xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 /// type.
41 static bool addWithOverflow(APInt &Result, const APInt &In1,
42                             const APInt &In2, bool IsSigned = false) {
43   bool Overflow;
44   if (IsSigned)
45     Result = In1.sadd_ov(In2, Overflow);
46   else
47     Result = In1.uadd_ov(In2, Overflow);
48 
49   return Overflow;
50 }
51 
52 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 /// type.
54 static bool subWithOverflow(APInt &Result, const APInt &In1,
55                             const APInt &In2, bool IsSigned = false) {
56   bool Overflow;
57   if (IsSigned)
58     Result = In1.ssub_ov(In2, Overflow);
59   else
60     Result = In1.usub_ov(In2, Overflow);
61 
62   return Overflow;
63 }
64 
65 /// Given an icmp instruction, return true if any use of this comparison is a
66 /// branch on sign bit comparison.
67 static bool hasBranchUse(ICmpInst &I) {
68   for (auto *U : I.users())
69     if (isa<BranchInst>(U))
70       return true;
71   return false;
72 }
73 
74 /// Returns true if the exploded icmp can be expressed as a signed comparison
75 /// to zero and updates the predicate accordingly.
76 /// The signedness of the comparison is preserved.
77 /// TODO: Refactor with decomposeBitTestICmp()?
78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
79   if (!ICmpInst::isSigned(Pred))
80     return false;
81 
82   if (C.isZero())
83     return ICmpInst::isRelational(Pred);
84 
85   if (C.isOne()) {
86     if (Pred == ICmpInst::ICMP_SLT) {
87       Pred = ICmpInst::ICMP_SLE;
88       return true;
89     }
90   } else if (C.isAllOnes()) {
91     if (Pred == ICmpInst::ICMP_SGT) {
92       Pred = ICmpInst::ICMP_SGE;
93       return true;
94     }
95   }
96 
97   return false;
98 }
99 
100 /// This is called when we see this pattern:
101 ///   cmp pred (load (gep GV, ...)), cmpcst
102 /// where GV is a global variable with a constant initializer. Try to simplify
103 /// this into some simple computation that does not need the load. For example
104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 ///
106 /// If AndCst is non-null, then the loaded value is masked with that constant
107 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 Instruction *
109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
110                                                GlobalVariable *GV, CmpInst &ICI,
111                                                ConstantInt *AndCst) {
112   Constant *Init = GV->getInitializer();
113   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
114     return nullptr;
115 
116   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
117   // Don't blow up on huge arrays.
118   if (ArrayElementCount > MaxArraySizeForCombine)
119     return nullptr;
120 
121   // There are many forms of this optimization we can handle, for now, just do
122   // the simple index into a single-dimensional array.
123   //
124   // Require: GEP GV, 0, i {{, constant indices}}
125   if (GEP->getNumOperands() < 3 ||
126       !isa<ConstantInt>(GEP->getOperand(1)) ||
127       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
128       isa<Constant>(GEP->getOperand(2)))
129     return nullptr;
130 
131   // Check that indices after the variable are constants and in-range for the
132   // type they index.  Collect the indices.  This is typically for arrays of
133   // structs.
134   SmallVector<unsigned, 4> LaterIndices;
135 
136   Type *EltTy = Init->getType()->getArrayElementType();
137   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
138     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
139     if (!Idx) return nullptr;  // Variable index.
140 
141     uint64_t IdxVal = Idx->getZExtValue();
142     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
143 
144     if (StructType *STy = dyn_cast<StructType>(EltTy))
145       EltTy = STy->getElementType(IdxVal);
146     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
147       if (IdxVal >= ATy->getNumElements()) return nullptr;
148       EltTy = ATy->getElementType();
149     } else {
150       return nullptr; // Unknown type.
151     }
152 
153     LaterIndices.push_back(IdxVal);
154   }
155 
156   enum { Overdefined = -3, Undefined = -2 };
157 
158   // Variables for our state machines.
159 
160   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
161   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
162   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
163   // undefined, otherwise set to the first true element.  SecondTrueElement is
164   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
165   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
166 
167   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
168   // form "i != 47 & i != 87".  Same state transitions as for true elements.
169   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
170 
171   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
172   /// define a state machine that triggers for ranges of values that the index
173   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
174   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
175   /// index in the range (inclusive).  We use -2 for undefined here because we
176   /// use relative comparisons and don't want 0-1 to match -1.
177   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
178 
179   // MagicBitvector - This is a magic bitvector where we set a bit if the
180   // comparison is true for element 'i'.  If there are 64 elements or less in
181   // the array, this will fully represent all the comparison results.
182   uint64_t MagicBitvector = 0;
183 
184   // Scan the array and see if one of our patterns matches.
185   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
186   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
187     Constant *Elt = Init->getAggregateElement(i);
188     if (!Elt) return nullptr;
189 
190     // If this is indexing an array of structures, get the structure element.
191     if (!LaterIndices.empty())
192       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
193 
194     // If the element is masked, handle it.
195     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
196 
197     // Find out if the comparison would be true or false for the i'th element.
198     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
199                                                   CompareRHS, DL, &TLI);
200     // If the result is undef for this element, ignore it.
201     if (isa<UndefValue>(C)) {
202       // Extend range state machines to cover this element in case there is an
203       // undef in the middle of the range.
204       if (TrueRangeEnd == (int)i-1)
205         TrueRangeEnd = i;
206       if (FalseRangeEnd == (int)i-1)
207         FalseRangeEnd = i;
208       continue;
209     }
210 
211     // If we can't compute the result for any of the elements, we have to give
212     // up evaluating the entire conditional.
213     if (!isa<ConstantInt>(C)) return nullptr;
214 
215     // Otherwise, we know if the comparison is true or false for this element,
216     // update our state machines.
217     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
218 
219     // State machine for single/double/range index comparison.
220     if (IsTrueForElt) {
221       // Update the TrueElement state machine.
222       if (FirstTrueElement == Undefined)
223         FirstTrueElement = TrueRangeEnd = i;  // First true element.
224       else {
225         // Update double-compare state machine.
226         if (SecondTrueElement == Undefined)
227           SecondTrueElement = i;
228         else
229           SecondTrueElement = Overdefined;
230 
231         // Update range state machine.
232         if (TrueRangeEnd == (int)i-1)
233           TrueRangeEnd = i;
234         else
235           TrueRangeEnd = Overdefined;
236       }
237     } else {
238       // Update the FalseElement state machine.
239       if (FirstFalseElement == Undefined)
240         FirstFalseElement = FalseRangeEnd = i; // First false element.
241       else {
242         // Update double-compare state machine.
243         if (SecondFalseElement == Undefined)
244           SecondFalseElement = i;
245         else
246           SecondFalseElement = Overdefined;
247 
248         // Update range state machine.
249         if (FalseRangeEnd == (int)i-1)
250           FalseRangeEnd = i;
251         else
252           FalseRangeEnd = Overdefined;
253       }
254     }
255 
256     // If this element is in range, update our magic bitvector.
257     if (i < 64 && IsTrueForElt)
258       MagicBitvector |= 1ULL << i;
259 
260     // If all of our states become overdefined, bail out early.  Since the
261     // predicate is expensive, only check it every 8 elements.  This is only
262     // really useful for really huge arrays.
263     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
264         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
265         FalseRangeEnd == Overdefined)
266       return nullptr;
267   }
268 
269   // Now that we've scanned the entire array, emit our new comparison(s).  We
270   // order the state machines in complexity of the generated code.
271   Value *Idx = GEP->getOperand(2);
272 
273   // If the index is larger than the pointer size of the target, truncate the
274   // index down like the GEP would do implicitly.  We don't have to do this for
275   // an inbounds GEP because the index can't be out of range.
276   if (!GEP->isInBounds()) {
277     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
278     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
279     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
280       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
281   }
282 
283   // If inbounds keyword is not present, Idx * ElementSize can overflow.
284   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
285   // Then, there are two possible values for Idx to match offset 0:
286   // 0x00..00, 0x80..00.
287   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
288   // comparison is false if Idx was 0x80..00.
289   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
290   unsigned ElementSize =
291       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
292   auto MaskIdx = [&](Value* Idx){
293     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
294       Value *Mask = ConstantInt::get(Idx->getType(), -1);
295       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
296       Idx = Builder.CreateAnd(Idx, Mask);
297     }
298     return Idx;
299   };
300 
301   // If the comparison is only true for one or two elements, emit direct
302   // comparisons.
303   if (SecondTrueElement != Overdefined) {
304     Idx = MaskIdx(Idx);
305     // None true -> false.
306     if (FirstTrueElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getFalse());
308 
309     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
310 
311     // True for one element -> 'i == 47'.
312     if (SecondTrueElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
314 
315     // True for two elements -> 'i == 47 | i == 72'.
316     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
317     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
318     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
319     return BinaryOperator::CreateOr(C1, C2);
320   }
321 
322   // If the comparison is only false for one or two elements, emit direct
323   // comparisons.
324   if (SecondFalseElement != Overdefined) {
325     Idx = MaskIdx(Idx);
326     // None false -> true.
327     if (FirstFalseElement == Undefined)
328       return replaceInstUsesWith(ICI, Builder.getTrue());
329 
330     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
331 
332     // False for one element -> 'i != 47'.
333     if (SecondFalseElement == Undefined)
334       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
335 
336     // False for two elements -> 'i != 47 & i != 72'.
337     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
338     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
339     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
340     return BinaryOperator::CreateAnd(C1, C2);
341   }
342 
343   // If the comparison can be replaced with a range comparison for the elements
344   // where it is true, emit the range check.
345   if (TrueRangeEnd != Overdefined) {
346     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
347     Idx = MaskIdx(Idx);
348 
349     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
350     if (FirstTrueElement) {
351       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
352       Idx = Builder.CreateAdd(Idx, Offs);
353     }
354 
355     Value *End = ConstantInt::get(Idx->getType(),
356                                   TrueRangeEnd-FirstTrueElement+1);
357     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
358   }
359 
360   // False range check.
361   if (FalseRangeEnd != Overdefined) {
362     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
363     Idx = MaskIdx(Idx);
364     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
365     if (FirstFalseElement) {
366       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
367       Idx = Builder.CreateAdd(Idx, Offs);
368     }
369 
370     Value *End = ConstantInt::get(Idx->getType(),
371                                   FalseRangeEnd-FirstFalseElement);
372     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
373   }
374 
375   // If a magic bitvector captures the entire comparison state
376   // of this load, replace it with computation that does:
377   //   ((magic_cst >> i) & 1) != 0
378   {
379     Type *Ty = nullptr;
380 
381     // Look for an appropriate type:
382     // - The type of Idx if the magic fits
383     // - The smallest fitting legal type
384     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
385       Ty = Idx->getType();
386     else
387       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
388 
389     if (Ty) {
390       Idx = MaskIdx(Idx);
391       Value *V = Builder.CreateIntCast(Idx, Ty, false);
392       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
393       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
394       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
395     }
396   }
397 
398   return nullptr;
399 }
400 
401 /// Return a value that can be used to compare the *offset* implied by a GEP to
402 /// zero. For example, if we have &A[i], we want to return 'i' for
403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
404 /// are involved. The above expression would also be legal to codegen as
405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
406 /// This latter form is less amenable to optimization though, and we are allowed
407 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
408 ///
409 /// If we can't emit an optimized form for this expression, this returns null.
410 ///
411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
412                                           const DataLayout &DL) {
413   gep_type_iterator GTI = gep_type_begin(GEP);
414 
415   // Check to see if this gep only has a single variable index.  If so, and if
416   // any constant indices are a multiple of its scale, then we can compute this
417   // in terms of the scale of the variable index.  For example, if the GEP
418   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
419   // because the expression will cross zero at the same point.
420   unsigned i, e = GEP->getNumOperands();
421   int64_t Offset = 0;
422   for (i = 1; i != e; ++i, ++GTI) {
423     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
424       // Compute the aggregate offset of constant indices.
425       if (CI->isZero()) continue;
426 
427       // Handle a struct index, which adds its field offset to the pointer.
428       if (StructType *STy = GTI.getStructTypeOrNull()) {
429         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
430       } else {
431         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
432         Offset += Size*CI->getSExtValue();
433       }
434     } else {
435       // Found our variable index.
436       break;
437     }
438   }
439 
440   // If there are no variable indices, we must have a constant offset, just
441   // evaluate it the general way.
442   if (i == e) return nullptr;
443 
444   Value *VariableIdx = GEP->getOperand(i);
445   // Determine the scale factor of the variable element.  For example, this is
446   // 4 if the variable index is into an array of i32.
447   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
448 
449   // Verify that there are no other variable indices.  If so, emit the hard way.
450   for (++i, ++GTI; i != e; ++i, ++GTI) {
451     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
452     if (!CI) return nullptr;
453 
454     // Compute the aggregate offset of constant indices.
455     if (CI->isZero()) continue;
456 
457     // Handle a struct index, which adds its field offset to the pointer.
458     if (StructType *STy = GTI.getStructTypeOrNull()) {
459       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
460     } else {
461       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
462       Offset += Size*CI->getSExtValue();
463     }
464   }
465 
466   // Okay, we know we have a single variable index, which must be a
467   // pointer/array/vector index.  If there is no offset, life is simple, return
468   // the index.
469   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
470   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
471   if (Offset == 0) {
472     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
473     // we don't need to bother extending: the extension won't affect where the
474     // computation crosses zero.
475     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
476         IntPtrWidth) {
477       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
478     }
479     return VariableIdx;
480   }
481 
482   // Otherwise, there is an index.  The computation we will do will be modulo
483   // the pointer size.
484   Offset = SignExtend64(Offset, IntPtrWidth);
485   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
486 
487   // To do this transformation, any constant index must be a multiple of the
488   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
489   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
490   // multiple of the variable scale.
491   int64_t NewOffs = Offset / (int64_t)VariableScale;
492   if (Offset != NewOffs*(int64_t)VariableScale)
493     return nullptr;
494 
495   // Okay, we can do this evaluation.  Start by converting the index to intptr.
496   if (VariableIdx->getType() != IntPtrTy)
497     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
498                                             true /*Signed*/);
499   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
500   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
501 }
502 
503 /// Returns true if we can rewrite Start as a GEP with pointer Base
504 /// and some integer offset. The nodes that need to be re-written
505 /// for this transformation will be added to Explored.
506 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
507                                   const DataLayout &DL,
508                                   SetVector<Value *> &Explored) {
509   SmallVector<Value *, 16> WorkList(1, Start);
510   Explored.insert(Base);
511 
512   // The following traversal gives us an order which can be used
513   // when doing the final transformation. Since in the final
514   // transformation we create the PHI replacement instructions first,
515   // we don't have to get them in any particular order.
516   //
517   // However, for other instructions we will have to traverse the
518   // operands of an instruction first, which means that we have to
519   // do a post-order traversal.
520   while (!WorkList.empty()) {
521     SetVector<PHINode *> PHIs;
522 
523     while (!WorkList.empty()) {
524       if (Explored.size() >= 100)
525         return false;
526 
527       Value *V = WorkList.back();
528 
529       if (Explored.contains(V)) {
530         WorkList.pop_back();
531         continue;
532       }
533 
534       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
535           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
536         // We've found some value that we can't explore which is different from
537         // the base. Therefore we can't do this transformation.
538         return false;
539 
540       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
541         auto *CI = cast<CastInst>(V);
542         if (!CI->isNoopCast(DL))
543           return false;
544 
545         if (!Explored.contains(CI->getOperand(0)))
546           WorkList.push_back(CI->getOperand(0));
547       }
548 
549       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
550         // We're limiting the GEP to having one index. This will preserve
551         // the original pointer type. We could handle more cases in the
552         // future.
553         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
554             GEP->getType() != Start->getType())
555           return false;
556 
557         if (!Explored.contains(GEP->getOperand(0)))
558           WorkList.push_back(GEP->getOperand(0));
559       }
560 
561       if (WorkList.back() == V) {
562         WorkList.pop_back();
563         // We've finished visiting this node, mark it as such.
564         Explored.insert(V);
565       }
566 
567       if (auto *PN = dyn_cast<PHINode>(V)) {
568         // We cannot transform PHIs on unsplittable basic blocks.
569         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
570           return false;
571         Explored.insert(PN);
572         PHIs.insert(PN);
573       }
574     }
575 
576     // Explore the PHI nodes further.
577     for (auto *PN : PHIs)
578       for (Value *Op : PN->incoming_values())
579         if (!Explored.contains(Op))
580           WorkList.push_back(Op);
581   }
582 
583   // Make sure that we can do this. Since we can't insert GEPs in a basic
584   // block before a PHI node, we can't easily do this transformation if
585   // we have PHI node users of transformed instructions.
586   for (Value *Val : Explored) {
587     for (Value *Use : Val->uses()) {
588 
589       auto *PHI = dyn_cast<PHINode>(Use);
590       auto *Inst = dyn_cast<Instruction>(Val);
591 
592       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
593           !Explored.contains(PHI))
594         continue;
595 
596       if (PHI->getParent() == Inst->getParent())
597         return false;
598     }
599   }
600   return true;
601 }
602 
603 // Sets the appropriate insert point on Builder where we can add
604 // a replacement Instruction for V (if that is possible).
605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
606                               bool Before = true) {
607   if (auto *PHI = dyn_cast<PHINode>(V)) {
608     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
609     return;
610   }
611   if (auto *I = dyn_cast<Instruction>(V)) {
612     if (!Before)
613       I = &*std::next(I->getIterator());
614     Builder.SetInsertPoint(I);
615     return;
616   }
617   if (auto *A = dyn_cast<Argument>(V)) {
618     // Set the insertion point in the entry block.
619     BasicBlock &Entry = A->getParent()->getEntryBlock();
620     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
621     return;
622   }
623   // Otherwise, this is a constant and we don't need to set a new
624   // insertion point.
625   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
626 }
627 
628 /// Returns a re-written value of Start as an indexed GEP using Base as a
629 /// pointer.
630 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
631                                  const DataLayout &DL,
632                                  SetVector<Value *> &Explored) {
633   // Perform all the substitutions. This is a bit tricky because we can
634   // have cycles in our use-def chains.
635   // 1. Create the PHI nodes without any incoming values.
636   // 2. Create all the other values.
637   // 3. Add the edges for the PHI nodes.
638   // 4. Emit GEPs to get the original pointers.
639   // 5. Remove the original instructions.
640   Type *IndexType = IntegerType::get(
641       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
642 
643   DenseMap<Value *, Value *> NewInsts;
644   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
645 
646   // Create the new PHI nodes, without adding any incoming values.
647   for (Value *Val : Explored) {
648     if (Val == Base)
649       continue;
650     // Create empty phi nodes. This avoids cyclic dependencies when creating
651     // the remaining instructions.
652     if (auto *PHI = dyn_cast<PHINode>(Val))
653       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
654                                       PHI->getName() + ".idx", PHI);
655   }
656   IRBuilder<> Builder(Base->getContext());
657 
658   // Create all the other instructions.
659   for (Value *Val : Explored) {
660 
661     if (NewInsts.find(Val) != NewInsts.end())
662       continue;
663 
664     if (auto *CI = dyn_cast<CastInst>(Val)) {
665       // Don't get rid of the intermediate variable here; the store can grow
666       // the map which will invalidate the reference to the input value.
667       Value *V = NewInsts[CI->getOperand(0)];
668       NewInsts[CI] = V;
669       continue;
670     }
671     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
672       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
673                                                   : GEP->getOperand(1);
674       setInsertionPoint(Builder, GEP);
675       // Indices might need to be sign extended. GEPs will magically do
676       // this, but we need to do it ourselves here.
677       if (Index->getType()->getScalarSizeInBits() !=
678           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
679         Index = Builder.CreateSExtOrTrunc(
680             Index, NewInsts[GEP->getOperand(0)]->getType(),
681             GEP->getOperand(0)->getName() + ".sext");
682       }
683 
684       auto *Op = NewInsts[GEP->getOperand(0)];
685       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
686         NewInsts[GEP] = Index;
687       else
688         NewInsts[GEP] = Builder.CreateNSWAdd(
689             Op, Index, GEP->getOperand(0)->getName() + ".add");
690       continue;
691     }
692     if (isa<PHINode>(Val))
693       continue;
694 
695     llvm_unreachable("Unexpected instruction type");
696   }
697 
698   // Add the incoming values to the PHI nodes.
699   for (Value *Val : Explored) {
700     if (Val == Base)
701       continue;
702     // All the instructions have been created, we can now add edges to the
703     // phi nodes.
704     if (auto *PHI = dyn_cast<PHINode>(Val)) {
705       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
706       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
707         Value *NewIncoming = PHI->getIncomingValue(I);
708 
709         if (NewInsts.find(NewIncoming) != NewInsts.end())
710           NewIncoming = NewInsts[NewIncoming];
711 
712         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
713       }
714     }
715   }
716 
717   for (Value *Val : Explored) {
718     if (Val == Base)
719       continue;
720 
721     // Depending on the type, for external users we have to emit
722     // a GEP or a GEP + ptrtoint.
723     setInsertionPoint(Builder, Val, false);
724 
725     // If required, create an inttoptr instruction for Base.
726     Value *NewBase = Base;
727     if (!Base->getType()->isPointerTy())
728       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
729                                                Start->getName() + "to.ptr");
730 
731     Value *GEP = Builder.CreateInBoundsGEP(
732         Start->getType()->getPointerElementType(), NewBase,
733         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
734 
735     if (!Val->getType()->isPointerTy()) {
736       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
737                                               Val->getName() + ".conv");
738       GEP = Cast;
739     }
740     Val->replaceAllUsesWith(GEP);
741   }
742 
743   return NewInsts[Start];
744 }
745 
746 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
747 /// the input Value as a constant indexed GEP. Returns a pair containing
748 /// the GEPs Pointer and Index.
749 static std::pair<Value *, Value *>
750 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
751   Type *IndexType = IntegerType::get(V->getContext(),
752                                      DL.getIndexTypeSizeInBits(V->getType()));
753 
754   Constant *Index = ConstantInt::getNullValue(IndexType);
755   while (true) {
756     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
757       // We accept only inbouds GEPs here to exclude the possibility of
758       // overflow.
759       if (!GEP->isInBounds())
760         break;
761       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
762           GEP->getType() == V->getType()) {
763         V = GEP->getOperand(0);
764         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
765         Index = ConstantExpr::getAdd(
766             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
767         continue;
768       }
769       break;
770     }
771     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
772       if (!CI->isNoopCast(DL))
773         break;
774       V = CI->getOperand(0);
775       continue;
776     }
777     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
778       if (!CI->isNoopCast(DL))
779         break;
780       V = CI->getOperand(0);
781       continue;
782     }
783     break;
784   }
785   return {V, Index};
786 }
787 
788 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
789 /// We can look through PHIs, GEPs and casts in order to determine a common base
790 /// between GEPLHS and RHS.
791 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
792                                               ICmpInst::Predicate Cond,
793                                               const DataLayout &DL) {
794   // FIXME: Support vector of pointers.
795   if (GEPLHS->getType()->isVectorTy())
796     return nullptr;
797 
798   if (!GEPLHS->hasAllConstantIndices())
799     return nullptr;
800 
801   // Make sure the pointers have the same type.
802   if (GEPLHS->getType() != RHS->getType())
803     return nullptr;
804 
805   Value *PtrBase, *Index;
806   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
807 
808   // The set of nodes that will take part in this transformation.
809   SetVector<Value *> Nodes;
810 
811   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
812     return nullptr;
813 
814   // We know we can re-write this as
815   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
816   // Since we've only looked through inbouds GEPs we know that we
817   // can't have overflow on either side. We can therefore re-write
818   // this as:
819   //   OFFSET1 cmp OFFSET2
820   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
821 
822   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
823   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
824   // offset. Since Index is the offset of LHS to the base pointer, we will now
825   // compare the offsets instead of comparing the pointers.
826   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
827 }
828 
829 /// Fold comparisons between a GEP instruction and something else. At this point
830 /// we know that the GEP is on the LHS of the comparison.
831 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
832                                            ICmpInst::Predicate Cond,
833                                            Instruction &I) {
834   // Don't transform signed compares of GEPs into index compares. Even if the
835   // GEP is inbounds, the final add of the base pointer can have signed overflow
836   // and would change the result of the icmp.
837   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
838   // the maximum signed value for the pointer type.
839   if (ICmpInst::isSigned(Cond))
840     return nullptr;
841 
842   // Look through bitcasts and addrspacecasts. We do not however want to remove
843   // 0 GEPs.
844   if (!isa<GetElementPtrInst>(RHS))
845     RHS = RHS->stripPointerCasts();
846 
847   Value *PtrBase = GEPLHS->getOperand(0);
848   // FIXME: Support vector pointer GEPs.
849   if (PtrBase == RHS && GEPLHS->isInBounds() &&
850       !GEPLHS->getType()->isVectorTy()) {
851     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
852     // This transformation (ignoring the base and scales) is valid because we
853     // know pointers can't overflow since the gep is inbounds.  See if we can
854     // output an optimized form.
855     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
856 
857     // If not, synthesize the offset the hard way.
858     if (!Offset)
859       Offset = EmitGEPOffset(GEPLHS);
860     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
861                         Constant::getNullValue(Offset->getType()));
862   }
863 
864   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
865       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
866       !NullPointerIsDefined(I.getFunction(),
867                             RHS->getType()->getPointerAddressSpace())) {
868     // For most address spaces, an allocation can't be placed at null, but null
869     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
870     // the only valid inbounds address derived from null, is null itself.
871     // Thus, we have four cases to consider:
872     // 1) Base == nullptr, Offset == 0 -> inbounds, null
873     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
874     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
875     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
876     //
877     // (Note if we're indexing a type of size 0, that simply collapses into one
878     //  of the buckets above.)
879     //
880     // In general, we're allowed to make values less poison (i.e. remove
881     //   sources of full UB), so in this case, we just select between the two
882     //   non-poison cases (1 and 4 above).
883     //
884     // For vectors, we apply the same reasoning on a per-lane basis.
885     auto *Base = GEPLHS->getPointerOperand();
886     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
887       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
888       Base = Builder.CreateVectorSplat(EC, Base);
889     }
890     return new ICmpInst(Cond, Base,
891                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
892                             cast<Constant>(RHS), Base->getType()));
893   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
894     // If the base pointers are different, but the indices are the same, just
895     // compare the base pointer.
896     if (PtrBase != GEPRHS->getOperand(0)) {
897       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
898       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
899                         GEPRHS->getOperand(0)->getType();
900       if (IndicesTheSame)
901         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
902           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
903             IndicesTheSame = false;
904             break;
905           }
906 
907       // If all indices are the same, just compare the base pointers.
908       Type *BaseType = GEPLHS->getOperand(0)->getType();
909       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
910         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
911 
912       // If we're comparing GEPs with two base pointers that only differ in type
913       // and both GEPs have only constant indices or just one use, then fold
914       // the compare with the adjusted indices.
915       // FIXME: Support vector of pointers.
916       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
917           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
918           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
919           PtrBase->stripPointerCasts() ==
920               GEPRHS->getOperand(0)->stripPointerCasts() &&
921           !GEPLHS->getType()->isVectorTy()) {
922         Value *LOffset = EmitGEPOffset(GEPLHS);
923         Value *ROffset = EmitGEPOffset(GEPRHS);
924 
925         // If we looked through an addrspacecast between different sized address
926         // spaces, the LHS and RHS pointers are different sized
927         // integers. Truncate to the smaller one.
928         Type *LHSIndexTy = LOffset->getType();
929         Type *RHSIndexTy = ROffset->getType();
930         if (LHSIndexTy != RHSIndexTy) {
931           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
932               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
933             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
934           } else
935             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
936         }
937 
938         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
939                                         LOffset, ROffset);
940         return replaceInstUsesWith(I, Cmp);
941       }
942 
943       // Otherwise, the base pointers are different and the indices are
944       // different. Try convert this to an indexed compare by looking through
945       // PHIs/casts.
946       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
947     }
948 
949     // If one of the GEPs has all zero indices, recurse.
950     // FIXME: Handle vector of pointers.
951     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
952       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
953                          ICmpInst::getSwappedPredicate(Cond), I);
954 
955     // If the other GEP has all zero indices, recurse.
956     // FIXME: Handle vector of pointers.
957     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
958       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
959 
960     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
961     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
962       // If the GEPs only differ by one index, compare it.
963       unsigned NumDifferences = 0;  // Keep track of # differences.
964       unsigned DiffOperand = 0;     // The operand that differs.
965       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
966         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
967           Type *LHSType = GEPLHS->getOperand(i)->getType();
968           Type *RHSType = GEPRHS->getOperand(i)->getType();
969           // FIXME: Better support for vector of pointers.
970           if (LHSType->getPrimitiveSizeInBits() !=
971                    RHSType->getPrimitiveSizeInBits() ||
972               (GEPLHS->getType()->isVectorTy() &&
973                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
974             // Irreconcilable differences.
975             NumDifferences = 2;
976             break;
977           }
978 
979           if (NumDifferences++) break;
980           DiffOperand = i;
981         }
982 
983       if (NumDifferences == 0)   // SAME GEP?
984         return replaceInstUsesWith(I, // No comparison is needed here.
985           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
986 
987       else if (NumDifferences == 1 && GEPsInBounds) {
988         Value *LHSV = GEPLHS->getOperand(DiffOperand);
989         Value *RHSV = GEPRHS->getOperand(DiffOperand);
990         // Make sure we do a signed comparison here.
991         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
992       }
993     }
994 
995     // Only lower this if the icmp is the only user of the GEP or if we expect
996     // the result to fold to a constant!
997     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
998         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
999       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1000       Value *L = EmitGEPOffset(GEPLHS);
1001       Value *R = EmitGEPOffset(GEPRHS);
1002       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1003     }
1004   }
1005 
1006   // Try convert this to an indexed compare by looking through PHIs/casts as a
1007   // last resort.
1008   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1009 }
1010 
1011 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1012                                              const AllocaInst *Alloca,
1013                                              const Value *Other) {
1014   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1015 
1016   // It would be tempting to fold away comparisons between allocas and any
1017   // pointer not based on that alloca (e.g. an argument). However, even
1018   // though such pointers cannot alias, they can still compare equal.
1019   //
1020   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1021   // doesn't escape we can argue that it's impossible to guess its value, and we
1022   // can therefore act as if any such guesses are wrong.
1023   //
1024   // The code below checks that the alloca doesn't escape, and that it's only
1025   // used in a comparison once (the current instruction). The
1026   // single-comparison-use condition ensures that we're trivially folding all
1027   // comparisons against the alloca consistently, and avoids the risk of
1028   // erroneously folding a comparison of the pointer with itself.
1029 
1030   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1031 
1032   SmallVector<const Use *, 32> Worklist;
1033   for (const Use &U : Alloca->uses()) {
1034     if (Worklist.size() >= MaxIter)
1035       return nullptr;
1036     Worklist.push_back(&U);
1037   }
1038 
1039   unsigned NumCmps = 0;
1040   while (!Worklist.empty()) {
1041     assert(Worklist.size() <= MaxIter);
1042     const Use *U = Worklist.pop_back_val();
1043     const Value *V = U->getUser();
1044     --MaxIter;
1045 
1046     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1047         isa<SelectInst>(V)) {
1048       // Track the uses.
1049     } else if (isa<LoadInst>(V)) {
1050       // Loading from the pointer doesn't escape it.
1051       continue;
1052     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1053       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1054       if (SI->getValueOperand() == U->get())
1055         return nullptr;
1056       continue;
1057     } else if (isa<ICmpInst>(V)) {
1058       if (NumCmps++)
1059         return nullptr; // Found more than one cmp.
1060       continue;
1061     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1062       switch (Intrin->getIntrinsicID()) {
1063         // These intrinsics don't escape or compare the pointer. Memset is safe
1064         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1065         // we don't allow stores, so src cannot point to V.
1066         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1067         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1068           continue;
1069         default:
1070           return nullptr;
1071       }
1072     } else {
1073       return nullptr;
1074     }
1075     for (const Use &U : V->uses()) {
1076       if (Worklist.size() >= MaxIter)
1077         return nullptr;
1078       Worklist.push_back(&U);
1079     }
1080   }
1081 
1082   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1083   return replaceInstUsesWith(
1084       ICI,
1085       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1086 }
1087 
1088 /// Fold "icmp pred (X+C), X".
1089 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1090                                                   ICmpInst::Predicate Pred) {
1091   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1092   // so the values can never be equal.  Similarly for all other "or equals"
1093   // operators.
1094   assert(!!C && "C should not be zero!");
1095 
1096   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1097   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1098   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1099   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1100     Constant *R = ConstantInt::get(X->getType(),
1101                                    APInt::getMaxValue(C.getBitWidth()) - C);
1102     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1103   }
1104 
1105   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1106   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1107   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1108   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1109     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1110                         ConstantInt::get(X->getType(), -C));
1111 
1112   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1113 
1114   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1115   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1116   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1117   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1118   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1119   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1120   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1121     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1122                         ConstantInt::get(X->getType(), SMax - C));
1123 
1124   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1125   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1126   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1127   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1128   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1129   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1130 
1131   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1132   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1133                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1134 }
1135 
1136 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1137 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1138 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1139 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1140                                                      const APInt &AP1,
1141                                                      const APInt &AP2) {
1142   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1143 
1144   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1145     if (I.getPredicate() == I.ICMP_NE)
1146       Pred = CmpInst::getInversePredicate(Pred);
1147     return new ICmpInst(Pred, LHS, RHS);
1148   };
1149 
1150   // Don't bother doing any work for cases which InstSimplify handles.
1151   if (AP2.isZero())
1152     return nullptr;
1153 
1154   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1155   if (IsAShr) {
1156     if (AP2.isAllOnes())
1157       return nullptr;
1158     if (AP2.isNegative() != AP1.isNegative())
1159       return nullptr;
1160     if (AP2.sgt(AP1))
1161       return nullptr;
1162   }
1163 
1164   if (!AP1)
1165     // 'A' must be large enough to shift out the highest set bit.
1166     return getICmp(I.ICMP_UGT, A,
1167                    ConstantInt::get(A->getType(), AP2.logBase2()));
1168 
1169   if (AP1 == AP2)
1170     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1171 
1172   int Shift;
1173   if (IsAShr && AP1.isNegative())
1174     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1175   else
1176     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1177 
1178   if (Shift > 0) {
1179     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1180       // There are multiple solutions if we are comparing against -1 and the LHS
1181       // of the ashr is not a power of two.
1182       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1183         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1184       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1185     } else if (AP1 == AP2.lshr(Shift)) {
1186       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1187     }
1188   }
1189 
1190   // Shifting const2 will never be equal to const1.
1191   // FIXME: This should always be handled by InstSimplify?
1192   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1193   return replaceInstUsesWith(I, TorF);
1194 }
1195 
1196 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1197 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1198 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1199                                                      const APInt &AP1,
1200                                                      const APInt &AP2) {
1201   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1202 
1203   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1204     if (I.getPredicate() == I.ICMP_NE)
1205       Pred = CmpInst::getInversePredicate(Pred);
1206     return new ICmpInst(Pred, LHS, RHS);
1207   };
1208 
1209   // Don't bother doing any work for cases which InstSimplify handles.
1210   if (AP2.isZero())
1211     return nullptr;
1212 
1213   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1214 
1215   if (!AP1 && AP2TrailingZeros != 0)
1216     return getICmp(
1217         I.ICMP_UGE, A,
1218         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1219 
1220   if (AP1 == AP2)
1221     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1222 
1223   // Get the distance between the lowest bits that are set.
1224   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1225 
1226   if (Shift > 0 && AP2.shl(Shift) == AP1)
1227     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1228 
1229   // Shifting const2 will never be equal to const1.
1230   // FIXME: This should always be handled by InstSimplify?
1231   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1232   return replaceInstUsesWith(I, TorF);
1233 }
1234 
1235 /// The caller has matched a pattern of the form:
1236 ///   I = icmp ugt (add (add A, B), CI2), CI1
1237 /// If this is of the form:
1238 ///   sum = a + b
1239 ///   if (sum+128 >u 255)
1240 /// Then replace it with llvm.sadd.with.overflow.i8.
1241 ///
1242 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1243                                           ConstantInt *CI2, ConstantInt *CI1,
1244                                           InstCombinerImpl &IC) {
1245   // The transformation we're trying to do here is to transform this into an
1246   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1247   // with a narrower add, and discard the add-with-constant that is part of the
1248   // range check (if we can't eliminate it, this isn't profitable).
1249 
1250   // In order to eliminate the add-with-constant, the compare can be its only
1251   // use.
1252   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1253   if (!AddWithCst->hasOneUse())
1254     return nullptr;
1255 
1256   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1257   if (!CI2->getValue().isPowerOf2())
1258     return nullptr;
1259   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1260   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1261     return nullptr;
1262 
1263   // The width of the new add formed is 1 more than the bias.
1264   ++NewWidth;
1265 
1266   // Check to see that CI1 is an all-ones value with NewWidth bits.
1267   if (CI1->getBitWidth() == NewWidth ||
1268       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1269     return nullptr;
1270 
1271   // This is only really a signed overflow check if the inputs have been
1272   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1273   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1274   if (IC.ComputeMinSignedBits(A, 0, &I) > NewWidth ||
1275       IC.ComputeMinSignedBits(B, 0, &I) > NewWidth)
1276     return nullptr;
1277 
1278   // In order to replace the original add with a narrower
1279   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1280   // and truncates that discard the high bits of the add.  Verify that this is
1281   // the case.
1282   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1283   for (User *U : OrigAdd->users()) {
1284     if (U == AddWithCst)
1285       continue;
1286 
1287     // Only accept truncates for now.  We would really like a nice recursive
1288     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1289     // chain to see which bits of a value are actually demanded.  If the
1290     // original add had another add which was then immediately truncated, we
1291     // could still do the transformation.
1292     TruncInst *TI = dyn_cast<TruncInst>(U);
1293     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1294       return nullptr;
1295   }
1296 
1297   // If the pattern matches, truncate the inputs to the narrower type and
1298   // use the sadd_with_overflow intrinsic to efficiently compute both the
1299   // result and the overflow bit.
1300   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1301   Function *F = Intrinsic::getDeclaration(
1302       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1303 
1304   InstCombiner::BuilderTy &Builder = IC.Builder;
1305 
1306   // Put the new code above the original add, in case there are any uses of the
1307   // add between the add and the compare.
1308   Builder.SetInsertPoint(OrigAdd);
1309 
1310   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1311   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1312   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1313   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1314   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1315 
1316   // The inner add was the result of the narrow add, zero extended to the
1317   // wider type.  Replace it with the result computed by the intrinsic.
1318   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1319   IC.eraseInstFromFunction(*OrigAdd);
1320 
1321   // The original icmp gets replaced with the overflow value.
1322   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1323 }
1324 
1325 /// If we have:
1326 ///   icmp eq/ne (urem/srem %x, %y), 0
1327 /// iff %y is a power-of-two, we can replace this with a bit test:
1328 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1329 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1330   // This fold is only valid for equality predicates.
1331   if (!I.isEquality())
1332     return nullptr;
1333   ICmpInst::Predicate Pred;
1334   Value *X, *Y, *Zero;
1335   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1336                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1337     return nullptr;
1338   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1339     return nullptr;
1340   // This may increase instruction count, we don't enforce that Y is a constant.
1341   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1342   Value *Masked = Builder.CreateAnd(X, Mask);
1343   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1344 }
1345 
1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1347 /// by one-less-than-bitwidth into a sign test on the original value.
1348 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1349   Instruction *Val;
1350   ICmpInst::Predicate Pred;
1351   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1352     return nullptr;
1353 
1354   Value *X;
1355   Type *XTy;
1356 
1357   Constant *C;
1358   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1359     XTy = X->getType();
1360     unsigned XBitWidth = XTy->getScalarSizeInBits();
1361     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1362                                      APInt(XBitWidth, XBitWidth - 1))))
1363       return nullptr;
1364   } else if (isa<BinaryOperator>(Val) &&
1365              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1366                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1367                   /*AnalyzeForSignBitExtraction=*/true))) {
1368     XTy = X->getType();
1369   } else
1370     return nullptr;
1371 
1372   return ICmpInst::Create(Instruction::ICmp,
1373                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1374                                                     : ICmpInst::ICMP_SLT,
1375                           X, ConstantInt::getNullValue(XTy));
1376 }
1377 
1378 // Handle  icmp pred X, 0
1379 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1380   CmpInst::Predicate Pred = Cmp.getPredicate();
1381   if (!match(Cmp.getOperand(1), m_Zero()))
1382     return nullptr;
1383 
1384   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1385   if (Pred == ICmpInst::ICMP_SGT) {
1386     Value *A, *B;
1387     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1388     if (SPR.Flavor == SPF_SMIN) {
1389       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1390         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1391       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1392         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1393     }
1394   }
1395 
1396   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1397     return New;
1398 
1399   // Given:
1400   //   icmp eq/ne (urem %x, %y), 0
1401   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1402   //   icmp eq/ne %x, 0
1403   Value *X, *Y;
1404   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1405       ICmpInst::isEquality(Pred)) {
1406     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1407     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1408     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1409       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1410   }
1411 
1412   return nullptr;
1413 }
1414 
1415 /// Fold icmp Pred X, C.
1416 /// TODO: This code structure does not make sense. The saturating add fold
1417 /// should be moved to some other helper and extended as noted below (it is also
1418 /// possible that code has been made unnecessary - do we canonicalize IR to
1419 /// overflow/saturating intrinsics or not?).
1420 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1421   // Match the following pattern, which is a common idiom when writing
1422   // overflow-safe integer arithmetic functions. The source performs an addition
1423   // in wider type and explicitly checks for overflow using comparisons against
1424   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1425   //
1426   // TODO: This could probably be generalized to handle other overflow-safe
1427   // operations if we worked out the formulas to compute the appropriate magic
1428   // constants.
1429   //
1430   // sum = a + b
1431   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1432   CmpInst::Predicate Pred = Cmp.getPredicate();
1433   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1434   Value *A, *B;
1435   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1436   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1437       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1438     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1439       return Res;
1440 
1441   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1442   Constant *C = dyn_cast<Constant>(Op1);
1443   if (!C || C->canTrap())
1444     return nullptr;
1445 
1446   if (auto *Phi = dyn_cast<PHINode>(Op0))
1447     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1448       Type *Ty = Cmp.getType();
1449       Builder.SetInsertPoint(Phi);
1450       PHINode *NewPhi =
1451           Builder.CreatePHI(Ty, Phi->getNumOperands());
1452       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1453         auto *Input =
1454             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1455         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1456         NewPhi->addIncoming(BoolInput, Predecessor);
1457       }
1458       NewPhi->takeName(&Cmp);
1459       return replaceInstUsesWith(Cmp, NewPhi);
1460     }
1461 
1462   return nullptr;
1463 }
1464 
1465 /// Canonicalize icmp instructions based on dominating conditions.
1466 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1467   // This is a cheap/incomplete check for dominance - just match a single
1468   // predecessor with a conditional branch.
1469   BasicBlock *CmpBB = Cmp.getParent();
1470   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1471   if (!DomBB)
1472     return nullptr;
1473 
1474   Value *DomCond;
1475   BasicBlock *TrueBB, *FalseBB;
1476   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1477     return nullptr;
1478 
1479   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1480          "Predecessor block does not point to successor?");
1481 
1482   // The branch should get simplified. Don't bother simplifying this condition.
1483   if (TrueBB == FalseBB)
1484     return nullptr;
1485 
1486   // Try to simplify this compare to T/F based on the dominating condition.
1487   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1488   if (Imp)
1489     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1490 
1491   CmpInst::Predicate Pred = Cmp.getPredicate();
1492   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1493   ICmpInst::Predicate DomPred;
1494   const APInt *C, *DomC;
1495   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1496       match(Y, m_APInt(C))) {
1497     // We have 2 compares of a variable with constants. Calculate the constant
1498     // ranges of those compares to see if we can transform the 2nd compare:
1499     // DomBB:
1500     //   DomCond = icmp DomPred X, DomC
1501     //   br DomCond, CmpBB, FalseBB
1502     // CmpBB:
1503     //   Cmp = icmp Pred X, C
1504     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1505     ConstantRange DominatingCR =
1506         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1507                           : ConstantRange::makeExactICmpRegion(
1508                                 CmpInst::getInversePredicate(DomPred), *DomC);
1509     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1510     ConstantRange Difference = DominatingCR.difference(CR);
1511     if (Intersection.isEmptySet())
1512       return replaceInstUsesWith(Cmp, Builder.getFalse());
1513     if (Difference.isEmptySet())
1514       return replaceInstUsesWith(Cmp, Builder.getTrue());
1515 
1516     // Canonicalizing a sign bit comparison that gets used in a branch,
1517     // pessimizes codegen by generating branch on zero instruction instead
1518     // of a test and branch. So we avoid canonicalizing in such situations
1519     // because test and branch instruction has better branch displacement
1520     // than compare and branch instruction.
1521     bool UnusedBit;
1522     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1523     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1524       return nullptr;
1525 
1526     // Avoid an infinite loop with min/max canonicalization.
1527     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1528     if (Cmp.hasOneUse() &&
1529         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1530       return nullptr;
1531 
1532     if (const APInt *EqC = Intersection.getSingleElement())
1533       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1534     if (const APInt *NeC = Difference.getSingleElement())
1535       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1536   }
1537 
1538   return nullptr;
1539 }
1540 
1541 /// Fold icmp (trunc X, Y), C.
1542 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1543                                                      TruncInst *Trunc,
1544                                                      const APInt &C) {
1545   ICmpInst::Predicate Pred = Cmp.getPredicate();
1546   Value *X = Trunc->getOperand(0);
1547   if (C.isOne() && C.getBitWidth() > 1) {
1548     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1549     Value *V = nullptr;
1550     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1551       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1552                           ConstantInt::get(V->getType(), 1));
1553   }
1554 
1555   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1556            SrcBits = X->getType()->getScalarSizeInBits();
1557   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1558     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1559     // of the high bits truncated out of x are known.
1560     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1561 
1562     // If all the high bits are known, we can do this xform.
1563     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1564       // Pull in the high bits from known-ones set.
1565       APInt NewRHS = C.zext(SrcBits);
1566       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1567       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1568     }
1569   }
1570 
1571   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1572   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1573   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1574   Value *ShOp;
1575   const APInt *ShAmtC;
1576   bool TrueIfSigned;
1577   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1578       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1579       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1580     return TrueIfSigned
1581                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1582                               ConstantInt::getNullValue(X->getType()))
1583                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1584                               ConstantInt::getAllOnesValue(X->getType()));
1585   }
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Fold icmp (xor X, Y), C.
1591 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1592                                                    BinaryOperator *Xor,
1593                                                    const APInt &C) {
1594   Value *X = Xor->getOperand(0);
1595   Value *Y = Xor->getOperand(1);
1596   const APInt *XorC;
1597   if (!match(Y, m_APInt(XorC)))
1598     return nullptr;
1599 
1600   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1601   // fold the xor.
1602   ICmpInst::Predicate Pred = Cmp.getPredicate();
1603   bool TrueIfSigned = false;
1604   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1605 
1606     // If the sign bit of the XorCst is not set, there is no change to
1607     // the operation, just stop using the Xor.
1608     if (!XorC->isNegative())
1609       return replaceOperand(Cmp, 0, X);
1610 
1611     // Emit the opposite comparison.
1612     if (TrueIfSigned)
1613       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1614                           ConstantInt::getAllOnesValue(X->getType()));
1615     else
1616       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1617                           ConstantInt::getNullValue(X->getType()));
1618   }
1619 
1620   if (Xor->hasOneUse()) {
1621     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1622     if (!Cmp.isEquality() && XorC->isSignMask()) {
1623       Pred = Cmp.getFlippedSignednessPredicate();
1624       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1625     }
1626 
1627     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1628     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1629       Pred = Cmp.getFlippedSignednessPredicate();
1630       Pred = Cmp.getSwappedPredicate(Pred);
1631       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1632     }
1633   }
1634 
1635   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1636   if (Pred == ICmpInst::ICMP_UGT) {
1637     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1638     if (*XorC == ~C && (C + 1).isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1640     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1641     if (*XorC == C && (C + 1).isPowerOf2())
1642       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1643   }
1644   if (Pred == ICmpInst::ICMP_ULT) {
1645     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1646     if (*XorC == -C && C.isPowerOf2())
1647       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1648                           ConstantInt::get(X->getType(), ~C));
1649     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1650     if (*XorC == C && (-C).isPowerOf2())
1651       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1652                           ConstantInt::get(X->getType(), ~C));
1653   }
1654   return nullptr;
1655 }
1656 
1657 /// Fold icmp (and (sh X, Y), C2), C1.
1658 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1659                                                 BinaryOperator *And,
1660                                                 const APInt &C1,
1661                                                 const APInt &C2) {
1662   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1663   if (!Shift || !Shift->isShift())
1664     return nullptr;
1665 
1666   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1667   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1668   // code produced by the clang front-end, for bitfield access.
1669   // This seemingly simple opportunity to fold away a shift turns out to be
1670   // rather complicated. See PR17827 for details.
1671   unsigned ShiftOpcode = Shift->getOpcode();
1672   bool IsShl = ShiftOpcode == Instruction::Shl;
1673   const APInt *C3;
1674   if (match(Shift->getOperand(1), m_APInt(C3))) {
1675     APInt NewAndCst, NewCmpCst;
1676     bool AnyCmpCstBitsShiftedOut;
1677     if (ShiftOpcode == Instruction::Shl) {
1678       // For a left shift, we can fold if the comparison is not signed. We can
1679       // also fold a signed comparison if the mask value and comparison value
1680       // are not negative. These constraints may not be obvious, but we can
1681       // prove that they are correct using an SMT solver.
1682       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1683         return nullptr;
1684 
1685       NewCmpCst = C1.lshr(*C3);
1686       NewAndCst = C2.lshr(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1688     } else if (ShiftOpcode == Instruction::LShr) {
1689       // For a logical right shift, we can fold if the comparison is not signed.
1690       // We can also fold a signed comparison if the shifted mask value and the
1691       // shifted comparison value are not negative. These constraints may not be
1692       // obvious, but we can prove that they are correct using an SMT solver.
1693       NewCmpCst = C1.shl(*C3);
1694       NewAndCst = C2.shl(*C3);
1695       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1696       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1697         return nullptr;
1698     } else {
1699       // For an arithmetic shift, check that both constants don't use (in a
1700       // signed sense) the top bits being shifted out.
1701       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1702       NewCmpCst = C1.shl(*C3);
1703       NewAndCst = C2.shl(*C3);
1704       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1705       if (NewAndCst.ashr(*C3) != C2)
1706         return nullptr;
1707     }
1708 
1709     if (AnyCmpCstBitsShiftedOut) {
1710       // If we shifted bits out, the fold is not going to work out. As a
1711       // special case, check to see if this means that the result is always
1712       // true or false now.
1713       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1714         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1715       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1716         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1717     } else {
1718       Value *NewAnd = Builder.CreateAnd(
1719           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1720       return new ICmpInst(Cmp.getPredicate(),
1721           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1722     }
1723   }
1724 
1725   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1726   // preferable because it allows the C2 << Y expression to be hoisted out of a
1727   // loop if Y is invariant and X is not.
1728   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1729       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1730     // Compute C2 << Y.
1731     Value *NewShift =
1732         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1733               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1734 
1735     // Compute X & (C2 << Y).
1736     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1737     return replaceOperand(Cmp, 0, NewAnd);
1738   }
1739 
1740   return nullptr;
1741 }
1742 
1743 /// Fold icmp (and X, C2), C1.
1744 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1745                                                      BinaryOperator *And,
1746                                                      const APInt &C1) {
1747   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1748 
1749   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1750   // TODO: We canonicalize to the longer form for scalars because we have
1751   // better analysis/folds for icmp, and codegen may be better with icmp.
1752   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1753       match(And->getOperand(1), m_One()))
1754     return new TruncInst(And->getOperand(0), Cmp.getType());
1755 
1756   const APInt *C2;
1757   Value *X;
1758   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1759     return nullptr;
1760 
1761   // Don't perform the following transforms if the AND has multiple uses
1762   if (!And->hasOneUse())
1763     return nullptr;
1764 
1765   if (Cmp.isEquality() && C1.isZero()) {
1766     // Restrict this fold to single-use 'and' (PR10267).
1767     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1768     if (C2->isSignMask()) {
1769       Constant *Zero = Constant::getNullValue(X->getType());
1770       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1771       return new ICmpInst(NewPred, X, Zero);
1772     }
1773 
1774     // Restrict this fold only for single-use 'and' (PR10267).
1775     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1776     if ((~(*C2) + 1).isPowerOf2()) {
1777       Constant *NegBOC =
1778           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1779       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1780       return new ICmpInst(NewPred, X, NegBOC);
1781     }
1782   }
1783 
1784   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1785   // the input width without changing the value produced, eliminate the cast:
1786   //
1787   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1788   //
1789   // We can do this transformation if the constants do not have their sign bits
1790   // set or if it is an equality comparison. Extending a relational comparison
1791   // when we're checking the sign bit would not work.
1792   Value *W;
1793   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1794       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1795     // TODO: Is this a good transform for vectors? Wider types may reduce
1796     // throughput. Should this transform be limited (even for scalars) by using
1797     // shouldChangeType()?
1798     if (!Cmp.getType()->isVectorTy()) {
1799       Type *WideType = W->getType();
1800       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1801       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1802       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1803       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1804       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1805     }
1806   }
1807 
1808   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1809     return I;
1810 
1811   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1812   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1813   //
1814   // iff pred isn't signed
1815   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1816       match(And->getOperand(1), m_One())) {
1817     Constant *One = cast<Constant>(And->getOperand(1));
1818     Value *Or = And->getOperand(0);
1819     Value *A, *B, *LShr;
1820     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1821         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1822       unsigned UsesRemoved = 0;
1823       if (And->hasOneUse())
1824         ++UsesRemoved;
1825       if (Or->hasOneUse())
1826         ++UsesRemoved;
1827       if (LShr->hasOneUse())
1828         ++UsesRemoved;
1829 
1830       // Compute A & ((1 << B) | 1)
1831       Value *NewOr = nullptr;
1832       if (auto *C = dyn_cast<Constant>(B)) {
1833         if (UsesRemoved >= 1)
1834           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1835       } else {
1836         if (UsesRemoved >= 3)
1837           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1838                                                      /*HasNUW=*/true),
1839                                    One, Or->getName());
1840       }
1841       if (NewOr) {
1842         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1843         return replaceOperand(Cmp, 0, NewAnd);
1844       }
1845     }
1846   }
1847 
1848   return nullptr;
1849 }
1850 
1851 /// Fold icmp (and X, Y), C.
1852 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1853                                                    BinaryOperator *And,
1854                                                    const APInt &C) {
1855   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1856     return I;
1857 
1858   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1859   bool TrueIfNeg;
1860   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1861     // ((X - 1) & ~X) <  0 --> X == 0
1862     // ((X - 1) & ~X) >= 0 --> X != 0
1863     Value *X;
1864     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1865         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1866       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1867       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1868     }
1869   }
1870 
1871   // TODO: These all require that Y is constant too, so refactor with the above.
1872 
1873   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1874   Value *X = And->getOperand(0);
1875   Value *Y = And->getOperand(1);
1876   if (auto *LI = dyn_cast<LoadInst>(X))
1877     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1878       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1879         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1880             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1881           ConstantInt *C2 = cast<ConstantInt>(Y);
1882           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1883             return Res;
1884         }
1885 
1886   if (!Cmp.isEquality())
1887     return nullptr;
1888 
1889   // X & -C == -C -> X >  u ~C
1890   // X & -C != -C -> X <= u ~C
1891   //   iff C is a power of 2
1892   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1893     auto NewPred =
1894         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1895     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1896   }
1897 
1898   return nullptr;
1899 }
1900 
1901 /// Fold icmp (or X, Y), C.
1902 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1903                                                   BinaryOperator *Or,
1904                                                   const APInt &C) {
1905   ICmpInst::Predicate Pred = Cmp.getPredicate();
1906   if (C.isOne()) {
1907     // icmp slt signum(V) 1 --> icmp slt V, 1
1908     Value *V = nullptr;
1909     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1910       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1911                           ConstantInt::get(V->getType(), 1));
1912   }
1913 
1914   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1915   const APInt *MaskC;
1916   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1917     if (*MaskC == C && (C + 1).isPowerOf2()) {
1918       // X | C == C --> X <=u C
1919       // X | C != C --> X  >u C
1920       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1921       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1922       return new ICmpInst(Pred, OrOp0, OrOp1);
1923     }
1924 
1925     // More general: canonicalize 'equality with set bits mask' to
1926     // 'equality with clear bits mask'.
1927     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1928     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1929     if (Or->hasOneUse()) {
1930       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1931       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1932       return new ICmpInst(Pred, And, NewC);
1933     }
1934   }
1935 
1936   // (X | (X-1)) s<  0 --> X s< 1
1937   // (X | (X-1)) s> -1 --> X s> 0
1938   Value *X;
1939   bool TrueIfSigned;
1940   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1941       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1942     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1943     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1944     return new ICmpInst(NewPred, X, NewC);
1945   }
1946 
1947   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1948     return nullptr;
1949 
1950   Value *P, *Q;
1951   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1952     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1953     // -> and (icmp eq P, null), (icmp eq Q, null).
1954     Value *CmpP =
1955         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1956     Value *CmpQ =
1957         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1958     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1959     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1960   }
1961 
1962   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1963   // a shorter form that has more potential to be folded even further.
1964   Value *X1, *X2, *X3, *X4;
1965   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1966       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1967     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1968     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1969     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1970     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1971     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1972     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1973   }
1974 
1975   return nullptr;
1976 }
1977 
1978 /// Fold icmp (mul X, Y), C.
1979 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1980                                                    BinaryOperator *Mul,
1981                                                    const APInt &C) {
1982   const APInt *MulC;
1983   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1984     return nullptr;
1985 
1986   // If this is a test of the sign bit and the multiply is sign-preserving with
1987   // a constant operand, use the multiply LHS operand instead.
1988   ICmpInst::Predicate Pred = Cmp.getPredicate();
1989   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1990     if (MulC->isNegative())
1991       Pred = ICmpInst::getSwappedPredicate(Pred);
1992     return new ICmpInst(Pred, Mul->getOperand(0),
1993                         Constant::getNullValue(Mul->getType()));
1994   }
1995 
1996   // If the multiply does not wrap, try to divide the compare constant by the
1997   // multiplication factor.
1998   if (Cmp.isEquality() && !MulC->isZero()) {
1999     // (mul nsw X, MulC) == C --> X == C /s MulC
2000     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2001       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2002       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2003     }
2004     // (mul nuw X, MulC) == C --> X == C /u MulC
2005     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
2006       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2007       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2008     }
2009   }
2010 
2011   return nullptr;
2012 }
2013 
2014 /// Fold icmp (shl 1, Y), C.
2015 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2016                                    const APInt &C) {
2017   Value *Y;
2018   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2019     return nullptr;
2020 
2021   Type *ShiftType = Shl->getType();
2022   unsigned TypeBits = C.getBitWidth();
2023   bool CIsPowerOf2 = C.isPowerOf2();
2024   ICmpInst::Predicate Pred = Cmp.getPredicate();
2025   if (Cmp.isUnsigned()) {
2026     // (1 << Y) pred C -> Y pred Log2(C)
2027     if (!CIsPowerOf2) {
2028       // (1 << Y) <  30 -> Y <= 4
2029       // (1 << Y) <= 30 -> Y <= 4
2030       // (1 << Y) >= 30 -> Y >  4
2031       // (1 << Y) >  30 -> Y >  4
2032       if (Pred == ICmpInst::ICMP_ULT)
2033         Pred = ICmpInst::ICMP_ULE;
2034       else if (Pred == ICmpInst::ICMP_UGE)
2035         Pred = ICmpInst::ICMP_UGT;
2036     }
2037 
2038     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2039     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2040     unsigned CLog2 = C.logBase2();
2041     if (CLog2 == TypeBits - 1) {
2042       if (Pred == ICmpInst::ICMP_UGE)
2043         Pred = ICmpInst::ICMP_EQ;
2044       else if (Pred == ICmpInst::ICMP_ULT)
2045         Pred = ICmpInst::ICMP_NE;
2046     }
2047     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2048   } else if (Cmp.isSigned()) {
2049     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2050     if (C.isAllOnes()) {
2051       // (1 << Y) <= -1 -> Y == 31
2052       if (Pred == ICmpInst::ICMP_SLE)
2053         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2054 
2055       // (1 << Y) >  -1 -> Y != 31
2056       if (Pred == ICmpInst::ICMP_SGT)
2057         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2058     } else if (!C) {
2059       // (1 << Y) <  0 -> Y == 31
2060       // (1 << Y) <= 0 -> Y == 31
2061       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2062         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2063 
2064       // (1 << Y) >= 0 -> Y != 31
2065       // (1 << Y) >  0 -> Y != 31
2066       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2067         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2068     }
2069   } else if (Cmp.isEquality() && CIsPowerOf2) {
2070     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2071   }
2072 
2073   return nullptr;
2074 }
2075 
2076 /// Fold icmp (shl X, Y), C.
2077 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2078                                                    BinaryOperator *Shl,
2079                                                    const APInt &C) {
2080   const APInt *ShiftVal;
2081   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2082     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2083 
2084   const APInt *ShiftAmt;
2085   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2086     return foldICmpShlOne(Cmp, Shl, C);
2087 
2088   // Check that the shift amount is in range. If not, don't perform undefined
2089   // shifts. When the shift is visited, it will be simplified.
2090   unsigned TypeBits = C.getBitWidth();
2091   if (ShiftAmt->uge(TypeBits))
2092     return nullptr;
2093 
2094   ICmpInst::Predicate Pred = Cmp.getPredicate();
2095   Value *X = Shl->getOperand(0);
2096   Type *ShType = Shl->getType();
2097 
2098   // NSW guarantees that we are only shifting out sign bits from the high bits,
2099   // so we can ASHR the compare constant without needing a mask and eliminate
2100   // the shift.
2101   if (Shl->hasNoSignedWrap()) {
2102     if (Pred == ICmpInst::ICMP_SGT) {
2103       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2104       APInt ShiftedC = C.ashr(*ShiftAmt);
2105       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2106     }
2107     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2108         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2109       APInt ShiftedC = C.ashr(*ShiftAmt);
2110       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2111     }
2112     if (Pred == ICmpInst::ICMP_SLT) {
2113       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2114       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2115       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2116       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2117       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2118       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2119       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2120     }
2121     // If this is a signed comparison to 0 and the shift is sign preserving,
2122     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2123     // do that if we're sure to not continue on in this function.
2124     if (isSignTest(Pred, C))
2125       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2126   }
2127 
2128   // NUW guarantees that we are only shifting out zero bits from the high bits,
2129   // so we can LSHR the compare constant without needing a mask and eliminate
2130   // the shift.
2131   if (Shl->hasNoUnsignedWrap()) {
2132     if (Pred == ICmpInst::ICMP_UGT) {
2133       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2134       APInt ShiftedC = C.lshr(*ShiftAmt);
2135       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2136     }
2137     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2138         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2139       APInt ShiftedC = C.lshr(*ShiftAmt);
2140       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2141     }
2142     if (Pred == ICmpInst::ICMP_ULT) {
2143       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2144       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2145       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2146       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2147       assert(C.ugt(0) && "ult 0 should have been eliminated");
2148       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2149       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2150     }
2151   }
2152 
2153   if (Cmp.isEquality() && Shl->hasOneUse()) {
2154     // Strength-reduce the shift into an 'and'.
2155     Constant *Mask = ConstantInt::get(
2156         ShType,
2157         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2158     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2159     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2160     return new ICmpInst(Pred, And, LShrC);
2161   }
2162 
2163   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2164   bool TrueIfSigned = false;
2165   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2166     // (X << 31) <s 0  --> (X & 1) != 0
2167     Constant *Mask = ConstantInt::get(
2168         ShType,
2169         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2170     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2171     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2172                         And, Constant::getNullValue(ShType));
2173   }
2174 
2175   // Simplify 'shl' inequality test into 'and' equality test.
2176   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2177     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2178     if ((C + 1).isPowerOf2() &&
2179         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2180       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2181       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2182                                                      : ICmpInst::ICMP_NE,
2183                           And, Constant::getNullValue(ShType));
2184     }
2185     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2186     if (C.isPowerOf2() &&
2187         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2188       Value *And =
2189           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2190       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2191                                                      : ICmpInst::ICMP_NE,
2192                           And, Constant::getNullValue(ShType));
2193     }
2194   }
2195 
2196   // Transform (icmp pred iM (shl iM %v, N), C)
2197   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2198   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2199   // This enables us to get rid of the shift in favor of a trunc that may be
2200   // free on the target. It has the additional benefit of comparing to a
2201   // smaller constant that may be more target-friendly.
2202   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2203   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2204       DL.isLegalInteger(TypeBits - Amt)) {
2205     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2206     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2207       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2208     Constant *NewC =
2209         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2210     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2211   }
2212 
2213   return nullptr;
2214 }
2215 
2216 /// Fold icmp ({al}shr X, Y), C.
2217 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2218                                                    BinaryOperator *Shr,
2219                                                    const APInt &C) {
2220   // An exact shr only shifts out zero bits, so:
2221   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2222   Value *X = Shr->getOperand(0);
2223   CmpInst::Predicate Pred = Cmp.getPredicate();
2224   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isZero())
2225     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2226 
2227   const APInt *ShiftVal;
2228   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2229     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2230 
2231   const APInt *ShiftAmt;
2232   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2233     return nullptr;
2234 
2235   // Check that the shift amount is in range. If not, don't perform undefined
2236   // shifts. When the shift is visited it will be simplified.
2237   unsigned TypeBits = C.getBitWidth();
2238   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2239   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2240     return nullptr;
2241 
2242   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2243   bool IsExact = Shr->isExact();
2244   Type *ShrTy = Shr->getType();
2245   // TODO: If we could guarantee that InstSimplify would handle all of the
2246   // constant-value-based preconditions in the folds below, then we could assert
2247   // those conditions rather than checking them. This is difficult because of
2248   // undef/poison (PR34838).
2249   if (IsAShr) {
2250     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2251       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2252       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2253       APInt ShiftedC = C.shl(ShAmtVal);
2254       if (ShiftedC.ashr(ShAmtVal) == C)
2255         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2256     }
2257     if (Pred == CmpInst::ICMP_SGT) {
2258       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2259       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2260       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2261           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2262         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2263     }
2264 
2265     // If the compare constant has significant bits above the lowest sign-bit,
2266     // then convert an unsigned cmp to a test of the sign-bit:
2267     // (ashr X, ShiftC) u> C --> X s< 0
2268     // (ashr X, ShiftC) u< C --> X s> -1
2269     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2270       if (Pred == CmpInst::ICMP_UGT) {
2271         return new ICmpInst(CmpInst::ICMP_SLT, X,
2272                             ConstantInt::getNullValue(ShrTy));
2273       }
2274       if (Pred == CmpInst::ICMP_ULT) {
2275         return new ICmpInst(CmpInst::ICMP_SGT, X,
2276                             ConstantInt::getAllOnesValue(ShrTy));
2277       }
2278     }
2279   } else {
2280     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2281       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2282       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2283       APInt ShiftedC = C.shl(ShAmtVal);
2284       if (ShiftedC.lshr(ShAmtVal) == C)
2285         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2286     }
2287     if (Pred == CmpInst::ICMP_UGT) {
2288       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2289       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2290       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2291         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2292     }
2293   }
2294 
2295   if (!Cmp.isEquality())
2296     return nullptr;
2297 
2298   // Handle equality comparisons of shift-by-constant.
2299 
2300   // If the comparison constant changes with the shift, the comparison cannot
2301   // succeed (bits of the comparison constant cannot match the shifted value).
2302   // This should be known by InstSimplify and already be folded to true/false.
2303   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2304           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2305          "Expected icmp+shr simplify did not occur.");
2306 
2307   // If the bits shifted out are known zero, compare the unshifted value:
2308   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2309   if (Shr->isExact())
2310     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2311 
2312   if (C.isZero()) {
2313     // == 0 is u< 1.
2314     if (Pred == CmpInst::ICMP_EQ)
2315       return new ICmpInst(CmpInst::ICMP_ULT, X,
2316                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2317     else
2318       return new ICmpInst(CmpInst::ICMP_UGT, X,
2319                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2320   }
2321 
2322   if (Shr->hasOneUse()) {
2323     // Canonicalize the shift into an 'and':
2324     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2325     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2326     Constant *Mask = ConstantInt::get(ShrTy, Val);
2327     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2328     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2329   }
2330 
2331   return nullptr;
2332 }
2333 
2334 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2335                                                     BinaryOperator *SRem,
2336                                                     const APInt &C) {
2337   // Match an 'is positive' or 'is negative' comparison of remainder by a
2338   // constant power-of-2 value:
2339   // (X % pow2C) sgt/slt 0
2340   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2341   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2342     return nullptr;
2343 
2344   // TODO: The one-use check is standard because we do not typically want to
2345   //       create longer instruction sequences, but this might be a special-case
2346   //       because srem is not good for analysis or codegen.
2347   if (!SRem->hasOneUse())
2348     return nullptr;
2349 
2350   const APInt *DivisorC;
2351   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2352     return nullptr;
2353 
2354   // Mask off the sign bit and the modulo bits (low-bits).
2355   Type *Ty = SRem->getType();
2356   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2357   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2358   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2359 
2360   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2361   // bit is set. Example:
2362   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2363   if (Pred == ICmpInst::ICMP_SGT)
2364     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2365 
2366   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2367   // bit is set. Example:
2368   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2369   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2370 }
2371 
2372 /// Fold icmp (udiv X, Y), C.
2373 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2374                                                     BinaryOperator *UDiv,
2375                                                     const APInt &C) {
2376   const APInt *C2;
2377   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2378     return nullptr;
2379 
2380   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2381 
2382   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2383   Value *Y = UDiv->getOperand(1);
2384   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2385     assert(!C.isMaxValue() &&
2386            "icmp ugt X, UINT_MAX should have been simplified already.");
2387     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2388                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2389   }
2390 
2391   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2392   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2393     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2394     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2395                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2396   }
2397 
2398   return nullptr;
2399 }
2400 
2401 /// Fold icmp ({su}div X, Y), C.
2402 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2403                                                    BinaryOperator *Div,
2404                                                    const APInt &C) {
2405   // Fold: icmp pred ([us]div X, C2), C -> range test
2406   // Fold this div into the comparison, producing a range check.
2407   // Determine, based on the divide type, what the range is being
2408   // checked.  If there is an overflow on the low or high side, remember
2409   // it, otherwise compute the range [low, hi) bounding the new value.
2410   // See: InsertRangeTest above for the kinds of replacements possible.
2411   const APInt *C2;
2412   if (!match(Div->getOperand(1), m_APInt(C2)))
2413     return nullptr;
2414 
2415   // FIXME: If the operand types don't match the type of the divide
2416   // then don't attempt this transform. The code below doesn't have the
2417   // logic to deal with a signed divide and an unsigned compare (and
2418   // vice versa). This is because (x /s C2) <s C  produces different
2419   // results than (x /s C2) <u C or (x /u C2) <s C or even
2420   // (x /u C2) <u C.  Simply casting the operands and result won't
2421   // work. :(  The if statement below tests that condition and bails
2422   // if it finds it.
2423   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2424   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2425     return nullptr;
2426 
2427   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2428   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2429   // division-by-constant cases should be present, we can not assert that they
2430   // have happened before we reach this icmp instruction.
2431   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2432     return nullptr;
2433 
2434   // Compute Prod = C * C2. We are essentially solving an equation of
2435   // form X / C2 = C. We solve for X by multiplying C2 and C.
2436   // By solving for X, we can turn this into a range check instead of computing
2437   // a divide.
2438   APInt Prod = C * *C2;
2439 
2440   // Determine if the product overflows by seeing if the product is not equal to
2441   // the divide. Make sure we do the same kind of divide as in the LHS
2442   // instruction that we're folding.
2443   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2444 
2445   ICmpInst::Predicate Pred = Cmp.getPredicate();
2446 
2447   // If the division is known to be exact, then there is no remainder from the
2448   // divide, so the covered range size is unit, otherwise it is the divisor.
2449   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2450 
2451   // Figure out the interval that is being checked.  For example, a comparison
2452   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2453   // Compute this interval based on the constants involved and the signedness of
2454   // the compare/divide.  This computes a half-open interval, keeping track of
2455   // whether either value in the interval overflows.  After analysis each
2456   // overflow variable is set to 0 if it's corresponding bound variable is valid
2457   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2458   int LoOverflow = 0, HiOverflow = 0;
2459   APInt LoBound, HiBound;
2460 
2461   if (!DivIsSigned) {  // udiv
2462     // e.g. X/5 op 3  --> [15, 20)
2463     LoBound = Prod;
2464     HiOverflow = LoOverflow = ProdOV;
2465     if (!HiOverflow) {
2466       // If this is not an exact divide, then many values in the range collapse
2467       // to the same result value.
2468       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2469     }
2470   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2471     if (C.isZero()) {                    // (X / pos) op 0
2472       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2473       LoBound = -(RangeSize - 1);
2474       HiBound = RangeSize;
2475     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2476       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2477       HiOverflow = LoOverflow = ProdOV;
2478       if (!HiOverflow)
2479         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2480     } else { // (X / pos) op neg
2481       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2482       HiBound = Prod + 1;
2483       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2484       if (!LoOverflow) {
2485         APInt DivNeg = -RangeSize;
2486         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2487       }
2488     }
2489   } else if (C2->isNegative()) { // Divisor is < 0.
2490     if (Div->isExact())
2491       RangeSize.negate();
2492     if (C.isZero()) { // (X / neg) op 0
2493       // e.g. X/-5 op 0  --> [-4, 5)
2494       LoBound = RangeSize + 1;
2495       HiBound = -RangeSize;
2496       if (HiBound == *C2) {        // -INTMIN = INTMIN
2497         HiOverflow = 1;            // [INTMIN+1, overflow)
2498         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2499       }
2500     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2501       // e.g. X/-5 op 3  --> [-19, -14)
2502       HiBound = Prod + 1;
2503       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2504       if (!LoOverflow)
2505         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2506     } else {                // (X / neg) op neg
2507       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2508       LoOverflow = HiOverflow = ProdOV;
2509       if (!HiOverflow)
2510         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2511     }
2512 
2513     // Dividing by a negative swaps the condition.  LT <-> GT
2514     Pred = ICmpInst::getSwappedPredicate(Pred);
2515   }
2516 
2517   Value *X = Div->getOperand(0);
2518   switch (Pred) {
2519     default: llvm_unreachable("Unhandled icmp opcode!");
2520     case ICmpInst::ICMP_EQ:
2521       if (LoOverflow && HiOverflow)
2522         return replaceInstUsesWith(Cmp, Builder.getFalse());
2523       if (HiOverflow)
2524         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2525                             ICmpInst::ICMP_UGE, X,
2526                             ConstantInt::get(Div->getType(), LoBound));
2527       if (LoOverflow)
2528         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2529                             ICmpInst::ICMP_ULT, X,
2530                             ConstantInt::get(Div->getType(), HiBound));
2531       return replaceInstUsesWith(
2532           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2533     case ICmpInst::ICMP_NE:
2534       if (LoOverflow && HiOverflow)
2535         return replaceInstUsesWith(Cmp, Builder.getTrue());
2536       if (HiOverflow)
2537         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2538                             ICmpInst::ICMP_ULT, X,
2539                             ConstantInt::get(Div->getType(), LoBound));
2540       if (LoOverflow)
2541         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2542                             ICmpInst::ICMP_UGE, X,
2543                             ConstantInt::get(Div->getType(), HiBound));
2544       return replaceInstUsesWith(Cmp,
2545                                  insertRangeTest(X, LoBound, HiBound,
2546                                                  DivIsSigned, false));
2547     case ICmpInst::ICMP_ULT:
2548     case ICmpInst::ICMP_SLT:
2549       if (LoOverflow == +1)   // Low bound is greater than input range.
2550         return replaceInstUsesWith(Cmp, Builder.getTrue());
2551       if (LoOverflow == -1)   // Low bound is less than input range.
2552         return replaceInstUsesWith(Cmp, Builder.getFalse());
2553       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2554     case ICmpInst::ICMP_UGT:
2555     case ICmpInst::ICMP_SGT:
2556       if (HiOverflow == +1)       // High bound greater than input range.
2557         return replaceInstUsesWith(Cmp, Builder.getFalse());
2558       if (HiOverflow == -1)       // High bound less than input range.
2559         return replaceInstUsesWith(Cmp, Builder.getTrue());
2560       if (Pred == ICmpInst::ICMP_UGT)
2561         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2562                             ConstantInt::get(Div->getType(), HiBound));
2563       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2564                           ConstantInt::get(Div->getType(), HiBound));
2565   }
2566 
2567   return nullptr;
2568 }
2569 
2570 /// Fold icmp (sub X, Y), C.
2571 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2572                                                    BinaryOperator *Sub,
2573                                                    const APInt &C) {
2574   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2575   ICmpInst::Predicate Pred = Cmp.getPredicate();
2576   Type *Ty = Sub->getType();
2577 
2578   // (SubC - Y) == C) --> Y == (SubC - C)
2579   // (SubC - Y) != C) --> Y != (SubC - C)
2580   Constant *SubC;
2581   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2582     return new ICmpInst(Pred, Y,
2583                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2584   }
2585 
2586   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2587   const APInt *C2;
2588   APInt SubResult;
2589   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2590   bool HasNSW = Sub->hasNoSignedWrap();
2591   bool HasNUW = Sub->hasNoUnsignedWrap();
2592   if (match(X, m_APInt(C2)) &&
2593       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2594       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2595     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2596 
2597   // The following transforms are only worth it if the only user of the subtract
2598   // is the icmp.
2599   // TODO: This is an artificial restriction for all of the transforms below
2600   //       that only need a single replacement icmp.
2601   if (!Sub->hasOneUse())
2602     return nullptr;
2603 
2604   // X - Y == 0 --> X == Y.
2605   // X - Y != 0 --> X != Y.
2606   if (Cmp.isEquality() && C.isZero())
2607     return new ICmpInst(Pred, X, Y);
2608 
2609   if (Sub->hasNoSignedWrap()) {
2610     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2611     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2612       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2613 
2614     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2615     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2616       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2617 
2618     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2619     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2620       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2621 
2622     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2623     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2624       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2625   }
2626 
2627   if (!match(X, m_APInt(C2)))
2628     return nullptr;
2629 
2630   // C2 - Y <u C -> (Y | (C - 1)) == C2
2631   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2632   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2633       (*C2 & (C - 1)) == (C - 1))
2634     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2635 
2636   // C2 - Y >u C -> (Y | C) != C2
2637   //   iff C2 & C == C and C + 1 is a power of 2
2638   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2639     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2640 
2641   // We have handled special cases that reduce.
2642   // Canonicalize any remaining sub to add as:
2643   // (C2 - Y) > C --> (Y + ~C2) < ~C
2644   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2645                                  HasNUW, HasNSW);
2646   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2647 }
2648 
2649 /// Fold icmp (add X, Y), C.
2650 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2651                                                    BinaryOperator *Add,
2652                                                    const APInt &C) {
2653   Value *Y = Add->getOperand(1);
2654   const APInt *C2;
2655   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2656     return nullptr;
2657 
2658   // Fold icmp pred (add X, C2), C.
2659   Value *X = Add->getOperand(0);
2660   Type *Ty = Add->getType();
2661   const CmpInst::Predicate Pred = Cmp.getPredicate();
2662 
2663   // If the add does not wrap, we can always adjust the compare by subtracting
2664   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2665   // are canonicalized to SGT/SLT/UGT/ULT.
2666   if ((Add->hasNoSignedWrap() &&
2667        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2668       (Add->hasNoUnsignedWrap() &&
2669        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2670     bool Overflow;
2671     APInt NewC =
2672         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2673     // If there is overflow, the result must be true or false.
2674     // TODO: Can we assert there is no overflow because InstSimplify always
2675     // handles those cases?
2676     if (!Overflow)
2677       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2678       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2679   }
2680 
2681   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2682   const APInt &Upper = CR.getUpper();
2683   const APInt &Lower = CR.getLower();
2684   if (Cmp.isSigned()) {
2685     if (Lower.isSignMask())
2686       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2687     if (Upper.isSignMask())
2688       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2689   } else {
2690     if (Lower.isMinValue())
2691       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2692     if (Upper.isMinValue())
2693       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2694   }
2695 
2696   // This set of folds is intentionally placed after folds that use no-wrapping
2697   // flags because those folds are likely better for later analysis/codegen.
2698   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2699   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2700 
2701   // Fold compare with offset to opposite sign compare if it eliminates offset:
2702   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2703   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2704     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2705 
2706   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2707   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2708     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2709 
2710   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2711   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2712     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2713 
2714   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2715   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2716     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2717 
2718   if (!Add->hasOneUse())
2719     return nullptr;
2720 
2721   // X+C <u C2 -> (X & -C2) == C
2722   //   iff C & (C2-1) == 0
2723   //       C2 is a power of 2
2724   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2725     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2726                         ConstantExpr::getNeg(cast<Constant>(Y)));
2727 
2728   // X+C >u C2 -> (X & ~C2) != C
2729   //   iff C & C2 == 0
2730   //       C2+1 is a power of 2
2731   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2732     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2733                         ConstantExpr::getNeg(cast<Constant>(Y)));
2734 
2735   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2736   // to the ult form.
2737   // X+C2 >u C -> X+(C2-C-1) <u ~C
2738   if (Pred == ICmpInst::ICMP_UGT)
2739     return new ICmpInst(ICmpInst::ICMP_ULT,
2740                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2741                         ConstantInt::get(Ty, ~C));
2742 
2743   return nullptr;
2744 }
2745 
2746 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2747                                                Value *&RHS, ConstantInt *&Less,
2748                                                ConstantInt *&Equal,
2749                                                ConstantInt *&Greater) {
2750   // TODO: Generalize this to work with other comparison idioms or ensure
2751   // they get canonicalized into this form.
2752 
2753   // select i1 (a == b),
2754   //        i32 Equal,
2755   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2756   // where Equal, Less and Greater are placeholders for any three constants.
2757   ICmpInst::Predicate PredA;
2758   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2759       !ICmpInst::isEquality(PredA))
2760     return false;
2761   Value *EqualVal = SI->getTrueValue();
2762   Value *UnequalVal = SI->getFalseValue();
2763   // We still can get non-canonical predicate here, so canonicalize.
2764   if (PredA == ICmpInst::ICMP_NE)
2765     std::swap(EqualVal, UnequalVal);
2766   if (!match(EqualVal, m_ConstantInt(Equal)))
2767     return false;
2768   ICmpInst::Predicate PredB;
2769   Value *LHS2, *RHS2;
2770   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2771                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2772     return false;
2773   // We can get predicate mismatch here, so canonicalize if possible:
2774   // First, ensure that 'LHS' match.
2775   if (LHS2 != LHS) {
2776     // x sgt y <--> y slt x
2777     std::swap(LHS2, RHS2);
2778     PredB = ICmpInst::getSwappedPredicate(PredB);
2779   }
2780   if (LHS2 != LHS)
2781     return false;
2782   // We also need to canonicalize 'RHS'.
2783   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2784     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2785     auto FlippedStrictness =
2786         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2787             PredB, cast<Constant>(RHS2));
2788     if (!FlippedStrictness)
2789       return false;
2790     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2791            "basic correctness failure");
2792     RHS2 = FlippedStrictness->second;
2793     // And kind-of perform the result swap.
2794     std::swap(Less, Greater);
2795     PredB = ICmpInst::ICMP_SLT;
2796   }
2797   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2798 }
2799 
2800 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2801                                                       SelectInst *Select,
2802                                                       ConstantInt *C) {
2803 
2804   assert(C && "Cmp RHS should be a constant int!");
2805   // If we're testing a constant value against the result of a three way
2806   // comparison, the result can be expressed directly in terms of the
2807   // original values being compared.  Note: We could possibly be more
2808   // aggressive here and remove the hasOneUse test. The original select is
2809   // really likely to simplify or sink when we remove a test of the result.
2810   Value *OrigLHS, *OrigRHS;
2811   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2812   if (Cmp.hasOneUse() &&
2813       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2814                               C3GreaterThan)) {
2815     assert(C1LessThan && C2Equal && C3GreaterThan);
2816 
2817     bool TrueWhenLessThan =
2818         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2819             ->isAllOnesValue();
2820     bool TrueWhenEqual =
2821         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2822             ->isAllOnesValue();
2823     bool TrueWhenGreaterThan =
2824         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2825             ->isAllOnesValue();
2826 
2827     // This generates the new instruction that will replace the original Cmp
2828     // Instruction. Instead of enumerating the various combinations when
2829     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2830     // false, we rely on chaining of ORs and future passes of InstCombine to
2831     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2832 
2833     // When none of the three constants satisfy the predicate for the RHS (C),
2834     // the entire original Cmp can be simplified to a false.
2835     Value *Cond = Builder.getFalse();
2836     if (TrueWhenLessThan)
2837       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2838                                                        OrigLHS, OrigRHS));
2839     if (TrueWhenEqual)
2840       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2841                                                        OrigLHS, OrigRHS));
2842     if (TrueWhenGreaterThan)
2843       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2844                                                        OrigLHS, OrigRHS));
2845 
2846     return replaceInstUsesWith(Cmp, Cond);
2847   }
2848   return nullptr;
2849 }
2850 
2851 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2852   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2853   if (!Bitcast)
2854     return nullptr;
2855 
2856   ICmpInst::Predicate Pred = Cmp.getPredicate();
2857   Value *Op1 = Cmp.getOperand(1);
2858   Value *BCSrcOp = Bitcast->getOperand(0);
2859 
2860   // Make sure the bitcast doesn't change the number of vector elements.
2861   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2862           Bitcast->getDestTy()->getScalarSizeInBits()) {
2863     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2864     Value *X;
2865     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2866       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2867       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2868       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2869       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2870       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2871            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2872           match(Op1, m_Zero()))
2873         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2874 
2875       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2876       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2877         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2878 
2879       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2880       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2881         return new ICmpInst(Pred, X,
2882                             ConstantInt::getAllOnesValue(X->getType()));
2883     }
2884 
2885     // Zero-equality checks are preserved through unsigned floating-point casts:
2886     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2887     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2888     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2889       if (Cmp.isEquality() && match(Op1, m_Zero()))
2890         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2891 
2892     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2893     // the FP extend/truncate because that cast does not change the sign-bit.
2894     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2895     // The sign-bit is always the most significant bit in those types.
2896     const APInt *C;
2897     bool TrueIfSigned;
2898     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2899         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2900       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2901           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2902         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2903         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2904         Type *XType = X->getType();
2905 
2906         // We can't currently handle Power style floating point operations here.
2907         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2908 
2909           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2910           if (auto *XVTy = dyn_cast<VectorType>(XType))
2911             NewType = VectorType::get(NewType, XVTy->getElementCount());
2912           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2913           if (TrueIfSigned)
2914             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2915                                 ConstantInt::getNullValue(NewType));
2916           else
2917             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2918                                 ConstantInt::getAllOnesValue(NewType));
2919         }
2920       }
2921     }
2922   }
2923 
2924   // Test to see if the operands of the icmp are casted versions of other
2925   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2926   if (Bitcast->getType()->isPointerTy() &&
2927       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2928     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2929     // so eliminate it as well.
2930     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2931       Op1 = BC2->getOperand(0);
2932 
2933     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2934     return new ICmpInst(Pred, BCSrcOp, Op1);
2935   }
2936 
2937   const APInt *C;
2938   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2939       !Bitcast->getType()->isIntegerTy() ||
2940       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2941     return nullptr;
2942 
2943   // If this is checking if all elements of a vector compare are set or not,
2944   // invert the casted vector equality compare and test if all compare
2945   // elements are clear or not. Compare against zero is generally easier for
2946   // analysis and codegen.
2947   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2948   // Example: are all elements equal? --> are zero elements not equal?
2949   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2950   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2951       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2952     Type *ScalarTy = Bitcast->getType();
2953     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2954     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2955   }
2956 
2957   // If this is checking if all elements of an extended vector are clear or not,
2958   // compare in a narrow type to eliminate the extend:
2959   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2960   Value *X;
2961   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2962       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2963     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2964       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2965       Value *NewCast = Builder.CreateBitCast(X, NewType);
2966       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2967     }
2968   }
2969 
2970   // Folding: icmp <pred> iN X, C
2971   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2972   //    and C is a splat of a K-bit pattern
2973   //    and SC is a constant vector = <C', C', C', ..., C'>
2974   // Into:
2975   //   %E = extractelement <M x iK> %vec, i32 C'
2976   //   icmp <pred> iK %E, trunc(C)
2977   Value *Vec;
2978   ArrayRef<int> Mask;
2979   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2980     // Check whether every element of Mask is the same constant
2981     if (is_splat(Mask)) {
2982       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2983       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2984       if (C->isSplat(EltTy->getBitWidth())) {
2985         // Fold the icmp based on the value of C
2986         // If C is M copies of an iK sized bit pattern,
2987         // then:
2988         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2989         //       icmp <pred> iK %SplatVal, <pattern>
2990         Value *Elem = Builder.getInt32(Mask[0]);
2991         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2992         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2993         return new ICmpInst(Pred, Extract, NewC);
2994       }
2995     }
2996   }
2997   return nullptr;
2998 }
2999 
3000 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3001 /// where X is some kind of instruction.
3002 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3003   const APInt *C;
3004   if (!match(Cmp.getOperand(1), m_APInt(C)))
3005     return nullptr;
3006 
3007   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3008     switch (BO->getOpcode()) {
3009     case Instruction::Xor:
3010       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3011         return I;
3012       break;
3013     case Instruction::And:
3014       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3015         return I;
3016       break;
3017     case Instruction::Or:
3018       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3019         return I;
3020       break;
3021     case Instruction::Mul:
3022       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3023         return I;
3024       break;
3025     case Instruction::Shl:
3026       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3027         return I;
3028       break;
3029     case Instruction::LShr:
3030     case Instruction::AShr:
3031       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3032         return I;
3033       break;
3034     case Instruction::SRem:
3035       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3036         return I;
3037       break;
3038     case Instruction::UDiv:
3039       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3040         return I;
3041       LLVM_FALLTHROUGH;
3042     case Instruction::SDiv:
3043       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3044         return I;
3045       break;
3046     case Instruction::Sub:
3047       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3048         return I;
3049       break;
3050     case Instruction::Add:
3051       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3052         return I;
3053       break;
3054     default:
3055       break;
3056     }
3057     // TODO: These folds could be refactored to be part of the above calls.
3058     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3059       return I;
3060   }
3061 
3062   // Match against CmpInst LHS being instructions other than binary operators.
3063 
3064   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3065     // For now, we only support constant integers while folding the
3066     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3067     // similar to the cases handled by binary ops above.
3068     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3069       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3070         return I;
3071   }
3072 
3073   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3074     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3075       return I;
3076   }
3077 
3078   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3079     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3080       return I;
3081 
3082   return nullptr;
3083 }
3084 
3085 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3086 /// icmp eq/ne BO, C.
3087 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3088     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3089   // TODO: Some of these folds could work with arbitrary constants, but this
3090   // function is limited to scalar and vector splat constants.
3091   if (!Cmp.isEquality())
3092     return nullptr;
3093 
3094   ICmpInst::Predicate Pred = Cmp.getPredicate();
3095   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3096   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3097   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3098 
3099   switch (BO->getOpcode()) {
3100   case Instruction::SRem:
3101     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3102     if (C.isZero() && BO->hasOneUse()) {
3103       const APInt *BOC;
3104       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3105         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3106         return new ICmpInst(Pred, NewRem,
3107                             Constant::getNullValue(BO->getType()));
3108       }
3109     }
3110     break;
3111   case Instruction::Add: {
3112     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3113     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3114       if (BO->hasOneUse())
3115         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3116     } else if (C.isZero()) {
3117       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3118       // efficiently invertible, or if the add has just this one use.
3119       if (Value *NegVal = dyn_castNegVal(BOp1))
3120         return new ICmpInst(Pred, BOp0, NegVal);
3121       if (Value *NegVal = dyn_castNegVal(BOp0))
3122         return new ICmpInst(Pred, NegVal, BOp1);
3123       if (BO->hasOneUse()) {
3124         Value *Neg = Builder.CreateNeg(BOp1);
3125         Neg->takeName(BO);
3126         return new ICmpInst(Pred, BOp0, Neg);
3127       }
3128     }
3129     break;
3130   }
3131   case Instruction::Xor:
3132     if (BO->hasOneUse()) {
3133       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3134         // For the xor case, we can xor two constants together, eliminating
3135         // the explicit xor.
3136         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3137       } else if (C.isZero()) {
3138         // Replace ((xor A, B) != 0) with (A != B)
3139         return new ICmpInst(Pred, BOp0, BOp1);
3140       }
3141     }
3142     break;
3143   case Instruction::Or: {
3144     const APInt *BOC;
3145     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3146       // Comparing if all bits outside of a constant mask are set?
3147       // Replace (X | C) == -1 with (X & ~C) == ~C.
3148       // This removes the -1 constant.
3149       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3150       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3151       return new ICmpInst(Pred, And, NotBOC);
3152     }
3153     break;
3154   }
3155   case Instruction::And: {
3156     const APInt *BOC;
3157     if (match(BOp1, m_APInt(BOC))) {
3158       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3159       if (C == *BOC && C.isPowerOf2())
3160         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3161                             BO, Constant::getNullValue(RHS->getType()));
3162     }
3163     break;
3164   }
3165   case Instruction::UDiv:
3166     if (C.isZero()) {
3167       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3168       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3169       return new ICmpInst(NewPred, BOp1, BOp0);
3170     }
3171     break;
3172   default:
3173     break;
3174   }
3175   return nullptr;
3176 }
3177 
3178 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3179 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3180     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3181   Type *Ty = II->getType();
3182   unsigned BitWidth = C.getBitWidth();
3183   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3184 
3185   switch (II->getIntrinsicID()) {
3186   case Intrinsic::abs:
3187     // abs(A) == 0  ->  A == 0
3188     // abs(A) == INT_MIN  ->  A == INT_MIN
3189     if (C.isZero() || C.isMinSignedValue())
3190       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3191     break;
3192 
3193   case Intrinsic::bswap:
3194     // bswap(A) == C  ->  A == bswap(C)
3195     return new ICmpInst(Pred, II->getArgOperand(0),
3196                         ConstantInt::get(Ty, C.byteSwap()));
3197 
3198   case Intrinsic::ctlz:
3199   case Intrinsic::cttz: {
3200     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3201     if (C == BitWidth)
3202       return new ICmpInst(Pred, II->getArgOperand(0),
3203                           ConstantInt::getNullValue(Ty));
3204 
3205     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3206     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3207     // Limit to one use to ensure we don't increase instruction count.
3208     unsigned Num = C.getLimitedValue(BitWidth);
3209     if (Num != BitWidth && II->hasOneUse()) {
3210       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3211       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3212                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3213       APInt Mask2 = IsTrailing
3214         ? APInt::getOneBitSet(BitWidth, Num)
3215         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3216       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3217                           ConstantInt::get(Ty, Mask2));
3218     }
3219     break;
3220   }
3221 
3222   case Intrinsic::ctpop: {
3223     // popcount(A) == 0  ->  A == 0 and likewise for !=
3224     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3225     bool IsZero = C.isZero();
3226     if (IsZero || C == BitWidth)
3227       return new ICmpInst(Pred, II->getArgOperand(0),
3228                           IsZero ? Constant::getNullValue(Ty)
3229                                  : Constant::getAllOnesValue(Ty));
3230 
3231     break;
3232   }
3233 
3234   case Intrinsic::fshl:
3235   case Intrinsic::fshr:
3236     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3237       // (rot X, ?) == 0/-1 --> X == 0/-1
3238       // TODO: This transform is safe to re-use undef elts in a vector, but
3239       //       the constant value passed in by the caller doesn't allow that.
3240       if (C.isZero() || C.isAllOnes())
3241         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3242 
3243       const APInt *RotAmtC;
3244       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3245       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3246       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3247         return new ICmpInst(Pred, II->getArgOperand(0),
3248                             II->getIntrinsicID() == Intrinsic::fshl
3249                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3250                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3251     }
3252     break;
3253 
3254   case Intrinsic::uadd_sat: {
3255     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3256     if (C.isZero()) {
3257       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3258       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3259     }
3260     break;
3261   }
3262 
3263   case Intrinsic::usub_sat: {
3264     // usub.sat(a, b) == 0  ->  a <= b
3265     if (C.isZero()) {
3266       ICmpInst::Predicate NewPred =
3267           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3268       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3269     }
3270     break;
3271   }
3272   default:
3273     break;
3274   }
3275 
3276   return nullptr;
3277 }
3278 
3279 /// Fold an icmp with LLVM intrinsics
3280 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3281   assert(Cmp.isEquality());
3282 
3283   ICmpInst::Predicate Pred = Cmp.getPredicate();
3284   Value *Op0 = Cmp.getOperand(0);
3285   Value *Op1 = Cmp.getOperand(1);
3286   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3287   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3288   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3289     return nullptr;
3290 
3291   switch (IIOp0->getIntrinsicID()) {
3292   case Intrinsic::bswap:
3293   case Intrinsic::bitreverse:
3294     // If both operands are byte-swapped or bit-reversed, just compare the
3295     // original values.
3296     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3297   case Intrinsic::fshl:
3298   case Intrinsic::fshr:
3299     // If both operands are rotated by same amount, just compare the
3300     // original values.
3301     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3302       break;
3303     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3304       break;
3305     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3306       break;
3307     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3308   default:
3309     break;
3310   }
3311 
3312   return nullptr;
3313 }
3314 
3315 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3316 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3317                                                              IntrinsicInst *II,
3318                                                              const APInt &C) {
3319   if (Cmp.isEquality())
3320     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3321 
3322   Type *Ty = II->getType();
3323   unsigned BitWidth = C.getBitWidth();
3324   ICmpInst::Predicate Pred = Cmp.getPredicate();
3325   switch (II->getIntrinsicID()) {
3326   case Intrinsic::ctpop: {
3327     // (ctpop X > BitWidth - 1) --> X == -1
3328     Value *X = II->getArgOperand(0);
3329     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3330       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3331                              ConstantInt::getAllOnesValue(Ty));
3332     // (ctpop X < BitWidth) --> X != -1
3333     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3334       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3335                              ConstantInt::getAllOnesValue(Ty));
3336     break;
3337   }
3338   case Intrinsic::ctlz: {
3339     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3340     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3341       unsigned Num = C.getLimitedValue();
3342       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3343       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3344                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3345     }
3346 
3347     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3348     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3349       unsigned Num = C.getLimitedValue();
3350       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3351       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3352                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3353     }
3354     break;
3355   }
3356   case Intrinsic::cttz: {
3357     // Limit to one use to ensure we don't increase instruction count.
3358     if (!II->hasOneUse())
3359       return nullptr;
3360 
3361     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3362     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3363       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3364       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3365                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3366                              ConstantInt::getNullValue(Ty));
3367     }
3368 
3369     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3370     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3371       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3372       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3373                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3374                              ConstantInt::getNullValue(Ty));
3375     }
3376     break;
3377   }
3378   default:
3379     break;
3380   }
3381 
3382   return nullptr;
3383 }
3384 
3385 /// Handle icmp with constant (but not simple integer constant) RHS.
3386 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3387   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3388   Constant *RHSC = dyn_cast<Constant>(Op1);
3389   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3390   if (!RHSC || !LHSI)
3391     return nullptr;
3392 
3393   switch (LHSI->getOpcode()) {
3394   case Instruction::GetElementPtr:
3395     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3396     if (RHSC->isNullValue() &&
3397         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3398       return new ICmpInst(
3399           I.getPredicate(), LHSI->getOperand(0),
3400           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3401     break;
3402   case Instruction::PHI:
3403     // Only fold icmp into the PHI if the phi and icmp are in the same
3404     // block.  If in the same block, we're encouraging jump threading.  If
3405     // not, we are just pessimizing the code by making an i1 phi.
3406     if (LHSI->getParent() == I.getParent())
3407       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3408         return NV;
3409     break;
3410   case Instruction::Select: {
3411     // If either operand of the select is a constant, we can fold the
3412     // comparison into the select arms, which will cause one to be
3413     // constant folded and the select turned into a bitwise or.
3414     Value *Op1 = nullptr, *Op2 = nullptr;
3415     ConstantInt *CI = nullptr;
3416 
3417     auto SimplifyOp = [&](Value *V) {
3418       Value *Op = nullptr;
3419       if (Constant *C = dyn_cast<Constant>(V)) {
3420         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3421       } else if (RHSC->isNullValue()) {
3422         // If null is being compared, check if it can be further simplified.
3423         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3424       }
3425       return Op;
3426     };
3427     Op1 = SimplifyOp(LHSI->getOperand(1));
3428     if (Op1)
3429       CI = dyn_cast<ConstantInt>(Op1);
3430 
3431     Op2 = SimplifyOp(LHSI->getOperand(2));
3432     if (Op2)
3433       CI = dyn_cast<ConstantInt>(Op2);
3434 
3435     // We only want to perform this transformation if it will not lead to
3436     // additional code. This is true if either both sides of the select
3437     // fold to a constant (in which case the icmp is replaced with a select
3438     // which will usually simplify) or this is the only user of the
3439     // select (in which case we are trading a select+icmp for a simpler
3440     // select+icmp) or all uses of the select can be replaced based on
3441     // dominance information ("Global cases").
3442     bool Transform = false;
3443     if (Op1 && Op2)
3444       Transform = true;
3445     else if (Op1 || Op2) {
3446       // Local case
3447       if (LHSI->hasOneUse())
3448         Transform = true;
3449       // Global cases
3450       else if (CI && !CI->isZero())
3451         // When Op1 is constant try replacing select with second operand.
3452         // Otherwise Op2 is constant and try replacing select with first
3453         // operand.
3454         Transform =
3455             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3456     }
3457     if (Transform) {
3458       if (!Op1)
3459         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3460                                  I.getName());
3461       if (!Op2)
3462         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3463                                  I.getName());
3464       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3465     }
3466     break;
3467   }
3468   case Instruction::IntToPtr:
3469     // icmp pred inttoptr(X), null -> icmp pred X, 0
3470     if (RHSC->isNullValue() &&
3471         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3472       return new ICmpInst(
3473           I.getPredicate(), LHSI->getOperand(0),
3474           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3475     break;
3476 
3477   case Instruction::Load:
3478     // Try to optimize things like "A[i] > 4" to index computations.
3479     if (GetElementPtrInst *GEP =
3480             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3481       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3482         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3483             !cast<LoadInst>(LHSI)->isVolatile())
3484           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3485             return Res;
3486     }
3487     break;
3488   }
3489 
3490   return nullptr;
3491 }
3492 
3493 /// Some comparisons can be simplified.
3494 /// In this case, we are looking for comparisons that look like
3495 /// a check for a lossy truncation.
3496 /// Folds:
3497 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3498 /// Where Mask is some pattern that produces all-ones in low bits:
3499 ///    (-1 >> y)
3500 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3501 ///   ~(-1 << y)
3502 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3503 /// The Mask can be a constant, too.
3504 /// For some predicates, the operands are commutative.
3505 /// For others, x can only be on a specific side.
3506 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3507                                           InstCombiner::BuilderTy &Builder) {
3508   ICmpInst::Predicate SrcPred;
3509   Value *X, *M, *Y;
3510   auto m_VariableMask = m_CombineOr(
3511       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3512                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3513       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3514                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3515   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3516   if (!match(&I, m_c_ICmp(SrcPred,
3517                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3518                           m_Deferred(X))))
3519     return nullptr;
3520 
3521   ICmpInst::Predicate DstPred;
3522   switch (SrcPred) {
3523   case ICmpInst::Predicate::ICMP_EQ:
3524     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3525     DstPred = ICmpInst::Predicate::ICMP_ULE;
3526     break;
3527   case ICmpInst::Predicate::ICMP_NE:
3528     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3529     DstPred = ICmpInst::Predicate::ICMP_UGT;
3530     break;
3531   case ICmpInst::Predicate::ICMP_ULT:
3532     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3533     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3534     DstPred = ICmpInst::Predicate::ICMP_UGT;
3535     break;
3536   case ICmpInst::Predicate::ICMP_UGE:
3537     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3538     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3539     DstPred = ICmpInst::Predicate::ICMP_ULE;
3540     break;
3541   case ICmpInst::Predicate::ICMP_SLT:
3542     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3543     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3544     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3545       return nullptr;
3546     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3547       return nullptr;
3548     DstPred = ICmpInst::Predicate::ICMP_SGT;
3549     break;
3550   case ICmpInst::Predicate::ICMP_SGE:
3551     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3552     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3553     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3554       return nullptr;
3555     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3556       return nullptr;
3557     DstPred = ICmpInst::Predicate::ICMP_SLE;
3558     break;
3559   case ICmpInst::Predicate::ICMP_SGT:
3560   case ICmpInst::Predicate::ICMP_SLE:
3561     return nullptr;
3562   case ICmpInst::Predicate::ICMP_UGT:
3563   case ICmpInst::Predicate::ICMP_ULE:
3564     llvm_unreachable("Instsimplify took care of commut. variant");
3565     break;
3566   default:
3567     llvm_unreachable("All possible folds are handled.");
3568   }
3569 
3570   // The mask value may be a vector constant that has undefined elements. But it
3571   // may not be safe to propagate those undefs into the new compare, so replace
3572   // those elements by copying an existing, defined, and safe scalar constant.
3573   Type *OpTy = M->getType();
3574   auto *VecC = dyn_cast<Constant>(M);
3575   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3576   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3577     Constant *SafeReplacementConstant = nullptr;
3578     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3579       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3580         SafeReplacementConstant = VecC->getAggregateElement(i);
3581         break;
3582       }
3583     }
3584     assert(SafeReplacementConstant && "Failed to find undef replacement");
3585     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3586   }
3587 
3588   return Builder.CreateICmp(DstPred, X, M);
3589 }
3590 
3591 /// Some comparisons can be simplified.
3592 /// In this case, we are looking for comparisons that look like
3593 /// a check for a lossy signed truncation.
3594 /// Folds:   (MaskedBits is a constant.)
3595 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3596 /// Into:
3597 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3598 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3599 static Value *
3600 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3601                                  InstCombiner::BuilderTy &Builder) {
3602   ICmpInst::Predicate SrcPred;
3603   Value *X;
3604   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3605   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3606   if (!match(&I, m_c_ICmp(SrcPred,
3607                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3608                                           m_APInt(C1))),
3609                           m_Deferred(X))))
3610     return nullptr;
3611 
3612   // Potential handling of non-splats: for each element:
3613   //  * if both are undef, replace with constant 0.
3614   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3615   //  * if both are not undef, and are different, bailout.
3616   //  * else, only one is undef, then pick the non-undef one.
3617 
3618   // The shift amount must be equal.
3619   if (*C0 != *C1)
3620     return nullptr;
3621   const APInt &MaskedBits = *C0;
3622   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3623 
3624   ICmpInst::Predicate DstPred;
3625   switch (SrcPred) {
3626   case ICmpInst::Predicate::ICMP_EQ:
3627     // ((%x << MaskedBits) a>> MaskedBits) == %x
3628     //   =>
3629     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3630     DstPred = ICmpInst::Predicate::ICMP_ULT;
3631     break;
3632   case ICmpInst::Predicate::ICMP_NE:
3633     // ((%x << MaskedBits) a>> MaskedBits) != %x
3634     //   =>
3635     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3636     DstPred = ICmpInst::Predicate::ICMP_UGE;
3637     break;
3638   // FIXME: are more folds possible?
3639   default:
3640     return nullptr;
3641   }
3642 
3643   auto *XType = X->getType();
3644   const unsigned XBitWidth = XType->getScalarSizeInBits();
3645   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3646   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3647 
3648   // KeptBits = bitwidth(%x) - MaskedBits
3649   const APInt KeptBits = BitWidth - MaskedBits;
3650   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3651   // ICmpCst = (1 << KeptBits)
3652   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3653   assert(ICmpCst.isPowerOf2());
3654   // AddCst = (1 << (KeptBits-1))
3655   const APInt AddCst = ICmpCst.lshr(1);
3656   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3657 
3658   // T0 = add %x, AddCst
3659   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3660   // T1 = T0 DstPred ICmpCst
3661   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3662 
3663   return T1;
3664 }
3665 
3666 // Given pattern:
3667 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3668 // we should move shifts to the same hand of 'and', i.e. rewrite as
3669 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3670 // We are only interested in opposite logical shifts here.
3671 // One of the shifts can be truncated.
3672 // If we can, we want to end up creating 'lshr' shift.
3673 static Value *
3674 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3675                                            InstCombiner::BuilderTy &Builder) {
3676   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3677       !I.getOperand(0)->hasOneUse())
3678     return nullptr;
3679 
3680   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3681 
3682   // Look for an 'and' of two logical shifts, one of which may be truncated.
3683   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3684   Instruction *XShift, *MaybeTruncation, *YShift;
3685   if (!match(
3686           I.getOperand(0),
3687           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3688                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3689                                    m_AnyLogicalShift, m_Instruction(YShift))),
3690                                m_Instruction(MaybeTruncation)))))
3691     return nullptr;
3692 
3693   // We potentially looked past 'trunc', but only when matching YShift,
3694   // therefore YShift must have the widest type.
3695   Instruction *WidestShift = YShift;
3696   // Therefore XShift must have the shallowest type.
3697   // Or they both have identical types if there was no truncation.
3698   Instruction *NarrowestShift = XShift;
3699 
3700   Type *WidestTy = WidestShift->getType();
3701   Type *NarrowestTy = NarrowestShift->getType();
3702   assert(NarrowestTy == I.getOperand(0)->getType() &&
3703          "We did not look past any shifts while matching XShift though.");
3704   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3705 
3706   // If YShift is a 'lshr', swap the shifts around.
3707   if (match(YShift, m_LShr(m_Value(), m_Value())))
3708     std::swap(XShift, YShift);
3709 
3710   // The shifts must be in opposite directions.
3711   auto XShiftOpcode = XShift->getOpcode();
3712   if (XShiftOpcode == YShift->getOpcode())
3713     return nullptr; // Do not care about same-direction shifts here.
3714 
3715   Value *X, *XShAmt, *Y, *YShAmt;
3716   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3717   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3718 
3719   // If one of the values being shifted is a constant, then we will end with
3720   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3721   // however, we will need to ensure that we won't increase instruction count.
3722   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3723     // At least one of the hands of the 'and' should be one-use shift.
3724     if (!match(I.getOperand(0),
3725                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3726       return nullptr;
3727     if (HadTrunc) {
3728       // Due to the 'trunc', we will need to widen X. For that either the old
3729       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3730       if (!MaybeTruncation->hasOneUse() &&
3731           !NarrowestShift->getOperand(1)->hasOneUse())
3732         return nullptr;
3733     }
3734   }
3735 
3736   // We have two shift amounts from two different shifts. The types of those
3737   // shift amounts may not match. If that's the case let's bailout now.
3738   if (XShAmt->getType() != YShAmt->getType())
3739     return nullptr;
3740 
3741   // As input, we have the following pattern:
3742   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3743   // We want to rewrite that as:
3744   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3745   // While we know that originally (Q+K) would not overflow
3746   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3747   // shift amounts. so it may now overflow in smaller bitwidth.
3748   // To ensure that does not happen, we need to ensure that the total maximal
3749   // shift amount is still representable in that smaller bit width.
3750   unsigned MaximalPossibleTotalShiftAmount =
3751       (WidestTy->getScalarSizeInBits() - 1) +
3752       (NarrowestTy->getScalarSizeInBits() - 1);
3753   APInt MaximalRepresentableShiftAmount =
3754       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3755   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3756     return nullptr;
3757 
3758   // Can we fold (XShAmt+YShAmt) ?
3759   auto *NewShAmt = dyn_cast_or_null<Constant>(
3760       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3761                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3762   if (!NewShAmt)
3763     return nullptr;
3764   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3765   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3766 
3767   // Is the new shift amount smaller than the bit width?
3768   // FIXME: could also rely on ConstantRange.
3769   if (!match(NewShAmt,
3770              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3771                                 APInt(WidestBitWidth, WidestBitWidth))))
3772     return nullptr;
3773 
3774   // An extra legality check is needed if we had trunc-of-lshr.
3775   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3776     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3777                     WidestShift]() {
3778       // It isn't obvious whether it's worth it to analyze non-constants here.
3779       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3780       // If *any* of these preconditions matches we can perform the fold.
3781       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3782                                     ? NewShAmt->getSplatValue()
3783                                     : NewShAmt;
3784       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3785       if (NewShAmtSplat &&
3786           (NewShAmtSplat->isNullValue() ||
3787            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3788         return true;
3789       // We consider *min* leading zeros so a single outlier
3790       // blocks the transform as opposed to allowing it.
3791       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3792         KnownBits Known = computeKnownBits(C, SQ.DL);
3793         unsigned MinLeadZero = Known.countMinLeadingZeros();
3794         // If the value being shifted has at most lowest bit set we can fold.
3795         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3796         if (MaxActiveBits <= 1)
3797           return true;
3798         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3799         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3800           return true;
3801       }
3802       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3803         KnownBits Known = computeKnownBits(C, SQ.DL);
3804         unsigned MinLeadZero = Known.countMinLeadingZeros();
3805         // If the value being shifted has at most lowest bit set we can fold.
3806         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3807         if (MaxActiveBits <= 1)
3808           return true;
3809         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3810         if (NewShAmtSplat) {
3811           APInt AdjNewShAmt =
3812               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3813           if (AdjNewShAmt.ule(MinLeadZero))
3814             return true;
3815         }
3816       }
3817       return false; // Can't tell if it's ok.
3818     };
3819     if (!CanFold())
3820       return nullptr;
3821   }
3822 
3823   // All good, we can do this fold.
3824   X = Builder.CreateZExt(X, WidestTy);
3825   Y = Builder.CreateZExt(Y, WidestTy);
3826   // The shift is the same that was for X.
3827   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3828                   ? Builder.CreateLShr(X, NewShAmt)
3829                   : Builder.CreateShl(X, NewShAmt);
3830   Value *T1 = Builder.CreateAnd(T0, Y);
3831   return Builder.CreateICmp(I.getPredicate(), T1,
3832                             Constant::getNullValue(WidestTy));
3833 }
3834 
3835 /// Fold
3836 ///   (-1 u/ x) u< y
3837 ///   ((x * y) ?/ x) != y
3838 /// to
3839 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3840 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3841 /// will mean that we are looking for the opposite answer.
3842 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3843   ICmpInst::Predicate Pred;
3844   Value *X, *Y;
3845   Instruction *Mul;
3846   Instruction *Div;
3847   bool NeedNegation;
3848   // Look for: (-1 u/ x) u</u>= y
3849   if (!I.isEquality() &&
3850       match(&I, m_c_ICmp(Pred,
3851                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3852                                       m_Instruction(Div)),
3853                          m_Value(Y)))) {
3854     Mul = nullptr;
3855 
3856     // Are we checking that overflow does not happen, or does happen?
3857     switch (Pred) {
3858     case ICmpInst::Predicate::ICMP_ULT:
3859       NeedNegation = false;
3860       break; // OK
3861     case ICmpInst::Predicate::ICMP_UGE:
3862       NeedNegation = true;
3863       break; // OK
3864     default:
3865       return nullptr; // Wrong predicate.
3866     }
3867   } else // Look for: ((x * y) / x) !=/== y
3868       if (I.isEquality() &&
3869           match(&I,
3870                 m_c_ICmp(Pred, m_Value(Y),
3871                          m_CombineAnd(
3872                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3873                                                                   m_Value(X)),
3874                                                           m_Instruction(Mul)),
3875                                              m_Deferred(X))),
3876                              m_Instruction(Div))))) {
3877     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3878   } else
3879     return nullptr;
3880 
3881   BuilderTy::InsertPointGuard Guard(Builder);
3882   // If the pattern included (x * y), we'll want to insert new instructions
3883   // right before that original multiplication so that we can replace it.
3884   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3885   if (MulHadOtherUses)
3886     Builder.SetInsertPoint(Mul);
3887 
3888   Function *F = Intrinsic::getDeclaration(I.getModule(),
3889                                           Div->getOpcode() == Instruction::UDiv
3890                                               ? Intrinsic::umul_with_overflow
3891                                               : Intrinsic::smul_with_overflow,
3892                                           X->getType());
3893   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3894 
3895   // If the multiplication was used elsewhere, to ensure that we don't leave
3896   // "duplicate" instructions, replace uses of that original multiplication
3897   // with the multiplication result from the with.overflow intrinsic.
3898   if (MulHadOtherUses)
3899     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3900 
3901   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3902   if (NeedNegation) // This technically increases instruction count.
3903     Res = Builder.CreateNot(Res, "mul.not.ov");
3904 
3905   // If we replaced the mul, erase it. Do this after all uses of Builder,
3906   // as the mul is used as insertion point.
3907   if (MulHadOtherUses)
3908     eraseInstFromFunction(*Mul);
3909 
3910   return Res;
3911 }
3912 
3913 static Instruction *foldICmpXNegX(ICmpInst &I) {
3914   CmpInst::Predicate Pred;
3915   Value *X;
3916   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3917     return nullptr;
3918 
3919   if (ICmpInst::isSigned(Pred))
3920     Pred = ICmpInst::getSwappedPredicate(Pred);
3921   else if (ICmpInst::isUnsigned(Pred))
3922     Pred = ICmpInst::getSignedPredicate(Pred);
3923   // else for equality-comparisons just keep the predicate.
3924 
3925   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3926                           Constant::getNullValue(X->getType()), I.getName());
3927 }
3928 
3929 /// Try to fold icmp (binop), X or icmp X, (binop).
3930 /// TODO: A large part of this logic is duplicated in InstSimplify's
3931 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3932 /// duplication.
3933 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3934                                              const SimplifyQuery &SQ) {
3935   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3936   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3937 
3938   // Special logic for binary operators.
3939   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3940   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3941   if (!BO0 && !BO1)
3942     return nullptr;
3943 
3944   if (Instruction *NewICmp = foldICmpXNegX(I))
3945     return NewICmp;
3946 
3947   const CmpInst::Predicate Pred = I.getPredicate();
3948   Value *X;
3949 
3950   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3951   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3952   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3953       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3954     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3955   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3956   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3957       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3958     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3959 
3960   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3961   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3962     NoOp0WrapProblem =
3963         ICmpInst::isEquality(Pred) ||
3964         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3965         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3966   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3967     NoOp1WrapProblem =
3968         ICmpInst::isEquality(Pred) ||
3969         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3970         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3971 
3972   // Analyze the case when either Op0 or Op1 is an add instruction.
3973   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3974   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3975   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3976     A = BO0->getOperand(0);
3977     B = BO0->getOperand(1);
3978   }
3979   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3980     C = BO1->getOperand(0);
3981     D = BO1->getOperand(1);
3982   }
3983 
3984   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3985   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3986   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3987     return new ICmpInst(Pred, A == Op1 ? B : A,
3988                         Constant::getNullValue(Op1->getType()));
3989 
3990   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3991   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3992   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3993     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3994                         C == Op0 ? D : C);
3995 
3996   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3997   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3998       NoOp1WrapProblem) {
3999     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4000     Value *Y, *Z;
4001     if (A == C) {
4002       // C + B == C + D  ->  B == D
4003       Y = B;
4004       Z = D;
4005     } else if (A == D) {
4006       // D + B == C + D  ->  B == C
4007       Y = B;
4008       Z = C;
4009     } else if (B == C) {
4010       // A + C == C + D  ->  A == D
4011       Y = A;
4012       Z = D;
4013     } else {
4014       assert(B == D);
4015       // A + D == C + D  ->  A == C
4016       Y = A;
4017       Z = C;
4018     }
4019     return new ICmpInst(Pred, Y, Z);
4020   }
4021 
4022   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4023   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4024       match(B, m_AllOnes()))
4025     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4026 
4027   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4028   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4029       match(B, m_AllOnes()))
4030     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4031 
4032   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4033   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4034     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4035 
4036   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4037   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4038     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4039 
4040   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4041   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4042       match(D, m_AllOnes()))
4043     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4044 
4045   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4046   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4047       match(D, m_AllOnes()))
4048     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4049 
4050   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4051   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4052     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4053 
4054   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4055   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4056     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4057 
4058   // TODO: The subtraction-related identities shown below also hold, but
4059   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4060   // wouldn't happen even if they were implemented.
4061   //
4062   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4063   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4064   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4065   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4066 
4067   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4068   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4069     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4070 
4071   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4072   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4073     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4074 
4075   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4076   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4077     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4078 
4079   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4080   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4081     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4082 
4083   // if C1 has greater magnitude than C2:
4084   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4085   //  s.t. C3 = C1 - C2
4086   //
4087   // if C2 has greater magnitude than C1:
4088   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4089   //  s.t. C3 = C2 - C1
4090   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4091       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4092     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4093       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4094         const APInt &AP1 = C1->getValue();
4095         const APInt &AP2 = C2->getValue();
4096         if (AP1.isNegative() == AP2.isNegative()) {
4097           APInt AP1Abs = C1->getValue().abs();
4098           APInt AP2Abs = C2->getValue().abs();
4099           if (AP1Abs.uge(AP2Abs)) {
4100             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4101             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4102             bool HasNSW = BO0->hasNoSignedWrap();
4103             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4104             return new ICmpInst(Pred, NewAdd, C);
4105           } else {
4106             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4107             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4108             bool HasNSW = BO1->hasNoSignedWrap();
4109             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4110             return new ICmpInst(Pred, A, NewAdd);
4111           }
4112         }
4113       }
4114 
4115   // Analyze the case when either Op0 or Op1 is a sub instruction.
4116   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4117   A = nullptr;
4118   B = nullptr;
4119   C = nullptr;
4120   D = nullptr;
4121   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4122     A = BO0->getOperand(0);
4123     B = BO0->getOperand(1);
4124   }
4125   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4126     C = BO1->getOperand(0);
4127     D = BO1->getOperand(1);
4128   }
4129 
4130   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4131   if (A == Op1 && NoOp0WrapProblem)
4132     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4133   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4134   if (C == Op0 && NoOp1WrapProblem)
4135     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4136 
4137   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4138   // (A - B) u>/u<= A --> B u>/u<= A
4139   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4140     return new ICmpInst(Pred, B, A);
4141   // C u</u>= (C - D) --> C u</u>= D
4142   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4143     return new ICmpInst(Pred, C, D);
4144   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4145   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4146       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4147     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4148   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4149   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4150       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4151     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4152 
4153   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4154   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4155     return new ICmpInst(Pred, A, C);
4156 
4157   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4158   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4159     return new ICmpInst(Pred, D, B);
4160 
4161   // icmp (0-X) < cst --> x > -cst
4162   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4163     Value *X;
4164     if (match(BO0, m_Neg(m_Value(X))))
4165       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4166         if (RHSC->isNotMinSignedValue())
4167           return new ICmpInst(I.getSwappedPredicate(), X,
4168                               ConstantExpr::getNeg(RHSC));
4169   }
4170 
4171   {
4172     // Try to remove shared constant multiplier from equality comparison:
4173     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4174     Value *X, *Y;
4175     const APInt *C;
4176     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4177         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4178       if (!C->countTrailingZeros() ||
4179           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4180           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4181       return new ICmpInst(Pred, X, Y);
4182   }
4183 
4184   BinaryOperator *SRem = nullptr;
4185   // icmp (srem X, Y), Y
4186   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4187     SRem = BO0;
4188   // icmp Y, (srem X, Y)
4189   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4190            Op0 == BO1->getOperand(1))
4191     SRem = BO1;
4192   if (SRem) {
4193     // We don't check hasOneUse to avoid increasing register pressure because
4194     // the value we use is the same value this instruction was already using.
4195     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4196     default:
4197       break;
4198     case ICmpInst::ICMP_EQ:
4199       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4200     case ICmpInst::ICMP_NE:
4201       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4202     case ICmpInst::ICMP_SGT:
4203     case ICmpInst::ICMP_SGE:
4204       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4205                           Constant::getAllOnesValue(SRem->getType()));
4206     case ICmpInst::ICMP_SLT:
4207     case ICmpInst::ICMP_SLE:
4208       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4209                           Constant::getNullValue(SRem->getType()));
4210     }
4211   }
4212 
4213   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4214       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4215     switch (BO0->getOpcode()) {
4216     default:
4217       break;
4218     case Instruction::Add:
4219     case Instruction::Sub:
4220     case Instruction::Xor: {
4221       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4222         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4223 
4224       const APInt *C;
4225       if (match(BO0->getOperand(1), m_APInt(C))) {
4226         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4227         if (C->isSignMask()) {
4228           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4229           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4230         }
4231 
4232         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4233         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4234           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4235           NewPred = I.getSwappedPredicate(NewPred);
4236           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4237         }
4238       }
4239       break;
4240     }
4241     case Instruction::Mul: {
4242       if (!I.isEquality())
4243         break;
4244 
4245       const APInt *C;
4246       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4247           !C->isOne()) {
4248         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4249         // Mask = -1 >> count-trailing-zeros(C).
4250         if (unsigned TZs = C->countTrailingZeros()) {
4251           Constant *Mask = ConstantInt::get(
4252               BO0->getType(),
4253               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4254           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4255           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4256           return new ICmpInst(Pred, And1, And2);
4257         }
4258       }
4259       break;
4260     }
4261     case Instruction::UDiv:
4262     case Instruction::LShr:
4263       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4264         break;
4265       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4266 
4267     case Instruction::SDiv:
4268       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4269         break;
4270       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4271 
4272     case Instruction::AShr:
4273       if (!BO0->isExact() || !BO1->isExact())
4274         break;
4275       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4276 
4277     case Instruction::Shl: {
4278       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4279       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4280       if (!NUW && !NSW)
4281         break;
4282       if (!NSW && I.isSigned())
4283         break;
4284       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4285     }
4286     }
4287   }
4288 
4289   if (BO0) {
4290     // Transform  A & (L - 1) `ult` L --> L != 0
4291     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4292     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4293 
4294     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4295       auto *Zero = Constant::getNullValue(BO0->getType());
4296       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4297     }
4298   }
4299 
4300   if (Value *V = foldMultiplicationOverflowCheck(I))
4301     return replaceInstUsesWith(I, V);
4302 
4303   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4304     return replaceInstUsesWith(I, V);
4305 
4306   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4307     return replaceInstUsesWith(I, V);
4308 
4309   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4310     return replaceInstUsesWith(I, V);
4311 
4312   return nullptr;
4313 }
4314 
4315 /// Fold icmp Pred min|max(X, Y), X.
4316 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4317   ICmpInst::Predicate Pred = Cmp.getPredicate();
4318   Value *Op0 = Cmp.getOperand(0);
4319   Value *X = Cmp.getOperand(1);
4320 
4321   // Canonicalize minimum or maximum operand to LHS of the icmp.
4322   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4323       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4324       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4325       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4326     std::swap(Op0, X);
4327     Pred = Cmp.getSwappedPredicate();
4328   }
4329 
4330   Value *Y;
4331   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4332     // smin(X, Y)  == X --> X s<= Y
4333     // smin(X, Y) s>= X --> X s<= Y
4334     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4335       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4336 
4337     // smin(X, Y) != X --> X s> Y
4338     // smin(X, Y) s< X --> X s> Y
4339     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4340       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4341 
4342     // These cases should be handled in InstSimplify:
4343     // smin(X, Y) s<= X --> true
4344     // smin(X, Y) s> X --> false
4345     return nullptr;
4346   }
4347 
4348   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4349     // smax(X, Y)  == X --> X s>= Y
4350     // smax(X, Y) s<= X --> X s>= Y
4351     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4352       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4353 
4354     // smax(X, Y) != X --> X s< Y
4355     // smax(X, Y) s> X --> X s< Y
4356     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4357       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4358 
4359     // These cases should be handled in InstSimplify:
4360     // smax(X, Y) s>= X --> true
4361     // smax(X, Y) s< X --> false
4362     return nullptr;
4363   }
4364 
4365   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4366     // umin(X, Y)  == X --> X u<= Y
4367     // umin(X, Y) u>= X --> X u<= Y
4368     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4369       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4370 
4371     // umin(X, Y) != X --> X u> Y
4372     // umin(X, Y) u< X --> X u> Y
4373     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4374       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4375 
4376     // These cases should be handled in InstSimplify:
4377     // umin(X, Y) u<= X --> true
4378     // umin(X, Y) u> X --> false
4379     return nullptr;
4380   }
4381 
4382   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4383     // umax(X, Y)  == X --> X u>= Y
4384     // umax(X, Y) u<= X --> X u>= Y
4385     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4386       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4387 
4388     // umax(X, Y) != X --> X u< Y
4389     // umax(X, Y) u> X --> X u< Y
4390     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4391       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4392 
4393     // These cases should be handled in InstSimplify:
4394     // umax(X, Y) u>= X --> true
4395     // umax(X, Y) u< X --> false
4396     return nullptr;
4397   }
4398 
4399   return nullptr;
4400 }
4401 
4402 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4403   if (!I.isEquality())
4404     return nullptr;
4405 
4406   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4407   const CmpInst::Predicate Pred = I.getPredicate();
4408   Value *A, *B, *C, *D;
4409   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4410     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4411       Value *OtherVal = A == Op1 ? B : A;
4412       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4413     }
4414 
4415     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4416       // A^c1 == C^c2 --> A == C^(c1^c2)
4417       ConstantInt *C1, *C2;
4418       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4419           Op1->hasOneUse()) {
4420         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4421         Value *Xor = Builder.CreateXor(C, NC);
4422         return new ICmpInst(Pred, A, Xor);
4423       }
4424 
4425       // A^B == A^D -> B == D
4426       if (A == C)
4427         return new ICmpInst(Pred, B, D);
4428       if (A == D)
4429         return new ICmpInst(Pred, B, C);
4430       if (B == C)
4431         return new ICmpInst(Pred, A, D);
4432       if (B == D)
4433         return new ICmpInst(Pred, A, C);
4434     }
4435   }
4436 
4437   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4438     // A == (A^B)  ->  B == 0
4439     Value *OtherVal = A == Op0 ? B : A;
4440     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4441   }
4442 
4443   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4444   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4445       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4446     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4447 
4448     if (A == C) {
4449       X = B;
4450       Y = D;
4451       Z = A;
4452     } else if (A == D) {
4453       X = B;
4454       Y = C;
4455       Z = A;
4456     } else if (B == C) {
4457       X = A;
4458       Y = D;
4459       Z = B;
4460     } else if (B == D) {
4461       X = A;
4462       Y = C;
4463       Z = B;
4464     }
4465 
4466     if (X) { // Build (X^Y) & Z
4467       Op1 = Builder.CreateXor(X, Y);
4468       Op1 = Builder.CreateAnd(Op1, Z);
4469       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4470     }
4471   }
4472 
4473   {
4474     // Similar to above, but specialized for constant because invert is needed:
4475     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4476     Value *X, *Y;
4477     Constant *C;
4478     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4479         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4480       Value *Xor = Builder.CreateXor(X, Y);
4481       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4482       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4483     }
4484   }
4485 
4486   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4487   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4488   ConstantInt *Cst1;
4489   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4490        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4491       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4492        match(Op1, m_ZExt(m_Value(A))))) {
4493     APInt Pow2 = Cst1->getValue() + 1;
4494     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4495         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4496       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4497   }
4498 
4499   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4500   // For lshr and ashr pairs.
4501   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4502        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4503       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4504        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4505     unsigned TypeBits = Cst1->getBitWidth();
4506     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4507     if (ShAmt < TypeBits && ShAmt != 0) {
4508       ICmpInst::Predicate NewPred =
4509           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4510       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4511       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4512       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4513     }
4514   }
4515 
4516   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4517   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4518       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4519     unsigned TypeBits = Cst1->getBitWidth();
4520     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4521     if (ShAmt < TypeBits && ShAmt != 0) {
4522       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4523       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4524       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4525                                       I.getName() + ".mask");
4526       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4527     }
4528   }
4529 
4530   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4531   // "icmp (and X, mask), cst"
4532   uint64_t ShAmt = 0;
4533   if (Op0->hasOneUse() &&
4534       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4535       match(Op1, m_ConstantInt(Cst1)) &&
4536       // Only do this when A has multiple uses.  This is most important to do
4537       // when it exposes other optimizations.
4538       !A->hasOneUse()) {
4539     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4540 
4541     if (ShAmt < ASize) {
4542       APInt MaskV =
4543           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4544       MaskV <<= ShAmt;
4545 
4546       APInt CmpV = Cst1->getValue().zext(ASize);
4547       CmpV <<= ShAmt;
4548 
4549       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4550       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4551     }
4552   }
4553 
4554   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4555     return ICmp;
4556 
4557   // Canonicalize checking for a power-of-2-or-zero value:
4558   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4559   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4560   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4561                                    m_Deferred(A)))) ||
4562       !match(Op1, m_ZeroInt()))
4563     A = nullptr;
4564 
4565   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4566   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4567   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4568     A = Op1;
4569   else if (match(Op1,
4570                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4571     A = Op0;
4572 
4573   if (A) {
4574     Type *Ty = A->getType();
4575     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4576     return Pred == ICmpInst::ICMP_EQ
4577         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4578         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4579   }
4580 
4581   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4582   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4583   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4584   // of instcombine.
4585   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4586   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4587       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4588       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4589       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4590     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4591     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4592     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4593                                                   : ICmpInst::ICMP_UGE,
4594                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4595   }
4596 
4597   return nullptr;
4598 }
4599 
4600 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4601                                       InstCombiner::BuilderTy &Builder) {
4602   ICmpInst::Predicate Pred = ICmp.getPredicate();
4603   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4604 
4605   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4606   // The trunc masks high bits while the compare may effectively mask low bits.
4607   Value *X;
4608   const APInt *C;
4609   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4610     return nullptr;
4611 
4612   // This matches patterns corresponding to tests of the signbit as well as:
4613   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4614   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4615   APInt Mask;
4616   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4617     Value *And = Builder.CreateAnd(X, Mask);
4618     Constant *Zero = ConstantInt::getNullValue(X->getType());
4619     return new ICmpInst(Pred, And, Zero);
4620   }
4621 
4622   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4623   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4624     // If C is a negative power-of-2 (high-bit mask):
4625     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4626     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4627     Value *And = Builder.CreateAnd(X, MaskC);
4628     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4629   }
4630 
4631   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4632     // If C is not-of-power-of-2 (one clear bit):
4633     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4634     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4635     Value *And = Builder.CreateAnd(X, MaskC);
4636     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4637   }
4638 
4639   return nullptr;
4640 }
4641 
4642 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4643                                            InstCombiner::BuilderTy &Builder) {
4644   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4645   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4646   Value *X;
4647   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4648     return nullptr;
4649 
4650   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4651   bool IsSignedCmp = ICmp.isSigned();
4652   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4653     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4654     // and the other is a zext), then we can't handle this.
4655     // TODO: This is too strict. We can handle some predicates (equality?).
4656     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4657       return nullptr;
4658 
4659     // Not an extension from the same type?
4660     Value *Y = CastOp1->getOperand(0);
4661     Type *XTy = X->getType(), *YTy = Y->getType();
4662     if (XTy != YTy) {
4663       // One of the casts must have one use because we are creating a new cast.
4664       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4665         return nullptr;
4666       // Extend the narrower operand to the type of the wider operand.
4667       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4668         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4669       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4670         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4671       else
4672         return nullptr;
4673     }
4674 
4675     // (zext X) == (zext Y) --> X == Y
4676     // (sext X) == (sext Y) --> X == Y
4677     if (ICmp.isEquality())
4678       return new ICmpInst(ICmp.getPredicate(), X, Y);
4679 
4680     // A signed comparison of sign extended values simplifies into a
4681     // signed comparison.
4682     if (IsSignedCmp && IsSignedExt)
4683       return new ICmpInst(ICmp.getPredicate(), X, Y);
4684 
4685     // The other three cases all fold into an unsigned comparison.
4686     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4687   }
4688 
4689   // Below here, we are only folding a compare with constant.
4690   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4691   if (!C)
4692     return nullptr;
4693 
4694   // Compute the constant that would happen if we truncated to SrcTy then
4695   // re-extended to DestTy.
4696   Type *SrcTy = CastOp0->getSrcTy();
4697   Type *DestTy = CastOp0->getDestTy();
4698   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4699   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4700 
4701   // If the re-extended constant didn't change...
4702   if (Res2 == C) {
4703     if (ICmp.isEquality())
4704       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4705 
4706     // A signed comparison of sign extended values simplifies into a
4707     // signed comparison.
4708     if (IsSignedExt && IsSignedCmp)
4709       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4710 
4711     // The other three cases all fold into an unsigned comparison.
4712     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4713   }
4714 
4715   // The re-extended constant changed, partly changed (in the case of a vector),
4716   // or could not be determined to be equal (in the case of a constant
4717   // expression), so the constant cannot be represented in the shorter type.
4718   // All the cases that fold to true or false will have already been handled
4719   // by SimplifyICmpInst, so only deal with the tricky case.
4720   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4721     return nullptr;
4722 
4723   // Is source op positive?
4724   // icmp ult (sext X), C --> icmp sgt X, -1
4725   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4726     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4727 
4728   // Is source op negative?
4729   // icmp ugt (sext X), C --> icmp slt X, 0
4730   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4731   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4732 }
4733 
4734 /// Handle icmp (cast x), (cast or constant).
4735 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4736   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4737   // icmp compares only pointer's value.
4738   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4739   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4740   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4741   if (SimplifiedOp0 || SimplifiedOp1)
4742     return new ICmpInst(ICmp.getPredicate(),
4743                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4744                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4745 
4746   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4747   if (!CastOp0)
4748     return nullptr;
4749   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4750     return nullptr;
4751 
4752   Value *Op0Src = CastOp0->getOperand(0);
4753   Type *SrcTy = CastOp0->getSrcTy();
4754   Type *DestTy = CastOp0->getDestTy();
4755 
4756   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4757   // integer type is the same size as the pointer type.
4758   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4759     if (isa<VectorType>(SrcTy)) {
4760       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4761       DestTy = cast<VectorType>(DestTy)->getElementType();
4762     }
4763     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4764   };
4765   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4766       CompatibleSizes(SrcTy, DestTy)) {
4767     Value *NewOp1 = nullptr;
4768     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4769       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4770       if (PtrSrc->getType()->getPointerAddressSpace() ==
4771           Op0Src->getType()->getPointerAddressSpace()) {
4772         NewOp1 = PtrToIntOp1->getOperand(0);
4773         // If the pointer types don't match, insert a bitcast.
4774         if (Op0Src->getType() != NewOp1->getType())
4775           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4776       }
4777     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4778       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4779     }
4780 
4781     if (NewOp1)
4782       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4783   }
4784 
4785   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4786     return R;
4787 
4788   return foldICmpWithZextOrSext(ICmp, Builder);
4789 }
4790 
4791 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4792   switch (BinaryOp) {
4793     default:
4794       llvm_unreachable("Unsupported binary op");
4795     case Instruction::Add:
4796     case Instruction::Sub:
4797       return match(RHS, m_Zero());
4798     case Instruction::Mul:
4799       return match(RHS, m_One());
4800   }
4801 }
4802 
4803 OverflowResult
4804 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4805                                   bool IsSigned, Value *LHS, Value *RHS,
4806                                   Instruction *CxtI) const {
4807   switch (BinaryOp) {
4808     default:
4809       llvm_unreachable("Unsupported binary op");
4810     case Instruction::Add:
4811       if (IsSigned)
4812         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4813       else
4814         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4815     case Instruction::Sub:
4816       if (IsSigned)
4817         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4818       else
4819         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4820     case Instruction::Mul:
4821       if (IsSigned)
4822         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4823       else
4824         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4825   }
4826 }
4827 
4828 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4829                                              bool IsSigned, Value *LHS,
4830                                              Value *RHS, Instruction &OrigI,
4831                                              Value *&Result,
4832                                              Constant *&Overflow) {
4833   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4834     std::swap(LHS, RHS);
4835 
4836   // If the overflow check was an add followed by a compare, the insertion point
4837   // may be pointing to the compare.  We want to insert the new instructions
4838   // before the add in case there are uses of the add between the add and the
4839   // compare.
4840   Builder.SetInsertPoint(&OrigI);
4841 
4842   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4843   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4844     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4845 
4846   if (isNeutralValue(BinaryOp, RHS)) {
4847     Result = LHS;
4848     Overflow = ConstantInt::getFalse(OverflowTy);
4849     return true;
4850   }
4851 
4852   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4853     case OverflowResult::MayOverflow:
4854       return false;
4855     case OverflowResult::AlwaysOverflowsLow:
4856     case OverflowResult::AlwaysOverflowsHigh:
4857       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4858       Result->takeName(&OrigI);
4859       Overflow = ConstantInt::getTrue(OverflowTy);
4860       return true;
4861     case OverflowResult::NeverOverflows:
4862       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4863       Result->takeName(&OrigI);
4864       Overflow = ConstantInt::getFalse(OverflowTy);
4865       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4866         if (IsSigned)
4867           Inst->setHasNoSignedWrap();
4868         else
4869           Inst->setHasNoUnsignedWrap();
4870       }
4871       return true;
4872   }
4873 
4874   llvm_unreachable("Unexpected overflow result");
4875 }
4876 
4877 /// Recognize and process idiom involving test for multiplication
4878 /// overflow.
4879 ///
4880 /// The caller has matched a pattern of the form:
4881 ///   I = cmp u (mul(zext A, zext B), V
4882 /// The function checks if this is a test for overflow and if so replaces
4883 /// multiplication with call to 'mul.with.overflow' intrinsic.
4884 ///
4885 /// \param I Compare instruction.
4886 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4887 ///               the compare instruction.  Must be of integer type.
4888 /// \param OtherVal The other argument of compare instruction.
4889 /// \returns Instruction which must replace the compare instruction, NULL if no
4890 ///          replacement required.
4891 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4892                                          Value *OtherVal,
4893                                          InstCombinerImpl &IC) {
4894   // Don't bother doing this transformation for pointers, don't do it for
4895   // vectors.
4896   if (!isa<IntegerType>(MulVal->getType()))
4897     return nullptr;
4898 
4899   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4900   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4901   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4902   if (!MulInstr)
4903     return nullptr;
4904   assert(MulInstr->getOpcode() == Instruction::Mul);
4905 
4906   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4907        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4908   assert(LHS->getOpcode() == Instruction::ZExt);
4909   assert(RHS->getOpcode() == Instruction::ZExt);
4910   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4911 
4912   // Calculate type and width of the result produced by mul.with.overflow.
4913   Type *TyA = A->getType(), *TyB = B->getType();
4914   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4915            WidthB = TyB->getPrimitiveSizeInBits();
4916   unsigned MulWidth;
4917   Type *MulType;
4918   if (WidthB > WidthA) {
4919     MulWidth = WidthB;
4920     MulType = TyB;
4921   } else {
4922     MulWidth = WidthA;
4923     MulType = TyA;
4924   }
4925 
4926   // In order to replace the original mul with a narrower mul.with.overflow,
4927   // all uses must ignore upper bits of the product.  The number of used low
4928   // bits must be not greater than the width of mul.with.overflow.
4929   if (MulVal->hasNUsesOrMore(2))
4930     for (User *U : MulVal->users()) {
4931       if (U == &I)
4932         continue;
4933       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4934         // Check if truncation ignores bits above MulWidth.
4935         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4936         if (TruncWidth > MulWidth)
4937           return nullptr;
4938       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4939         // Check if AND ignores bits above MulWidth.
4940         if (BO->getOpcode() != Instruction::And)
4941           return nullptr;
4942         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4943           const APInt &CVal = CI->getValue();
4944           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4945             return nullptr;
4946         } else {
4947           // In this case we could have the operand of the binary operation
4948           // being defined in another block, and performing the replacement
4949           // could break the dominance relation.
4950           return nullptr;
4951         }
4952       } else {
4953         // Other uses prohibit this transformation.
4954         return nullptr;
4955       }
4956     }
4957 
4958   // Recognize patterns
4959   switch (I.getPredicate()) {
4960   case ICmpInst::ICMP_EQ:
4961   case ICmpInst::ICMP_NE:
4962     // Recognize pattern:
4963     //   mulval = mul(zext A, zext B)
4964     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4965     ConstantInt *CI;
4966     Value *ValToMask;
4967     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4968       if (ValToMask != MulVal)
4969         return nullptr;
4970       const APInt &CVal = CI->getValue() + 1;
4971       if (CVal.isPowerOf2()) {
4972         unsigned MaskWidth = CVal.logBase2();
4973         if (MaskWidth == MulWidth)
4974           break; // Recognized
4975       }
4976     }
4977     return nullptr;
4978 
4979   case ICmpInst::ICMP_UGT:
4980     // Recognize pattern:
4981     //   mulval = mul(zext A, zext B)
4982     //   cmp ugt mulval, max
4983     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4984       APInt MaxVal = APInt::getMaxValue(MulWidth);
4985       MaxVal = MaxVal.zext(CI->getBitWidth());
4986       if (MaxVal.eq(CI->getValue()))
4987         break; // Recognized
4988     }
4989     return nullptr;
4990 
4991   case ICmpInst::ICMP_UGE:
4992     // Recognize pattern:
4993     //   mulval = mul(zext A, zext B)
4994     //   cmp uge mulval, max+1
4995     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4996       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4997       if (MaxVal.eq(CI->getValue()))
4998         break; // Recognized
4999     }
5000     return nullptr;
5001 
5002   case ICmpInst::ICMP_ULE:
5003     // Recognize pattern:
5004     //   mulval = mul(zext A, zext B)
5005     //   cmp ule mulval, max
5006     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5007       APInt MaxVal = APInt::getMaxValue(MulWidth);
5008       MaxVal = MaxVal.zext(CI->getBitWidth());
5009       if (MaxVal.eq(CI->getValue()))
5010         break; // Recognized
5011     }
5012     return nullptr;
5013 
5014   case ICmpInst::ICMP_ULT:
5015     // Recognize pattern:
5016     //   mulval = mul(zext A, zext B)
5017     //   cmp ule mulval, max + 1
5018     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5019       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5020       if (MaxVal.eq(CI->getValue()))
5021         break; // Recognized
5022     }
5023     return nullptr;
5024 
5025   default:
5026     return nullptr;
5027   }
5028 
5029   InstCombiner::BuilderTy &Builder = IC.Builder;
5030   Builder.SetInsertPoint(MulInstr);
5031 
5032   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5033   Value *MulA = A, *MulB = B;
5034   if (WidthA < MulWidth)
5035     MulA = Builder.CreateZExt(A, MulType);
5036   if (WidthB < MulWidth)
5037     MulB = Builder.CreateZExt(B, MulType);
5038   Function *F = Intrinsic::getDeclaration(
5039       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5040   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5041   IC.addToWorklist(MulInstr);
5042 
5043   // If there are uses of mul result other than the comparison, we know that
5044   // they are truncation or binary AND. Change them to use result of
5045   // mul.with.overflow and adjust properly mask/size.
5046   if (MulVal->hasNUsesOrMore(2)) {
5047     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5048     for (User *U : make_early_inc_range(MulVal->users())) {
5049       if (U == &I || U == OtherVal)
5050         continue;
5051       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5052         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5053           IC.replaceInstUsesWith(*TI, Mul);
5054         else
5055           TI->setOperand(0, Mul);
5056       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5057         assert(BO->getOpcode() == Instruction::And);
5058         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5059         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5060         APInt ShortMask = CI->getValue().trunc(MulWidth);
5061         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5062         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5063         IC.replaceInstUsesWith(*BO, Zext);
5064       } else {
5065         llvm_unreachable("Unexpected Binary operation");
5066       }
5067       IC.addToWorklist(cast<Instruction>(U));
5068     }
5069   }
5070   if (isa<Instruction>(OtherVal))
5071     IC.addToWorklist(cast<Instruction>(OtherVal));
5072 
5073   // The original icmp gets replaced with the overflow value, maybe inverted
5074   // depending on predicate.
5075   bool Inverse = false;
5076   switch (I.getPredicate()) {
5077   case ICmpInst::ICMP_NE:
5078     break;
5079   case ICmpInst::ICMP_EQ:
5080     Inverse = true;
5081     break;
5082   case ICmpInst::ICMP_UGT:
5083   case ICmpInst::ICMP_UGE:
5084     if (I.getOperand(0) == MulVal)
5085       break;
5086     Inverse = true;
5087     break;
5088   case ICmpInst::ICMP_ULT:
5089   case ICmpInst::ICMP_ULE:
5090     if (I.getOperand(1) == MulVal)
5091       break;
5092     Inverse = true;
5093     break;
5094   default:
5095     llvm_unreachable("Unexpected predicate");
5096   }
5097   if (Inverse) {
5098     Value *Res = Builder.CreateExtractValue(Call, 1);
5099     return BinaryOperator::CreateNot(Res);
5100   }
5101 
5102   return ExtractValueInst::Create(Call, 1);
5103 }
5104 
5105 /// When performing a comparison against a constant, it is possible that not all
5106 /// the bits in the LHS are demanded. This helper method computes the mask that
5107 /// IS demanded.
5108 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5109   const APInt *RHS;
5110   if (!match(I.getOperand(1), m_APInt(RHS)))
5111     return APInt::getAllOnes(BitWidth);
5112 
5113   // If this is a normal comparison, it demands all bits. If it is a sign bit
5114   // comparison, it only demands the sign bit.
5115   bool UnusedBit;
5116   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5117     return APInt::getSignMask(BitWidth);
5118 
5119   switch (I.getPredicate()) {
5120   // For a UGT comparison, we don't care about any bits that
5121   // correspond to the trailing ones of the comparand.  The value of these
5122   // bits doesn't impact the outcome of the comparison, because any value
5123   // greater than the RHS must differ in a bit higher than these due to carry.
5124   case ICmpInst::ICMP_UGT:
5125     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5126 
5127   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5128   // Any value less than the RHS must differ in a higher bit because of carries.
5129   case ICmpInst::ICMP_ULT:
5130     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5131 
5132   default:
5133     return APInt::getAllOnes(BitWidth);
5134   }
5135 }
5136 
5137 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5138 /// should be swapped.
5139 /// The decision is based on how many times these two operands are reused
5140 /// as subtract operands and their positions in those instructions.
5141 /// The rationale is that several architectures use the same instruction for
5142 /// both subtract and cmp. Thus, it is better if the order of those operands
5143 /// match.
5144 /// \return true if Op0 and Op1 should be swapped.
5145 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5146   // Filter out pointer values as those cannot appear directly in subtract.
5147   // FIXME: we may want to go through inttoptrs or bitcasts.
5148   if (Op0->getType()->isPointerTy())
5149     return false;
5150   // If a subtract already has the same operands as a compare, swapping would be
5151   // bad. If a subtract has the same operands as a compare but in reverse order,
5152   // then swapping is good.
5153   int GoodToSwap = 0;
5154   for (const User *U : Op0->users()) {
5155     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5156       GoodToSwap++;
5157     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5158       GoodToSwap--;
5159   }
5160   return GoodToSwap > 0;
5161 }
5162 
5163 /// Check that one use is in the same block as the definition and all
5164 /// other uses are in blocks dominated by a given block.
5165 ///
5166 /// \param DI Definition
5167 /// \param UI Use
5168 /// \param DB Block that must dominate all uses of \p DI outside
5169 ///           the parent block
5170 /// \return true when \p UI is the only use of \p DI in the parent block
5171 /// and all other uses of \p DI are in blocks dominated by \p DB.
5172 ///
5173 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5174                                         const Instruction *UI,
5175                                         const BasicBlock *DB) const {
5176   assert(DI && UI && "Instruction not defined\n");
5177   // Ignore incomplete definitions.
5178   if (!DI->getParent())
5179     return false;
5180   // DI and UI must be in the same block.
5181   if (DI->getParent() != UI->getParent())
5182     return false;
5183   // Protect from self-referencing blocks.
5184   if (DI->getParent() == DB)
5185     return false;
5186   for (const User *U : DI->users()) {
5187     auto *Usr = cast<Instruction>(U);
5188     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5189       return false;
5190   }
5191   return true;
5192 }
5193 
5194 /// Return true when the instruction sequence within a block is select-cmp-br.
5195 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5196   const BasicBlock *BB = SI->getParent();
5197   if (!BB)
5198     return false;
5199   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5200   if (!BI || BI->getNumSuccessors() != 2)
5201     return false;
5202   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5203   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5204     return false;
5205   return true;
5206 }
5207 
5208 /// True when a select result is replaced by one of its operands
5209 /// in select-icmp sequence. This will eventually result in the elimination
5210 /// of the select.
5211 ///
5212 /// \param SI    Select instruction
5213 /// \param Icmp  Compare instruction
5214 /// \param SIOpd Operand that replaces the select
5215 ///
5216 /// Notes:
5217 /// - The replacement is global and requires dominator information
5218 /// - The caller is responsible for the actual replacement
5219 ///
5220 /// Example:
5221 ///
5222 /// entry:
5223 ///  %4 = select i1 %3, %C* %0, %C* null
5224 ///  %5 = icmp eq %C* %4, null
5225 ///  br i1 %5, label %9, label %7
5226 ///  ...
5227 ///  ; <label>:7                                       ; preds = %entry
5228 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5229 ///  ...
5230 ///
5231 /// can be transformed to
5232 ///
5233 ///  %5 = icmp eq %C* %0, null
5234 ///  %6 = select i1 %3, i1 %5, i1 true
5235 ///  br i1 %6, label %9, label %7
5236 ///  ...
5237 ///  ; <label>:7                                       ; preds = %entry
5238 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5239 ///
5240 /// Similar when the first operand of the select is a constant or/and
5241 /// the compare is for not equal rather than equal.
5242 ///
5243 /// NOTE: The function is only called when the select and compare constants
5244 /// are equal, the optimization can work only for EQ predicates. This is not a
5245 /// major restriction since a NE compare should be 'normalized' to an equal
5246 /// compare, which usually happens in the combiner and test case
5247 /// select-cmp-br.ll checks for it.
5248 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5249                                                  const ICmpInst *Icmp,
5250                                                  const unsigned SIOpd) {
5251   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5252   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5253     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5254     // The check for the single predecessor is not the best that can be
5255     // done. But it protects efficiently against cases like when SI's
5256     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5257     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5258     // replaced can be reached on either path. So the uniqueness check
5259     // guarantees that the path all uses of SI (outside SI's parent) are on
5260     // is disjoint from all other paths out of SI. But that information
5261     // is more expensive to compute, and the trade-off here is in favor
5262     // of compile-time. It should also be noticed that we check for a single
5263     // predecessor and not only uniqueness. This to handle the situation when
5264     // Succ and Succ1 points to the same basic block.
5265     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5266       NumSel++;
5267       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5268       return true;
5269     }
5270   }
5271   return false;
5272 }
5273 
5274 /// Try to fold the comparison based on range information we can get by checking
5275 /// whether bits are known to be zero or one in the inputs.
5276 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5277   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5278   Type *Ty = Op0->getType();
5279   ICmpInst::Predicate Pred = I.getPredicate();
5280 
5281   // Get scalar or pointer size.
5282   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5283                           ? Ty->getScalarSizeInBits()
5284                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5285 
5286   if (!BitWidth)
5287     return nullptr;
5288 
5289   KnownBits Op0Known(BitWidth);
5290   KnownBits Op1Known(BitWidth);
5291 
5292   if (SimplifyDemandedBits(&I, 0,
5293                            getDemandedBitsLHSMask(I, BitWidth),
5294                            Op0Known, 0))
5295     return &I;
5296 
5297   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5298     return &I;
5299 
5300   // Given the known and unknown bits, compute a range that the LHS could be
5301   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5302   // EQ and NE we use unsigned values.
5303   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5304   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5305   if (I.isSigned()) {
5306     Op0Min = Op0Known.getSignedMinValue();
5307     Op0Max = Op0Known.getSignedMaxValue();
5308     Op1Min = Op1Known.getSignedMinValue();
5309     Op1Max = Op1Known.getSignedMaxValue();
5310   } else {
5311     Op0Min = Op0Known.getMinValue();
5312     Op0Max = Op0Known.getMaxValue();
5313     Op1Min = Op1Known.getMinValue();
5314     Op1Max = Op1Known.getMaxValue();
5315   }
5316 
5317   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5318   // out that the LHS or RHS is a constant. Constant fold this now, so that
5319   // code below can assume that Min != Max.
5320   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5321     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5322   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5323     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5324 
5325   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5326   // min/max canonical compare with some other compare. That could lead to
5327   // conflict with select canonicalization and infinite looping.
5328   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5329   auto isMinMaxCmp = [&](Instruction &Cmp) {
5330     if (!Cmp.hasOneUse())
5331       return false;
5332     Value *A, *B;
5333     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5334     if (!SelectPatternResult::isMinOrMax(SPF))
5335       return false;
5336     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5337            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5338   };
5339   if (!isMinMaxCmp(I)) {
5340     switch (Pred) {
5341     default:
5342       break;
5343     case ICmpInst::ICMP_ULT: {
5344       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5345         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5346       const APInt *CmpC;
5347       if (match(Op1, m_APInt(CmpC))) {
5348         // A <u C -> A == C-1 if min(A)+1 == C
5349         if (*CmpC == Op0Min + 1)
5350           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5351                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5352         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5353         // exceeds the log2 of C.
5354         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5355           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5356                               Constant::getNullValue(Op1->getType()));
5357       }
5358       break;
5359     }
5360     case ICmpInst::ICMP_UGT: {
5361       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5362         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5363       const APInt *CmpC;
5364       if (match(Op1, m_APInt(CmpC))) {
5365         // A >u C -> A == C+1 if max(a)-1 == C
5366         if (*CmpC == Op0Max - 1)
5367           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5368                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5369         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5370         // exceeds the log2 of C.
5371         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5372           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5373                               Constant::getNullValue(Op1->getType()));
5374       }
5375       break;
5376     }
5377     case ICmpInst::ICMP_SLT: {
5378       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5379         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5380       const APInt *CmpC;
5381       if (match(Op1, m_APInt(CmpC))) {
5382         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5383           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5384                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5385       }
5386       break;
5387     }
5388     case ICmpInst::ICMP_SGT: {
5389       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5390         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5391       const APInt *CmpC;
5392       if (match(Op1, m_APInt(CmpC))) {
5393         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5394           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5395                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5396       }
5397       break;
5398     }
5399     }
5400   }
5401 
5402   // Based on the range information we know about the LHS, see if we can
5403   // simplify this comparison.  For example, (x&4) < 8 is always true.
5404   switch (Pred) {
5405   default:
5406     llvm_unreachable("Unknown icmp opcode!");
5407   case ICmpInst::ICMP_EQ:
5408   case ICmpInst::ICMP_NE: {
5409     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5410       return replaceInstUsesWith(
5411           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5412 
5413     // If all bits are known zero except for one, then we know at most one bit
5414     // is set. If the comparison is against zero, then this is a check to see if
5415     // *that* bit is set.
5416     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5417     if (Op1Known.isZero()) {
5418       // If the LHS is an AND with the same constant, look through it.
5419       Value *LHS = nullptr;
5420       const APInt *LHSC;
5421       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5422           *LHSC != Op0KnownZeroInverted)
5423         LHS = Op0;
5424 
5425       Value *X;
5426       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5427         APInt ValToCheck = Op0KnownZeroInverted;
5428         Type *XTy = X->getType();
5429         if (ValToCheck.isPowerOf2()) {
5430           // ((1 << X) & 8) == 0 -> X != 3
5431           // ((1 << X) & 8) != 0 -> X == 3
5432           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5433           auto NewPred = ICmpInst::getInversePredicate(Pred);
5434           return new ICmpInst(NewPred, X, CmpC);
5435         } else if ((++ValToCheck).isPowerOf2()) {
5436           // ((1 << X) & 7) == 0 -> X >= 3
5437           // ((1 << X) & 7) != 0 -> X  < 3
5438           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5439           auto NewPred =
5440               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5441           return new ICmpInst(NewPred, X, CmpC);
5442         }
5443       }
5444 
5445       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5446       const APInt *CI;
5447       if (Op0KnownZeroInverted.isOne() &&
5448           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5449         // ((8 >>u X) & 1) == 0 -> X != 3
5450         // ((8 >>u X) & 1) != 0 -> X == 3
5451         unsigned CmpVal = CI->countTrailingZeros();
5452         auto NewPred = ICmpInst::getInversePredicate(Pred);
5453         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5454       }
5455     }
5456     break;
5457   }
5458   case ICmpInst::ICMP_ULT: {
5459     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5460       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5461     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5462       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5463     break;
5464   }
5465   case ICmpInst::ICMP_UGT: {
5466     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5467       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5468     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5469       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5470     break;
5471   }
5472   case ICmpInst::ICMP_SLT: {
5473     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5474       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5475     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5476       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5477     break;
5478   }
5479   case ICmpInst::ICMP_SGT: {
5480     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5481       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5482     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5483       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5484     break;
5485   }
5486   case ICmpInst::ICMP_SGE:
5487     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5488     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5489       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5490     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5491       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5492     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5493       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5494     break;
5495   case ICmpInst::ICMP_SLE:
5496     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5497     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5498       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5499     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5500       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5501     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5502       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5503     break;
5504   case ICmpInst::ICMP_UGE:
5505     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5506     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5507       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5508     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5509       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5510     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5511       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5512     break;
5513   case ICmpInst::ICMP_ULE:
5514     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5515     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5516       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5517     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5518       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5519     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5520       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5521     break;
5522   }
5523 
5524   // Turn a signed comparison into an unsigned one if both operands are known to
5525   // have the same sign.
5526   if (I.isSigned() &&
5527       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5528        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5529     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5530 
5531   return nullptr;
5532 }
5533 
5534 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5535 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5536                                                        Constant *C) {
5537   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5538          "Only for relational integer predicates.");
5539 
5540   Type *Type = C->getType();
5541   bool IsSigned = ICmpInst::isSigned(Pred);
5542 
5543   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5544   bool WillIncrement =
5545       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5546 
5547   // Check if the constant operand can be safely incremented/decremented
5548   // without overflowing/underflowing.
5549   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5550     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5551   };
5552 
5553   Constant *SafeReplacementConstant = nullptr;
5554   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5555     // Bail out if the constant can't be safely incremented/decremented.
5556     if (!ConstantIsOk(CI))
5557       return llvm::None;
5558   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5559     unsigned NumElts = FVTy->getNumElements();
5560     for (unsigned i = 0; i != NumElts; ++i) {
5561       Constant *Elt = C->getAggregateElement(i);
5562       if (!Elt)
5563         return llvm::None;
5564 
5565       if (isa<UndefValue>(Elt))
5566         continue;
5567 
5568       // Bail out if we can't determine if this constant is min/max or if we
5569       // know that this constant is min/max.
5570       auto *CI = dyn_cast<ConstantInt>(Elt);
5571       if (!CI || !ConstantIsOk(CI))
5572         return llvm::None;
5573 
5574       if (!SafeReplacementConstant)
5575         SafeReplacementConstant = CI;
5576     }
5577   } else {
5578     // ConstantExpr?
5579     return llvm::None;
5580   }
5581 
5582   // It may not be safe to change a compare predicate in the presence of
5583   // undefined elements, so replace those elements with the first safe constant
5584   // that we found.
5585   // TODO: in case of poison, it is safe; let's replace undefs only.
5586   if (C->containsUndefOrPoisonElement()) {
5587     assert(SafeReplacementConstant && "Replacement constant not set");
5588     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5589   }
5590 
5591   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5592 
5593   // Increment or decrement the constant.
5594   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5595   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5596 
5597   return std::make_pair(NewPred, NewC);
5598 }
5599 
5600 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5601 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5602 /// allows them to be folded in visitICmpInst.
5603 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5604   ICmpInst::Predicate Pred = I.getPredicate();
5605   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5606       InstCombiner::isCanonicalPredicate(Pred))
5607     return nullptr;
5608 
5609   Value *Op0 = I.getOperand(0);
5610   Value *Op1 = I.getOperand(1);
5611   auto *Op1C = dyn_cast<Constant>(Op1);
5612   if (!Op1C)
5613     return nullptr;
5614 
5615   auto FlippedStrictness =
5616       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5617   if (!FlippedStrictness)
5618     return nullptr;
5619 
5620   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5621 }
5622 
5623 /// If we have a comparison with a non-canonical predicate, if we can update
5624 /// all the users, invert the predicate and adjust all the users.
5625 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5626   // Is the predicate already canonical?
5627   CmpInst::Predicate Pred = I.getPredicate();
5628   if (InstCombiner::isCanonicalPredicate(Pred))
5629     return nullptr;
5630 
5631   // Can all users be adjusted to predicate inversion?
5632   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5633     return nullptr;
5634 
5635   // Ok, we can canonicalize comparison!
5636   // Let's first invert the comparison's predicate.
5637   I.setPredicate(CmpInst::getInversePredicate(Pred));
5638   I.setName(I.getName() + ".not");
5639 
5640   // And, adapt users.
5641   freelyInvertAllUsersOf(&I);
5642 
5643   return &I;
5644 }
5645 
5646 /// Integer compare with boolean values can always be turned into bitwise ops.
5647 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5648                                          InstCombiner::BuilderTy &Builder) {
5649   Value *A = I.getOperand(0), *B = I.getOperand(1);
5650   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5651 
5652   // A boolean compared to true/false can be simplified to Op0/true/false in
5653   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5654   // Cases not handled by InstSimplify are always 'not' of Op0.
5655   if (match(B, m_Zero())) {
5656     switch (I.getPredicate()) {
5657       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5658       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5659       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5660         return BinaryOperator::CreateNot(A);
5661       default:
5662         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5663     }
5664   } else if (match(B, m_One())) {
5665     switch (I.getPredicate()) {
5666       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5667       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5668       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5669         return BinaryOperator::CreateNot(A);
5670       default:
5671         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5672     }
5673   }
5674 
5675   switch (I.getPredicate()) {
5676   default:
5677     llvm_unreachable("Invalid icmp instruction!");
5678   case ICmpInst::ICMP_EQ:
5679     // icmp eq i1 A, B -> ~(A ^ B)
5680     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5681 
5682   case ICmpInst::ICMP_NE:
5683     // icmp ne i1 A, B -> A ^ B
5684     return BinaryOperator::CreateXor(A, B);
5685 
5686   case ICmpInst::ICMP_UGT:
5687     // icmp ugt -> icmp ult
5688     std::swap(A, B);
5689     LLVM_FALLTHROUGH;
5690   case ICmpInst::ICMP_ULT:
5691     // icmp ult i1 A, B -> ~A & B
5692     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5693 
5694   case ICmpInst::ICMP_SGT:
5695     // icmp sgt -> icmp slt
5696     std::swap(A, B);
5697     LLVM_FALLTHROUGH;
5698   case ICmpInst::ICMP_SLT:
5699     // icmp slt i1 A, B -> A & ~B
5700     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5701 
5702   case ICmpInst::ICMP_UGE:
5703     // icmp uge -> icmp ule
5704     std::swap(A, B);
5705     LLVM_FALLTHROUGH;
5706   case ICmpInst::ICMP_ULE:
5707     // icmp ule i1 A, B -> ~A | B
5708     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5709 
5710   case ICmpInst::ICMP_SGE:
5711     // icmp sge -> icmp sle
5712     std::swap(A, B);
5713     LLVM_FALLTHROUGH;
5714   case ICmpInst::ICMP_SLE:
5715     // icmp sle i1 A, B -> A | ~B
5716     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5717   }
5718 }
5719 
5720 // Transform pattern like:
5721 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5722 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5723 // Into:
5724 //   (X l>> Y) != 0
5725 //   (X l>> Y) == 0
5726 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5727                                             InstCombiner::BuilderTy &Builder) {
5728   ICmpInst::Predicate Pred, NewPred;
5729   Value *X, *Y;
5730   if (match(&Cmp,
5731             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5732     switch (Pred) {
5733     case ICmpInst::ICMP_ULE:
5734       NewPred = ICmpInst::ICMP_NE;
5735       break;
5736     case ICmpInst::ICMP_UGT:
5737       NewPred = ICmpInst::ICMP_EQ;
5738       break;
5739     default:
5740       return nullptr;
5741     }
5742   } else if (match(&Cmp, m_c_ICmp(Pred,
5743                                   m_OneUse(m_CombineOr(
5744                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5745                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5746                                             m_AllOnes()))),
5747                                   m_Value(X)))) {
5748     // The variant with 'add' is not canonical, (the variant with 'not' is)
5749     // we only get it because it has extra uses, and can't be canonicalized,
5750 
5751     switch (Pred) {
5752     case ICmpInst::ICMP_ULT:
5753       NewPred = ICmpInst::ICMP_NE;
5754       break;
5755     case ICmpInst::ICMP_UGE:
5756       NewPred = ICmpInst::ICMP_EQ;
5757       break;
5758     default:
5759       return nullptr;
5760     }
5761   } else
5762     return nullptr;
5763 
5764   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5765   Constant *Zero = Constant::getNullValue(NewX->getType());
5766   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5767 }
5768 
5769 static Instruction *foldVectorCmp(CmpInst &Cmp,
5770                                   InstCombiner::BuilderTy &Builder) {
5771   const CmpInst::Predicate Pred = Cmp.getPredicate();
5772   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5773   Value *V1, *V2;
5774   ArrayRef<int> M;
5775   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5776     return nullptr;
5777 
5778   // If both arguments of the cmp are shuffles that use the same mask and
5779   // shuffle within a single vector, move the shuffle after the cmp:
5780   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5781   Type *V1Ty = V1->getType();
5782   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5783       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5784     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5785     return new ShuffleVectorInst(NewCmp, M);
5786   }
5787 
5788   // Try to canonicalize compare with splatted operand and splat constant.
5789   // TODO: We could generalize this for more than splats. See/use the code in
5790   //       InstCombiner::foldVectorBinop().
5791   Constant *C;
5792   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5793     return nullptr;
5794 
5795   // Length-changing splats are ok, so adjust the constants as needed:
5796   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5797   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5798   int MaskSplatIndex;
5799   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5800     // We allow undefs in matching, but this transform removes those for safety.
5801     // Demanded elements analysis should be able to recover some/all of that.
5802     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5803                                  ScalarC);
5804     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5805     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5806     return new ShuffleVectorInst(NewCmp, NewM);
5807   }
5808 
5809   return nullptr;
5810 }
5811 
5812 // extract(uadd.with.overflow(A, B), 0) ult A
5813 //  -> extract(uadd.with.overflow(A, B), 1)
5814 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5815   CmpInst::Predicate Pred = I.getPredicate();
5816   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5817 
5818   Value *UAddOv;
5819   Value *A, *B;
5820   auto UAddOvResultPat = m_ExtractValue<0>(
5821       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5822   if (match(Op0, UAddOvResultPat) &&
5823       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5824        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5825         (match(A, m_One()) || match(B, m_One()))) ||
5826        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5827         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5828     // extract(uadd.with.overflow(A, B), 0) < A
5829     // extract(uadd.with.overflow(A, 1), 0) == 0
5830     // extract(uadd.with.overflow(A, -1), 0) != -1
5831     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5832   else if (match(Op1, UAddOvResultPat) &&
5833            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5834     // A > extract(uadd.with.overflow(A, B), 0)
5835     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5836   else
5837     return nullptr;
5838 
5839   return ExtractValueInst::Create(UAddOv, 1);
5840 }
5841 
5842 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5843   if (!I.getOperand(0)->getType()->isPointerTy() ||
5844       NullPointerIsDefined(
5845           I.getParent()->getParent(),
5846           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5847     return nullptr;
5848   }
5849   Instruction *Op;
5850   if (match(I.getOperand(0), m_Instruction(Op)) &&
5851       match(I.getOperand(1), m_Zero()) &&
5852       Op->isLaunderOrStripInvariantGroup()) {
5853     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5854                             Op->getOperand(0), I.getOperand(1));
5855   }
5856   return nullptr;
5857 }
5858 
5859 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5860   bool Changed = false;
5861   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5862   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5863   unsigned Op0Cplxity = getComplexity(Op0);
5864   unsigned Op1Cplxity = getComplexity(Op1);
5865 
5866   /// Orders the operands of the compare so that they are listed from most
5867   /// complex to least complex.  This puts constants before unary operators,
5868   /// before binary operators.
5869   if (Op0Cplxity < Op1Cplxity ||
5870       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5871     I.swapOperands();
5872     std::swap(Op0, Op1);
5873     Changed = true;
5874   }
5875 
5876   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5877     return replaceInstUsesWith(I, V);
5878 
5879   // Comparing -val or val with non-zero is the same as just comparing val
5880   // ie, abs(val) != 0 -> val != 0
5881   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5882     Value *Cond, *SelectTrue, *SelectFalse;
5883     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5884                             m_Value(SelectFalse)))) {
5885       if (Value *V = dyn_castNegVal(SelectTrue)) {
5886         if (V == SelectFalse)
5887           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5888       }
5889       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5890         if (V == SelectTrue)
5891           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5892       }
5893     }
5894   }
5895 
5896   if (Op0->getType()->isIntOrIntVectorTy(1))
5897     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5898       return Res;
5899 
5900   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5901     return Res;
5902 
5903   if (Instruction *Res = canonicalizeICmpPredicate(I))
5904     return Res;
5905 
5906   if (Instruction *Res = foldICmpWithConstant(I))
5907     return Res;
5908 
5909   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5910     return Res;
5911 
5912   if (Instruction *Res = foldICmpUsingKnownBits(I))
5913     return Res;
5914 
5915   // Test if the ICmpInst instruction is used exclusively by a select as
5916   // part of a minimum or maximum operation. If so, refrain from doing
5917   // any other folding. This helps out other analyses which understand
5918   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5919   // and CodeGen. And in this case, at least one of the comparison
5920   // operands has at least one user besides the compare (the select),
5921   // which would often largely negate the benefit of folding anyway.
5922   //
5923   // Do the same for the other patterns recognized by matchSelectPattern.
5924   if (I.hasOneUse())
5925     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5926       Value *A, *B;
5927       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5928       if (SPR.Flavor != SPF_UNKNOWN)
5929         return nullptr;
5930     }
5931 
5932   // Do this after checking for min/max to prevent infinite looping.
5933   if (Instruction *Res = foldICmpWithZero(I))
5934     return Res;
5935 
5936   // FIXME: We only do this after checking for min/max to prevent infinite
5937   // looping caused by a reverse canonicalization of these patterns for min/max.
5938   // FIXME: The organization of folds is a mess. These would naturally go into
5939   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5940   // down here after the min/max restriction.
5941   ICmpInst::Predicate Pred = I.getPredicate();
5942   const APInt *C;
5943   if (match(Op1, m_APInt(C))) {
5944     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5945     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5946       Constant *Zero = Constant::getNullValue(Op0->getType());
5947       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5948     }
5949 
5950     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5951     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5952       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5953       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5954     }
5955   }
5956 
5957   // The folds in here may rely on wrapping flags and special constants, so
5958   // they can break up min/max idioms in some cases but not seemingly similar
5959   // patterns.
5960   // FIXME: It may be possible to enhance select folding to make this
5961   //        unnecessary. It may also be moot if we canonicalize to min/max
5962   //        intrinsics.
5963   if (Instruction *Res = foldICmpBinOp(I, Q))
5964     return Res;
5965 
5966   if (Instruction *Res = foldICmpInstWithConstant(I))
5967     return Res;
5968 
5969   // Try to match comparison as a sign bit test. Intentionally do this after
5970   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5971   if (Instruction *New = foldSignBitTest(I))
5972     return New;
5973 
5974   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5975     return Res;
5976 
5977   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
5978   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
5979     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5980       return NI;
5981   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
5982     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
5983       return NI;
5984 
5985   // Try to optimize equality comparisons against alloca-based pointers.
5986   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5987     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5988     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5989       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5990         return New;
5991     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5992       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5993         return New;
5994   }
5995 
5996   if (Instruction *Res = foldICmpBitCast(I))
5997     return Res;
5998 
5999   // TODO: Hoist this above the min/max bailout.
6000   if (Instruction *R = foldICmpWithCastOp(I))
6001     return R;
6002 
6003   if (Instruction *Res = foldICmpWithMinMax(I))
6004     return Res;
6005 
6006   {
6007     Value *A, *B;
6008     // Transform (A & ~B) == 0 --> (A & B) != 0
6009     // and       (A & ~B) != 0 --> (A & B) == 0
6010     // if A is a power of 2.
6011     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6012         match(Op1, m_Zero()) &&
6013         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6014       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6015                           Op1);
6016 
6017     // ~X < ~Y --> Y < X
6018     // ~X < C -->  X > ~C
6019     if (match(Op0, m_Not(m_Value(A)))) {
6020       if (match(Op1, m_Not(m_Value(B))))
6021         return new ICmpInst(I.getPredicate(), B, A);
6022 
6023       const APInt *C;
6024       if (match(Op1, m_APInt(C)))
6025         return new ICmpInst(I.getSwappedPredicate(), A,
6026                             ConstantInt::get(Op1->getType(), ~(*C)));
6027     }
6028 
6029     Instruction *AddI = nullptr;
6030     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6031                                      m_Instruction(AddI))) &&
6032         isa<IntegerType>(A->getType())) {
6033       Value *Result;
6034       Constant *Overflow;
6035       // m_UAddWithOverflow can match patterns that do not include  an explicit
6036       // "add" instruction, so check the opcode of the matched op.
6037       if (AddI->getOpcode() == Instruction::Add &&
6038           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6039                                 Result, Overflow)) {
6040         replaceInstUsesWith(*AddI, Result);
6041         eraseInstFromFunction(*AddI);
6042         return replaceInstUsesWith(I, Overflow);
6043       }
6044     }
6045 
6046     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6047     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6048       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6049         return R;
6050     }
6051     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6052       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6053         return R;
6054     }
6055   }
6056 
6057   if (Instruction *Res = foldICmpEquality(I))
6058     return Res;
6059 
6060   if (Instruction *Res = foldICmpOfUAddOv(I))
6061     return Res;
6062 
6063   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6064   // an i1 which indicates whether or not we successfully did the swap.
6065   //
6066   // Replace comparisons between the old value and the expected value with the
6067   // indicator that 'cmpxchg' returns.
6068   //
6069   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6070   // spuriously fail.  In those cases, the old value may equal the expected
6071   // value but it is possible for the swap to not occur.
6072   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6073     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6074       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6075         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6076             !ACXI->isWeak())
6077           return ExtractValueInst::Create(ACXI, 1);
6078 
6079   {
6080     Value *X;
6081     const APInt *C;
6082     // icmp X+Cst, X
6083     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6084       return foldICmpAddOpConst(X, *C, I.getPredicate());
6085 
6086     // icmp X, X+Cst
6087     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6088       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6089   }
6090 
6091   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6092     return Res;
6093 
6094   if (I.getType()->isVectorTy())
6095     if (Instruction *Res = foldVectorCmp(I, Builder))
6096       return Res;
6097 
6098   if (Instruction *Res = foldICmpInvariantGroup(I))
6099     return Res;
6100 
6101   return Changed ? &I : nullptr;
6102 }
6103 
6104 /// Fold fcmp ([us]itofp x, cst) if possible.
6105 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6106                                                     Instruction *LHSI,
6107                                                     Constant *RHSC) {
6108   if (!isa<ConstantFP>(RHSC)) return nullptr;
6109   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6110 
6111   // Get the width of the mantissa.  We don't want to hack on conversions that
6112   // might lose information from the integer, e.g. "i64 -> float"
6113   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6114   if (MantissaWidth == -1) return nullptr;  // Unknown.
6115 
6116   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6117 
6118   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6119 
6120   if (I.isEquality()) {
6121     FCmpInst::Predicate P = I.getPredicate();
6122     bool IsExact = false;
6123     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6124     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6125 
6126     // If the floating point constant isn't an integer value, we know if we will
6127     // ever compare equal / not equal to it.
6128     if (!IsExact) {
6129       // TODO: Can never be -0.0 and other non-representable values
6130       APFloat RHSRoundInt(RHS);
6131       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6132       if (RHS != RHSRoundInt) {
6133         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6134           return replaceInstUsesWith(I, Builder.getFalse());
6135 
6136         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6137         return replaceInstUsesWith(I, Builder.getTrue());
6138       }
6139     }
6140 
6141     // TODO: If the constant is exactly representable, is it always OK to do
6142     // equality compares as integer?
6143   }
6144 
6145   // Check to see that the input is converted from an integer type that is small
6146   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6147   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6148   unsigned InputSize = IntTy->getScalarSizeInBits();
6149 
6150   // Following test does NOT adjust InputSize downwards for signed inputs,
6151   // because the most negative value still requires all the mantissa bits
6152   // to distinguish it from one less than that value.
6153   if ((int)InputSize > MantissaWidth) {
6154     // Conversion would lose accuracy. Check if loss can impact comparison.
6155     int Exp = ilogb(RHS);
6156     if (Exp == APFloat::IEK_Inf) {
6157       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6158       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6159         // Conversion could create infinity.
6160         return nullptr;
6161     } else {
6162       // Note that if RHS is zero or NaN, then Exp is negative
6163       // and first condition is trivially false.
6164       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6165         // Conversion could affect comparison.
6166         return nullptr;
6167     }
6168   }
6169 
6170   // Otherwise, we can potentially simplify the comparison.  We know that it
6171   // will always come through as an integer value and we know the constant is
6172   // not a NAN (it would have been previously simplified).
6173   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6174 
6175   ICmpInst::Predicate Pred;
6176   switch (I.getPredicate()) {
6177   default: llvm_unreachable("Unexpected predicate!");
6178   case FCmpInst::FCMP_UEQ:
6179   case FCmpInst::FCMP_OEQ:
6180     Pred = ICmpInst::ICMP_EQ;
6181     break;
6182   case FCmpInst::FCMP_UGT:
6183   case FCmpInst::FCMP_OGT:
6184     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6185     break;
6186   case FCmpInst::FCMP_UGE:
6187   case FCmpInst::FCMP_OGE:
6188     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6189     break;
6190   case FCmpInst::FCMP_ULT:
6191   case FCmpInst::FCMP_OLT:
6192     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6193     break;
6194   case FCmpInst::FCMP_ULE:
6195   case FCmpInst::FCMP_OLE:
6196     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6197     break;
6198   case FCmpInst::FCMP_UNE:
6199   case FCmpInst::FCMP_ONE:
6200     Pred = ICmpInst::ICMP_NE;
6201     break;
6202   case FCmpInst::FCMP_ORD:
6203     return replaceInstUsesWith(I, Builder.getTrue());
6204   case FCmpInst::FCMP_UNO:
6205     return replaceInstUsesWith(I, Builder.getFalse());
6206   }
6207 
6208   // Now we know that the APFloat is a normal number, zero or inf.
6209 
6210   // See if the FP constant is too large for the integer.  For example,
6211   // comparing an i8 to 300.0.
6212   unsigned IntWidth = IntTy->getScalarSizeInBits();
6213 
6214   if (!LHSUnsigned) {
6215     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6216     // and large values.
6217     APFloat SMax(RHS.getSemantics());
6218     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6219                           APFloat::rmNearestTiesToEven);
6220     if (SMax < RHS) { // smax < 13123.0
6221       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6222           Pred == ICmpInst::ICMP_SLE)
6223         return replaceInstUsesWith(I, Builder.getTrue());
6224       return replaceInstUsesWith(I, Builder.getFalse());
6225     }
6226   } else {
6227     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6228     // +INF and large values.
6229     APFloat UMax(RHS.getSemantics());
6230     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6231                           APFloat::rmNearestTiesToEven);
6232     if (UMax < RHS) { // umax < 13123.0
6233       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6234           Pred == ICmpInst::ICMP_ULE)
6235         return replaceInstUsesWith(I, Builder.getTrue());
6236       return replaceInstUsesWith(I, Builder.getFalse());
6237     }
6238   }
6239 
6240   if (!LHSUnsigned) {
6241     // See if the RHS value is < SignedMin.
6242     APFloat SMin(RHS.getSemantics());
6243     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6244                           APFloat::rmNearestTiesToEven);
6245     if (SMin > RHS) { // smin > 12312.0
6246       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6247           Pred == ICmpInst::ICMP_SGE)
6248         return replaceInstUsesWith(I, Builder.getTrue());
6249       return replaceInstUsesWith(I, Builder.getFalse());
6250     }
6251   } else {
6252     // See if the RHS value is < UnsignedMin.
6253     APFloat UMin(RHS.getSemantics());
6254     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6255                           APFloat::rmNearestTiesToEven);
6256     if (UMin > RHS) { // umin > 12312.0
6257       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6258           Pred == ICmpInst::ICMP_UGE)
6259         return replaceInstUsesWith(I, Builder.getTrue());
6260       return replaceInstUsesWith(I, Builder.getFalse());
6261     }
6262   }
6263 
6264   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6265   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6266   // casting the FP value to the integer value and back, checking for equality.
6267   // Don't do this for zero, because -0.0 is not fractional.
6268   Constant *RHSInt = LHSUnsigned
6269     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6270     : ConstantExpr::getFPToSI(RHSC, IntTy);
6271   if (!RHS.isZero()) {
6272     bool Equal = LHSUnsigned
6273       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6274       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6275     if (!Equal) {
6276       // If we had a comparison against a fractional value, we have to adjust
6277       // the compare predicate and sometimes the value.  RHSC is rounded towards
6278       // zero at this point.
6279       switch (Pred) {
6280       default: llvm_unreachable("Unexpected integer comparison!");
6281       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6282         return replaceInstUsesWith(I, Builder.getTrue());
6283       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6284         return replaceInstUsesWith(I, Builder.getFalse());
6285       case ICmpInst::ICMP_ULE:
6286         // (float)int <= 4.4   --> int <= 4
6287         // (float)int <= -4.4  --> false
6288         if (RHS.isNegative())
6289           return replaceInstUsesWith(I, Builder.getFalse());
6290         break;
6291       case ICmpInst::ICMP_SLE:
6292         // (float)int <= 4.4   --> int <= 4
6293         // (float)int <= -4.4  --> int < -4
6294         if (RHS.isNegative())
6295           Pred = ICmpInst::ICMP_SLT;
6296         break;
6297       case ICmpInst::ICMP_ULT:
6298         // (float)int < -4.4   --> false
6299         // (float)int < 4.4    --> int <= 4
6300         if (RHS.isNegative())
6301           return replaceInstUsesWith(I, Builder.getFalse());
6302         Pred = ICmpInst::ICMP_ULE;
6303         break;
6304       case ICmpInst::ICMP_SLT:
6305         // (float)int < -4.4   --> int < -4
6306         // (float)int < 4.4    --> int <= 4
6307         if (!RHS.isNegative())
6308           Pred = ICmpInst::ICMP_SLE;
6309         break;
6310       case ICmpInst::ICMP_UGT:
6311         // (float)int > 4.4    --> int > 4
6312         // (float)int > -4.4   --> true
6313         if (RHS.isNegative())
6314           return replaceInstUsesWith(I, Builder.getTrue());
6315         break;
6316       case ICmpInst::ICMP_SGT:
6317         // (float)int > 4.4    --> int > 4
6318         // (float)int > -4.4   --> int >= -4
6319         if (RHS.isNegative())
6320           Pred = ICmpInst::ICMP_SGE;
6321         break;
6322       case ICmpInst::ICMP_UGE:
6323         // (float)int >= -4.4   --> true
6324         // (float)int >= 4.4    --> int > 4
6325         if (RHS.isNegative())
6326           return replaceInstUsesWith(I, Builder.getTrue());
6327         Pred = ICmpInst::ICMP_UGT;
6328         break;
6329       case ICmpInst::ICMP_SGE:
6330         // (float)int >= -4.4   --> int >= -4
6331         // (float)int >= 4.4    --> int > 4
6332         if (!RHS.isNegative())
6333           Pred = ICmpInst::ICMP_SGT;
6334         break;
6335       }
6336     }
6337   }
6338 
6339   // Lower this FP comparison into an appropriate integer version of the
6340   // comparison.
6341   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6342 }
6343 
6344 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6345 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6346                                               Constant *RHSC) {
6347   // When C is not 0.0 and infinities are not allowed:
6348   // (C / X) < 0.0 is a sign-bit test of X
6349   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6350   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6351   //
6352   // Proof:
6353   // Multiply (C / X) < 0.0 by X * X / C.
6354   // - X is non zero, if it is the flag 'ninf' is violated.
6355   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6356   //   the predicate. C is also non zero by definition.
6357   //
6358   // Thus X * X / C is non zero and the transformation is valid. [qed]
6359 
6360   FCmpInst::Predicate Pred = I.getPredicate();
6361 
6362   // Check that predicates are valid.
6363   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6364       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6365     return nullptr;
6366 
6367   // Check that RHS operand is zero.
6368   if (!match(RHSC, m_AnyZeroFP()))
6369     return nullptr;
6370 
6371   // Check fastmath flags ('ninf').
6372   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6373     return nullptr;
6374 
6375   // Check the properties of the dividend. It must not be zero to avoid a
6376   // division by zero (see Proof).
6377   const APFloat *C;
6378   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6379     return nullptr;
6380 
6381   if (C->isZero())
6382     return nullptr;
6383 
6384   // Get swapped predicate if necessary.
6385   if (C->isNegative())
6386     Pred = I.getSwappedPredicate();
6387 
6388   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6389 }
6390 
6391 /// Optimize fabs(X) compared with zero.
6392 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6393   Value *X;
6394   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6395       !match(I.getOperand(1), m_PosZeroFP()))
6396     return nullptr;
6397 
6398   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6399     I->setPredicate(P);
6400     return IC.replaceOperand(*I, 0, X);
6401   };
6402 
6403   switch (I.getPredicate()) {
6404   case FCmpInst::FCMP_UGE:
6405   case FCmpInst::FCMP_OLT:
6406     // fabs(X) >= 0.0 --> true
6407     // fabs(X) <  0.0 --> false
6408     llvm_unreachable("fcmp should have simplified");
6409 
6410   case FCmpInst::FCMP_OGT:
6411     // fabs(X) > 0.0 --> X != 0.0
6412     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6413 
6414   case FCmpInst::FCMP_UGT:
6415     // fabs(X) u> 0.0 --> X u!= 0.0
6416     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6417 
6418   case FCmpInst::FCMP_OLE:
6419     // fabs(X) <= 0.0 --> X == 0.0
6420     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6421 
6422   case FCmpInst::FCMP_ULE:
6423     // fabs(X) u<= 0.0 --> X u== 0.0
6424     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6425 
6426   case FCmpInst::FCMP_OGE:
6427     // fabs(X) >= 0.0 --> !isnan(X)
6428     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6429     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6430 
6431   case FCmpInst::FCMP_ULT:
6432     // fabs(X) u< 0.0 --> isnan(X)
6433     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6434     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6435 
6436   case FCmpInst::FCMP_OEQ:
6437   case FCmpInst::FCMP_UEQ:
6438   case FCmpInst::FCMP_ONE:
6439   case FCmpInst::FCMP_UNE:
6440   case FCmpInst::FCMP_ORD:
6441   case FCmpInst::FCMP_UNO:
6442     // Look through the fabs() because it doesn't change anything but the sign.
6443     // fabs(X) == 0.0 --> X == 0.0,
6444     // fabs(X) != 0.0 --> X != 0.0
6445     // isnan(fabs(X)) --> isnan(X)
6446     // !isnan(fabs(X) --> !isnan(X)
6447     return replacePredAndOp0(&I, I.getPredicate(), X);
6448 
6449   default:
6450     return nullptr;
6451   }
6452 }
6453 
6454 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6455   bool Changed = false;
6456 
6457   /// Orders the operands of the compare so that they are listed from most
6458   /// complex to least complex.  This puts constants before unary operators,
6459   /// before binary operators.
6460   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6461     I.swapOperands();
6462     Changed = true;
6463   }
6464 
6465   const CmpInst::Predicate Pred = I.getPredicate();
6466   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6467   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6468                                   SQ.getWithInstruction(&I)))
6469     return replaceInstUsesWith(I, V);
6470 
6471   // Simplify 'fcmp pred X, X'
6472   Type *OpType = Op0->getType();
6473   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6474   if (Op0 == Op1) {
6475     switch (Pred) {
6476       default: break;
6477     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6478     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6479     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6480     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6481       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6482       I.setPredicate(FCmpInst::FCMP_UNO);
6483       I.setOperand(1, Constant::getNullValue(OpType));
6484       return &I;
6485 
6486     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6487     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6488     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6489     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6490       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6491       I.setPredicate(FCmpInst::FCMP_ORD);
6492       I.setOperand(1, Constant::getNullValue(OpType));
6493       return &I;
6494     }
6495   }
6496 
6497   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6498   // then canonicalize the operand to 0.0.
6499   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6500     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6501       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6502 
6503     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6504       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6505   }
6506 
6507   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6508   Value *X, *Y;
6509   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6510     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6511 
6512   // Test if the FCmpInst instruction is used exclusively by a select as
6513   // part of a minimum or maximum operation. If so, refrain from doing
6514   // any other folding. This helps out other analyses which understand
6515   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6516   // and CodeGen. And in this case, at least one of the comparison
6517   // operands has at least one user besides the compare (the select),
6518   // which would often largely negate the benefit of folding anyway.
6519   if (I.hasOneUse())
6520     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6521       Value *A, *B;
6522       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6523       if (SPR.Flavor != SPF_UNKNOWN)
6524         return nullptr;
6525     }
6526 
6527   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6528   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6529   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6530     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6531 
6532   // Handle fcmp with instruction LHS and constant RHS.
6533   Instruction *LHSI;
6534   Constant *RHSC;
6535   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6536     switch (LHSI->getOpcode()) {
6537     case Instruction::PHI:
6538       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6539       // block.  If in the same block, we're encouraging jump threading.  If
6540       // not, we are just pessimizing the code by making an i1 phi.
6541       if (LHSI->getParent() == I.getParent())
6542         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6543           return NV;
6544       break;
6545     case Instruction::SIToFP:
6546     case Instruction::UIToFP:
6547       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6548         return NV;
6549       break;
6550     case Instruction::FDiv:
6551       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6552         return NV;
6553       break;
6554     case Instruction::Load:
6555       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6556         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6557           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6558               !cast<LoadInst>(LHSI)->isVolatile())
6559             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6560               return Res;
6561       break;
6562   }
6563   }
6564 
6565   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6566     return R;
6567 
6568   if (match(Op0, m_FNeg(m_Value(X)))) {
6569     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6570     Constant *C;
6571     if (match(Op1, m_Constant(C))) {
6572       Constant *NegC = ConstantExpr::getFNeg(C);
6573       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6574     }
6575   }
6576 
6577   if (match(Op0, m_FPExt(m_Value(X)))) {
6578     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6579     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6580       return new FCmpInst(Pred, X, Y, "", &I);
6581 
6582     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6583     const APFloat *C;
6584     if (match(Op1, m_APFloat(C))) {
6585       const fltSemantics &FPSem =
6586           X->getType()->getScalarType()->getFltSemantics();
6587       bool Lossy;
6588       APFloat TruncC = *C;
6589       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6590 
6591       // Avoid lossy conversions and denormals.
6592       // Zero is a special case that's OK to convert.
6593       APFloat Fabs = TruncC;
6594       Fabs.clearSign();
6595       if (!Lossy &&
6596           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6597         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6598         return new FCmpInst(Pred, X, NewC, "", &I);
6599       }
6600     }
6601   }
6602 
6603   // Convert a sign-bit test of an FP value into a cast and integer compare.
6604   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6605   // TODO: Handle non-zero compare constants.
6606   // TODO: Handle other predicates.
6607   const APFloat *C;
6608   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6609                                                            m_Value(X)))) &&
6610       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6611     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6612     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6613       IntType = VectorType::get(IntType, VecTy->getElementCount());
6614 
6615     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6616     if (Pred == FCmpInst::FCMP_OLT) {
6617       Value *IntX = Builder.CreateBitCast(X, IntType);
6618       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6619                           ConstantInt::getNullValue(IntType));
6620     }
6621   }
6622 
6623   if (I.getType()->isVectorTy())
6624     if (Instruction *Res = foldVectorCmp(I, Builder))
6625       return Res;
6626 
6627   return Changed ? &I : nullptr;
6628 }
6629