983 Instruction *Div; 3984 bool NeedNegation; 3985 // Look for: (-1 u/ x) u</u>= y 3986 if (!I.isEquality() && 3987 match(&I, m_c_ICmp(Pred, 3988 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3989 m_Instruction(Div)), 3990 m_Value(Y)))) { 3991 Mul = nullptr; 3992 3993 // Are we checking that overflow does not happen, or does happen? 3994 switch (Pred) { 3995 case ICmpInst::Predicate::ICMP_ULT: 3996 NeedNegation = false; 3997 break; // OK 3998 case ICmpInst::Predicate::ICMP_UGE: 3999 NeedNegation = true; 4000 break; // OK 4001 default: 4002 return nullptr; // Wrong predicate. 4003 } 4004 } else // Look for: ((x * y) / x) !=/== y 4005 if (I.isEquality() && 4006 match(&I, 4007 m_c_ICmp(Pred, m_Value(Y), 4008 m_CombineAnd( 4009 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 4010 m_Value(X)), 4011 m_Instruction(Mul)), 4012 m_Deferred(X))), 4013 m_Instruction(Div))))) { 4014 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 4015 } else 4016 return nullptr; 4017 4018 BuilderTy::InsertPointGuard Guard(Builder); 4019 // If the pattern included (x * y), we'll want to insert new instructions 4020 // right before that original multiplication so that we can replace it. 4021 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 4022 if (MulHadOtherUses) 4023 Builder.SetInsertPoint(Mul); 4024 4025 Function *F = Intrinsic::getDeclaration(I.getModule(), 4026 Div->getOpcode() == Instruction::UDiv 4027 ? Intrinsic::umul_with_overflow 4028 : Intrinsic::smul_with_overflow, 4029 X->getType()); 4030 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 4031 4032 // If the multiplication was used elsewhere, to ensure that we don't leave 4033 // "duplicate" instructions, replace uses of that original multiplication 4034 // with the multiplication result from the with.overflow intrinsic. 4035 if (MulHadOtherUses) 4036 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 4037 4038 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 4039 if (NeedNegation) // This technically increases instruction count. 4040 Res = Builder.CreateNot(Res, "mul.not.ov"); 4041 4042 // If we replaced the mul, erase it. Do this after all uses of Builder, 4043 // as the mul is used as insertion point. 4044 if (MulHadOtherUses) 4045 eraseInstFromFunction(*Mul); 4046 4047 return Res; 4048 } 4049 4050 static Instruction *foldICmpXNegX(ICmpInst &I) { 4051 CmpInst::Predicate Pred; 4052 Value *X; 4053 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 4054 return nullptr; 4055 4056 if (ICmpInst::isSigned(Pred)) 4057 Pred = ICmpInst::getSwappedPredicate(Pred); 4058 else if (ICmpInst::isUnsigned(Pred)) 4059 Pred = ICmpInst::getSignedPredicate(Pred); 4060 // else for equality-comparisons just keep the predicate. 4061 4062 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4063 Constant::getNullValue(X->getType()), I.getName()); 4064 } 4065 4066 /// Try to fold icmp (binop), X or icmp X, (binop). 4067 /// TODO: A large part of this logic is duplicated in InstSimplify's 4068 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4069 /// duplication. 4070 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4071 const SimplifyQuery &SQ) { 4072 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4073 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4074 4075 // Special logic for binary operators. 4076 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4077 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4078 if (!BO0 && !BO1) 4079 return nullptr; 4080 4081 if (Instruction *NewICmp = foldICmpXNegX(I)) 4082 return NewICmp; 4083 4084 const CmpInst::Predicate Pred = I.getPredicate(); 4085 Value *X; 4086 4087 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4088 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4089 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4090 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4091 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4092 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4093 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4094 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4095 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4096 4097 { 4098 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4099 Constant *C; 4100 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4101 m_ImmConstant(C)))) && 4102 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4103 Constant *C2 = ConstantExpr::getNot(C); 4104 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4105 } 4106 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4107 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4108 m_ImmConstant(C)))) && 4109 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4110 Constant *C2 = ConstantExpr::getNot(C); 4111 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4112 } 4113 } 4114 4115 { 4116 // Similar to above: an unsigned overflow comparison may use offset + mask: 4117 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4118 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4119 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4120 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4121 BinaryOperator *BO; 4122 const APInt *C; 4123 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4124 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4125 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4126 CmpInst::Predicate NewPred = 4127 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4128 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4129 return new ICmpInst(NewPred, Op1, Zero); 4130 } 4131 4132 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4133 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4134 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4135 CmpInst::Predicate NewPred = 4136 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4137 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4138 return new ICmpInst(NewPred, Op0, Zero); 4139 } 4140 } 4141 4142 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4143 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4144 NoOp0WrapProblem = 4145 ICmpInst::isEquality(Pred) || 4146 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4147 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4148 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4149 NoOp1WrapProblem = 4150 ICmpInst::isEquality(Pred) || 4151 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4152 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4153 4154 // Analyze the case when either Op0 or Op1 is an add instruction. 4155 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4156 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4157 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4158 A = BO0->getOperand(0); 4159 B = BO0->getOperand(1); 4160 } 4161 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4162 C = BO1->getOperand(0); 4163 D = BO1->getOperand(1); 4164 } 4165 4166 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4167 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4168 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4169 return new ICmpInst(Pred, A == Op1 ? B : A, 4170 Constant::getNullValue(Op1->getType())); 4171 4172 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4173 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4174 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4175 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4176 C == Op0 ? D : C); 4177 4178 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4179 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4180 NoOp1WrapProblem) { 4181 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4182 Value *Y, *Z; 4183 if (A == C) { 4184 // C + B == C + D -> B == D 4185 Y = B; 4186 Z = D; 4187 } else if (A == D) { 4188 // D + B == C + D -> B == C 4189 Y = B; 4190 Z = C; 4191 } else if (B == C) { 4192 // A + C == C + D -> A == D 4193 Y = A; 4194 Z = D; 4195 } else { 4196 assert(B == D); 4197 // A + D == C + D -> A == C 4198 Y = A; 4199 Z = C; 4200 } 4201 return new ICmpInst(Pred, Y, Z); 4202 } 4203 4204 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4205 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4206 match(B, m_AllOnes())) 4207 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4208 4209 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4210 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4211 match(B, m_AllOnes())) 4212 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4213 4214 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4215 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4216 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4217 4218 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4219 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4220 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4221 4222 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4223 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4224 match(D, m_AllOnes())) 4225 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4226 4227 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4228 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4229 match(D, m_AllOnes())) 4230 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4231 4232 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4233 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4234 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4235 4236 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4237 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4238 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4239 4240 // TODO: The subtraction-related identities shown below also hold, but 4241 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4242 // wouldn't happen even if they were implemented. 4243 // 4244 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4245 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4246 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4247 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4248 4249 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4250 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4251 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4252 4253 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4254 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4255 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4256 4257 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4258 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4259 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4260 4261 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4262 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4263 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4264 4265 // if C1 has greater magnitude than C2: 4266 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4267 // s.t. C3 = C1 - C2 4268 // 4269 // if C2 has greater magnitude than C1: 4270 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4271 // s.t. C3 = C2 - C1 4272 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4273 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4274 const APInt *AP1, *AP2; 4275 // TODO: Support non-uniform vectors. 4276 // TODO: Allow undef passthrough if B AND D's element is undef. 4277 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4278 AP1->isNegative() == AP2->isNegative()) { 4279 APInt AP1Abs = AP1->abs(); 4280 APInt AP2Abs = AP2->abs(); 4281 if (AP1Abs.uge(AP2Abs)) { 4282 APInt Diff = *AP1 - *AP2; 4283 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4284 bool HasNSW = BO0->hasNoSignedWrap(); 4285 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4286 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4287 return new ICmpInst(Pred, NewAdd, C); 4288 } else { 4289 APInt Diff = *AP2 - *AP1; 4290 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4291 bool HasNSW = BO1->hasNoSignedWrap(); 4292 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4293 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4294 return new ICmpInst(Pred, A, NewAdd); 4295 } 4296 } 4297 Constant *Cst1, *Cst2; 4298 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4299 ICmpInst::isEquality(Pred)) { 4300 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4301 Value *NewAdd = Builder.CreateAdd(C, Diff); 4302 return new ICmpInst(Pred, A, NewAdd); 4303 } 4304 } 4305 4306 // Analyze the case when either Op0 or Op1 is a sub instruction. 4307 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4308 A = nullptr; 4309 B = nullptr; 4310 C = nullptr; 4311 D = nullptr; 4312 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4313 A = BO0->getOperand(0); 4314 B = BO0->getOperand(1); 4315 } 4316 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4317 C = BO1->getOperand(0); 4318 D = BO1->getOperand(1); 4319 } 4320 4321 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4322 if (A == Op1 && NoOp0WrapProblem) 4323 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4324 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4325 if (C == Op0 && NoOp1WrapProblem) 4326 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4327 4328 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4329 // (A - B) u>/u<= A --> B u>/u<= A 4330 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4331 return new ICmpInst(Pred, B, A); 4332 // C u</u>= (C - D) --> C u</u>= D 4333 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4334 return new ICmpInst(Pred, C, D); 4335 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4336 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4337 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4338 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4339 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4340 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4341 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4342 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4343 4344 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4345 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4346 return new ICmpInst(Pred, A, C); 4347 4348 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4349 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4350 return new ICmpInst(Pred, D, B); 4351 4352 // icmp (0-X) < cst --> x > -cst 4353 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4354 Value *X; 4355 if (match(BO0, m_Neg(m_Value(X)))) 4356 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4357 if (RHSC->isNotMinSignedValue()) 4358 return new ICmpInst(I.getSwappedPredicate(), X, 4359 ConstantExpr::getNeg(RHSC)); 4360 } 4361 4362 { 4363 // Try to remove shared constant multiplier from equality comparison: 4364 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4365 Value *X, *Y; 4366 const APInt *C; 4367 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4368 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4369 if (!C->countTrailingZeros() || 4370 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4371 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4372 return new ICmpInst(Pred, X, Y); 4373 } 4374 4375 BinaryOperator *SRem = nullptr; 4376 // icmp (srem X, Y), Y 4377 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4378 SRem = BO0; 4379 // icmp Y, (srem X, Y) 4380 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4381 Op0 == BO1->getOperand(1)) 4382 SRem = BO1; 4383 if (SRem) { 4384 // We don't check hasOneUse to avoid increasing register pressure because 4385 // the value we use is the same value this instruction was already using. 4386 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4387 default: 4388 break; 4389 case ICmpInst::ICMP_EQ: 4390 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4391 case ICmpInst::ICMP_NE: 4392 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4393 case ICmpInst::ICMP_SGT: 4394 case ICmpInst::ICMP_SGE: 4395 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4396 Constant::getAllOnesValue(SRem->getType())); 4397 case ICmpInst::ICMP_SLT: 4398 case ICmpInst::ICMP_SLE: 4399 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4400 Constant::getNullValue(SRem->getType())); 4401 } 4402 } 4403 4404 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4405 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4406 switch (BO0->getOpcode()) { 4407 default: 4408 break; 4409 case Instruction::Add: 4410 case Instruction::Sub: 4411 case Instruction::Xor: { 4412 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4413 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4414 4415 const APInt *C; 4416 if (match(BO0->getOperand(1), m_APInt(C))) { 4417 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4418 if (C->isSignMask()) { 4419 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4420 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4421 } 4422 4423 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4424 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4425 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4426 NewPred = I.getSwappedPredicate(NewPred); 4427 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4428 } 4429 } 4430 break; 4431 } 4432 case Instruction::Mul: { 4433 if (!I.isEquality()) 4434 break; 4435 4436 const APInt *C; 4437 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4438 !C->isOne()) { 4439 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4440 // Mask = -1 >> count-trailing-zeros(C). 4441 if (unsigned TZs = C->countTrailingZeros()) { 4442 Constant *Mask = ConstantInt::get( 4443 BO0->getType(), 4444 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4445 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4446 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4447 return new ICmpInst(Pred, And1, And2); 4448 } 4449 } 4450 break; 4451 } 4452 case Instruction::UDiv: 4453 case Instruction::LShr: 4454 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4455 break; 4456 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4457 4458 case Instruction::SDiv: 4459 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4460 break; 4461 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4462 4463 case Instruction::AShr: 4464 if (!BO0->isExact() || !BO1->isExact()) 4465 break; 4466 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4467 4468 case Instruction::Shl: { 4469 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4470 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4471 if (!NUW && !NSW) 4472 break; 4473 if (!NSW && I.isSigned()) 4474 break; 4475 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4476 } 4477 } 4478 } 4479 4480 if (BO0) { 4481 // Transform A & (L - 1) `ult` L --> L != 0 4482 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4483 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4484 4485 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4486 auto *Zero = Constant::getNullValue(BO0->getType()); 4487 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4488 } 4489 } 4490 4491 if (Value *V = foldMultiplicationOverflowCheck(I)) 4492 return replaceInstUsesWith(I, V); 4493 4494 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4495 return replaceInstUsesWith(I, V); 4496 4497 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4498 return replaceInstUsesWith(I, V); 4499 4500 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4501 return replaceInstUsesWith(I, V); 4502 4503 return nullptr; 4504 } 4505 4506 /// Fold icmp Pred min|max(X, Y), X. 4507 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4508 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4509 Value *Op0 = Cmp.getOperand(0); 4510 Value *X = Cmp.getOperand(1); 4511 4512 // Canonicalize minimum or maximum operand to LHS of the icmp. 4513 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4514 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4515 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4516 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4517 std::swap(Op0, X); 4518 Pred = Cmp.getSwappedPredicate(); 4519 } 4520 4521 Value *Y; 4522 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4523 // smin(X, Y) == X --> X s<= Y 4524 // smin(X, Y) s>= X --> X s<= Y 4525 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4526 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4527 4528 // smin(X, Y) != X --> X s> Y 4529 // smin(X, Y) s< X --> X s> Y 4530 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4531 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4532 4533 // These cases should be handled in InstSimplify: 4534 // smin(X, Y) s<= X --> true 4535 // smin(X, Y) s> X --> false 4536 return nullptr; 4537 } 4538 4539 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4540 // smax(X, Y) == X --> X s>= Y 4541 // smax(X, Y) s<= X --> X s>= Y 4542 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4543 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4544 4545 // smax(X, Y) != X --> X s< Y 4546 // smax(X, Y) s> X --> X s< Y 4547 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4548 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4549 4550 // These cases should be handled in InstSimplify: 4551 // smax(X, Y) s>= X --> true 4552 // smax(X, Y) s< X --> false 4553 return nullptr; 4554 } 4555 4556 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4557 // umin(X, Y) == X --> X u<= Y 4558 // umin(X, Y) u>= X --> X u<= Y 4559 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4560 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4561 4562 // umin(X, Y) != X --> X u> Y 4563 // umin(X, Y) u< X --> X u> Y 4564 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4565 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4566 4567 // These cases should be handled in InstSimplify: 4568 // umin(X, Y) u<= X --> true 4569 // umin(X, Y) u> X --> false 4570 return nullptr; 4571 } 4572 4573 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4574 // umax(X, Y) == X --> X u>= Y 4575 // umax(X, Y) u<= X --> X u>= Y 4576 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4577 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4578 4579 // umax(X, Y) != X --> X u< Y 4580 // umax(X, Y) u> X --> X u< Y 4581 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4582 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4583 4584 // These cases should be handled in InstSimplify: 4585 // umax(X, Y) u>= X --> true 4586 // umax(X, Y) u< X --> false 4587 return nullptr; 4588 } 4589 4590 return nullptr; 4591 } 4592 4593 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4594 if (!I.isEquality()) 4595 return nullptr; 4596 4597 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4598 const CmpInst::Predicate Pred = I.getPredicate(); 4599 Value *A, *B, *C, *D; 4600 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4601 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4602 Value *OtherVal = A == Op1 ? B : A; 4603 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4604 } 4605 4606 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4607 // A^c1 == C^c2 --> A == C^(c1^c2) 4608 ConstantInt *C1, *C2; 4609 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4610 Op1->hasOneUse()) { 4611 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4612 Value *Xor = Builder.CreateXor(C, NC); 4613 return new ICmpInst(Pred, A, Xor); 4614 } 4615 4616 // A^B == A^D -> B == D 4617 if (A == C) 4618 return new ICmpInst(Pred, B, D); 4619 if (A == D) 4620 return new ICmpInst(Pred, B, C); 4621 if (B == C) 4622 return new ICmpInst(Pred, A, D); 4623 if (B == D) 4624 return new ICmpInst(Pred, A, C); 4625 } 4626 } 4627 4628 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4629 // A == (A^B) -> B == 0 4630 Value *OtherVal = A == Op0 ? B : A; 4631 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4632 } 4633 4634 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4635 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4636 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4637 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4638 4639 if (A == C) { 4640 X = B; 4641 Y = D; 4642 Z = A; 4643 } else if (A == D) { 4644 X = B; 4645 Y = C; 4646 Z = A; 4647 } else if (B == C) { 4648 X = A; 4649 Y = D; 4650 Z = B; 4651 } else if (B == D) { 4652 X = A; 4653 Y = C; 4654 Z = B; 4655 } 4656 4657 if (X) { // Build (X^Y) & Z 4658 Op1 = Builder.CreateXor(X, Y); 4659 Op1 = Builder.CreateAnd(Op1, Z); 4660 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4661 } 4662 } 4663 4664 { 4665 // Similar to above, but specialized for constant because invert is needed: 4666 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4667 Value *X, *Y; 4668 Constant *C; 4669 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4670 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4671 Value *Xor = Builder.CreateXor(X, Y); 4672 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4673 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4674 } 4675 } 4676 4677 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4678 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4679 ConstantInt *Cst1; 4680 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4681 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4682 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4683 match(Op1, m_ZExt(m_Value(A))))) { 4684 APInt Pow2 = Cst1->getValue() + 1; 4685 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4686 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4687 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4688 } 4689 4690 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4691 // For lshr and ashr pairs. 4692 const APInt *AP1, *AP2; 4693 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 4694 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) || 4695 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 4696 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) { 4697 if (AP1 != AP2) 4698 return nullptr; 4699 unsigned TypeBits = AP1->getBitWidth(); 4700 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 4701 if (ShAmt < TypeBits && ShAmt != 0) { 4702 ICmpInst::Predicate NewPred = 4703 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4704 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4705 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4706 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 4707 } 4708 } 4709 4710 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4711 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4712 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4713 unsigned TypeBits = Cst1->getBitWidth(); 4714 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4715 if (ShAmt < TypeBits && ShAmt != 0) { 4716 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4717 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4718 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4719 I.getName() + ".mask"); 4720 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4721 } 4722 } 4723 4724 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4725 // "icmp (and X, mask), cst" 4726 uint64_t ShAmt = 0; 4727 if (Op0->hasOneUse() && 4728 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4729 match(Op1, m_ConstantInt(Cst1)) && 4730 // Only do this when A has multiple uses. This is most important to do 4731 // when it exposes other optimizations. 4732 !A->hasOneUse()) { 4733 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4734 4735 if (ShAmt < ASize) { 4736 APInt MaskV = 4737 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4738 MaskV <<= ShAmt; 4739 4740 APInt CmpV = Cst1->getValue().zext(ASize); 4741 CmpV <<= ShAmt; 4742 4743 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4744 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4745 } 4746 } 4747 4748 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4749 return ICmp; 4750 4751 // Canonicalize checking for a power-of-2-or-zero value: 4752 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4753 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4754 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4755 m_Deferred(A)))) || 4756 !match(Op1, m_ZeroInt())) 4757 A = nullptr; 4758 4759 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4760 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4761 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4762 A = Op1; 4763 else if (match(Op1, 4764 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4765 A = Op0; 4766 4767 if (A) { 4768 Type *Ty = A->getType(); 4769 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4770 return Pred == ICmpInst::ICMP_EQ 4771 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4772 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4773 } 4774 4775 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4776 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4777 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4778 // of instcombine. 4779 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4780 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4781 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4782 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4783 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4784 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4785 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4786 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4787 : ICmpInst::ICMP_UGE, 4788 Add, ConstantInt::get(A->getType(), C.shl(1))); 4789 } 4790 4791 return nullptr; 4792 } 4793 4794 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4795 InstCombiner::BuilderTy &Builder) { 4796 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4797 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4798 4799 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4800 // The trunc masks high bits while the compare may effectively mask low bits. 4801 Value *X; 4802 const APInt *C; 4803 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4804 return nullptr; 4805 4806 // This matches patterns corresponding to tests of the signbit as well as: 4807 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4808 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4809 APInt Mask; 4810 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4811 Value *And = Builder.CreateAnd(X, Mask); 4812 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4813 return new ICmpInst(Pred, And, Zero); 4814 } 4815 4816 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4817 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4818 // If C is a negative power-of-2 (high-bit mask): 4819 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4820 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4821 Value *And = Builder.CreateAnd(X, MaskC); 4822 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4823 } 4824 4825 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4826 // If C is not-of-power-of-2 (one clear bit): 4827 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4828 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4829 Value *And = Builder.CreateAnd(X, MaskC); 4830 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4831 } 4832 4833 return nullptr; 4834 } 4835 4836 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4837 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4838 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4839 Value *X; 4840 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4841 return nullptr; 4842 4843 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4844 bool IsSignedCmp = ICmp.isSigned(); 4845 4846 // icmp Pred (ext X), (ext Y) 4847 Value *Y; 4848 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4849 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4850 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4851 4852 // If we have mismatched casts, treat the zext of a non-negative source as 4853 // a sext to simulate matching casts. Otherwise, we are done. 4854 // TODO: Can we handle some predicates (equality) without non-negative? 4855 if (IsZext0 != IsZext1) { 4856 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4857 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4858 IsSignedExt = true; 4859 else 4860 return nullptr; 4861 } 4862 4863 // Not an extension from the same type? 4864 Type *XTy = X->getType(), *YTy = Y->getType(); 4865 if (XTy != YTy) { 4866 // One of the casts must have one use because we are creating a new cast. 4867 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4868 return nullptr; 4869 // Extend the narrower operand to the type of the wider operand. 4870 CastInst::CastOps CastOpcode = 4871 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4872 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4873 X = Builder.CreateCast(CastOpcode, X, YTy); 4874 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4875 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4876 else 4877 return nullptr; 4878 } 4879 4880 // (zext X) == (zext Y) --> X == Y 4881 // (sext X) == (sext Y) --> X == Y 4882 if (ICmp.isEquality()) 4883 return new ICmpInst(ICmp.getPredicate(), X, Y); 4884 4885 // A signed comparison of sign extended values simplifies into a 4886 // signed comparison. 4887 if (IsSignedCmp && IsSignedExt) 4888 return new ICmpInst(ICmp.getPredicate(), X, Y); 4889 4890 // The other three cases all fold into an unsigned comparison. 4891 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4892 } 4893 4894 // Below here, we are only folding a compare with constant. 4895 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4896 if (!C) 4897 return nullptr; 4898 4899 // Compute the constant that would happen if we truncated to SrcTy then 4900 // re-extended to DestTy. 4901 Type *SrcTy = CastOp0->getSrcTy(); 4902 Type *DestTy = CastOp0->getDestTy(); 4903 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4904 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4905 4906 // If the re-extended constant didn't change... 4907 if (Res2 == C) { 4908 if (ICmp.isEquality()) 4909 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4910 4911 // A signed comparison of sign extended values simplifies into a 4912 // signed comparison. 4913 if (IsSignedExt && IsSignedCmp) 4914 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4915 4916 // The other three cases all fold into an unsigned comparison. 4917 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4918 } 4919 4920 // The re-extended constant changed, partly changed (in the case of a vector), 4921 // or could not be determined to be equal (in the case of a constant 4922 // expression), so the constant cannot be represented in the shorter type. 4923 // All the cases that fold to true or false will have already been handled 4924 // by simplifyICmpInst, so only deal with the tricky case. 4925 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4926 return nullptr; 4927 4928 // Is source op positive? 4929 // icmp ult (sext X), C --> icmp sgt X, -1 4930 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4931 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4932 4933 // Is source op negative? 4934 // icmp ugt (sext X), C --> icmp slt X, 0 4935 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4936 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4937 } 4938 4939 /// Handle icmp (cast x), (cast or constant). 4940 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4941 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4942 // icmp compares only pointer's value. 4943 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4944 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4945 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4946 if (SimplifiedOp0 || SimplifiedOp1) 4947 return new ICmpInst(ICmp.getPredicate(), 4948 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4949 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4950 4951 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4952 if (!CastOp0) 4953 return nullptr; 4954 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4955 return nullptr; 4956 4957 Value *Op0Src = CastOp0->getOperand(0); 4958 Type *SrcTy = CastOp0->getSrcTy(); 4959 Type *DestTy = CastOp0->getDestTy(); 4960 4961 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4962 // integer type is the same size as the pointer type. 4963 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4964 if (isa<VectorType>(SrcTy)) { 4965 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4966 DestTy = cast<VectorType>(DestTy)->getElementType(); 4967 } 4968 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4969 }; 4970 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4971 CompatibleSizes(SrcTy, DestTy)) { 4972 Value *NewOp1 = nullptr; 4973 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4974 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4975 if (PtrSrc->getType()->getPointerAddressSpace() == 4976 Op0Src->getType()->getPointerAddressSpace()) { 4977 NewOp1 = PtrToIntOp1->getOperand(0); 4978 // If the pointer types don't match, insert a bitcast. 4979 if (Op0Src->getType() != NewOp1->getType()) 4980 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4981 } 4982 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4983 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4984 } 4985 4986 if (NewOp1) 4987 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4988 } 4989 4990 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4991 return R; 4992 4993 return foldICmpWithZextOrSext(ICmp); 4994 } 4995 4996 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4997 switch (BinaryOp) { 4998 default: 4999 llvm_unreachable("Unsupported binary op"); 5000 case Instruction::Add: 5001 case Instruction::Sub: 5002 return match(RHS, m_Zero()); 5003 case Instruction::Mul: 5004 return match(RHS, m_One()); 5005 } 5006 } 5007 5008 OverflowResult 5009 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 5010 bool IsSigned, Value *LHS, Value *RHS, 5011 Instruction *CxtI) const { 5012 switch (BinaryOp) { 5013 default: 5014 llvm_unreachable("Unsupported binary op"); 5015 case Instruction::Add: 5016 if (IsSigned) 5017 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 5018 else 5019 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 5020 case Instruction::Sub: 5021 if (IsSigned) 5022 return computeOverflowForSignedSub(LHS, RHS, CxtI); 5023 else 5024 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 5025 case Instruction::Mul: 5026 if (IsSigned) 5027 return computeOverflowForSignedMul(LHS, RHS, CxtI); 5028 else 5029 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 5030 } 5031 } 5032 5033 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 5034 bool IsSigned, Value *LHS, 5035 Value *RHS, Instruction &OrigI, 5036 Value *&Result, 5037 Constant *&Overflow) { 5038 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 5039 std::swap(LHS, RHS); 5040 5041 // If the overflow check was an add followed by a compare, the insertion point 5042 // may be pointing to the compare. We want to insert the new instructions 5043 // before the add in case there are uses of the add between the add and the 5044 // compare. 5045 Builder.SetInsertPoint(&OrigI); 5046 5047 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 5048 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 5049 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 5050 5051 if (isNeutralValue(BinaryOp, RHS)) { 5052 Result = LHS; 5053 Overflow = ConstantInt::getFalse(OverflowTy); 5054 return true; 5055 } 5056 5057 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 5058 case OverflowResult::MayOverflow: 5059 return false; 5060 case OverflowResult::AlwaysOverflowsLow: 5061 case OverflowResult::AlwaysOverflowsHigh: 5062 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5063 Result->takeName(&OrigI); 5064 Overflow = ConstantInt::getTrue(OverflowTy); 5065 return true; 5066 case OverflowResult::NeverOverflows: 5067 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5068 Result->takeName(&OrigI); 5069 Overflow = ConstantInt::getFalse(OverflowTy); 5070 if (auto *Inst = dyn_cast<Instruction>(Result)) { 5071 if (IsSigned) 5072 Inst->setHasNoSignedWrap(); 5073 else 5074 Inst->setHasNoUnsignedWrap(); 5075 } 5076 return true; 5077 } 5078 5079 llvm_unreachable("Unexpected overflow result"); 5080 } 5081 5082 /// Recognize and process idiom involving test for multiplication 5083 /// overflow. 5084 /// 5085 /// The caller has matched a pattern of the form: 5086 /// I = cmp u (mul(zext A, zext B), V 5087 /// The function checks if this is a test for overflow and if so replaces 5088 /// multiplication with call to 'mul.with.overflow' intrinsic. 5089 /// 5090 /// \param I Compare instruction. 5091 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5092 /// the compare instruction. Must be of integer type. 5093 /// \param OtherVal The other argument of compare instruction. 5094 /// \returns Instruction which must replace the compare instruction, NULL if no 5095 /// replacement required. 5096 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5097 Value *OtherVal, 5098 InstCombinerImpl &IC) { 5099 // Don't bother doing this transformation for pointers, don't do it for 5100 // vectors. 5101 if (!isa<IntegerType>(MulVal->getType())) 5102 return nullptr; 5103 5104 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5105 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5106 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5107 if (!MulInstr) 5108 return nullptr; 5109 assert(MulInstr->getOpcode() == Instruction::Mul); 5110 5111 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5112 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5113 assert(LHS->getOpcode() == Instruction::ZExt); 5114 assert(RHS->getOpcode() == Instruction::ZExt); 5115 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5116 5117 // Calculate type and width of the result produced by mul.with.overflow. 5118 Type *TyA = A->getType(), *TyB = B->getType(); 5119 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5120 WidthB = TyB->getPrimitiveSizeInBits(); 5121 unsigned MulWidth; 5122 Type *MulType; 5123 if (WidthB > WidthA) { 5124 MulWidth = WidthB; 5125 MulType = TyB; 5126 } else { 5127 MulWidth = WidthA; 5128 MulType = TyA; 5129 } 5130 5131 // In order to replace the original mul with a narrower mul.with.overflow, 5132 // all uses must ignore upper bits of the product. The number of used low 5133 // bits must be not greater than the width of mul.with.overflow. 5134 if (MulVal->hasNUsesOrMore(2)) 5135 for (User *U : MulVal->users()) { 5136 if (U == &I) 5137 continue; 5138 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5139 // Check if truncation ignores bits above MulWidth. 5140 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5141 if (TruncWidth > MulWidth) 5142 return nullptr; 5143 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5144 // Check if AND ignores bits above MulWidth. 5145 if (BO->getOpcode() != Instruction::And) 5146 return nullptr; 5147 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5148 const APInt &CVal = CI->getValue(); 5149 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5150 return nullptr; 5151 } else { 5152 // In this case we could have the operand of the binary operation 5153 // being defined in another block, and performing the replacement 5154 // could break the dominance relation. 5155 return nullptr; 5156 } 5157 } else { 5158 // Other uses prohibit this transformation. 5159 return nullptr; 5160 } 5161 } 5162 5163 // Recognize patterns 5164 switch (I.getPredicate()) { 5165 case ICmpInst::ICMP_EQ: 5166 case ICmpInst::ICMP_NE: 5167 // Recognize pattern: 5168 // mulval = mul(zext A, zext B) 5169 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5170 ConstantInt *CI; 5171 Value *ValToMask; 5172 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5173 if (ValToMask != MulVal) 5174 return nullptr; 5175 const APInt &CVal = CI->getValue() + 1; 5176 if (CVal.isPowerOf2()) { 5177 unsigned MaskWidth = CVal.logBase2(); 5178 if (MaskWidth == MulWidth) 5179 break; // Recognized 5180 } 5181 } 5182 return nullptr; 5183 5184 case ICmpInst::ICMP_UGT: 5185 // Recognize pattern: 5186 // mulval = mul(zext A, zext B) 5187 // cmp ugt mulval, max 5188 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5189 APInt MaxVal = APInt::getMaxValue(MulWidth); 5190 MaxVal = MaxVal.zext(CI->getBitWidth()); 5191 if (MaxVal.eq(CI->getValue())) 5192 break; // Recognized 5193 } 5194 return nullptr; 5195 5196 case ICmpInst::ICMP_UGE: 5197 // Recognize pattern: 5198 // mulval = mul(zext A, zext B) 5199 // cmp uge mulval, max+1 5200 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5201 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5202 if (MaxVal.eq(CI->getValue())) 5203 break; // Recognized 5204 } 5205 return nullptr; 5206 5207 case ICmpInst::ICMP_ULE: 5208 // Recognize pattern: 5209 // mulval = mul(zext A, zext B) 5210 // cmp ule mulval, max 5211 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5212 APInt MaxVal = APInt::getMaxValue(MulWidth); 5213 MaxVal = MaxVal.zext(CI->getBitWidth()); 5214 if (MaxVal.eq(CI->getValue())) 5215 break; // Recognized 5216 } 5217 return nullptr; 5218 5219 case ICmpInst::ICMP_ULT: 5220 // Recognize pattern: 5221 // mulval = mul(zext A, zext B) 5222 // cmp ule mulval, max + 1 5223 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5224 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5225 if (MaxVal.eq(CI->getValue())) 5226 break; // Recognized 5227 } 5228 return nullptr; 5229 5230 default: 5231 return nullptr; 5232 } 5233 5234 InstCombiner::BuilderTy &Builder = IC.Builder; 5235 Builder.SetInsertPoint(MulInstr); 5236 5237 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5238 Value *MulA = A, *MulB = B; 5239 if (WidthA < MulWidth) 5240 MulA = Builder.CreateZExt(A, MulType); 5241 if (WidthB < MulWidth) 5242 MulB = Builder.CreateZExt(B, MulType); 5243 Function *F = Intrinsic::getDeclaration( 5244 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5245 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5246 IC.addToWorklist(MulInstr); 5247 5248 // If there are uses of mul result other than the comparison, we know that 5249 // they are truncation or binary AND. Change them to use result of 5250 // mul.with.overflow and adjust properly mask/size. 5251 if (MulVal->hasNUsesOrMore(2)) { 5252 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5253 for (User *U : make_early_inc_range(MulVal->users())) { 5254 if (U == &I || U == OtherVal) 5255 continue; 5256 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5257 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5258 IC.replaceInstUsesWith(*TI, Mul); 5259 else 5260 TI->setOperand(0, Mul); 5261 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5262 assert(BO->getOpcode() == Instruction::And); 5263 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5264 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5265 APInt ShortMask = CI->getValue().trunc(MulWidth); 5266 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5267 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5268 IC.replaceInstUsesWith(*BO, Zext); 5269 } else { 5270 llvm_unreachable("Unexpected Binary operation"); 5271 } 5272 IC.addToWorklist(cast<Instruction>(U)); 5273 } 5274 } 5275 if (isa<Instruction>(OtherVal)) 5276 IC.addToWorklist(cast<Instruction>(OtherVal)); 5277 5278 // The original icmp gets replaced with the overflow value, maybe inverted 5279 // depending on predicate. 5280 bool Inverse = false; 5281 switch (I.getPredicate()) { 5282 case ICmpInst::ICMP_NE: 5283 break; 5284 case ICmpInst::ICMP_EQ: 5285 Inverse = true; 5286 break; 5287 case ICmpInst::ICMP_UGT: 5288 case ICmpInst::ICMP_UGE: 5289 if (I.getOperand(0) == MulVal) 5290 break; 5291 Inverse = true; 5292 break; 5293 case ICmpInst::ICMP_ULT: 5294 case ICmpInst::ICMP_ULE: 5295 if (I.getOperand(1) == MulVal) 5296 break; 5297 Inverse = true; 5298 break; 5299 default: 5300 llvm_unreachable("Unexpected predicate"); 5301 } 5302 if (Inverse) { 5303 Value *Res = Builder.CreateExtractValue(Call, 1); 5304 return BinaryOperator::CreateNot(Res); 5305 } 5306 5307 return ExtractValueInst::Create(Call, 1); 5308 } 5309 5310 /// When performing a comparison against a constant, it is possible that not all 5311 /// the bits in the LHS are demanded. This helper method computes the mask that 5312 /// IS demanded. 5313 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5314 const APInt *RHS; 5315 if (!match(I.getOperand(1), m_APInt(RHS))) 5316 return APInt::getAllOnes(BitWidth); 5317 5318 // If this is a normal comparison, it demands all bits. If it is a sign bit 5319 // comparison, it only demands the sign bit. 5320 bool UnusedBit; 5321 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5322 return APInt::getSignMask(BitWidth); 5323 5324 switch (I.getPredicate()) { 5325 // For a UGT comparison, we don't care about any bits that 5326 // correspond to the trailing ones of the comparand. The value of these 5327 // bits doesn't impact the outcome of the comparison, because any value 5328 // greater than the RHS must differ in a bit higher than these due to carry. 5329 case ICmpInst::ICMP_UGT: 5330 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5331 5332 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5333 // Any value less than the RHS must differ in a higher bit because of carries. 5334 case ICmpInst::ICMP_ULT: 5335 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5336 5337 default: 5338 return APInt::getAllOnes(BitWidth); 5339 } 5340 } 5341 5342 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5343 /// should be swapped. 5344 /// The decision is based on how many times these two operands are reused 5345 /// as subtract operands and their positions in those instructions. 5346 /// The rationale is that several architectures use the same instruction for 5347 /// both subtract and cmp. Thus, it is better if the order of those operands 5348 /// match. 5349 /// \return true if Op0 and Op1 should be swapped. 5350 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5351 // Filter out pointer values as those cannot appear directly in subtract. 5352 // FIXME: we may want to go through inttoptrs or bitcasts. 5353 if (Op0->getType()->isPointerTy()) 5354 return false; 5355 // If a subtract already has the same operands as a compare, swapping would be 5356 // bad. If a subtract has the same operands as a compare but in reverse order, 5357 // then swapping is good. 5358 int GoodToSwap = 0; 5359 for (const User *U : Op0->users()) { 5360 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5361 GoodToSwap++; 5362 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5363 GoodToSwap--; 5364 } 5365 return GoodToSwap > 0; 5366 } 5367 5368 /// Check that one use is in the same block as the definition and all 5369 /// other uses are in blocks dominated by a given block. 5370 /// 5371 /// \param DI Definition 5372 /// \param UI Use 5373 /// \param DB Block that must dominate all uses of \p DI outside 5374 /// the parent block 5375 /// \return true when \p UI is the only use of \p DI in the parent block 5376 /// and all other uses of \p DI are in blocks dominated by \p DB. 5377 /// 5378 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5379 const Instruction *UI, 5380 const BasicBlock *DB) const { 5381 assert(DI && UI && "Instruction not defined\n"); 5382 // Ignore incomplete definitions. 5383 if (!DI->getParent()) 5384 return false; 5385 // DI and UI must be in the same block. 5386 if (DI->getParent() != UI->getParent()) 5387 return false; 5388 // Protect from self-referencing blocks. 5389 if (DI->getParent() == DB) 5390 return false; 5391 for (const User *U : DI->users()) { 5392 auto *Usr = cast<Instruction>(U); 5393 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5394 return false; 5395 } 5396 return true; 5397 } 5398 5399 /// Return true when the instruction sequence within a block is select-cmp-br. 5400 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5401 const BasicBlock *BB = SI->getParent(); 5402 if (!BB) 5403 return false; 5404 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5405 if (!BI || BI->getNumSuccessors() != 2) 5406 return false; 5407 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5408 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5409 return false; 5410 return true; 5411 } 5412 5413 /// True when a select result is replaced by one of its operands 5414 /// in select-icmp sequence. This will eventually result in the elimination 5415 /// of the select. 5416 /// 5417 /// \param SI Select instruction 5418 /// \param Icmp Compare instruction 5419 /// \param SIOpd Operand that replaces the select 5420 /// 5421 /// Notes: 5422 /// - The replacement is global and requires dominator information 5423 /// - The caller is responsible for the actual replacement 5424 /// 5425 /// Example: 5426 /// 5427 /// entry: 5428 /// %4 = select i1 %3, %C* %0, %C* null 5429 /// %5 = icmp eq %C* %4, null 5430 /// br i1 %5, label %9, label %7 5431 /// ... 5432 /// ; <label>:7 ; preds = %entry 5433 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5434 /// ... 5435 /// 5436 /// can be transformed to 5437 /// 5438 /// %5 = icmp eq %C* %0, null 5439 /// %6 = select i1 %3, i1 %5, i1 true 5440 /// br i1 %6, label %9, label %7 5441 /// ... 5442 /// ; <label>:7 ; preds = %entry 5443 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5444 /// 5445 /// Similar when the first operand of the select is a constant or/and 5446 /// the compare is for not equal rather than equal. 5447 /// 5448 /// NOTE: The function is only called when the select and compare constants 5449 /// are equal, the optimization can work only for EQ predicates. This is not a 5450 /// major restriction since a NE compare should be 'normalized' to an equal 5451 /// compare, which usually happens in the combiner and test case 5452 /// select-cmp-br.ll checks for it. 5453 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5454 const ICmpInst *Icmp, 5455 const unsigned SIOpd) { 5456 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5457 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5458 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5459 // The check for the single predecessor is not the best that can be 5460 // done. But it protects efficiently against cases like when SI's 5461 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5462 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5463 // replaced can be reached on either path. So the uniqueness check 5464 // guarantees that the path all uses of SI (outside SI's parent) are on 5465 // is disjoint from all other paths out of SI. But that information 5466 // is more expensive to compute, and the trade-off here is in favor 5467 // of compile-time. It should also be noticed that we check for a single 5468 // predecessor and not only uniqueness. This to handle the situation when 5469 // Succ and Succ1 points to the same basic block. 5470 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5471 NumSel++; 5472 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5473 return true; 5474 } 5475 } 5476 return false; 5477 } 5478 5479 /// Try to fold the comparison based on range information we can get by checking 5480 /// whether bits are known to be zero or one in the inputs. 5481 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5482 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5483 Type *Ty = Op0->getType(); 5484 ICmpInst::Predicate Pred = I.getPredicate(); 5485 5486 // Get scalar or pointer size. 5487 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5488 ? Ty->getScalarSizeInBits() 5489 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5490 5491 if (!BitWidth) 5492 return nullptr; 5493 5494 KnownBits Op0Known(BitWidth); 5495 KnownBits Op1Known(BitWidth); 5496 5497 if (SimplifyDemandedBits(&I, 0, 5498 getDemandedBitsLHSMask(I, BitWidth), 5499 Op0Known, 0)) 5500 return &I; 5501 5502 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5503 return &I; 5504 5505 // Given the known and unknown bits, compute a range that the LHS could be 5506 // in. Compute the Min, Max and RHS values based on the known bits. For the 5507 // EQ and NE we use unsigned values. 5508 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5509 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5510 if (I.isSigned()) { 5511 Op0Min = Op0Known.getSignedMinValue(); 5512 Op0Max = Op0Known.getSignedMaxValue(); 5513 Op1Min = Op1Known.getSignedMinValue(); 5514 Op1Max = Op1Known.getSignedMaxValue(); 5515 } else { 5516 Op0Min = Op0Known.getMinValue(); 5517 Op0Max = Op0Known.getMaxValue(); 5518 Op1Min = Op1Known.getMinValue(); 5519 Op1Max = Op1Known.getMaxValue(); 5520 } 5521 5522 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5523 // out that the LHS or RHS is a constant. Constant fold this now, so that 5524 // code below can assume that Min != Max. 5525 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5526 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5527 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5528 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5529 5530 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5531 // min/max canonical compare with some other compare. That could lead to 5532 // conflict with select canonicalization and infinite looping. 5533 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5534 auto isMinMaxCmp = [&](Instruction &Cmp) { 5535 if (!Cmp.hasOneUse()) 5536 return false; 5537 Value *A, *B; 5538 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5539 if (!SelectPatternResult::isMinOrMax(SPF)) 5540 return false; 5541 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5542 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5543 }; 5544 if (!isMinMaxCmp(I)) { 5545 switch (Pred) { 5546 default: 5547 break; 5548 case ICmpInst::ICMP_ULT: { 5549 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5550 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5551 const APInt *CmpC; 5552 if (match(Op1, m_APInt(CmpC))) { 5553 // A <u C -> A == C-1 if min(A)+1 == C 5554 if (*CmpC == Op0Min + 1) 5555 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5556 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5557 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5558 // exceeds the log2 of C. 5559 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5560 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5561 Constant::getNullValue(Op1->getType())); 5562 } 5563 break; 5564 } 5565 case ICmpInst::ICMP_UGT: { 5566 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5567 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5568 const APInt *CmpC; 5569 if (match(Op1, m_APInt(CmpC))) { 5570 // A >u C -> A == C+1 if max(a)-1 == C 5571 if (*CmpC == Op0Max - 1) 5572 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5573 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5574 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5575 // exceeds the log2 of C. 5576 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5577 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5578 Constant::getNullValue(Op1->getType())); 5579 } 5580 break; 5581 } 5582 case ICmpInst::ICMP_SLT: { 5583 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5584 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5585 const APInt *CmpC; 5586 if (match(Op1, m_APInt(CmpC))) { 5587 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5588 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5589 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5590 } 5591 break; 5592 } 5593 case ICmpInst::ICMP_SGT: { 5594 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5595 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5596 const APInt *CmpC; 5597 if (match(Op1, m_APInt(CmpC))) { 5598 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5599 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5600 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5601 } 5602 break; 5603 } 5604 } 5605 } 5606 5607 // Based on the range information we know about the LHS, see if we can 5608 // simplify this comparison. For example, (x&4) < 8 is always true. 5609 switch (Pred) { 5610 default: 5611 llvm_unreachable("Unknown icmp opcode!"); 5612 case ICmpInst::ICMP_EQ: 5613 case ICmpInst::ICMP_NE: { 5614 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5615 return replaceInstUsesWith( 5616 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5617 5618 // If all bits are known zero except for one, then we know at most one bit 5619 // is set. If the comparison is against zero, then this is a check to see if 5620 // *that* bit is set. 5621 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5622 if (Op1Known.isZero()) { 5623 // If the LHS is an AND with the same constant, look through it. 5624 Value *LHS = nullptr; 5625 const APInt *LHSC; 5626 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5627 *LHSC != Op0KnownZeroInverted) 5628 LHS = Op0; 5629 5630 Value *X; 5631 const APInt *C1; 5632 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 5633 Type *XTy = X->getType(); 5634 unsigned Log2C1 = C1->countTrailingZeros(); 5635 APInt C2 = Op0KnownZeroInverted; 5636 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 5637 if (C2Pow2.isPowerOf2()) { 5638 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 5639 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 5640 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 5641 unsigned Log2C2 = C2Pow2.countTrailingZeros(); 5642 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 5643 auto NewPred = 5644 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5645 return new ICmpInst(NewPred, X, CmpC); 5646 } 5647 } 5648 } 5649 break; 5650 } 5651 case ICmpInst::ICMP_ULT: { 5652 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5653 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5654 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5655 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5656 break; 5657 } 5658 case ICmpInst::ICMP_UGT: { 5659 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5660 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5661 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5662 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5663 break; 5664 } 5665 case ICmpInst::ICMP_SLT: { 5666 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5667 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5668 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5669 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5670 break; 5671 } 5672 case ICmpInst::ICMP_SGT: { 5673 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5674 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5675 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5676 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5677 break; 5678 } 5679 case ICmpInst::ICMP_SGE: 5680 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5681 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5682 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5683 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5684 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5685 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5686 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5687 break; 5688 case ICmpInst::ICMP_SLE: 5689 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5690 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5691 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5692 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5693 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5694 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5695 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5696 break; 5697 case ICmpInst::ICMP_UGE: 5698 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5699 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5700 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5701 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5702 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5703 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5704 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5705 break; 5706 case ICmpInst::ICMP_ULE: 5707 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5708 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5709 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5710 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5711 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5712 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5713 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5714 break; 5715 } 5716 5717 // Turn a signed comparison into an unsigned one if both operands are known to 5718 // have the same sign. 5719 if (I.isSigned() && 5720 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5721 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5722 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5723 5724 return nullptr; 5725 } 5726 5727 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 5728 /// then try to reduce patterns based on that limit. 5729 static Instruction *foldICmpUsingBoolRange(ICmpInst &I, 5730 InstCombiner::BuilderTy &Builder) { 5731 Value *X, *Y; 5732 ICmpInst::Predicate Pred; 5733 5734 // X must be 0 and bool must be true for "ULT": 5735 // X <u (zext i1 Y) --> (X == 0) & Y 5736 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 5737 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 5738 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 5739 5740 // X must be 0 or bool must be true for "ULE": 5741 // X <=u (sext i1 Y) --> (X == 0) | Y 5742 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 5743 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 5744 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 5745 5746 return nullptr; 5747 } 5748 5749 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5750 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5751 Constant *C) { 5752 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5753 "Only for relational integer predicates."); 5754 5755 Type *Type = C->getType(); 5756 bool IsSigned = ICmpInst::isSigned(Pred); 5757 5758 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5759 bool WillIncrement = 5760 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5761 5762 // Check if the constant operand can be safely incremented/decremented 5763 // without overflowing/underflowing. 5764 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5765 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5766 }; 5767 5768 Constant *SafeReplacementConstant = nullptr; 5769 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5770 // Bail out if the constant can't be safely incremented/decremented. 5771 if (!ConstantIsOk(CI)) 5772 return llvm::None; 5773 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5774 unsigned NumElts = FVTy->getNumElements(); 5775 for (unsigned i = 0; i != NumElts; ++i) { 5776 Constant *Elt = C->getAggregateElement(i); 5777 if (!Elt) 5778 return llvm::None; 5779 5780 if (isa<UndefValue>(Elt)) 5781 continue; 5782 5783 // Bail out if we can't determine if this constant is min/max or if we 5784 // know that this constant is min/max. 5785 auto *CI = dyn_cast<ConstantInt>(Elt); 5786 if (!CI || !ConstantIsOk(CI)) 5787 return llvm::None; 5788 5789 if (!SafeReplacementConstant) 5790 SafeReplacementConstant = CI; 5791 } 5792 } else { 5793 // ConstantExpr? 5794 return llvm::None; 5795 } 5796 5797 // It may not be safe to change a compare predicate in the presence of 5798 // undefined elements, so replace those elements with the first safe constant 5799 // that we found. 5800 // TODO: in case of poison, it is safe; let's replace undefs only. 5801 if (C->containsUndefOrPoisonElement()) { 5802 assert(SafeReplacementConstant && "Replacement constant not set"); 5803 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5804 } 5805 5806 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5807 5808 // Increment or decrement the constant. 5809 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5810 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5811 5812 return std::make_pair(NewPred, NewC); 5813 } 5814 5815 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5816 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5817 /// allows them to be folded in visitICmpInst. 5818 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5819 ICmpInst::Predicate Pred = I.getPredicate(); 5820 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5821 InstCombiner::isCanonicalPredicate(Pred)) 5822 return nullptr; 5823 5824 Value *Op0 = I.getOperand(0); 5825 Value *Op1 = I.getOperand(1); 5826 auto *Op1C = dyn_cast<Constant>(Op1); 5827 if (!Op1C) 5828 return nullptr; 5829 5830 auto FlippedStrictness = 5831 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5832 if (!FlippedStrictness) 5833 return nullptr; 5834 5835 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5836 } 5837 5838 /// If we have a comparison with a non-canonical predicate, if we can update 5839 /// all the users, invert the predicate and adjust all the users. 5840 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5841 // Is the predicate already canonical? 5842 CmpInst::Predicate Pred = I.getPredicate(); 5843 if (InstCombiner::isCanonicalPredicate(Pred)) 5844 return nullptr; 5845 5846 // Can all users be adjusted to predicate inversion? 5847 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5848 return nullptr; 5849 5850 // Ok, we can canonicalize comparison! 5851 // Let's first invert the comparison's predicate. 5852 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5853 I.setName(I.getName() + ".not"); 5854 5855 // And, adapt users. 5856 freelyInvertAllUsersOf(&I); 5857 5858 return &I; 5859 } 5860 5861 /// Integer compare with boolean values can always be turned into bitwise ops. 5862 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5863 InstCombiner::BuilderTy &Builder) { 5864 Value *A = I.getOperand(0), *B = I.getOperand(1); 5865 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5866 5867 // A boolean compared to true/false can be simplified to Op0/true/false in 5868 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5869 // Cases not handled by InstSimplify are always 'not' of Op0. 5870 if (match(B, m_Zero())) { 5871 switch (I.getPredicate()) { 5872 case CmpInst::ICMP_EQ: // A == 0 -> !A 5873 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5874 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5875 return BinaryOperator::CreateNot(A); 5876 default: 5877 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5878 } 5879 } else if (match(B, m_One())) { 5880 switch (I.getPredicate()) { 5881 case CmpInst::ICMP_NE: // A != 1 -> !A 5882 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5883 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5884 return BinaryOperator::CreateNot(A); 5885 default: 5886 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5887 } 5888 } 5889 5890 switch (I.getPredicate()) { 5891 default: 5892 llvm_unreachable("Invalid icmp instruction!"); 5893 case ICmpInst::ICMP_EQ: 5894 // icmp eq i1 A, B -> ~(A ^ B) 5895 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5896 5897 case ICmpInst::ICMP_NE: 5898 // icmp ne i1 A, B -> A ^ B 5899 return BinaryOperator::CreateXor(A, B); 5900 5901 case ICmpInst::ICMP_UGT: 5902 // icmp ugt -> icmp ult 5903 std::swap(A, B); 5904 LLVM_FALLTHROUGH; 5905 case ICmpInst::ICMP_ULT: 5906 // icmp ult i1 A, B -> ~A & B 5907 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5908 5909 case ICmpInst::ICMP_SGT: 5910 // icmp sgt -> icmp slt 5911 std::swap(A, B); 5912 LLVM_FALLTHROUGH; 5913 case ICmpInst::ICMP_SLT: 5914 // icmp slt i1 A, B -> A & ~B 5915 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5916 5917 case ICmpInst::ICMP_UGE: 5918 // icmp uge -> icmp ule 5919 std::swap(A, B); 5920 LLVM_FALLTHROUGH; 5921 case ICmpInst::ICMP_ULE: 5922 // icmp ule i1 A, B -> ~A | B 5923 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5924 5925 case ICmpInst::ICMP_SGE: 5926 // icmp sge -> icmp sle 5927 std::swap(A, B); 5928 LLVM_FALLTHROUGH; 5929 case ICmpInst::ICMP_SLE: 5930 // icmp sle i1 A, B -> A | ~B 5931 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5932 } 5933 } 5934 5935 // Transform pattern like: 5936 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5937 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5938 // Into: 5939 // (X l>> Y) != 0 5940 // (X l>> Y) == 0 5941 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5942 InstCombiner::BuilderTy &Builder) { 5943 ICmpInst::Predicate Pred, NewPred; 5944 Value *X, *Y; 5945 if (match(&Cmp, 5946 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5947 switch (Pred) { 5948 case ICmpInst::ICMP_ULE: 5949 NewPred = ICmpInst::ICMP_NE; 5950 break; 5951 case ICmpInst::ICMP_UGT: 5952 NewPred = ICmpInst::ICMP_EQ; 5953 break; 5954 default: 5955 return nullptr; 5956 } 5957 } else if (match(&Cmp, m_c_ICmp(Pred, 5958 m_OneUse(m_CombineOr( 5959 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5960 m_Add(m_Shl(m_One(), m_Value(Y)), 5961 m_AllOnes()))), 5962 m_Value(X)))) { 5963 // The variant with 'add' is not canonical, (the variant with 'not' is) 5964 // we only get it because it has extra uses, and can't be canonicalized, 5965 5966 switch (Pred) { 5967 case ICmpInst::ICMP_ULT: 5968 NewPred = ICmpInst::ICMP_NE; 5969 break; 5970 case ICmpInst::ICMP_UGE: 5971 NewPred = ICmpInst::ICMP_EQ; 5972 break; 5973 default: 5974 return nullptr; 5975 } 5976 } else 5977 return nullptr; 5978 5979 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5980 Constant *Zero = Constant::getNullValue(NewX->getType()); 5981 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5982 } 5983 5984 static Instruction *foldVectorCmp(CmpInst &Cmp, 5985 InstCombiner::BuilderTy &Builder) { 5986 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5987 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5988 Value *V1, *V2; 5989 ArrayRef<int> M; 5990 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5991 return nullptr; 5992 5993 // If both arguments of the cmp are shuffles that use the same mask and 5994 // shuffle within a single vector, move the shuffle after the cmp: 5995 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5996 Type *V1Ty = V1->getType(); 5997 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5998 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5999 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 6000 return new ShuffleVectorInst(NewCmp, M); 6001 } 6002 6003 // Try to canonicalize compare with splatted operand and splat constant. 6004 // TODO: We could generalize this for more than splats. See/use the code in 6005 // InstCombiner::foldVectorBinop(). 6006 Constant *C; 6007 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 6008 return nullptr; 6009 6010 // Length-changing splats are ok, so adjust the constants as needed: 6011 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 6012 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 6013 int MaskSplatIndex; 6014 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 6015 // We allow undefs in matching, but this transform removes those for safety. 6016 // Demanded elements analysis should be able to recover some/all of that. 6017 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 6018 ScalarC); 6019 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 6020 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 6021 return new ShuffleVectorInst(NewCmp, NewM); 6022 } 6023 6024 return nullptr; 6025 } 6026 6027 // extract(uadd.with.overflow(A, B), 0) ult A 6028 // -> extract(uadd.with.overflow(A, B), 1) 6029 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 6030 CmpInst::Predicate Pred = I.getPredicate(); 6031 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6032 6033 Value *UAddOv; 6034 Value *A, *B; 6035 auto UAddOvResultPat = m_ExtractValue<0>( 6036 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 6037 if (match(Op0, UAddOvResultPat) && 6038 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 6039 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 6040 (match(A, m_One()) || match(B, m_One()))) || 6041 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 6042 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 6043 // extract(uadd.with.overflow(A, B), 0) < A 6044 // extract(uadd.with.overflow(A, 1), 0) == 0 6045 // extract(uadd.with.overflow(A, -1), 0) != -1 6046 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 6047 else if (match(Op1, UAddOvResultPat) && 6048 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 6049 // A > extract(uadd.with.overflow(A, B), 0) 6050 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 6051 else 6052 return nullptr; 6053 6054 return ExtractValueInst::Create(UAddOv, 1); 6055 } 6056 6057 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 6058 if (!I.getOperand(0)->getType()->isPointerTy() || 6059 NullPointerIsDefined( 6060 I.getParent()->getParent(), 6061 I.getOperand(0)->getType()->getPointerAddressSpace())) { 6062 return nullptr; 6063 } 6064 Instruction *Op; 6065 if (match(I.getOperand(0), m_Instruction(Op)) && 6066 match(I.getOperand(1), m_Zero()) && 6067 Op->isLaunderOrStripInvariantGroup()) { 6068 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 6069 Op->getOperand(0), I.getOperand(1)); 6070 } 6071 return nullptr; 6072 } 6073 6074 /// This function folds patterns produced by lowering of reduce idioms, such as 6075 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6076 /// attempts to generate fewer number of scalar comparisons instead of vector 6077 /// comparisons when possible. 6078 static Instruction *foldReductionIdiom(ICmpInst &I, 6079 InstCombiner::BuilderTy &Builder, 6080 const DataLayout &DL) { 6081 if (I.getType()->isVectorTy()) 6082 return nullptr; 6083 ICmpInst::Predicate OuterPred, InnerPred; 6084 Value *LHS, *RHS; 6085 6086 // Match lowering of @llvm.vector.reduce.and. Turn 6087 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6088 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6089 /// %res = icmp <pred> i8 %scalar_ne, 0 6090 /// 6091 /// into 6092 /// 6093 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6094 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6095 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6096 /// 6097 /// for <pred> in {ne, eq}. 6098 if (!match(&I, m_ICmp(OuterPred, 6099 m_OneUse(m_BitCast(m_OneUse( 6100 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6101 m_Zero()))) 6102 return nullptr; 6103 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6104 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6105 return nullptr; 6106 unsigned NumBits = 6107 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6108 // TODO: Relax this to "not wider than max legal integer type"? 6109 if (!DL.isLegalInteger(NumBits)) 6110 return nullptr; 6111 6112 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6113 auto *ScalarTy = Builder.getIntNTy(NumBits); 6114 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6115 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6116 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6117 I.getName()); 6118 } 6119 6120 return nullptr; 6121 } 6122 6123 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6124 bool Changed = false; 6125 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6126 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6127 unsigned Op0Cplxity = getComplexity(Op0); 6128 unsigned Op1Cplxity = getComplexity(Op1); 6129 6130 /// Orders the operands of the compare so that they are listed from most 6131 /// complex to least complex. This puts constants before unary operators, 6132 /// before binary operators. 6133 if (Op0Cplxity < Op1Cplxity || 6134 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 6135 I.swapOperands(); 6136 std::swap(Op0, Op1); 6137 Changed = true; 6138 } 6139 6140 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6141 return replaceInstUsesWith(I, V); 6142 6143 // Comparing -val or val with non-zero is the same as just comparing val 6144 // ie, abs(val) != 0 -> val != 0 6145 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6146 Value *Cond, *SelectTrue, *SelectFalse; 6147 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6148 m_Value(SelectFalse)))) { 6149 if (Value *V = dyn_castNegVal(SelectTrue)) { 6150 if (V == SelectFalse) 6151 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6152 } 6153 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6154 if (V == SelectTrue) 6155 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6156 } 6157 } 6158 } 6159 6160 if (Op0->getType()->isIntOrIntVectorTy(1)) 6161 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6162 return Res; 6163 6164 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6165 return Res; 6166 6167 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6168 return Res; 6169 6170 if (Instruction *Res = foldICmpWithConstant(I)) 6171 return Res; 6172 6173 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6174 return Res; 6175 6176 if (Instruction *Res = foldICmpUsingBoolRange(I, Builder)) 6177 return Res; 6178 6179 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6180 return Res; 6181 6182 // Test if the ICmpInst instruction is used exclusively by a select as 6183 // part of a minimum or maximum operation. If so, refrain from doing 6184 // any other folding. This helps out other analyses which understand 6185 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6186 // and CodeGen. And in this case, at least one of the comparison 6187 // operands has at least one user besides the compare (the select), 6188 // which would often largely negate the benefit of folding anyway. 6189 // 6190 // Do the same for the other patterns recognized by matchSelectPattern. 6191 if (I.hasOneUse()) 6192 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6193 Value *A, *B; 6194 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6195 if (SPR.Flavor != SPF_UNKNOWN) 6196 return nullptr; 6197 } 6198 6199 // Do this after checking for min/max to prevent infinite looping. 6200 if (Instruction *Res = foldICmpWithZero(I)) 6201 return Res; 6202 6203 // FIXME: We only do this after checking for min/max to prevent infinite 6204 // looping caused by a reverse canonicalization of these patterns for min/max. 6205 // FIXME: The organization of folds is a mess. These would naturally go into 6206 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6207 // down here after the min/max restriction. 6208 ICmpInst::Predicate Pred = I.getPredicate(); 6209 const APInt *C; 6210 if (match(Op1, m_APInt(C))) { 6211 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6212 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6213 Constant *Zero = Constant::getNullValue(Op0->getType()); 6214 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6215 } 6216 6217 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6218 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6219 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6220 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6221 } 6222 } 6223 6224 // The folds in here may rely on wrapping flags and special constants, so 6225 // they can break up min/max idioms in some cases but not seemingly similar 6226 // patterns. 6227 // FIXME: It may be possible to enhance select folding to make this 6228 // unnecessary. It may also be moot if we canonicalize to min/max 6229 // intrinsics. 6230 if (Instruction *Res = foldICmpBinOp(I, Q)) 6231 return Res; 6232 6233 if (Instruction *Res = foldICmpInstWithConstant(I)) 6234 return Res; 6235 6236 // Try to match comparison as a sign bit test. Intentionally do this after 6237 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6238 if (Instruction *New = foldSignBitTest(I)) 6239 return New; 6240 6241 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6242 return Res; 6243 6244 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6245 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6246 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6247 return NI; 6248 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6249 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6250 return NI; 6251 6252 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6253 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6254 return NI; 6255 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6256 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6257 return NI; 6258 6259 // Try to optimize equality comparisons against alloca-based pointers. 6260 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6261 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6262 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6263 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6264 return New; 6265 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6266 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6267 return New; 6268 } 6269 6270 if (Instruction *Res = foldICmpBitCast(I)) 6271 return Res; 6272 6273 // TODO: Hoist this above the min/max bailout. 6274 if (Instruction *R = foldICmpWithCastOp(I)) 6275 return R; 6276 6277 if (Instruction *Res = foldICmpWithMinMax(I)) 6278 return Res; 6279 6280 { 6281 Value *A, *B; 6282 // Transform (A & ~B) == 0 --> (A & B) != 0 6283 // and (A & ~B) != 0 --> (A & B) == 0 6284 // if A is a power of 2. 6285 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6286 match(Op1, m_Zero()) && 6287 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6288 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6289 Op1); 6290 6291 // ~X < ~Y --> Y < X 6292 // ~X < C --> X > ~C 6293 if (match(Op0, m_Not(m_Value(A)))) { 6294 if (match(Op1, m_Not(m_Value(B)))) 6295 return new ICmpInst(I.getPredicate(), B, A); 6296 6297 const APInt *C; 6298 if (match(Op1, m_APInt(C))) 6299 return new ICmpInst(I.getSwappedPredicate(), A, 6300 ConstantInt::get(Op1->getType(), ~(*C))); 6301 } 6302 6303 Instruction *AddI = nullptr; 6304 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6305 m_Instruction(AddI))) && 6306 isa<IntegerType>(A->getType())) { 6307 Value *Result; 6308 Constant *Overflow; 6309 // m_UAddWithOverflow can match patterns that do not include an explicit 6310 // "add" instruction, so check the opcode of the matched op. 6311 if (AddI->getOpcode() == Instruction::Add && 6312 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6313 Result, Overflow)) { 6314 replaceInstUsesWith(*AddI, Result); 6315 eraseInstFromFunction(*AddI); 6316 return replaceInstUsesWith(I, Overflow); 6317 } 6318 } 6319 6320 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6321 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6322 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6323 return R; 6324 } 6325 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6326 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6327 return R; 6328 } 6329 } 6330 6331 if (Instruction *Res = foldICmpEquality(I)) 6332 return Res; 6333 6334 if (Instruction *Res = foldICmpOfUAddOv(I)) 6335 return Res; 6336 6337 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6338 // an i1 which indicates whether or not we successfully did the swap. 6339 // 6340 // Replace comparisons between the old value and the expected value with the 6341 // indicator that 'cmpxchg' returns. 6342 // 6343 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6344 // spuriously fail. In those cases, the old value may equal the expected 6345 // value but it is possible for the swap to not occur. 6346 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6347 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6348 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6349 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6350 !ACXI->isWeak()) 6351 return ExtractValueInst::Create(ACXI, 1); 6352 6353 { 6354 Value *X; 6355 const APInt *C; 6356 // icmp X+Cst, X 6357 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6358 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6359 6360 // icmp X, X+Cst 6361 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6362 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6363 } 6364 6365 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6366 return Res; 6367 6368 if (I.getType()->isVectorTy()) 6369 if (Instruction *Res = foldVectorCmp(I, Builder)) 6370 return Res; 6371 6372 if (Instruction *Res = foldICmpInvariantGroup(I)) 6373 return Res; 6374 6375 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6376 return Res; 6377 6378 return Changed ? &I : nullptr; 6379 } 6380 6381 /// Fold fcmp ([us]itofp x, cst) if possible. 6382 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6383 Instruction *LHSI, 6384 Constant *RHSC) { 6385 if (!isa<ConstantFP>(RHSC)) return nullptr; 6386 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6387 6388 // Get the width of the mantissa. We don't want to hack on conversions that 6389 // might lose information from the integer, e.g. "i64 -> float" 6390 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6391 if (MantissaWidth == -1) return nullptr; // Unknown. 6392 6393 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6394 6395 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6396 6397 if (I.isEquality()) { 6398 FCmpInst::Predicate P = I.getPredicate(); 6399 bool IsExact = false; 6400 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6401 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6402 6403 // If the floating point constant isn't an integer value, we know if we will 6404 // ever compare equal / not equal to it. 6405 if (!IsExact) { 6406 // TODO: Can never be -0.0 and other non-representable values 6407 APFloat RHSRoundInt(RHS); 6408 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6409 if (RHS != RHSRoundInt) { 6410 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6411 return replaceInstUsesWith(I, Builder.getFalse()); 6412 6413 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6414 return replaceInstUsesWith(I, Builder.getTrue()); 6415 } 6416 } 6417 6418 // TODO: If the constant is exactly representable, is it always OK to do 6419 // equality compares as integer? 6420 } 6421 6422 // Check to see that the input is converted from an integer type that is small 6423 // enough that preserves all bits. TODO: check here for "known" sign bits. 6424 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6425 unsigned InputSize = IntTy->getScalarSizeInBits(); 6426 6427 // Following test does NOT adjust InputSize downwards for signed inputs, 6428 // because the most negative value still requires all the mantissa bits 6429 // to distinguish it from one less than that value. 6430 if ((int)InputSize > MantissaWidth) { 6431 // Conversion would lose accuracy. Check if loss can impact comparison. 6432 int Exp = ilogb(RHS); 6433 if (Exp == APFloat::IEK_Inf) { 6434 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6435 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6436 // Conversion could create infinity. 6437 return nullptr; 6438 } else { 6439 // Note that if RHS is zero or NaN, then Exp is negative 6440 // and first condition is trivially false. 6441 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6442 // Conversion could affect comparison. 6443 return nullptr; 6444 } 6445 } 6446 6447 // Otherwise, we can potentially simplify the comparison. We know that it 6448 // will always come through as an integer value and we know the constant is 6449 // not a NAN (it would have been previously simplified). 6450 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6451 6452 ICmpInst::Predicate Pred; 6453 switch (I.getPredicate()) { 6454 default: llvm_unreachable("Unexpected predicate!"); 6455 case FCmpInst::FCMP_UEQ: 6456 case FCmpInst::FCMP_OEQ: 6457 Pred = ICmpInst::ICMP_EQ; 6458 break; 6459 case FCmpInst::FCMP_UGT: 6460 case FCmpInst::FCMP_OGT: 6461 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6462 break; 6463 case FCmpInst::FCMP_UGE: 6464 case FCmpInst::FCMP_OGE: 6465 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6466 break; 6467 case FCmpInst::FCMP_ULT: 6468 case FCmpInst::FCMP_OLT: 6469 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6470 break; 6471 case FCmpInst::FCMP_ULE: 6472 case FCmpInst::FCMP_OLE: 6473 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6474 break; 6475 case FCmpInst::FCMP_UNE: 6476 case FCmpInst::FCMP_ONE: 6477 Pred = ICmpInst::ICMP_NE; 6478 break; 6479 case FCmpInst::FCMP_ORD: 6480 return replaceInstUsesWith(I, Builder.getTrue()); 6481 case FCmpInst::FCMP_UNO: 6482 return replaceInstUsesWith(I, Builder.getFalse()); 6483 } 6484 6485 // Now we know that the APFloat is a normal number, zero or inf. 6486 6487 // See if the FP constant is too large for the integer. For example, 6488 // comparing an i8 to 300.0. 6489 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6490 6491 if (!LHSUnsigned) { 6492 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6493 // and large values. 6494 APFloat SMax(RHS.getSemantics()); 6495 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6496 APFloat::rmNearestTiesToEven); 6497 if (SMax < RHS) { // smax < 13123.0 6498 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6499 Pred == ICmpInst::ICMP_SLE) 6500 return replaceInstUsesWith(I, Builder.getTrue()); 6501 return replaceInstUsesWith(I, Builder.getFalse()); 6502 } 6503 } else { 6504 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6505 // +INF and large values. 6506 APFloat UMax(RHS.getSemantics()); 6507 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6508 APFloat::rmNearestTiesToEven); 6509 if (UMax < RHS) { // umax < 13123.0 6510 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6511 Pred == ICmpInst::ICMP_ULE) 6512 return replaceInstUsesWith(I, Builder.getTrue()); 6513 return replaceInstUsesWith(I, Builder.getFalse()); 6514 } 6515 } 6516 6517 if (!LHSUnsigned) { 6518 // See if the RHS value is < SignedMin. 6519 APFloat SMin(RHS.getSemantics()); 6520 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6521 APFloat::rmNearestTiesToEven); 6522 if (SMin > RHS) { // smin > 12312.0 6523 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6524 Pred == ICmpInst::ICMP_SGE) 6525 return replaceInstUsesWith(I, Builder.getTrue()); 6526 return replaceInstUsesWith(I, Builder.getFalse()); 6527 } 6528 } else { 6529 // See if the RHS value is < UnsignedMin. 6530 APFloat UMin(RHS.getSemantics()); 6531 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6532 APFloat::rmNearestTiesToEven); 6533 if (UMin > RHS) { // umin > 12312.0 6534 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6535 Pred == ICmpInst::ICMP_UGE) 6536 return replaceInstUsesWith(I, Builder.getTrue()); 6537 return replaceInstUsesWith(I, Builder.getFalse()); 6538 } 6539 } 6540 6541 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6542 // [0, UMAX], but it may still be fractional. See if it is fractional by 6543 // casting the FP value to the integer value and back, checking for equality. 6544 // Don't do this for zero, because -0.0 is not fractional. 6545 Constant *RHSInt = LHSUnsigned 6546 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6547 : ConstantExpr::getFPToSI(RHSC, IntTy); 6548 if (!RHS.isZero()) { 6549 bool Equal = LHSUnsigned 6550 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6551 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6552 if (!Equal) { 6553 // If we had a comparison against a fractional value, we have to adjust 6554 // the compare predicate and sometimes the value. RHSC is rounded towards 6555 // zero at this point. 6556 switch (Pred) { 6557 default: llvm_unreachable("Unexpected integer comparison!"); 6558 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6559 return replaceInstUsesWith(I, Builder.getTrue()); 6560 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6561 return replaceInstUsesWith(I, Builder.getFalse()); 6562 case ICmpInst::ICMP_ULE: 6563 // (float)int <= 4.4 --> int <= 4 6564 // (float)int <= -4.4 --> false 6565 if (RHS.isNegative()) 6566 return replaceInstUsesWith(I, Builder.getFalse()); 6567 break; 6568 case ICmpInst::ICMP_SLE: 6569 // (float)int <= 4.4 --> int <= 4 6570 // (float)int <= -4.4 --> int < -4 6571 if (RHS.isNegative()) 6572 Pred = ICmpInst::ICMP_SLT; 6573 break; 6574 case ICmpInst::ICMP_ULT: 6575 // (float)int < -4.4 --> false 6576 // (float)int < 4.4 --> int <= 4 6577 if (RHS.isNegative()) 6578 return replaceInstUsesWith(I, Builder.getFalse()); 6579 Pred = ICmpInst::ICMP_ULE; 6580 break; 6581 case ICmpInst::ICMP_SLT: 6582 // (float)int < -4.4 --> int < -4 6583 // (float)int < 4.4 --> int <= 4 6584 if (!RHS.isNegative()) 6585 Pred = ICmpInst::ICMP_SLE; 6586 break; 6587 case ICmpInst::ICMP_UGT: 6588 // (float)int > 4.4 --> int > 4 6589 // (float)int > -4.4 --> true 6590 if (RHS.isNegative()) 6591 return replaceInstUsesWith(I, Builder.getTrue()); 6592 break; 6593 case ICmpInst::ICMP_SGT: 6594 // (float)int > 4.4 --> int > 4 6595 // (float)int > -4.4 --> int >= -4 6596 if (RHS.isNegative()) 6597 Pred = ICmpInst::ICMP_SGE; 6598 break; 6599 case ICmpInst::ICMP_UGE: 6600 // (float)int >= -4.4 --> true 6601 // (float)int >= 4.4 --> int > 4 6602 if (RHS.isNegative()) 6603 return replaceInstUsesWith(I, Builder.getTrue()); 6604 Pred = ICmpInst::ICMP_UGT; 6605 break; 6606 case ICmpInst::ICMP_SGE: 6607 // (float)int >= -4.4 --> int >= -4 6608 // (float)int >= 4.4 --> int > 4 6609 if (!RHS.isNegative()) 6610 Pred = ICmpInst::ICMP_SGT; 6611 break; 6612 } 6613 } 6614 } 6615 6616 // Lower this FP comparison into an appropriate integer version of the 6617 // comparison. 6618 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6619 } 6620 6621 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6622 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6623 Constant *RHSC) { 6624 // When C is not 0.0 and infinities are not allowed: 6625 // (C / X) < 0.0 is a sign-bit test of X 6626 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6627 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6628 // 6629 // Proof: 6630 // Multiply (C / X) < 0.0 by X * X / C. 6631 // - X is non zero, if it is the flag 'ninf' is violated. 6632 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6633 // the predicate. C is also non zero by definition. 6634 // 6635 // Thus X * X / C is non zero and the transformation is valid. [qed] 6636 6637 FCmpInst::Predicate Pred = I.getPredicate(); 6638 6639 // Check that predicates are valid. 6640 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6641 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6642 return nullptr; 6643 6644 // Check that RHS operand is zero. 6645 if (!match(RHSC, m_AnyZeroFP())) 6646 return nullptr; 6647 6648 // Check fastmath flags ('ninf'). 6649 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6650 return nullptr; 6651 6652 // Check the properties of the dividend. It must not be zero to avoid a 6653 // division by zero (see Proof). 6654 const APFloat *C; 6655 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6656 return nullptr; 6657 6658 if (C->isZero()) 6659 return nullptr; 6660 6661 // Get swapped predicate if necessary. 6662 if (C->isNegative()) 6663 Pred = I.getSwappedPredicate(); 6664 6665 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6666 } 6667 6668 /// Optimize fabs(X) compared with zero. 6669 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6670 Value *X; 6671 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6672 !match(I.getOperand(1), m_PosZeroFP())) 6673 return nullptr; 6674 6675 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6676 I->setPredicate(P); 6677 return IC.replaceOperand(*I, 0, X); 6678 }; 6679 6680 switch (I.getPredicate()) { 6681 case FCmpInst::FCMP_UGE: 6682 case FCmpInst::FCMP_OLT: 6683 // fabs(X) >= 0.0 --> true 6684 // fabs(X) < 0.0 --> false 6685 llvm_unreachable("fcmp should have simplified"); 6686 6687 case FCmpInst::FCMP_OGT: 6688 // fabs(X) > 0.0 --> X != 0.0 6689 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6690 6691 case FCmpInst::FCMP_UGT: 6692 // fabs(X) u> 0.0 --> X u!= 0.0 6693 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6694 6695 case FCmpInst::FCMP_OLE: 6696 // fabs(X) <= 0.0 --> X == 0.0 6697 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6698 6699 case FCmpInst::FCMP_ULE: 6700 // fabs(X) u<= 0.0 --> X u== 0.0 6701 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6702 6703 case FCmpInst::FCMP_OGE: 6704 // fabs(X) >= 0.0 --> !isnan(X) 6705 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6706 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6707 6708 case FCmpInst::FCMP_ULT: 6709 // fabs(X) u< 0.0 --> isnan(X) 6710 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6711 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6712 6713 case FCmpInst::FCMP_OEQ: 6714 case FCmpInst::FCMP_UEQ: 6715 case FCmpInst::FCMP_ONE: 6716 case FCmpInst::FCMP_UNE: 6717 case FCmpInst::FCMP_ORD: 6718 case FCmpInst::FCMP_UNO: 6719 // Look through the fabs() because it doesn't change anything but the sign. 6720 // fabs(X) == 0.0 --> X == 0.0, 6721 // fabs(X) != 0.0 --> X != 0.0 6722 // isnan(fabs(X)) --> isnan(X) 6723 // !isnan(fabs(X) --> !isnan(X) 6724 return replacePredAndOp0(&I, I.getPredicate(), X); 6725 6726 default: 6727 return nullptr; 6728 } 6729 } 6730 6731 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6732 CmpInst::Predicate Pred = I.getPredicate(); 6733 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6734 6735 // Canonicalize fneg as Op1. 6736 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6737 std::swap(Op0, Op1); 6738 Pred = I.getSwappedPredicate(); 6739 } 6740 6741 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6742 return nullptr; 6743 6744 // Replace the negated operand with 0.0: 6745 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6746 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6747 return new FCmpInst(Pred, Op0, Zero, "", &I); 6748 } 6749 6750 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6751 bool Changed = false; 6752 6753 /// Orders the operands of the compare so that they are listed from most 6754 /// complex to least complex. This puts constants before unary operators, 6755 /// before binary operators. 6756 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6757 I.swapOperands(); 6758 Changed = true; 6759 } 6760 6761 const CmpInst::Predicate Pred = I.getPredicate(); 6762 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6763 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6764 SQ.getWithInstruction(&I))) 6765 return replaceInstUsesWith(I, V); 6766 6767 // Simplify 'fcmp pred X, X' 6768 Type *OpType = Op0->getType(); 6769 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6770 if (Op0 == Op1) { 6771 switch (Pred) { 6772 default: break; 6773 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6774 case FCmpInst::FCMP_ULT: // True if unordered or less than 6775 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6776 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6777 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6778 I.setPredicate(FCmpInst::FCMP_UNO); 6779 I.setOperand(1, Constant::getNullValue(OpType)); 6780 return &I; 6781 6782 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6783 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6784 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6785 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6786 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6787 I.setPredicate(FCmpInst::FCMP_ORD); 6788 I.setOperand(1, Constant::getNullValue(OpType)); 6789 return &I; 6790 } 6791 } 6792 6793 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6794 // then canonicalize the operand to 0.0. 6795 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6796 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6797 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6798 6799 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6800 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6801 } 6802 6803 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6804 Value *X, *Y; 6805 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6806 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6807 6808 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6809 return R; 6810 6811 // Test if the FCmpInst instruction is used exclusively by a select as 6812 // part of a minimum or maximum operation. If so, refrain from doing 6813 // any other folding. This helps out other analyses which understand 6814 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6815 // and CodeGen. And in this case, at least one of the comparison 6816 // operands has at least one user besides the compare (the select), 6817 // which would often largely negate the benefit of folding anyway. 6818 if (I.hasOneUse()) 6819 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6820 Value *A, *B; 6821 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6822 if (SPR.Flavor != SPF_UNKNOWN) 6823 return nullptr; 6824 } 6825 6826 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6827 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6828 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6829 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6830 6831 // Handle fcmp with instruction LHS and constant RHS. 6832 Instruction *LHSI; 6833 Constant *RHSC; 6834 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6835 switch (LHSI->getOpcode()) { 6836 case Instruction::PHI: 6837 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6838 // block. If in the same block, we're encouraging jump threading. If 6839 // not, we are just pessimizing the code by making an i1 phi. 6840 if (LHSI->getParent() == I.getParent()) 6841 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6842 return NV; 6843 break; 6844 case Instruction::SIToFP: 6845 case Instruction::UIToFP: 6846 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6847 return NV; 6848 break; 6849 case Instruction::FDiv: 6850 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6851 return NV; 6852 break; 6853 case Instruction::Load: 6854 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6855 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6856 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6857 cast<LoadInst>(LHSI), GEP, GV, I)) 6858 return Res; 6859 break; 6860 } 6861 } 6862 6863 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6864 return R; 6865 6866 if (match(Op0, m_FNeg(m_Value(X)))) { 6867 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6868 Constant *C; 6869 if (match(Op1, m_Constant(C))) { 6870 Constant *NegC = ConstantExpr::getFNeg(C); 6871 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6872 } 6873 } 6874 6875 if (match(Op0, m_FPExt(m_Value(X)))) { 6876 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6877 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6878 return new FCmpInst(Pred, X, Y, "", &I); 6879 6880 const APFloat *C; 6881 if (match(Op1, m_APFloat(C))) { 6882 const fltSemantics &FPSem = 6883 X->getType()->getScalarType()->getFltSemantics(); 6884 bool Lossy; 6885 APFloat TruncC = *C; 6886 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6887 6888 if (Lossy) { 6889 // X can't possibly equal the higher-precision constant, so reduce any 6890 // equality comparison. 6891 // TODO: Other predicates can be handled via getFCmpCode(). 6892 switch (Pred) { 6893 case FCmpInst::FCMP_OEQ: 6894 // X is ordered and equal to an impossible constant --> false 6895 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6896 case FCmpInst::FCMP_ONE: 6897 // X is ordered and not equal to an impossible constant --> ordered 6898 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6899 ConstantFP::getNullValue(X->getType())); 6900 case FCmpInst::FCMP_UEQ: 6901 // X is unordered or equal to an impossible constant --> unordered 6902 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6903 ConstantFP::getNullValue(X->getType())); 6904 case FCmpInst::FCMP_UNE: 6905 // X is unordered or not equal to an impossible constant --> true 6906 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6907 default: 6908 break; 6909 } 6910 } 6911 6912 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6913 // Avoid lossy conversions and denormals. 6914 // Zero is a special case that's OK to convert. 6915 APFloat Fabs = TruncC; 6916 Fabs.clearSign(); 6917 if (!Lossy && 6918 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6919 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6920 return new FCmpInst(Pred, X, NewC, "", &I); 6921 } 6922 } 6923 } 6924 6925 // Convert a sign-bit test of an FP value into a cast and integer compare. 6926 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6927 // TODO: Handle non-zero compare constants. 6928 // TODO: Handle other predicates. 6929 const APFloat *C; 6930 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6931 m_Value(X)))) && 6932 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6933 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6934 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6935 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6936 6937 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6938 if (Pred == FCmpInst::FCMP_OLT) { 6939 Value *IntX = Builder.CreateBitCast(X, IntType); 6940 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6941 ConstantInt::getNullValue(IntType)); 6942 } 6943 } 6944 6945 if (I.getType()->isVectorTy()) 6946 if (Instruction *Res = foldVectorCmp(I, Builder)) 6947 return Res; 6948 6949 return Changed ? &I : nullptr; 6950 } 6951