1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 #include "llvm/Transforms/InstCombine/InstCombiner.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Returns true if the exploded icmp can be expressed as a signed comparison 74 /// to zero and updates the predicate accordingly. 75 /// The signedness of the comparison is preserved. 76 /// TODO: Refactor with decomposeBitTestICmp()? 77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 78 if (!ICmpInst::isSigned(Pred)) 79 return false; 80 81 if (C.isZero()) 82 return ICmpInst::isRelational(Pred); 83 84 if (C.isOne()) { 85 if (Pred == ICmpInst::ICMP_SLT) { 86 Pred = ICmpInst::ICMP_SLE; 87 return true; 88 } 89 } else if (C.isAllOnes()) { 90 if (Pred == ICmpInst::ICMP_SGT) { 91 Pred = ICmpInst::ICMP_SGE; 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 /// This is called when we see this pattern: 100 /// cmp pred (load (gep GV, ...)), cmpcst 101 /// where GV is a global variable with a constant initializer. Try to simplify 102 /// this into some simple computation that does not need the load. For example 103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 104 /// 105 /// If AndCst is non-null, then the loaded value is masked with that constant 106 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 107 Instruction * 108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 109 GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 Constant *Init = GV->getInitializer(); 112 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 113 return nullptr; 114 115 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 116 // Don't blow up on huge arrays. 117 if (ArrayElementCount > MaxArraySizeForCombine) 118 return nullptr; 119 120 // There are many forms of this optimization we can handle, for now, just do 121 // the simple index into a single-dimensional array. 122 // 123 // Require: GEP GV, 0, i {{, constant indices}} 124 if (GEP->getNumOperands() < 3 || 125 !isa<ConstantInt>(GEP->getOperand(1)) || 126 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 127 isa<Constant>(GEP->getOperand(2))) 128 return nullptr; 129 130 // Check that indices after the variable are constants and in-range for the 131 // type they index. Collect the indices. This is typically for arrays of 132 // structs. 133 SmallVector<unsigned, 4> LaterIndices; 134 135 Type *EltTy = Init->getType()->getArrayElementType(); 136 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 137 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 138 if (!Idx) return nullptr; // Variable index. 139 140 uint64_t IdxVal = Idx->getZExtValue(); 141 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 142 143 if (StructType *STy = dyn_cast<StructType>(EltTy)) 144 EltTy = STy->getElementType(IdxVal); 145 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 146 if (IdxVal >= ATy->getNumElements()) return nullptr; 147 EltTy = ATy->getElementType(); 148 } else { 149 return nullptr; // Unknown type. 150 } 151 152 LaterIndices.push_back(IdxVal); 153 } 154 155 enum { Overdefined = -3, Undefined = -2 }; 156 157 // Variables for our state machines. 158 159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 160 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 161 // and 87 is the second (and last) index. FirstTrueElement is -2 when 162 // undefined, otherwise set to the first true element. SecondTrueElement is 163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 164 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 165 166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 167 // form "i != 47 & i != 87". Same state transitions as for true elements. 168 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 169 170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 171 /// define a state machine that triggers for ranges of values that the index 172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 174 /// index in the range (inclusive). We use -2 for undefined here because we 175 /// use relative comparisons and don't want 0-1 to match -1. 176 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 177 178 // MagicBitvector - This is a magic bitvector where we set a bit if the 179 // comparison is true for element 'i'. If there are 64 elements or less in 180 // the array, this will fully represent all the comparison results. 181 uint64_t MagicBitvector = 0; 182 183 // Scan the array and see if one of our patterns matches. 184 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 185 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 186 Constant *Elt = Init->getAggregateElement(i); 187 if (!Elt) return nullptr; 188 189 // If this is indexing an array of structures, get the structure element. 190 if (!LaterIndices.empty()) 191 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 192 193 // If the element is masked, handle it. 194 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 195 196 // Find out if the comparison would be true or false for the i'th element. 197 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 198 CompareRHS, DL, &TLI); 199 // If the result is undef for this element, ignore it. 200 if (isa<UndefValue>(C)) { 201 // Extend range state machines to cover this element in case there is an 202 // undef in the middle of the range. 203 if (TrueRangeEnd == (int)i-1) 204 TrueRangeEnd = i; 205 if (FalseRangeEnd == (int)i-1) 206 FalseRangeEnd = i; 207 continue; 208 } 209 210 // If we can't compute the result for any of the elements, we have to give 211 // up evaluating the entire conditional. 212 if (!isa<ConstantInt>(C)) return nullptr; 213 214 // Otherwise, we know if the comparison is true or false for this element, 215 // update our state machines. 216 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 217 218 // State machine for single/double/range index comparison. 219 if (IsTrueForElt) { 220 // Update the TrueElement state machine. 221 if (FirstTrueElement == Undefined) 222 FirstTrueElement = TrueRangeEnd = i; // First true element. 223 else { 224 // Update double-compare state machine. 225 if (SecondTrueElement == Undefined) 226 SecondTrueElement = i; 227 else 228 SecondTrueElement = Overdefined; 229 230 // Update range state machine. 231 if (TrueRangeEnd == (int)i-1) 232 TrueRangeEnd = i; 233 else 234 TrueRangeEnd = Overdefined; 235 } 236 } else { 237 // Update the FalseElement state machine. 238 if (FirstFalseElement == Undefined) 239 FirstFalseElement = FalseRangeEnd = i; // First false element. 240 else { 241 // Update double-compare state machine. 242 if (SecondFalseElement == Undefined) 243 SecondFalseElement = i; 244 else 245 SecondFalseElement = Overdefined; 246 247 // Update range state machine. 248 if (FalseRangeEnd == (int)i-1) 249 FalseRangeEnd = i; 250 else 251 FalseRangeEnd = Overdefined; 252 } 253 } 254 255 // If this element is in range, update our magic bitvector. 256 if (i < 64 && IsTrueForElt) 257 MagicBitvector |= 1ULL << i; 258 259 // If all of our states become overdefined, bail out early. Since the 260 // predicate is expensive, only check it every 8 elements. This is only 261 // really useful for really huge arrays. 262 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 263 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 264 FalseRangeEnd == Overdefined) 265 return nullptr; 266 } 267 268 // Now that we've scanned the entire array, emit our new comparison(s). We 269 // order the state machines in complexity of the generated code. 270 Value *Idx = GEP->getOperand(2); 271 272 // If the index is larger than the pointer size of the target, truncate the 273 // index down like the GEP would do implicitly. We don't have to do this for 274 // an inbounds GEP because the index can't be out of range. 275 if (!GEP->isInBounds()) { 276 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 277 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 278 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 279 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 280 } 281 282 // If inbounds keyword is not present, Idx * ElementSize can overflow. 283 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 284 // Then, there are two possible values for Idx to match offset 0: 285 // 0x00..00, 0x80..00. 286 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 287 // comparison is false if Idx was 0x80..00. 288 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 289 unsigned ElementSize = 290 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 291 auto MaskIdx = [&](Value* Idx){ 292 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 293 Value *Mask = ConstantInt::get(Idx->getType(), -1); 294 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 295 Idx = Builder.CreateAnd(Idx, Mask); 296 } 297 return Idx; 298 }; 299 300 // If the comparison is only true for one or two elements, emit direct 301 // comparisons. 302 if (SecondTrueElement != Overdefined) { 303 Idx = MaskIdx(Idx); 304 // None true -> false. 305 if (FirstTrueElement == Undefined) 306 return replaceInstUsesWith(ICI, Builder.getFalse()); 307 308 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 309 310 // True for one element -> 'i == 47'. 311 if (SecondTrueElement == Undefined) 312 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 313 314 // True for two elements -> 'i == 47 | i == 72'. 315 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 316 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 317 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 318 return BinaryOperator::CreateOr(C1, C2); 319 } 320 321 // If the comparison is only false for one or two elements, emit direct 322 // comparisons. 323 if (SecondFalseElement != Overdefined) { 324 Idx = MaskIdx(Idx); 325 // None false -> true. 326 if (FirstFalseElement == Undefined) 327 return replaceInstUsesWith(ICI, Builder.getTrue()); 328 329 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 330 331 // False for one element -> 'i != 47'. 332 if (SecondFalseElement == Undefined) 333 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 334 335 // False for two elements -> 'i != 47 & i != 72'. 336 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 337 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 338 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 339 return BinaryOperator::CreateAnd(C1, C2); 340 } 341 342 // If the comparison can be replaced with a range comparison for the elements 343 // where it is true, emit the range check. 344 if (TrueRangeEnd != Overdefined) { 345 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 346 Idx = MaskIdx(Idx); 347 348 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 349 if (FirstTrueElement) { 350 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 351 Idx = Builder.CreateAdd(Idx, Offs); 352 } 353 354 Value *End = ConstantInt::get(Idx->getType(), 355 TrueRangeEnd-FirstTrueElement+1); 356 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 357 } 358 359 // False range check. 360 if (FalseRangeEnd != Overdefined) { 361 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 362 Idx = MaskIdx(Idx); 363 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 364 if (FirstFalseElement) { 365 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 366 Idx = Builder.CreateAdd(Idx, Offs); 367 } 368 369 Value *End = ConstantInt::get(Idx->getType(), 370 FalseRangeEnd-FirstFalseElement); 371 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 372 } 373 374 // If a magic bitvector captures the entire comparison state 375 // of this load, replace it with computation that does: 376 // ((magic_cst >> i) & 1) != 0 377 { 378 Type *Ty = nullptr; 379 380 // Look for an appropriate type: 381 // - The type of Idx if the magic fits 382 // - The smallest fitting legal type 383 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 384 Ty = Idx->getType(); 385 else 386 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 387 388 if (Ty) { 389 Idx = MaskIdx(Idx); 390 Value *V = Builder.CreateIntCast(Idx, Ty, false); 391 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 392 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 393 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 394 } 395 } 396 397 return nullptr; 398 } 399 400 /// Return a value that can be used to compare the *offset* implied by a GEP to 401 /// zero. For example, if we have &A[i], we want to return 'i' for 402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 403 /// are involved. The above expression would also be legal to codegen as 404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 405 /// This latter form is less amenable to optimization though, and we are allowed 406 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 407 /// 408 /// If we can't emit an optimized form for this expression, this returns null. 409 /// 410 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 411 const DataLayout &DL) { 412 gep_type_iterator GTI = gep_type_begin(GEP); 413 414 // Check to see if this gep only has a single variable index. If so, and if 415 // any constant indices are a multiple of its scale, then we can compute this 416 // in terms of the scale of the variable index. For example, if the GEP 417 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 418 // because the expression will cross zero at the same point. 419 unsigned i, e = GEP->getNumOperands(); 420 int64_t Offset = 0; 421 for (i = 1; i != e; ++i, ++GTI) { 422 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 423 // Compute the aggregate offset of constant indices. 424 if (CI->isZero()) continue; 425 426 // Handle a struct index, which adds its field offset to the pointer. 427 if (StructType *STy = GTI.getStructTypeOrNull()) { 428 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 429 } else { 430 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 431 Offset += Size*CI->getSExtValue(); 432 } 433 } else { 434 // Found our variable index. 435 break; 436 } 437 } 438 439 // If there are no variable indices, we must have a constant offset, just 440 // evaluate it the general way. 441 if (i == e) return nullptr; 442 443 Value *VariableIdx = GEP->getOperand(i); 444 // Determine the scale factor of the variable element. For example, this is 445 // 4 if the variable index is into an array of i32. 446 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 447 448 // Verify that there are no other variable indices. If so, emit the hard way. 449 for (++i, ++GTI; i != e; ++i, ++GTI) { 450 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 451 if (!CI) return nullptr; 452 453 // Compute the aggregate offset of constant indices. 454 if (CI->isZero()) continue; 455 456 // Handle a struct index, which adds its field offset to the pointer. 457 if (StructType *STy = GTI.getStructTypeOrNull()) { 458 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 459 } else { 460 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 461 Offset += Size*CI->getSExtValue(); 462 } 463 } 464 465 // Okay, we know we have a single variable index, which must be a 466 // pointer/array/vector index. If there is no offset, life is simple, return 467 // the index. 468 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 469 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 470 if (Offset == 0) { 471 // Cast to intptrty in case a truncation occurs. If an extension is needed, 472 // we don't need to bother extending: the extension won't affect where the 473 // computation crosses zero. 474 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 475 IntPtrWidth) { 476 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 477 } 478 return VariableIdx; 479 } 480 481 // Otherwise, there is an index. The computation we will do will be modulo 482 // the pointer size. 483 Offset = SignExtend64(Offset, IntPtrWidth); 484 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 485 486 // To do this transformation, any constant index must be a multiple of the 487 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 488 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 489 // multiple of the variable scale. 490 int64_t NewOffs = Offset / (int64_t)VariableScale; 491 if (Offset != NewOffs*(int64_t)VariableScale) 492 return nullptr; 493 494 // Okay, we can do this evaluation. Start by converting the index to intptr. 495 if (VariableIdx->getType() != IntPtrTy) 496 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 497 true /*Signed*/); 498 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 499 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 500 } 501 502 /// Returns true if we can rewrite Start as a GEP with pointer Base 503 /// and some integer offset. The nodes that need to be re-written 504 /// for this transformation will be added to Explored. 505 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 506 const DataLayout &DL, 507 SetVector<Value *> &Explored) { 508 SmallVector<Value *, 16> WorkList(1, Start); 509 Explored.insert(Base); 510 511 // The following traversal gives us an order which can be used 512 // when doing the final transformation. Since in the final 513 // transformation we create the PHI replacement instructions first, 514 // we don't have to get them in any particular order. 515 // 516 // However, for other instructions we will have to traverse the 517 // operands of an instruction first, which means that we have to 518 // do a post-order traversal. 519 while (!WorkList.empty()) { 520 SetVector<PHINode *> PHIs; 521 522 while (!WorkList.empty()) { 523 if (Explored.size() >= 100) 524 return false; 525 526 Value *V = WorkList.back(); 527 528 if (Explored.contains(V)) { 529 WorkList.pop_back(); 530 continue; 531 } 532 533 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 534 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 535 // We've found some value that we can't explore which is different from 536 // the base. Therefore we can't do this transformation. 537 return false; 538 539 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 540 auto *CI = cast<CastInst>(V); 541 if (!CI->isNoopCast(DL)) 542 return false; 543 544 if (!Explored.contains(CI->getOperand(0))) 545 WorkList.push_back(CI->getOperand(0)); 546 } 547 548 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 549 // We're limiting the GEP to having one index. This will preserve 550 // the original pointer type. We could handle more cases in the 551 // future. 552 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 553 GEP->getType() != Start->getType()) 554 return false; 555 556 if (!Explored.contains(GEP->getOperand(0))) 557 WorkList.push_back(GEP->getOperand(0)); 558 } 559 560 if (WorkList.back() == V) { 561 WorkList.pop_back(); 562 // We've finished visiting this node, mark it as such. 563 Explored.insert(V); 564 } 565 566 if (auto *PN = dyn_cast<PHINode>(V)) { 567 // We cannot transform PHIs on unsplittable basic blocks. 568 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 569 return false; 570 Explored.insert(PN); 571 PHIs.insert(PN); 572 } 573 } 574 575 // Explore the PHI nodes further. 576 for (auto *PN : PHIs) 577 for (Value *Op : PN->incoming_values()) 578 if (!Explored.contains(Op)) 579 WorkList.push_back(Op); 580 } 581 582 // Make sure that we can do this. Since we can't insert GEPs in a basic 583 // block before a PHI node, we can't easily do this transformation if 584 // we have PHI node users of transformed instructions. 585 for (Value *Val : Explored) { 586 for (Value *Use : Val->uses()) { 587 588 auto *PHI = dyn_cast<PHINode>(Use); 589 auto *Inst = dyn_cast<Instruction>(Val); 590 591 if (Inst == Base || Inst == PHI || !Inst || !PHI || 592 !Explored.contains(PHI)) 593 continue; 594 595 if (PHI->getParent() == Inst->getParent()) 596 return false; 597 } 598 } 599 return true; 600 } 601 602 // Sets the appropriate insert point on Builder where we can add 603 // a replacement Instruction for V (if that is possible). 604 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 605 bool Before = true) { 606 if (auto *PHI = dyn_cast<PHINode>(V)) { 607 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 608 return; 609 } 610 if (auto *I = dyn_cast<Instruction>(V)) { 611 if (!Before) 612 I = &*std::next(I->getIterator()); 613 Builder.SetInsertPoint(I); 614 return; 615 } 616 if (auto *A = dyn_cast<Argument>(V)) { 617 // Set the insertion point in the entry block. 618 BasicBlock &Entry = A->getParent()->getEntryBlock(); 619 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 620 return; 621 } 622 // Otherwise, this is a constant and we don't need to set a new 623 // insertion point. 624 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 625 } 626 627 /// Returns a re-written value of Start as an indexed GEP using Base as a 628 /// pointer. 629 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 630 const DataLayout &DL, 631 SetVector<Value *> &Explored) { 632 // Perform all the substitutions. This is a bit tricky because we can 633 // have cycles in our use-def chains. 634 // 1. Create the PHI nodes without any incoming values. 635 // 2. Create all the other values. 636 // 3. Add the edges for the PHI nodes. 637 // 4. Emit GEPs to get the original pointers. 638 // 5. Remove the original instructions. 639 Type *IndexType = IntegerType::get( 640 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 641 642 DenseMap<Value *, Value *> NewInsts; 643 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 644 645 // Create the new PHI nodes, without adding any incoming values. 646 for (Value *Val : Explored) { 647 if (Val == Base) 648 continue; 649 // Create empty phi nodes. This avoids cyclic dependencies when creating 650 // the remaining instructions. 651 if (auto *PHI = dyn_cast<PHINode>(Val)) 652 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 653 PHI->getName() + ".idx", PHI); 654 } 655 IRBuilder<> Builder(Base->getContext()); 656 657 // Create all the other instructions. 658 for (Value *Val : Explored) { 659 660 if (NewInsts.find(Val) != NewInsts.end()) 661 continue; 662 663 if (auto *CI = dyn_cast<CastInst>(Val)) { 664 // Don't get rid of the intermediate variable here; the store can grow 665 // the map which will invalidate the reference to the input value. 666 Value *V = NewInsts[CI->getOperand(0)]; 667 NewInsts[CI] = V; 668 continue; 669 } 670 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 671 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 672 : GEP->getOperand(1); 673 setInsertionPoint(Builder, GEP); 674 // Indices might need to be sign extended. GEPs will magically do 675 // this, but we need to do it ourselves here. 676 if (Index->getType()->getScalarSizeInBits() != 677 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 678 Index = Builder.CreateSExtOrTrunc( 679 Index, NewInsts[GEP->getOperand(0)]->getType(), 680 GEP->getOperand(0)->getName() + ".sext"); 681 } 682 683 auto *Op = NewInsts[GEP->getOperand(0)]; 684 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 685 NewInsts[GEP] = Index; 686 else 687 NewInsts[GEP] = Builder.CreateNSWAdd( 688 Op, Index, GEP->getOperand(0)->getName() + ".add"); 689 continue; 690 } 691 if (isa<PHINode>(Val)) 692 continue; 693 694 llvm_unreachable("Unexpected instruction type"); 695 } 696 697 // Add the incoming values to the PHI nodes. 698 for (Value *Val : Explored) { 699 if (Val == Base) 700 continue; 701 // All the instructions have been created, we can now add edges to the 702 // phi nodes. 703 if (auto *PHI = dyn_cast<PHINode>(Val)) { 704 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 705 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 706 Value *NewIncoming = PHI->getIncomingValue(I); 707 708 if (NewInsts.find(NewIncoming) != NewInsts.end()) 709 NewIncoming = NewInsts[NewIncoming]; 710 711 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 712 } 713 } 714 } 715 716 for (Value *Val : Explored) { 717 if (Val == Base) 718 continue; 719 720 // Depending on the type, for external users we have to emit 721 // a GEP or a GEP + ptrtoint. 722 setInsertionPoint(Builder, Val, false); 723 724 // If required, create an inttoptr instruction for Base. 725 Value *NewBase = Base; 726 if (!Base->getType()->isPointerTy()) 727 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 728 Start->getName() + "to.ptr"); 729 730 Value *GEP = Builder.CreateInBoundsGEP( 731 Start->getType()->getPointerElementType(), NewBase, 732 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 733 734 if (!Val->getType()->isPointerTy()) { 735 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 736 Val->getName() + ".conv"); 737 GEP = Cast; 738 } 739 Val->replaceAllUsesWith(GEP); 740 } 741 742 return NewInsts[Start]; 743 } 744 745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 746 /// the input Value as a constant indexed GEP. Returns a pair containing 747 /// the GEPs Pointer and Index. 748 static std::pair<Value *, Value *> 749 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 750 Type *IndexType = IntegerType::get(V->getContext(), 751 DL.getIndexTypeSizeInBits(V->getType())); 752 753 Constant *Index = ConstantInt::getNullValue(IndexType); 754 while (true) { 755 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 // We accept only inbouds GEPs here to exclude the possibility of 757 // overflow. 758 if (!GEP->isInBounds()) 759 break; 760 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 761 GEP->getType() == V->getType()) { 762 V = GEP->getOperand(0); 763 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 764 Index = ConstantExpr::getAdd( 765 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 766 continue; 767 } 768 break; 769 } 770 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 771 if (!CI->isNoopCast(DL)) 772 break; 773 V = CI->getOperand(0); 774 continue; 775 } 776 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 777 if (!CI->isNoopCast(DL)) 778 break; 779 V = CI->getOperand(0); 780 continue; 781 } 782 break; 783 } 784 return {V, Index}; 785 } 786 787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 788 /// We can look through PHIs, GEPs and casts in order to determine a common base 789 /// between GEPLHS and RHS. 790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 791 ICmpInst::Predicate Cond, 792 const DataLayout &DL) { 793 // FIXME: Support vector of pointers. 794 if (GEPLHS->getType()->isVectorTy()) 795 return nullptr; 796 797 if (!GEPLHS->hasAllConstantIndices()) 798 return nullptr; 799 800 // Make sure the pointers have the same type. 801 if (GEPLHS->getType() != RHS->getType()) 802 return nullptr; 803 804 Value *PtrBase, *Index; 805 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 806 807 // The set of nodes that will take part in this transformation. 808 SetVector<Value *> Nodes; 809 810 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 811 return nullptr; 812 813 // We know we can re-write this as 814 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 815 // Since we've only looked through inbouds GEPs we know that we 816 // can't have overflow on either side. We can therefore re-write 817 // this as: 818 // OFFSET1 cmp OFFSET2 819 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 820 821 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 822 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 823 // offset. Since Index is the offset of LHS to the base pointer, we will now 824 // compare the offsets instead of comparing the pointers. 825 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 826 } 827 828 /// Fold comparisons between a GEP instruction and something else. At this point 829 /// we know that the GEP is on the LHS of the comparison. 830 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 831 ICmpInst::Predicate Cond, 832 Instruction &I) { 833 // Don't transform signed compares of GEPs into index compares. Even if the 834 // GEP is inbounds, the final add of the base pointer can have signed overflow 835 // and would change the result of the icmp. 836 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 837 // the maximum signed value for the pointer type. 838 if (ICmpInst::isSigned(Cond)) 839 return nullptr; 840 841 // Look through bitcasts and addrspacecasts. We do not however want to remove 842 // 0 GEPs. 843 if (!isa<GetElementPtrInst>(RHS)) 844 RHS = RHS->stripPointerCasts(); 845 846 Value *PtrBase = GEPLHS->getOperand(0); 847 // FIXME: Support vector pointer GEPs. 848 if (PtrBase == RHS && GEPLHS->isInBounds() && 849 !GEPLHS->getType()->isVectorTy()) { 850 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 851 // This transformation (ignoring the base and scales) is valid because we 852 // know pointers can't overflow since the gep is inbounds. See if we can 853 // output an optimized form. 854 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 855 856 // If not, synthesize the offset the hard way. 857 if (!Offset) 858 Offset = EmitGEPOffset(GEPLHS); 859 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 860 Constant::getNullValue(Offset->getType())); 861 } 862 863 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 864 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 865 !NullPointerIsDefined(I.getFunction(), 866 RHS->getType()->getPointerAddressSpace())) { 867 // For most address spaces, an allocation can't be placed at null, but null 868 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 869 // the only valid inbounds address derived from null, is null itself. 870 // Thus, we have four cases to consider: 871 // 1) Base == nullptr, Offset == 0 -> inbounds, null 872 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 873 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 874 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 875 // 876 // (Note if we're indexing a type of size 0, that simply collapses into one 877 // of the buckets above.) 878 // 879 // In general, we're allowed to make values less poison (i.e. remove 880 // sources of full UB), so in this case, we just select between the two 881 // non-poison cases (1 and 4 above). 882 // 883 // For vectors, we apply the same reasoning on a per-lane basis. 884 auto *Base = GEPLHS->getPointerOperand(); 885 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 886 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 887 Base = Builder.CreateVectorSplat(EC, Base); 888 } 889 return new ICmpInst(Cond, Base, 890 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 891 cast<Constant>(RHS), Base->getType())); 892 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 893 // If the base pointers are different, but the indices are the same, just 894 // compare the base pointer. 895 if (PtrBase != GEPRHS->getOperand(0)) { 896 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 897 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 898 GEPRHS->getOperand(0)->getType(); 899 if (IndicesTheSame) 900 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 901 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 902 IndicesTheSame = false; 903 break; 904 } 905 906 // If all indices are the same, just compare the base pointers. 907 Type *BaseType = GEPLHS->getOperand(0)->getType(); 908 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 909 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 910 911 // If we're comparing GEPs with two base pointers that only differ in type 912 // and both GEPs have only constant indices or just one use, then fold 913 // the compare with the adjusted indices. 914 // FIXME: Support vector of pointers. 915 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 916 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 917 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 918 PtrBase->stripPointerCasts() == 919 GEPRHS->getOperand(0)->stripPointerCasts() && 920 !GEPLHS->getType()->isVectorTy()) { 921 Value *LOffset = EmitGEPOffset(GEPLHS); 922 Value *ROffset = EmitGEPOffset(GEPRHS); 923 924 // If we looked through an addrspacecast between different sized address 925 // spaces, the LHS and RHS pointers are different sized 926 // integers. Truncate to the smaller one. 927 Type *LHSIndexTy = LOffset->getType(); 928 Type *RHSIndexTy = ROffset->getType(); 929 if (LHSIndexTy != RHSIndexTy) { 930 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 931 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 932 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 933 } else 934 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 935 } 936 937 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 938 LOffset, ROffset); 939 return replaceInstUsesWith(I, Cmp); 940 } 941 942 // Otherwise, the base pointers are different and the indices are 943 // different. Try convert this to an indexed compare by looking through 944 // PHIs/casts. 945 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 946 } 947 948 // If one of the GEPs has all zero indices, recurse. 949 // FIXME: Handle vector of pointers. 950 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 951 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 952 ICmpInst::getSwappedPredicate(Cond), I); 953 954 // If the other GEP has all zero indices, recurse. 955 // FIXME: Handle vector of pointers. 956 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 957 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 958 959 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 960 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 Type *LHSType = GEPLHS->getOperand(i)->getType(); 967 Type *RHSType = GEPRHS->getOperand(i)->getType(); 968 // FIXME: Better support for vector of pointers. 969 if (LHSType->getPrimitiveSizeInBits() != 970 RHSType->getPrimitiveSizeInBits() || 971 (GEPLHS->getType()->isVectorTy() && 972 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 973 // Irreconcilable differences. 974 NumDifferences = 2; 975 break; 976 } 977 978 if (NumDifferences++) break; 979 DiffOperand = i; 980 } 981 982 if (NumDifferences == 0) // SAME GEP? 983 return replaceInstUsesWith(I, // No comparison is needed here. 984 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 985 986 else if (NumDifferences == 1 && GEPsInBounds) { 987 Value *LHSV = GEPLHS->getOperand(DiffOperand); 988 Value *RHSV = GEPRHS->getOperand(DiffOperand); 989 // Make sure we do a signed comparison here. 990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 991 } 992 } 993 994 // Only lower this if the icmp is the only user of the GEP or if we expect 995 // the result to fold to a constant! 996 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 997 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 999 Value *L = EmitGEPOffset(GEPLHS); 1000 Value *R = EmitGEPOffset(GEPRHS); 1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1002 } 1003 } 1004 1005 // Try convert this to an indexed compare by looking through PHIs/casts as a 1006 // last resort. 1007 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1008 } 1009 1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1011 const AllocaInst *Alloca, 1012 const Value *Other) { 1013 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1014 1015 // It would be tempting to fold away comparisons between allocas and any 1016 // pointer not based on that alloca (e.g. an argument). However, even 1017 // though such pointers cannot alias, they can still compare equal. 1018 // 1019 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1020 // doesn't escape we can argue that it's impossible to guess its value, and we 1021 // can therefore act as if any such guesses are wrong. 1022 // 1023 // The code below checks that the alloca doesn't escape, and that it's only 1024 // used in a comparison once (the current instruction). The 1025 // single-comparison-use condition ensures that we're trivially folding all 1026 // comparisons against the alloca consistently, and avoids the risk of 1027 // erroneously folding a comparison of the pointer with itself. 1028 1029 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1030 1031 SmallVector<const Use *, 32> Worklist; 1032 for (const Use &U : Alloca->uses()) { 1033 if (Worklist.size() >= MaxIter) 1034 return nullptr; 1035 Worklist.push_back(&U); 1036 } 1037 1038 unsigned NumCmps = 0; 1039 while (!Worklist.empty()) { 1040 assert(Worklist.size() <= MaxIter); 1041 const Use *U = Worklist.pop_back_val(); 1042 const Value *V = U->getUser(); 1043 --MaxIter; 1044 1045 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1046 isa<SelectInst>(V)) { 1047 // Track the uses. 1048 } else if (isa<LoadInst>(V)) { 1049 // Loading from the pointer doesn't escape it. 1050 continue; 1051 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1052 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1053 if (SI->getValueOperand() == U->get()) 1054 return nullptr; 1055 continue; 1056 } else if (isa<ICmpInst>(V)) { 1057 if (NumCmps++) 1058 return nullptr; // Found more than one cmp. 1059 continue; 1060 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1061 switch (Intrin->getIntrinsicID()) { 1062 // These intrinsics don't escape or compare the pointer. Memset is safe 1063 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1064 // we don't allow stores, so src cannot point to V. 1065 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1066 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1067 continue; 1068 default: 1069 return nullptr; 1070 } 1071 } else { 1072 return nullptr; 1073 } 1074 for (const Use &U : V->uses()) { 1075 if (Worklist.size() >= MaxIter) 1076 return nullptr; 1077 Worklist.push_back(&U); 1078 } 1079 } 1080 1081 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1082 return replaceInstUsesWith( 1083 ICI, 1084 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1085 } 1086 1087 /// Fold "icmp pred (X+C), X". 1088 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1089 ICmpInst::Predicate Pred) { 1090 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1091 // so the values can never be equal. Similarly for all other "or equals" 1092 // operators. 1093 assert(!!C && "C should not be zero!"); 1094 1095 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1096 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1097 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1098 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1099 Constant *R = ConstantInt::get(X->getType(), 1100 APInt::getMaxValue(C.getBitWidth()) - C); 1101 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1102 } 1103 1104 // (X+1) >u X --> X <u (0-1) --> X != 255 1105 // (X+2) >u X --> X <u (0-2) --> X <u 254 1106 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1107 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1108 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1109 ConstantInt::get(X->getType(), -C)); 1110 1111 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1112 1113 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1114 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1115 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1116 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1117 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1118 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1119 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1120 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1121 ConstantInt::get(X->getType(), SMax - C)); 1122 1123 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1124 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1125 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1126 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1127 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1128 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1129 1130 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1131 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1132 ConstantInt::get(X->getType(), SMax - (C - 1))); 1133 } 1134 1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1136 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1138 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1139 const APInt &AP1, 1140 const APInt &AP2) { 1141 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1142 1143 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1144 if (I.getPredicate() == I.ICMP_NE) 1145 Pred = CmpInst::getInversePredicate(Pred); 1146 return new ICmpInst(Pred, LHS, RHS); 1147 }; 1148 1149 // Don't bother doing any work for cases which InstSimplify handles. 1150 if (AP2.isZero()) 1151 return nullptr; 1152 1153 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1154 if (IsAShr) { 1155 if (AP2.isAllOnes()) 1156 return nullptr; 1157 if (AP2.isNegative() != AP1.isNegative()) 1158 return nullptr; 1159 if (AP2.sgt(AP1)) 1160 return nullptr; 1161 } 1162 1163 if (!AP1) 1164 // 'A' must be large enough to shift out the highest set bit. 1165 return getICmp(I.ICMP_UGT, A, 1166 ConstantInt::get(A->getType(), AP2.logBase2())); 1167 1168 if (AP1 == AP2) 1169 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1170 1171 int Shift; 1172 if (IsAShr && AP1.isNegative()) 1173 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1174 else 1175 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1176 1177 if (Shift > 0) { 1178 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1179 // There are multiple solutions if we are comparing against -1 and the LHS 1180 // of the ashr is not a power of two. 1181 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1182 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1184 } else if (AP1 == AP2.lshr(Shift)) { 1185 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1186 } 1187 } 1188 1189 // Shifting const2 will never be equal to const1. 1190 // FIXME: This should always be handled by InstSimplify? 1191 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1192 return replaceInstUsesWith(I, TorF); 1193 } 1194 1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1197 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1198 const APInt &AP1, 1199 const APInt &AP2) { 1200 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1201 1202 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1203 if (I.getPredicate() == I.ICMP_NE) 1204 Pred = CmpInst::getInversePredicate(Pred); 1205 return new ICmpInst(Pred, LHS, RHS); 1206 }; 1207 1208 // Don't bother doing any work for cases which InstSimplify handles. 1209 if (AP2.isZero()) 1210 return nullptr; 1211 1212 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1213 1214 if (!AP1 && AP2TrailingZeros != 0) 1215 return getICmp( 1216 I.ICMP_UGE, A, 1217 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1218 1219 if (AP1 == AP2) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1221 1222 // Get the distance between the lowest bits that are set. 1223 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1224 1225 if (Shift > 0 && AP2.shl(Shift) == AP1) 1226 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1227 1228 // Shifting const2 will never be equal to const1. 1229 // FIXME: This should always be handled by InstSimplify? 1230 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1231 return replaceInstUsesWith(I, TorF); 1232 } 1233 1234 /// The caller has matched a pattern of the form: 1235 /// I = icmp ugt (add (add A, B), CI2), CI1 1236 /// If this is of the form: 1237 /// sum = a + b 1238 /// if (sum+128 >u 255) 1239 /// Then replace it with llvm.sadd.with.overflow.i8. 1240 /// 1241 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1242 ConstantInt *CI2, ConstantInt *CI1, 1243 InstCombinerImpl &IC) { 1244 // The transformation we're trying to do here is to transform this into an 1245 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1246 // with a narrower add, and discard the add-with-constant that is part of the 1247 // range check (if we can't eliminate it, this isn't profitable). 1248 1249 // In order to eliminate the add-with-constant, the compare can be its only 1250 // use. 1251 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1252 if (!AddWithCst->hasOneUse()) 1253 return nullptr; 1254 1255 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1256 if (!CI2->getValue().isPowerOf2()) 1257 return nullptr; 1258 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1259 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1260 return nullptr; 1261 1262 // The width of the new add formed is 1 more than the bias. 1263 ++NewWidth; 1264 1265 // Check to see that CI1 is an all-ones value with NewWidth bits. 1266 if (CI1->getBitWidth() == NewWidth || 1267 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1268 return nullptr; 1269 1270 // This is only really a signed overflow check if the inputs have been 1271 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1272 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1273 if (IC.ComputeMinSignedBits(A, 0, &I) > NewWidth || 1274 IC.ComputeMinSignedBits(B, 0, &I) > NewWidth) 1275 return nullptr; 1276 1277 // In order to replace the original add with a narrower 1278 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1279 // and truncates that discard the high bits of the add. Verify that this is 1280 // the case. 1281 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1282 for (User *U : OrigAdd->users()) { 1283 if (U == AddWithCst) 1284 continue; 1285 1286 // Only accept truncates for now. We would really like a nice recursive 1287 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1288 // chain to see which bits of a value are actually demanded. If the 1289 // original add had another add which was then immediately truncated, we 1290 // could still do the transformation. 1291 TruncInst *TI = dyn_cast<TruncInst>(U); 1292 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1293 return nullptr; 1294 } 1295 1296 // If the pattern matches, truncate the inputs to the narrower type and 1297 // use the sadd_with_overflow intrinsic to efficiently compute both the 1298 // result and the overflow bit. 1299 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1300 Function *F = Intrinsic::getDeclaration( 1301 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1302 1303 InstCombiner::BuilderTy &Builder = IC.Builder; 1304 1305 // Put the new code above the original add, in case there are any uses of the 1306 // add between the add and the compare. 1307 Builder.SetInsertPoint(OrigAdd); 1308 1309 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1310 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1311 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1312 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1313 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1314 1315 // The inner add was the result of the narrow add, zero extended to the 1316 // wider type. Replace it with the result computed by the intrinsic. 1317 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1318 IC.eraseInstFromFunction(*OrigAdd); 1319 1320 // The original icmp gets replaced with the overflow value. 1321 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1322 } 1323 1324 /// If we have: 1325 /// icmp eq/ne (urem/srem %x, %y), 0 1326 /// iff %y is a power-of-two, we can replace this with a bit test: 1327 /// icmp eq/ne (and %x, (add %y, -1)), 0 1328 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1329 // This fold is only valid for equality predicates. 1330 if (!I.isEquality()) 1331 return nullptr; 1332 ICmpInst::Predicate Pred; 1333 Value *X, *Y, *Zero; 1334 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1335 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1336 return nullptr; 1337 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1338 return nullptr; 1339 // This may increase instruction count, we don't enforce that Y is a constant. 1340 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1341 Value *Masked = Builder.CreateAnd(X, Mask); 1342 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1343 } 1344 1345 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1346 /// by one-less-than-bitwidth into a sign test on the original value. 1347 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1348 Instruction *Val; 1349 ICmpInst::Predicate Pred; 1350 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1351 return nullptr; 1352 1353 Value *X; 1354 Type *XTy; 1355 1356 Constant *C; 1357 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1358 XTy = X->getType(); 1359 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1360 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1361 APInt(XBitWidth, XBitWidth - 1)))) 1362 return nullptr; 1363 } else if (isa<BinaryOperator>(Val) && 1364 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1365 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1366 /*AnalyzeForSignBitExtraction=*/true))) { 1367 XTy = X->getType(); 1368 } else 1369 return nullptr; 1370 1371 return ICmpInst::Create(Instruction::ICmp, 1372 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1373 : ICmpInst::ICMP_SLT, 1374 X, ConstantInt::getNullValue(XTy)); 1375 } 1376 1377 // Handle icmp pred X, 0 1378 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1379 CmpInst::Predicate Pred = Cmp.getPredicate(); 1380 if (!match(Cmp.getOperand(1), m_Zero())) 1381 return nullptr; 1382 1383 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1384 if (Pred == ICmpInst::ICMP_SGT) { 1385 Value *A, *B; 1386 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1387 if (SPR.Flavor == SPF_SMIN) { 1388 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1389 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1390 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1391 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1392 } 1393 } 1394 1395 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1396 return New; 1397 1398 // Given: 1399 // icmp eq/ne (urem %x, %y), 0 1400 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1401 // icmp eq/ne %x, 0 1402 Value *X, *Y; 1403 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1404 ICmpInst::isEquality(Pred)) { 1405 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1406 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1407 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1408 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1409 } 1410 1411 return nullptr; 1412 } 1413 1414 /// Fold icmp Pred X, C. 1415 /// TODO: This code structure does not make sense. The saturating add fold 1416 /// should be moved to some other helper and extended as noted below (it is also 1417 /// possible that code has been made unnecessary - do we canonicalize IR to 1418 /// overflow/saturating intrinsics or not?). 1419 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1420 // Match the following pattern, which is a common idiom when writing 1421 // overflow-safe integer arithmetic functions. The source performs an addition 1422 // in wider type and explicitly checks for overflow using comparisons against 1423 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1424 // 1425 // TODO: This could probably be generalized to handle other overflow-safe 1426 // operations if we worked out the formulas to compute the appropriate magic 1427 // constants. 1428 // 1429 // sum = a + b 1430 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1431 CmpInst::Predicate Pred = Cmp.getPredicate(); 1432 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1433 Value *A, *B; 1434 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1435 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1436 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1437 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1438 return Res; 1439 1440 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1441 Constant *C = dyn_cast<Constant>(Op1); 1442 if (!C || C->canTrap()) 1443 return nullptr; 1444 1445 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1446 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1447 Type *Ty = Cmp.getType(); 1448 Builder.SetInsertPoint(Phi); 1449 PHINode *NewPhi = 1450 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1451 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1452 auto *Input = 1453 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1454 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1455 NewPhi->addIncoming(BoolInput, Predecessor); 1456 } 1457 NewPhi->takeName(&Cmp); 1458 return replaceInstUsesWith(Cmp, NewPhi); 1459 } 1460 1461 return nullptr; 1462 } 1463 1464 /// Canonicalize icmp instructions based on dominating conditions. 1465 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1466 // This is a cheap/incomplete check for dominance - just match a single 1467 // predecessor with a conditional branch. 1468 BasicBlock *CmpBB = Cmp.getParent(); 1469 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1470 if (!DomBB) 1471 return nullptr; 1472 1473 Value *DomCond; 1474 BasicBlock *TrueBB, *FalseBB; 1475 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1476 return nullptr; 1477 1478 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1479 "Predecessor block does not point to successor?"); 1480 1481 // The branch should get simplified. Don't bother simplifying this condition. 1482 if (TrueBB == FalseBB) 1483 return nullptr; 1484 1485 // Try to simplify this compare to T/F based on the dominating condition. 1486 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1487 if (Imp) 1488 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1489 1490 CmpInst::Predicate Pred = Cmp.getPredicate(); 1491 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1492 ICmpInst::Predicate DomPred; 1493 const APInt *C, *DomC; 1494 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1495 match(Y, m_APInt(C))) { 1496 // We have 2 compares of a variable with constants. Calculate the constant 1497 // ranges of those compares to see if we can transform the 2nd compare: 1498 // DomBB: 1499 // DomCond = icmp DomPred X, DomC 1500 // br DomCond, CmpBB, FalseBB 1501 // CmpBB: 1502 // Cmp = icmp Pred X, C 1503 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1504 ConstantRange DominatingCR = 1505 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1506 : ConstantRange::makeExactICmpRegion( 1507 CmpInst::getInversePredicate(DomPred), *DomC); 1508 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1509 ConstantRange Difference = DominatingCR.difference(CR); 1510 if (Intersection.isEmptySet()) 1511 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1512 if (Difference.isEmptySet()) 1513 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1514 1515 // Canonicalizing a sign bit comparison that gets used in a branch, 1516 // pessimizes codegen by generating branch on zero instruction instead 1517 // of a test and branch. So we avoid canonicalizing in such situations 1518 // because test and branch instruction has better branch displacement 1519 // than compare and branch instruction. 1520 bool UnusedBit; 1521 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1522 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1523 return nullptr; 1524 1525 // Avoid an infinite loop with min/max canonicalization. 1526 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1527 if (Cmp.hasOneUse() && 1528 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1529 return nullptr; 1530 1531 if (const APInt *EqC = Intersection.getSingleElement()) 1532 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1533 if (const APInt *NeC = Difference.getSingleElement()) 1534 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1535 } 1536 1537 return nullptr; 1538 } 1539 1540 /// Fold icmp (trunc X, Y), C. 1541 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1542 TruncInst *Trunc, 1543 const APInt &C) { 1544 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1545 Value *X = Trunc->getOperand(0); 1546 if (C.isOne() && C.getBitWidth() > 1) { 1547 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1548 Value *V = nullptr; 1549 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1550 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1551 ConstantInt::get(V->getType(), 1)); 1552 } 1553 1554 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1555 SrcBits = X->getType()->getScalarSizeInBits(); 1556 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1557 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1558 // of the high bits truncated out of x are known. 1559 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1560 1561 // If all the high bits are known, we can do this xform. 1562 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1563 // Pull in the high bits from known-ones set. 1564 APInt NewRHS = C.zext(SrcBits); 1565 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1566 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1567 } 1568 } 1569 1570 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1571 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1572 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1573 Value *ShOp; 1574 const APInt *ShAmtC; 1575 bool TrueIfSigned; 1576 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1577 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1578 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1579 return TrueIfSigned 1580 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1581 ConstantInt::getNullValue(X->getType())) 1582 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1583 ConstantInt::getAllOnesValue(X->getType())); 1584 } 1585 1586 return nullptr; 1587 } 1588 1589 /// Fold icmp (xor X, Y), C. 1590 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1591 BinaryOperator *Xor, 1592 const APInt &C) { 1593 Value *X = Xor->getOperand(0); 1594 Value *Y = Xor->getOperand(1); 1595 const APInt *XorC; 1596 if (!match(Y, m_APInt(XorC))) 1597 return nullptr; 1598 1599 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1600 // fold the xor. 1601 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1602 bool TrueIfSigned = false; 1603 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1604 1605 // If the sign bit of the XorCst is not set, there is no change to 1606 // the operation, just stop using the Xor. 1607 if (!XorC->isNegative()) 1608 return replaceOperand(Cmp, 0, X); 1609 1610 // Emit the opposite comparison. 1611 if (TrueIfSigned) 1612 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1613 ConstantInt::getAllOnesValue(X->getType())); 1614 else 1615 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1616 ConstantInt::getNullValue(X->getType())); 1617 } 1618 1619 if (Xor->hasOneUse()) { 1620 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1621 if (!Cmp.isEquality() && XorC->isSignMask()) { 1622 Pred = Cmp.getFlippedSignednessPredicate(); 1623 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1624 } 1625 1626 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1627 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1628 Pred = Cmp.getFlippedSignednessPredicate(); 1629 Pred = Cmp.getSwappedPredicate(Pred); 1630 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1631 } 1632 } 1633 1634 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1635 if (Pred == ICmpInst::ICMP_UGT) { 1636 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1637 if (*XorC == ~C && (C + 1).isPowerOf2()) 1638 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1639 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1640 if (*XorC == C && (C + 1).isPowerOf2()) 1641 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1642 } 1643 if (Pred == ICmpInst::ICMP_ULT) { 1644 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1645 if (*XorC == -C && C.isPowerOf2()) 1646 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1647 ConstantInt::get(X->getType(), ~C)); 1648 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1649 if (*XorC == C && (-C).isPowerOf2()) 1650 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1651 ConstantInt::get(X->getType(), ~C)); 1652 } 1653 return nullptr; 1654 } 1655 1656 /// Fold icmp (and (sh X, Y), C2), C1. 1657 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1658 BinaryOperator *And, 1659 const APInt &C1, 1660 const APInt &C2) { 1661 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1662 if (!Shift || !Shift->isShift()) 1663 return nullptr; 1664 1665 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1666 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1667 // code produced by the clang front-end, for bitfield access. 1668 // This seemingly simple opportunity to fold away a shift turns out to be 1669 // rather complicated. See PR17827 for details. 1670 unsigned ShiftOpcode = Shift->getOpcode(); 1671 bool IsShl = ShiftOpcode == Instruction::Shl; 1672 const APInt *C3; 1673 if (match(Shift->getOperand(1), m_APInt(C3))) { 1674 APInt NewAndCst, NewCmpCst; 1675 bool AnyCmpCstBitsShiftedOut; 1676 if (ShiftOpcode == Instruction::Shl) { 1677 // For a left shift, we can fold if the comparison is not signed. We can 1678 // also fold a signed comparison if the mask value and comparison value 1679 // are not negative. These constraints may not be obvious, but we can 1680 // prove that they are correct using an SMT solver. 1681 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1682 return nullptr; 1683 1684 NewCmpCst = C1.lshr(*C3); 1685 NewAndCst = C2.lshr(*C3); 1686 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1687 } else if (ShiftOpcode == Instruction::LShr) { 1688 // For a logical right shift, we can fold if the comparison is not signed. 1689 // We can also fold a signed comparison if the shifted mask value and the 1690 // shifted comparison value are not negative. These constraints may not be 1691 // obvious, but we can prove that they are correct using an SMT solver. 1692 NewCmpCst = C1.shl(*C3); 1693 NewAndCst = C2.shl(*C3); 1694 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1695 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1696 return nullptr; 1697 } else { 1698 // For an arithmetic shift, check that both constants don't use (in a 1699 // signed sense) the top bits being shifted out. 1700 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1701 NewCmpCst = C1.shl(*C3); 1702 NewAndCst = C2.shl(*C3); 1703 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1704 if (NewAndCst.ashr(*C3) != C2) 1705 return nullptr; 1706 } 1707 1708 if (AnyCmpCstBitsShiftedOut) { 1709 // If we shifted bits out, the fold is not going to work out. As a 1710 // special case, check to see if this means that the result is always 1711 // true or false now. 1712 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1713 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1714 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1715 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1716 } else { 1717 Value *NewAnd = Builder.CreateAnd( 1718 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1719 return new ICmpInst(Cmp.getPredicate(), 1720 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1721 } 1722 } 1723 1724 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1725 // preferable because it allows the C2 << Y expression to be hoisted out of a 1726 // loop if Y is invariant and X is not. 1727 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1728 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1729 // Compute C2 << Y. 1730 Value *NewShift = 1731 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1732 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1733 1734 // Compute X & (C2 << Y). 1735 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1736 return replaceOperand(Cmp, 0, NewAnd); 1737 } 1738 1739 return nullptr; 1740 } 1741 1742 /// Fold icmp (and X, C2), C1. 1743 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1744 BinaryOperator *And, 1745 const APInt &C1) { 1746 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1747 1748 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1749 // TODO: We canonicalize to the longer form for scalars because we have 1750 // better analysis/folds for icmp, and codegen may be better with icmp. 1751 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1752 match(And->getOperand(1), m_One())) 1753 return new TruncInst(And->getOperand(0), Cmp.getType()); 1754 1755 const APInt *C2; 1756 Value *X; 1757 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1758 return nullptr; 1759 1760 // Don't perform the following transforms if the AND has multiple uses 1761 if (!And->hasOneUse()) 1762 return nullptr; 1763 1764 if (Cmp.isEquality() && C1.isZero()) { 1765 // Restrict this fold to single-use 'and' (PR10267). 1766 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1767 if (C2->isSignMask()) { 1768 Constant *Zero = Constant::getNullValue(X->getType()); 1769 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1770 return new ICmpInst(NewPred, X, Zero); 1771 } 1772 1773 // Restrict this fold only for single-use 'and' (PR10267). 1774 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1775 if ((~(*C2) + 1).isPowerOf2()) { 1776 Constant *NegBOC = 1777 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1778 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1779 return new ICmpInst(NewPred, X, NegBOC); 1780 } 1781 } 1782 1783 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1784 // the input width without changing the value produced, eliminate the cast: 1785 // 1786 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1787 // 1788 // We can do this transformation if the constants do not have their sign bits 1789 // set or if it is an equality comparison. Extending a relational comparison 1790 // when we're checking the sign bit would not work. 1791 Value *W; 1792 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1793 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1794 // TODO: Is this a good transform for vectors? Wider types may reduce 1795 // throughput. Should this transform be limited (even for scalars) by using 1796 // shouldChangeType()? 1797 if (!Cmp.getType()->isVectorTy()) { 1798 Type *WideType = W->getType(); 1799 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1800 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1801 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1802 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1803 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1804 } 1805 } 1806 1807 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1808 return I; 1809 1810 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1811 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1812 // 1813 // iff pred isn't signed 1814 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1815 match(And->getOperand(1), m_One())) { 1816 Constant *One = cast<Constant>(And->getOperand(1)); 1817 Value *Or = And->getOperand(0); 1818 Value *A, *B, *LShr; 1819 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1820 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1821 unsigned UsesRemoved = 0; 1822 if (And->hasOneUse()) 1823 ++UsesRemoved; 1824 if (Or->hasOneUse()) 1825 ++UsesRemoved; 1826 if (LShr->hasOneUse()) 1827 ++UsesRemoved; 1828 1829 // Compute A & ((1 << B) | 1) 1830 Value *NewOr = nullptr; 1831 if (auto *C = dyn_cast<Constant>(B)) { 1832 if (UsesRemoved >= 1) 1833 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1834 } else { 1835 if (UsesRemoved >= 3) 1836 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1837 /*HasNUW=*/true), 1838 One, Or->getName()); 1839 } 1840 if (NewOr) { 1841 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1842 return replaceOperand(Cmp, 0, NewAnd); 1843 } 1844 } 1845 } 1846 1847 return nullptr; 1848 } 1849 1850 /// Fold icmp (and X, Y), C. 1851 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1852 BinaryOperator *And, 1853 const APInt &C) { 1854 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1855 return I; 1856 1857 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1858 bool TrueIfNeg; 1859 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1860 // ((X - 1) & ~X) < 0 --> X == 0 1861 // ((X - 1) & ~X) >= 0 --> X != 0 1862 Value *X; 1863 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1864 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1865 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1866 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1867 } 1868 } 1869 1870 // TODO: These all require that Y is constant too, so refactor with the above. 1871 1872 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1873 Value *X = And->getOperand(0); 1874 Value *Y = And->getOperand(1); 1875 if (auto *LI = dyn_cast<LoadInst>(X)) 1876 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1877 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1878 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1879 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1880 ConstantInt *C2 = cast<ConstantInt>(Y); 1881 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1882 return Res; 1883 } 1884 1885 if (!Cmp.isEquality()) 1886 return nullptr; 1887 1888 // X & -C == -C -> X > u ~C 1889 // X & -C != -C -> X <= u ~C 1890 // iff C is a power of 2 1891 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1892 auto NewPred = 1893 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1894 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1895 } 1896 1897 // (X & C2) == 0 -> (trunc X) >= 0 1898 // (X & C2) != 0 -> (trunc X) < 0 1899 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1900 const APInt *C2; 1901 if (And->hasOneUse() && C.isZero() && match(Y, m_APInt(C2))) { 1902 int32_t ExactLogBase2 = C2->exactLogBase2(); 1903 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1904 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1905 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1906 NTy = VectorType::get(NTy, AndVTy->getElementCount()); 1907 Value *Trunc = Builder.CreateTrunc(X, NTy); 1908 auto NewPred = 1909 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT; 1910 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1911 } 1912 } 1913 1914 return nullptr; 1915 } 1916 1917 /// Fold icmp (or X, Y), C. 1918 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1919 BinaryOperator *Or, 1920 const APInt &C) { 1921 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1922 if (C.isOne()) { 1923 // icmp slt signum(V) 1 --> icmp slt V, 1 1924 Value *V = nullptr; 1925 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1926 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1927 ConstantInt::get(V->getType(), 1)); 1928 } 1929 1930 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1931 const APInt *MaskC; 1932 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1933 if (*MaskC == C && (C + 1).isPowerOf2()) { 1934 // X | C == C --> X <=u C 1935 // X | C != C --> X >u C 1936 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1937 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1938 return new ICmpInst(Pred, OrOp0, OrOp1); 1939 } 1940 1941 // More general: canonicalize 'equality with set bits mask' to 1942 // 'equality with clear bits mask'. 1943 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1944 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1945 if (Or->hasOneUse()) { 1946 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1947 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1948 return new ICmpInst(Pred, And, NewC); 1949 } 1950 } 1951 1952 // (X | (X-1)) s< 0 --> X s< 1 1953 // (X | (X-1)) s> -1 --> X s> 0 1954 Value *X; 1955 bool TrueIfSigned; 1956 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1957 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1958 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1959 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1960 return new ICmpInst(NewPred, X, NewC); 1961 } 1962 1963 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1964 return nullptr; 1965 1966 Value *P, *Q; 1967 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1968 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1969 // -> and (icmp eq P, null), (icmp eq Q, null). 1970 Value *CmpP = 1971 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1972 Value *CmpQ = 1973 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1974 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1975 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1976 } 1977 1978 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1979 // a shorter form that has more potential to be folded even further. 1980 Value *X1, *X2, *X3, *X4; 1981 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1982 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1983 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1984 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1985 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1986 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1987 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1988 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1989 } 1990 1991 return nullptr; 1992 } 1993 1994 /// Fold icmp (mul X, Y), C. 1995 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1996 BinaryOperator *Mul, 1997 const APInt &C) { 1998 const APInt *MulC; 1999 if (!match(Mul->getOperand(1), m_APInt(MulC))) 2000 return nullptr; 2001 2002 // If this is a test of the sign bit and the multiply is sign-preserving with 2003 // a constant operand, use the multiply LHS operand instead. 2004 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2005 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 2006 if (MulC->isNegative()) 2007 Pred = ICmpInst::getSwappedPredicate(Pred); 2008 return new ICmpInst(Pred, Mul->getOperand(0), 2009 Constant::getNullValue(Mul->getType())); 2010 } 2011 2012 // If the multiply does not wrap, try to divide the compare constant by the 2013 // multiplication factor. 2014 if (Cmp.isEquality() && !MulC->isZero()) { 2015 // (mul nsw X, MulC) == C --> X == C /s MulC 2016 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2017 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 2018 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2019 } 2020 // (mul nuw X, MulC) == C --> X == C /u MulC 2021 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 2022 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2023 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2024 } 2025 } 2026 2027 return nullptr; 2028 } 2029 2030 /// Fold icmp (shl 1, Y), C. 2031 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2032 const APInt &C) { 2033 Value *Y; 2034 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2035 return nullptr; 2036 2037 Type *ShiftType = Shl->getType(); 2038 unsigned TypeBits = C.getBitWidth(); 2039 bool CIsPowerOf2 = C.isPowerOf2(); 2040 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2041 if (Cmp.isUnsigned()) { 2042 // (1 << Y) pred C -> Y pred Log2(C) 2043 if (!CIsPowerOf2) { 2044 // (1 << Y) < 30 -> Y <= 4 2045 // (1 << Y) <= 30 -> Y <= 4 2046 // (1 << Y) >= 30 -> Y > 4 2047 // (1 << Y) > 30 -> Y > 4 2048 if (Pred == ICmpInst::ICMP_ULT) 2049 Pred = ICmpInst::ICMP_ULE; 2050 else if (Pred == ICmpInst::ICMP_UGE) 2051 Pred = ICmpInst::ICMP_UGT; 2052 } 2053 2054 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2055 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2056 unsigned CLog2 = C.logBase2(); 2057 if (CLog2 == TypeBits - 1) { 2058 if (Pred == ICmpInst::ICMP_UGE) 2059 Pred = ICmpInst::ICMP_EQ; 2060 else if (Pred == ICmpInst::ICMP_ULT) 2061 Pred = ICmpInst::ICMP_NE; 2062 } 2063 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2064 } else if (Cmp.isSigned()) { 2065 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2066 if (C.isAllOnes()) { 2067 // (1 << Y) <= -1 -> Y == 31 2068 if (Pred == ICmpInst::ICMP_SLE) 2069 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2070 2071 // (1 << Y) > -1 -> Y != 31 2072 if (Pred == ICmpInst::ICMP_SGT) 2073 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2074 } else if (!C) { 2075 // (1 << Y) < 0 -> Y == 31 2076 // (1 << Y) <= 0 -> Y == 31 2077 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2078 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2079 2080 // (1 << Y) >= 0 -> Y != 31 2081 // (1 << Y) > 0 -> Y != 31 2082 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2083 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2084 } 2085 } else if (Cmp.isEquality() && CIsPowerOf2) { 2086 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2087 } 2088 2089 return nullptr; 2090 } 2091 2092 /// Fold icmp (shl X, Y), C. 2093 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2094 BinaryOperator *Shl, 2095 const APInt &C) { 2096 const APInt *ShiftVal; 2097 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2098 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2099 2100 const APInt *ShiftAmt; 2101 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2102 return foldICmpShlOne(Cmp, Shl, C); 2103 2104 // Check that the shift amount is in range. If not, don't perform undefined 2105 // shifts. When the shift is visited, it will be simplified. 2106 unsigned TypeBits = C.getBitWidth(); 2107 if (ShiftAmt->uge(TypeBits)) 2108 return nullptr; 2109 2110 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2111 Value *X = Shl->getOperand(0); 2112 Type *ShType = Shl->getType(); 2113 2114 // NSW guarantees that we are only shifting out sign bits from the high bits, 2115 // so we can ASHR the compare constant without needing a mask and eliminate 2116 // the shift. 2117 if (Shl->hasNoSignedWrap()) { 2118 if (Pred == ICmpInst::ICMP_SGT) { 2119 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2120 APInt ShiftedC = C.ashr(*ShiftAmt); 2121 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2122 } 2123 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2124 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2125 APInt ShiftedC = C.ashr(*ShiftAmt); 2126 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2127 } 2128 if (Pred == ICmpInst::ICMP_SLT) { 2129 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2130 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2131 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2132 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2133 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2134 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2135 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2136 } 2137 // If this is a signed comparison to 0 and the shift is sign preserving, 2138 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2139 // do that if we're sure to not continue on in this function. 2140 if (isSignTest(Pred, C)) 2141 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2142 } 2143 2144 // NUW guarantees that we are only shifting out zero bits from the high bits, 2145 // so we can LSHR the compare constant without needing a mask and eliminate 2146 // the shift. 2147 if (Shl->hasNoUnsignedWrap()) { 2148 if (Pred == ICmpInst::ICMP_UGT) { 2149 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2150 APInt ShiftedC = C.lshr(*ShiftAmt); 2151 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2152 } 2153 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2154 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2155 APInt ShiftedC = C.lshr(*ShiftAmt); 2156 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2157 } 2158 if (Pred == ICmpInst::ICMP_ULT) { 2159 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2160 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2161 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2162 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2163 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2164 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2165 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2166 } 2167 } 2168 2169 if (Cmp.isEquality() && Shl->hasOneUse()) { 2170 // Strength-reduce the shift into an 'and'. 2171 Constant *Mask = ConstantInt::get( 2172 ShType, 2173 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2174 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2175 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2176 return new ICmpInst(Pred, And, LShrC); 2177 } 2178 2179 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2180 bool TrueIfSigned = false; 2181 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2182 // (X << 31) <s 0 --> (X & 1) != 0 2183 Constant *Mask = ConstantInt::get( 2184 ShType, 2185 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2186 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2187 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2188 And, Constant::getNullValue(ShType)); 2189 } 2190 2191 // Simplify 'shl' inequality test into 'and' equality test. 2192 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2193 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2194 if ((C + 1).isPowerOf2() && 2195 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2196 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2197 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2198 : ICmpInst::ICMP_NE, 2199 And, Constant::getNullValue(ShType)); 2200 } 2201 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2202 if (C.isPowerOf2() && 2203 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2204 Value *And = 2205 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2206 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2207 : ICmpInst::ICMP_NE, 2208 And, Constant::getNullValue(ShType)); 2209 } 2210 } 2211 2212 // Transform (icmp pred iM (shl iM %v, N), C) 2213 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2214 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2215 // This enables us to get rid of the shift in favor of a trunc that may be 2216 // free on the target. It has the additional benefit of comparing to a 2217 // smaller constant that may be more target-friendly. 2218 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2219 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2220 DL.isLegalInteger(TypeBits - Amt)) { 2221 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2222 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2223 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2224 Constant *NewC = 2225 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2226 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2227 } 2228 2229 return nullptr; 2230 } 2231 2232 /// Fold icmp ({al}shr X, Y), C. 2233 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2234 BinaryOperator *Shr, 2235 const APInt &C) { 2236 // An exact shr only shifts out zero bits, so: 2237 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2238 Value *X = Shr->getOperand(0); 2239 CmpInst::Predicate Pred = Cmp.getPredicate(); 2240 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isZero()) 2241 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2242 2243 const APInt *ShiftVal; 2244 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2245 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2246 2247 const APInt *ShiftAmt; 2248 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2249 return nullptr; 2250 2251 // Check that the shift amount is in range. If not, don't perform undefined 2252 // shifts. When the shift is visited it will be simplified. 2253 unsigned TypeBits = C.getBitWidth(); 2254 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2255 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2256 return nullptr; 2257 2258 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2259 bool IsExact = Shr->isExact(); 2260 Type *ShrTy = Shr->getType(); 2261 // TODO: If we could guarantee that InstSimplify would handle all of the 2262 // constant-value-based preconditions in the folds below, then we could assert 2263 // those conditions rather than checking them. This is difficult because of 2264 // undef/poison (PR34838). 2265 if (IsAShr) { 2266 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2267 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2268 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2269 APInt ShiftedC = C.shl(ShAmtVal); 2270 if (ShiftedC.ashr(ShAmtVal) == C) 2271 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2272 } 2273 if (Pred == CmpInst::ICMP_SGT) { 2274 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2275 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2276 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2277 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2278 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2279 } 2280 2281 // If the compare constant has significant bits above the lowest sign-bit, 2282 // then convert an unsigned cmp to a test of the sign-bit: 2283 // (ashr X, ShiftC) u> C --> X s< 0 2284 // (ashr X, ShiftC) u< C --> X s> -1 2285 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2286 if (Pred == CmpInst::ICMP_UGT) { 2287 return new ICmpInst(CmpInst::ICMP_SLT, X, 2288 ConstantInt::getNullValue(ShrTy)); 2289 } 2290 if (Pred == CmpInst::ICMP_ULT) { 2291 return new ICmpInst(CmpInst::ICMP_SGT, X, 2292 ConstantInt::getAllOnesValue(ShrTy)); 2293 } 2294 } 2295 } else { 2296 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2297 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2298 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2299 APInt ShiftedC = C.shl(ShAmtVal); 2300 if (ShiftedC.lshr(ShAmtVal) == C) 2301 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2302 } 2303 if (Pred == CmpInst::ICMP_UGT) { 2304 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2305 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2306 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2307 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2308 } 2309 } 2310 2311 if (!Cmp.isEquality()) 2312 return nullptr; 2313 2314 // Handle equality comparisons of shift-by-constant. 2315 2316 // If the comparison constant changes with the shift, the comparison cannot 2317 // succeed (bits of the comparison constant cannot match the shifted value). 2318 // This should be known by InstSimplify and already be folded to true/false. 2319 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2320 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2321 "Expected icmp+shr simplify did not occur."); 2322 2323 // If the bits shifted out are known zero, compare the unshifted value: 2324 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2325 if (Shr->isExact()) 2326 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2327 2328 if (C.isZero()) { 2329 // == 0 is u< 1. 2330 if (Pred == CmpInst::ICMP_EQ) 2331 return new ICmpInst(CmpInst::ICMP_ULT, X, 2332 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2333 else 2334 return new ICmpInst(CmpInst::ICMP_UGT, X, 2335 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2336 } 2337 2338 if (Shr->hasOneUse()) { 2339 // Canonicalize the shift into an 'and': 2340 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2341 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2342 Constant *Mask = ConstantInt::get(ShrTy, Val); 2343 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2344 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2345 } 2346 2347 return nullptr; 2348 } 2349 2350 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2351 BinaryOperator *SRem, 2352 const APInt &C) { 2353 // Match an 'is positive' or 'is negative' comparison of remainder by a 2354 // constant power-of-2 value: 2355 // (X % pow2C) sgt/slt 0 2356 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2357 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2358 return nullptr; 2359 2360 // TODO: The one-use check is standard because we do not typically want to 2361 // create longer instruction sequences, but this might be a special-case 2362 // because srem is not good for analysis or codegen. 2363 if (!SRem->hasOneUse()) 2364 return nullptr; 2365 2366 const APInt *DivisorC; 2367 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2368 return nullptr; 2369 2370 // Mask off the sign bit and the modulo bits (low-bits). 2371 Type *Ty = SRem->getType(); 2372 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2373 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2374 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2375 2376 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2377 // bit is set. Example: 2378 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2379 if (Pred == ICmpInst::ICMP_SGT) 2380 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2381 2382 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2383 // bit is set. Example: 2384 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2385 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2386 } 2387 2388 /// Fold icmp (udiv X, Y), C. 2389 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2390 BinaryOperator *UDiv, 2391 const APInt &C) { 2392 const APInt *C2; 2393 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2394 return nullptr; 2395 2396 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2397 2398 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2399 Value *Y = UDiv->getOperand(1); 2400 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2401 assert(!C.isMaxValue() && 2402 "icmp ugt X, UINT_MAX should have been simplified already."); 2403 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2404 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2405 } 2406 2407 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2408 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2409 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2410 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2411 ConstantInt::get(Y->getType(), C2->udiv(C))); 2412 } 2413 2414 return nullptr; 2415 } 2416 2417 /// Fold icmp ({su}div X, Y), C. 2418 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2419 BinaryOperator *Div, 2420 const APInt &C) { 2421 // Fold: icmp pred ([us]div X, C2), C -> range test 2422 // Fold this div into the comparison, producing a range check. 2423 // Determine, based on the divide type, what the range is being 2424 // checked. If there is an overflow on the low or high side, remember 2425 // it, otherwise compute the range [low, hi) bounding the new value. 2426 // See: InsertRangeTest above for the kinds of replacements possible. 2427 const APInt *C2; 2428 if (!match(Div->getOperand(1), m_APInt(C2))) 2429 return nullptr; 2430 2431 // FIXME: If the operand types don't match the type of the divide 2432 // then don't attempt this transform. The code below doesn't have the 2433 // logic to deal with a signed divide and an unsigned compare (and 2434 // vice versa). This is because (x /s C2) <s C produces different 2435 // results than (x /s C2) <u C or (x /u C2) <s C or even 2436 // (x /u C2) <u C. Simply casting the operands and result won't 2437 // work. :( The if statement below tests that condition and bails 2438 // if it finds it. 2439 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2440 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2441 return nullptr; 2442 2443 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2444 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2445 // division-by-constant cases should be present, we can not assert that they 2446 // have happened before we reach this icmp instruction. 2447 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2448 return nullptr; 2449 2450 // Compute Prod = C * C2. We are essentially solving an equation of 2451 // form X / C2 = C. We solve for X by multiplying C2 and C. 2452 // By solving for X, we can turn this into a range check instead of computing 2453 // a divide. 2454 APInt Prod = C * *C2; 2455 2456 // Determine if the product overflows by seeing if the product is not equal to 2457 // the divide. Make sure we do the same kind of divide as in the LHS 2458 // instruction that we're folding. 2459 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2460 2461 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2462 2463 // If the division is known to be exact, then there is no remainder from the 2464 // divide, so the covered range size is unit, otherwise it is the divisor. 2465 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2466 2467 // Figure out the interval that is being checked. For example, a comparison 2468 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2469 // Compute this interval based on the constants involved and the signedness of 2470 // the compare/divide. This computes a half-open interval, keeping track of 2471 // whether either value in the interval overflows. After analysis each 2472 // overflow variable is set to 0 if it's corresponding bound variable is valid 2473 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2474 int LoOverflow = 0, HiOverflow = 0; 2475 APInt LoBound, HiBound; 2476 2477 if (!DivIsSigned) { // udiv 2478 // e.g. X/5 op 3 --> [15, 20) 2479 LoBound = Prod; 2480 HiOverflow = LoOverflow = ProdOV; 2481 if (!HiOverflow) { 2482 // If this is not an exact divide, then many values in the range collapse 2483 // to the same result value. 2484 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2485 } 2486 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2487 if (C.isZero()) { // (X / pos) op 0 2488 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2489 LoBound = -(RangeSize - 1); 2490 HiBound = RangeSize; 2491 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2492 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2493 HiOverflow = LoOverflow = ProdOV; 2494 if (!HiOverflow) 2495 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2496 } else { // (X / pos) op neg 2497 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2498 HiBound = Prod + 1; 2499 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2500 if (!LoOverflow) { 2501 APInt DivNeg = -RangeSize; 2502 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2503 } 2504 } 2505 } else if (C2->isNegative()) { // Divisor is < 0. 2506 if (Div->isExact()) 2507 RangeSize.negate(); 2508 if (C.isZero()) { // (X / neg) op 0 2509 // e.g. X/-5 op 0 --> [-4, 5) 2510 LoBound = RangeSize + 1; 2511 HiBound = -RangeSize; 2512 if (HiBound == *C2) { // -INTMIN = INTMIN 2513 HiOverflow = 1; // [INTMIN+1, overflow) 2514 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2515 } 2516 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2517 // e.g. X/-5 op 3 --> [-19, -14) 2518 HiBound = Prod + 1; 2519 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2520 if (!LoOverflow) 2521 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2522 } else { // (X / neg) op neg 2523 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2524 LoOverflow = HiOverflow = ProdOV; 2525 if (!HiOverflow) 2526 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2527 } 2528 2529 // Dividing by a negative swaps the condition. LT <-> GT 2530 Pred = ICmpInst::getSwappedPredicate(Pred); 2531 } 2532 2533 Value *X = Div->getOperand(0); 2534 switch (Pred) { 2535 default: llvm_unreachable("Unhandled icmp opcode!"); 2536 case ICmpInst::ICMP_EQ: 2537 if (LoOverflow && HiOverflow) 2538 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2539 if (HiOverflow) 2540 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2541 ICmpInst::ICMP_UGE, X, 2542 ConstantInt::get(Div->getType(), LoBound)); 2543 if (LoOverflow) 2544 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2545 ICmpInst::ICMP_ULT, X, 2546 ConstantInt::get(Div->getType(), HiBound)); 2547 return replaceInstUsesWith( 2548 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2549 case ICmpInst::ICMP_NE: 2550 if (LoOverflow && HiOverflow) 2551 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2552 if (HiOverflow) 2553 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2554 ICmpInst::ICMP_ULT, X, 2555 ConstantInt::get(Div->getType(), LoBound)); 2556 if (LoOverflow) 2557 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2558 ICmpInst::ICMP_UGE, X, 2559 ConstantInt::get(Div->getType(), HiBound)); 2560 return replaceInstUsesWith(Cmp, 2561 insertRangeTest(X, LoBound, HiBound, 2562 DivIsSigned, false)); 2563 case ICmpInst::ICMP_ULT: 2564 case ICmpInst::ICMP_SLT: 2565 if (LoOverflow == +1) // Low bound is greater than input range. 2566 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2567 if (LoOverflow == -1) // Low bound is less than input range. 2568 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2569 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2570 case ICmpInst::ICMP_UGT: 2571 case ICmpInst::ICMP_SGT: 2572 if (HiOverflow == +1) // High bound greater than input range. 2573 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2574 if (HiOverflow == -1) // High bound less than input range. 2575 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2576 if (Pred == ICmpInst::ICMP_UGT) 2577 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2578 ConstantInt::get(Div->getType(), HiBound)); 2579 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2580 ConstantInt::get(Div->getType(), HiBound)); 2581 } 2582 2583 return nullptr; 2584 } 2585 2586 /// Fold icmp (sub X, Y), C. 2587 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2588 BinaryOperator *Sub, 2589 const APInt &C) { 2590 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2591 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2592 Type *Ty = Sub->getType(); 2593 2594 // (SubC - Y) == C) --> Y == (SubC - C) 2595 // (SubC - Y) != C) --> Y != (SubC - C) 2596 Constant *SubC; 2597 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2598 return new ICmpInst(Pred, Y, 2599 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2600 } 2601 2602 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2603 const APInt *C2; 2604 APInt SubResult; 2605 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2606 bool HasNSW = Sub->hasNoSignedWrap(); 2607 bool HasNUW = Sub->hasNoUnsignedWrap(); 2608 if (match(X, m_APInt(C2)) && 2609 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2610 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2611 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2612 2613 // The following transforms are only worth it if the only user of the subtract 2614 // is the icmp. 2615 // TODO: This is an artificial restriction for all of the transforms below 2616 // that only need a single replacement icmp. 2617 if (!Sub->hasOneUse()) 2618 return nullptr; 2619 2620 // X - Y == 0 --> X == Y. 2621 // X - Y != 0 --> X != Y. 2622 if (Cmp.isEquality() && C.isZero()) 2623 return new ICmpInst(Pred, X, Y); 2624 2625 if (Sub->hasNoSignedWrap()) { 2626 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2627 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2628 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2629 2630 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2631 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2632 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2633 2634 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2635 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2636 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2637 2638 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2639 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2640 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2641 } 2642 2643 if (!match(X, m_APInt(C2))) 2644 return nullptr; 2645 2646 // C2 - Y <u C -> (Y | (C - 1)) == C2 2647 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2648 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2649 (*C2 & (C - 1)) == (C - 1)) 2650 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2651 2652 // C2 - Y >u C -> (Y | C) != C2 2653 // iff C2 & C == C and C + 1 is a power of 2 2654 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2655 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2656 2657 // We have handled special cases that reduce. 2658 // Canonicalize any remaining sub to add as: 2659 // (C2 - Y) > C --> (Y + ~C2) < ~C 2660 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2661 HasNUW, HasNSW); 2662 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2663 } 2664 2665 /// Fold icmp (add X, Y), C. 2666 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2667 BinaryOperator *Add, 2668 const APInt &C) { 2669 Value *Y = Add->getOperand(1); 2670 const APInt *C2; 2671 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2672 return nullptr; 2673 2674 // Fold icmp pred (add X, C2), C. 2675 Value *X = Add->getOperand(0); 2676 Type *Ty = Add->getType(); 2677 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2678 2679 // If the add does not wrap, we can always adjust the compare by subtracting 2680 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2681 // are canonicalized to SGT/SLT/UGT/ULT. 2682 if ((Add->hasNoSignedWrap() && 2683 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2684 (Add->hasNoUnsignedWrap() && 2685 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2686 bool Overflow; 2687 APInt NewC = 2688 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2689 // If there is overflow, the result must be true or false. 2690 // TODO: Can we assert there is no overflow because InstSimplify always 2691 // handles those cases? 2692 if (!Overflow) 2693 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2694 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2695 } 2696 2697 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2698 const APInt &Upper = CR.getUpper(); 2699 const APInt &Lower = CR.getLower(); 2700 if (Cmp.isSigned()) { 2701 if (Lower.isSignMask()) 2702 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2703 if (Upper.isSignMask()) 2704 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2705 } else { 2706 if (Lower.isMinValue()) 2707 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2708 if (Upper.isMinValue()) 2709 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2710 } 2711 2712 // This set of folds is intentionally placed after folds that use no-wrapping 2713 // flags because those folds are likely better for later analysis/codegen. 2714 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2715 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2716 2717 // Fold compare with offset to opposite sign compare if it eliminates offset: 2718 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2719 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2720 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2721 2722 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2723 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2724 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2725 2726 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2727 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2728 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2729 2730 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2731 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2732 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2733 2734 if (!Add->hasOneUse()) 2735 return nullptr; 2736 2737 // X+C <u C2 -> (X & -C2) == C 2738 // iff C & (C2-1) == 0 2739 // C2 is a power of 2 2740 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2741 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2742 ConstantExpr::getNeg(cast<Constant>(Y))); 2743 2744 // X+C >u C2 -> (X & ~C2) != C 2745 // iff C & C2 == 0 2746 // C2+1 is a power of 2 2747 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2748 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2749 ConstantExpr::getNeg(cast<Constant>(Y))); 2750 2751 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2752 // to the ult form. 2753 // X+C2 >u C -> X+(C2-C-1) <u ~C 2754 if (Pred == ICmpInst::ICMP_UGT) 2755 return new ICmpInst(ICmpInst::ICMP_ULT, 2756 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2757 ConstantInt::get(Ty, ~C)); 2758 2759 return nullptr; 2760 } 2761 2762 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2763 Value *&RHS, ConstantInt *&Less, 2764 ConstantInt *&Equal, 2765 ConstantInt *&Greater) { 2766 // TODO: Generalize this to work with other comparison idioms or ensure 2767 // they get canonicalized into this form. 2768 2769 // select i1 (a == b), 2770 // i32 Equal, 2771 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2772 // where Equal, Less and Greater are placeholders for any three constants. 2773 ICmpInst::Predicate PredA; 2774 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2775 !ICmpInst::isEquality(PredA)) 2776 return false; 2777 Value *EqualVal = SI->getTrueValue(); 2778 Value *UnequalVal = SI->getFalseValue(); 2779 // We still can get non-canonical predicate here, so canonicalize. 2780 if (PredA == ICmpInst::ICMP_NE) 2781 std::swap(EqualVal, UnequalVal); 2782 if (!match(EqualVal, m_ConstantInt(Equal))) 2783 return false; 2784 ICmpInst::Predicate PredB; 2785 Value *LHS2, *RHS2; 2786 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2787 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2788 return false; 2789 // We can get predicate mismatch here, so canonicalize if possible: 2790 // First, ensure that 'LHS' match. 2791 if (LHS2 != LHS) { 2792 // x sgt y <--> y slt x 2793 std::swap(LHS2, RHS2); 2794 PredB = ICmpInst::getSwappedPredicate(PredB); 2795 } 2796 if (LHS2 != LHS) 2797 return false; 2798 // We also need to canonicalize 'RHS'. 2799 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2800 // x sgt C-1 <--> x sge C <--> not(x slt C) 2801 auto FlippedStrictness = 2802 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2803 PredB, cast<Constant>(RHS2)); 2804 if (!FlippedStrictness) 2805 return false; 2806 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2807 RHS2 = FlippedStrictness->second; 2808 // And kind-of perform the result swap. 2809 std::swap(Less, Greater); 2810 PredB = ICmpInst::ICMP_SLT; 2811 } 2812 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2813 } 2814 2815 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2816 SelectInst *Select, 2817 ConstantInt *C) { 2818 2819 assert(C && "Cmp RHS should be a constant int!"); 2820 // If we're testing a constant value against the result of a three way 2821 // comparison, the result can be expressed directly in terms of the 2822 // original values being compared. Note: We could possibly be more 2823 // aggressive here and remove the hasOneUse test. The original select is 2824 // really likely to simplify or sink when we remove a test of the result. 2825 Value *OrigLHS, *OrigRHS; 2826 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2827 if (Cmp.hasOneUse() && 2828 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2829 C3GreaterThan)) { 2830 assert(C1LessThan && C2Equal && C3GreaterThan); 2831 2832 bool TrueWhenLessThan = 2833 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2834 ->isAllOnesValue(); 2835 bool TrueWhenEqual = 2836 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2837 ->isAllOnesValue(); 2838 bool TrueWhenGreaterThan = 2839 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2840 ->isAllOnesValue(); 2841 2842 // This generates the new instruction that will replace the original Cmp 2843 // Instruction. Instead of enumerating the various combinations when 2844 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2845 // false, we rely on chaining of ORs and future passes of InstCombine to 2846 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2847 2848 // When none of the three constants satisfy the predicate for the RHS (C), 2849 // the entire original Cmp can be simplified to a false. 2850 Value *Cond = Builder.getFalse(); 2851 if (TrueWhenLessThan) 2852 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2853 OrigLHS, OrigRHS)); 2854 if (TrueWhenEqual) 2855 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2856 OrigLHS, OrigRHS)); 2857 if (TrueWhenGreaterThan) 2858 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2859 OrigLHS, OrigRHS)); 2860 2861 return replaceInstUsesWith(Cmp, Cond); 2862 } 2863 return nullptr; 2864 } 2865 2866 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2867 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2868 if (!Bitcast) 2869 return nullptr; 2870 2871 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2872 Value *Op1 = Cmp.getOperand(1); 2873 Value *BCSrcOp = Bitcast->getOperand(0); 2874 2875 // Make sure the bitcast doesn't change the number of vector elements. 2876 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2877 Bitcast->getDestTy()->getScalarSizeInBits()) { 2878 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2879 Value *X; 2880 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2881 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2882 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2883 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2884 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2885 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2886 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2887 match(Op1, m_Zero())) 2888 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2889 2890 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2891 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2892 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2893 2894 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2895 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2896 return new ICmpInst(Pred, X, 2897 ConstantInt::getAllOnesValue(X->getType())); 2898 } 2899 2900 // Zero-equality checks are preserved through unsigned floating-point casts: 2901 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2902 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2903 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2904 if (Cmp.isEquality() && match(Op1, m_Zero())) 2905 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2906 2907 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2908 // the FP extend/truncate because that cast does not change the sign-bit. 2909 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2910 // The sign-bit is always the most significant bit in those types. 2911 const APInt *C; 2912 bool TrueIfSigned; 2913 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2914 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2915 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2916 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2917 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2918 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2919 Type *XType = X->getType(); 2920 2921 // We can't currently handle Power style floating point operations here. 2922 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2923 2924 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2925 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2926 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2927 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2928 if (TrueIfSigned) 2929 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2930 ConstantInt::getNullValue(NewType)); 2931 else 2932 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2933 ConstantInt::getAllOnesValue(NewType)); 2934 } 2935 } 2936 } 2937 } 2938 2939 // Test to see if the operands of the icmp are casted versions of other 2940 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2941 if (Bitcast->getType()->isPointerTy() && 2942 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2943 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2944 // so eliminate it as well. 2945 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2946 Op1 = BC2->getOperand(0); 2947 2948 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2949 return new ICmpInst(Pred, BCSrcOp, Op1); 2950 } 2951 2952 const APInt *C; 2953 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2954 !Bitcast->getType()->isIntegerTy() || 2955 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2956 return nullptr; 2957 2958 // If this is checking if all elements of a vector compare are set or not, 2959 // invert the casted vector equality compare and test if all compare 2960 // elements are clear or not. Compare against zero is generally easier for 2961 // analysis and codegen. 2962 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2963 // Example: are all elements equal? --> are zero elements not equal? 2964 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2965 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2966 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2967 Type *ScalarTy = Bitcast->getType(); 2968 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2969 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2970 } 2971 2972 // If this is checking if all elements of an extended vector are clear or not, 2973 // compare in a narrow type to eliminate the extend: 2974 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2975 Value *X; 2976 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2977 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2978 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2979 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2980 Value *NewCast = Builder.CreateBitCast(X, NewType); 2981 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2982 } 2983 } 2984 2985 // Folding: icmp <pred> iN X, C 2986 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2987 // and C is a splat of a K-bit pattern 2988 // and SC is a constant vector = <C', C', C', ..., C'> 2989 // Into: 2990 // %E = extractelement <M x iK> %vec, i32 C' 2991 // icmp <pred> iK %E, trunc(C) 2992 Value *Vec; 2993 ArrayRef<int> Mask; 2994 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2995 // Check whether every element of Mask is the same constant 2996 if (is_splat(Mask)) { 2997 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2998 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2999 if (C->isSplat(EltTy->getBitWidth())) { 3000 // Fold the icmp based on the value of C 3001 // If C is M copies of an iK sized bit pattern, 3002 // then: 3003 // => %E = extractelement <N x iK> %vec, i32 Elem 3004 // icmp <pred> iK %SplatVal, <pattern> 3005 Value *Elem = Builder.getInt32(Mask[0]); 3006 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3007 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3008 return new ICmpInst(Pred, Extract, NewC); 3009 } 3010 } 3011 } 3012 return nullptr; 3013 } 3014 3015 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3016 /// where X is some kind of instruction. 3017 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3018 const APInt *C; 3019 if (!match(Cmp.getOperand(1), m_APInt(C))) 3020 return nullptr; 3021 3022 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3023 switch (BO->getOpcode()) { 3024 case Instruction::Xor: 3025 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3026 return I; 3027 break; 3028 case Instruction::And: 3029 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3030 return I; 3031 break; 3032 case Instruction::Or: 3033 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3034 return I; 3035 break; 3036 case Instruction::Mul: 3037 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3038 return I; 3039 break; 3040 case Instruction::Shl: 3041 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3042 return I; 3043 break; 3044 case Instruction::LShr: 3045 case Instruction::AShr: 3046 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3047 return I; 3048 break; 3049 case Instruction::SRem: 3050 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3051 return I; 3052 break; 3053 case Instruction::UDiv: 3054 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3055 return I; 3056 LLVM_FALLTHROUGH; 3057 case Instruction::SDiv: 3058 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3059 return I; 3060 break; 3061 case Instruction::Sub: 3062 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3063 return I; 3064 break; 3065 case Instruction::Add: 3066 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3067 return I; 3068 break; 3069 default: 3070 break; 3071 } 3072 // TODO: These folds could be refactored to be part of the above calls. 3073 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3074 return I; 3075 } 3076 3077 // Match against CmpInst LHS being instructions other than binary operators. 3078 3079 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3080 // For now, we only support constant integers while folding the 3081 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3082 // similar to the cases handled by binary ops above. 3083 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3084 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3085 return I; 3086 } 3087 3088 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3089 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3090 return I; 3091 } 3092 3093 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3094 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3095 return I; 3096 3097 return nullptr; 3098 } 3099 3100 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3101 /// icmp eq/ne BO, C. 3102 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3103 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3104 // TODO: Some of these folds could work with arbitrary constants, but this 3105 // function is limited to scalar and vector splat constants. 3106 if (!Cmp.isEquality()) 3107 return nullptr; 3108 3109 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3110 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3111 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3112 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3113 3114 switch (BO->getOpcode()) { 3115 case Instruction::SRem: 3116 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3117 if (C.isZero() && BO->hasOneUse()) { 3118 const APInt *BOC; 3119 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3120 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3121 return new ICmpInst(Pred, NewRem, 3122 Constant::getNullValue(BO->getType())); 3123 } 3124 } 3125 break; 3126 case Instruction::Add: { 3127 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3128 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3129 if (BO->hasOneUse()) 3130 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3131 } else if (C.isZero()) { 3132 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3133 // efficiently invertible, or if the add has just this one use. 3134 if (Value *NegVal = dyn_castNegVal(BOp1)) 3135 return new ICmpInst(Pred, BOp0, NegVal); 3136 if (Value *NegVal = dyn_castNegVal(BOp0)) 3137 return new ICmpInst(Pred, NegVal, BOp1); 3138 if (BO->hasOneUse()) { 3139 Value *Neg = Builder.CreateNeg(BOp1); 3140 Neg->takeName(BO); 3141 return new ICmpInst(Pred, BOp0, Neg); 3142 } 3143 } 3144 break; 3145 } 3146 case Instruction::Xor: 3147 if (BO->hasOneUse()) { 3148 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3149 // For the xor case, we can xor two constants together, eliminating 3150 // the explicit xor. 3151 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3152 } else if (C.isZero()) { 3153 // Replace ((xor A, B) != 0) with (A != B) 3154 return new ICmpInst(Pred, BOp0, BOp1); 3155 } 3156 } 3157 break; 3158 case Instruction::Or: { 3159 const APInt *BOC; 3160 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3161 // Comparing if all bits outside of a constant mask are set? 3162 // Replace (X | C) == -1 with (X & ~C) == ~C. 3163 // This removes the -1 constant. 3164 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3165 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3166 return new ICmpInst(Pred, And, NotBOC); 3167 } 3168 break; 3169 } 3170 case Instruction::And: { 3171 const APInt *BOC; 3172 if (match(BOp1, m_APInt(BOC))) { 3173 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3174 if (C == *BOC && C.isPowerOf2()) 3175 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3176 BO, Constant::getNullValue(RHS->getType())); 3177 } 3178 break; 3179 } 3180 case Instruction::UDiv: 3181 if (C.isZero()) { 3182 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3183 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3184 return new ICmpInst(NewPred, BOp1, BOp0); 3185 } 3186 break; 3187 default: 3188 break; 3189 } 3190 return nullptr; 3191 } 3192 3193 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3194 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3195 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3196 Type *Ty = II->getType(); 3197 unsigned BitWidth = C.getBitWidth(); 3198 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3199 3200 switch (II->getIntrinsicID()) { 3201 case Intrinsic::abs: 3202 // abs(A) == 0 -> A == 0 3203 // abs(A) == INT_MIN -> A == INT_MIN 3204 if (C.isZero() || C.isMinSignedValue()) 3205 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3206 break; 3207 3208 case Intrinsic::bswap: 3209 // bswap(A) == C -> A == bswap(C) 3210 return new ICmpInst(Pred, II->getArgOperand(0), 3211 ConstantInt::get(Ty, C.byteSwap())); 3212 3213 case Intrinsic::ctlz: 3214 case Intrinsic::cttz: { 3215 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3216 if (C == BitWidth) 3217 return new ICmpInst(Pred, II->getArgOperand(0), 3218 ConstantInt::getNullValue(Ty)); 3219 3220 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3221 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3222 // Limit to one use to ensure we don't increase instruction count. 3223 unsigned Num = C.getLimitedValue(BitWidth); 3224 if (Num != BitWidth && II->hasOneUse()) { 3225 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3226 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3227 : APInt::getHighBitsSet(BitWidth, Num + 1); 3228 APInt Mask2 = IsTrailing 3229 ? APInt::getOneBitSet(BitWidth, Num) 3230 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3231 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3232 ConstantInt::get(Ty, Mask2)); 3233 } 3234 break; 3235 } 3236 3237 case Intrinsic::ctpop: { 3238 // popcount(A) == 0 -> A == 0 and likewise for != 3239 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3240 bool IsZero = C.isZero(); 3241 if (IsZero || C == BitWidth) 3242 return new ICmpInst(Pred, II->getArgOperand(0), 3243 IsZero ? Constant::getNullValue(Ty) 3244 : Constant::getAllOnesValue(Ty)); 3245 3246 break; 3247 } 3248 3249 case Intrinsic::fshl: 3250 case Intrinsic::fshr: 3251 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3252 // (rot X, ?) == 0/-1 --> X == 0/-1 3253 // TODO: This transform is safe to re-use undef elts in a vector, but 3254 // the constant value passed in by the caller doesn't allow that. 3255 if (C.isZero() || C.isAllOnes()) 3256 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3257 3258 const APInt *RotAmtC; 3259 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3260 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3261 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3262 return new ICmpInst(Pred, II->getArgOperand(0), 3263 II->getIntrinsicID() == Intrinsic::fshl 3264 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3265 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3266 } 3267 break; 3268 3269 case Intrinsic::uadd_sat: { 3270 // uadd.sat(a, b) == 0 -> (a | b) == 0 3271 if (C.isZero()) { 3272 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3273 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3274 } 3275 break; 3276 } 3277 3278 case Intrinsic::usub_sat: { 3279 // usub.sat(a, b) == 0 -> a <= b 3280 if (C.isZero()) { 3281 ICmpInst::Predicate NewPred = 3282 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3283 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3284 } 3285 break; 3286 } 3287 default: 3288 break; 3289 } 3290 3291 return nullptr; 3292 } 3293 3294 /// Fold an icmp with LLVM intrinsics 3295 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3296 assert(Cmp.isEquality()); 3297 3298 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3299 Value *Op0 = Cmp.getOperand(0); 3300 Value *Op1 = Cmp.getOperand(1); 3301 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3302 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3303 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3304 return nullptr; 3305 3306 switch (IIOp0->getIntrinsicID()) { 3307 case Intrinsic::bswap: 3308 case Intrinsic::bitreverse: 3309 // If both operands are byte-swapped or bit-reversed, just compare the 3310 // original values. 3311 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3312 case Intrinsic::fshl: 3313 case Intrinsic::fshr: 3314 // If both operands are rotated by same amount, just compare the 3315 // original values. 3316 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3317 break; 3318 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3319 break; 3320 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3321 break; 3322 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3323 default: 3324 break; 3325 } 3326 3327 return nullptr; 3328 } 3329 3330 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3331 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3332 IntrinsicInst *II, 3333 const APInt &C) { 3334 if (Cmp.isEquality()) 3335 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3336 3337 Type *Ty = II->getType(); 3338 unsigned BitWidth = C.getBitWidth(); 3339 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3340 switch (II->getIntrinsicID()) { 3341 case Intrinsic::ctpop: { 3342 // (ctpop X > BitWidth - 1) --> X == -1 3343 Value *X = II->getArgOperand(0); 3344 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3345 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3346 ConstantInt::getAllOnesValue(Ty)); 3347 // (ctpop X < BitWidth) --> X != -1 3348 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3349 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3350 ConstantInt::getAllOnesValue(Ty)); 3351 break; 3352 } 3353 case Intrinsic::ctlz: { 3354 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3355 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3356 unsigned Num = C.getLimitedValue(); 3357 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3358 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3359 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3360 } 3361 3362 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3363 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3364 unsigned Num = C.getLimitedValue(); 3365 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3366 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3367 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3368 } 3369 break; 3370 } 3371 case Intrinsic::cttz: { 3372 // Limit to one use to ensure we don't increase instruction count. 3373 if (!II->hasOneUse()) 3374 return nullptr; 3375 3376 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3377 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3378 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3379 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3380 Builder.CreateAnd(II->getArgOperand(0), Mask), 3381 ConstantInt::getNullValue(Ty)); 3382 } 3383 3384 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3385 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3386 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3387 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3388 Builder.CreateAnd(II->getArgOperand(0), Mask), 3389 ConstantInt::getNullValue(Ty)); 3390 } 3391 break; 3392 } 3393 default: 3394 break; 3395 } 3396 3397 return nullptr; 3398 } 3399 3400 /// Handle icmp with constant (but not simple integer constant) RHS. 3401 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3402 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3403 Constant *RHSC = dyn_cast<Constant>(Op1); 3404 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3405 if (!RHSC || !LHSI) 3406 return nullptr; 3407 3408 switch (LHSI->getOpcode()) { 3409 case Instruction::GetElementPtr: 3410 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3411 if (RHSC->isNullValue() && 3412 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3413 return new ICmpInst( 3414 I.getPredicate(), LHSI->getOperand(0), 3415 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3416 break; 3417 case Instruction::PHI: 3418 // Only fold icmp into the PHI if the phi and icmp are in the same 3419 // block. If in the same block, we're encouraging jump threading. If 3420 // not, we are just pessimizing the code by making an i1 phi. 3421 if (LHSI->getParent() == I.getParent()) 3422 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3423 return NV; 3424 break; 3425 case Instruction::Select: { 3426 // If either operand of the select is a constant, we can fold the 3427 // comparison into the select arms, which will cause one to be 3428 // constant folded and the select turned into a bitwise or. 3429 Value *Op1 = nullptr, *Op2 = nullptr; 3430 ConstantInt *CI = nullptr; 3431 3432 auto SimplifyOp = [&](Value *V) { 3433 Value *Op = nullptr; 3434 if (Constant *C = dyn_cast<Constant>(V)) { 3435 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3436 } else if (RHSC->isNullValue()) { 3437 // If null is being compared, check if it can be further simplified. 3438 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3439 } 3440 return Op; 3441 }; 3442 Op1 = SimplifyOp(LHSI->getOperand(1)); 3443 if (Op1) 3444 CI = dyn_cast<ConstantInt>(Op1); 3445 3446 Op2 = SimplifyOp(LHSI->getOperand(2)); 3447 if (Op2) 3448 CI = dyn_cast<ConstantInt>(Op2); 3449 3450 // We only want to perform this transformation if it will not lead to 3451 // additional code. This is true if either both sides of the select 3452 // fold to a constant (in which case the icmp is replaced with a select 3453 // which will usually simplify) or this is the only user of the 3454 // select (in which case we are trading a select+icmp for a simpler 3455 // select+icmp) or all uses of the select can be replaced based on 3456 // dominance information ("Global cases"). 3457 bool Transform = false; 3458 if (Op1 && Op2) 3459 Transform = true; 3460 else if (Op1 || Op2) { 3461 // Local case 3462 if (LHSI->hasOneUse()) 3463 Transform = true; 3464 // Global cases 3465 else if (CI && !CI->isZero()) 3466 // When Op1 is constant try replacing select with second operand. 3467 // Otherwise Op2 is constant and try replacing select with first 3468 // operand. 3469 Transform = 3470 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3471 } 3472 if (Transform) { 3473 if (!Op1) 3474 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3475 I.getName()); 3476 if (!Op2) 3477 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3478 I.getName()); 3479 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3480 } 3481 break; 3482 } 3483 case Instruction::IntToPtr: 3484 // icmp pred inttoptr(X), null -> icmp pred X, 0 3485 if (RHSC->isNullValue() && 3486 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3487 return new ICmpInst( 3488 I.getPredicate(), LHSI->getOperand(0), 3489 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3490 break; 3491 3492 case Instruction::Load: 3493 // Try to optimize things like "A[i] > 4" to index computations. 3494 if (GetElementPtrInst *GEP = 3495 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3496 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3497 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3498 !cast<LoadInst>(LHSI)->isVolatile()) 3499 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3500 return Res; 3501 } 3502 break; 3503 } 3504 3505 return nullptr; 3506 } 3507 3508 /// Some comparisons can be simplified. 3509 /// In this case, we are looking for comparisons that look like 3510 /// a check for a lossy truncation. 3511 /// Folds: 3512 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3513 /// Where Mask is some pattern that produces all-ones in low bits: 3514 /// (-1 >> y) 3515 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3516 /// ~(-1 << y) 3517 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3518 /// The Mask can be a constant, too. 3519 /// For some predicates, the operands are commutative. 3520 /// For others, x can only be on a specific side. 3521 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3522 InstCombiner::BuilderTy &Builder) { 3523 ICmpInst::Predicate SrcPred; 3524 Value *X, *M, *Y; 3525 auto m_VariableMask = m_CombineOr( 3526 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3527 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3528 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3529 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3530 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3531 if (!match(&I, m_c_ICmp(SrcPred, 3532 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3533 m_Deferred(X)))) 3534 return nullptr; 3535 3536 ICmpInst::Predicate DstPred; 3537 switch (SrcPred) { 3538 case ICmpInst::Predicate::ICMP_EQ: 3539 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3540 DstPred = ICmpInst::Predicate::ICMP_ULE; 3541 break; 3542 case ICmpInst::Predicate::ICMP_NE: 3543 // x & (-1 >> y) != x -> x u> (-1 >> y) 3544 DstPred = ICmpInst::Predicate::ICMP_UGT; 3545 break; 3546 case ICmpInst::Predicate::ICMP_ULT: 3547 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3548 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3549 DstPred = ICmpInst::Predicate::ICMP_UGT; 3550 break; 3551 case ICmpInst::Predicate::ICMP_UGE: 3552 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3553 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3554 DstPred = ICmpInst::Predicate::ICMP_ULE; 3555 break; 3556 case ICmpInst::Predicate::ICMP_SLT: 3557 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3558 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3559 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3560 return nullptr; 3561 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3562 return nullptr; 3563 DstPred = ICmpInst::Predicate::ICMP_SGT; 3564 break; 3565 case ICmpInst::Predicate::ICMP_SGE: 3566 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3567 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3568 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3569 return nullptr; 3570 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3571 return nullptr; 3572 DstPred = ICmpInst::Predicate::ICMP_SLE; 3573 break; 3574 case ICmpInst::Predicate::ICMP_SGT: 3575 case ICmpInst::Predicate::ICMP_SLE: 3576 return nullptr; 3577 case ICmpInst::Predicate::ICMP_UGT: 3578 case ICmpInst::Predicate::ICMP_ULE: 3579 llvm_unreachable("Instsimplify took care of commut. variant"); 3580 break; 3581 default: 3582 llvm_unreachable("All possible folds are handled."); 3583 } 3584 3585 // The mask value may be a vector constant that has undefined elements. But it 3586 // may not be safe to propagate those undefs into the new compare, so replace 3587 // those elements by copying an existing, defined, and safe scalar constant. 3588 Type *OpTy = M->getType(); 3589 auto *VecC = dyn_cast<Constant>(M); 3590 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3591 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3592 Constant *SafeReplacementConstant = nullptr; 3593 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3594 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3595 SafeReplacementConstant = VecC->getAggregateElement(i); 3596 break; 3597 } 3598 } 3599 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3600 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3601 } 3602 3603 return Builder.CreateICmp(DstPred, X, M); 3604 } 3605 3606 /// Some comparisons can be simplified. 3607 /// In this case, we are looking for comparisons that look like 3608 /// a check for a lossy signed truncation. 3609 /// Folds: (MaskedBits is a constant.) 3610 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3611 /// Into: 3612 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3613 /// Where KeptBits = bitwidth(%x) - MaskedBits 3614 static Value * 3615 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3616 InstCombiner::BuilderTy &Builder) { 3617 ICmpInst::Predicate SrcPred; 3618 Value *X; 3619 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3620 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3621 if (!match(&I, m_c_ICmp(SrcPred, 3622 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3623 m_APInt(C1))), 3624 m_Deferred(X)))) 3625 return nullptr; 3626 3627 // Potential handling of non-splats: for each element: 3628 // * if both are undef, replace with constant 0. 3629 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3630 // * if both are not undef, and are different, bailout. 3631 // * else, only one is undef, then pick the non-undef one. 3632 3633 // The shift amount must be equal. 3634 if (*C0 != *C1) 3635 return nullptr; 3636 const APInt &MaskedBits = *C0; 3637 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3638 3639 ICmpInst::Predicate DstPred; 3640 switch (SrcPred) { 3641 case ICmpInst::Predicate::ICMP_EQ: 3642 // ((%x << MaskedBits) a>> MaskedBits) == %x 3643 // => 3644 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3645 DstPred = ICmpInst::Predicate::ICMP_ULT; 3646 break; 3647 case ICmpInst::Predicate::ICMP_NE: 3648 // ((%x << MaskedBits) a>> MaskedBits) != %x 3649 // => 3650 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3651 DstPred = ICmpInst::Predicate::ICMP_UGE; 3652 break; 3653 // FIXME: are more folds possible? 3654 default: 3655 return nullptr; 3656 } 3657 3658 auto *XType = X->getType(); 3659 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3660 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3661 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3662 3663 // KeptBits = bitwidth(%x) - MaskedBits 3664 const APInt KeptBits = BitWidth - MaskedBits; 3665 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3666 // ICmpCst = (1 << KeptBits) 3667 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3668 assert(ICmpCst.isPowerOf2()); 3669 // AddCst = (1 << (KeptBits-1)) 3670 const APInt AddCst = ICmpCst.lshr(1); 3671 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3672 3673 // T0 = add %x, AddCst 3674 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3675 // T1 = T0 DstPred ICmpCst 3676 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3677 3678 return T1; 3679 } 3680 3681 // Given pattern: 3682 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3683 // we should move shifts to the same hand of 'and', i.e. rewrite as 3684 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3685 // We are only interested in opposite logical shifts here. 3686 // One of the shifts can be truncated. 3687 // If we can, we want to end up creating 'lshr' shift. 3688 static Value * 3689 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3690 InstCombiner::BuilderTy &Builder) { 3691 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3692 !I.getOperand(0)->hasOneUse()) 3693 return nullptr; 3694 3695 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3696 3697 // Look for an 'and' of two logical shifts, one of which may be truncated. 3698 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3699 Instruction *XShift, *MaybeTruncation, *YShift; 3700 if (!match( 3701 I.getOperand(0), 3702 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3703 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3704 m_AnyLogicalShift, m_Instruction(YShift))), 3705 m_Instruction(MaybeTruncation))))) 3706 return nullptr; 3707 3708 // We potentially looked past 'trunc', but only when matching YShift, 3709 // therefore YShift must have the widest type. 3710 Instruction *WidestShift = YShift; 3711 // Therefore XShift must have the shallowest type. 3712 // Or they both have identical types if there was no truncation. 3713 Instruction *NarrowestShift = XShift; 3714 3715 Type *WidestTy = WidestShift->getType(); 3716 Type *NarrowestTy = NarrowestShift->getType(); 3717 assert(NarrowestTy == I.getOperand(0)->getType() && 3718 "We did not look past any shifts while matching XShift though."); 3719 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3720 3721 // If YShift is a 'lshr', swap the shifts around. 3722 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3723 std::swap(XShift, YShift); 3724 3725 // The shifts must be in opposite directions. 3726 auto XShiftOpcode = XShift->getOpcode(); 3727 if (XShiftOpcode == YShift->getOpcode()) 3728 return nullptr; // Do not care about same-direction shifts here. 3729 3730 Value *X, *XShAmt, *Y, *YShAmt; 3731 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3732 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3733 3734 // If one of the values being shifted is a constant, then we will end with 3735 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3736 // however, we will need to ensure that we won't increase instruction count. 3737 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3738 // At least one of the hands of the 'and' should be one-use shift. 3739 if (!match(I.getOperand(0), 3740 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3741 return nullptr; 3742 if (HadTrunc) { 3743 // Due to the 'trunc', we will need to widen X. For that either the old 3744 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3745 if (!MaybeTruncation->hasOneUse() && 3746 !NarrowestShift->getOperand(1)->hasOneUse()) 3747 return nullptr; 3748 } 3749 } 3750 3751 // We have two shift amounts from two different shifts. The types of those 3752 // shift amounts may not match. If that's the case let's bailout now. 3753 if (XShAmt->getType() != YShAmt->getType()) 3754 return nullptr; 3755 3756 // As input, we have the following pattern: 3757 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3758 // We want to rewrite that as: 3759 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3760 // While we know that originally (Q+K) would not overflow 3761 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3762 // shift amounts. so it may now overflow in smaller bitwidth. 3763 // To ensure that does not happen, we need to ensure that the total maximal 3764 // shift amount is still representable in that smaller bit width. 3765 unsigned MaximalPossibleTotalShiftAmount = 3766 (WidestTy->getScalarSizeInBits() - 1) + 3767 (NarrowestTy->getScalarSizeInBits() - 1); 3768 APInt MaximalRepresentableShiftAmount = 3769 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3770 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3771 return nullptr; 3772 3773 // Can we fold (XShAmt+YShAmt) ? 3774 auto *NewShAmt = dyn_cast_or_null<Constant>( 3775 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3776 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3777 if (!NewShAmt) 3778 return nullptr; 3779 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3780 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3781 3782 // Is the new shift amount smaller than the bit width? 3783 // FIXME: could also rely on ConstantRange. 3784 if (!match(NewShAmt, 3785 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3786 APInt(WidestBitWidth, WidestBitWidth)))) 3787 return nullptr; 3788 3789 // An extra legality check is needed if we had trunc-of-lshr. 3790 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3791 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3792 WidestShift]() { 3793 // It isn't obvious whether it's worth it to analyze non-constants here. 3794 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3795 // If *any* of these preconditions matches we can perform the fold. 3796 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3797 ? NewShAmt->getSplatValue() 3798 : NewShAmt; 3799 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3800 if (NewShAmtSplat && 3801 (NewShAmtSplat->isNullValue() || 3802 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3803 return true; 3804 // We consider *min* leading zeros so a single outlier 3805 // blocks the transform as opposed to allowing it. 3806 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3807 KnownBits Known = computeKnownBits(C, SQ.DL); 3808 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3809 // If the value being shifted has at most lowest bit set we can fold. 3810 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3811 if (MaxActiveBits <= 1) 3812 return true; 3813 // Precondition: NewShAmt u<= countLeadingZeros(C) 3814 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3815 return true; 3816 } 3817 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3818 KnownBits Known = computeKnownBits(C, SQ.DL); 3819 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3820 // If the value being shifted has at most lowest bit set we can fold. 3821 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3822 if (MaxActiveBits <= 1) 3823 return true; 3824 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3825 if (NewShAmtSplat) { 3826 APInt AdjNewShAmt = 3827 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3828 if (AdjNewShAmt.ule(MinLeadZero)) 3829 return true; 3830 } 3831 } 3832 return false; // Can't tell if it's ok. 3833 }; 3834 if (!CanFold()) 3835 return nullptr; 3836 } 3837 3838 // All good, we can do this fold. 3839 X = Builder.CreateZExt(X, WidestTy); 3840 Y = Builder.CreateZExt(Y, WidestTy); 3841 // The shift is the same that was for X. 3842 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3843 ? Builder.CreateLShr(X, NewShAmt) 3844 : Builder.CreateShl(X, NewShAmt); 3845 Value *T1 = Builder.CreateAnd(T0, Y); 3846 return Builder.CreateICmp(I.getPredicate(), T1, 3847 Constant::getNullValue(WidestTy)); 3848 } 3849 3850 /// Fold 3851 /// (-1 u/ x) u< y 3852 /// ((x * y) ?/ x) != y 3853 /// to 3854 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3855 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3856 /// will mean that we are looking for the opposite answer. 3857 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3858 ICmpInst::Predicate Pred; 3859 Value *X, *Y; 3860 Instruction *Mul; 3861 Instruction *Div; 3862 bool NeedNegation; 3863 // Look for: (-1 u/ x) u</u>= y 3864 if (!I.isEquality() && 3865 match(&I, m_c_ICmp(Pred, 3866 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3867 m_Instruction(Div)), 3868 m_Value(Y)))) { 3869 Mul = nullptr; 3870 3871 // Are we checking that overflow does not happen, or does happen? 3872 switch (Pred) { 3873 case ICmpInst::Predicate::ICMP_ULT: 3874 NeedNegation = false; 3875 break; // OK 3876 case ICmpInst::Predicate::ICMP_UGE: 3877 NeedNegation = true; 3878 break; // OK 3879 default: 3880 return nullptr; // Wrong predicate. 3881 } 3882 } else // Look for: ((x * y) / x) !=/== y 3883 if (I.isEquality() && 3884 match(&I, 3885 m_c_ICmp(Pred, m_Value(Y), 3886 m_CombineAnd( 3887 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3888 m_Value(X)), 3889 m_Instruction(Mul)), 3890 m_Deferred(X))), 3891 m_Instruction(Div))))) { 3892 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3893 } else 3894 return nullptr; 3895 3896 BuilderTy::InsertPointGuard Guard(Builder); 3897 // If the pattern included (x * y), we'll want to insert new instructions 3898 // right before that original multiplication so that we can replace it. 3899 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3900 if (MulHadOtherUses) 3901 Builder.SetInsertPoint(Mul); 3902 3903 Function *F = Intrinsic::getDeclaration(I.getModule(), 3904 Div->getOpcode() == Instruction::UDiv 3905 ? Intrinsic::umul_with_overflow 3906 : Intrinsic::smul_with_overflow, 3907 X->getType()); 3908 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3909 3910 // If the multiplication was used elsewhere, to ensure that we don't leave 3911 // "duplicate" instructions, replace uses of that original multiplication 3912 // with the multiplication result from the with.overflow intrinsic. 3913 if (MulHadOtherUses) 3914 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3915 3916 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3917 if (NeedNegation) // This technically increases instruction count. 3918 Res = Builder.CreateNot(Res, "mul.not.ov"); 3919 3920 // If we replaced the mul, erase it. Do this after all uses of Builder, 3921 // as the mul is used as insertion point. 3922 if (MulHadOtherUses) 3923 eraseInstFromFunction(*Mul); 3924 3925 return Res; 3926 } 3927 3928 static Instruction *foldICmpXNegX(ICmpInst &I) { 3929 CmpInst::Predicate Pred; 3930 Value *X; 3931 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3932 return nullptr; 3933 3934 if (ICmpInst::isSigned(Pred)) 3935 Pred = ICmpInst::getSwappedPredicate(Pred); 3936 else if (ICmpInst::isUnsigned(Pred)) 3937 Pred = ICmpInst::getSignedPredicate(Pred); 3938 // else for equality-comparisons just keep the predicate. 3939 3940 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3941 Constant::getNullValue(X->getType()), I.getName()); 3942 } 3943 3944 /// Try to fold icmp (binop), X or icmp X, (binop). 3945 /// TODO: A large part of this logic is duplicated in InstSimplify's 3946 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3947 /// duplication. 3948 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3949 const SimplifyQuery &SQ) { 3950 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3951 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3952 3953 // Special logic for binary operators. 3954 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3955 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3956 if (!BO0 && !BO1) 3957 return nullptr; 3958 3959 if (Instruction *NewICmp = foldICmpXNegX(I)) 3960 return NewICmp; 3961 3962 const CmpInst::Predicate Pred = I.getPredicate(); 3963 Value *X; 3964 3965 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3966 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3967 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3968 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3969 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3970 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3971 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3972 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3973 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3974 3975 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3976 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3977 NoOp0WrapProblem = 3978 ICmpInst::isEquality(Pred) || 3979 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3980 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3981 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3982 NoOp1WrapProblem = 3983 ICmpInst::isEquality(Pred) || 3984 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3985 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3986 3987 // Analyze the case when either Op0 or Op1 is an add instruction. 3988 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3989 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3990 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3991 A = BO0->getOperand(0); 3992 B = BO0->getOperand(1); 3993 } 3994 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3995 C = BO1->getOperand(0); 3996 D = BO1->getOperand(1); 3997 } 3998 3999 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4000 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4001 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4002 return new ICmpInst(Pred, A == Op1 ? B : A, 4003 Constant::getNullValue(Op1->getType())); 4004 4005 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4006 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4007 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4008 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4009 C == Op0 ? D : C); 4010 4011 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4012 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4013 NoOp1WrapProblem) { 4014 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4015 Value *Y, *Z; 4016 if (A == C) { 4017 // C + B == C + D -> B == D 4018 Y = B; 4019 Z = D; 4020 } else if (A == D) { 4021 // D + B == C + D -> B == C 4022 Y = B; 4023 Z = C; 4024 } else if (B == C) { 4025 // A + C == C + D -> A == D 4026 Y = A; 4027 Z = D; 4028 } else { 4029 assert(B == D); 4030 // A + D == C + D -> A == C 4031 Y = A; 4032 Z = C; 4033 } 4034 return new ICmpInst(Pred, Y, Z); 4035 } 4036 4037 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4038 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4039 match(B, m_AllOnes())) 4040 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4041 4042 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4043 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4044 match(B, m_AllOnes())) 4045 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4046 4047 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4048 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4049 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4050 4051 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4052 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4053 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4054 4055 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4056 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4057 match(D, m_AllOnes())) 4058 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4059 4060 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4061 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4062 match(D, m_AllOnes())) 4063 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4064 4065 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4066 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4067 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4068 4069 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4070 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4071 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4072 4073 // TODO: The subtraction-related identities shown below also hold, but 4074 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4075 // wouldn't happen even if they were implemented. 4076 // 4077 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4078 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4079 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4080 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4081 4082 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4083 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4084 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4085 4086 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4087 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4088 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4089 4090 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4091 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4092 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4093 4094 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4095 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4096 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4097 4098 // if C1 has greater magnitude than C2: 4099 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4100 // s.t. C3 = C1 - C2 4101 // 4102 // if C2 has greater magnitude than C1: 4103 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4104 // s.t. C3 = C2 - C1 4105 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4106 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4107 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4108 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4109 const APInt &AP1 = C1->getValue(); 4110 const APInt &AP2 = C2->getValue(); 4111 if (AP1.isNegative() == AP2.isNegative()) { 4112 APInt AP1Abs = C1->getValue().abs(); 4113 APInt AP2Abs = C2->getValue().abs(); 4114 if (AP1Abs.uge(AP2Abs)) { 4115 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4116 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4117 bool HasNSW = BO0->hasNoSignedWrap(); 4118 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4119 return new ICmpInst(Pred, NewAdd, C); 4120 } else { 4121 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4122 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4123 bool HasNSW = BO1->hasNoSignedWrap(); 4124 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4125 return new ICmpInst(Pred, A, NewAdd); 4126 } 4127 } 4128 } 4129 4130 // Analyze the case when either Op0 or Op1 is a sub instruction. 4131 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4132 A = nullptr; 4133 B = nullptr; 4134 C = nullptr; 4135 D = nullptr; 4136 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4137 A = BO0->getOperand(0); 4138 B = BO0->getOperand(1); 4139 } 4140 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4141 C = BO1->getOperand(0); 4142 D = BO1->getOperand(1); 4143 } 4144 4145 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4146 if (A == Op1 && NoOp0WrapProblem) 4147 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4148 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4149 if (C == Op0 && NoOp1WrapProblem) 4150 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4151 4152 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4153 // (A - B) u>/u<= A --> B u>/u<= A 4154 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4155 return new ICmpInst(Pred, B, A); 4156 // C u</u>= (C - D) --> C u</u>= D 4157 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4158 return new ICmpInst(Pred, C, D); 4159 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4160 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4161 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4162 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4163 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4164 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4165 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4166 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4167 4168 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4169 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4170 return new ICmpInst(Pred, A, C); 4171 4172 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4173 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4174 return new ICmpInst(Pred, D, B); 4175 4176 // icmp (0-X) < cst --> x > -cst 4177 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4178 Value *X; 4179 if (match(BO0, m_Neg(m_Value(X)))) 4180 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4181 if (RHSC->isNotMinSignedValue()) 4182 return new ICmpInst(I.getSwappedPredicate(), X, 4183 ConstantExpr::getNeg(RHSC)); 4184 } 4185 4186 { 4187 // Try to remove shared constant multiplier from equality comparison: 4188 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4189 Value *X, *Y; 4190 const APInt *C; 4191 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4192 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4193 if (!C->countTrailingZeros() || 4194 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4195 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4196 return new ICmpInst(Pred, X, Y); 4197 } 4198 4199 BinaryOperator *SRem = nullptr; 4200 // icmp (srem X, Y), Y 4201 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4202 SRem = BO0; 4203 // icmp Y, (srem X, Y) 4204 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4205 Op0 == BO1->getOperand(1)) 4206 SRem = BO1; 4207 if (SRem) { 4208 // We don't check hasOneUse to avoid increasing register pressure because 4209 // the value we use is the same value this instruction was already using. 4210 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4211 default: 4212 break; 4213 case ICmpInst::ICMP_EQ: 4214 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4215 case ICmpInst::ICMP_NE: 4216 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4217 case ICmpInst::ICMP_SGT: 4218 case ICmpInst::ICMP_SGE: 4219 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4220 Constant::getAllOnesValue(SRem->getType())); 4221 case ICmpInst::ICMP_SLT: 4222 case ICmpInst::ICMP_SLE: 4223 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4224 Constant::getNullValue(SRem->getType())); 4225 } 4226 } 4227 4228 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4229 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4230 switch (BO0->getOpcode()) { 4231 default: 4232 break; 4233 case Instruction::Add: 4234 case Instruction::Sub: 4235 case Instruction::Xor: { 4236 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4237 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4238 4239 const APInt *C; 4240 if (match(BO0->getOperand(1), m_APInt(C))) { 4241 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4242 if (C->isSignMask()) { 4243 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4244 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4245 } 4246 4247 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4248 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4249 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4250 NewPred = I.getSwappedPredicate(NewPred); 4251 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4252 } 4253 } 4254 break; 4255 } 4256 case Instruction::Mul: { 4257 if (!I.isEquality()) 4258 break; 4259 4260 const APInt *C; 4261 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4262 !C->isOne()) { 4263 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4264 // Mask = -1 >> count-trailing-zeros(C). 4265 if (unsigned TZs = C->countTrailingZeros()) { 4266 Constant *Mask = ConstantInt::get( 4267 BO0->getType(), 4268 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4269 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4270 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4271 return new ICmpInst(Pred, And1, And2); 4272 } 4273 } 4274 break; 4275 } 4276 case Instruction::UDiv: 4277 case Instruction::LShr: 4278 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4279 break; 4280 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4281 4282 case Instruction::SDiv: 4283 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4284 break; 4285 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4286 4287 case Instruction::AShr: 4288 if (!BO0->isExact() || !BO1->isExact()) 4289 break; 4290 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4291 4292 case Instruction::Shl: { 4293 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4294 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4295 if (!NUW && !NSW) 4296 break; 4297 if (!NSW && I.isSigned()) 4298 break; 4299 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4300 } 4301 } 4302 } 4303 4304 if (BO0) { 4305 // Transform A & (L - 1) `ult` L --> L != 0 4306 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4307 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4308 4309 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4310 auto *Zero = Constant::getNullValue(BO0->getType()); 4311 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4312 } 4313 } 4314 4315 if (Value *V = foldMultiplicationOverflowCheck(I)) 4316 return replaceInstUsesWith(I, V); 4317 4318 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4319 return replaceInstUsesWith(I, V); 4320 4321 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4322 return replaceInstUsesWith(I, V); 4323 4324 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4325 return replaceInstUsesWith(I, V); 4326 4327 return nullptr; 4328 } 4329 4330 /// Fold icmp Pred min|max(X, Y), X. 4331 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4332 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4333 Value *Op0 = Cmp.getOperand(0); 4334 Value *X = Cmp.getOperand(1); 4335 4336 // Canonicalize minimum or maximum operand to LHS of the icmp. 4337 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4338 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4339 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4340 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4341 std::swap(Op0, X); 4342 Pred = Cmp.getSwappedPredicate(); 4343 } 4344 4345 Value *Y; 4346 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4347 // smin(X, Y) == X --> X s<= Y 4348 // smin(X, Y) s>= X --> X s<= Y 4349 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4350 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4351 4352 // smin(X, Y) != X --> X s> Y 4353 // smin(X, Y) s< X --> X s> Y 4354 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4355 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4356 4357 // These cases should be handled in InstSimplify: 4358 // smin(X, Y) s<= X --> true 4359 // smin(X, Y) s> X --> false 4360 return nullptr; 4361 } 4362 4363 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4364 // smax(X, Y) == X --> X s>= Y 4365 // smax(X, Y) s<= X --> X s>= Y 4366 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4367 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4368 4369 // smax(X, Y) != X --> X s< Y 4370 // smax(X, Y) s> X --> X s< Y 4371 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4372 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4373 4374 // These cases should be handled in InstSimplify: 4375 // smax(X, Y) s>= X --> true 4376 // smax(X, Y) s< X --> false 4377 return nullptr; 4378 } 4379 4380 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4381 // umin(X, Y) == X --> X u<= Y 4382 // umin(X, Y) u>= X --> X u<= Y 4383 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4384 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4385 4386 // umin(X, Y) != X --> X u> Y 4387 // umin(X, Y) u< X --> X u> Y 4388 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4389 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4390 4391 // These cases should be handled in InstSimplify: 4392 // umin(X, Y) u<= X --> true 4393 // umin(X, Y) u> X --> false 4394 return nullptr; 4395 } 4396 4397 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4398 // umax(X, Y) == X --> X u>= Y 4399 // umax(X, Y) u<= X --> X u>= Y 4400 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4401 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4402 4403 // umax(X, Y) != X --> X u< Y 4404 // umax(X, Y) u> X --> X u< Y 4405 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4406 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4407 4408 // These cases should be handled in InstSimplify: 4409 // umax(X, Y) u>= X --> true 4410 // umax(X, Y) u< X --> false 4411 return nullptr; 4412 } 4413 4414 return nullptr; 4415 } 4416 4417 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4418 if (!I.isEquality()) 4419 return nullptr; 4420 4421 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4422 const CmpInst::Predicate Pred = I.getPredicate(); 4423 Value *A, *B, *C, *D; 4424 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4425 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4426 Value *OtherVal = A == Op1 ? B : A; 4427 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4428 } 4429 4430 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4431 // A^c1 == C^c2 --> A == C^(c1^c2) 4432 ConstantInt *C1, *C2; 4433 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4434 Op1->hasOneUse()) { 4435 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4436 Value *Xor = Builder.CreateXor(C, NC); 4437 return new ICmpInst(Pred, A, Xor); 4438 } 4439 4440 // A^B == A^D -> B == D 4441 if (A == C) 4442 return new ICmpInst(Pred, B, D); 4443 if (A == D) 4444 return new ICmpInst(Pred, B, C); 4445 if (B == C) 4446 return new ICmpInst(Pred, A, D); 4447 if (B == D) 4448 return new ICmpInst(Pred, A, C); 4449 } 4450 } 4451 4452 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4453 // A == (A^B) -> B == 0 4454 Value *OtherVal = A == Op0 ? B : A; 4455 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4456 } 4457 4458 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4459 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4460 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4461 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4462 4463 if (A == C) { 4464 X = B; 4465 Y = D; 4466 Z = A; 4467 } else if (A == D) { 4468 X = B; 4469 Y = C; 4470 Z = A; 4471 } else if (B == C) { 4472 X = A; 4473 Y = D; 4474 Z = B; 4475 } else if (B == D) { 4476 X = A; 4477 Y = C; 4478 Z = B; 4479 } 4480 4481 if (X) { // Build (X^Y) & Z 4482 Op1 = Builder.CreateXor(X, Y); 4483 Op1 = Builder.CreateAnd(Op1, Z); 4484 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4485 } 4486 } 4487 4488 { 4489 // Similar to above, but specialized for constant because invert is needed: 4490 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4491 Value *X, *Y; 4492 Constant *C; 4493 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4494 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4495 Value *Xor = Builder.CreateXor(X, Y); 4496 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4497 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4498 } 4499 } 4500 4501 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4502 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4503 ConstantInt *Cst1; 4504 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4505 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4506 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4507 match(Op1, m_ZExt(m_Value(A))))) { 4508 APInt Pow2 = Cst1->getValue() + 1; 4509 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4510 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4511 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4512 } 4513 4514 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4515 // For lshr and ashr pairs. 4516 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4517 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4518 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4519 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4520 unsigned TypeBits = Cst1->getBitWidth(); 4521 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4522 if (ShAmt < TypeBits && ShAmt != 0) { 4523 ICmpInst::Predicate NewPred = 4524 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4525 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4526 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4527 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4528 } 4529 } 4530 4531 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4532 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4533 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4534 unsigned TypeBits = Cst1->getBitWidth(); 4535 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4536 if (ShAmt < TypeBits && ShAmt != 0) { 4537 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4538 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4539 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4540 I.getName() + ".mask"); 4541 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4542 } 4543 } 4544 4545 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4546 // "icmp (and X, mask), cst" 4547 uint64_t ShAmt = 0; 4548 if (Op0->hasOneUse() && 4549 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4550 match(Op1, m_ConstantInt(Cst1)) && 4551 // Only do this when A has multiple uses. This is most important to do 4552 // when it exposes other optimizations. 4553 !A->hasOneUse()) { 4554 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4555 4556 if (ShAmt < ASize) { 4557 APInt MaskV = 4558 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4559 MaskV <<= ShAmt; 4560 4561 APInt CmpV = Cst1->getValue().zext(ASize); 4562 CmpV <<= ShAmt; 4563 4564 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4565 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4566 } 4567 } 4568 4569 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4570 return ICmp; 4571 4572 // Canonicalize checking for a power-of-2-or-zero value: 4573 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4574 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4575 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4576 m_Deferred(A)))) || 4577 !match(Op1, m_ZeroInt())) 4578 A = nullptr; 4579 4580 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4581 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4582 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4583 A = Op1; 4584 else if (match(Op1, 4585 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4586 A = Op0; 4587 4588 if (A) { 4589 Type *Ty = A->getType(); 4590 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4591 return Pred == ICmpInst::ICMP_EQ 4592 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4593 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4594 } 4595 4596 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4597 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4598 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4599 // of instcombine. 4600 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4601 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4602 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4603 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4604 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4605 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4606 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4607 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4608 : ICmpInst::ICMP_UGE, 4609 Add, ConstantInt::get(A->getType(), C.shl(1))); 4610 } 4611 4612 return nullptr; 4613 } 4614 4615 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4616 InstCombiner::BuilderTy &Builder) { 4617 const ICmpInst::Predicate Pred = ICmp.getPredicate(); 4618 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4619 4620 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4621 // The trunc masks high bits while the compare may effectively mask low bits. 4622 Value *X; 4623 const APInt *C; 4624 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4625 return nullptr; 4626 4627 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4628 if (Pred == ICmpInst::ICMP_ULT) { 4629 if (C->isPowerOf2()) { 4630 // If C is a power-of-2 (one set bit): 4631 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4632 Constant *MaskC = ConstantInt::get(X->getType(), (-*C).zext(SrcBits)); 4633 Value *And = Builder.CreateAnd(X, MaskC); 4634 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4635 return new ICmpInst(ICmpInst::ICMP_EQ, And, Zero); 4636 } 4637 // If C is a negative power-of-2 (high-bit mask): 4638 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4639 if (C->isNegatedPowerOf2()) { 4640 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4641 Value *And = Builder.CreateAnd(X, MaskC); 4642 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4643 } 4644 } 4645 4646 if (Pred == ICmpInst::ICMP_UGT) { 4647 // If C is a low-bit-mask (C+1 is a power-of-2): 4648 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4649 if (C->isMask()) { 4650 Constant *MaskC = ConstantInt::get(X->getType(), (~*C).zext(SrcBits)); 4651 Value *And = Builder.CreateAnd(X, MaskC); 4652 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4653 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 4654 } 4655 // If C is not-of-power-of-2 (one clear bit): 4656 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4657 if ((~*C).isPowerOf2()) { 4658 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4659 Value *And = Builder.CreateAnd(X, MaskC); 4660 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4661 } 4662 } 4663 4664 return nullptr; 4665 } 4666 4667 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4668 InstCombiner::BuilderTy &Builder) { 4669 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4670 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4671 Value *X; 4672 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4673 return nullptr; 4674 4675 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4676 bool IsSignedCmp = ICmp.isSigned(); 4677 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4678 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4679 // and the other is a zext), then we can't handle this. 4680 // TODO: This is too strict. We can handle some predicates (equality?). 4681 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4682 return nullptr; 4683 4684 // Not an extension from the same type? 4685 Value *Y = CastOp1->getOperand(0); 4686 Type *XTy = X->getType(), *YTy = Y->getType(); 4687 if (XTy != YTy) { 4688 // One of the casts must have one use because we are creating a new cast. 4689 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4690 return nullptr; 4691 // Extend the narrower operand to the type of the wider operand. 4692 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4693 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4694 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4695 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4696 else 4697 return nullptr; 4698 } 4699 4700 // (zext X) == (zext Y) --> X == Y 4701 // (sext X) == (sext Y) --> X == Y 4702 if (ICmp.isEquality()) 4703 return new ICmpInst(ICmp.getPredicate(), X, Y); 4704 4705 // A signed comparison of sign extended values simplifies into a 4706 // signed comparison. 4707 if (IsSignedCmp && IsSignedExt) 4708 return new ICmpInst(ICmp.getPredicate(), X, Y); 4709 4710 // The other three cases all fold into an unsigned comparison. 4711 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4712 } 4713 4714 // Below here, we are only folding a compare with constant. 4715 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4716 if (!C) 4717 return nullptr; 4718 4719 // Compute the constant that would happen if we truncated to SrcTy then 4720 // re-extended to DestTy. 4721 Type *SrcTy = CastOp0->getSrcTy(); 4722 Type *DestTy = CastOp0->getDestTy(); 4723 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4724 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4725 4726 // If the re-extended constant didn't change... 4727 if (Res2 == C) { 4728 if (ICmp.isEquality()) 4729 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4730 4731 // A signed comparison of sign extended values simplifies into a 4732 // signed comparison. 4733 if (IsSignedExt && IsSignedCmp) 4734 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4735 4736 // The other three cases all fold into an unsigned comparison. 4737 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4738 } 4739 4740 // The re-extended constant changed, partly changed (in the case of a vector), 4741 // or could not be determined to be equal (in the case of a constant 4742 // expression), so the constant cannot be represented in the shorter type. 4743 // All the cases that fold to true or false will have already been handled 4744 // by SimplifyICmpInst, so only deal with the tricky case. 4745 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4746 return nullptr; 4747 4748 // Is source op positive? 4749 // icmp ult (sext X), C --> icmp sgt X, -1 4750 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4751 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4752 4753 // Is source op negative? 4754 // icmp ugt (sext X), C --> icmp slt X, 0 4755 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4756 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4757 } 4758 4759 /// Handle icmp (cast x), (cast or constant). 4760 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4761 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4762 // icmp compares only pointer's value. 4763 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4764 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4765 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4766 if (SimplifiedOp0 || SimplifiedOp1) 4767 return new ICmpInst(ICmp.getPredicate(), 4768 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4769 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4770 4771 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4772 if (!CastOp0) 4773 return nullptr; 4774 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4775 return nullptr; 4776 4777 Value *Op0Src = CastOp0->getOperand(0); 4778 Type *SrcTy = CastOp0->getSrcTy(); 4779 Type *DestTy = CastOp0->getDestTy(); 4780 4781 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4782 // integer type is the same size as the pointer type. 4783 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4784 if (isa<VectorType>(SrcTy)) { 4785 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4786 DestTy = cast<VectorType>(DestTy)->getElementType(); 4787 } 4788 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4789 }; 4790 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4791 CompatibleSizes(SrcTy, DestTy)) { 4792 Value *NewOp1 = nullptr; 4793 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4794 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4795 if (PtrSrc->getType()->getPointerAddressSpace() == 4796 Op0Src->getType()->getPointerAddressSpace()) { 4797 NewOp1 = PtrToIntOp1->getOperand(0); 4798 // If the pointer types don't match, insert a bitcast. 4799 if (Op0Src->getType() != NewOp1->getType()) 4800 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4801 } 4802 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4803 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4804 } 4805 4806 if (NewOp1) 4807 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4808 } 4809 4810 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4811 return R; 4812 4813 return foldICmpWithZextOrSext(ICmp, Builder); 4814 } 4815 4816 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4817 switch (BinaryOp) { 4818 default: 4819 llvm_unreachable("Unsupported binary op"); 4820 case Instruction::Add: 4821 case Instruction::Sub: 4822 return match(RHS, m_Zero()); 4823 case Instruction::Mul: 4824 return match(RHS, m_One()); 4825 } 4826 } 4827 4828 OverflowResult 4829 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4830 bool IsSigned, Value *LHS, Value *RHS, 4831 Instruction *CxtI) const { 4832 switch (BinaryOp) { 4833 default: 4834 llvm_unreachable("Unsupported binary op"); 4835 case Instruction::Add: 4836 if (IsSigned) 4837 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4838 else 4839 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4840 case Instruction::Sub: 4841 if (IsSigned) 4842 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4843 else 4844 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4845 case Instruction::Mul: 4846 if (IsSigned) 4847 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4848 else 4849 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4850 } 4851 } 4852 4853 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4854 bool IsSigned, Value *LHS, 4855 Value *RHS, Instruction &OrigI, 4856 Value *&Result, 4857 Constant *&Overflow) { 4858 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4859 std::swap(LHS, RHS); 4860 4861 // If the overflow check was an add followed by a compare, the insertion point 4862 // may be pointing to the compare. We want to insert the new instructions 4863 // before the add in case there are uses of the add between the add and the 4864 // compare. 4865 Builder.SetInsertPoint(&OrigI); 4866 4867 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4868 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4869 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4870 4871 if (isNeutralValue(BinaryOp, RHS)) { 4872 Result = LHS; 4873 Overflow = ConstantInt::getFalse(OverflowTy); 4874 return true; 4875 } 4876 4877 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4878 case OverflowResult::MayOverflow: 4879 return false; 4880 case OverflowResult::AlwaysOverflowsLow: 4881 case OverflowResult::AlwaysOverflowsHigh: 4882 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4883 Result->takeName(&OrigI); 4884 Overflow = ConstantInt::getTrue(OverflowTy); 4885 return true; 4886 case OverflowResult::NeverOverflows: 4887 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4888 Result->takeName(&OrigI); 4889 Overflow = ConstantInt::getFalse(OverflowTy); 4890 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4891 if (IsSigned) 4892 Inst->setHasNoSignedWrap(); 4893 else 4894 Inst->setHasNoUnsignedWrap(); 4895 } 4896 return true; 4897 } 4898 4899 llvm_unreachable("Unexpected overflow result"); 4900 } 4901 4902 /// Recognize and process idiom involving test for multiplication 4903 /// overflow. 4904 /// 4905 /// The caller has matched a pattern of the form: 4906 /// I = cmp u (mul(zext A, zext B), V 4907 /// The function checks if this is a test for overflow and if so replaces 4908 /// multiplication with call to 'mul.with.overflow' intrinsic. 4909 /// 4910 /// \param I Compare instruction. 4911 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4912 /// the compare instruction. Must be of integer type. 4913 /// \param OtherVal The other argument of compare instruction. 4914 /// \returns Instruction which must replace the compare instruction, NULL if no 4915 /// replacement required. 4916 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4917 Value *OtherVal, 4918 InstCombinerImpl &IC) { 4919 // Don't bother doing this transformation for pointers, don't do it for 4920 // vectors. 4921 if (!isa<IntegerType>(MulVal->getType())) 4922 return nullptr; 4923 4924 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4925 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4926 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4927 if (!MulInstr) 4928 return nullptr; 4929 assert(MulInstr->getOpcode() == Instruction::Mul); 4930 4931 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4932 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4933 assert(LHS->getOpcode() == Instruction::ZExt); 4934 assert(RHS->getOpcode() == Instruction::ZExt); 4935 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4936 4937 // Calculate type and width of the result produced by mul.with.overflow. 4938 Type *TyA = A->getType(), *TyB = B->getType(); 4939 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4940 WidthB = TyB->getPrimitiveSizeInBits(); 4941 unsigned MulWidth; 4942 Type *MulType; 4943 if (WidthB > WidthA) { 4944 MulWidth = WidthB; 4945 MulType = TyB; 4946 } else { 4947 MulWidth = WidthA; 4948 MulType = TyA; 4949 } 4950 4951 // In order to replace the original mul with a narrower mul.with.overflow, 4952 // all uses must ignore upper bits of the product. The number of used low 4953 // bits must be not greater than the width of mul.with.overflow. 4954 if (MulVal->hasNUsesOrMore(2)) 4955 for (User *U : MulVal->users()) { 4956 if (U == &I) 4957 continue; 4958 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4959 // Check if truncation ignores bits above MulWidth. 4960 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4961 if (TruncWidth > MulWidth) 4962 return nullptr; 4963 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4964 // Check if AND ignores bits above MulWidth. 4965 if (BO->getOpcode() != Instruction::And) 4966 return nullptr; 4967 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4968 const APInt &CVal = CI->getValue(); 4969 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4970 return nullptr; 4971 } else { 4972 // In this case we could have the operand of the binary operation 4973 // being defined in another block, and performing the replacement 4974 // could break the dominance relation. 4975 return nullptr; 4976 } 4977 } else { 4978 // Other uses prohibit this transformation. 4979 return nullptr; 4980 } 4981 } 4982 4983 // Recognize patterns 4984 switch (I.getPredicate()) { 4985 case ICmpInst::ICMP_EQ: 4986 case ICmpInst::ICMP_NE: 4987 // Recognize pattern: 4988 // mulval = mul(zext A, zext B) 4989 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4990 ConstantInt *CI; 4991 Value *ValToMask; 4992 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4993 if (ValToMask != MulVal) 4994 return nullptr; 4995 const APInt &CVal = CI->getValue() + 1; 4996 if (CVal.isPowerOf2()) { 4997 unsigned MaskWidth = CVal.logBase2(); 4998 if (MaskWidth == MulWidth) 4999 break; // Recognized 5000 } 5001 } 5002 return nullptr; 5003 5004 case ICmpInst::ICMP_UGT: 5005 // Recognize pattern: 5006 // mulval = mul(zext A, zext B) 5007 // cmp ugt mulval, max 5008 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5009 APInt MaxVal = APInt::getMaxValue(MulWidth); 5010 MaxVal = MaxVal.zext(CI->getBitWidth()); 5011 if (MaxVal.eq(CI->getValue())) 5012 break; // Recognized 5013 } 5014 return nullptr; 5015 5016 case ICmpInst::ICMP_UGE: 5017 // Recognize pattern: 5018 // mulval = mul(zext A, zext B) 5019 // cmp uge mulval, max+1 5020 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5021 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5022 if (MaxVal.eq(CI->getValue())) 5023 break; // Recognized 5024 } 5025 return nullptr; 5026 5027 case ICmpInst::ICMP_ULE: 5028 // Recognize pattern: 5029 // mulval = mul(zext A, zext B) 5030 // cmp ule mulval, max 5031 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5032 APInt MaxVal = APInt::getMaxValue(MulWidth); 5033 MaxVal = MaxVal.zext(CI->getBitWidth()); 5034 if (MaxVal.eq(CI->getValue())) 5035 break; // Recognized 5036 } 5037 return nullptr; 5038 5039 case ICmpInst::ICMP_ULT: 5040 // Recognize pattern: 5041 // mulval = mul(zext A, zext B) 5042 // cmp ule mulval, max + 1 5043 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5044 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5045 if (MaxVal.eq(CI->getValue())) 5046 break; // Recognized 5047 } 5048 return nullptr; 5049 5050 default: 5051 return nullptr; 5052 } 5053 5054 InstCombiner::BuilderTy &Builder = IC.Builder; 5055 Builder.SetInsertPoint(MulInstr); 5056 5057 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5058 Value *MulA = A, *MulB = B; 5059 if (WidthA < MulWidth) 5060 MulA = Builder.CreateZExt(A, MulType); 5061 if (WidthB < MulWidth) 5062 MulB = Builder.CreateZExt(B, MulType); 5063 Function *F = Intrinsic::getDeclaration( 5064 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5065 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5066 IC.addToWorklist(MulInstr); 5067 5068 // If there are uses of mul result other than the comparison, we know that 5069 // they are truncation or binary AND. Change them to use result of 5070 // mul.with.overflow and adjust properly mask/size. 5071 if (MulVal->hasNUsesOrMore(2)) { 5072 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5073 for (User *U : make_early_inc_range(MulVal->users())) { 5074 if (U == &I || U == OtherVal) 5075 continue; 5076 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5077 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5078 IC.replaceInstUsesWith(*TI, Mul); 5079 else 5080 TI->setOperand(0, Mul); 5081 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5082 assert(BO->getOpcode() == Instruction::And); 5083 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5084 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5085 APInt ShortMask = CI->getValue().trunc(MulWidth); 5086 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5087 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5088 IC.replaceInstUsesWith(*BO, Zext); 5089 } else { 5090 llvm_unreachable("Unexpected Binary operation"); 5091 } 5092 IC.addToWorklist(cast<Instruction>(U)); 5093 } 5094 } 5095 if (isa<Instruction>(OtherVal)) 5096 IC.addToWorklist(cast<Instruction>(OtherVal)); 5097 5098 // The original icmp gets replaced with the overflow value, maybe inverted 5099 // depending on predicate. 5100 bool Inverse = false; 5101 switch (I.getPredicate()) { 5102 case ICmpInst::ICMP_NE: 5103 break; 5104 case ICmpInst::ICMP_EQ: 5105 Inverse = true; 5106 break; 5107 case ICmpInst::ICMP_UGT: 5108 case ICmpInst::ICMP_UGE: 5109 if (I.getOperand(0) == MulVal) 5110 break; 5111 Inverse = true; 5112 break; 5113 case ICmpInst::ICMP_ULT: 5114 case ICmpInst::ICMP_ULE: 5115 if (I.getOperand(1) == MulVal) 5116 break; 5117 Inverse = true; 5118 break; 5119 default: 5120 llvm_unreachable("Unexpected predicate"); 5121 } 5122 if (Inverse) { 5123 Value *Res = Builder.CreateExtractValue(Call, 1); 5124 return BinaryOperator::CreateNot(Res); 5125 } 5126 5127 return ExtractValueInst::Create(Call, 1); 5128 } 5129 5130 /// When performing a comparison against a constant, it is possible that not all 5131 /// the bits in the LHS are demanded. This helper method computes the mask that 5132 /// IS demanded. 5133 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5134 const APInt *RHS; 5135 if (!match(I.getOperand(1), m_APInt(RHS))) 5136 return APInt::getAllOnes(BitWidth); 5137 5138 // If this is a normal comparison, it demands all bits. If it is a sign bit 5139 // comparison, it only demands the sign bit. 5140 bool UnusedBit; 5141 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5142 return APInt::getSignMask(BitWidth); 5143 5144 switch (I.getPredicate()) { 5145 // For a UGT comparison, we don't care about any bits that 5146 // correspond to the trailing ones of the comparand. The value of these 5147 // bits doesn't impact the outcome of the comparison, because any value 5148 // greater than the RHS must differ in a bit higher than these due to carry. 5149 case ICmpInst::ICMP_UGT: 5150 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5151 5152 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5153 // Any value less than the RHS must differ in a higher bit because of carries. 5154 case ICmpInst::ICMP_ULT: 5155 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5156 5157 default: 5158 return APInt::getAllOnes(BitWidth); 5159 } 5160 } 5161 5162 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5163 /// should be swapped. 5164 /// The decision is based on how many times these two operands are reused 5165 /// as subtract operands and their positions in those instructions. 5166 /// The rationale is that several architectures use the same instruction for 5167 /// both subtract and cmp. Thus, it is better if the order of those operands 5168 /// match. 5169 /// \return true if Op0 and Op1 should be swapped. 5170 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5171 // Filter out pointer values as those cannot appear directly in subtract. 5172 // FIXME: we may want to go through inttoptrs or bitcasts. 5173 if (Op0->getType()->isPointerTy()) 5174 return false; 5175 // If a subtract already has the same operands as a compare, swapping would be 5176 // bad. If a subtract has the same operands as a compare but in reverse order, 5177 // then swapping is good. 5178 int GoodToSwap = 0; 5179 for (const User *U : Op0->users()) { 5180 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5181 GoodToSwap++; 5182 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5183 GoodToSwap--; 5184 } 5185 return GoodToSwap > 0; 5186 } 5187 5188 /// Check that one use is in the same block as the definition and all 5189 /// other uses are in blocks dominated by a given block. 5190 /// 5191 /// \param DI Definition 5192 /// \param UI Use 5193 /// \param DB Block that must dominate all uses of \p DI outside 5194 /// the parent block 5195 /// \return true when \p UI is the only use of \p DI in the parent block 5196 /// and all other uses of \p DI are in blocks dominated by \p DB. 5197 /// 5198 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5199 const Instruction *UI, 5200 const BasicBlock *DB) const { 5201 assert(DI && UI && "Instruction not defined\n"); 5202 // Ignore incomplete definitions. 5203 if (!DI->getParent()) 5204 return false; 5205 // DI and UI must be in the same block. 5206 if (DI->getParent() != UI->getParent()) 5207 return false; 5208 // Protect from self-referencing blocks. 5209 if (DI->getParent() == DB) 5210 return false; 5211 for (const User *U : DI->users()) { 5212 auto *Usr = cast<Instruction>(U); 5213 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5214 return false; 5215 } 5216 return true; 5217 } 5218 5219 /// Return true when the instruction sequence within a block is select-cmp-br. 5220 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5221 const BasicBlock *BB = SI->getParent(); 5222 if (!BB) 5223 return false; 5224 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5225 if (!BI || BI->getNumSuccessors() != 2) 5226 return false; 5227 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5228 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5229 return false; 5230 return true; 5231 } 5232 5233 /// True when a select result is replaced by one of its operands 5234 /// in select-icmp sequence. This will eventually result in the elimination 5235 /// of the select. 5236 /// 5237 /// \param SI Select instruction 5238 /// \param Icmp Compare instruction 5239 /// \param SIOpd Operand that replaces the select 5240 /// 5241 /// Notes: 5242 /// - The replacement is global and requires dominator information 5243 /// - The caller is responsible for the actual replacement 5244 /// 5245 /// Example: 5246 /// 5247 /// entry: 5248 /// %4 = select i1 %3, %C* %0, %C* null 5249 /// %5 = icmp eq %C* %4, null 5250 /// br i1 %5, label %9, label %7 5251 /// ... 5252 /// ; <label>:7 ; preds = %entry 5253 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5254 /// ... 5255 /// 5256 /// can be transformed to 5257 /// 5258 /// %5 = icmp eq %C* %0, null 5259 /// %6 = select i1 %3, i1 %5, i1 true 5260 /// br i1 %6, label %9, label %7 5261 /// ... 5262 /// ; <label>:7 ; preds = %entry 5263 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5264 /// 5265 /// Similar when the first operand of the select is a constant or/and 5266 /// the compare is for not equal rather than equal. 5267 /// 5268 /// NOTE: The function is only called when the select and compare constants 5269 /// are equal, the optimization can work only for EQ predicates. This is not a 5270 /// major restriction since a NE compare should be 'normalized' to an equal 5271 /// compare, which usually happens in the combiner and test case 5272 /// select-cmp-br.ll checks for it. 5273 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5274 const ICmpInst *Icmp, 5275 const unsigned SIOpd) { 5276 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5277 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5278 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5279 // The check for the single predecessor is not the best that can be 5280 // done. But it protects efficiently against cases like when SI's 5281 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5282 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5283 // replaced can be reached on either path. So the uniqueness check 5284 // guarantees that the path all uses of SI (outside SI's parent) are on 5285 // is disjoint from all other paths out of SI. But that information 5286 // is more expensive to compute, and the trade-off here is in favor 5287 // of compile-time. It should also be noticed that we check for a single 5288 // predecessor and not only uniqueness. This to handle the situation when 5289 // Succ and Succ1 points to the same basic block. 5290 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5291 NumSel++; 5292 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5293 return true; 5294 } 5295 } 5296 return false; 5297 } 5298 5299 /// Try to fold the comparison based on range information we can get by checking 5300 /// whether bits are known to be zero or one in the inputs. 5301 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5302 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5303 Type *Ty = Op0->getType(); 5304 ICmpInst::Predicate Pred = I.getPredicate(); 5305 5306 // Get scalar or pointer size. 5307 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5308 ? Ty->getScalarSizeInBits() 5309 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5310 5311 if (!BitWidth) 5312 return nullptr; 5313 5314 KnownBits Op0Known(BitWidth); 5315 KnownBits Op1Known(BitWidth); 5316 5317 if (SimplifyDemandedBits(&I, 0, 5318 getDemandedBitsLHSMask(I, BitWidth), 5319 Op0Known, 0)) 5320 return &I; 5321 5322 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5323 return &I; 5324 5325 // Given the known and unknown bits, compute a range that the LHS could be 5326 // in. Compute the Min, Max and RHS values based on the known bits. For the 5327 // EQ and NE we use unsigned values. 5328 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5329 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5330 if (I.isSigned()) { 5331 Op0Min = Op0Known.getSignedMinValue(); 5332 Op0Max = Op0Known.getSignedMaxValue(); 5333 Op1Min = Op1Known.getSignedMinValue(); 5334 Op1Max = Op1Known.getSignedMaxValue(); 5335 } else { 5336 Op0Min = Op0Known.getMinValue(); 5337 Op0Max = Op0Known.getMaxValue(); 5338 Op1Min = Op1Known.getMinValue(); 5339 Op1Max = Op1Known.getMaxValue(); 5340 } 5341 5342 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5343 // out that the LHS or RHS is a constant. Constant fold this now, so that 5344 // code below can assume that Min != Max. 5345 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5346 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5347 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5348 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5349 5350 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5351 // min/max canonical compare with some other compare. That could lead to 5352 // conflict with select canonicalization and infinite looping. 5353 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5354 auto isMinMaxCmp = [&](Instruction &Cmp) { 5355 if (!Cmp.hasOneUse()) 5356 return false; 5357 Value *A, *B; 5358 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5359 if (!SelectPatternResult::isMinOrMax(SPF)) 5360 return false; 5361 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5362 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5363 }; 5364 if (!isMinMaxCmp(I)) { 5365 switch (Pred) { 5366 default: 5367 break; 5368 case ICmpInst::ICMP_ULT: { 5369 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5370 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5371 const APInt *CmpC; 5372 if (match(Op1, m_APInt(CmpC))) { 5373 // A <u C -> A == C-1 if min(A)+1 == C 5374 if (*CmpC == Op0Min + 1) 5375 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5376 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5377 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5378 // exceeds the log2 of C. 5379 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5380 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5381 Constant::getNullValue(Op1->getType())); 5382 } 5383 break; 5384 } 5385 case ICmpInst::ICMP_UGT: { 5386 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5387 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5388 const APInt *CmpC; 5389 if (match(Op1, m_APInt(CmpC))) { 5390 // A >u C -> A == C+1 if max(a)-1 == C 5391 if (*CmpC == Op0Max - 1) 5392 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5393 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5394 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5395 // exceeds the log2 of C. 5396 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5397 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5398 Constant::getNullValue(Op1->getType())); 5399 } 5400 break; 5401 } 5402 case ICmpInst::ICMP_SLT: { 5403 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5404 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5405 const APInt *CmpC; 5406 if (match(Op1, m_APInt(CmpC))) { 5407 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5408 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5409 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5410 } 5411 break; 5412 } 5413 case ICmpInst::ICMP_SGT: { 5414 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5415 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5416 const APInt *CmpC; 5417 if (match(Op1, m_APInt(CmpC))) { 5418 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5419 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5420 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5421 } 5422 break; 5423 } 5424 } 5425 } 5426 5427 // Based on the range information we know about the LHS, see if we can 5428 // simplify this comparison. For example, (x&4) < 8 is always true. 5429 switch (Pred) { 5430 default: 5431 llvm_unreachable("Unknown icmp opcode!"); 5432 case ICmpInst::ICMP_EQ: 5433 case ICmpInst::ICMP_NE: { 5434 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5435 return replaceInstUsesWith( 5436 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5437 5438 // If all bits are known zero except for one, then we know at most one bit 5439 // is set. If the comparison is against zero, then this is a check to see if 5440 // *that* bit is set. 5441 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5442 if (Op1Known.isZero()) { 5443 // If the LHS is an AND with the same constant, look through it. 5444 Value *LHS = nullptr; 5445 const APInt *LHSC; 5446 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5447 *LHSC != Op0KnownZeroInverted) 5448 LHS = Op0; 5449 5450 Value *X; 5451 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5452 APInt ValToCheck = Op0KnownZeroInverted; 5453 Type *XTy = X->getType(); 5454 if (ValToCheck.isPowerOf2()) { 5455 // ((1 << X) & 8) == 0 -> X != 3 5456 // ((1 << X) & 8) != 0 -> X == 3 5457 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5458 auto NewPred = ICmpInst::getInversePredicate(Pred); 5459 return new ICmpInst(NewPred, X, CmpC); 5460 } else if ((++ValToCheck).isPowerOf2()) { 5461 // ((1 << X) & 7) == 0 -> X >= 3 5462 // ((1 << X) & 7) != 0 -> X < 3 5463 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5464 auto NewPred = 5465 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5466 return new ICmpInst(NewPred, X, CmpC); 5467 } 5468 } 5469 5470 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5471 const APInt *CI; 5472 if (Op0KnownZeroInverted.isOne() && 5473 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5474 // ((8 >>u X) & 1) == 0 -> X != 3 5475 // ((8 >>u X) & 1) != 0 -> X == 3 5476 unsigned CmpVal = CI->countTrailingZeros(); 5477 auto NewPred = ICmpInst::getInversePredicate(Pred); 5478 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5479 } 5480 } 5481 break; 5482 } 5483 case ICmpInst::ICMP_ULT: { 5484 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5485 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5486 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5487 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5488 break; 5489 } 5490 case ICmpInst::ICMP_UGT: { 5491 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5492 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5493 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5494 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5495 break; 5496 } 5497 case ICmpInst::ICMP_SLT: { 5498 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5499 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5500 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5501 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5502 break; 5503 } 5504 case ICmpInst::ICMP_SGT: { 5505 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5506 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5507 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5508 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5509 break; 5510 } 5511 case ICmpInst::ICMP_SGE: 5512 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5513 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5514 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5515 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5516 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5517 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5518 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5519 break; 5520 case ICmpInst::ICMP_SLE: 5521 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5522 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5523 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5524 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5525 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5526 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5527 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5528 break; 5529 case ICmpInst::ICMP_UGE: 5530 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5531 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5532 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5533 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5534 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5535 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5536 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5537 break; 5538 case ICmpInst::ICMP_ULE: 5539 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5540 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5541 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5542 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5543 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5544 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5545 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5546 break; 5547 } 5548 5549 // Turn a signed comparison into an unsigned one if both operands are known to 5550 // have the same sign. 5551 if (I.isSigned() && 5552 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5553 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5554 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5555 5556 return nullptr; 5557 } 5558 5559 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5560 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5561 Constant *C) { 5562 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5563 "Only for relational integer predicates."); 5564 5565 Type *Type = C->getType(); 5566 bool IsSigned = ICmpInst::isSigned(Pred); 5567 5568 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5569 bool WillIncrement = 5570 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5571 5572 // Check if the constant operand can be safely incremented/decremented 5573 // without overflowing/underflowing. 5574 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5575 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5576 }; 5577 5578 Constant *SafeReplacementConstant = nullptr; 5579 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5580 // Bail out if the constant can't be safely incremented/decremented. 5581 if (!ConstantIsOk(CI)) 5582 return llvm::None; 5583 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5584 unsigned NumElts = FVTy->getNumElements(); 5585 for (unsigned i = 0; i != NumElts; ++i) { 5586 Constant *Elt = C->getAggregateElement(i); 5587 if (!Elt) 5588 return llvm::None; 5589 5590 if (isa<UndefValue>(Elt)) 5591 continue; 5592 5593 // Bail out if we can't determine if this constant is min/max or if we 5594 // know that this constant is min/max. 5595 auto *CI = dyn_cast<ConstantInt>(Elt); 5596 if (!CI || !ConstantIsOk(CI)) 5597 return llvm::None; 5598 5599 if (!SafeReplacementConstant) 5600 SafeReplacementConstant = CI; 5601 } 5602 } else { 5603 // ConstantExpr? 5604 return llvm::None; 5605 } 5606 5607 // It may not be safe to change a compare predicate in the presence of 5608 // undefined elements, so replace those elements with the first safe constant 5609 // that we found. 5610 // TODO: in case of poison, it is safe; let's replace undefs only. 5611 if (C->containsUndefOrPoisonElement()) { 5612 assert(SafeReplacementConstant && "Replacement constant not set"); 5613 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5614 } 5615 5616 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5617 5618 // Increment or decrement the constant. 5619 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5620 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5621 5622 return std::make_pair(NewPred, NewC); 5623 } 5624 5625 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5626 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5627 /// allows them to be folded in visitICmpInst. 5628 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5629 ICmpInst::Predicate Pred = I.getPredicate(); 5630 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5631 InstCombiner::isCanonicalPredicate(Pred)) 5632 return nullptr; 5633 5634 Value *Op0 = I.getOperand(0); 5635 Value *Op1 = I.getOperand(1); 5636 auto *Op1C = dyn_cast<Constant>(Op1); 5637 if (!Op1C) 5638 return nullptr; 5639 5640 auto FlippedStrictness = 5641 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5642 if (!FlippedStrictness) 5643 return nullptr; 5644 5645 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5646 } 5647 5648 /// If we have a comparison with a non-canonical predicate, if we can update 5649 /// all the users, invert the predicate and adjust all the users. 5650 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5651 // Is the predicate already canonical? 5652 CmpInst::Predicate Pred = I.getPredicate(); 5653 if (InstCombiner::isCanonicalPredicate(Pred)) 5654 return nullptr; 5655 5656 // Can all users be adjusted to predicate inversion? 5657 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5658 return nullptr; 5659 5660 // Ok, we can canonicalize comparison! 5661 // Let's first invert the comparison's predicate. 5662 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5663 I.setName(I.getName() + ".not"); 5664 5665 // And, adapt users. 5666 freelyInvertAllUsersOf(&I); 5667 5668 return &I; 5669 } 5670 5671 /// Integer compare with boolean values can always be turned into bitwise ops. 5672 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5673 InstCombiner::BuilderTy &Builder) { 5674 Value *A = I.getOperand(0), *B = I.getOperand(1); 5675 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5676 5677 // A boolean compared to true/false can be simplified to Op0/true/false in 5678 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5679 // Cases not handled by InstSimplify are always 'not' of Op0. 5680 if (match(B, m_Zero())) { 5681 switch (I.getPredicate()) { 5682 case CmpInst::ICMP_EQ: // A == 0 -> !A 5683 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5684 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5685 return BinaryOperator::CreateNot(A); 5686 default: 5687 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5688 } 5689 } else if (match(B, m_One())) { 5690 switch (I.getPredicate()) { 5691 case CmpInst::ICMP_NE: // A != 1 -> !A 5692 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5693 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5694 return BinaryOperator::CreateNot(A); 5695 default: 5696 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5697 } 5698 } 5699 5700 switch (I.getPredicate()) { 5701 default: 5702 llvm_unreachable("Invalid icmp instruction!"); 5703 case ICmpInst::ICMP_EQ: 5704 // icmp eq i1 A, B -> ~(A ^ B) 5705 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5706 5707 case ICmpInst::ICMP_NE: 5708 // icmp ne i1 A, B -> A ^ B 5709 return BinaryOperator::CreateXor(A, B); 5710 5711 case ICmpInst::ICMP_UGT: 5712 // icmp ugt -> icmp ult 5713 std::swap(A, B); 5714 LLVM_FALLTHROUGH; 5715 case ICmpInst::ICMP_ULT: 5716 // icmp ult i1 A, B -> ~A & B 5717 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5718 5719 case ICmpInst::ICMP_SGT: 5720 // icmp sgt -> icmp slt 5721 std::swap(A, B); 5722 LLVM_FALLTHROUGH; 5723 case ICmpInst::ICMP_SLT: 5724 // icmp slt i1 A, B -> A & ~B 5725 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5726 5727 case ICmpInst::ICMP_UGE: 5728 // icmp uge -> icmp ule 5729 std::swap(A, B); 5730 LLVM_FALLTHROUGH; 5731 case ICmpInst::ICMP_ULE: 5732 // icmp ule i1 A, B -> ~A | B 5733 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5734 5735 case ICmpInst::ICMP_SGE: 5736 // icmp sge -> icmp sle 5737 std::swap(A, B); 5738 LLVM_FALLTHROUGH; 5739 case ICmpInst::ICMP_SLE: 5740 // icmp sle i1 A, B -> A | ~B 5741 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5742 } 5743 } 5744 5745 // Transform pattern like: 5746 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5747 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5748 // Into: 5749 // (X l>> Y) != 0 5750 // (X l>> Y) == 0 5751 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5752 InstCombiner::BuilderTy &Builder) { 5753 ICmpInst::Predicate Pred, NewPred; 5754 Value *X, *Y; 5755 if (match(&Cmp, 5756 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5757 switch (Pred) { 5758 case ICmpInst::ICMP_ULE: 5759 NewPred = ICmpInst::ICMP_NE; 5760 break; 5761 case ICmpInst::ICMP_UGT: 5762 NewPred = ICmpInst::ICMP_EQ; 5763 break; 5764 default: 5765 return nullptr; 5766 } 5767 } else if (match(&Cmp, m_c_ICmp(Pred, 5768 m_OneUse(m_CombineOr( 5769 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5770 m_Add(m_Shl(m_One(), m_Value(Y)), 5771 m_AllOnes()))), 5772 m_Value(X)))) { 5773 // The variant with 'add' is not canonical, (the variant with 'not' is) 5774 // we only get it because it has extra uses, and can't be canonicalized, 5775 5776 switch (Pred) { 5777 case ICmpInst::ICMP_ULT: 5778 NewPred = ICmpInst::ICMP_NE; 5779 break; 5780 case ICmpInst::ICMP_UGE: 5781 NewPred = ICmpInst::ICMP_EQ; 5782 break; 5783 default: 5784 return nullptr; 5785 } 5786 } else 5787 return nullptr; 5788 5789 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5790 Constant *Zero = Constant::getNullValue(NewX->getType()); 5791 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5792 } 5793 5794 static Instruction *foldVectorCmp(CmpInst &Cmp, 5795 InstCombiner::BuilderTy &Builder) { 5796 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5797 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5798 Value *V1, *V2; 5799 ArrayRef<int> M; 5800 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5801 return nullptr; 5802 5803 // If both arguments of the cmp are shuffles that use the same mask and 5804 // shuffle within a single vector, move the shuffle after the cmp: 5805 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5806 Type *V1Ty = V1->getType(); 5807 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5808 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5809 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5810 return new ShuffleVectorInst(NewCmp, M); 5811 } 5812 5813 // Try to canonicalize compare with splatted operand and splat constant. 5814 // TODO: We could generalize this for more than splats. See/use the code in 5815 // InstCombiner::foldVectorBinop(). 5816 Constant *C; 5817 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5818 return nullptr; 5819 5820 // Length-changing splats are ok, so adjust the constants as needed: 5821 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5822 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5823 int MaskSplatIndex; 5824 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5825 // We allow undefs in matching, but this transform removes those for safety. 5826 // Demanded elements analysis should be able to recover some/all of that. 5827 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5828 ScalarC); 5829 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5830 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5831 return new ShuffleVectorInst(NewCmp, NewM); 5832 } 5833 5834 return nullptr; 5835 } 5836 5837 // extract(uadd.with.overflow(A, B), 0) ult A 5838 // -> extract(uadd.with.overflow(A, B), 1) 5839 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5840 CmpInst::Predicate Pred = I.getPredicate(); 5841 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5842 5843 Value *UAddOv; 5844 Value *A, *B; 5845 auto UAddOvResultPat = m_ExtractValue<0>( 5846 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5847 if (match(Op0, UAddOvResultPat) && 5848 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5849 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5850 (match(A, m_One()) || match(B, m_One()))) || 5851 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5852 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5853 // extract(uadd.with.overflow(A, B), 0) < A 5854 // extract(uadd.with.overflow(A, 1), 0) == 0 5855 // extract(uadd.with.overflow(A, -1), 0) != -1 5856 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5857 else if (match(Op1, UAddOvResultPat) && 5858 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5859 // A > extract(uadd.with.overflow(A, B), 0) 5860 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5861 else 5862 return nullptr; 5863 5864 return ExtractValueInst::Create(UAddOv, 1); 5865 } 5866 5867 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5868 if (!I.getOperand(0)->getType()->isPointerTy() || 5869 NullPointerIsDefined( 5870 I.getParent()->getParent(), 5871 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5872 return nullptr; 5873 } 5874 Instruction *Op; 5875 if (match(I.getOperand(0), m_Instruction(Op)) && 5876 match(I.getOperand(1), m_Zero()) && 5877 Op->isLaunderOrStripInvariantGroup()) { 5878 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5879 Op->getOperand(0), I.getOperand(1)); 5880 } 5881 return nullptr; 5882 } 5883 5884 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5885 bool Changed = false; 5886 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5887 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5888 unsigned Op0Cplxity = getComplexity(Op0); 5889 unsigned Op1Cplxity = getComplexity(Op1); 5890 5891 /// Orders the operands of the compare so that they are listed from most 5892 /// complex to least complex. This puts constants before unary operators, 5893 /// before binary operators. 5894 if (Op0Cplxity < Op1Cplxity || 5895 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5896 I.swapOperands(); 5897 std::swap(Op0, Op1); 5898 Changed = true; 5899 } 5900 5901 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5902 return replaceInstUsesWith(I, V); 5903 5904 // Comparing -val or val with non-zero is the same as just comparing val 5905 // ie, abs(val) != 0 -> val != 0 5906 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5907 Value *Cond, *SelectTrue, *SelectFalse; 5908 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5909 m_Value(SelectFalse)))) { 5910 if (Value *V = dyn_castNegVal(SelectTrue)) { 5911 if (V == SelectFalse) 5912 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5913 } 5914 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5915 if (V == SelectTrue) 5916 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5917 } 5918 } 5919 } 5920 5921 if (Op0->getType()->isIntOrIntVectorTy(1)) 5922 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5923 return Res; 5924 5925 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5926 return Res; 5927 5928 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5929 return Res; 5930 5931 if (Instruction *Res = foldICmpWithConstant(I)) 5932 return Res; 5933 5934 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5935 return Res; 5936 5937 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5938 return Res; 5939 5940 // Test if the ICmpInst instruction is used exclusively by a select as 5941 // part of a minimum or maximum operation. If so, refrain from doing 5942 // any other folding. This helps out other analyses which understand 5943 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5944 // and CodeGen. And in this case, at least one of the comparison 5945 // operands has at least one user besides the compare (the select), 5946 // which would often largely negate the benefit of folding anyway. 5947 // 5948 // Do the same for the other patterns recognized by matchSelectPattern. 5949 if (I.hasOneUse()) 5950 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5951 Value *A, *B; 5952 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5953 if (SPR.Flavor != SPF_UNKNOWN) 5954 return nullptr; 5955 } 5956 5957 // Do this after checking for min/max to prevent infinite looping. 5958 if (Instruction *Res = foldICmpWithZero(I)) 5959 return Res; 5960 5961 // FIXME: We only do this after checking for min/max to prevent infinite 5962 // looping caused by a reverse canonicalization of these patterns for min/max. 5963 // FIXME: The organization of folds is a mess. These would naturally go into 5964 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5965 // down here after the min/max restriction. 5966 ICmpInst::Predicate Pred = I.getPredicate(); 5967 const APInt *C; 5968 if (match(Op1, m_APInt(C))) { 5969 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5970 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5971 Constant *Zero = Constant::getNullValue(Op0->getType()); 5972 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5973 } 5974 5975 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5976 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5977 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5978 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5979 } 5980 } 5981 5982 // The folds in here may rely on wrapping flags and special constants, so 5983 // they can break up min/max idioms in some cases but not seemingly similar 5984 // patterns. 5985 // FIXME: It may be possible to enhance select folding to make this 5986 // unnecessary. It may also be moot if we canonicalize to min/max 5987 // intrinsics. 5988 if (Instruction *Res = foldICmpBinOp(I, Q)) 5989 return Res; 5990 5991 if (Instruction *Res = foldICmpInstWithConstant(I)) 5992 return Res; 5993 5994 // Try to match comparison as a sign bit test. Intentionally do this after 5995 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5996 if (Instruction *New = foldSignBitTest(I)) 5997 return New; 5998 5999 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6000 return Res; 6001 6002 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6003 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6004 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6005 return NI; 6006 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6007 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6008 return NI; 6009 6010 // Try to optimize equality comparisons against alloca-based pointers. 6011 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6012 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6013 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6014 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 6015 return New; 6016 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6017 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 6018 return New; 6019 } 6020 6021 if (Instruction *Res = foldICmpBitCast(I)) 6022 return Res; 6023 6024 // TODO: Hoist this above the min/max bailout. 6025 if (Instruction *R = foldICmpWithCastOp(I)) 6026 return R; 6027 6028 if (Instruction *Res = foldICmpWithMinMax(I)) 6029 return Res; 6030 6031 { 6032 Value *A, *B; 6033 // Transform (A & ~B) == 0 --> (A & B) != 0 6034 // and (A & ~B) != 0 --> (A & B) == 0 6035 // if A is a power of 2. 6036 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6037 match(Op1, m_Zero()) && 6038 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6039 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6040 Op1); 6041 6042 // ~X < ~Y --> Y < X 6043 // ~X < C --> X > ~C 6044 if (match(Op0, m_Not(m_Value(A)))) { 6045 if (match(Op1, m_Not(m_Value(B)))) 6046 return new ICmpInst(I.getPredicate(), B, A); 6047 6048 const APInt *C; 6049 if (match(Op1, m_APInt(C))) 6050 return new ICmpInst(I.getSwappedPredicate(), A, 6051 ConstantInt::get(Op1->getType(), ~(*C))); 6052 } 6053 6054 Instruction *AddI = nullptr; 6055 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6056 m_Instruction(AddI))) && 6057 isa<IntegerType>(A->getType())) { 6058 Value *Result; 6059 Constant *Overflow; 6060 // m_UAddWithOverflow can match patterns that do not include an explicit 6061 // "add" instruction, so check the opcode of the matched op. 6062 if (AddI->getOpcode() == Instruction::Add && 6063 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6064 Result, Overflow)) { 6065 replaceInstUsesWith(*AddI, Result); 6066 eraseInstFromFunction(*AddI); 6067 return replaceInstUsesWith(I, Overflow); 6068 } 6069 } 6070 6071 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6072 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6073 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6074 return R; 6075 } 6076 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6077 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6078 return R; 6079 } 6080 } 6081 6082 if (Instruction *Res = foldICmpEquality(I)) 6083 return Res; 6084 6085 if (Instruction *Res = foldICmpOfUAddOv(I)) 6086 return Res; 6087 6088 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6089 // an i1 which indicates whether or not we successfully did the swap. 6090 // 6091 // Replace comparisons between the old value and the expected value with the 6092 // indicator that 'cmpxchg' returns. 6093 // 6094 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6095 // spuriously fail. In those cases, the old value may equal the expected 6096 // value but it is possible for the swap to not occur. 6097 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6098 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6099 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6100 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6101 !ACXI->isWeak()) 6102 return ExtractValueInst::Create(ACXI, 1); 6103 6104 { 6105 Value *X; 6106 const APInt *C; 6107 // icmp X+Cst, X 6108 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6109 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6110 6111 // icmp X, X+Cst 6112 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6113 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6114 } 6115 6116 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6117 return Res; 6118 6119 if (I.getType()->isVectorTy()) 6120 if (Instruction *Res = foldVectorCmp(I, Builder)) 6121 return Res; 6122 6123 if (Instruction *Res = foldICmpInvariantGroup(I)) 6124 return Res; 6125 6126 return Changed ? &I : nullptr; 6127 } 6128 6129 /// Fold fcmp ([us]itofp x, cst) if possible. 6130 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6131 Instruction *LHSI, 6132 Constant *RHSC) { 6133 if (!isa<ConstantFP>(RHSC)) return nullptr; 6134 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6135 6136 // Get the width of the mantissa. We don't want to hack on conversions that 6137 // might lose information from the integer, e.g. "i64 -> float" 6138 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6139 if (MantissaWidth == -1) return nullptr; // Unknown. 6140 6141 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6142 6143 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6144 6145 if (I.isEquality()) { 6146 FCmpInst::Predicate P = I.getPredicate(); 6147 bool IsExact = false; 6148 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6149 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6150 6151 // If the floating point constant isn't an integer value, we know if we will 6152 // ever compare equal / not equal to it. 6153 if (!IsExact) { 6154 // TODO: Can never be -0.0 and other non-representable values 6155 APFloat RHSRoundInt(RHS); 6156 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6157 if (RHS != RHSRoundInt) { 6158 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6159 return replaceInstUsesWith(I, Builder.getFalse()); 6160 6161 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6162 return replaceInstUsesWith(I, Builder.getTrue()); 6163 } 6164 } 6165 6166 // TODO: If the constant is exactly representable, is it always OK to do 6167 // equality compares as integer? 6168 } 6169 6170 // Check to see that the input is converted from an integer type that is small 6171 // enough that preserves all bits. TODO: check here for "known" sign bits. 6172 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6173 unsigned InputSize = IntTy->getScalarSizeInBits(); 6174 6175 // Following test does NOT adjust InputSize downwards for signed inputs, 6176 // because the most negative value still requires all the mantissa bits 6177 // to distinguish it from one less than that value. 6178 if ((int)InputSize > MantissaWidth) { 6179 // Conversion would lose accuracy. Check if loss can impact comparison. 6180 int Exp = ilogb(RHS); 6181 if (Exp == APFloat::IEK_Inf) { 6182 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6183 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6184 // Conversion could create infinity. 6185 return nullptr; 6186 } else { 6187 // Note that if RHS is zero or NaN, then Exp is negative 6188 // and first condition is trivially false. 6189 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6190 // Conversion could affect comparison. 6191 return nullptr; 6192 } 6193 } 6194 6195 // Otherwise, we can potentially simplify the comparison. We know that it 6196 // will always come through as an integer value and we know the constant is 6197 // not a NAN (it would have been previously simplified). 6198 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6199 6200 ICmpInst::Predicate Pred; 6201 switch (I.getPredicate()) { 6202 default: llvm_unreachable("Unexpected predicate!"); 6203 case FCmpInst::FCMP_UEQ: 6204 case FCmpInst::FCMP_OEQ: 6205 Pred = ICmpInst::ICMP_EQ; 6206 break; 6207 case FCmpInst::FCMP_UGT: 6208 case FCmpInst::FCMP_OGT: 6209 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6210 break; 6211 case FCmpInst::FCMP_UGE: 6212 case FCmpInst::FCMP_OGE: 6213 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6214 break; 6215 case FCmpInst::FCMP_ULT: 6216 case FCmpInst::FCMP_OLT: 6217 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6218 break; 6219 case FCmpInst::FCMP_ULE: 6220 case FCmpInst::FCMP_OLE: 6221 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6222 break; 6223 case FCmpInst::FCMP_UNE: 6224 case FCmpInst::FCMP_ONE: 6225 Pred = ICmpInst::ICMP_NE; 6226 break; 6227 case FCmpInst::FCMP_ORD: 6228 return replaceInstUsesWith(I, Builder.getTrue()); 6229 case FCmpInst::FCMP_UNO: 6230 return replaceInstUsesWith(I, Builder.getFalse()); 6231 } 6232 6233 // Now we know that the APFloat is a normal number, zero or inf. 6234 6235 // See if the FP constant is too large for the integer. For example, 6236 // comparing an i8 to 300.0. 6237 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6238 6239 if (!LHSUnsigned) { 6240 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6241 // and large values. 6242 APFloat SMax(RHS.getSemantics()); 6243 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6244 APFloat::rmNearestTiesToEven); 6245 if (SMax < RHS) { // smax < 13123.0 6246 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6247 Pred == ICmpInst::ICMP_SLE) 6248 return replaceInstUsesWith(I, Builder.getTrue()); 6249 return replaceInstUsesWith(I, Builder.getFalse()); 6250 } 6251 } else { 6252 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6253 // +INF and large values. 6254 APFloat UMax(RHS.getSemantics()); 6255 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6256 APFloat::rmNearestTiesToEven); 6257 if (UMax < RHS) { // umax < 13123.0 6258 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6259 Pred == ICmpInst::ICMP_ULE) 6260 return replaceInstUsesWith(I, Builder.getTrue()); 6261 return replaceInstUsesWith(I, Builder.getFalse()); 6262 } 6263 } 6264 6265 if (!LHSUnsigned) { 6266 // See if the RHS value is < SignedMin. 6267 APFloat SMin(RHS.getSemantics()); 6268 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6269 APFloat::rmNearestTiesToEven); 6270 if (SMin > RHS) { // smin > 12312.0 6271 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6272 Pred == ICmpInst::ICMP_SGE) 6273 return replaceInstUsesWith(I, Builder.getTrue()); 6274 return replaceInstUsesWith(I, Builder.getFalse()); 6275 } 6276 } else { 6277 // See if the RHS value is < UnsignedMin. 6278 APFloat UMin(RHS.getSemantics()); 6279 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6280 APFloat::rmNearestTiesToEven); 6281 if (UMin > RHS) { // umin > 12312.0 6282 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6283 Pred == ICmpInst::ICMP_UGE) 6284 return replaceInstUsesWith(I, Builder.getTrue()); 6285 return replaceInstUsesWith(I, Builder.getFalse()); 6286 } 6287 } 6288 6289 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6290 // [0, UMAX], but it may still be fractional. See if it is fractional by 6291 // casting the FP value to the integer value and back, checking for equality. 6292 // Don't do this for zero, because -0.0 is not fractional. 6293 Constant *RHSInt = LHSUnsigned 6294 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6295 : ConstantExpr::getFPToSI(RHSC, IntTy); 6296 if (!RHS.isZero()) { 6297 bool Equal = LHSUnsigned 6298 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6299 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6300 if (!Equal) { 6301 // If we had a comparison against a fractional value, we have to adjust 6302 // the compare predicate and sometimes the value. RHSC is rounded towards 6303 // zero at this point. 6304 switch (Pred) { 6305 default: llvm_unreachable("Unexpected integer comparison!"); 6306 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6307 return replaceInstUsesWith(I, Builder.getTrue()); 6308 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6309 return replaceInstUsesWith(I, Builder.getFalse()); 6310 case ICmpInst::ICMP_ULE: 6311 // (float)int <= 4.4 --> int <= 4 6312 // (float)int <= -4.4 --> false 6313 if (RHS.isNegative()) 6314 return replaceInstUsesWith(I, Builder.getFalse()); 6315 break; 6316 case ICmpInst::ICMP_SLE: 6317 // (float)int <= 4.4 --> int <= 4 6318 // (float)int <= -4.4 --> int < -4 6319 if (RHS.isNegative()) 6320 Pred = ICmpInst::ICMP_SLT; 6321 break; 6322 case ICmpInst::ICMP_ULT: 6323 // (float)int < -4.4 --> false 6324 // (float)int < 4.4 --> int <= 4 6325 if (RHS.isNegative()) 6326 return replaceInstUsesWith(I, Builder.getFalse()); 6327 Pred = ICmpInst::ICMP_ULE; 6328 break; 6329 case ICmpInst::ICMP_SLT: 6330 // (float)int < -4.4 --> int < -4 6331 // (float)int < 4.4 --> int <= 4 6332 if (!RHS.isNegative()) 6333 Pred = ICmpInst::ICMP_SLE; 6334 break; 6335 case ICmpInst::ICMP_UGT: 6336 // (float)int > 4.4 --> int > 4 6337 // (float)int > -4.4 --> true 6338 if (RHS.isNegative()) 6339 return replaceInstUsesWith(I, Builder.getTrue()); 6340 break; 6341 case ICmpInst::ICMP_SGT: 6342 // (float)int > 4.4 --> int > 4 6343 // (float)int > -4.4 --> int >= -4 6344 if (RHS.isNegative()) 6345 Pred = ICmpInst::ICMP_SGE; 6346 break; 6347 case ICmpInst::ICMP_UGE: 6348 // (float)int >= -4.4 --> true 6349 // (float)int >= 4.4 --> int > 4 6350 if (RHS.isNegative()) 6351 return replaceInstUsesWith(I, Builder.getTrue()); 6352 Pred = ICmpInst::ICMP_UGT; 6353 break; 6354 case ICmpInst::ICMP_SGE: 6355 // (float)int >= -4.4 --> int >= -4 6356 // (float)int >= 4.4 --> int > 4 6357 if (!RHS.isNegative()) 6358 Pred = ICmpInst::ICMP_SGT; 6359 break; 6360 } 6361 } 6362 } 6363 6364 // Lower this FP comparison into an appropriate integer version of the 6365 // comparison. 6366 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6367 } 6368 6369 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6370 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6371 Constant *RHSC) { 6372 // When C is not 0.0 and infinities are not allowed: 6373 // (C / X) < 0.0 is a sign-bit test of X 6374 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6375 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6376 // 6377 // Proof: 6378 // Multiply (C / X) < 0.0 by X * X / C. 6379 // - X is non zero, if it is the flag 'ninf' is violated. 6380 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6381 // the predicate. C is also non zero by definition. 6382 // 6383 // Thus X * X / C is non zero and the transformation is valid. [qed] 6384 6385 FCmpInst::Predicate Pred = I.getPredicate(); 6386 6387 // Check that predicates are valid. 6388 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6389 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6390 return nullptr; 6391 6392 // Check that RHS operand is zero. 6393 if (!match(RHSC, m_AnyZeroFP())) 6394 return nullptr; 6395 6396 // Check fastmath flags ('ninf'). 6397 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6398 return nullptr; 6399 6400 // Check the properties of the dividend. It must not be zero to avoid a 6401 // division by zero (see Proof). 6402 const APFloat *C; 6403 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6404 return nullptr; 6405 6406 if (C->isZero()) 6407 return nullptr; 6408 6409 // Get swapped predicate if necessary. 6410 if (C->isNegative()) 6411 Pred = I.getSwappedPredicate(); 6412 6413 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6414 } 6415 6416 /// Optimize fabs(X) compared with zero. 6417 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6418 Value *X; 6419 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6420 !match(I.getOperand(1), m_PosZeroFP())) 6421 return nullptr; 6422 6423 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6424 I->setPredicate(P); 6425 return IC.replaceOperand(*I, 0, X); 6426 }; 6427 6428 switch (I.getPredicate()) { 6429 case FCmpInst::FCMP_UGE: 6430 case FCmpInst::FCMP_OLT: 6431 // fabs(X) >= 0.0 --> true 6432 // fabs(X) < 0.0 --> false 6433 llvm_unreachable("fcmp should have simplified"); 6434 6435 case FCmpInst::FCMP_OGT: 6436 // fabs(X) > 0.0 --> X != 0.0 6437 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6438 6439 case FCmpInst::FCMP_UGT: 6440 // fabs(X) u> 0.0 --> X u!= 0.0 6441 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6442 6443 case FCmpInst::FCMP_OLE: 6444 // fabs(X) <= 0.0 --> X == 0.0 6445 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6446 6447 case FCmpInst::FCMP_ULE: 6448 // fabs(X) u<= 0.0 --> X u== 0.0 6449 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6450 6451 case FCmpInst::FCMP_OGE: 6452 // fabs(X) >= 0.0 --> !isnan(X) 6453 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6454 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6455 6456 case FCmpInst::FCMP_ULT: 6457 // fabs(X) u< 0.0 --> isnan(X) 6458 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6459 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6460 6461 case FCmpInst::FCMP_OEQ: 6462 case FCmpInst::FCMP_UEQ: 6463 case FCmpInst::FCMP_ONE: 6464 case FCmpInst::FCMP_UNE: 6465 case FCmpInst::FCMP_ORD: 6466 case FCmpInst::FCMP_UNO: 6467 // Look through the fabs() because it doesn't change anything but the sign. 6468 // fabs(X) == 0.0 --> X == 0.0, 6469 // fabs(X) != 0.0 --> X != 0.0 6470 // isnan(fabs(X)) --> isnan(X) 6471 // !isnan(fabs(X) --> !isnan(X) 6472 return replacePredAndOp0(&I, I.getPredicate(), X); 6473 6474 default: 6475 return nullptr; 6476 } 6477 } 6478 6479 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6480 bool Changed = false; 6481 6482 /// Orders the operands of the compare so that they are listed from most 6483 /// complex to least complex. This puts constants before unary operators, 6484 /// before binary operators. 6485 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6486 I.swapOperands(); 6487 Changed = true; 6488 } 6489 6490 const CmpInst::Predicate Pred = I.getPredicate(); 6491 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6492 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6493 SQ.getWithInstruction(&I))) 6494 return replaceInstUsesWith(I, V); 6495 6496 // Simplify 'fcmp pred X, X' 6497 Type *OpType = Op0->getType(); 6498 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6499 if (Op0 == Op1) { 6500 switch (Pred) { 6501 default: break; 6502 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6503 case FCmpInst::FCMP_ULT: // True if unordered or less than 6504 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6505 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6506 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6507 I.setPredicate(FCmpInst::FCMP_UNO); 6508 I.setOperand(1, Constant::getNullValue(OpType)); 6509 return &I; 6510 6511 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6512 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6513 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6514 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6515 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6516 I.setPredicate(FCmpInst::FCMP_ORD); 6517 I.setOperand(1, Constant::getNullValue(OpType)); 6518 return &I; 6519 } 6520 } 6521 6522 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6523 // then canonicalize the operand to 0.0. 6524 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6525 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6526 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6527 6528 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6529 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6530 } 6531 6532 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6533 Value *X, *Y; 6534 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6535 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6536 6537 // Test if the FCmpInst instruction is used exclusively by a select as 6538 // part of a minimum or maximum operation. If so, refrain from doing 6539 // any other folding. This helps out other analyses which understand 6540 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6541 // and CodeGen. And in this case, at least one of the comparison 6542 // operands has at least one user besides the compare (the select), 6543 // which would often largely negate the benefit of folding anyway. 6544 if (I.hasOneUse()) 6545 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6546 Value *A, *B; 6547 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6548 if (SPR.Flavor != SPF_UNKNOWN) 6549 return nullptr; 6550 } 6551 6552 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6553 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6554 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6555 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6556 6557 // Handle fcmp with instruction LHS and constant RHS. 6558 Instruction *LHSI; 6559 Constant *RHSC; 6560 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6561 switch (LHSI->getOpcode()) { 6562 case Instruction::PHI: 6563 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6564 // block. If in the same block, we're encouraging jump threading. If 6565 // not, we are just pessimizing the code by making an i1 phi. 6566 if (LHSI->getParent() == I.getParent()) 6567 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6568 return NV; 6569 break; 6570 case Instruction::SIToFP: 6571 case Instruction::UIToFP: 6572 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6573 return NV; 6574 break; 6575 case Instruction::FDiv: 6576 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6577 return NV; 6578 break; 6579 case Instruction::Load: 6580 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6581 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6582 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6583 !cast<LoadInst>(LHSI)->isVolatile()) 6584 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6585 return Res; 6586 break; 6587 } 6588 } 6589 6590 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6591 return R; 6592 6593 if (match(Op0, m_FNeg(m_Value(X)))) { 6594 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6595 Constant *C; 6596 if (match(Op1, m_Constant(C))) { 6597 Constant *NegC = ConstantExpr::getFNeg(C); 6598 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6599 } 6600 } 6601 6602 if (match(Op0, m_FPExt(m_Value(X)))) { 6603 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6604 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6605 return new FCmpInst(Pred, X, Y, "", &I); 6606 6607 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6608 const APFloat *C; 6609 if (match(Op1, m_APFloat(C))) { 6610 const fltSemantics &FPSem = 6611 X->getType()->getScalarType()->getFltSemantics(); 6612 bool Lossy; 6613 APFloat TruncC = *C; 6614 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6615 6616 // Avoid lossy conversions and denormals. 6617 // Zero is a special case that's OK to convert. 6618 APFloat Fabs = TruncC; 6619 Fabs.clearSign(); 6620 if (!Lossy && 6621 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6622 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6623 return new FCmpInst(Pred, X, NewC, "", &I); 6624 } 6625 } 6626 } 6627 6628 // Convert a sign-bit test of an FP value into a cast and integer compare. 6629 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6630 // TODO: Handle non-zero compare constants. 6631 // TODO: Handle other predicates. 6632 const APFloat *C; 6633 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6634 m_Value(X)))) && 6635 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6636 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6637 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6638 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6639 6640 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6641 if (Pred == FCmpInst::FCMP_OLT) { 6642 Value *IntX = Builder.CreateBitCast(X, IntType); 6643 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6644 ConstantInt::getNullValue(IntType)); 6645 } 6646 } 6647 6648 if (I.getType()->isVectorTy()) 6649 if (Instruction *Res = foldVectorCmp(I, Builder)) 6650 return Res; 6651 6652 return Changed ? &I : nullptr; 6653 } 6654