xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isZero())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOne()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnes()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If inbounds keyword is not present, Idx * ElementSize can overflow.
283   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
284   // Then, there are two possible values for Idx to match offset 0:
285   // 0x00..00, 0x80..00.
286   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
287   // comparison is false if Idx was 0x80..00.
288   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
289   unsigned ElementSize =
290       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
291   auto MaskIdx = [&](Value* Idx){
292     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
293       Value *Mask = ConstantInt::get(Idx->getType(), -1);
294       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
295       Idx = Builder.CreateAnd(Idx, Mask);
296     }
297     return Idx;
298   };
299 
300   // If the comparison is only true for one or two elements, emit direct
301   // comparisons.
302   if (SecondTrueElement != Overdefined) {
303     Idx = MaskIdx(Idx);
304     // None true -> false.
305     if (FirstTrueElement == Undefined)
306       return replaceInstUsesWith(ICI, Builder.getFalse());
307 
308     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
309 
310     // True for one element -> 'i == 47'.
311     if (SecondTrueElement == Undefined)
312       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
313 
314     // True for two elements -> 'i == 47 | i == 72'.
315     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
316     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
317     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
318     return BinaryOperator::CreateOr(C1, C2);
319   }
320 
321   // If the comparison is only false for one or two elements, emit direct
322   // comparisons.
323   if (SecondFalseElement != Overdefined) {
324     Idx = MaskIdx(Idx);
325     // None false -> true.
326     if (FirstFalseElement == Undefined)
327       return replaceInstUsesWith(ICI, Builder.getTrue());
328 
329     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
330 
331     // False for one element -> 'i != 47'.
332     if (SecondFalseElement == Undefined)
333       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
334 
335     // False for two elements -> 'i != 47 & i != 72'.
336     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
337     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
338     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
339     return BinaryOperator::CreateAnd(C1, C2);
340   }
341 
342   // If the comparison can be replaced with a range comparison for the elements
343   // where it is true, emit the range check.
344   if (TrueRangeEnd != Overdefined) {
345     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
346     Idx = MaskIdx(Idx);
347 
348     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
349     if (FirstTrueElement) {
350       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
351       Idx = Builder.CreateAdd(Idx, Offs);
352     }
353 
354     Value *End = ConstantInt::get(Idx->getType(),
355                                   TrueRangeEnd-FirstTrueElement+1);
356     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
357   }
358 
359   // False range check.
360   if (FalseRangeEnd != Overdefined) {
361     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
362     Idx = MaskIdx(Idx);
363     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
364     if (FirstFalseElement) {
365       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
366       Idx = Builder.CreateAdd(Idx, Offs);
367     }
368 
369     Value *End = ConstantInt::get(Idx->getType(),
370                                   FalseRangeEnd-FirstFalseElement);
371     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
372   }
373 
374   // If a magic bitvector captures the entire comparison state
375   // of this load, replace it with computation that does:
376   //   ((magic_cst >> i) & 1) != 0
377   {
378     Type *Ty = nullptr;
379 
380     // Look for an appropriate type:
381     // - The type of Idx if the magic fits
382     // - The smallest fitting legal type
383     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
384       Ty = Idx->getType();
385     else
386       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
387 
388     if (Ty) {
389       Idx = MaskIdx(Idx);
390       Value *V = Builder.CreateIntCast(Idx, Ty, false);
391       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
392       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
393       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
394     }
395   }
396 
397   return nullptr;
398 }
399 
400 /// Return a value that can be used to compare the *offset* implied by a GEP to
401 /// zero. For example, if we have &A[i], we want to return 'i' for
402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
403 /// are involved. The above expression would also be legal to codegen as
404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
405 /// This latter form is less amenable to optimization though, and we are allowed
406 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
407 ///
408 /// If we can't emit an optimized form for this expression, this returns null.
409 ///
410 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
411                                           const DataLayout &DL) {
412   gep_type_iterator GTI = gep_type_begin(GEP);
413 
414   // Check to see if this gep only has a single variable index.  If so, and if
415   // any constant indices are a multiple of its scale, then we can compute this
416   // in terms of the scale of the variable index.  For example, if the GEP
417   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
418   // because the expression will cross zero at the same point.
419   unsigned i, e = GEP->getNumOperands();
420   int64_t Offset = 0;
421   for (i = 1; i != e; ++i, ++GTI) {
422     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
423       // Compute the aggregate offset of constant indices.
424       if (CI->isZero()) continue;
425 
426       // Handle a struct index, which adds its field offset to the pointer.
427       if (StructType *STy = GTI.getStructTypeOrNull()) {
428         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
429       } else {
430         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
431         Offset += Size*CI->getSExtValue();
432       }
433     } else {
434       // Found our variable index.
435       break;
436     }
437   }
438 
439   // If there are no variable indices, we must have a constant offset, just
440   // evaluate it the general way.
441   if (i == e) return nullptr;
442 
443   Value *VariableIdx = GEP->getOperand(i);
444   // Determine the scale factor of the variable element.  For example, this is
445   // 4 if the variable index is into an array of i32.
446   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
447 
448   // Verify that there are no other variable indices.  If so, emit the hard way.
449   for (++i, ++GTI; i != e; ++i, ++GTI) {
450     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
451     if (!CI) return nullptr;
452 
453     // Compute the aggregate offset of constant indices.
454     if (CI->isZero()) continue;
455 
456     // Handle a struct index, which adds its field offset to the pointer.
457     if (StructType *STy = GTI.getStructTypeOrNull()) {
458       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
459     } else {
460       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
461       Offset += Size*CI->getSExtValue();
462     }
463   }
464 
465   // Okay, we know we have a single variable index, which must be a
466   // pointer/array/vector index.  If there is no offset, life is simple, return
467   // the index.
468   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
469   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
470   if (Offset == 0) {
471     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
472     // we don't need to bother extending: the extension won't affect where the
473     // computation crosses zero.
474     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
475         IntPtrWidth) {
476       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
477     }
478     return VariableIdx;
479   }
480 
481   // Otherwise, there is an index.  The computation we will do will be modulo
482   // the pointer size.
483   Offset = SignExtend64(Offset, IntPtrWidth);
484   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
485 
486   // To do this transformation, any constant index must be a multiple of the
487   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
488   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
489   // multiple of the variable scale.
490   int64_t NewOffs = Offset / (int64_t)VariableScale;
491   if (Offset != NewOffs*(int64_t)VariableScale)
492     return nullptr;
493 
494   // Okay, we can do this evaluation.  Start by converting the index to intptr.
495   if (VariableIdx->getType() != IntPtrTy)
496     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
497                                             true /*Signed*/);
498   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
499   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
500 }
501 
502 /// Returns true if we can rewrite Start as a GEP with pointer Base
503 /// and some integer offset. The nodes that need to be re-written
504 /// for this transformation will be added to Explored.
505 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
506                                   const DataLayout &DL,
507                                   SetVector<Value *> &Explored) {
508   SmallVector<Value *, 16> WorkList(1, Start);
509   Explored.insert(Base);
510 
511   // The following traversal gives us an order which can be used
512   // when doing the final transformation. Since in the final
513   // transformation we create the PHI replacement instructions first,
514   // we don't have to get them in any particular order.
515   //
516   // However, for other instructions we will have to traverse the
517   // operands of an instruction first, which means that we have to
518   // do a post-order traversal.
519   while (!WorkList.empty()) {
520     SetVector<PHINode *> PHIs;
521 
522     while (!WorkList.empty()) {
523       if (Explored.size() >= 100)
524         return false;
525 
526       Value *V = WorkList.back();
527 
528       if (Explored.contains(V)) {
529         WorkList.pop_back();
530         continue;
531       }
532 
533       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
534           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
535         // We've found some value that we can't explore which is different from
536         // the base. Therefore we can't do this transformation.
537         return false;
538 
539       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
540         auto *CI = cast<CastInst>(V);
541         if (!CI->isNoopCast(DL))
542           return false;
543 
544         if (!Explored.contains(CI->getOperand(0)))
545           WorkList.push_back(CI->getOperand(0));
546       }
547 
548       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
549         // We're limiting the GEP to having one index. This will preserve
550         // the original pointer type. We could handle more cases in the
551         // future.
552         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
553             GEP->getType() != Start->getType())
554           return false;
555 
556         if (!Explored.contains(GEP->getOperand(0)))
557           WorkList.push_back(GEP->getOperand(0));
558       }
559 
560       if (WorkList.back() == V) {
561         WorkList.pop_back();
562         // We've finished visiting this node, mark it as such.
563         Explored.insert(V);
564       }
565 
566       if (auto *PN = dyn_cast<PHINode>(V)) {
567         // We cannot transform PHIs on unsplittable basic blocks.
568         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
569           return false;
570         Explored.insert(PN);
571         PHIs.insert(PN);
572       }
573     }
574 
575     // Explore the PHI nodes further.
576     for (auto *PN : PHIs)
577       for (Value *Op : PN->incoming_values())
578         if (!Explored.contains(Op))
579           WorkList.push_back(Op);
580   }
581 
582   // Make sure that we can do this. Since we can't insert GEPs in a basic
583   // block before a PHI node, we can't easily do this transformation if
584   // we have PHI node users of transformed instructions.
585   for (Value *Val : Explored) {
586     for (Value *Use : Val->uses()) {
587 
588       auto *PHI = dyn_cast<PHINode>(Use);
589       auto *Inst = dyn_cast<Instruction>(Val);
590 
591       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
592           !Explored.contains(PHI))
593         continue;
594 
595       if (PHI->getParent() == Inst->getParent())
596         return false;
597     }
598   }
599   return true;
600 }
601 
602 // Sets the appropriate insert point on Builder where we can add
603 // a replacement Instruction for V (if that is possible).
604 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
605                               bool Before = true) {
606   if (auto *PHI = dyn_cast<PHINode>(V)) {
607     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
608     return;
609   }
610   if (auto *I = dyn_cast<Instruction>(V)) {
611     if (!Before)
612       I = &*std::next(I->getIterator());
613     Builder.SetInsertPoint(I);
614     return;
615   }
616   if (auto *A = dyn_cast<Argument>(V)) {
617     // Set the insertion point in the entry block.
618     BasicBlock &Entry = A->getParent()->getEntryBlock();
619     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
620     return;
621   }
622   // Otherwise, this is a constant and we don't need to set a new
623   // insertion point.
624   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
625 }
626 
627 /// Returns a re-written value of Start as an indexed GEP using Base as a
628 /// pointer.
629 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
630                                  const DataLayout &DL,
631                                  SetVector<Value *> &Explored) {
632   // Perform all the substitutions. This is a bit tricky because we can
633   // have cycles in our use-def chains.
634   // 1. Create the PHI nodes without any incoming values.
635   // 2. Create all the other values.
636   // 3. Add the edges for the PHI nodes.
637   // 4. Emit GEPs to get the original pointers.
638   // 5. Remove the original instructions.
639   Type *IndexType = IntegerType::get(
640       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
641 
642   DenseMap<Value *, Value *> NewInsts;
643   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
644 
645   // Create the new PHI nodes, without adding any incoming values.
646   for (Value *Val : Explored) {
647     if (Val == Base)
648       continue;
649     // Create empty phi nodes. This avoids cyclic dependencies when creating
650     // the remaining instructions.
651     if (auto *PHI = dyn_cast<PHINode>(Val))
652       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
653                                       PHI->getName() + ".idx", PHI);
654   }
655   IRBuilder<> Builder(Base->getContext());
656 
657   // Create all the other instructions.
658   for (Value *Val : Explored) {
659 
660     if (NewInsts.find(Val) != NewInsts.end())
661       continue;
662 
663     if (auto *CI = dyn_cast<CastInst>(Val)) {
664       // Don't get rid of the intermediate variable here; the store can grow
665       // the map which will invalidate the reference to the input value.
666       Value *V = NewInsts[CI->getOperand(0)];
667       NewInsts[CI] = V;
668       continue;
669     }
670     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
671       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
672                                                   : GEP->getOperand(1);
673       setInsertionPoint(Builder, GEP);
674       // Indices might need to be sign extended. GEPs will magically do
675       // this, but we need to do it ourselves here.
676       if (Index->getType()->getScalarSizeInBits() !=
677           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
678         Index = Builder.CreateSExtOrTrunc(
679             Index, NewInsts[GEP->getOperand(0)]->getType(),
680             GEP->getOperand(0)->getName() + ".sext");
681       }
682 
683       auto *Op = NewInsts[GEP->getOperand(0)];
684       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
685         NewInsts[GEP] = Index;
686       else
687         NewInsts[GEP] = Builder.CreateNSWAdd(
688             Op, Index, GEP->getOperand(0)->getName() + ".add");
689       continue;
690     }
691     if (isa<PHINode>(Val))
692       continue;
693 
694     llvm_unreachable("Unexpected instruction type");
695   }
696 
697   // Add the incoming values to the PHI nodes.
698   for (Value *Val : Explored) {
699     if (Val == Base)
700       continue;
701     // All the instructions have been created, we can now add edges to the
702     // phi nodes.
703     if (auto *PHI = dyn_cast<PHINode>(Val)) {
704       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
705       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
706         Value *NewIncoming = PHI->getIncomingValue(I);
707 
708         if (NewInsts.find(NewIncoming) != NewInsts.end())
709           NewIncoming = NewInsts[NewIncoming];
710 
711         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
712       }
713     }
714   }
715 
716   for (Value *Val : Explored) {
717     if (Val == Base)
718       continue;
719 
720     // Depending on the type, for external users we have to emit
721     // a GEP or a GEP + ptrtoint.
722     setInsertionPoint(Builder, Val, false);
723 
724     // If required, create an inttoptr instruction for Base.
725     Value *NewBase = Base;
726     if (!Base->getType()->isPointerTy())
727       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
728                                                Start->getName() + "to.ptr");
729 
730     Value *GEP = Builder.CreateInBoundsGEP(
731         Start->getType()->getPointerElementType(), NewBase,
732         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
733 
734     if (!Val->getType()->isPointerTy()) {
735       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
736                                               Val->getName() + ".conv");
737       GEP = Cast;
738     }
739     Val->replaceAllUsesWith(GEP);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
749 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getType() == V->getType()) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   // Make sure the pointers have the same type.
801   if (GEPLHS->getType() != RHS->getType())
802     return nullptr;
803 
804   Value *PtrBase, *Index;
805   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
806 
807   // The set of nodes that will take part in this transformation.
808   SetVector<Value *> Nodes;
809 
810   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
811     return nullptr;
812 
813   // We know we can re-write this as
814   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
815   // Since we've only looked through inbouds GEPs we know that we
816   // can't have overflow on either side. We can therefore re-write
817   // this as:
818   //   OFFSET1 cmp OFFSET2
819   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
820 
821   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
822   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
823   // offset. Since Index is the offset of LHS to the base pointer, we will now
824   // compare the offsets instead of comparing the pointers.
825   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
826 }
827 
828 /// Fold comparisons between a GEP instruction and something else. At this point
829 /// we know that the GEP is on the LHS of the comparison.
830 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
831                                            ICmpInst::Predicate Cond,
832                                            Instruction &I) {
833   // Don't transform signed compares of GEPs into index compares. Even if the
834   // GEP is inbounds, the final add of the base pointer can have signed overflow
835   // and would change the result of the icmp.
836   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
837   // the maximum signed value for the pointer type.
838   if (ICmpInst::isSigned(Cond))
839     return nullptr;
840 
841   // Look through bitcasts and addrspacecasts. We do not however want to remove
842   // 0 GEPs.
843   if (!isa<GetElementPtrInst>(RHS))
844     RHS = RHS->stripPointerCasts();
845 
846   Value *PtrBase = GEPLHS->getOperand(0);
847   // FIXME: Support vector pointer GEPs.
848   if (PtrBase == RHS && GEPLHS->isInBounds() &&
849       !GEPLHS->getType()->isVectorTy()) {
850     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
851     // This transformation (ignoring the base and scales) is valid because we
852     // know pointers can't overflow since the gep is inbounds.  See if we can
853     // output an optimized form.
854     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
855 
856     // If not, synthesize the offset the hard way.
857     if (!Offset)
858       Offset = EmitGEPOffset(GEPLHS);
859     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
860                         Constant::getNullValue(Offset->getType()));
861   }
862 
863   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
864       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
865       !NullPointerIsDefined(I.getFunction(),
866                             RHS->getType()->getPointerAddressSpace())) {
867     // For most address spaces, an allocation can't be placed at null, but null
868     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
869     // the only valid inbounds address derived from null, is null itself.
870     // Thus, we have four cases to consider:
871     // 1) Base == nullptr, Offset == 0 -> inbounds, null
872     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
873     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
874     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
875     //
876     // (Note if we're indexing a type of size 0, that simply collapses into one
877     //  of the buckets above.)
878     //
879     // In general, we're allowed to make values less poison (i.e. remove
880     //   sources of full UB), so in this case, we just select between the two
881     //   non-poison cases (1 and 4 above).
882     //
883     // For vectors, we apply the same reasoning on a per-lane basis.
884     auto *Base = GEPLHS->getPointerOperand();
885     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
886       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
887       Base = Builder.CreateVectorSplat(EC, Base);
888     }
889     return new ICmpInst(Cond, Base,
890                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
891                             cast<Constant>(RHS), Base->getType()));
892   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
893     // If the base pointers are different, but the indices are the same, just
894     // compare the base pointer.
895     if (PtrBase != GEPRHS->getOperand(0)) {
896       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
897       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
898                         GEPRHS->getOperand(0)->getType();
899       if (IndicesTheSame)
900         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
901           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
902             IndicesTheSame = false;
903             break;
904           }
905 
906       // If all indices are the same, just compare the base pointers.
907       Type *BaseType = GEPLHS->getOperand(0)->getType();
908       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
909         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
910 
911       // If we're comparing GEPs with two base pointers that only differ in type
912       // and both GEPs have only constant indices or just one use, then fold
913       // the compare with the adjusted indices.
914       // FIXME: Support vector of pointers.
915       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
916           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
917           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
918           PtrBase->stripPointerCasts() ==
919               GEPRHS->getOperand(0)->stripPointerCasts() &&
920           !GEPLHS->getType()->isVectorTy()) {
921         Value *LOffset = EmitGEPOffset(GEPLHS);
922         Value *ROffset = EmitGEPOffset(GEPRHS);
923 
924         // If we looked through an addrspacecast between different sized address
925         // spaces, the LHS and RHS pointers are different sized
926         // integers. Truncate to the smaller one.
927         Type *LHSIndexTy = LOffset->getType();
928         Type *RHSIndexTy = ROffset->getType();
929         if (LHSIndexTy != RHSIndexTy) {
930           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
931               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
932             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
933           } else
934             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
935         }
936 
937         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
938                                         LOffset, ROffset);
939         return replaceInstUsesWith(I, Cmp);
940       }
941 
942       // Otherwise, the base pointers are different and the indices are
943       // different. Try convert this to an indexed compare by looking through
944       // PHIs/casts.
945       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
946     }
947 
948     // If one of the GEPs has all zero indices, recurse.
949     // FIXME: Handle vector of pointers.
950     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
951       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
952                          ICmpInst::getSwappedPredicate(Cond), I);
953 
954     // If the other GEP has all zero indices, recurse.
955     // FIXME: Handle vector of pointers.
956     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
957       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
958 
959     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
960     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca,
1012                                              const Value *Other) {
1013   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1014 
1015   // It would be tempting to fold away comparisons between allocas and any
1016   // pointer not based on that alloca (e.g. an argument). However, even
1017   // though such pointers cannot alias, they can still compare equal.
1018   //
1019   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1020   // doesn't escape we can argue that it's impossible to guess its value, and we
1021   // can therefore act as if any such guesses are wrong.
1022   //
1023   // The code below checks that the alloca doesn't escape, and that it's only
1024   // used in a comparison once (the current instruction). The
1025   // single-comparison-use condition ensures that we're trivially folding all
1026   // comparisons against the alloca consistently, and avoids the risk of
1027   // erroneously folding a comparison of the pointer with itself.
1028 
1029   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1030 
1031   SmallVector<const Use *, 32> Worklist;
1032   for (const Use &U : Alloca->uses()) {
1033     if (Worklist.size() >= MaxIter)
1034       return nullptr;
1035     Worklist.push_back(&U);
1036   }
1037 
1038   unsigned NumCmps = 0;
1039   while (!Worklist.empty()) {
1040     assert(Worklist.size() <= MaxIter);
1041     const Use *U = Worklist.pop_back_val();
1042     const Value *V = U->getUser();
1043     --MaxIter;
1044 
1045     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1046         isa<SelectInst>(V)) {
1047       // Track the uses.
1048     } else if (isa<LoadInst>(V)) {
1049       // Loading from the pointer doesn't escape it.
1050       continue;
1051     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1052       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1053       if (SI->getValueOperand() == U->get())
1054         return nullptr;
1055       continue;
1056     } else if (isa<ICmpInst>(V)) {
1057       if (NumCmps++)
1058         return nullptr; // Found more than one cmp.
1059       continue;
1060     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1061       switch (Intrin->getIntrinsicID()) {
1062         // These intrinsics don't escape or compare the pointer. Memset is safe
1063         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1064         // we don't allow stores, so src cannot point to V.
1065         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1066         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1067           continue;
1068         default:
1069           return nullptr;
1070       }
1071     } else {
1072       return nullptr;
1073     }
1074     for (const Use &U : V->uses()) {
1075       if (Worklist.size() >= MaxIter)
1076         return nullptr;
1077       Worklist.push_back(&U);
1078     }
1079   }
1080 
1081   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1082   return replaceInstUsesWith(
1083       ICI,
1084       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1085 }
1086 
1087 /// Fold "icmp pred (X+C), X".
1088 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1089                                                   ICmpInst::Predicate Pred) {
1090   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1091   // so the values can never be equal.  Similarly for all other "or equals"
1092   // operators.
1093   assert(!!C && "C should not be zero!");
1094 
1095   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1096   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1097   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1098   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1099     Constant *R = ConstantInt::get(X->getType(),
1100                                    APInt::getMaxValue(C.getBitWidth()) - C);
1101     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1102   }
1103 
1104   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1105   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1106   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1107   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1108     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1109                         ConstantInt::get(X->getType(), -C));
1110 
1111   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1112 
1113   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1114   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1115   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1116   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1117   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1118   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1119   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1120     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1121                         ConstantInt::get(X->getType(), SMax - C));
1122 
1123   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1124   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1125   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1126   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1127   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1128   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1129 
1130   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1131   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1132                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1133 }
1134 
1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1136 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1138 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1139                                                      const APInt &AP1,
1140                                                      const APInt &AP2) {
1141   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1142 
1143   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1144     if (I.getPredicate() == I.ICMP_NE)
1145       Pred = CmpInst::getInversePredicate(Pred);
1146     return new ICmpInst(Pred, LHS, RHS);
1147   };
1148 
1149   // Don't bother doing any work for cases which InstSimplify handles.
1150   if (AP2.isZero())
1151     return nullptr;
1152 
1153   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1154   if (IsAShr) {
1155     if (AP2.isAllOnes())
1156       return nullptr;
1157     if (AP2.isNegative() != AP1.isNegative())
1158       return nullptr;
1159     if (AP2.sgt(AP1))
1160       return nullptr;
1161   }
1162 
1163   if (!AP1)
1164     // 'A' must be large enough to shift out the highest set bit.
1165     return getICmp(I.ICMP_UGT, A,
1166                    ConstantInt::get(A->getType(), AP2.logBase2()));
1167 
1168   if (AP1 == AP2)
1169     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1170 
1171   int Shift;
1172   if (IsAShr && AP1.isNegative())
1173     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1174   else
1175     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1176 
1177   if (Shift > 0) {
1178     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1179       // There are multiple solutions if we are comparing against -1 and the LHS
1180       // of the ashr is not a power of two.
1181       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1182         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     } else if (AP1 == AP2.lshr(Shift)) {
1185       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1186     }
1187   }
1188 
1189   // Shifting const2 will never be equal to const1.
1190   // FIXME: This should always be handled by InstSimplify?
1191   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1192   return replaceInstUsesWith(I, TorF);
1193 }
1194 
1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1197 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1198                                                      const APInt &AP1,
1199                                                      const APInt &AP2) {
1200   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1201 
1202   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1203     if (I.getPredicate() == I.ICMP_NE)
1204       Pred = CmpInst::getInversePredicate(Pred);
1205     return new ICmpInst(Pred, LHS, RHS);
1206   };
1207 
1208   // Don't bother doing any work for cases which InstSimplify handles.
1209   if (AP2.isZero())
1210     return nullptr;
1211 
1212   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1213 
1214   if (!AP1 && AP2TrailingZeros != 0)
1215     return getICmp(
1216         I.ICMP_UGE, A,
1217         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1218 
1219   if (AP1 == AP2)
1220     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1221 
1222   // Get the distance between the lowest bits that are set.
1223   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1224 
1225   if (Shift > 0 && AP2.shl(Shift) == AP1)
1226     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1227 
1228   // Shifting const2 will never be equal to const1.
1229   // FIXME: This should always be handled by InstSimplify?
1230   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1231   return replaceInstUsesWith(I, TorF);
1232 }
1233 
1234 /// The caller has matched a pattern of the form:
1235 ///   I = icmp ugt (add (add A, B), CI2), CI1
1236 /// If this is of the form:
1237 ///   sum = a + b
1238 ///   if (sum+128 >u 255)
1239 /// Then replace it with llvm.sadd.with.overflow.i8.
1240 ///
1241 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1242                                           ConstantInt *CI2, ConstantInt *CI1,
1243                                           InstCombinerImpl &IC) {
1244   // The transformation we're trying to do here is to transform this into an
1245   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1246   // with a narrower add, and discard the add-with-constant that is part of the
1247   // range check (if we can't eliminate it, this isn't profitable).
1248 
1249   // In order to eliminate the add-with-constant, the compare can be its only
1250   // use.
1251   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1252   if (!AddWithCst->hasOneUse())
1253     return nullptr;
1254 
1255   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1256   if (!CI2->getValue().isPowerOf2())
1257     return nullptr;
1258   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1259   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1260     return nullptr;
1261 
1262   // The width of the new add formed is 1 more than the bias.
1263   ++NewWidth;
1264 
1265   // Check to see that CI1 is an all-ones value with NewWidth bits.
1266   if (CI1->getBitWidth() == NewWidth ||
1267       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1268     return nullptr;
1269 
1270   // This is only really a signed overflow check if the inputs have been
1271   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1272   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1273   if (IC.ComputeMinSignedBits(A, 0, &I) > NewWidth ||
1274       IC.ComputeMinSignedBits(B, 0, &I) > NewWidth)
1275     return nullptr;
1276 
1277   // In order to replace the original add with a narrower
1278   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1279   // and truncates that discard the high bits of the add.  Verify that this is
1280   // the case.
1281   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1282   for (User *U : OrigAdd->users()) {
1283     if (U == AddWithCst)
1284       continue;
1285 
1286     // Only accept truncates for now.  We would really like a nice recursive
1287     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1288     // chain to see which bits of a value are actually demanded.  If the
1289     // original add had another add which was then immediately truncated, we
1290     // could still do the transformation.
1291     TruncInst *TI = dyn_cast<TruncInst>(U);
1292     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1293       return nullptr;
1294   }
1295 
1296   // If the pattern matches, truncate the inputs to the narrower type and
1297   // use the sadd_with_overflow intrinsic to efficiently compute both the
1298   // result and the overflow bit.
1299   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1300   Function *F = Intrinsic::getDeclaration(
1301       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1302 
1303   InstCombiner::BuilderTy &Builder = IC.Builder;
1304 
1305   // Put the new code above the original add, in case there are any uses of the
1306   // add between the add and the compare.
1307   Builder.SetInsertPoint(OrigAdd);
1308 
1309   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1310   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1311   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1312   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1313   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1314 
1315   // The inner add was the result of the narrow add, zero extended to the
1316   // wider type.  Replace it with the result computed by the intrinsic.
1317   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1318   IC.eraseInstFromFunction(*OrigAdd);
1319 
1320   // The original icmp gets replaced with the overflow value.
1321   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1322 }
1323 
1324 /// If we have:
1325 ///   icmp eq/ne (urem/srem %x, %y), 0
1326 /// iff %y is a power-of-two, we can replace this with a bit test:
1327 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1328 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1329   // This fold is only valid for equality predicates.
1330   if (!I.isEquality())
1331     return nullptr;
1332   ICmpInst::Predicate Pred;
1333   Value *X, *Y, *Zero;
1334   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1335                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1336     return nullptr;
1337   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1338     return nullptr;
1339   // This may increase instruction count, we don't enforce that Y is a constant.
1340   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1341   Value *Masked = Builder.CreateAnd(X, Mask);
1342   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1343 }
1344 
1345 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1346 /// by one-less-than-bitwidth into a sign test on the original value.
1347 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1348   Instruction *Val;
1349   ICmpInst::Predicate Pred;
1350   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1351     return nullptr;
1352 
1353   Value *X;
1354   Type *XTy;
1355 
1356   Constant *C;
1357   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1358     XTy = X->getType();
1359     unsigned XBitWidth = XTy->getScalarSizeInBits();
1360     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1361                                      APInt(XBitWidth, XBitWidth - 1))))
1362       return nullptr;
1363   } else if (isa<BinaryOperator>(Val) &&
1364              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1365                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1366                   /*AnalyzeForSignBitExtraction=*/true))) {
1367     XTy = X->getType();
1368   } else
1369     return nullptr;
1370 
1371   return ICmpInst::Create(Instruction::ICmp,
1372                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1373                                                     : ICmpInst::ICMP_SLT,
1374                           X, ConstantInt::getNullValue(XTy));
1375 }
1376 
1377 // Handle  icmp pred X, 0
1378 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1379   CmpInst::Predicate Pred = Cmp.getPredicate();
1380   if (!match(Cmp.getOperand(1), m_Zero()))
1381     return nullptr;
1382 
1383   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1384   if (Pred == ICmpInst::ICMP_SGT) {
1385     Value *A, *B;
1386     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1387     if (SPR.Flavor == SPF_SMIN) {
1388       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1389         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1390       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1391         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1392     }
1393   }
1394 
1395   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1396     return New;
1397 
1398   // Given:
1399   //   icmp eq/ne (urem %x, %y), 0
1400   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1401   //   icmp eq/ne %x, 0
1402   Value *X, *Y;
1403   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1404       ICmpInst::isEquality(Pred)) {
1405     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1406     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1407     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1408       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1409   }
1410 
1411   return nullptr;
1412 }
1413 
1414 /// Fold icmp Pred X, C.
1415 /// TODO: This code structure does not make sense. The saturating add fold
1416 /// should be moved to some other helper and extended as noted below (it is also
1417 /// possible that code has been made unnecessary - do we canonicalize IR to
1418 /// overflow/saturating intrinsics or not?).
1419 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1420   // Match the following pattern, which is a common idiom when writing
1421   // overflow-safe integer arithmetic functions. The source performs an addition
1422   // in wider type and explicitly checks for overflow using comparisons against
1423   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1424   //
1425   // TODO: This could probably be generalized to handle other overflow-safe
1426   // operations if we worked out the formulas to compute the appropriate magic
1427   // constants.
1428   //
1429   // sum = a + b
1430   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1431   CmpInst::Predicate Pred = Cmp.getPredicate();
1432   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1433   Value *A, *B;
1434   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1435   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1436       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1437     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1438       return Res;
1439 
1440   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1441   Constant *C = dyn_cast<Constant>(Op1);
1442   if (!C || C->canTrap())
1443     return nullptr;
1444 
1445   if (auto *Phi = dyn_cast<PHINode>(Op0))
1446     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1447       Type *Ty = Cmp.getType();
1448       Builder.SetInsertPoint(Phi);
1449       PHINode *NewPhi =
1450           Builder.CreatePHI(Ty, Phi->getNumOperands());
1451       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1452         auto *Input =
1453             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1454         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1455         NewPhi->addIncoming(BoolInput, Predecessor);
1456       }
1457       NewPhi->takeName(&Cmp);
1458       return replaceInstUsesWith(Cmp, NewPhi);
1459     }
1460 
1461   return nullptr;
1462 }
1463 
1464 /// Canonicalize icmp instructions based on dominating conditions.
1465 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1466   // This is a cheap/incomplete check for dominance - just match a single
1467   // predecessor with a conditional branch.
1468   BasicBlock *CmpBB = Cmp.getParent();
1469   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1470   if (!DomBB)
1471     return nullptr;
1472 
1473   Value *DomCond;
1474   BasicBlock *TrueBB, *FalseBB;
1475   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1476     return nullptr;
1477 
1478   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1479          "Predecessor block does not point to successor?");
1480 
1481   // The branch should get simplified. Don't bother simplifying this condition.
1482   if (TrueBB == FalseBB)
1483     return nullptr;
1484 
1485   // Try to simplify this compare to T/F based on the dominating condition.
1486   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1487   if (Imp)
1488     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1489 
1490   CmpInst::Predicate Pred = Cmp.getPredicate();
1491   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1492   ICmpInst::Predicate DomPred;
1493   const APInt *C, *DomC;
1494   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1495       match(Y, m_APInt(C))) {
1496     // We have 2 compares of a variable with constants. Calculate the constant
1497     // ranges of those compares to see if we can transform the 2nd compare:
1498     // DomBB:
1499     //   DomCond = icmp DomPred X, DomC
1500     //   br DomCond, CmpBB, FalseBB
1501     // CmpBB:
1502     //   Cmp = icmp Pred X, C
1503     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1504     ConstantRange DominatingCR =
1505         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1506                           : ConstantRange::makeExactICmpRegion(
1507                                 CmpInst::getInversePredicate(DomPred), *DomC);
1508     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1509     ConstantRange Difference = DominatingCR.difference(CR);
1510     if (Intersection.isEmptySet())
1511       return replaceInstUsesWith(Cmp, Builder.getFalse());
1512     if (Difference.isEmptySet())
1513       return replaceInstUsesWith(Cmp, Builder.getTrue());
1514 
1515     // Canonicalizing a sign bit comparison that gets used in a branch,
1516     // pessimizes codegen by generating branch on zero instruction instead
1517     // of a test and branch. So we avoid canonicalizing in such situations
1518     // because test and branch instruction has better branch displacement
1519     // than compare and branch instruction.
1520     bool UnusedBit;
1521     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1522     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1523       return nullptr;
1524 
1525     // Avoid an infinite loop with min/max canonicalization.
1526     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1527     if (Cmp.hasOneUse() &&
1528         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1529       return nullptr;
1530 
1531     if (const APInt *EqC = Intersection.getSingleElement())
1532       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1533     if (const APInt *NeC = Difference.getSingleElement())
1534       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1535   }
1536 
1537   return nullptr;
1538 }
1539 
1540 /// Fold icmp (trunc X, Y), C.
1541 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1542                                                      TruncInst *Trunc,
1543                                                      const APInt &C) {
1544   ICmpInst::Predicate Pred = Cmp.getPredicate();
1545   Value *X = Trunc->getOperand(0);
1546   if (C.isOne() && C.getBitWidth() > 1) {
1547     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1548     Value *V = nullptr;
1549     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1550       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1551                           ConstantInt::get(V->getType(), 1));
1552   }
1553 
1554   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1555            SrcBits = X->getType()->getScalarSizeInBits();
1556   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1557     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1558     // of the high bits truncated out of x are known.
1559     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1560 
1561     // If all the high bits are known, we can do this xform.
1562     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1563       // Pull in the high bits from known-ones set.
1564       APInt NewRHS = C.zext(SrcBits);
1565       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1566       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1567     }
1568   }
1569 
1570   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1571   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1572   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1573   Value *ShOp;
1574   const APInt *ShAmtC;
1575   bool TrueIfSigned;
1576   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1577       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1578       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1579     return TrueIfSigned
1580                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1581                               ConstantInt::getNullValue(X->getType()))
1582                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1583                               ConstantInt::getAllOnesValue(X->getType()));
1584   }
1585 
1586   return nullptr;
1587 }
1588 
1589 /// Fold icmp (xor X, Y), C.
1590 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1591                                                    BinaryOperator *Xor,
1592                                                    const APInt &C) {
1593   Value *X = Xor->getOperand(0);
1594   Value *Y = Xor->getOperand(1);
1595   const APInt *XorC;
1596   if (!match(Y, m_APInt(XorC)))
1597     return nullptr;
1598 
1599   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1600   // fold the xor.
1601   ICmpInst::Predicate Pred = Cmp.getPredicate();
1602   bool TrueIfSigned = false;
1603   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1604 
1605     // If the sign bit of the XorCst is not set, there is no change to
1606     // the operation, just stop using the Xor.
1607     if (!XorC->isNegative())
1608       return replaceOperand(Cmp, 0, X);
1609 
1610     // Emit the opposite comparison.
1611     if (TrueIfSigned)
1612       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1613                           ConstantInt::getAllOnesValue(X->getType()));
1614     else
1615       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1616                           ConstantInt::getNullValue(X->getType()));
1617   }
1618 
1619   if (Xor->hasOneUse()) {
1620     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1621     if (!Cmp.isEquality() && XorC->isSignMask()) {
1622       Pred = Cmp.getFlippedSignednessPredicate();
1623       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1624     }
1625 
1626     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1627     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1628       Pred = Cmp.getFlippedSignednessPredicate();
1629       Pred = Cmp.getSwappedPredicate(Pred);
1630       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1631     }
1632   }
1633 
1634   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1635   if (Pred == ICmpInst::ICMP_UGT) {
1636     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1637     if (*XorC == ~C && (C + 1).isPowerOf2())
1638       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1639     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1640     if (*XorC == C && (C + 1).isPowerOf2())
1641       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1642   }
1643   if (Pred == ICmpInst::ICMP_ULT) {
1644     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1645     if (*XorC == -C && C.isPowerOf2())
1646       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1647                           ConstantInt::get(X->getType(), ~C));
1648     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1649     if (*XorC == C && (-C).isPowerOf2())
1650       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1651                           ConstantInt::get(X->getType(), ~C));
1652   }
1653   return nullptr;
1654 }
1655 
1656 /// Fold icmp (and (sh X, Y), C2), C1.
1657 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1658                                                 BinaryOperator *And,
1659                                                 const APInt &C1,
1660                                                 const APInt &C2) {
1661   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1662   if (!Shift || !Shift->isShift())
1663     return nullptr;
1664 
1665   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1666   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1667   // code produced by the clang front-end, for bitfield access.
1668   // This seemingly simple opportunity to fold away a shift turns out to be
1669   // rather complicated. See PR17827 for details.
1670   unsigned ShiftOpcode = Shift->getOpcode();
1671   bool IsShl = ShiftOpcode == Instruction::Shl;
1672   const APInt *C3;
1673   if (match(Shift->getOperand(1), m_APInt(C3))) {
1674     APInt NewAndCst, NewCmpCst;
1675     bool AnyCmpCstBitsShiftedOut;
1676     if (ShiftOpcode == Instruction::Shl) {
1677       // For a left shift, we can fold if the comparison is not signed. We can
1678       // also fold a signed comparison if the mask value and comparison value
1679       // are not negative. These constraints may not be obvious, but we can
1680       // prove that they are correct using an SMT solver.
1681       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1682         return nullptr;
1683 
1684       NewCmpCst = C1.lshr(*C3);
1685       NewAndCst = C2.lshr(*C3);
1686       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1687     } else if (ShiftOpcode == Instruction::LShr) {
1688       // For a logical right shift, we can fold if the comparison is not signed.
1689       // We can also fold a signed comparison if the shifted mask value and the
1690       // shifted comparison value are not negative. These constraints may not be
1691       // obvious, but we can prove that they are correct using an SMT solver.
1692       NewCmpCst = C1.shl(*C3);
1693       NewAndCst = C2.shl(*C3);
1694       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1695       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1696         return nullptr;
1697     } else {
1698       // For an arithmetic shift, check that both constants don't use (in a
1699       // signed sense) the top bits being shifted out.
1700       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1701       NewCmpCst = C1.shl(*C3);
1702       NewAndCst = C2.shl(*C3);
1703       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1704       if (NewAndCst.ashr(*C3) != C2)
1705         return nullptr;
1706     }
1707 
1708     if (AnyCmpCstBitsShiftedOut) {
1709       // If we shifted bits out, the fold is not going to work out. As a
1710       // special case, check to see if this means that the result is always
1711       // true or false now.
1712       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1713         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1714       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1715         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1716     } else {
1717       Value *NewAnd = Builder.CreateAnd(
1718           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1719       return new ICmpInst(Cmp.getPredicate(),
1720           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1721     }
1722   }
1723 
1724   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1725   // preferable because it allows the C2 << Y expression to be hoisted out of a
1726   // loop if Y is invariant and X is not.
1727   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1728       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1729     // Compute C2 << Y.
1730     Value *NewShift =
1731         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1732               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1733 
1734     // Compute X & (C2 << Y).
1735     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1736     return replaceOperand(Cmp, 0, NewAnd);
1737   }
1738 
1739   return nullptr;
1740 }
1741 
1742 /// Fold icmp (and X, C2), C1.
1743 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1744                                                      BinaryOperator *And,
1745                                                      const APInt &C1) {
1746   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1747 
1748   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1749   // TODO: We canonicalize to the longer form for scalars because we have
1750   // better analysis/folds for icmp, and codegen may be better with icmp.
1751   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1752       match(And->getOperand(1), m_One()))
1753     return new TruncInst(And->getOperand(0), Cmp.getType());
1754 
1755   const APInt *C2;
1756   Value *X;
1757   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1758     return nullptr;
1759 
1760   // Don't perform the following transforms if the AND has multiple uses
1761   if (!And->hasOneUse())
1762     return nullptr;
1763 
1764   if (Cmp.isEquality() && C1.isZero()) {
1765     // Restrict this fold to single-use 'and' (PR10267).
1766     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1767     if (C2->isSignMask()) {
1768       Constant *Zero = Constant::getNullValue(X->getType());
1769       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1770       return new ICmpInst(NewPred, X, Zero);
1771     }
1772 
1773     // Restrict this fold only for single-use 'and' (PR10267).
1774     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1775     if ((~(*C2) + 1).isPowerOf2()) {
1776       Constant *NegBOC =
1777           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1778       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1779       return new ICmpInst(NewPred, X, NegBOC);
1780     }
1781   }
1782 
1783   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1784   // the input width without changing the value produced, eliminate the cast:
1785   //
1786   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1787   //
1788   // We can do this transformation if the constants do not have their sign bits
1789   // set or if it is an equality comparison. Extending a relational comparison
1790   // when we're checking the sign bit would not work.
1791   Value *W;
1792   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1793       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1794     // TODO: Is this a good transform for vectors? Wider types may reduce
1795     // throughput. Should this transform be limited (even for scalars) by using
1796     // shouldChangeType()?
1797     if (!Cmp.getType()->isVectorTy()) {
1798       Type *WideType = W->getType();
1799       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1800       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1801       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1802       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1803       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1804     }
1805   }
1806 
1807   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1808     return I;
1809 
1810   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1811   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1812   //
1813   // iff pred isn't signed
1814   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1815       match(And->getOperand(1), m_One())) {
1816     Constant *One = cast<Constant>(And->getOperand(1));
1817     Value *Or = And->getOperand(0);
1818     Value *A, *B, *LShr;
1819     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1820         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1821       unsigned UsesRemoved = 0;
1822       if (And->hasOneUse())
1823         ++UsesRemoved;
1824       if (Or->hasOneUse())
1825         ++UsesRemoved;
1826       if (LShr->hasOneUse())
1827         ++UsesRemoved;
1828 
1829       // Compute A & ((1 << B) | 1)
1830       Value *NewOr = nullptr;
1831       if (auto *C = dyn_cast<Constant>(B)) {
1832         if (UsesRemoved >= 1)
1833           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1834       } else {
1835         if (UsesRemoved >= 3)
1836           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1837                                                      /*HasNUW=*/true),
1838                                    One, Or->getName());
1839       }
1840       if (NewOr) {
1841         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1842         return replaceOperand(Cmp, 0, NewAnd);
1843       }
1844     }
1845   }
1846 
1847   return nullptr;
1848 }
1849 
1850 /// Fold icmp (and X, Y), C.
1851 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1852                                                    BinaryOperator *And,
1853                                                    const APInt &C) {
1854   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1855     return I;
1856 
1857   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1858   bool TrueIfNeg;
1859   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1860     // ((X - 1) & ~X) <  0 --> X == 0
1861     // ((X - 1) & ~X) >= 0 --> X != 0
1862     Value *X;
1863     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1864         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1865       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1866       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1867     }
1868   }
1869 
1870   // TODO: These all require that Y is constant too, so refactor with the above.
1871 
1872   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1873   Value *X = And->getOperand(0);
1874   Value *Y = And->getOperand(1);
1875   if (auto *LI = dyn_cast<LoadInst>(X))
1876     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1877       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1878         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1879             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1880           ConstantInt *C2 = cast<ConstantInt>(Y);
1881           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1882             return Res;
1883         }
1884 
1885   if (!Cmp.isEquality())
1886     return nullptr;
1887 
1888   // X & -C == -C -> X >  u ~C
1889   // X & -C != -C -> X <= u ~C
1890   //   iff C is a power of 2
1891   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1892     auto NewPred =
1893         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1894     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1895   }
1896 
1897   // (X & C2) == 0 -> (trunc X) >= 0
1898   // (X & C2) != 0 -> (trunc X) <  0
1899   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1900   const APInt *C2;
1901   if (And->hasOneUse() && C.isZero() && match(Y, m_APInt(C2))) {
1902     int32_t ExactLogBase2 = C2->exactLogBase2();
1903     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1904       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1905       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1906         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1907       Value *Trunc = Builder.CreateTrunc(X, NTy);
1908       auto NewPred =
1909           Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT;
1910       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1911     }
1912   }
1913 
1914   return nullptr;
1915 }
1916 
1917 /// Fold icmp (or X, Y), C.
1918 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1919                                                   BinaryOperator *Or,
1920                                                   const APInt &C) {
1921   ICmpInst::Predicate Pred = Cmp.getPredicate();
1922   if (C.isOne()) {
1923     // icmp slt signum(V) 1 --> icmp slt V, 1
1924     Value *V = nullptr;
1925     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1926       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1927                           ConstantInt::get(V->getType(), 1));
1928   }
1929 
1930   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1931   const APInt *MaskC;
1932   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1933     if (*MaskC == C && (C + 1).isPowerOf2()) {
1934       // X | C == C --> X <=u C
1935       // X | C != C --> X  >u C
1936       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1937       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1938       return new ICmpInst(Pred, OrOp0, OrOp1);
1939     }
1940 
1941     // More general: canonicalize 'equality with set bits mask' to
1942     // 'equality with clear bits mask'.
1943     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1944     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1945     if (Or->hasOneUse()) {
1946       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1947       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1948       return new ICmpInst(Pred, And, NewC);
1949     }
1950   }
1951 
1952   // (X | (X-1)) s<  0 --> X s< 1
1953   // (X | (X-1)) s> -1 --> X s> 0
1954   Value *X;
1955   bool TrueIfSigned;
1956   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1957       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1958     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1959     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1960     return new ICmpInst(NewPred, X, NewC);
1961   }
1962 
1963   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1964     return nullptr;
1965 
1966   Value *P, *Q;
1967   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1968     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1969     // -> and (icmp eq P, null), (icmp eq Q, null).
1970     Value *CmpP =
1971         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1972     Value *CmpQ =
1973         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1974     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1975     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1976   }
1977 
1978   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1979   // a shorter form that has more potential to be folded even further.
1980   Value *X1, *X2, *X3, *X4;
1981   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1982       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1983     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1984     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1985     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1986     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1987     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1988     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1989   }
1990 
1991   return nullptr;
1992 }
1993 
1994 /// Fold icmp (mul X, Y), C.
1995 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1996                                                    BinaryOperator *Mul,
1997                                                    const APInt &C) {
1998   const APInt *MulC;
1999   if (!match(Mul->getOperand(1), m_APInt(MulC)))
2000     return nullptr;
2001 
2002   // If this is a test of the sign bit and the multiply is sign-preserving with
2003   // a constant operand, use the multiply LHS operand instead.
2004   ICmpInst::Predicate Pred = Cmp.getPredicate();
2005   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
2006     if (MulC->isNegative())
2007       Pred = ICmpInst::getSwappedPredicate(Pred);
2008     return new ICmpInst(Pred, Mul->getOperand(0),
2009                         Constant::getNullValue(Mul->getType()));
2010   }
2011 
2012   // If the multiply does not wrap, try to divide the compare constant by the
2013   // multiplication factor.
2014   if (Cmp.isEquality() && !MulC->isZero()) {
2015     // (mul nsw X, MulC) == C --> X == C /s MulC
2016     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2017       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2018       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2019     }
2020     // (mul nuw X, MulC) == C --> X == C /u MulC
2021     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
2022       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2023       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2024     }
2025   }
2026 
2027   return nullptr;
2028 }
2029 
2030 /// Fold icmp (shl 1, Y), C.
2031 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2032                                    const APInt &C) {
2033   Value *Y;
2034   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2035     return nullptr;
2036 
2037   Type *ShiftType = Shl->getType();
2038   unsigned TypeBits = C.getBitWidth();
2039   bool CIsPowerOf2 = C.isPowerOf2();
2040   ICmpInst::Predicate Pred = Cmp.getPredicate();
2041   if (Cmp.isUnsigned()) {
2042     // (1 << Y) pred C -> Y pred Log2(C)
2043     if (!CIsPowerOf2) {
2044       // (1 << Y) <  30 -> Y <= 4
2045       // (1 << Y) <= 30 -> Y <= 4
2046       // (1 << Y) >= 30 -> Y >  4
2047       // (1 << Y) >  30 -> Y >  4
2048       if (Pred == ICmpInst::ICMP_ULT)
2049         Pred = ICmpInst::ICMP_ULE;
2050       else if (Pred == ICmpInst::ICMP_UGE)
2051         Pred = ICmpInst::ICMP_UGT;
2052     }
2053 
2054     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2055     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2056     unsigned CLog2 = C.logBase2();
2057     if (CLog2 == TypeBits - 1) {
2058       if (Pred == ICmpInst::ICMP_UGE)
2059         Pred = ICmpInst::ICMP_EQ;
2060       else if (Pred == ICmpInst::ICMP_ULT)
2061         Pred = ICmpInst::ICMP_NE;
2062     }
2063     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2064   } else if (Cmp.isSigned()) {
2065     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2066     if (C.isAllOnes()) {
2067       // (1 << Y) <= -1 -> Y == 31
2068       if (Pred == ICmpInst::ICMP_SLE)
2069         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2070 
2071       // (1 << Y) >  -1 -> Y != 31
2072       if (Pred == ICmpInst::ICMP_SGT)
2073         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2074     } else if (!C) {
2075       // (1 << Y) <  0 -> Y == 31
2076       // (1 << Y) <= 0 -> Y == 31
2077       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2078         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2079 
2080       // (1 << Y) >= 0 -> Y != 31
2081       // (1 << Y) >  0 -> Y != 31
2082       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2083         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2084     }
2085   } else if (Cmp.isEquality() && CIsPowerOf2) {
2086     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2087   }
2088 
2089   return nullptr;
2090 }
2091 
2092 /// Fold icmp (shl X, Y), C.
2093 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2094                                                    BinaryOperator *Shl,
2095                                                    const APInt &C) {
2096   const APInt *ShiftVal;
2097   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2098     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2099 
2100   const APInt *ShiftAmt;
2101   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2102     return foldICmpShlOne(Cmp, Shl, C);
2103 
2104   // Check that the shift amount is in range. If not, don't perform undefined
2105   // shifts. When the shift is visited, it will be simplified.
2106   unsigned TypeBits = C.getBitWidth();
2107   if (ShiftAmt->uge(TypeBits))
2108     return nullptr;
2109 
2110   ICmpInst::Predicate Pred = Cmp.getPredicate();
2111   Value *X = Shl->getOperand(0);
2112   Type *ShType = Shl->getType();
2113 
2114   // NSW guarantees that we are only shifting out sign bits from the high bits,
2115   // so we can ASHR the compare constant without needing a mask and eliminate
2116   // the shift.
2117   if (Shl->hasNoSignedWrap()) {
2118     if (Pred == ICmpInst::ICMP_SGT) {
2119       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2120       APInt ShiftedC = C.ashr(*ShiftAmt);
2121       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2122     }
2123     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2124         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2125       APInt ShiftedC = C.ashr(*ShiftAmt);
2126       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2127     }
2128     if (Pred == ICmpInst::ICMP_SLT) {
2129       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2130       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2131       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2132       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2133       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2134       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2135       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2136     }
2137     // If this is a signed comparison to 0 and the shift is sign preserving,
2138     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2139     // do that if we're sure to not continue on in this function.
2140     if (isSignTest(Pred, C))
2141       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2142   }
2143 
2144   // NUW guarantees that we are only shifting out zero bits from the high bits,
2145   // so we can LSHR the compare constant without needing a mask and eliminate
2146   // the shift.
2147   if (Shl->hasNoUnsignedWrap()) {
2148     if (Pred == ICmpInst::ICMP_UGT) {
2149       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2150       APInt ShiftedC = C.lshr(*ShiftAmt);
2151       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2152     }
2153     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2154         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2155       APInt ShiftedC = C.lshr(*ShiftAmt);
2156       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2157     }
2158     if (Pred == ICmpInst::ICMP_ULT) {
2159       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2160       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2161       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2162       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2163       assert(C.ugt(0) && "ult 0 should have been eliminated");
2164       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2165       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2166     }
2167   }
2168 
2169   if (Cmp.isEquality() && Shl->hasOneUse()) {
2170     // Strength-reduce the shift into an 'and'.
2171     Constant *Mask = ConstantInt::get(
2172         ShType,
2173         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2174     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2175     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2176     return new ICmpInst(Pred, And, LShrC);
2177   }
2178 
2179   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2180   bool TrueIfSigned = false;
2181   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2182     // (X << 31) <s 0  --> (X & 1) != 0
2183     Constant *Mask = ConstantInt::get(
2184         ShType,
2185         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2186     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2187     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2188                         And, Constant::getNullValue(ShType));
2189   }
2190 
2191   // Simplify 'shl' inequality test into 'and' equality test.
2192   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2193     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2194     if ((C + 1).isPowerOf2() &&
2195         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2196       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2197       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2198                                                      : ICmpInst::ICMP_NE,
2199                           And, Constant::getNullValue(ShType));
2200     }
2201     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2202     if (C.isPowerOf2() &&
2203         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2204       Value *And =
2205           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2206       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2207                                                      : ICmpInst::ICMP_NE,
2208                           And, Constant::getNullValue(ShType));
2209     }
2210   }
2211 
2212   // Transform (icmp pred iM (shl iM %v, N), C)
2213   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2214   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2215   // This enables us to get rid of the shift in favor of a trunc that may be
2216   // free on the target. It has the additional benefit of comparing to a
2217   // smaller constant that may be more target-friendly.
2218   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2219   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2220       DL.isLegalInteger(TypeBits - Amt)) {
2221     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2222     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2223       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2224     Constant *NewC =
2225         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2226     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2227   }
2228 
2229   return nullptr;
2230 }
2231 
2232 /// Fold icmp ({al}shr X, Y), C.
2233 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2234                                                    BinaryOperator *Shr,
2235                                                    const APInt &C) {
2236   // An exact shr only shifts out zero bits, so:
2237   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2238   Value *X = Shr->getOperand(0);
2239   CmpInst::Predicate Pred = Cmp.getPredicate();
2240   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isZero())
2241     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2242 
2243   const APInt *ShiftVal;
2244   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2245     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2246 
2247   const APInt *ShiftAmt;
2248   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2249     return nullptr;
2250 
2251   // Check that the shift amount is in range. If not, don't perform undefined
2252   // shifts. When the shift is visited it will be simplified.
2253   unsigned TypeBits = C.getBitWidth();
2254   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2255   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2256     return nullptr;
2257 
2258   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2259   bool IsExact = Shr->isExact();
2260   Type *ShrTy = Shr->getType();
2261   // TODO: If we could guarantee that InstSimplify would handle all of the
2262   // constant-value-based preconditions in the folds below, then we could assert
2263   // those conditions rather than checking them. This is difficult because of
2264   // undef/poison (PR34838).
2265   if (IsAShr) {
2266     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2267       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2268       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2269       APInt ShiftedC = C.shl(ShAmtVal);
2270       if (ShiftedC.ashr(ShAmtVal) == C)
2271         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2272     }
2273     if (Pred == CmpInst::ICMP_SGT) {
2274       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2275       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2276       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2277           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2278         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2279     }
2280 
2281     // If the compare constant has significant bits above the lowest sign-bit,
2282     // then convert an unsigned cmp to a test of the sign-bit:
2283     // (ashr X, ShiftC) u> C --> X s< 0
2284     // (ashr X, ShiftC) u< C --> X s> -1
2285     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2286       if (Pred == CmpInst::ICMP_UGT) {
2287         return new ICmpInst(CmpInst::ICMP_SLT, X,
2288                             ConstantInt::getNullValue(ShrTy));
2289       }
2290       if (Pred == CmpInst::ICMP_ULT) {
2291         return new ICmpInst(CmpInst::ICMP_SGT, X,
2292                             ConstantInt::getAllOnesValue(ShrTy));
2293       }
2294     }
2295   } else {
2296     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2297       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2298       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2299       APInt ShiftedC = C.shl(ShAmtVal);
2300       if (ShiftedC.lshr(ShAmtVal) == C)
2301         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2302     }
2303     if (Pred == CmpInst::ICMP_UGT) {
2304       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2305       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2306       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2307         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2308     }
2309   }
2310 
2311   if (!Cmp.isEquality())
2312     return nullptr;
2313 
2314   // Handle equality comparisons of shift-by-constant.
2315 
2316   // If the comparison constant changes with the shift, the comparison cannot
2317   // succeed (bits of the comparison constant cannot match the shifted value).
2318   // This should be known by InstSimplify and already be folded to true/false.
2319   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2320           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2321          "Expected icmp+shr simplify did not occur.");
2322 
2323   // If the bits shifted out are known zero, compare the unshifted value:
2324   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2325   if (Shr->isExact())
2326     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2327 
2328   if (C.isZero()) {
2329     // == 0 is u< 1.
2330     if (Pred == CmpInst::ICMP_EQ)
2331       return new ICmpInst(CmpInst::ICMP_ULT, X,
2332                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2333     else
2334       return new ICmpInst(CmpInst::ICMP_UGT, X,
2335                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2336   }
2337 
2338   if (Shr->hasOneUse()) {
2339     // Canonicalize the shift into an 'and':
2340     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2341     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2342     Constant *Mask = ConstantInt::get(ShrTy, Val);
2343     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2344     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2345   }
2346 
2347   return nullptr;
2348 }
2349 
2350 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2351                                                     BinaryOperator *SRem,
2352                                                     const APInt &C) {
2353   // Match an 'is positive' or 'is negative' comparison of remainder by a
2354   // constant power-of-2 value:
2355   // (X % pow2C) sgt/slt 0
2356   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2357   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2358     return nullptr;
2359 
2360   // TODO: The one-use check is standard because we do not typically want to
2361   //       create longer instruction sequences, but this might be a special-case
2362   //       because srem is not good for analysis or codegen.
2363   if (!SRem->hasOneUse())
2364     return nullptr;
2365 
2366   const APInt *DivisorC;
2367   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2368     return nullptr;
2369 
2370   // Mask off the sign bit and the modulo bits (low-bits).
2371   Type *Ty = SRem->getType();
2372   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2373   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2374   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2375 
2376   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2377   // bit is set. Example:
2378   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2379   if (Pred == ICmpInst::ICMP_SGT)
2380     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2381 
2382   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2383   // bit is set. Example:
2384   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2385   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2386 }
2387 
2388 /// Fold icmp (udiv X, Y), C.
2389 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2390                                                     BinaryOperator *UDiv,
2391                                                     const APInt &C) {
2392   const APInt *C2;
2393   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2394     return nullptr;
2395 
2396   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2397 
2398   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2399   Value *Y = UDiv->getOperand(1);
2400   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2401     assert(!C.isMaxValue() &&
2402            "icmp ugt X, UINT_MAX should have been simplified already.");
2403     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2404                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2405   }
2406 
2407   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2408   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2409     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2410     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2411                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2412   }
2413 
2414   return nullptr;
2415 }
2416 
2417 /// Fold icmp ({su}div X, Y), C.
2418 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2419                                                    BinaryOperator *Div,
2420                                                    const APInt &C) {
2421   // Fold: icmp pred ([us]div X, C2), C -> range test
2422   // Fold this div into the comparison, producing a range check.
2423   // Determine, based on the divide type, what the range is being
2424   // checked.  If there is an overflow on the low or high side, remember
2425   // it, otherwise compute the range [low, hi) bounding the new value.
2426   // See: InsertRangeTest above for the kinds of replacements possible.
2427   const APInt *C2;
2428   if (!match(Div->getOperand(1), m_APInt(C2)))
2429     return nullptr;
2430 
2431   // FIXME: If the operand types don't match the type of the divide
2432   // then don't attempt this transform. The code below doesn't have the
2433   // logic to deal with a signed divide and an unsigned compare (and
2434   // vice versa). This is because (x /s C2) <s C  produces different
2435   // results than (x /s C2) <u C or (x /u C2) <s C or even
2436   // (x /u C2) <u C.  Simply casting the operands and result won't
2437   // work. :(  The if statement below tests that condition and bails
2438   // if it finds it.
2439   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2440   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2441     return nullptr;
2442 
2443   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2444   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2445   // division-by-constant cases should be present, we can not assert that they
2446   // have happened before we reach this icmp instruction.
2447   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2448     return nullptr;
2449 
2450   // Compute Prod = C * C2. We are essentially solving an equation of
2451   // form X / C2 = C. We solve for X by multiplying C2 and C.
2452   // By solving for X, we can turn this into a range check instead of computing
2453   // a divide.
2454   APInt Prod = C * *C2;
2455 
2456   // Determine if the product overflows by seeing if the product is not equal to
2457   // the divide. Make sure we do the same kind of divide as in the LHS
2458   // instruction that we're folding.
2459   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2460 
2461   ICmpInst::Predicate Pred = Cmp.getPredicate();
2462 
2463   // If the division is known to be exact, then there is no remainder from the
2464   // divide, so the covered range size is unit, otherwise it is the divisor.
2465   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2466 
2467   // Figure out the interval that is being checked.  For example, a comparison
2468   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2469   // Compute this interval based on the constants involved and the signedness of
2470   // the compare/divide.  This computes a half-open interval, keeping track of
2471   // whether either value in the interval overflows.  After analysis each
2472   // overflow variable is set to 0 if it's corresponding bound variable is valid
2473   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2474   int LoOverflow = 0, HiOverflow = 0;
2475   APInt LoBound, HiBound;
2476 
2477   if (!DivIsSigned) {  // udiv
2478     // e.g. X/5 op 3  --> [15, 20)
2479     LoBound = Prod;
2480     HiOverflow = LoOverflow = ProdOV;
2481     if (!HiOverflow) {
2482       // If this is not an exact divide, then many values in the range collapse
2483       // to the same result value.
2484       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2485     }
2486   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2487     if (C.isZero()) {                    // (X / pos) op 0
2488       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2489       LoBound = -(RangeSize - 1);
2490       HiBound = RangeSize;
2491     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2492       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2493       HiOverflow = LoOverflow = ProdOV;
2494       if (!HiOverflow)
2495         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2496     } else { // (X / pos) op neg
2497       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2498       HiBound = Prod + 1;
2499       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2500       if (!LoOverflow) {
2501         APInt DivNeg = -RangeSize;
2502         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2503       }
2504     }
2505   } else if (C2->isNegative()) { // Divisor is < 0.
2506     if (Div->isExact())
2507       RangeSize.negate();
2508     if (C.isZero()) { // (X / neg) op 0
2509       // e.g. X/-5 op 0  --> [-4, 5)
2510       LoBound = RangeSize + 1;
2511       HiBound = -RangeSize;
2512       if (HiBound == *C2) {        // -INTMIN = INTMIN
2513         HiOverflow = 1;            // [INTMIN+1, overflow)
2514         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2515       }
2516     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2517       // e.g. X/-5 op 3  --> [-19, -14)
2518       HiBound = Prod + 1;
2519       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2520       if (!LoOverflow)
2521         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2522     } else {                // (X / neg) op neg
2523       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2524       LoOverflow = HiOverflow = ProdOV;
2525       if (!HiOverflow)
2526         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2527     }
2528 
2529     // Dividing by a negative swaps the condition.  LT <-> GT
2530     Pred = ICmpInst::getSwappedPredicate(Pred);
2531   }
2532 
2533   Value *X = Div->getOperand(0);
2534   switch (Pred) {
2535     default: llvm_unreachable("Unhandled icmp opcode!");
2536     case ICmpInst::ICMP_EQ:
2537       if (LoOverflow && HiOverflow)
2538         return replaceInstUsesWith(Cmp, Builder.getFalse());
2539       if (HiOverflow)
2540         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2541                             ICmpInst::ICMP_UGE, X,
2542                             ConstantInt::get(Div->getType(), LoBound));
2543       if (LoOverflow)
2544         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2545                             ICmpInst::ICMP_ULT, X,
2546                             ConstantInt::get(Div->getType(), HiBound));
2547       return replaceInstUsesWith(
2548           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2549     case ICmpInst::ICMP_NE:
2550       if (LoOverflow && HiOverflow)
2551         return replaceInstUsesWith(Cmp, Builder.getTrue());
2552       if (HiOverflow)
2553         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2554                             ICmpInst::ICMP_ULT, X,
2555                             ConstantInt::get(Div->getType(), LoBound));
2556       if (LoOverflow)
2557         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2558                             ICmpInst::ICMP_UGE, X,
2559                             ConstantInt::get(Div->getType(), HiBound));
2560       return replaceInstUsesWith(Cmp,
2561                                  insertRangeTest(X, LoBound, HiBound,
2562                                                  DivIsSigned, false));
2563     case ICmpInst::ICMP_ULT:
2564     case ICmpInst::ICMP_SLT:
2565       if (LoOverflow == +1)   // Low bound is greater than input range.
2566         return replaceInstUsesWith(Cmp, Builder.getTrue());
2567       if (LoOverflow == -1)   // Low bound is less than input range.
2568         return replaceInstUsesWith(Cmp, Builder.getFalse());
2569       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2570     case ICmpInst::ICMP_UGT:
2571     case ICmpInst::ICMP_SGT:
2572       if (HiOverflow == +1)       // High bound greater than input range.
2573         return replaceInstUsesWith(Cmp, Builder.getFalse());
2574       if (HiOverflow == -1)       // High bound less than input range.
2575         return replaceInstUsesWith(Cmp, Builder.getTrue());
2576       if (Pred == ICmpInst::ICMP_UGT)
2577         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2578                             ConstantInt::get(Div->getType(), HiBound));
2579       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2580                           ConstantInt::get(Div->getType(), HiBound));
2581   }
2582 
2583   return nullptr;
2584 }
2585 
2586 /// Fold icmp (sub X, Y), C.
2587 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2588                                                    BinaryOperator *Sub,
2589                                                    const APInt &C) {
2590   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2591   ICmpInst::Predicate Pred = Cmp.getPredicate();
2592   Type *Ty = Sub->getType();
2593 
2594   // (SubC - Y) == C) --> Y == (SubC - C)
2595   // (SubC - Y) != C) --> Y != (SubC - C)
2596   Constant *SubC;
2597   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2598     return new ICmpInst(Pred, Y,
2599                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2600   }
2601 
2602   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2603   const APInt *C2;
2604   APInt SubResult;
2605   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2606   bool HasNSW = Sub->hasNoSignedWrap();
2607   bool HasNUW = Sub->hasNoUnsignedWrap();
2608   if (match(X, m_APInt(C2)) &&
2609       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2610       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2611     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2612 
2613   // The following transforms are only worth it if the only user of the subtract
2614   // is the icmp.
2615   // TODO: This is an artificial restriction for all of the transforms below
2616   //       that only need a single replacement icmp.
2617   if (!Sub->hasOneUse())
2618     return nullptr;
2619 
2620   // X - Y == 0 --> X == Y.
2621   // X - Y != 0 --> X != Y.
2622   if (Cmp.isEquality() && C.isZero())
2623     return new ICmpInst(Pred, X, Y);
2624 
2625   if (Sub->hasNoSignedWrap()) {
2626     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2627     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2628       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2629 
2630     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2631     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2632       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2633 
2634     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2635     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2636       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2637 
2638     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2639     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2640       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2641   }
2642 
2643   if (!match(X, m_APInt(C2)))
2644     return nullptr;
2645 
2646   // C2 - Y <u C -> (Y | (C - 1)) == C2
2647   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2648   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2649       (*C2 & (C - 1)) == (C - 1))
2650     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2651 
2652   // C2 - Y >u C -> (Y | C) != C2
2653   //   iff C2 & C == C and C + 1 is a power of 2
2654   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2655     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2656 
2657   // We have handled special cases that reduce.
2658   // Canonicalize any remaining sub to add as:
2659   // (C2 - Y) > C --> (Y + ~C2) < ~C
2660   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2661                                  HasNUW, HasNSW);
2662   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2663 }
2664 
2665 /// Fold icmp (add X, Y), C.
2666 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2667                                                    BinaryOperator *Add,
2668                                                    const APInt &C) {
2669   Value *Y = Add->getOperand(1);
2670   const APInt *C2;
2671   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2672     return nullptr;
2673 
2674   // Fold icmp pred (add X, C2), C.
2675   Value *X = Add->getOperand(0);
2676   Type *Ty = Add->getType();
2677   const CmpInst::Predicate Pred = Cmp.getPredicate();
2678 
2679   // If the add does not wrap, we can always adjust the compare by subtracting
2680   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2681   // are canonicalized to SGT/SLT/UGT/ULT.
2682   if ((Add->hasNoSignedWrap() &&
2683        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2684       (Add->hasNoUnsignedWrap() &&
2685        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2686     bool Overflow;
2687     APInt NewC =
2688         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2689     // If there is overflow, the result must be true or false.
2690     // TODO: Can we assert there is no overflow because InstSimplify always
2691     // handles those cases?
2692     if (!Overflow)
2693       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2694       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2695   }
2696 
2697   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2698   const APInt &Upper = CR.getUpper();
2699   const APInt &Lower = CR.getLower();
2700   if (Cmp.isSigned()) {
2701     if (Lower.isSignMask())
2702       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2703     if (Upper.isSignMask())
2704       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2705   } else {
2706     if (Lower.isMinValue())
2707       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2708     if (Upper.isMinValue())
2709       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2710   }
2711 
2712   // This set of folds is intentionally placed after folds that use no-wrapping
2713   // flags because those folds are likely better for later analysis/codegen.
2714   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2715   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2716 
2717   // Fold compare with offset to opposite sign compare if it eliminates offset:
2718   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2719   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2720     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2721 
2722   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2723   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2724     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2725 
2726   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2727   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2728     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2729 
2730   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2731   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2732     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2733 
2734   if (!Add->hasOneUse())
2735     return nullptr;
2736 
2737   // X+C <u C2 -> (X & -C2) == C
2738   //   iff C & (C2-1) == 0
2739   //       C2 is a power of 2
2740   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2741     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2742                         ConstantExpr::getNeg(cast<Constant>(Y)));
2743 
2744   // X+C >u C2 -> (X & ~C2) != C
2745   //   iff C & C2 == 0
2746   //       C2+1 is a power of 2
2747   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2748     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2749                         ConstantExpr::getNeg(cast<Constant>(Y)));
2750 
2751   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2752   // to the ult form.
2753   // X+C2 >u C -> X+(C2-C-1) <u ~C
2754   if (Pred == ICmpInst::ICMP_UGT)
2755     return new ICmpInst(ICmpInst::ICMP_ULT,
2756                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2757                         ConstantInt::get(Ty, ~C));
2758 
2759   return nullptr;
2760 }
2761 
2762 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2763                                                Value *&RHS, ConstantInt *&Less,
2764                                                ConstantInt *&Equal,
2765                                                ConstantInt *&Greater) {
2766   // TODO: Generalize this to work with other comparison idioms or ensure
2767   // they get canonicalized into this form.
2768 
2769   // select i1 (a == b),
2770   //        i32 Equal,
2771   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2772   // where Equal, Less and Greater are placeholders for any three constants.
2773   ICmpInst::Predicate PredA;
2774   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2775       !ICmpInst::isEquality(PredA))
2776     return false;
2777   Value *EqualVal = SI->getTrueValue();
2778   Value *UnequalVal = SI->getFalseValue();
2779   // We still can get non-canonical predicate here, so canonicalize.
2780   if (PredA == ICmpInst::ICMP_NE)
2781     std::swap(EqualVal, UnequalVal);
2782   if (!match(EqualVal, m_ConstantInt(Equal)))
2783     return false;
2784   ICmpInst::Predicate PredB;
2785   Value *LHS2, *RHS2;
2786   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2787                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2788     return false;
2789   // We can get predicate mismatch here, so canonicalize if possible:
2790   // First, ensure that 'LHS' match.
2791   if (LHS2 != LHS) {
2792     // x sgt y <--> y slt x
2793     std::swap(LHS2, RHS2);
2794     PredB = ICmpInst::getSwappedPredicate(PredB);
2795   }
2796   if (LHS2 != LHS)
2797     return false;
2798   // We also need to canonicalize 'RHS'.
2799   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2800     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2801     auto FlippedStrictness =
2802         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2803             PredB, cast<Constant>(RHS2));
2804     if (!FlippedStrictness)
2805       return false;
2806     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2807     RHS2 = FlippedStrictness->second;
2808     // And kind-of perform the result swap.
2809     std::swap(Less, Greater);
2810     PredB = ICmpInst::ICMP_SLT;
2811   }
2812   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2813 }
2814 
2815 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2816                                                       SelectInst *Select,
2817                                                       ConstantInt *C) {
2818 
2819   assert(C && "Cmp RHS should be a constant int!");
2820   // If we're testing a constant value against the result of a three way
2821   // comparison, the result can be expressed directly in terms of the
2822   // original values being compared.  Note: We could possibly be more
2823   // aggressive here and remove the hasOneUse test. The original select is
2824   // really likely to simplify or sink when we remove a test of the result.
2825   Value *OrigLHS, *OrigRHS;
2826   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2827   if (Cmp.hasOneUse() &&
2828       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2829                               C3GreaterThan)) {
2830     assert(C1LessThan && C2Equal && C3GreaterThan);
2831 
2832     bool TrueWhenLessThan =
2833         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2834             ->isAllOnesValue();
2835     bool TrueWhenEqual =
2836         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2837             ->isAllOnesValue();
2838     bool TrueWhenGreaterThan =
2839         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2840             ->isAllOnesValue();
2841 
2842     // This generates the new instruction that will replace the original Cmp
2843     // Instruction. Instead of enumerating the various combinations when
2844     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2845     // false, we rely on chaining of ORs and future passes of InstCombine to
2846     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2847 
2848     // When none of the three constants satisfy the predicate for the RHS (C),
2849     // the entire original Cmp can be simplified to a false.
2850     Value *Cond = Builder.getFalse();
2851     if (TrueWhenLessThan)
2852       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2853                                                        OrigLHS, OrigRHS));
2854     if (TrueWhenEqual)
2855       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2856                                                        OrigLHS, OrigRHS));
2857     if (TrueWhenGreaterThan)
2858       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2859                                                        OrigLHS, OrigRHS));
2860 
2861     return replaceInstUsesWith(Cmp, Cond);
2862   }
2863   return nullptr;
2864 }
2865 
2866 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2867   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2868   if (!Bitcast)
2869     return nullptr;
2870 
2871   ICmpInst::Predicate Pred = Cmp.getPredicate();
2872   Value *Op1 = Cmp.getOperand(1);
2873   Value *BCSrcOp = Bitcast->getOperand(0);
2874 
2875   // Make sure the bitcast doesn't change the number of vector elements.
2876   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2877           Bitcast->getDestTy()->getScalarSizeInBits()) {
2878     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2879     Value *X;
2880     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2881       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2882       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2883       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2884       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2885       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2886            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2887           match(Op1, m_Zero()))
2888         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2889 
2890       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2891       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2892         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2893 
2894       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2895       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2896         return new ICmpInst(Pred, X,
2897                             ConstantInt::getAllOnesValue(X->getType()));
2898     }
2899 
2900     // Zero-equality checks are preserved through unsigned floating-point casts:
2901     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2902     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2903     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2904       if (Cmp.isEquality() && match(Op1, m_Zero()))
2905         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2906 
2907     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2908     // the FP extend/truncate because that cast does not change the sign-bit.
2909     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2910     // The sign-bit is always the most significant bit in those types.
2911     const APInt *C;
2912     bool TrueIfSigned;
2913     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2914         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2915       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2916           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2917         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2918         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2919         Type *XType = X->getType();
2920 
2921         // We can't currently handle Power style floating point operations here.
2922         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2923 
2924           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2925           if (auto *XVTy = dyn_cast<VectorType>(XType))
2926             NewType = VectorType::get(NewType, XVTy->getElementCount());
2927           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2928           if (TrueIfSigned)
2929             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2930                                 ConstantInt::getNullValue(NewType));
2931           else
2932             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2933                                 ConstantInt::getAllOnesValue(NewType));
2934         }
2935       }
2936     }
2937   }
2938 
2939   // Test to see if the operands of the icmp are casted versions of other
2940   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2941   if (Bitcast->getType()->isPointerTy() &&
2942       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2943     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2944     // so eliminate it as well.
2945     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2946       Op1 = BC2->getOperand(0);
2947 
2948     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2949     return new ICmpInst(Pred, BCSrcOp, Op1);
2950   }
2951 
2952   const APInt *C;
2953   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2954       !Bitcast->getType()->isIntegerTy() ||
2955       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2956     return nullptr;
2957 
2958   // If this is checking if all elements of a vector compare are set or not,
2959   // invert the casted vector equality compare and test if all compare
2960   // elements are clear or not. Compare against zero is generally easier for
2961   // analysis and codegen.
2962   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2963   // Example: are all elements equal? --> are zero elements not equal?
2964   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2965   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2966       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2967     Type *ScalarTy = Bitcast->getType();
2968     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2969     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2970   }
2971 
2972   // If this is checking if all elements of an extended vector are clear or not,
2973   // compare in a narrow type to eliminate the extend:
2974   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2975   Value *X;
2976   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2977       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2978     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2979       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2980       Value *NewCast = Builder.CreateBitCast(X, NewType);
2981       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2982     }
2983   }
2984 
2985   // Folding: icmp <pred> iN X, C
2986   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2987   //    and C is a splat of a K-bit pattern
2988   //    and SC is a constant vector = <C', C', C', ..., C'>
2989   // Into:
2990   //   %E = extractelement <M x iK> %vec, i32 C'
2991   //   icmp <pred> iK %E, trunc(C)
2992   Value *Vec;
2993   ArrayRef<int> Mask;
2994   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2995     // Check whether every element of Mask is the same constant
2996     if (is_splat(Mask)) {
2997       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2998       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2999       if (C->isSplat(EltTy->getBitWidth())) {
3000         // Fold the icmp based on the value of C
3001         // If C is M copies of an iK sized bit pattern,
3002         // then:
3003         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3004         //       icmp <pred> iK %SplatVal, <pattern>
3005         Value *Elem = Builder.getInt32(Mask[0]);
3006         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3007         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3008         return new ICmpInst(Pred, Extract, NewC);
3009       }
3010     }
3011   }
3012   return nullptr;
3013 }
3014 
3015 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3016 /// where X is some kind of instruction.
3017 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3018   const APInt *C;
3019   if (!match(Cmp.getOperand(1), m_APInt(C)))
3020     return nullptr;
3021 
3022   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3023     switch (BO->getOpcode()) {
3024     case Instruction::Xor:
3025       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3026         return I;
3027       break;
3028     case Instruction::And:
3029       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3030         return I;
3031       break;
3032     case Instruction::Or:
3033       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3034         return I;
3035       break;
3036     case Instruction::Mul:
3037       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3038         return I;
3039       break;
3040     case Instruction::Shl:
3041       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3042         return I;
3043       break;
3044     case Instruction::LShr:
3045     case Instruction::AShr:
3046       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3047         return I;
3048       break;
3049     case Instruction::SRem:
3050       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3051         return I;
3052       break;
3053     case Instruction::UDiv:
3054       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3055         return I;
3056       LLVM_FALLTHROUGH;
3057     case Instruction::SDiv:
3058       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3059         return I;
3060       break;
3061     case Instruction::Sub:
3062       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3063         return I;
3064       break;
3065     case Instruction::Add:
3066       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3067         return I;
3068       break;
3069     default:
3070       break;
3071     }
3072     // TODO: These folds could be refactored to be part of the above calls.
3073     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3074       return I;
3075   }
3076 
3077   // Match against CmpInst LHS being instructions other than binary operators.
3078 
3079   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3080     // For now, we only support constant integers while folding the
3081     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3082     // similar to the cases handled by binary ops above.
3083     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3084       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3085         return I;
3086   }
3087 
3088   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3089     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3090       return I;
3091   }
3092 
3093   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3094     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3095       return I;
3096 
3097   return nullptr;
3098 }
3099 
3100 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3101 /// icmp eq/ne BO, C.
3102 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3103     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3104   // TODO: Some of these folds could work with arbitrary constants, but this
3105   // function is limited to scalar and vector splat constants.
3106   if (!Cmp.isEquality())
3107     return nullptr;
3108 
3109   ICmpInst::Predicate Pred = Cmp.getPredicate();
3110   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3111   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3112   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3113 
3114   switch (BO->getOpcode()) {
3115   case Instruction::SRem:
3116     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3117     if (C.isZero() && BO->hasOneUse()) {
3118       const APInt *BOC;
3119       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3120         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3121         return new ICmpInst(Pred, NewRem,
3122                             Constant::getNullValue(BO->getType()));
3123       }
3124     }
3125     break;
3126   case Instruction::Add: {
3127     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3128     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3129       if (BO->hasOneUse())
3130         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3131     } else if (C.isZero()) {
3132       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3133       // efficiently invertible, or if the add has just this one use.
3134       if (Value *NegVal = dyn_castNegVal(BOp1))
3135         return new ICmpInst(Pred, BOp0, NegVal);
3136       if (Value *NegVal = dyn_castNegVal(BOp0))
3137         return new ICmpInst(Pred, NegVal, BOp1);
3138       if (BO->hasOneUse()) {
3139         Value *Neg = Builder.CreateNeg(BOp1);
3140         Neg->takeName(BO);
3141         return new ICmpInst(Pred, BOp0, Neg);
3142       }
3143     }
3144     break;
3145   }
3146   case Instruction::Xor:
3147     if (BO->hasOneUse()) {
3148       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3149         // For the xor case, we can xor two constants together, eliminating
3150         // the explicit xor.
3151         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3152       } else if (C.isZero()) {
3153         // Replace ((xor A, B) != 0) with (A != B)
3154         return new ICmpInst(Pred, BOp0, BOp1);
3155       }
3156     }
3157     break;
3158   case Instruction::Or: {
3159     const APInt *BOC;
3160     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3161       // Comparing if all bits outside of a constant mask are set?
3162       // Replace (X | C) == -1 with (X & ~C) == ~C.
3163       // This removes the -1 constant.
3164       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3165       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3166       return new ICmpInst(Pred, And, NotBOC);
3167     }
3168     break;
3169   }
3170   case Instruction::And: {
3171     const APInt *BOC;
3172     if (match(BOp1, m_APInt(BOC))) {
3173       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3174       if (C == *BOC && C.isPowerOf2())
3175         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3176                             BO, Constant::getNullValue(RHS->getType()));
3177     }
3178     break;
3179   }
3180   case Instruction::UDiv:
3181     if (C.isZero()) {
3182       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3183       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3184       return new ICmpInst(NewPred, BOp1, BOp0);
3185     }
3186     break;
3187   default:
3188     break;
3189   }
3190   return nullptr;
3191 }
3192 
3193 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3194 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3195     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3196   Type *Ty = II->getType();
3197   unsigned BitWidth = C.getBitWidth();
3198   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3199 
3200   switch (II->getIntrinsicID()) {
3201   case Intrinsic::abs:
3202     // abs(A) == 0  ->  A == 0
3203     // abs(A) == INT_MIN  ->  A == INT_MIN
3204     if (C.isZero() || C.isMinSignedValue())
3205       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3206     break;
3207 
3208   case Intrinsic::bswap:
3209     // bswap(A) == C  ->  A == bswap(C)
3210     return new ICmpInst(Pred, II->getArgOperand(0),
3211                         ConstantInt::get(Ty, C.byteSwap()));
3212 
3213   case Intrinsic::ctlz:
3214   case Intrinsic::cttz: {
3215     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3216     if (C == BitWidth)
3217       return new ICmpInst(Pred, II->getArgOperand(0),
3218                           ConstantInt::getNullValue(Ty));
3219 
3220     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3221     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3222     // Limit to one use to ensure we don't increase instruction count.
3223     unsigned Num = C.getLimitedValue(BitWidth);
3224     if (Num != BitWidth && II->hasOneUse()) {
3225       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3226       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3227                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3228       APInt Mask2 = IsTrailing
3229         ? APInt::getOneBitSet(BitWidth, Num)
3230         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3231       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3232                           ConstantInt::get(Ty, Mask2));
3233     }
3234     break;
3235   }
3236 
3237   case Intrinsic::ctpop: {
3238     // popcount(A) == 0  ->  A == 0 and likewise for !=
3239     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3240     bool IsZero = C.isZero();
3241     if (IsZero || C == BitWidth)
3242       return new ICmpInst(Pred, II->getArgOperand(0),
3243                           IsZero ? Constant::getNullValue(Ty)
3244                                  : Constant::getAllOnesValue(Ty));
3245 
3246     break;
3247   }
3248 
3249   case Intrinsic::fshl:
3250   case Intrinsic::fshr:
3251     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3252       // (rot X, ?) == 0/-1 --> X == 0/-1
3253       // TODO: This transform is safe to re-use undef elts in a vector, but
3254       //       the constant value passed in by the caller doesn't allow that.
3255       if (C.isZero() || C.isAllOnes())
3256         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3257 
3258       const APInt *RotAmtC;
3259       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3260       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3261       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3262         return new ICmpInst(Pred, II->getArgOperand(0),
3263                             II->getIntrinsicID() == Intrinsic::fshl
3264                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3265                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3266     }
3267     break;
3268 
3269   case Intrinsic::uadd_sat: {
3270     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3271     if (C.isZero()) {
3272       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3273       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3274     }
3275     break;
3276   }
3277 
3278   case Intrinsic::usub_sat: {
3279     // usub.sat(a, b) == 0  ->  a <= b
3280     if (C.isZero()) {
3281       ICmpInst::Predicate NewPred =
3282           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3283       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3284     }
3285     break;
3286   }
3287   default:
3288     break;
3289   }
3290 
3291   return nullptr;
3292 }
3293 
3294 /// Fold an icmp with LLVM intrinsics
3295 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3296   assert(Cmp.isEquality());
3297 
3298   ICmpInst::Predicate Pred = Cmp.getPredicate();
3299   Value *Op0 = Cmp.getOperand(0);
3300   Value *Op1 = Cmp.getOperand(1);
3301   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3302   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3303   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3304     return nullptr;
3305 
3306   switch (IIOp0->getIntrinsicID()) {
3307   case Intrinsic::bswap:
3308   case Intrinsic::bitreverse:
3309     // If both operands are byte-swapped or bit-reversed, just compare the
3310     // original values.
3311     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3312   case Intrinsic::fshl:
3313   case Intrinsic::fshr:
3314     // If both operands are rotated by same amount, just compare the
3315     // original values.
3316     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3317       break;
3318     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3319       break;
3320     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3321       break;
3322     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3323   default:
3324     break;
3325   }
3326 
3327   return nullptr;
3328 }
3329 
3330 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3331 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3332                                                              IntrinsicInst *II,
3333                                                              const APInt &C) {
3334   if (Cmp.isEquality())
3335     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3336 
3337   Type *Ty = II->getType();
3338   unsigned BitWidth = C.getBitWidth();
3339   ICmpInst::Predicate Pred = Cmp.getPredicate();
3340   switch (II->getIntrinsicID()) {
3341   case Intrinsic::ctpop: {
3342     // (ctpop X > BitWidth - 1) --> X == -1
3343     Value *X = II->getArgOperand(0);
3344     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3345       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3346                              ConstantInt::getAllOnesValue(Ty));
3347     // (ctpop X < BitWidth) --> X != -1
3348     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3349       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3350                              ConstantInt::getAllOnesValue(Ty));
3351     break;
3352   }
3353   case Intrinsic::ctlz: {
3354     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3355     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3356       unsigned Num = C.getLimitedValue();
3357       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3358       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3359                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3360     }
3361 
3362     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3363     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3364       unsigned Num = C.getLimitedValue();
3365       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3366       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3367                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3368     }
3369     break;
3370   }
3371   case Intrinsic::cttz: {
3372     // Limit to one use to ensure we don't increase instruction count.
3373     if (!II->hasOneUse())
3374       return nullptr;
3375 
3376     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3377     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3378       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3379       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3380                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3381                              ConstantInt::getNullValue(Ty));
3382     }
3383 
3384     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3385     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3386       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3387       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3388                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3389                              ConstantInt::getNullValue(Ty));
3390     }
3391     break;
3392   }
3393   default:
3394     break;
3395   }
3396 
3397   return nullptr;
3398 }
3399 
3400 /// Handle icmp with constant (but not simple integer constant) RHS.
3401 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3402   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3403   Constant *RHSC = dyn_cast<Constant>(Op1);
3404   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3405   if (!RHSC || !LHSI)
3406     return nullptr;
3407 
3408   switch (LHSI->getOpcode()) {
3409   case Instruction::GetElementPtr:
3410     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3411     if (RHSC->isNullValue() &&
3412         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3413       return new ICmpInst(
3414           I.getPredicate(), LHSI->getOperand(0),
3415           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3416     break;
3417   case Instruction::PHI:
3418     // Only fold icmp into the PHI if the phi and icmp are in the same
3419     // block.  If in the same block, we're encouraging jump threading.  If
3420     // not, we are just pessimizing the code by making an i1 phi.
3421     if (LHSI->getParent() == I.getParent())
3422       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3423         return NV;
3424     break;
3425   case Instruction::Select: {
3426     // If either operand of the select is a constant, we can fold the
3427     // comparison into the select arms, which will cause one to be
3428     // constant folded and the select turned into a bitwise or.
3429     Value *Op1 = nullptr, *Op2 = nullptr;
3430     ConstantInt *CI = nullptr;
3431 
3432     auto SimplifyOp = [&](Value *V) {
3433       Value *Op = nullptr;
3434       if (Constant *C = dyn_cast<Constant>(V)) {
3435         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3436       } else if (RHSC->isNullValue()) {
3437         // If null is being compared, check if it can be further simplified.
3438         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3439       }
3440       return Op;
3441     };
3442     Op1 = SimplifyOp(LHSI->getOperand(1));
3443     if (Op1)
3444       CI = dyn_cast<ConstantInt>(Op1);
3445 
3446     Op2 = SimplifyOp(LHSI->getOperand(2));
3447     if (Op2)
3448       CI = dyn_cast<ConstantInt>(Op2);
3449 
3450     // We only want to perform this transformation if it will not lead to
3451     // additional code. This is true if either both sides of the select
3452     // fold to a constant (in which case the icmp is replaced with a select
3453     // which will usually simplify) or this is the only user of the
3454     // select (in which case we are trading a select+icmp for a simpler
3455     // select+icmp) or all uses of the select can be replaced based on
3456     // dominance information ("Global cases").
3457     bool Transform = false;
3458     if (Op1 && Op2)
3459       Transform = true;
3460     else if (Op1 || Op2) {
3461       // Local case
3462       if (LHSI->hasOneUse())
3463         Transform = true;
3464       // Global cases
3465       else if (CI && !CI->isZero())
3466         // When Op1 is constant try replacing select with second operand.
3467         // Otherwise Op2 is constant and try replacing select with first
3468         // operand.
3469         Transform =
3470             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3471     }
3472     if (Transform) {
3473       if (!Op1)
3474         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3475                                  I.getName());
3476       if (!Op2)
3477         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3478                                  I.getName());
3479       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3480     }
3481     break;
3482   }
3483   case Instruction::IntToPtr:
3484     // icmp pred inttoptr(X), null -> icmp pred X, 0
3485     if (RHSC->isNullValue() &&
3486         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3487       return new ICmpInst(
3488           I.getPredicate(), LHSI->getOperand(0),
3489           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3490     break;
3491 
3492   case Instruction::Load:
3493     // Try to optimize things like "A[i] > 4" to index computations.
3494     if (GetElementPtrInst *GEP =
3495             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3496       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3497         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3498             !cast<LoadInst>(LHSI)->isVolatile())
3499           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3500             return Res;
3501     }
3502     break;
3503   }
3504 
3505   return nullptr;
3506 }
3507 
3508 /// Some comparisons can be simplified.
3509 /// In this case, we are looking for comparisons that look like
3510 /// a check for a lossy truncation.
3511 /// Folds:
3512 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3513 /// Where Mask is some pattern that produces all-ones in low bits:
3514 ///    (-1 >> y)
3515 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3516 ///   ~(-1 << y)
3517 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3518 /// The Mask can be a constant, too.
3519 /// For some predicates, the operands are commutative.
3520 /// For others, x can only be on a specific side.
3521 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3522                                           InstCombiner::BuilderTy &Builder) {
3523   ICmpInst::Predicate SrcPred;
3524   Value *X, *M, *Y;
3525   auto m_VariableMask = m_CombineOr(
3526       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3527                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3528       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3529                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3530   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3531   if (!match(&I, m_c_ICmp(SrcPred,
3532                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3533                           m_Deferred(X))))
3534     return nullptr;
3535 
3536   ICmpInst::Predicate DstPred;
3537   switch (SrcPred) {
3538   case ICmpInst::Predicate::ICMP_EQ:
3539     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3540     DstPred = ICmpInst::Predicate::ICMP_ULE;
3541     break;
3542   case ICmpInst::Predicate::ICMP_NE:
3543     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3544     DstPred = ICmpInst::Predicate::ICMP_UGT;
3545     break;
3546   case ICmpInst::Predicate::ICMP_ULT:
3547     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3548     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3549     DstPred = ICmpInst::Predicate::ICMP_UGT;
3550     break;
3551   case ICmpInst::Predicate::ICMP_UGE:
3552     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3553     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3554     DstPred = ICmpInst::Predicate::ICMP_ULE;
3555     break;
3556   case ICmpInst::Predicate::ICMP_SLT:
3557     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3558     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3559     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3560       return nullptr;
3561     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3562       return nullptr;
3563     DstPred = ICmpInst::Predicate::ICMP_SGT;
3564     break;
3565   case ICmpInst::Predicate::ICMP_SGE:
3566     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3567     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3568     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3569       return nullptr;
3570     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3571       return nullptr;
3572     DstPred = ICmpInst::Predicate::ICMP_SLE;
3573     break;
3574   case ICmpInst::Predicate::ICMP_SGT:
3575   case ICmpInst::Predicate::ICMP_SLE:
3576     return nullptr;
3577   case ICmpInst::Predicate::ICMP_UGT:
3578   case ICmpInst::Predicate::ICMP_ULE:
3579     llvm_unreachable("Instsimplify took care of commut. variant");
3580     break;
3581   default:
3582     llvm_unreachable("All possible folds are handled.");
3583   }
3584 
3585   // The mask value may be a vector constant that has undefined elements. But it
3586   // may not be safe to propagate those undefs into the new compare, so replace
3587   // those elements by copying an existing, defined, and safe scalar constant.
3588   Type *OpTy = M->getType();
3589   auto *VecC = dyn_cast<Constant>(M);
3590   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3591   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3592     Constant *SafeReplacementConstant = nullptr;
3593     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3594       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3595         SafeReplacementConstant = VecC->getAggregateElement(i);
3596         break;
3597       }
3598     }
3599     assert(SafeReplacementConstant && "Failed to find undef replacement");
3600     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3601   }
3602 
3603   return Builder.CreateICmp(DstPred, X, M);
3604 }
3605 
3606 /// Some comparisons can be simplified.
3607 /// In this case, we are looking for comparisons that look like
3608 /// a check for a lossy signed truncation.
3609 /// Folds:   (MaskedBits is a constant.)
3610 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3611 /// Into:
3612 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3613 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3614 static Value *
3615 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3616                                  InstCombiner::BuilderTy &Builder) {
3617   ICmpInst::Predicate SrcPred;
3618   Value *X;
3619   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3620   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3621   if (!match(&I, m_c_ICmp(SrcPred,
3622                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3623                                           m_APInt(C1))),
3624                           m_Deferred(X))))
3625     return nullptr;
3626 
3627   // Potential handling of non-splats: for each element:
3628   //  * if both are undef, replace with constant 0.
3629   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3630   //  * if both are not undef, and are different, bailout.
3631   //  * else, only one is undef, then pick the non-undef one.
3632 
3633   // The shift amount must be equal.
3634   if (*C0 != *C1)
3635     return nullptr;
3636   const APInt &MaskedBits = *C0;
3637   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3638 
3639   ICmpInst::Predicate DstPred;
3640   switch (SrcPred) {
3641   case ICmpInst::Predicate::ICMP_EQ:
3642     // ((%x << MaskedBits) a>> MaskedBits) == %x
3643     //   =>
3644     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3645     DstPred = ICmpInst::Predicate::ICMP_ULT;
3646     break;
3647   case ICmpInst::Predicate::ICMP_NE:
3648     // ((%x << MaskedBits) a>> MaskedBits) != %x
3649     //   =>
3650     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3651     DstPred = ICmpInst::Predicate::ICMP_UGE;
3652     break;
3653   // FIXME: are more folds possible?
3654   default:
3655     return nullptr;
3656   }
3657 
3658   auto *XType = X->getType();
3659   const unsigned XBitWidth = XType->getScalarSizeInBits();
3660   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3661   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3662 
3663   // KeptBits = bitwidth(%x) - MaskedBits
3664   const APInt KeptBits = BitWidth - MaskedBits;
3665   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3666   // ICmpCst = (1 << KeptBits)
3667   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3668   assert(ICmpCst.isPowerOf2());
3669   // AddCst = (1 << (KeptBits-1))
3670   const APInt AddCst = ICmpCst.lshr(1);
3671   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3672 
3673   // T0 = add %x, AddCst
3674   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3675   // T1 = T0 DstPred ICmpCst
3676   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3677 
3678   return T1;
3679 }
3680 
3681 // Given pattern:
3682 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3683 // we should move shifts to the same hand of 'and', i.e. rewrite as
3684 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3685 // We are only interested in opposite logical shifts here.
3686 // One of the shifts can be truncated.
3687 // If we can, we want to end up creating 'lshr' shift.
3688 static Value *
3689 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3690                                            InstCombiner::BuilderTy &Builder) {
3691   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3692       !I.getOperand(0)->hasOneUse())
3693     return nullptr;
3694 
3695   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3696 
3697   // Look for an 'and' of two logical shifts, one of which may be truncated.
3698   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3699   Instruction *XShift, *MaybeTruncation, *YShift;
3700   if (!match(
3701           I.getOperand(0),
3702           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3703                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3704                                    m_AnyLogicalShift, m_Instruction(YShift))),
3705                                m_Instruction(MaybeTruncation)))))
3706     return nullptr;
3707 
3708   // We potentially looked past 'trunc', but only when matching YShift,
3709   // therefore YShift must have the widest type.
3710   Instruction *WidestShift = YShift;
3711   // Therefore XShift must have the shallowest type.
3712   // Or they both have identical types if there was no truncation.
3713   Instruction *NarrowestShift = XShift;
3714 
3715   Type *WidestTy = WidestShift->getType();
3716   Type *NarrowestTy = NarrowestShift->getType();
3717   assert(NarrowestTy == I.getOperand(0)->getType() &&
3718          "We did not look past any shifts while matching XShift though.");
3719   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3720 
3721   // If YShift is a 'lshr', swap the shifts around.
3722   if (match(YShift, m_LShr(m_Value(), m_Value())))
3723     std::swap(XShift, YShift);
3724 
3725   // The shifts must be in opposite directions.
3726   auto XShiftOpcode = XShift->getOpcode();
3727   if (XShiftOpcode == YShift->getOpcode())
3728     return nullptr; // Do not care about same-direction shifts here.
3729 
3730   Value *X, *XShAmt, *Y, *YShAmt;
3731   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3732   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3733 
3734   // If one of the values being shifted is a constant, then we will end with
3735   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3736   // however, we will need to ensure that we won't increase instruction count.
3737   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3738     // At least one of the hands of the 'and' should be one-use shift.
3739     if (!match(I.getOperand(0),
3740                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3741       return nullptr;
3742     if (HadTrunc) {
3743       // Due to the 'trunc', we will need to widen X. For that either the old
3744       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3745       if (!MaybeTruncation->hasOneUse() &&
3746           !NarrowestShift->getOperand(1)->hasOneUse())
3747         return nullptr;
3748     }
3749   }
3750 
3751   // We have two shift amounts from two different shifts. The types of those
3752   // shift amounts may not match. If that's the case let's bailout now.
3753   if (XShAmt->getType() != YShAmt->getType())
3754     return nullptr;
3755 
3756   // As input, we have the following pattern:
3757   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3758   // We want to rewrite that as:
3759   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3760   // While we know that originally (Q+K) would not overflow
3761   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3762   // shift amounts. so it may now overflow in smaller bitwidth.
3763   // To ensure that does not happen, we need to ensure that the total maximal
3764   // shift amount is still representable in that smaller bit width.
3765   unsigned MaximalPossibleTotalShiftAmount =
3766       (WidestTy->getScalarSizeInBits() - 1) +
3767       (NarrowestTy->getScalarSizeInBits() - 1);
3768   APInt MaximalRepresentableShiftAmount =
3769       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3770   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3771     return nullptr;
3772 
3773   // Can we fold (XShAmt+YShAmt) ?
3774   auto *NewShAmt = dyn_cast_or_null<Constant>(
3775       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3776                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3777   if (!NewShAmt)
3778     return nullptr;
3779   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3780   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3781 
3782   // Is the new shift amount smaller than the bit width?
3783   // FIXME: could also rely on ConstantRange.
3784   if (!match(NewShAmt,
3785              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3786                                 APInt(WidestBitWidth, WidestBitWidth))))
3787     return nullptr;
3788 
3789   // An extra legality check is needed if we had trunc-of-lshr.
3790   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3791     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3792                     WidestShift]() {
3793       // It isn't obvious whether it's worth it to analyze non-constants here.
3794       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3795       // If *any* of these preconditions matches we can perform the fold.
3796       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3797                                     ? NewShAmt->getSplatValue()
3798                                     : NewShAmt;
3799       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3800       if (NewShAmtSplat &&
3801           (NewShAmtSplat->isNullValue() ||
3802            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3803         return true;
3804       // We consider *min* leading zeros so a single outlier
3805       // blocks the transform as opposed to allowing it.
3806       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3807         KnownBits Known = computeKnownBits(C, SQ.DL);
3808         unsigned MinLeadZero = Known.countMinLeadingZeros();
3809         // If the value being shifted has at most lowest bit set we can fold.
3810         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3811         if (MaxActiveBits <= 1)
3812           return true;
3813         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3814         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3815           return true;
3816       }
3817       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3818         KnownBits Known = computeKnownBits(C, SQ.DL);
3819         unsigned MinLeadZero = Known.countMinLeadingZeros();
3820         // If the value being shifted has at most lowest bit set we can fold.
3821         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3822         if (MaxActiveBits <= 1)
3823           return true;
3824         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3825         if (NewShAmtSplat) {
3826           APInt AdjNewShAmt =
3827               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3828           if (AdjNewShAmt.ule(MinLeadZero))
3829             return true;
3830         }
3831       }
3832       return false; // Can't tell if it's ok.
3833     };
3834     if (!CanFold())
3835       return nullptr;
3836   }
3837 
3838   // All good, we can do this fold.
3839   X = Builder.CreateZExt(X, WidestTy);
3840   Y = Builder.CreateZExt(Y, WidestTy);
3841   // The shift is the same that was for X.
3842   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3843                   ? Builder.CreateLShr(X, NewShAmt)
3844                   : Builder.CreateShl(X, NewShAmt);
3845   Value *T1 = Builder.CreateAnd(T0, Y);
3846   return Builder.CreateICmp(I.getPredicate(), T1,
3847                             Constant::getNullValue(WidestTy));
3848 }
3849 
3850 /// Fold
3851 ///   (-1 u/ x) u< y
3852 ///   ((x * y) ?/ x) != y
3853 /// to
3854 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3855 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3856 /// will mean that we are looking for the opposite answer.
3857 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3858   ICmpInst::Predicate Pred;
3859   Value *X, *Y;
3860   Instruction *Mul;
3861   Instruction *Div;
3862   bool NeedNegation;
3863   // Look for: (-1 u/ x) u</u>= y
3864   if (!I.isEquality() &&
3865       match(&I, m_c_ICmp(Pred,
3866                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3867                                       m_Instruction(Div)),
3868                          m_Value(Y)))) {
3869     Mul = nullptr;
3870 
3871     // Are we checking that overflow does not happen, or does happen?
3872     switch (Pred) {
3873     case ICmpInst::Predicate::ICMP_ULT:
3874       NeedNegation = false;
3875       break; // OK
3876     case ICmpInst::Predicate::ICMP_UGE:
3877       NeedNegation = true;
3878       break; // OK
3879     default:
3880       return nullptr; // Wrong predicate.
3881     }
3882   } else // Look for: ((x * y) / x) !=/== y
3883       if (I.isEquality() &&
3884           match(&I,
3885                 m_c_ICmp(Pred, m_Value(Y),
3886                          m_CombineAnd(
3887                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3888                                                                   m_Value(X)),
3889                                                           m_Instruction(Mul)),
3890                                              m_Deferred(X))),
3891                              m_Instruction(Div))))) {
3892     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3893   } else
3894     return nullptr;
3895 
3896   BuilderTy::InsertPointGuard Guard(Builder);
3897   // If the pattern included (x * y), we'll want to insert new instructions
3898   // right before that original multiplication so that we can replace it.
3899   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3900   if (MulHadOtherUses)
3901     Builder.SetInsertPoint(Mul);
3902 
3903   Function *F = Intrinsic::getDeclaration(I.getModule(),
3904                                           Div->getOpcode() == Instruction::UDiv
3905                                               ? Intrinsic::umul_with_overflow
3906                                               : Intrinsic::smul_with_overflow,
3907                                           X->getType());
3908   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3909 
3910   // If the multiplication was used elsewhere, to ensure that we don't leave
3911   // "duplicate" instructions, replace uses of that original multiplication
3912   // with the multiplication result from the with.overflow intrinsic.
3913   if (MulHadOtherUses)
3914     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3915 
3916   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3917   if (NeedNegation) // This technically increases instruction count.
3918     Res = Builder.CreateNot(Res, "mul.not.ov");
3919 
3920   // If we replaced the mul, erase it. Do this after all uses of Builder,
3921   // as the mul is used as insertion point.
3922   if (MulHadOtherUses)
3923     eraseInstFromFunction(*Mul);
3924 
3925   return Res;
3926 }
3927 
3928 static Instruction *foldICmpXNegX(ICmpInst &I) {
3929   CmpInst::Predicate Pred;
3930   Value *X;
3931   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3932     return nullptr;
3933 
3934   if (ICmpInst::isSigned(Pred))
3935     Pred = ICmpInst::getSwappedPredicate(Pred);
3936   else if (ICmpInst::isUnsigned(Pred))
3937     Pred = ICmpInst::getSignedPredicate(Pred);
3938   // else for equality-comparisons just keep the predicate.
3939 
3940   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3941                           Constant::getNullValue(X->getType()), I.getName());
3942 }
3943 
3944 /// Try to fold icmp (binop), X or icmp X, (binop).
3945 /// TODO: A large part of this logic is duplicated in InstSimplify's
3946 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3947 /// duplication.
3948 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3949                                              const SimplifyQuery &SQ) {
3950   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3951   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3952 
3953   // Special logic for binary operators.
3954   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3955   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3956   if (!BO0 && !BO1)
3957     return nullptr;
3958 
3959   if (Instruction *NewICmp = foldICmpXNegX(I))
3960     return NewICmp;
3961 
3962   const CmpInst::Predicate Pred = I.getPredicate();
3963   Value *X;
3964 
3965   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3966   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3967   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3968       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3969     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3970   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3971   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3972       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3973     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3974 
3975   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3976   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3977     NoOp0WrapProblem =
3978         ICmpInst::isEquality(Pred) ||
3979         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3980         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3981   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3982     NoOp1WrapProblem =
3983         ICmpInst::isEquality(Pred) ||
3984         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3985         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3986 
3987   // Analyze the case when either Op0 or Op1 is an add instruction.
3988   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3989   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3990   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3991     A = BO0->getOperand(0);
3992     B = BO0->getOperand(1);
3993   }
3994   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3995     C = BO1->getOperand(0);
3996     D = BO1->getOperand(1);
3997   }
3998 
3999   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4000   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4001   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4002     return new ICmpInst(Pred, A == Op1 ? B : A,
4003                         Constant::getNullValue(Op1->getType()));
4004 
4005   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4006   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4007   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4008     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4009                         C == Op0 ? D : C);
4010 
4011   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4012   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4013       NoOp1WrapProblem) {
4014     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4015     Value *Y, *Z;
4016     if (A == C) {
4017       // C + B == C + D  ->  B == D
4018       Y = B;
4019       Z = D;
4020     } else if (A == D) {
4021       // D + B == C + D  ->  B == C
4022       Y = B;
4023       Z = C;
4024     } else if (B == C) {
4025       // A + C == C + D  ->  A == D
4026       Y = A;
4027       Z = D;
4028     } else {
4029       assert(B == D);
4030       // A + D == C + D  ->  A == C
4031       Y = A;
4032       Z = C;
4033     }
4034     return new ICmpInst(Pred, Y, Z);
4035   }
4036 
4037   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4038   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4039       match(B, m_AllOnes()))
4040     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4041 
4042   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4043   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4044       match(B, m_AllOnes()))
4045     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4046 
4047   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4048   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4049     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4050 
4051   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4052   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4053     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4054 
4055   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4056   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4057       match(D, m_AllOnes()))
4058     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4059 
4060   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4061   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4062       match(D, m_AllOnes()))
4063     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4064 
4065   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4066   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4067     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4068 
4069   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4070   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4071     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4072 
4073   // TODO: The subtraction-related identities shown below also hold, but
4074   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4075   // wouldn't happen even if they were implemented.
4076   //
4077   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4078   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4079   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4080   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4081 
4082   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4083   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4084     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4085 
4086   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4087   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4088     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4089 
4090   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4091   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4092     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4093 
4094   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4095   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4096     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4097 
4098   // if C1 has greater magnitude than C2:
4099   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4100   //  s.t. C3 = C1 - C2
4101   //
4102   // if C2 has greater magnitude than C1:
4103   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4104   //  s.t. C3 = C2 - C1
4105   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4106       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4107     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4108       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4109         const APInt &AP1 = C1->getValue();
4110         const APInt &AP2 = C2->getValue();
4111         if (AP1.isNegative() == AP2.isNegative()) {
4112           APInt AP1Abs = C1->getValue().abs();
4113           APInt AP2Abs = C2->getValue().abs();
4114           if (AP1Abs.uge(AP2Abs)) {
4115             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4116             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4117             bool HasNSW = BO0->hasNoSignedWrap();
4118             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4119             return new ICmpInst(Pred, NewAdd, C);
4120           } else {
4121             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4122             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4123             bool HasNSW = BO1->hasNoSignedWrap();
4124             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4125             return new ICmpInst(Pred, A, NewAdd);
4126           }
4127         }
4128       }
4129 
4130   // Analyze the case when either Op0 or Op1 is a sub instruction.
4131   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4132   A = nullptr;
4133   B = nullptr;
4134   C = nullptr;
4135   D = nullptr;
4136   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4137     A = BO0->getOperand(0);
4138     B = BO0->getOperand(1);
4139   }
4140   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4141     C = BO1->getOperand(0);
4142     D = BO1->getOperand(1);
4143   }
4144 
4145   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4146   if (A == Op1 && NoOp0WrapProblem)
4147     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4148   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4149   if (C == Op0 && NoOp1WrapProblem)
4150     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4151 
4152   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4153   // (A - B) u>/u<= A --> B u>/u<= A
4154   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4155     return new ICmpInst(Pred, B, A);
4156   // C u</u>= (C - D) --> C u</u>= D
4157   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4158     return new ICmpInst(Pred, C, D);
4159   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4160   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4161       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4162     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4163   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4164   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4165       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4166     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4167 
4168   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4169   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4170     return new ICmpInst(Pred, A, C);
4171 
4172   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4173   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4174     return new ICmpInst(Pred, D, B);
4175 
4176   // icmp (0-X) < cst --> x > -cst
4177   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4178     Value *X;
4179     if (match(BO0, m_Neg(m_Value(X))))
4180       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4181         if (RHSC->isNotMinSignedValue())
4182           return new ICmpInst(I.getSwappedPredicate(), X,
4183                               ConstantExpr::getNeg(RHSC));
4184   }
4185 
4186   {
4187     // Try to remove shared constant multiplier from equality comparison:
4188     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4189     Value *X, *Y;
4190     const APInt *C;
4191     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4192         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4193       if (!C->countTrailingZeros() ||
4194           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4195           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4196       return new ICmpInst(Pred, X, Y);
4197   }
4198 
4199   BinaryOperator *SRem = nullptr;
4200   // icmp (srem X, Y), Y
4201   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4202     SRem = BO0;
4203   // icmp Y, (srem X, Y)
4204   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4205            Op0 == BO1->getOperand(1))
4206     SRem = BO1;
4207   if (SRem) {
4208     // We don't check hasOneUse to avoid increasing register pressure because
4209     // the value we use is the same value this instruction was already using.
4210     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4211     default:
4212       break;
4213     case ICmpInst::ICMP_EQ:
4214       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4215     case ICmpInst::ICMP_NE:
4216       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4217     case ICmpInst::ICMP_SGT:
4218     case ICmpInst::ICMP_SGE:
4219       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4220                           Constant::getAllOnesValue(SRem->getType()));
4221     case ICmpInst::ICMP_SLT:
4222     case ICmpInst::ICMP_SLE:
4223       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4224                           Constant::getNullValue(SRem->getType()));
4225     }
4226   }
4227 
4228   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4229       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4230     switch (BO0->getOpcode()) {
4231     default:
4232       break;
4233     case Instruction::Add:
4234     case Instruction::Sub:
4235     case Instruction::Xor: {
4236       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4237         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4238 
4239       const APInt *C;
4240       if (match(BO0->getOperand(1), m_APInt(C))) {
4241         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4242         if (C->isSignMask()) {
4243           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4244           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4245         }
4246 
4247         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4248         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4249           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4250           NewPred = I.getSwappedPredicate(NewPred);
4251           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4252         }
4253       }
4254       break;
4255     }
4256     case Instruction::Mul: {
4257       if (!I.isEquality())
4258         break;
4259 
4260       const APInt *C;
4261       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4262           !C->isOne()) {
4263         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4264         // Mask = -1 >> count-trailing-zeros(C).
4265         if (unsigned TZs = C->countTrailingZeros()) {
4266           Constant *Mask = ConstantInt::get(
4267               BO0->getType(),
4268               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4269           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4270           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4271           return new ICmpInst(Pred, And1, And2);
4272         }
4273       }
4274       break;
4275     }
4276     case Instruction::UDiv:
4277     case Instruction::LShr:
4278       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4279         break;
4280       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4281 
4282     case Instruction::SDiv:
4283       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4284         break;
4285       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4286 
4287     case Instruction::AShr:
4288       if (!BO0->isExact() || !BO1->isExact())
4289         break;
4290       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4291 
4292     case Instruction::Shl: {
4293       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4294       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4295       if (!NUW && !NSW)
4296         break;
4297       if (!NSW && I.isSigned())
4298         break;
4299       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4300     }
4301     }
4302   }
4303 
4304   if (BO0) {
4305     // Transform  A & (L - 1) `ult` L --> L != 0
4306     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4307     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4308 
4309     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4310       auto *Zero = Constant::getNullValue(BO0->getType());
4311       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4312     }
4313   }
4314 
4315   if (Value *V = foldMultiplicationOverflowCheck(I))
4316     return replaceInstUsesWith(I, V);
4317 
4318   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4319     return replaceInstUsesWith(I, V);
4320 
4321   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4322     return replaceInstUsesWith(I, V);
4323 
4324   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4325     return replaceInstUsesWith(I, V);
4326 
4327   return nullptr;
4328 }
4329 
4330 /// Fold icmp Pred min|max(X, Y), X.
4331 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4332   ICmpInst::Predicate Pred = Cmp.getPredicate();
4333   Value *Op0 = Cmp.getOperand(0);
4334   Value *X = Cmp.getOperand(1);
4335 
4336   // Canonicalize minimum or maximum operand to LHS of the icmp.
4337   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4338       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4339       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4340       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4341     std::swap(Op0, X);
4342     Pred = Cmp.getSwappedPredicate();
4343   }
4344 
4345   Value *Y;
4346   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4347     // smin(X, Y)  == X --> X s<= Y
4348     // smin(X, Y) s>= X --> X s<= Y
4349     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4350       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4351 
4352     // smin(X, Y) != X --> X s> Y
4353     // smin(X, Y) s< X --> X s> Y
4354     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4355       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4356 
4357     // These cases should be handled in InstSimplify:
4358     // smin(X, Y) s<= X --> true
4359     // smin(X, Y) s> X --> false
4360     return nullptr;
4361   }
4362 
4363   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4364     // smax(X, Y)  == X --> X s>= Y
4365     // smax(X, Y) s<= X --> X s>= Y
4366     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4367       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4368 
4369     // smax(X, Y) != X --> X s< Y
4370     // smax(X, Y) s> X --> X s< Y
4371     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4372       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4373 
4374     // These cases should be handled in InstSimplify:
4375     // smax(X, Y) s>= X --> true
4376     // smax(X, Y) s< X --> false
4377     return nullptr;
4378   }
4379 
4380   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4381     // umin(X, Y)  == X --> X u<= Y
4382     // umin(X, Y) u>= X --> X u<= Y
4383     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4384       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4385 
4386     // umin(X, Y) != X --> X u> Y
4387     // umin(X, Y) u< X --> X u> Y
4388     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4389       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4390 
4391     // These cases should be handled in InstSimplify:
4392     // umin(X, Y) u<= X --> true
4393     // umin(X, Y) u> X --> false
4394     return nullptr;
4395   }
4396 
4397   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4398     // umax(X, Y)  == X --> X u>= Y
4399     // umax(X, Y) u<= X --> X u>= Y
4400     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4401       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4402 
4403     // umax(X, Y) != X --> X u< Y
4404     // umax(X, Y) u> X --> X u< Y
4405     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4406       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4407 
4408     // These cases should be handled in InstSimplify:
4409     // umax(X, Y) u>= X --> true
4410     // umax(X, Y) u< X --> false
4411     return nullptr;
4412   }
4413 
4414   return nullptr;
4415 }
4416 
4417 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4418   if (!I.isEquality())
4419     return nullptr;
4420 
4421   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4422   const CmpInst::Predicate Pred = I.getPredicate();
4423   Value *A, *B, *C, *D;
4424   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4425     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4426       Value *OtherVal = A == Op1 ? B : A;
4427       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4428     }
4429 
4430     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4431       // A^c1 == C^c2 --> A == C^(c1^c2)
4432       ConstantInt *C1, *C2;
4433       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4434           Op1->hasOneUse()) {
4435         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4436         Value *Xor = Builder.CreateXor(C, NC);
4437         return new ICmpInst(Pred, A, Xor);
4438       }
4439 
4440       // A^B == A^D -> B == D
4441       if (A == C)
4442         return new ICmpInst(Pred, B, D);
4443       if (A == D)
4444         return new ICmpInst(Pred, B, C);
4445       if (B == C)
4446         return new ICmpInst(Pred, A, D);
4447       if (B == D)
4448         return new ICmpInst(Pred, A, C);
4449     }
4450   }
4451 
4452   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4453     // A == (A^B)  ->  B == 0
4454     Value *OtherVal = A == Op0 ? B : A;
4455     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4456   }
4457 
4458   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4459   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4460       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4461     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4462 
4463     if (A == C) {
4464       X = B;
4465       Y = D;
4466       Z = A;
4467     } else if (A == D) {
4468       X = B;
4469       Y = C;
4470       Z = A;
4471     } else if (B == C) {
4472       X = A;
4473       Y = D;
4474       Z = B;
4475     } else if (B == D) {
4476       X = A;
4477       Y = C;
4478       Z = B;
4479     }
4480 
4481     if (X) { // Build (X^Y) & Z
4482       Op1 = Builder.CreateXor(X, Y);
4483       Op1 = Builder.CreateAnd(Op1, Z);
4484       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4485     }
4486   }
4487 
4488   {
4489     // Similar to above, but specialized for constant because invert is needed:
4490     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4491     Value *X, *Y;
4492     Constant *C;
4493     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4494         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4495       Value *Xor = Builder.CreateXor(X, Y);
4496       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4497       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4498     }
4499   }
4500 
4501   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4502   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4503   ConstantInt *Cst1;
4504   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4505        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4506       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4507        match(Op1, m_ZExt(m_Value(A))))) {
4508     APInt Pow2 = Cst1->getValue() + 1;
4509     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4510         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4511       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4512   }
4513 
4514   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4515   // For lshr and ashr pairs.
4516   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4517        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4518       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4519        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4520     unsigned TypeBits = Cst1->getBitWidth();
4521     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4522     if (ShAmt < TypeBits && ShAmt != 0) {
4523       ICmpInst::Predicate NewPred =
4524           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4525       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4526       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4527       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4528     }
4529   }
4530 
4531   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4532   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4533       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4534     unsigned TypeBits = Cst1->getBitWidth();
4535     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4536     if (ShAmt < TypeBits && ShAmt != 0) {
4537       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4538       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4539       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4540                                       I.getName() + ".mask");
4541       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4542     }
4543   }
4544 
4545   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4546   // "icmp (and X, mask), cst"
4547   uint64_t ShAmt = 0;
4548   if (Op0->hasOneUse() &&
4549       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4550       match(Op1, m_ConstantInt(Cst1)) &&
4551       // Only do this when A has multiple uses.  This is most important to do
4552       // when it exposes other optimizations.
4553       !A->hasOneUse()) {
4554     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4555 
4556     if (ShAmt < ASize) {
4557       APInt MaskV =
4558           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4559       MaskV <<= ShAmt;
4560 
4561       APInt CmpV = Cst1->getValue().zext(ASize);
4562       CmpV <<= ShAmt;
4563 
4564       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4565       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4566     }
4567   }
4568 
4569   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4570     return ICmp;
4571 
4572   // Canonicalize checking for a power-of-2-or-zero value:
4573   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4574   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4575   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4576                                    m_Deferred(A)))) ||
4577       !match(Op1, m_ZeroInt()))
4578     A = nullptr;
4579 
4580   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4581   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4582   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4583     A = Op1;
4584   else if (match(Op1,
4585                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4586     A = Op0;
4587 
4588   if (A) {
4589     Type *Ty = A->getType();
4590     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4591     return Pred == ICmpInst::ICMP_EQ
4592         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4593         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4594   }
4595 
4596   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4597   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4598   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4599   // of instcombine.
4600   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4601   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4602       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4603       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4604       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4605     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4606     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4607     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4608                                                   : ICmpInst::ICMP_UGE,
4609                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4610   }
4611 
4612   return nullptr;
4613 }
4614 
4615 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4616                                       InstCombiner::BuilderTy &Builder) {
4617   const ICmpInst::Predicate Pred = ICmp.getPredicate();
4618   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4619 
4620   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4621   // The trunc masks high bits while the compare may effectively mask low bits.
4622   Value *X;
4623   const APInt *C;
4624   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4625     return nullptr;
4626 
4627   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4628   if (Pred == ICmpInst::ICMP_ULT) {
4629     if (C->isPowerOf2()) {
4630       // If C is a power-of-2 (one set bit):
4631       // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4632       Constant *MaskC = ConstantInt::get(X->getType(), (-*C).zext(SrcBits));
4633       Value *And = Builder.CreateAnd(X, MaskC);
4634       Constant *Zero = ConstantInt::getNullValue(X->getType());
4635       return new ICmpInst(ICmpInst::ICMP_EQ, And, Zero);
4636     }
4637     // If C is a negative power-of-2 (high-bit mask):
4638     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4639     if (C->isNegatedPowerOf2()) {
4640       Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4641       Value *And = Builder.CreateAnd(X, MaskC);
4642       return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4643     }
4644   }
4645 
4646   if (Pred == ICmpInst::ICMP_UGT) {
4647     // If C is a low-bit-mask (C+1 is a power-of-2):
4648     // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4649     if (C->isMask()) {
4650       Constant *MaskC = ConstantInt::get(X->getType(), (~*C).zext(SrcBits));
4651       Value *And = Builder.CreateAnd(X, MaskC);
4652       Constant *Zero = ConstantInt::getNullValue(X->getType());
4653       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
4654     }
4655     // If C is not-of-power-of-2 (one clear bit):
4656     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4657     if ((~*C).isPowerOf2()) {
4658       Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4659       Value *And = Builder.CreateAnd(X, MaskC);
4660       return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4661     }
4662   }
4663 
4664   return nullptr;
4665 }
4666 
4667 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4668                                            InstCombiner::BuilderTy &Builder) {
4669   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4670   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4671   Value *X;
4672   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4673     return nullptr;
4674 
4675   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4676   bool IsSignedCmp = ICmp.isSigned();
4677   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4678     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4679     // and the other is a zext), then we can't handle this.
4680     // TODO: This is too strict. We can handle some predicates (equality?).
4681     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4682       return nullptr;
4683 
4684     // Not an extension from the same type?
4685     Value *Y = CastOp1->getOperand(0);
4686     Type *XTy = X->getType(), *YTy = Y->getType();
4687     if (XTy != YTy) {
4688       // One of the casts must have one use because we are creating a new cast.
4689       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4690         return nullptr;
4691       // Extend the narrower operand to the type of the wider operand.
4692       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4693         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4694       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4695         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4696       else
4697         return nullptr;
4698     }
4699 
4700     // (zext X) == (zext Y) --> X == Y
4701     // (sext X) == (sext Y) --> X == Y
4702     if (ICmp.isEquality())
4703       return new ICmpInst(ICmp.getPredicate(), X, Y);
4704 
4705     // A signed comparison of sign extended values simplifies into a
4706     // signed comparison.
4707     if (IsSignedCmp && IsSignedExt)
4708       return new ICmpInst(ICmp.getPredicate(), X, Y);
4709 
4710     // The other three cases all fold into an unsigned comparison.
4711     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4712   }
4713 
4714   // Below here, we are only folding a compare with constant.
4715   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4716   if (!C)
4717     return nullptr;
4718 
4719   // Compute the constant that would happen if we truncated to SrcTy then
4720   // re-extended to DestTy.
4721   Type *SrcTy = CastOp0->getSrcTy();
4722   Type *DestTy = CastOp0->getDestTy();
4723   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4724   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4725 
4726   // If the re-extended constant didn't change...
4727   if (Res2 == C) {
4728     if (ICmp.isEquality())
4729       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4730 
4731     // A signed comparison of sign extended values simplifies into a
4732     // signed comparison.
4733     if (IsSignedExt && IsSignedCmp)
4734       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4735 
4736     // The other three cases all fold into an unsigned comparison.
4737     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4738   }
4739 
4740   // The re-extended constant changed, partly changed (in the case of a vector),
4741   // or could not be determined to be equal (in the case of a constant
4742   // expression), so the constant cannot be represented in the shorter type.
4743   // All the cases that fold to true or false will have already been handled
4744   // by SimplifyICmpInst, so only deal with the tricky case.
4745   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4746     return nullptr;
4747 
4748   // Is source op positive?
4749   // icmp ult (sext X), C --> icmp sgt X, -1
4750   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4751     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4752 
4753   // Is source op negative?
4754   // icmp ugt (sext X), C --> icmp slt X, 0
4755   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4756   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4757 }
4758 
4759 /// Handle icmp (cast x), (cast or constant).
4760 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4761   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4762   // icmp compares only pointer's value.
4763   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4764   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4765   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4766   if (SimplifiedOp0 || SimplifiedOp1)
4767     return new ICmpInst(ICmp.getPredicate(),
4768                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4769                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4770 
4771   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4772   if (!CastOp0)
4773     return nullptr;
4774   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4775     return nullptr;
4776 
4777   Value *Op0Src = CastOp0->getOperand(0);
4778   Type *SrcTy = CastOp0->getSrcTy();
4779   Type *DestTy = CastOp0->getDestTy();
4780 
4781   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4782   // integer type is the same size as the pointer type.
4783   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4784     if (isa<VectorType>(SrcTy)) {
4785       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4786       DestTy = cast<VectorType>(DestTy)->getElementType();
4787     }
4788     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4789   };
4790   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4791       CompatibleSizes(SrcTy, DestTy)) {
4792     Value *NewOp1 = nullptr;
4793     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4794       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4795       if (PtrSrc->getType()->getPointerAddressSpace() ==
4796           Op0Src->getType()->getPointerAddressSpace()) {
4797         NewOp1 = PtrToIntOp1->getOperand(0);
4798         // If the pointer types don't match, insert a bitcast.
4799         if (Op0Src->getType() != NewOp1->getType())
4800           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4801       }
4802     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4803       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4804     }
4805 
4806     if (NewOp1)
4807       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4808   }
4809 
4810   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4811     return R;
4812 
4813   return foldICmpWithZextOrSext(ICmp, Builder);
4814 }
4815 
4816 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4817   switch (BinaryOp) {
4818     default:
4819       llvm_unreachable("Unsupported binary op");
4820     case Instruction::Add:
4821     case Instruction::Sub:
4822       return match(RHS, m_Zero());
4823     case Instruction::Mul:
4824       return match(RHS, m_One());
4825   }
4826 }
4827 
4828 OverflowResult
4829 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4830                                   bool IsSigned, Value *LHS, Value *RHS,
4831                                   Instruction *CxtI) const {
4832   switch (BinaryOp) {
4833     default:
4834       llvm_unreachable("Unsupported binary op");
4835     case Instruction::Add:
4836       if (IsSigned)
4837         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4838       else
4839         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4840     case Instruction::Sub:
4841       if (IsSigned)
4842         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4843       else
4844         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4845     case Instruction::Mul:
4846       if (IsSigned)
4847         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4848       else
4849         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4850   }
4851 }
4852 
4853 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4854                                              bool IsSigned, Value *LHS,
4855                                              Value *RHS, Instruction &OrigI,
4856                                              Value *&Result,
4857                                              Constant *&Overflow) {
4858   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4859     std::swap(LHS, RHS);
4860 
4861   // If the overflow check was an add followed by a compare, the insertion point
4862   // may be pointing to the compare.  We want to insert the new instructions
4863   // before the add in case there are uses of the add between the add and the
4864   // compare.
4865   Builder.SetInsertPoint(&OrigI);
4866 
4867   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4868   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4869     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4870 
4871   if (isNeutralValue(BinaryOp, RHS)) {
4872     Result = LHS;
4873     Overflow = ConstantInt::getFalse(OverflowTy);
4874     return true;
4875   }
4876 
4877   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4878     case OverflowResult::MayOverflow:
4879       return false;
4880     case OverflowResult::AlwaysOverflowsLow:
4881     case OverflowResult::AlwaysOverflowsHigh:
4882       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4883       Result->takeName(&OrigI);
4884       Overflow = ConstantInt::getTrue(OverflowTy);
4885       return true;
4886     case OverflowResult::NeverOverflows:
4887       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4888       Result->takeName(&OrigI);
4889       Overflow = ConstantInt::getFalse(OverflowTy);
4890       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4891         if (IsSigned)
4892           Inst->setHasNoSignedWrap();
4893         else
4894           Inst->setHasNoUnsignedWrap();
4895       }
4896       return true;
4897   }
4898 
4899   llvm_unreachable("Unexpected overflow result");
4900 }
4901 
4902 /// Recognize and process idiom involving test for multiplication
4903 /// overflow.
4904 ///
4905 /// The caller has matched a pattern of the form:
4906 ///   I = cmp u (mul(zext A, zext B), V
4907 /// The function checks if this is a test for overflow and if so replaces
4908 /// multiplication with call to 'mul.with.overflow' intrinsic.
4909 ///
4910 /// \param I Compare instruction.
4911 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4912 ///               the compare instruction.  Must be of integer type.
4913 /// \param OtherVal The other argument of compare instruction.
4914 /// \returns Instruction which must replace the compare instruction, NULL if no
4915 ///          replacement required.
4916 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4917                                          Value *OtherVal,
4918                                          InstCombinerImpl &IC) {
4919   // Don't bother doing this transformation for pointers, don't do it for
4920   // vectors.
4921   if (!isa<IntegerType>(MulVal->getType()))
4922     return nullptr;
4923 
4924   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4925   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4926   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4927   if (!MulInstr)
4928     return nullptr;
4929   assert(MulInstr->getOpcode() == Instruction::Mul);
4930 
4931   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4932        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4933   assert(LHS->getOpcode() == Instruction::ZExt);
4934   assert(RHS->getOpcode() == Instruction::ZExt);
4935   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4936 
4937   // Calculate type and width of the result produced by mul.with.overflow.
4938   Type *TyA = A->getType(), *TyB = B->getType();
4939   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4940            WidthB = TyB->getPrimitiveSizeInBits();
4941   unsigned MulWidth;
4942   Type *MulType;
4943   if (WidthB > WidthA) {
4944     MulWidth = WidthB;
4945     MulType = TyB;
4946   } else {
4947     MulWidth = WidthA;
4948     MulType = TyA;
4949   }
4950 
4951   // In order to replace the original mul with a narrower mul.with.overflow,
4952   // all uses must ignore upper bits of the product.  The number of used low
4953   // bits must be not greater than the width of mul.with.overflow.
4954   if (MulVal->hasNUsesOrMore(2))
4955     for (User *U : MulVal->users()) {
4956       if (U == &I)
4957         continue;
4958       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4959         // Check if truncation ignores bits above MulWidth.
4960         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4961         if (TruncWidth > MulWidth)
4962           return nullptr;
4963       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4964         // Check if AND ignores bits above MulWidth.
4965         if (BO->getOpcode() != Instruction::And)
4966           return nullptr;
4967         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4968           const APInt &CVal = CI->getValue();
4969           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4970             return nullptr;
4971         } else {
4972           // In this case we could have the operand of the binary operation
4973           // being defined in another block, and performing the replacement
4974           // could break the dominance relation.
4975           return nullptr;
4976         }
4977       } else {
4978         // Other uses prohibit this transformation.
4979         return nullptr;
4980       }
4981     }
4982 
4983   // Recognize patterns
4984   switch (I.getPredicate()) {
4985   case ICmpInst::ICMP_EQ:
4986   case ICmpInst::ICMP_NE:
4987     // Recognize pattern:
4988     //   mulval = mul(zext A, zext B)
4989     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4990     ConstantInt *CI;
4991     Value *ValToMask;
4992     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4993       if (ValToMask != MulVal)
4994         return nullptr;
4995       const APInt &CVal = CI->getValue() + 1;
4996       if (CVal.isPowerOf2()) {
4997         unsigned MaskWidth = CVal.logBase2();
4998         if (MaskWidth == MulWidth)
4999           break; // Recognized
5000       }
5001     }
5002     return nullptr;
5003 
5004   case ICmpInst::ICMP_UGT:
5005     // Recognize pattern:
5006     //   mulval = mul(zext A, zext B)
5007     //   cmp ugt mulval, max
5008     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5009       APInt MaxVal = APInt::getMaxValue(MulWidth);
5010       MaxVal = MaxVal.zext(CI->getBitWidth());
5011       if (MaxVal.eq(CI->getValue()))
5012         break; // Recognized
5013     }
5014     return nullptr;
5015 
5016   case ICmpInst::ICMP_UGE:
5017     // Recognize pattern:
5018     //   mulval = mul(zext A, zext B)
5019     //   cmp uge mulval, max+1
5020     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5021       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5022       if (MaxVal.eq(CI->getValue()))
5023         break; // Recognized
5024     }
5025     return nullptr;
5026 
5027   case ICmpInst::ICMP_ULE:
5028     // Recognize pattern:
5029     //   mulval = mul(zext A, zext B)
5030     //   cmp ule mulval, max
5031     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5032       APInt MaxVal = APInt::getMaxValue(MulWidth);
5033       MaxVal = MaxVal.zext(CI->getBitWidth());
5034       if (MaxVal.eq(CI->getValue()))
5035         break; // Recognized
5036     }
5037     return nullptr;
5038 
5039   case ICmpInst::ICMP_ULT:
5040     // Recognize pattern:
5041     //   mulval = mul(zext A, zext B)
5042     //   cmp ule mulval, max + 1
5043     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5044       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5045       if (MaxVal.eq(CI->getValue()))
5046         break; // Recognized
5047     }
5048     return nullptr;
5049 
5050   default:
5051     return nullptr;
5052   }
5053 
5054   InstCombiner::BuilderTy &Builder = IC.Builder;
5055   Builder.SetInsertPoint(MulInstr);
5056 
5057   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5058   Value *MulA = A, *MulB = B;
5059   if (WidthA < MulWidth)
5060     MulA = Builder.CreateZExt(A, MulType);
5061   if (WidthB < MulWidth)
5062     MulB = Builder.CreateZExt(B, MulType);
5063   Function *F = Intrinsic::getDeclaration(
5064       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5065   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5066   IC.addToWorklist(MulInstr);
5067 
5068   // If there are uses of mul result other than the comparison, we know that
5069   // they are truncation or binary AND. Change them to use result of
5070   // mul.with.overflow and adjust properly mask/size.
5071   if (MulVal->hasNUsesOrMore(2)) {
5072     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5073     for (User *U : make_early_inc_range(MulVal->users())) {
5074       if (U == &I || U == OtherVal)
5075         continue;
5076       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5077         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5078           IC.replaceInstUsesWith(*TI, Mul);
5079         else
5080           TI->setOperand(0, Mul);
5081       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5082         assert(BO->getOpcode() == Instruction::And);
5083         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5084         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5085         APInt ShortMask = CI->getValue().trunc(MulWidth);
5086         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5087         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5088         IC.replaceInstUsesWith(*BO, Zext);
5089       } else {
5090         llvm_unreachable("Unexpected Binary operation");
5091       }
5092       IC.addToWorklist(cast<Instruction>(U));
5093     }
5094   }
5095   if (isa<Instruction>(OtherVal))
5096     IC.addToWorklist(cast<Instruction>(OtherVal));
5097 
5098   // The original icmp gets replaced with the overflow value, maybe inverted
5099   // depending on predicate.
5100   bool Inverse = false;
5101   switch (I.getPredicate()) {
5102   case ICmpInst::ICMP_NE:
5103     break;
5104   case ICmpInst::ICMP_EQ:
5105     Inverse = true;
5106     break;
5107   case ICmpInst::ICMP_UGT:
5108   case ICmpInst::ICMP_UGE:
5109     if (I.getOperand(0) == MulVal)
5110       break;
5111     Inverse = true;
5112     break;
5113   case ICmpInst::ICMP_ULT:
5114   case ICmpInst::ICMP_ULE:
5115     if (I.getOperand(1) == MulVal)
5116       break;
5117     Inverse = true;
5118     break;
5119   default:
5120     llvm_unreachable("Unexpected predicate");
5121   }
5122   if (Inverse) {
5123     Value *Res = Builder.CreateExtractValue(Call, 1);
5124     return BinaryOperator::CreateNot(Res);
5125   }
5126 
5127   return ExtractValueInst::Create(Call, 1);
5128 }
5129 
5130 /// When performing a comparison against a constant, it is possible that not all
5131 /// the bits in the LHS are demanded. This helper method computes the mask that
5132 /// IS demanded.
5133 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5134   const APInt *RHS;
5135   if (!match(I.getOperand(1), m_APInt(RHS)))
5136     return APInt::getAllOnes(BitWidth);
5137 
5138   // If this is a normal comparison, it demands all bits. If it is a sign bit
5139   // comparison, it only demands the sign bit.
5140   bool UnusedBit;
5141   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5142     return APInt::getSignMask(BitWidth);
5143 
5144   switch (I.getPredicate()) {
5145   // For a UGT comparison, we don't care about any bits that
5146   // correspond to the trailing ones of the comparand.  The value of these
5147   // bits doesn't impact the outcome of the comparison, because any value
5148   // greater than the RHS must differ in a bit higher than these due to carry.
5149   case ICmpInst::ICMP_UGT:
5150     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5151 
5152   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5153   // Any value less than the RHS must differ in a higher bit because of carries.
5154   case ICmpInst::ICMP_ULT:
5155     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5156 
5157   default:
5158     return APInt::getAllOnes(BitWidth);
5159   }
5160 }
5161 
5162 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5163 /// should be swapped.
5164 /// The decision is based on how many times these two operands are reused
5165 /// as subtract operands and their positions in those instructions.
5166 /// The rationale is that several architectures use the same instruction for
5167 /// both subtract and cmp. Thus, it is better if the order of those operands
5168 /// match.
5169 /// \return true if Op0 and Op1 should be swapped.
5170 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5171   // Filter out pointer values as those cannot appear directly in subtract.
5172   // FIXME: we may want to go through inttoptrs or bitcasts.
5173   if (Op0->getType()->isPointerTy())
5174     return false;
5175   // If a subtract already has the same operands as a compare, swapping would be
5176   // bad. If a subtract has the same operands as a compare but in reverse order,
5177   // then swapping is good.
5178   int GoodToSwap = 0;
5179   for (const User *U : Op0->users()) {
5180     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5181       GoodToSwap++;
5182     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5183       GoodToSwap--;
5184   }
5185   return GoodToSwap > 0;
5186 }
5187 
5188 /// Check that one use is in the same block as the definition and all
5189 /// other uses are in blocks dominated by a given block.
5190 ///
5191 /// \param DI Definition
5192 /// \param UI Use
5193 /// \param DB Block that must dominate all uses of \p DI outside
5194 ///           the parent block
5195 /// \return true when \p UI is the only use of \p DI in the parent block
5196 /// and all other uses of \p DI are in blocks dominated by \p DB.
5197 ///
5198 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5199                                         const Instruction *UI,
5200                                         const BasicBlock *DB) const {
5201   assert(DI && UI && "Instruction not defined\n");
5202   // Ignore incomplete definitions.
5203   if (!DI->getParent())
5204     return false;
5205   // DI and UI must be in the same block.
5206   if (DI->getParent() != UI->getParent())
5207     return false;
5208   // Protect from self-referencing blocks.
5209   if (DI->getParent() == DB)
5210     return false;
5211   for (const User *U : DI->users()) {
5212     auto *Usr = cast<Instruction>(U);
5213     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5214       return false;
5215   }
5216   return true;
5217 }
5218 
5219 /// Return true when the instruction sequence within a block is select-cmp-br.
5220 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5221   const BasicBlock *BB = SI->getParent();
5222   if (!BB)
5223     return false;
5224   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5225   if (!BI || BI->getNumSuccessors() != 2)
5226     return false;
5227   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5228   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5229     return false;
5230   return true;
5231 }
5232 
5233 /// True when a select result is replaced by one of its operands
5234 /// in select-icmp sequence. This will eventually result in the elimination
5235 /// of the select.
5236 ///
5237 /// \param SI    Select instruction
5238 /// \param Icmp  Compare instruction
5239 /// \param SIOpd Operand that replaces the select
5240 ///
5241 /// Notes:
5242 /// - The replacement is global and requires dominator information
5243 /// - The caller is responsible for the actual replacement
5244 ///
5245 /// Example:
5246 ///
5247 /// entry:
5248 ///  %4 = select i1 %3, %C* %0, %C* null
5249 ///  %5 = icmp eq %C* %4, null
5250 ///  br i1 %5, label %9, label %7
5251 ///  ...
5252 ///  ; <label>:7                                       ; preds = %entry
5253 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5254 ///  ...
5255 ///
5256 /// can be transformed to
5257 ///
5258 ///  %5 = icmp eq %C* %0, null
5259 ///  %6 = select i1 %3, i1 %5, i1 true
5260 ///  br i1 %6, label %9, label %7
5261 ///  ...
5262 ///  ; <label>:7                                       ; preds = %entry
5263 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5264 ///
5265 /// Similar when the first operand of the select is a constant or/and
5266 /// the compare is for not equal rather than equal.
5267 ///
5268 /// NOTE: The function is only called when the select and compare constants
5269 /// are equal, the optimization can work only for EQ predicates. This is not a
5270 /// major restriction since a NE compare should be 'normalized' to an equal
5271 /// compare, which usually happens in the combiner and test case
5272 /// select-cmp-br.ll checks for it.
5273 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5274                                                  const ICmpInst *Icmp,
5275                                                  const unsigned SIOpd) {
5276   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5277   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5278     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5279     // The check for the single predecessor is not the best that can be
5280     // done. But it protects efficiently against cases like when SI's
5281     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5282     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5283     // replaced can be reached on either path. So the uniqueness check
5284     // guarantees that the path all uses of SI (outside SI's parent) are on
5285     // is disjoint from all other paths out of SI. But that information
5286     // is more expensive to compute, and the trade-off here is in favor
5287     // of compile-time. It should also be noticed that we check for a single
5288     // predecessor and not only uniqueness. This to handle the situation when
5289     // Succ and Succ1 points to the same basic block.
5290     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5291       NumSel++;
5292       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5293       return true;
5294     }
5295   }
5296   return false;
5297 }
5298 
5299 /// Try to fold the comparison based on range information we can get by checking
5300 /// whether bits are known to be zero or one in the inputs.
5301 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5302   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5303   Type *Ty = Op0->getType();
5304   ICmpInst::Predicate Pred = I.getPredicate();
5305 
5306   // Get scalar or pointer size.
5307   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5308                           ? Ty->getScalarSizeInBits()
5309                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5310 
5311   if (!BitWidth)
5312     return nullptr;
5313 
5314   KnownBits Op0Known(BitWidth);
5315   KnownBits Op1Known(BitWidth);
5316 
5317   if (SimplifyDemandedBits(&I, 0,
5318                            getDemandedBitsLHSMask(I, BitWidth),
5319                            Op0Known, 0))
5320     return &I;
5321 
5322   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5323     return &I;
5324 
5325   // Given the known and unknown bits, compute a range that the LHS could be
5326   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5327   // EQ and NE we use unsigned values.
5328   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5329   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5330   if (I.isSigned()) {
5331     Op0Min = Op0Known.getSignedMinValue();
5332     Op0Max = Op0Known.getSignedMaxValue();
5333     Op1Min = Op1Known.getSignedMinValue();
5334     Op1Max = Op1Known.getSignedMaxValue();
5335   } else {
5336     Op0Min = Op0Known.getMinValue();
5337     Op0Max = Op0Known.getMaxValue();
5338     Op1Min = Op1Known.getMinValue();
5339     Op1Max = Op1Known.getMaxValue();
5340   }
5341 
5342   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5343   // out that the LHS or RHS is a constant. Constant fold this now, so that
5344   // code below can assume that Min != Max.
5345   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5346     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5347   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5348     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5349 
5350   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5351   // min/max canonical compare with some other compare. That could lead to
5352   // conflict with select canonicalization and infinite looping.
5353   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5354   auto isMinMaxCmp = [&](Instruction &Cmp) {
5355     if (!Cmp.hasOneUse())
5356       return false;
5357     Value *A, *B;
5358     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5359     if (!SelectPatternResult::isMinOrMax(SPF))
5360       return false;
5361     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5362            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5363   };
5364   if (!isMinMaxCmp(I)) {
5365     switch (Pred) {
5366     default:
5367       break;
5368     case ICmpInst::ICMP_ULT: {
5369       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5370         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5371       const APInt *CmpC;
5372       if (match(Op1, m_APInt(CmpC))) {
5373         // A <u C -> A == C-1 if min(A)+1 == C
5374         if (*CmpC == Op0Min + 1)
5375           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5376                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5377         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5378         // exceeds the log2 of C.
5379         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5380           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5381                               Constant::getNullValue(Op1->getType()));
5382       }
5383       break;
5384     }
5385     case ICmpInst::ICMP_UGT: {
5386       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5387         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5388       const APInt *CmpC;
5389       if (match(Op1, m_APInt(CmpC))) {
5390         // A >u C -> A == C+1 if max(a)-1 == C
5391         if (*CmpC == Op0Max - 1)
5392           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5393                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5394         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5395         // exceeds the log2 of C.
5396         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5397           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5398                               Constant::getNullValue(Op1->getType()));
5399       }
5400       break;
5401     }
5402     case ICmpInst::ICMP_SLT: {
5403       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5404         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5405       const APInt *CmpC;
5406       if (match(Op1, m_APInt(CmpC))) {
5407         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5408           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5409                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5410       }
5411       break;
5412     }
5413     case ICmpInst::ICMP_SGT: {
5414       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5415         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5416       const APInt *CmpC;
5417       if (match(Op1, m_APInt(CmpC))) {
5418         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5419           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5420                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5421       }
5422       break;
5423     }
5424     }
5425   }
5426 
5427   // Based on the range information we know about the LHS, see if we can
5428   // simplify this comparison.  For example, (x&4) < 8 is always true.
5429   switch (Pred) {
5430   default:
5431     llvm_unreachable("Unknown icmp opcode!");
5432   case ICmpInst::ICMP_EQ:
5433   case ICmpInst::ICMP_NE: {
5434     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5435       return replaceInstUsesWith(
5436           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5437 
5438     // If all bits are known zero except for one, then we know at most one bit
5439     // is set. If the comparison is against zero, then this is a check to see if
5440     // *that* bit is set.
5441     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5442     if (Op1Known.isZero()) {
5443       // If the LHS is an AND with the same constant, look through it.
5444       Value *LHS = nullptr;
5445       const APInt *LHSC;
5446       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5447           *LHSC != Op0KnownZeroInverted)
5448         LHS = Op0;
5449 
5450       Value *X;
5451       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5452         APInt ValToCheck = Op0KnownZeroInverted;
5453         Type *XTy = X->getType();
5454         if (ValToCheck.isPowerOf2()) {
5455           // ((1 << X) & 8) == 0 -> X != 3
5456           // ((1 << X) & 8) != 0 -> X == 3
5457           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5458           auto NewPred = ICmpInst::getInversePredicate(Pred);
5459           return new ICmpInst(NewPred, X, CmpC);
5460         } else if ((++ValToCheck).isPowerOf2()) {
5461           // ((1 << X) & 7) == 0 -> X >= 3
5462           // ((1 << X) & 7) != 0 -> X  < 3
5463           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5464           auto NewPred =
5465               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5466           return new ICmpInst(NewPred, X, CmpC);
5467         }
5468       }
5469 
5470       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5471       const APInt *CI;
5472       if (Op0KnownZeroInverted.isOne() &&
5473           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5474         // ((8 >>u X) & 1) == 0 -> X != 3
5475         // ((8 >>u X) & 1) != 0 -> X == 3
5476         unsigned CmpVal = CI->countTrailingZeros();
5477         auto NewPred = ICmpInst::getInversePredicate(Pred);
5478         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5479       }
5480     }
5481     break;
5482   }
5483   case ICmpInst::ICMP_ULT: {
5484     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5485       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5486     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5487       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5488     break;
5489   }
5490   case ICmpInst::ICMP_UGT: {
5491     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5492       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5493     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5494       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5495     break;
5496   }
5497   case ICmpInst::ICMP_SLT: {
5498     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5499       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5500     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5501       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5502     break;
5503   }
5504   case ICmpInst::ICMP_SGT: {
5505     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5506       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5507     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5508       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5509     break;
5510   }
5511   case ICmpInst::ICMP_SGE:
5512     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5513     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5514       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5515     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5516       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5517     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5518       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5519     break;
5520   case ICmpInst::ICMP_SLE:
5521     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5522     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5523       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5524     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5525       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5526     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5527       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5528     break;
5529   case ICmpInst::ICMP_UGE:
5530     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5531     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5532       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5533     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5534       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5535     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5536       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5537     break;
5538   case ICmpInst::ICMP_ULE:
5539     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5540     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5541       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5542     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5543       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5544     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5545       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5546     break;
5547   }
5548 
5549   // Turn a signed comparison into an unsigned one if both operands are known to
5550   // have the same sign.
5551   if (I.isSigned() &&
5552       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5553        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5554     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5555 
5556   return nullptr;
5557 }
5558 
5559 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5560 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5561                                                        Constant *C) {
5562   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5563          "Only for relational integer predicates.");
5564 
5565   Type *Type = C->getType();
5566   bool IsSigned = ICmpInst::isSigned(Pred);
5567 
5568   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5569   bool WillIncrement =
5570       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5571 
5572   // Check if the constant operand can be safely incremented/decremented
5573   // without overflowing/underflowing.
5574   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5575     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5576   };
5577 
5578   Constant *SafeReplacementConstant = nullptr;
5579   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5580     // Bail out if the constant can't be safely incremented/decremented.
5581     if (!ConstantIsOk(CI))
5582       return llvm::None;
5583   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5584     unsigned NumElts = FVTy->getNumElements();
5585     for (unsigned i = 0; i != NumElts; ++i) {
5586       Constant *Elt = C->getAggregateElement(i);
5587       if (!Elt)
5588         return llvm::None;
5589 
5590       if (isa<UndefValue>(Elt))
5591         continue;
5592 
5593       // Bail out if we can't determine if this constant is min/max or if we
5594       // know that this constant is min/max.
5595       auto *CI = dyn_cast<ConstantInt>(Elt);
5596       if (!CI || !ConstantIsOk(CI))
5597         return llvm::None;
5598 
5599       if (!SafeReplacementConstant)
5600         SafeReplacementConstant = CI;
5601     }
5602   } else {
5603     // ConstantExpr?
5604     return llvm::None;
5605   }
5606 
5607   // It may not be safe to change a compare predicate in the presence of
5608   // undefined elements, so replace those elements with the first safe constant
5609   // that we found.
5610   // TODO: in case of poison, it is safe; let's replace undefs only.
5611   if (C->containsUndefOrPoisonElement()) {
5612     assert(SafeReplacementConstant && "Replacement constant not set");
5613     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5614   }
5615 
5616   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5617 
5618   // Increment or decrement the constant.
5619   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5620   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5621 
5622   return std::make_pair(NewPred, NewC);
5623 }
5624 
5625 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5626 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5627 /// allows them to be folded in visitICmpInst.
5628 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5629   ICmpInst::Predicate Pred = I.getPredicate();
5630   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5631       InstCombiner::isCanonicalPredicate(Pred))
5632     return nullptr;
5633 
5634   Value *Op0 = I.getOperand(0);
5635   Value *Op1 = I.getOperand(1);
5636   auto *Op1C = dyn_cast<Constant>(Op1);
5637   if (!Op1C)
5638     return nullptr;
5639 
5640   auto FlippedStrictness =
5641       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5642   if (!FlippedStrictness)
5643     return nullptr;
5644 
5645   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5646 }
5647 
5648 /// If we have a comparison with a non-canonical predicate, if we can update
5649 /// all the users, invert the predicate and adjust all the users.
5650 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5651   // Is the predicate already canonical?
5652   CmpInst::Predicate Pred = I.getPredicate();
5653   if (InstCombiner::isCanonicalPredicate(Pred))
5654     return nullptr;
5655 
5656   // Can all users be adjusted to predicate inversion?
5657   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5658     return nullptr;
5659 
5660   // Ok, we can canonicalize comparison!
5661   // Let's first invert the comparison's predicate.
5662   I.setPredicate(CmpInst::getInversePredicate(Pred));
5663   I.setName(I.getName() + ".not");
5664 
5665   // And, adapt users.
5666   freelyInvertAllUsersOf(&I);
5667 
5668   return &I;
5669 }
5670 
5671 /// Integer compare with boolean values can always be turned into bitwise ops.
5672 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5673                                          InstCombiner::BuilderTy &Builder) {
5674   Value *A = I.getOperand(0), *B = I.getOperand(1);
5675   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5676 
5677   // A boolean compared to true/false can be simplified to Op0/true/false in
5678   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5679   // Cases not handled by InstSimplify are always 'not' of Op0.
5680   if (match(B, m_Zero())) {
5681     switch (I.getPredicate()) {
5682       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5683       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5684       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5685         return BinaryOperator::CreateNot(A);
5686       default:
5687         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5688     }
5689   } else if (match(B, m_One())) {
5690     switch (I.getPredicate()) {
5691       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5692       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5693       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5694         return BinaryOperator::CreateNot(A);
5695       default:
5696         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5697     }
5698   }
5699 
5700   switch (I.getPredicate()) {
5701   default:
5702     llvm_unreachable("Invalid icmp instruction!");
5703   case ICmpInst::ICMP_EQ:
5704     // icmp eq i1 A, B -> ~(A ^ B)
5705     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5706 
5707   case ICmpInst::ICMP_NE:
5708     // icmp ne i1 A, B -> A ^ B
5709     return BinaryOperator::CreateXor(A, B);
5710 
5711   case ICmpInst::ICMP_UGT:
5712     // icmp ugt -> icmp ult
5713     std::swap(A, B);
5714     LLVM_FALLTHROUGH;
5715   case ICmpInst::ICMP_ULT:
5716     // icmp ult i1 A, B -> ~A & B
5717     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5718 
5719   case ICmpInst::ICMP_SGT:
5720     // icmp sgt -> icmp slt
5721     std::swap(A, B);
5722     LLVM_FALLTHROUGH;
5723   case ICmpInst::ICMP_SLT:
5724     // icmp slt i1 A, B -> A & ~B
5725     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5726 
5727   case ICmpInst::ICMP_UGE:
5728     // icmp uge -> icmp ule
5729     std::swap(A, B);
5730     LLVM_FALLTHROUGH;
5731   case ICmpInst::ICMP_ULE:
5732     // icmp ule i1 A, B -> ~A | B
5733     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5734 
5735   case ICmpInst::ICMP_SGE:
5736     // icmp sge -> icmp sle
5737     std::swap(A, B);
5738     LLVM_FALLTHROUGH;
5739   case ICmpInst::ICMP_SLE:
5740     // icmp sle i1 A, B -> A | ~B
5741     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5742   }
5743 }
5744 
5745 // Transform pattern like:
5746 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5747 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5748 // Into:
5749 //   (X l>> Y) != 0
5750 //   (X l>> Y) == 0
5751 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5752                                             InstCombiner::BuilderTy &Builder) {
5753   ICmpInst::Predicate Pred, NewPred;
5754   Value *X, *Y;
5755   if (match(&Cmp,
5756             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5757     switch (Pred) {
5758     case ICmpInst::ICMP_ULE:
5759       NewPred = ICmpInst::ICMP_NE;
5760       break;
5761     case ICmpInst::ICMP_UGT:
5762       NewPred = ICmpInst::ICMP_EQ;
5763       break;
5764     default:
5765       return nullptr;
5766     }
5767   } else if (match(&Cmp, m_c_ICmp(Pred,
5768                                   m_OneUse(m_CombineOr(
5769                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5770                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5771                                             m_AllOnes()))),
5772                                   m_Value(X)))) {
5773     // The variant with 'add' is not canonical, (the variant with 'not' is)
5774     // we only get it because it has extra uses, and can't be canonicalized,
5775 
5776     switch (Pred) {
5777     case ICmpInst::ICMP_ULT:
5778       NewPred = ICmpInst::ICMP_NE;
5779       break;
5780     case ICmpInst::ICMP_UGE:
5781       NewPred = ICmpInst::ICMP_EQ;
5782       break;
5783     default:
5784       return nullptr;
5785     }
5786   } else
5787     return nullptr;
5788 
5789   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5790   Constant *Zero = Constant::getNullValue(NewX->getType());
5791   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5792 }
5793 
5794 static Instruction *foldVectorCmp(CmpInst &Cmp,
5795                                   InstCombiner::BuilderTy &Builder) {
5796   const CmpInst::Predicate Pred = Cmp.getPredicate();
5797   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5798   Value *V1, *V2;
5799   ArrayRef<int> M;
5800   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5801     return nullptr;
5802 
5803   // If both arguments of the cmp are shuffles that use the same mask and
5804   // shuffle within a single vector, move the shuffle after the cmp:
5805   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5806   Type *V1Ty = V1->getType();
5807   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5808       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5809     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5810     return new ShuffleVectorInst(NewCmp, M);
5811   }
5812 
5813   // Try to canonicalize compare with splatted operand and splat constant.
5814   // TODO: We could generalize this for more than splats. See/use the code in
5815   //       InstCombiner::foldVectorBinop().
5816   Constant *C;
5817   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5818     return nullptr;
5819 
5820   // Length-changing splats are ok, so adjust the constants as needed:
5821   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5822   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5823   int MaskSplatIndex;
5824   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5825     // We allow undefs in matching, but this transform removes those for safety.
5826     // Demanded elements analysis should be able to recover some/all of that.
5827     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5828                                  ScalarC);
5829     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5830     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5831     return new ShuffleVectorInst(NewCmp, NewM);
5832   }
5833 
5834   return nullptr;
5835 }
5836 
5837 // extract(uadd.with.overflow(A, B), 0) ult A
5838 //  -> extract(uadd.with.overflow(A, B), 1)
5839 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5840   CmpInst::Predicate Pred = I.getPredicate();
5841   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5842 
5843   Value *UAddOv;
5844   Value *A, *B;
5845   auto UAddOvResultPat = m_ExtractValue<0>(
5846       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5847   if (match(Op0, UAddOvResultPat) &&
5848       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5849        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5850         (match(A, m_One()) || match(B, m_One()))) ||
5851        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5852         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5853     // extract(uadd.with.overflow(A, B), 0) < A
5854     // extract(uadd.with.overflow(A, 1), 0) == 0
5855     // extract(uadd.with.overflow(A, -1), 0) != -1
5856     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5857   else if (match(Op1, UAddOvResultPat) &&
5858            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5859     // A > extract(uadd.with.overflow(A, B), 0)
5860     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5861   else
5862     return nullptr;
5863 
5864   return ExtractValueInst::Create(UAddOv, 1);
5865 }
5866 
5867 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5868   if (!I.getOperand(0)->getType()->isPointerTy() ||
5869       NullPointerIsDefined(
5870           I.getParent()->getParent(),
5871           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5872     return nullptr;
5873   }
5874   Instruction *Op;
5875   if (match(I.getOperand(0), m_Instruction(Op)) &&
5876       match(I.getOperand(1), m_Zero()) &&
5877       Op->isLaunderOrStripInvariantGroup()) {
5878     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5879                             Op->getOperand(0), I.getOperand(1));
5880   }
5881   return nullptr;
5882 }
5883 
5884 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5885   bool Changed = false;
5886   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5887   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5888   unsigned Op0Cplxity = getComplexity(Op0);
5889   unsigned Op1Cplxity = getComplexity(Op1);
5890 
5891   /// Orders the operands of the compare so that they are listed from most
5892   /// complex to least complex.  This puts constants before unary operators,
5893   /// before binary operators.
5894   if (Op0Cplxity < Op1Cplxity ||
5895       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5896     I.swapOperands();
5897     std::swap(Op0, Op1);
5898     Changed = true;
5899   }
5900 
5901   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5902     return replaceInstUsesWith(I, V);
5903 
5904   // Comparing -val or val with non-zero is the same as just comparing val
5905   // ie, abs(val) != 0 -> val != 0
5906   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5907     Value *Cond, *SelectTrue, *SelectFalse;
5908     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5909                             m_Value(SelectFalse)))) {
5910       if (Value *V = dyn_castNegVal(SelectTrue)) {
5911         if (V == SelectFalse)
5912           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5913       }
5914       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5915         if (V == SelectTrue)
5916           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5917       }
5918     }
5919   }
5920 
5921   if (Op0->getType()->isIntOrIntVectorTy(1))
5922     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5923       return Res;
5924 
5925   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5926     return Res;
5927 
5928   if (Instruction *Res = canonicalizeICmpPredicate(I))
5929     return Res;
5930 
5931   if (Instruction *Res = foldICmpWithConstant(I))
5932     return Res;
5933 
5934   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5935     return Res;
5936 
5937   if (Instruction *Res = foldICmpUsingKnownBits(I))
5938     return Res;
5939 
5940   // Test if the ICmpInst instruction is used exclusively by a select as
5941   // part of a minimum or maximum operation. If so, refrain from doing
5942   // any other folding. This helps out other analyses which understand
5943   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5944   // and CodeGen. And in this case, at least one of the comparison
5945   // operands has at least one user besides the compare (the select),
5946   // which would often largely negate the benefit of folding anyway.
5947   //
5948   // Do the same for the other patterns recognized by matchSelectPattern.
5949   if (I.hasOneUse())
5950     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5951       Value *A, *B;
5952       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5953       if (SPR.Flavor != SPF_UNKNOWN)
5954         return nullptr;
5955     }
5956 
5957   // Do this after checking for min/max to prevent infinite looping.
5958   if (Instruction *Res = foldICmpWithZero(I))
5959     return Res;
5960 
5961   // FIXME: We only do this after checking for min/max to prevent infinite
5962   // looping caused by a reverse canonicalization of these patterns for min/max.
5963   // FIXME: The organization of folds is a mess. These would naturally go into
5964   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5965   // down here after the min/max restriction.
5966   ICmpInst::Predicate Pred = I.getPredicate();
5967   const APInt *C;
5968   if (match(Op1, m_APInt(C))) {
5969     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5970     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5971       Constant *Zero = Constant::getNullValue(Op0->getType());
5972       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5973     }
5974 
5975     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5976     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5977       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5978       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5979     }
5980   }
5981 
5982   // The folds in here may rely on wrapping flags and special constants, so
5983   // they can break up min/max idioms in some cases but not seemingly similar
5984   // patterns.
5985   // FIXME: It may be possible to enhance select folding to make this
5986   //        unnecessary. It may also be moot if we canonicalize to min/max
5987   //        intrinsics.
5988   if (Instruction *Res = foldICmpBinOp(I, Q))
5989     return Res;
5990 
5991   if (Instruction *Res = foldICmpInstWithConstant(I))
5992     return Res;
5993 
5994   // Try to match comparison as a sign bit test. Intentionally do this after
5995   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5996   if (Instruction *New = foldSignBitTest(I))
5997     return New;
5998 
5999   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6000     return Res;
6001 
6002   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6003   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6004     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6005       return NI;
6006   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6007     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6008       return NI;
6009 
6010   // Try to optimize equality comparisons against alloca-based pointers.
6011   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6012     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6013     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6014       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
6015         return New;
6016     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6017       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
6018         return New;
6019   }
6020 
6021   if (Instruction *Res = foldICmpBitCast(I))
6022     return Res;
6023 
6024   // TODO: Hoist this above the min/max bailout.
6025   if (Instruction *R = foldICmpWithCastOp(I))
6026     return R;
6027 
6028   if (Instruction *Res = foldICmpWithMinMax(I))
6029     return Res;
6030 
6031   {
6032     Value *A, *B;
6033     // Transform (A & ~B) == 0 --> (A & B) != 0
6034     // and       (A & ~B) != 0 --> (A & B) == 0
6035     // if A is a power of 2.
6036     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6037         match(Op1, m_Zero()) &&
6038         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6039       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6040                           Op1);
6041 
6042     // ~X < ~Y --> Y < X
6043     // ~X < C -->  X > ~C
6044     if (match(Op0, m_Not(m_Value(A)))) {
6045       if (match(Op1, m_Not(m_Value(B))))
6046         return new ICmpInst(I.getPredicate(), B, A);
6047 
6048       const APInt *C;
6049       if (match(Op1, m_APInt(C)))
6050         return new ICmpInst(I.getSwappedPredicate(), A,
6051                             ConstantInt::get(Op1->getType(), ~(*C)));
6052     }
6053 
6054     Instruction *AddI = nullptr;
6055     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6056                                      m_Instruction(AddI))) &&
6057         isa<IntegerType>(A->getType())) {
6058       Value *Result;
6059       Constant *Overflow;
6060       // m_UAddWithOverflow can match patterns that do not include  an explicit
6061       // "add" instruction, so check the opcode of the matched op.
6062       if (AddI->getOpcode() == Instruction::Add &&
6063           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6064                                 Result, Overflow)) {
6065         replaceInstUsesWith(*AddI, Result);
6066         eraseInstFromFunction(*AddI);
6067         return replaceInstUsesWith(I, Overflow);
6068       }
6069     }
6070 
6071     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6072     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6073       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6074         return R;
6075     }
6076     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6077       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6078         return R;
6079     }
6080   }
6081 
6082   if (Instruction *Res = foldICmpEquality(I))
6083     return Res;
6084 
6085   if (Instruction *Res = foldICmpOfUAddOv(I))
6086     return Res;
6087 
6088   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6089   // an i1 which indicates whether or not we successfully did the swap.
6090   //
6091   // Replace comparisons between the old value and the expected value with the
6092   // indicator that 'cmpxchg' returns.
6093   //
6094   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6095   // spuriously fail.  In those cases, the old value may equal the expected
6096   // value but it is possible for the swap to not occur.
6097   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6098     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6099       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6100         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6101             !ACXI->isWeak())
6102           return ExtractValueInst::Create(ACXI, 1);
6103 
6104   {
6105     Value *X;
6106     const APInt *C;
6107     // icmp X+Cst, X
6108     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6109       return foldICmpAddOpConst(X, *C, I.getPredicate());
6110 
6111     // icmp X, X+Cst
6112     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6113       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6114   }
6115 
6116   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6117     return Res;
6118 
6119   if (I.getType()->isVectorTy())
6120     if (Instruction *Res = foldVectorCmp(I, Builder))
6121       return Res;
6122 
6123   if (Instruction *Res = foldICmpInvariantGroup(I))
6124     return Res;
6125 
6126   return Changed ? &I : nullptr;
6127 }
6128 
6129 /// Fold fcmp ([us]itofp x, cst) if possible.
6130 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6131                                                     Instruction *LHSI,
6132                                                     Constant *RHSC) {
6133   if (!isa<ConstantFP>(RHSC)) return nullptr;
6134   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6135 
6136   // Get the width of the mantissa.  We don't want to hack on conversions that
6137   // might lose information from the integer, e.g. "i64 -> float"
6138   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6139   if (MantissaWidth == -1) return nullptr;  // Unknown.
6140 
6141   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6142 
6143   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6144 
6145   if (I.isEquality()) {
6146     FCmpInst::Predicate P = I.getPredicate();
6147     bool IsExact = false;
6148     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6149     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6150 
6151     // If the floating point constant isn't an integer value, we know if we will
6152     // ever compare equal / not equal to it.
6153     if (!IsExact) {
6154       // TODO: Can never be -0.0 and other non-representable values
6155       APFloat RHSRoundInt(RHS);
6156       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6157       if (RHS != RHSRoundInt) {
6158         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6159           return replaceInstUsesWith(I, Builder.getFalse());
6160 
6161         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6162         return replaceInstUsesWith(I, Builder.getTrue());
6163       }
6164     }
6165 
6166     // TODO: If the constant is exactly representable, is it always OK to do
6167     // equality compares as integer?
6168   }
6169 
6170   // Check to see that the input is converted from an integer type that is small
6171   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6172   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6173   unsigned InputSize = IntTy->getScalarSizeInBits();
6174 
6175   // Following test does NOT adjust InputSize downwards for signed inputs,
6176   // because the most negative value still requires all the mantissa bits
6177   // to distinguish it from one less than that value.
6178   if ((int)InputSize > MantissaWidth) {
6179     // Conversion would lose accuracy. Check if loss can impact comparison.
6180     int Exp = ilogb(RHS);
6181     if (Exp == APFloat::IEK_Inf) {
6182       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6183       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6184         // Conversion could create infinity.
6185         return nullptr;
6186     } else {
6187       // Note that if RHS is zero or NaN, then Exp is negative
6188       // and first condition is trivially false.
6189       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6190         // Conversion could affect comparison.
6191         return nullptr;
6192     }
6193   }
6194 
6195   // Otherwise, we can potentially simplify the comparison.  We know that it
6196   // will always come through as an integer value and we know the constant is
6197   // not a NAN (it would have been previously simplified).
6198   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6199 
6200   ICmpInst::Predicate Pred;
6201   switch (I.getPredicate()) {
6202   default: llvm_unreachable("Unexpected predicate!");
6203   case FCmpInst::FCMP_UEQ:
6204   case FCmpInst::FCMP_OEQ:
6205     Pred = ICmpInst::ICMP_EQ;
6206     break;
6207   case FCmpInst::FCMP_UGT:
6208   case FCmpInst::FCMP_OGT:
6209     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6210     break;
6211   case FCmpInst::FCMP_UGE:
6212   case FCmpInst::FCMP_OGE:
6213     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6214     break;
6215   case FCmpInst::FCMP_ULT:
6216   case FCmpInst::FCMP_OLT:
6217     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6218     break;
6219   case FCmpInst::FCMP_ULE:
6220   case FCmpInst::FCMP_OLE:
6221     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6222     break;
6223   case FCmpInst::FCMP_UNE:
6224   case FCmpInst::FCMP_ONE:
6225     Pred = ICmpInst::ICMP_NE;
6226     break;
6227   case FCmpInst::FCMP_ORD:
6228     return replaceInstUsesWith(I, Builder.getTrue());
6229   case FCmpInst::FCMP_UNO:
6230     return replaceInstUsesWith(I, Builder.getFalse());
6231   }
6232 
6233   // Now we know that the APFloat is a normal number, zero or inf.
6234 
6235   // See if the FP constant is too large for the integer.  For example,
6236   // comparing an i8 to 300.0.
6237   unsigned IntWidth = IntTy->getScalarSizeInBits();
6238 
6239   if (!LHSUnsigned) {
6240     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6241     // and large values.
6242     APFloat SMax(RHS.getSemantics());
6243     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6244                           APFloat::rmNearestTiesToEven);
6245     if (SMax < RHS) { // smax < 13123.0
6246       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6247           Pred == ICmpInst::ICMP_SLE)
6248         return replaceInstUsesWith(I, Builder.getTrue());
6249       return replaceInstUsesWith(I, Builder.getFalse());
6250     }
6251   } else {
6252     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6253     // +INF and large values.
6254     APFloat UMax(RHS.getSemantics());
6255     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6256                           APFloat::rmNearestTiesToEven);
6257     if (UMax < RHS) { // umax < 13123.0
6258       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6259           Pred == ICmpInst::ICMP_ULE)
6260         return replaceInstUsesWith(I, Builder.getTrue());
6261       return replaceInstUsesWith(I, Builder.getFalse());
6262     }
6263   }
6264 
6265   if (!LHSUnsigned) {
6266     // See if the RHS value is < SignedMin.
6267     APFloat SMin(RHS.getSemantics());
6268     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6269                           APFloat::rmNearestTiesToEven);
6270     if (SMin > RHS) { // smin > 12312.0
6271       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6272           Pred == ICmpInst::ICMP_SGE)
6273         return replaceInstUsesWith(I, Builder.getTrue());
6274       return replaceInstUsesWith(I, Builder.getFalse());
6275     }
6276   } else {
6277     // See if the RHS value is < UnsignedMin.
6278     APFloat UMin(RHS.getSemantics());
6279     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6280                           APFloat::rmNearestTiesToEven);
6281     if (UMin > RHS) { // umin > 12312.0
6282       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6283           Pred == ICmpInst::ICMP_UGE)
6284         return replaceInstUsesWith(I, Builder.getTrue());
6285       return replaceInstUsesWith(I, Builder.getFalse());
6286     }
6287   }
6288 
6289   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6290   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6291   // casting the FP value to the integer value and back, checking for equality.
6292   // Don't do this for zero, because -0.0 is not fractional.
6293   Constant *RHSInt = LHSUnsigned
6294     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6295     : ConstantExpr::getFPToSI(RHSC, IntTy);
6296   if (!RHS.isZero()) {
6297     bool Equal = LHSUnsigned
6298       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6299       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6300     if (!Equal) {
6301       // If we had a comparison against a fractional value, we have to adjust
6302       // the compare predicate and sometimes the value.  RHSC is rounded towards
6303       // zero at this point.
6304       switch (Pred) {
6305       default: llvm_unreachable("Unexpected integer comparison!");
6306       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6307         return replaceInstUsesWith(I, Builder.getTrue());
6308       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6309         return replaceInstUsesWith(I, Builder.getFalse());
6310       case ICmpInst::ICMP_ULE:
6311         // (float)int <= 4.4   --> int <= 4
6312         // (float)int <= -4.4  --> false
6313         if (RHS.isNegative())
6314           return replaceInstUsesWith(I, Builder.getFalse());
6315         break;
6316       case ICmpInst::ICMP_SLE:
6317         // (float)int <= 4.4   --> int <= 4
6318         // (float)int <= -4.4  --> int < -4
6319         if (RHS.isNegative())
6320           Pred = ICmpInst::ICMP_SLT;
6321         break;
6322       case ICmpInst::ICMP_ULT:
6323         // (float)int < -4.4   --> false
6324         // (float)int < 4.4    --> int <= 4
6325         if (RHS.isNegative())
6326           return replaceInstUsesWith(I, Builder.getFalse());
6327         Pred = ICmpInst::ICMP_ULE;
6328         break;
6329       case ICmpInst::ICMP_SLT:
6330         // (float)int < -4.4   --> int < -4
6331         // (float)int < 4.4    --> int <= 4
6332         if (!RHS.isNegative())
6333           Pred = ICmpInst::ICMP_SLE;
6334         break;
6335       case ICmpInst::ICMP_UGT:
6336         // (float)int > 4.4    --> int > 4
6337         // (float)int > -4.4   --> true
6338         if (RHS.isNegative())
6339           return replaceInstUsesWith(I, Builder.getTrue());
6340         break;
6341       case ICmpInst::ICMP_SGT:
6342         // (float)int > 4.4    --> int > 4
6343         // (float)int > -4.4   --> int >= -4
6344         if (RHS.isNegative())
6345           Pred = ICmpInst::ICMP_SGE;
6346         break;
6347       case ICmpInst::ICMP_UGE:
6348         // (float)int >= -4.4   --> true
6349         // (float)int >= 4.4    --> int > 4
6350         if (RHS.isNegative())
6351           return replaceInstUsesWith(I, Builder.getTrue());
6352         Pred = ICmpInst::ICMP_UGT;
6353         break;
6354       case ICmpInst::ICMP_SGE:
6355         // (float)int >= -4.4   --> int >= -4
6356         // (float)int >= 4.4    --> int > 4
6357         if (!RHS.isNegative())
6358           Pred = ICmpInst::ICMP_SGT;
6359         break;
6360       }
6361     }
6362   }
6363 
6364   // Lower this FP comparison into an appropriate integer version of the
6365   // comparison.
6366   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6367 }
6368 
6369 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6370 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6371                                               Constant *RHSC) {
6372   // When C is not 0.0 and infinities are not allowed:
6373   // (C / X) < 0.0 is a sign-bit test of X
6374   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6375   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6376   //
6377   // Proof:
6378   // Multiply (C / X) < 0.0 by X * X / C.
6379   // - X is non zero, if it is the flag 'ninf' is violated.
6380   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6381   //   the predicate. C is also non zero by definition.
6382   //
6383   // Thus X * X / C is non zero and the transformation is valid. [qed]
6384 
6385   FCmpInst::Predicate Pred = I.getPredicate();
6386 
6387   // Check that predicates are valid.
6388   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6389       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6390     return nullptr;
6391 
6392   // Check that RHS operand is zero.
6393   if (!match(RHSC, m_AnyZeroFP()))
6394     return nullptr;
6395 
6396   // Check fastmath flags ('ninf').
6397   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6398     return nullptr;
6399 
6400   // Check the properties of the dividend. It must not be zero to avoid a
6401   // division by zero (see Proof).
6402   const APFloat *C;
6403   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6404     return nullptr;
6405 
6406   if (C->isZero())
6407     return nullptr;
6408 
6409   // Get swapped predicate if necessary.
6410   if (C->isNegative())
6411     Pred = I.getSwappedPredicate();
6412 
6413   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6414 }
6415 
6416 /// Optimize fabs(X) compared with zero.
6417 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6418   Value *X;
6419   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6420       !match(I.getOperand(1), m_PosZeroFP()))
6421     return nullptr;
6422 
6423   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6424     I->setPredicate(P);
6425     return IC.replaceOperand(*I, 0, X);
6426   };
6427 
6428   switch (I.getPredicate()) {
6429   case FCmpInst::FCMP_UGE:
6430   case FCmpInst::FCMP_OLT:
6431     // fabs(X) >= 0.0 --> true
6432     // fabs(X) <  0.0 --> false
6433     llvm_unreachable("fcmp should have simplified");
6434 
6435   case FCmpInst::FCMP_OGT:
6436     // fabs(X) > 0.0 --> X != 0.0
6437     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6438 
6439   case FCmpInst::FCMP_UGT:
6440     // fabs(X) u> 0.0 --> X u!= 0.0
6441     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6442 
6443   case FCmpInst::FCMP_OLE:
6444     // fabs(X) <= 0.0 --> X == 0.0
6445     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6446 
6447   case FCmpInst::FCMP_ULE:
6448     // fabs(X) u<= 0.0 --> X u== 0.0
6449     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6450 
6451   case FCmpInst::FCMP_OGE:
6452     // fabs(X) >= 0.0 --> !isnan(X)
6453     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6454     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6455 
6456   case FCmpInst::FCMP_ULT:
6457     // fabs(X) u< 0.0 --> isnan(X)
6458     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6459     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6460 
6461   case FCmpInst::FCMP_OEQ:
6462   case FCmpInst::FCMP_UEQ:
6463   case FCmpInst::FCMP_ONE:
6464   case FCmpInst::FCMP_UNE:
6465   case FCmpInst::FCMP_ORD:
6466   case FCmpInst::FCMP_UNO:
6467     // Look through the fabs() because it doesn't change anything but the sign.
6468     // fabs(X) == 0.0 --> X == 0.0,
6469     // fabs(X) != 0.0 --> X != 0.0
6470     // isnan(fabs(X)) --> isnan(X)
6471     // !isnan(fabs(X) --> !isnan(X)
6472     return replacePredAndOp0(&I, I.getPredicate(), X);
6473 
6474   default:
6475     return nullptr;
6476   }
6477 }
6478 
6479 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6480   bool Changed = false;
6481 
6482   /// Orders the operands of the compare so that they are listed from most
6483   /// complex to least complex.  This puts constants before unary operators,
6484   /// before binary operators.
6485   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6486     I.swapOperands();
6487     Changed = true;
6488   }
6489 
6490   const CmpInst::Predicate Pred = I.getPredicate();
6491   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6492   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6493                                   SQ.getWithInstruction(&I)))
6494     return replaceInstUsesWith(I, V);
6495 
6496   // Simplify 'fcmp pred X, X'
6497   Type *OpType = Op0->getType();
6498   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6499   if (Op0 == Op1) {
6500     switch (Pred) {
6501       default: break;
6502     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6503     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6504     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6505     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6506       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6507       I.setPredicate(FCmpInst::FCMP_UNO);
6508       I.setOperand(1, Constant::getNullValue(OpType));
6509       return &I;
6510 
6511     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6512     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6513     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6514     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6515       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6516       I.setPredicate(FCmpInst::FCMP_ORD);
6517       I.setOperand(1, Constant::getNullValue(OpType));
6518       return &I;
6519     }
6520   }
6521 
6522   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6523   // then canonicalize the operand to 0.0.
6524   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6525     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6526       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6527 
6528     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6529       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6530   }
6531 
6532   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6533   Value *X, *Y;
6534   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6535     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6536 
6537   // Test if the FCmpInst instruction is used exclusively by a select as
6538   // part of a minimum or maximum operation. If so, refrain from doing
6539   // any other folding. This helps out other analyses which understand
6540   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6541   // and CodeGen. And in this case, at least one of the comparison
6542   // operands has at least one user besides the compare (the select),
6543   // which would often largely negate the benefit of folding anyway.
6544   if (I.hasOneUse())
6545     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6546       Value *A, *B;
6547       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6548       if (SPR.Flavor != SPF_UNKNOWN)
6549         return nullptr;
6550     }
6551 
6552   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6553   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6554   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6555     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6556 
6557   // Handle fcmp with instruction LHS and constant RHS.
6558   Instruction *LHSI;
6559   Constant *RHSC;
6560   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6561     switch (LHSI->getOpcode()) {
6562     case Instruction::PHI:
6563       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6564       // block.  If in the same block, we're encouraging jump threading.  If
6565       // not, we are just pessimizing the code by making an i1 phi.
6566       if (LHSI->getParent() == I.getParent())
6567         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6568           return NV;
6569       break;
6570     case Instruction::SIToFP:
6571     case Instruction::UIToFP:
6572       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6573         return NV;
6574       break;
6575     case Instruction::FDiv:
6576       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6577         return NV;
6578       break;
6579     case Instruction::Load:
6580       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6581         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6582           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6583               !cast<LoadInst>(LHSI)->isVolatile())
6584             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6585               return Res;
6586       break;
6587   }
6588   }
6589 
6590   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6591     return R;
6592 
6593   if (match(Op0, m_FNeg(m_Value(X)))) {
6594     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6595     Constant *C;
6596     if (match(Op1, m_Constant(C))) {
6597       Constant *NegC = ConstantExpr::getFNeg(C);
6598       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6599     }
6600   }
6601 
6602   if (match(Op0, m_FPExt(m_Value(X)))) {
6603     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6604     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6605       return new FCmpInst(Pred, X, Y, "", &I);
6606 
6607     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6608     const APFloat *C;
6609     if (match(Op1, m_APFloat(C))) {
6610       const fltSemantics &FPSem =
6611           X->getType()->getScalarType()->getFltSemantics();
6612       bool Lossy;
6613       APFloat TruncC = *C;
6614       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6615 
6616       // Avoid lossy conversions and denormals.
6617       // Zero is a special case that's OK to convert.
6618       APFloat Fabs = TruncC;
6619       Fabs.clearSign();
6620       if (!Lossy &&
6621           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6622         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6623         return new FCmpInst(Pred, X, NewC, "", &I);
6624       }
6625     }
6626   }
6627 
6628   // Convert a sign-bit test of an FP value into a cast and integer compare.
6629   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6630   // TODO: Handle non-zero compare constants.
6631   // TODO: Handle other predicates.
6632   const APFloat *C;
6633   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6634                                                            m_Value(X)))) &&
6635       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6636     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6637     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6638       IntType = VectorType::get(IntType, VecTy->getElementCount());
6639 
6640     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6641     if (Pred == FCmpInst::FCMP_OLT) {
6642       Value *IntX = Builder.CreateBitCast(X, IntType);
6643       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6644                           ConstantInt::getNullValue(IntType));
6645     }
6646   }
6647 
6648   if (I.getType()->isVectorTy())
6649     if (Instruction *Res = foldVectorCmp(I, Builder))
6650       return Res;
6651 
6652   return Changed ? &I : nullptr;
6653 }
6654