1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 #include "llvm/Transforms/InstCombine/InstCombiner.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 /// Compute Result = In1+In2, returning true if the result overflowed for this 40 /// type. 41 static bool addWithOverflow(APInt &Result, const APInt &In1, 42 const APInt &In2, bool IsSigned = false) { 43 bool Overflow; 44 if (IsSigned) 45 Result = In1.sadd_ov(In2, Overflow); 46 else 47 Result = In1.uadd_ov(In2, Overflow); 48 49 return Overflow; 50 } 51 52 /// Compute Result = In1-In2, returning true if the result overflowed for this 53 /// type. 54 static bool subWithOverflow(APInt &Result, const APInt &In1, 55 const APInt &In2, bool IsSigned = false) { 56 bool Overflow; 57 if (IsSigned) 58 Result = In1.ssub_ov(In2, Overflow); 59 else 60 Result = In1.usub_ov(In2, Overflow); 61 62 return Overflow; 63 } 64 65 /// Given an icmp instruction, return true if any use of this comparison is a 66 /// branch on sign bit comparison. 67 static bool hasBranchUse(ICmpInst &I) { 68 for (auto *U : I.users()) 69 if (isa<BranchInst>(U)) 70 return true; 71 return false; 72 } 73 74 /// Returns true if the exploded icmp can be expressed as a signed comparison 75 /// to zero and updates the predicate accordingly. 76 /// The signedness of the comparison is preserved. 77 /// TODO: Refactor with decomposeBitTestICmp()? 78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 79 if (!ICmpInst::isSigned(Pred)) 80 return false; 81 82 if (C.isZero()) 83 return ICmpInst::isRelational(Pred); 84 85 if (C.isOne()) { 86 if (Pred == ICmpInst::ICMP_SLT) { 87 Pred = ICmpInst::ICMP_SLE; 88 return true; 89 } 90 } else if (C.isAllOnes()) { 91 if (Pred == ICmpInst::ICMP_SGT) { 92 Pred = ICmpInst::ICMP_SGE; 93 return true; 94 } 95 } 96 97 return false; 98 } 99 100 /// This is called when we see this pattern: 101 /// cmp pred (load (gep GV, ...)), cmpcst 102 /// where GV is a global variable with a constant initializer. Try to simplify 103 /// this into some simple computation that does not need the load. For example 104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 105 /// 106 /// If AndCst is non-null, then the loaded value is masked with that constant 107 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 108 Instruction * 109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 110 GlobalVariable *GV, CmpInst &ICI, 111 ConstantInt *AndCst) { 112 Constant *Init = GV->getInitializer(); 113 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 114 return nullptr; 115 116 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 117 // Don't blow up on huge arrays. 118 if (ArrayElementCount > MaxArraySizeForCombine) 119 return nullptr; 120 121 // There are many forms of this optimization we can handle, for now, just do 122 // the simple index into a single-dimensional array. 123 // 124 // Require: GEP GV, 0, i {{, constant indices}} 125 if (GEP->getNumOperands() < 3 || 126 !isa<ConstantInt>(GEP->getOperand(1)) || 127 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 128 isa<Constant>(GEP->getOperand(2))) 129 return nullptr; 130 131 // Check that indices after the variable are constants and in-range for the 132 // type they index. Collect the indices. This is typically for arrays of 133 // structs. 134 SmallVector<unsigned, 4> LaterIndices; 135 136 Type *EltTy = Init->getType()->getArrayElementType(); 137 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 138 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 139 if (!Idx) return nullptr; // Variable index. 140 141 uint64_t IdxVal = Idx->getZExtValue(); 142 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 143 144 if (StructType *STy = dyn_cast<StructType>(EltTy)) 145 EltTy = STy->getElementType(IdxVal); 146 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 147 if (IdxVal >= ATy->getNumElements()) return nullptr; 148 EltTy = ATy->getElementType(); 149 } else { 150 return nullptr; // Unknown type. 151 } 152 153 LaterIndices.push_back(IdxVal); 154 } 155 156 enum { Overdefined = -3, Undefined = -2 }; 157 158 // Variables for our state machines. 159 160 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 161 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 162 // and 87 is the second (and last) index. FirstTrueElement is -2 when 163 // undefined, otherwise set to the first true element. SecondTrueElement is 164 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 165 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 166 167 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 168 // form "i != 47 & i != 87". Same state transitions as for true elements. 169 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 170 171 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 172 /// define a state machine that triggers for ranges of values that the index 173 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 174 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 175 /// index in the range (inclusive). We use -2 for undefined here because we 176 /// use relative comparisons and don't want 0-1 to match -1. 177 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 178 179 // MagicBitvector - This is a magic bitvector where we set a bit if the 180 // comparison is true for element 'i'. If there are 64 elements or less in 181 // the array, this will fully represent all the comparison results. 182 uint64_t MagicBitvector = 0; 183 184 // Scan the array and see if one of our patterns matches. 185 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 186 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 187 Constant *Elt = Init->getAggregateElement(i); 188 if (!Elt) return nullptr; 189 190 // If this is indexing an array of structures, get the structure element. 191 if (!LaterIndices.empty()) 192 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 193 194 // If the element is masked, handle it. 195 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 196 197 // Find out if the comparison would be true or false for the i'th element. 198 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 199 CompareRHS, DL, &TLI); 200 // If the result is undef for this element, ignore it. 201 if (isa<UndefValue>(C)) { 202 // Extend range state machines to cover this element in case there is an 203 // undef in the middle of the range. 204 if (TrueRangeEnd == (int)i-1) 205 TrueRangeEnd = i; 206 if (FalseRangeEnd == (int)i-1) 207 FalseRangeEnd = i; 208 continue; 209 } 210 211 // If we can't compute the result for any of the elements, we have to give 212 // up evaluating the entire conditional. 213 if (!isa<ConstantInt>(C)) return nullptr; 214 215 // Otherwise, we know if the comparison is true or false for this element, 216 // update our state machines. 217 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 218 219 // State machine for single/double/range index comparison. 220 if (IsTrueForElt) { 221 // Update the TrueElement state machine. 222 if (FirstTrueElement == Undefined) 223 FirstTrueElement = TrueRangeEnd = i; // First true element. 224 else { 225 // Update double-compare state machine. 226 if (SecondTrueElement == Undefined) 227 SecondTrueElement = i; 228 else 229 SecondTrueElement = Overdefined; 230 231 // Update range state machine. 232 if (TrueRangeEnd == (int)i-1) 233 TrueRangeEnd = i; 234 else 235 TrueRangeEnd = Overdefined; 236 } 237 } else { 238 // Update the FalseElement state machine. 239 if (FirstFalseElement == Undefined) 240 FirstFalseElement = FalseRangeEnd = i; // First false element. 241 else { 242 // Update double-compare state machine. 243 if (SecondFalseElement == Undefined) 244 SecondFalseElement = i; 245 else 246 SecondFalseElement = Overdefined; 247 248 // Update range state machine. 249 if (FalseRangeEnd == (int)i-1) 250 FalseRangeEnd = i; 251 else 252 FalseRangeEnd = Overdefined; 253 } 254 } 255 256 // If this element is in range, update our magic bitvector. 257 if (i < 64 && IsTrueForElt) 258 MagicBitvector |= 1ULL << i; 259 260 // If all of our states become overdefined, bail out early. Since the 261 // predicate is expensive, only check it every 8 elements. This is only 262 // really useful for really huge arrays. 263 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 264 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 265 FalseRangeEnd == Overdefined) 266 return nullptr; 267 } 268 269 // Now that we've scanned the entire array, emit our new comparison(s). We 270 // order the state machines in complexity of the generated code. 271 Value *Idx = GEP->getOperand(2); 272 273 // If the index is larger than the pointer size of the target, truncate the 274 // index down like the GEP would do implicitly. We don't have to do this for 275 // an inbounds GEP because the index can't be out of range. 276 if (!GEP->isInBounds()) { 277 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 278 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 279 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 280 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 281 } 282 283 // If inbounds keyword is not present, Idx * ElementSize can overflow. 284 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 285 // Then, there are two possible values for Idx to match offset 0: 286 // 0x00..00, 0x80..00. 287 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 288 // comparison is false if Idx was 0x80..00. 289 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 290 unsigned ElementSize = 291 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 292 auto MaskIdx = [&](Value* Idx){ 293 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 294 Value *Mask = ConstantInt::get(Idx->getType(), -1); 295 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 296 Idx = Builder.CreateAnd(Idx, Mask); 297 } 298 return Idx; 299 }; 300 301 // If the comparison is only true for one or two elements, emit direct 302 // comparisons. 303 if (SecondTrueElement != Overdefined) { 304 Idx = MaskIdx(Idx); 305 // None true -> false. 306 if (FirstTrueElement == Undefined) 307 return replaceInstUsesWith(ICI, Builder.getFalse()); 308 309 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 310 311 // True for one element -> 'i == 47'. 312 if (SecondTrueElement == Undefined) 313 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 314 315 // True for two elements -> 'i == 47 | i == 72'. 316 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 317 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 318 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 319 return BinaryOperator::CreateOr(C1, C2); 320 } 321 322 // If the comparison is only false for one or two elements, emit direct 323 // comparisons. 324 if (SecondFalseElement != Overdefined) { 325 Idx = MaskIdx(Idx); 326 // None false -> true. 327 if (FirstFalseElement == Undefined) 328 return replaceInstUsesWith(ICI, Builder.getTrue()); 329 330 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 331 332 // False for one element -> 'i != 47'. 333 if (SecondFalseElement == Undefined) 334 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 335 336 // False for two elements -> 'i != 47 & i != 72'. 337 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 338 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 339 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 340 return BinaryOperator::CreateAnd(C1, C2); 341 } 342 343 // If the comparison can be replaced with a range comparison for the elements 344 // where it is true, emit the range check. 345 if (TrueRangeEnd != Overdefined) { 346 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 347 Idx = MaskIdx(Idx); 348 349 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 350 if (FirstTrueElement) { 351 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 352 Idx = Builder.CreateAdd(Idx, Offs); 353 } 354 355 Value *End = ConstantInt::get(Idx->getType(), 356 TrueRangeEnd-FirstTrueElement+1); 357 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 358 } 359 360 // False range check. 361 if (FalseRangeEnd != Overdefined) { 362 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 363 Idx = MaskIdx(Idx); 364 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 365 if (FirstFalseElement) { 366 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 367 Idx = Builder.CreateAdd(Idx, Offs); 368 } 369 370 Value *End = ConstantInt::get(Idx->getType(), 371 FalseRangeEnd-FirstFalseElement); 372 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 373 } 374 375 // If a magic bitvector captures the entire comparison state 376 // of this load, replace it with computation that does: 377 // ((magic_cst >> i) & 1) != 0 378 { 379 Type *Ty = nullptr; 380 381 // Look for an appropriate type: 382 // - The type of Idx if the magic fits 383 // - The smallest fitting legal type 384 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 385 Ty = Idx->getType(); 386 else 387 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 388 389 if (Ty) { 390 Idx = MaskIdx(Idx); 391 Value *V = Builder.CreateIntCast(Idx, Ty, false); 392 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 393 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 394 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 395 } 396 } 397 398 return nullptr; 399 } 400 401 /// Return a value that can be used to compare the *offset* implied by a GEP to 402 /// zero. For example, if we have &A[i], we want to return 'i' for 403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 404 /// are involved. The above expression would also be legal to codegen as 405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 406 /// This latter form is less amenable to optimization though, and we are allowed 407 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 408 /// 409 /// If we can't emit an optimized form for this expression, this returns null. 410 /// 411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 412 const DataLayout &DL) { 413 gep_type_iterator GTI = gep_type_begin(GEP); 414 415 // Check to see if this gep only has a single variable index. If so, and if 416 // any constant indices are a multiple of its scale, then we can compute this 417 // in terms of the scale of the variable index. For example, if the GEP 418 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 419 // because the expression will cross zero at the same point. 420 unsigned i, e = GEP->getNumOperands(); 421 int64_t Offset = 0; 422 for (i = 1; i != e; ++i, ++GTI) { 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 424 // Compute the aggregate offset of constant indices. 425 if (CI->isZero()) continue; 426 427 // Handle a struct index, which adds its field offset to the pointer. 428 if (StructType *STy = GTI.getStructTypeOrNull()) { 429 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 430 } else { 431 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 432 Offset += Size*CI->getSExtValue(); 433 } 434 } else { 435 // Found our variable index. 436 break; 437 } 438 } 439 440 // If there are no variable indices, we must have a constant offset, just 441 // evaluate it the general way. 442 if (i == e) return nullptr; 443 444 Value *VariableIdx = GEP->getOperand(i); 445 // Determine the scale factor of the variable element. For example, this is 446 // 4 if the variable index is into an array of i32. 447 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 448 449 // Verify that there are no other variable indices. If so, emit the hard way. 450 for (++i, ++GTI; i != e; ++i, ++GTI) { 451 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 452 if (!CI) return nullptr; 453 454 // Compute the aggregate offset of constant indices. 455 if (CI->isZero()) continue; 456 457 // Handle a struct index, which adds its field offset to the pointer. 458 if (StructType *STy = GTI.getStructTypeOrNull()) { 459 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 460 } else { 461 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 462 Offset += Size*CI->getSExtValue(); 463 } 464 } 465 466 // Okay, we know we have a single variable index, which must be a 467 // pointer/array/vector index. If there is no offset, life is simple, return 468 // the index. 469 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 470 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 471 if (Offset == 0) { 472 // Cast to intptrty in case a truncation occurs. If an extension is needed, 473 // we don't need to bother extending: the extension won't affect where the 474 // computation crosses zero. 475 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 476 IntPtrWidth) { 477 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 478 } 479 return VariableIdx; 480 } 481 482 // Otherwise, there is an index. The computation we will do will be modulo 483 // the pointer size. 484 Offset = SignExtend64(Offset, IntPtrWidth); 485 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 486 487 // To do this transformation, any constant index must be a multiple of the 488 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 489 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 490 // multiple of the variable scale. 491 int64_t NewOffs = Offset / (int64_t)VariableScale; 492 if (Offset != NewOffs*(int64_t)VariableScale) 493 return nullptr; 494 495 // Okay, we can do this evaluation. Start by converting the index to intptr. 496 if (VariableIdx->getType() != IntPtrTy) 497 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 498 true /*Signed*/); 499 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 500 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 501 } 502 503 /// Returns true if we can rewrite Start as a GEP with pointer Base 504 /// and some integer offset. The nodes that need to be re-written 505 /// for this transformation will be added to Explored. 506 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 507 const DataLayout &DL, 508 SetVector<Value *> &Explored) { 509 SmallVector<Value *, 16> WorkList(1, Start); 510 Explored.insert(Base); 511 512 // The following traversal gives us an order which can be used 513 // when doing the final transformation. Since in the final 514 // transformation we create the PHI replacement instructions first, 515 // we don't have to get them in any particular order. 516 // 517 // However, for other instructions we will have to traverse the 518 // operands of an instruction first, which means that we have to 519 // do a post-order traversal. 520 while (!WorkList.empty()) { 521 SetVector<PHINode *> PHIs; 522 523 while (!WorkList.empty()) { 524 if (Explored.size() >= 100) 525 return false; 526 527 Value *V = WorkList.back(); 528 529 if (Explored.contains(V)) { 530 WorkList.pop_back(); 531 continue; 532 } 533 534 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 535 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 536 // We've found some value that we can't explore which is different from 537 // the base. Therefore we can't do this transformation. 538 return false; 539 540 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 541 auto *CI = cast<CastInst>(V); 542 if (!CI->isNoopCast(DL)) 543 return false; 544 545 if (!Explored.contains(CI->getOperand(0))) 546 WorkList.push_back(CI->getOperand(0)); 547 } 548 549 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 550 // We're limiting the GEP to having one index. This will preserve 551 // the original pointer type. We could handle more cases in the 552 // future. 553 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 554 GEP->getType() != Start->getType()) 555 return false; 556 557 if (!Explored.contains(GEP->getOperand(0))) 558 WorkList.push_back(GEP->getOperand(0)); 559 } 560 561 if (WorkList.back() == V) { 562 WorkList.pop_back(); 563 // We've finished visiting this node, mark it as such. 564 Explored.insert(V); 565 } 566 567 if (auto *PN = dyn_cast<PHINode>(V)) { 568 // We cannot transform PHIs on unsplittable basic blocks. 569 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 570 return false; 571 Explored.insert(PN); 572 PHIs.insert(PN); 573 } 574 } 575 576 // Explore the PHI nodes further. 577 for (auto *PN : PHIs) 578 for (Value *Op : PN->incoming_values()) 579 if (!Explored.contains(Op)) 580 WorkList.push_back(Op); 581 } 582 583 // Make sure that we can do this. Since we can't insert GEPs in a basic 584 // block before a PHI node, we can't easily do this transformation if 585 // we have PHI node users of transformed instructions. 586 for (Value *Val : Explored) { 587 for (Value *Use : Val->uses()) { 588 589 auto *PHI = dyn_cast<PHINode>(Use); 590 auto *Inst = dyn_cast<Instruction>(Val); 591 592 if (Inst == Base || Inst == PHI || !Inst || !PHI || 593 !Explored.contains(PHI)) 594 continue; 595 596 if (PHI->getParent() == Inst->getParent()) 597 return false; 598 } 599 } 600 return true; 601 } 602 603 // Sets the appropriate insert point on Builder where we can add 604 // a replacement Instruction for V (if that is possible). 605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 606 bool Before = true) { 607 if (auto *PHI = dyn_cast<PHINode>(V)) { 608 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 609 return; 610 } 611 if (auto *I = dyn_cast<Instruction>(V)) { 612 if (!Before) 613 I = &*std::next(I->getIterator()); 614 Builder.SetInsertPoint(I); 615 return; 616 } 617 if (auto *A = dyn_cast<Argument>(V)) { 618 // Set the insertion point in the entry block. 619 BasicBlock &Entry = A->getParent()->getEntryBlock(); 620 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 621 return; 622 } 623 // Otherwise, this is a constant and we don't need to set a new 624 // insertion point. 625 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 626 } 627 628 /// Returns a re-written value of Start as an indexed GEP using Base as a 629 /// pointer. 630 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 631 const DataLayout &DL, 632 SetVector<Value *> &Explored) { 633 // Perform all the substitutions. This is a bit tricky because we can 634 // have cycles in our use-def chains. 635 // 1. Create the PHI nodes without any incoming values. 636 // 2. Create all the other values. 637 // 3. Add the edges for the PHI nodes. 638 // 4. Emit GEPs to get the original pointers. 639 // 5. Remove the original instructions. 640 Type *IndexType = IntegerType::get( 641 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 642 643 DenseMap<Value *, Value *> NewInsts; 644 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 645 646 // Create the new PHI nodes, without adding any incoming values. 647 for (Value *Val : Explored) { 648 if (Val == Base) 649 continue; 650 // Create empty phi nodes. This avoids cyclic dependencies when creating 651 // the remaining instructions. 652 if (auto *PHI = dyn_cast<PHINode>(Val)) 653 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 654 PHI->getName() + ".idx", PHI); 655 } 656 IRBuilder<> Builder(Base->getContext()); 657 658 // Create all the other instructions. 659 for (Value *Val : Explored) { 660 661 if (NewInsts.find(Val) != NewInsts.end()) 662 continue; 663 664 if (auto *CI = dyn_cast<CastInst>(Val)) { 665 // Don't get rid of the intermediate variable here; the store can grow 666 // the map which will invalidate the reference to the input value. 667 Value *V = NewInsts[CI->getOperand(0)]; 668 NewInsts[CI] = V; 669 continue; 670 } 671 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 672 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 673 : GEP->getOperand(1); 674 setInsertionPoint(Builder, GEP); 675 // Indices might need to be sign extended. GEPs will magically do 676 // this, but we need to do it ourselves here. 677 if (Index->getType()->getScalarSizeInBits() != 678 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 679 Index = Builder.CreateSExtOrTrunc( 680 Index, NewInsts[GEP->getOperand(0)]->getType(), 681 GEP->getOperand(0)->getName() + ".sext"); 682 } 683 684 auto *Op = NewInsts[GEP->getOperand(0)]; 685 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 686 NewInsts[GEP] = Index; 687 else 688 NewInsts[GEP] = Builder.CreateNSWAdd( 689 Op, Index, GEP->getOperand(0)->getName() + ".add"); 690 continue; 691 } 692 if (isa<PHINode>(Val)) 693 continue; 694 695 llvm_unreachable("Unexpected instruction type"); 696 } 697 698 // Add the incoming values to the PHI nodes. 699 for (Value *Val : Explored) { 700 if (Val == Base) 701 continue; 702 // All the instructions have been created, we can now add edges to the 703 // phi nodes. 704 if (auto *PHI = dyn_cast<PHINode>(Val)) { 705 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 706 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 707 Value *NewIncoming = PHI->getIncomingValue(I); 708 709 if (NewInsts.find(NewIncoming) != NewInsts.end()) 710 NewIncoming = NewInsts[NewIncoming]; 711 712 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 713 } 714 } 715 } 716 717 for (Value *Val : Explored) { 718 if (Val == Base) 719 continue; 720 721 // Depending on the type, for external users we have to emit 722 // a GEP or a GEP + ptrtoint. 723 setInsertionPoint(Builder, Val, false); 724 725 // If required, create an inttoptr instruction for Base. 726 Value *NewBase = Base; 727 if (!Base->getType()->isPointerTy()) 728 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 729 Start->getName() + "to.ptr"); 730 731 Value *GEP = Builder.CreateInBoundsGEP( 732 Start->getType()->getPointerElementType(), NewBase, 733 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 734 735 if (!Val->getType()->isPointerTy()) { 736 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 737 Val->getName() + ".conv"); 738 GEP = Cast; 739 } 740 Val->replaceAllUsesWith(GEP); 741 } 742 743 return NewInsts[Start]; 744 } 745 746 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 747 /// the input Value as a constant indexed GEP. Returns a pair containing 748 /// the GEPs Pointer and Index. 749 static std::pair<Value *, Value *> 750 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 751 Type *IndexType = IntegerType::get(V->getContext(), 752 DL.getIndexTypeSizeInBits(V->getType())); 753 754 Constant *Index = ConstantInt::getNullValue(IndexType); 755 while (true) { 756 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 757 // We accept only inbouds GEPs here to exclude the possibility of 758 // overflow. 759 if (!GEP->isInBounds()) 760 break; 761 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 762 GEP->getType() == V->getType()) { 763 V = GEP->getOperand(0); 764 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 765 Index = ConstantExpr::getAdd( 766 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 767 continue; 768 } 769 break; 770 } 771 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 772 if (!CI->isNoopCast(DL)) 773 break; 774 V = CI->getOperand(0); 775 continue; 776 } 777 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 778 if (!CI->isNoopCast(DL)) 779 break; 780 V = CI->getOperand(0); 781 continue; 782 } 783 break; 784 } 785 return {V, Index}; 786 } 787 788 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 789 /// We can look through PHIs, GEPs and casts in order to determine a common base 790 /// between GEPLHS and RHS. 791 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 792 ICmpInst::Predicate Cond, 793 const DataLayout &DL) { 794 // FIXME: Support vector of pointers. 795 if (GEPLHS->getType()->isVectorTy()) 796 return nullptr; 797 798 if (!GEPLHS->hasAllConstantIndices()) 799 return nullptr; 800 801 // Make sure the pointers have the same type. 802 if (GEPLHS->getType() != RHS->getType()) 803 return nullptr; 804 805 Value *PtrBase, *Index; 806 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 807 808 // The set of nodes that will take part in this transformation. 809 SetVector<Value *> Nodes; 810 811 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 812 return nullptr; 813 814 // We know we can re-write this as 815 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 816 // Since we've only looked through inbouds GEPs we know that we 817 // can't have overflow on either side. We can therefore re-write 818 // this as: 819 // OFFSET1 cmp OFFSET2 820 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 821 822 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 823 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 824 // offset. Since Index is the offset of LHS to the base pointer, we will now 825 // compare the offsets instead of comparing the pointers. 826 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 827 } 828 829 /// Fold comparisons between a GEP instruction and something else. At this point 830 /// we know that the GEP is on the LHS of the comparison. 831 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 832 ICmpInst::Predicate Cond, 833 Instruction &I) { 834 // Don't transform signed compares of GEPs into index compares. Even if the 835 // GEP is inbounds, the final add of the base pointer can have signed overflow 836 // and would change the result of the icmp. 837 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 838 // the maximum signed value for the pointer type. 839 if (ICmpInst::isSigned(Cond)) 840 return nullptr; 841 842 // Look through bitcasts and addrspacecasts. We do not however want to remove 843 // 0 GEPs. 844 if (!isa<GetElementPtrInst>(RHS)) 845 RHS = RHS->stripPointerCasts(); 846 847 Value *PtrBase = GEPLHS->getOperand(0); 848 // FIXME: Support vector pointer GEPs. 849 if (PtrBase == RHS && GEPLHS->isInBounds() && 850 !GEPLHS->getType()->isVectorTy()) { 851 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 852 // This transformation (ignoring the base and scales) is valid because we 853 // know pointers can't overflow since the gep is inbounds. See if we can 854 // output an optimized form. 855 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 856 857 // If not, synthesize the offset the hard way. 858 if (!Offset) 859 Offset = EmitGEPOffset(GEPLHS); 860 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 861 Constant::getNullValue(Offset->getType())); 862 } 863 864 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 865 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 866 !NullPointerIsDefined(I.getFunction(), 867 RHS->getType()->getPointerAddressSpace())) { 868 // For most address spaces, an allocation can't be placed at null, but null 869 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 870 // the only valid inbounds address derived from null, is null itself. 871 // Thus, we have four cases to consider: 872 // 1) Base == nullptr, Offset == 0 -> inbounds, null 873 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 874 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 875 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 876 // 877 // (Note if we're indexing a type of size 0, that simply collapses into one 878 // of the buckets above.) 879 // 880 // In general, we're allowed to make values less poison (i.e. remove 881 // sources of full UB), so in this case, we just select between the two 882 // non-poison cases (1 and 4 above). 883 // 884 // For vectors, we apply the same reasoning on a per-lane basis. 885 auto *Base = GEPLHS->getPointerOperand(); 886 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 887 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 888 Base = Builder.CreateVectorSplat(EC, Base); 889 } 890 return new ICmpInst(Cond, Base, 891 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 892 cast<Constant>(RHS), Base->getType())); 893 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 894 // If the base pointers are different, but the indices are the same, just 895 // compare the base pointer. 896 if (PtrBase != GEPRHS->getOperand(0)) { 897 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 898 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 899 GEPRHS->getOperand(0)->getType(); 900 if (IndicesTheSame) 901 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 902 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 903 IndicesTheSame = false; 904 break; 905 } 906 907 // If all indices are the same, just compare the base pointers. 908 Type *BaseType = GEPLHS->getOperand(0)->getType(); 909 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 910 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 911 912 // If we're comparing GEPs with two base pointers that only differ in type 913 // and both GEPs have only constant indices or just one use, then fold 914 // the compare with the adjusted indices. 915 // FIXME: Support vector of pointers. 916 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 917 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 918 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 919 PtrBase->stripPointerCasts() == 920 GEPRHS->getOperand(0)->stripPointerCasts() && 921 !GEPLHS->getType()->isVectorTy()) { 922 Value *LOffset = EmitGEPOffset(GEPLHS); 923 Value *ROffset = EmitGEPOffset(GEPRHS); 924 925 // If we looked through an addrspacecast between different sized address 926 // spaces, the LHS and RHS pointers are different sized 927 // integers. Truncate to the smaller one. 928 Type *LHSIndexTy = LOffset->getType(); 929 Type *RHSIndexTy = ROffset->getType(); 930 if (LHSIndexTy != RHSIndexTy) { 931 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 932 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 933 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 934 } else 935 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 936 } 937 938 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 939 LOffset, ROffset); 940 return replaceInstUsesWith(I, Cmp); 941 } 942 943 // Otherwise, the base pointers are different and the indices are 944 // different. Try convert this to an indexed compare by looking through 945 // PHIs/casts. 946 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 947 } 948 949 // If one of the GEPs has all zero indices, recurse. 950 // FIXME: Handle vector of pointers. 951 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 952 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 953 ICmpInst::getSwappedPredicate(Cond), I); 954 955 // If the other GEP has all zero indices, recurse. 956 // FIXME: Handle vector of pointers. 957 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 958 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 959 960 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 961 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 962 // If the GEPs only differ by one index, compare it. 963 unsigned NumDifferences = 0; // Keep track of # differences. 964 unsigned DiffOperand = 0; // The operand that differs. 965 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 966 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 967 Type *LHSType = GEPLHS->getOperand(i)->getType(); 968 Type *RHSType = GEPRHS->getOperand(i)->getType(); 969 // FIXME: Better support for vector of pointers. 970 if (LHSType->getPrimitiveSizeInBits() != 971 RHSType->getPrimitiveSizeInBits() || 972 (GEPLHS->getType()->isVectorTy() && 973 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 974 // Irreconcilable differences. 975 NumDifferences = 2; 976 break; 977 } 978 979 if (NumDifferences++) break; 980 DiffOperand = i; 981 } 982 983 if (NumDifferences == 0) // SAME GEP? 984 return replaceInstUsesWith(I, // No comparison is needed here. 985 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 986 987 else if (NumDifferences == 1 && GEPsInBounds) { 988 Value *LHSV = GEPLHS->getOperand(DiffOperand); 989 Value *RHSV = GEPRHS->getOperand(DiffOperand); 990 // Make sure we do a signed comparison here. 991 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 992 } 993 } 994 995 // Only lower this if the icmp is the only user of the GEP or if we expect 996 // the result to fold to a constant! 997 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 998 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 999 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1000 Value *L = EmitGEPOffset(GEPLHS); 1001 Value *R = EmitGEPOffset(GEPRHS); 1002 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1003 } 1004 } 1005 1006 // Try convert this to an indexed compare by looking through PHIs/casts as a 1007 // last resort. 1008 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1009 } 1010 1011 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1012 const AllocaInst *Alloca, 1013 const Value *Other) { 1014 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1015 1016 // It would be tempting to fold away comparisons between allocas and any 1017 // pointer not based on that alloca (e.g. an argument). However, even 1018 // though such pointers cannot alias, they can still compare equal. 1019 // 1020 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1021 // doesn't escape we can argue that it's impossible to guess its value, and we 1022 // can therefore act as if any such guesses are wrong. 1023 // 1024 // The code below checks that the alloca doesn't escape, and that it's only 1025 // used in a comparison once (the current instruction). The 1026 // single-comparison-use condition ensures that we're trivially folding all 1027 // comparisons against the alloca consistently, and avoids the risk of 1028 // erroneously folding a comparison of the pointer with itself. 1029 1030 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1031 1032 SmallVector<const Use *, 32> Worklist; 1033 for (const Use &U : Alloca->uses()) { 1034 if (Worklist.size() >= MaxIter) 1035 return nullptr; 1036 Worklist.push_back(&U); 1037 } 1038 1039 unsigned NumCmps = 0; 1040 while (!Worklist.empty()) { 1041 assert(Worklist.size() <= MaxIter); 1042 const Use *U = Worklist.pop_back_val(); 1043 const Value *V = U->getUser(); 1044 --MaxIter; 1045 1046 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1047 isa<SelectInst>(V)) { 1048 // Track the uses. 1049 } else if (isa<LoadInst>(V)) { 1050 // Loading from the pointer doesn't escape it. 1051 continue; 1052 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1053 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1054 if (SI->getValueOperand() == U->get()) 1055 return nullptr; 1056 continue; 1057 } else if (isa<ICmpInst>(V)) { 1058 if (NumCmps++) 1059 return nullptr; // Found more than one cmp. 1060 continue; 1061 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1062 switch (Intrin->getIntrinsicID()) { 1063 // These intrinsics don't escape or compare the pointer. Memset is safe 1064 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1065 // we don't allow stores, so src cannot point to V. 1066 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1067 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1068 continue; 1069 default: 1070 return nullptr; 1071 } 1072 } else { 1073 return nullptr; 1074 } 1075 for (const Use &U : V->uses()) { 1076 if (Worklist.size() >= MaxIter) 1077 return nullptr; 1078 Worklist.push_back(&U); 1079 } 1080 } 1081 1082 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1083 return replaceInstUsesWith( 1084 ICI, 1085 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1086 } 1087 1088 /// Fold "icmp pred (X+C), X". 1089 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1090 ICmpInst::Predicate Pred) { 1091 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1092 // so the values can never be equal. Similarly for all other "or equals" 1093 // operators. 1094 assert(!!C && "C should not be zero!"); 1095 1096 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1097 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1098 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1099 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1100 Constant *R = ConstantInt::get(X->getType(), 1101 APInt::getMaxValue(C.getBitWidth()) - C); 1102 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1103 } 1104 1105 // (X+1) >u X --> X <u (0-1) --> X != 255 1106 // (X+2) >u X --> X <u (0-2) --> X <u 254 1107 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1108 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1109 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1110 ConstantInt::get(X->getType(), -C)); 1111 1112 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1113 1114 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1115 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1116 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1117 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1118 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1119 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1120 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1121 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1122 ConstantInt::get(X->getType(), SMax - C)); 1123 1124 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1125 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1126 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1127 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1128 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1129 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1130 1131 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1132 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1133 ConstantInt::get(X->getType(), SMax - (C - 1))); 1134 } 1135 1136 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1137 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1138 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1139 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1140 const APInt &AP1, 1141 const APInt &AP2) { 1142 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1143 1144 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1145 if (I.getPredicate() == I.ICMP_NE) 1146 Pred = CmpInst::getInversePredicate(Pred); 1147 return new ICmpInst(Pred, LHS, RHS); 1148 }; 1149 1150 // Don't bother doing any work for cases which InstSimplify handles. 1151 if (AP2.isZero()) 1152 return nullptr; 1153 1154 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1155 if (IsAShr) { 1156 if (AP2.isAllOnes()) 1157 return nullptr; 1158 if (AP2.isNegative() != AP1.isNegative()) 1159 return nullptr; 1160 if (AP2.sgt(AP1)) 1161 return nullptr; 1162 } 1163 1164 if (!AP1) 1165 // 'A' must be large enough to shift out the highest set bit. 1166 return getICmp(I.ICMP_UGT, A, 1167 ConstantInt::get(A->getType(), AP2.logBase2())); 1168 1169 if (AP1 == AP2) 1170 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1171 1172 int Shift; 1173 if (IsAShr && AP1.isNegative()) 1174 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1175 else 1176 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1177 1178 if (Shift > 0) { 1179 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1180 // There are multiple solutions if we are comparing against -1 and the LHS 1181 // of the ashr is not a power of two. 1182 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1183 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1184 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1185 } else if (AP1 == AP2.lshr(Shift)) { 1186 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1187 } 1188 } 1189 1190 // Shifting const2 will never be equal to const1. 1191 // FIXME: This should always be handled by InstSimplify? 1192 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1193 return replaceInstUsesWith(I, TorF); 1194 } 1195 1196 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1197 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1198 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1199 const APInt &AP1, 1200 const APInt &AP2) { 1201 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1202 1203 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1204 if (I.getPredicate() == I.ICMP_NE) 1205 Pred = CmpInst::getInversePredicate(Pred); 1206 return new ICmpInst(Pred, LHS, RHS); 1207 }; 1208 1209 // Don't bother doing any work for cases which InstSimplify handles. 1210 if (AP2.isZero()) 1211 return nullptr; 1212 1213 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1214 1215 if (!AP1 && AP2TrailingZeros != 0) 1216 return getICmp( 1217 I.ICMP_UGE, A, 1218 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1219 1220 if (AP1 == AP2) 1221 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1222 1223 // Get the distance between the lowest bits that are set. 1224 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1225 1226 if (Shift > 0 && AP2.shl(Shift) == AP1) 1227 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1228 1229 // Shifting const2 will never be equal to const1. 1230 // FIXME: This should always be handled by InstSimplify? 1231 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1232 return replaceInstUsesWith(I, TorF); 1233 } 1234 1235 /// The caller has matched a pattern of the form: 1236 /// I = icmp ugt (add (add A, B), CI2), CI1 1237 /// If this is of the form: 1238 /// sum = a + b 1239 /// if (sum+128 >u 255) 1240 /// Then replace it with llvm.sadd.with.overflow.i8. 1241 /// 1242 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1243 ConstantInt *CI2, ConstantInt *CI1, 1244 InstCombinerImpl &IC) { 1245 // The transformation we're trying to do here is to transform this into an 1246 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1247 // with a narrower add, and discard the add-with-constant that is part of the 1248 // range check (if we can't eliminate it, this isn't profitable). 1249 1250 // In order to eliminate the add-with-constant, the compare can be its only 1251 // use. 1252 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1253 if (!AddWithCst->hasOneUse()) 1254 return nullptr; 1255 1256 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1257 if (!CI2->getValue().isPowerOf2()) 1258 return nullptr; 1259 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1260 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1261 return nullptr; 1262 1263 // The width of the new add formed is 1 more than the bias. 1264 ++NewWidth; 1265 1266 // Check to see that CI1 is an all-ones value with NewWidth bits. 1267 if (CI1->getBitWidth() == NewWidth || 1268 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1269 return nullptr; 1270 1271 // This is only really a signed overflow check if the inputs have been 1272 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1273 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1274 if (IC.ComputeMinSignedBits(A, 0, &I) > NewWidth || 1275 IC.ComputeMinSignedBits(B, 0, &I) > NewWidth) 1276 return nullptr; 1277 1278 // In order to replace the original add with a narrower 1279 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1280 // and truncates that discard the high bits of the add. Verify that this is 1281 // the case. 1282 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1283 for (User *U : OrigAdd->users()) { 1284 if (U == AddWithCst) 1285 continue; 1286 1287 // Only accept truncates for now. We would really like a nice recursive 1288 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1289 // chain to see which bits of a value are actually demanded. If the 1290 // original add had another add which was then immediately truncated, we 1291 // could still do the transformation. 1292 TruncInst *TI = dyn_cast<TruncInst>(U); 1293 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1294 return nullptr; 1295 } 1296 1297 // If the pattern matches, truncate the inputs to the narrower type and 1298 // use the sadd_with_overflow intrinsic to efficiently compute both the 1299 // result and the overflow bit. 1300 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1301 Function *F = Intrinsic::getDeclaration( 1302 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1303 1304 InstCombiner::BuilderTy &Builder = IC.Builder; 1305 1306 // Put the new code above the original add, in case there are any uses of the 1307 // add between the add and the compare. 1308 Builder.SetInsertPoint(OrigAdd); 1309 1310 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1311 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1312 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1313 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1314 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1315 1316 // The inner add was the result of the narrow add, zero extended to the 1317 // wider type. Replace it with the result computed by the intrinsic. 1318 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1319 IC.eraseInstFromFunction(*OrigAdd); 1320 1321 // The original icmp gets replaced with the overflow value. 1322 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1323 } 1324 1325 /// If we have: 1326 /// icmp eq/ne (urem/srem %x, %y), 0 1327 /// iff %y is a power-of-two, we can replace this with a bit test: 1328 /// icmp eq/ne (and %x, (add %y, -1)), 0 1329 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1330 // This fold is only valid for equality predicates. 1331 if (!I.isEquality()) 1332 return nullptr; 1333 ICmpInst::Predicate Pred; 1334 Value *X, *Y, *Zero; 1335 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1336 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1337 return nullptr; 1338 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1339 return nullptr; 1340 // This may increase instruction count, we don't enforce that Y is a constant. 1341 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1342 Value *Masked = Builder.CreateAnd(X, Mask); 1343 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1344 } 1345 1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1347 /// by one-less-than-bitwidth into a sign test on the original value. 1348 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1349 Instruction *Val; 1350 ICmpInst::Predicate Pred; 1351 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1352 return nullptr; 1353 1354 Value *X; 1355 Type *XTy; 1356 1357 Constant *C; 1358 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1359 XTy = X->getType(); 1360 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1361 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1362 APInt(XBitWidth, XBitWidth - 1)))) 1363 return nullptr; 1364 } else if (isa<BinaryOperator>(Val) && 1365 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1366 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1367 /*AnalyzeForSignBitExtraction=*/true))) { 1368 XTy = X->getType(); 1369 } else 1370 return nullptr; 1371 1372 return ICmpInst::Create(Instruction::ICmp, 1373 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1374 : ICmpInst::ICMP_SLT, 1375 X, ConstantInt::getNullValue(XTy)); 1376 } 1377 1378 // Handle icmp pred X, 0 1379 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1380 CmpInst::Predicate Pred = Cmp.getPredicate(); 1381 if (!match(Cmp.getOperand(1), m_Zero())) 1382 return nullptr; 1383 1384 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1385 if (Pred == ICmpInst::ICMP_SGT) { 1386 Value *A, *B; 1387 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1388 if (SPR.Flavor == SPF_SMIN) { 1389 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1390 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1391 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1392 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1393 } 1394 } 1395 1396 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1397 return New; 1398 1399 // Given: 1400 // icmp eq/ne (urem %x, %y), 0 1401 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1402 // icmp eq/ne %x, 0 1403 Value *X, *Y; 1404 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1405 ICmpInst::isEquality(Pred)) { 1406 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1407 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1408 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1409 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1410 } 1411 1412 return nullptr; 1413 } 1414 1415 /// Fold icmp Pred X, C. 1416 /// TODO: This code structure does not make sense. The saturating add fold 1417 /// should be moved to some other helper and extended as noted below (it is also 1418 /// possible that code has been made unnecessary - do we canonicalize IR to 1419 /// overflow/saturating intrinsics or not?). 1420 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1421 // Match the following pattern, which is a common idiom when writing 1422 // overflow-safe integer arithmetic functions. The source performs an addition 1423 // in wider type and explicitly checks for overflow using comparisons against 1424 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1425 // 1426 // TODO: This could probably be generalized to handle other overflow-safe 1427 // operations if we worked out the formulas to compute the appropriate magic 1428 // constants. 1429 // 1430 // sum = a + b 1431 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1432 CmpInst::Predicate Pred = Cmp.getPredicate(); 1433 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1434 Value *A, *B; 1435 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1436 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1437 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1438 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1439 return Res; 1440 1441 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1442 Constant *C = dyn_cast<Constant>(Op1); 1443 if (!C || C->canTrap()) 1444 return nullptr; 1445 1446 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1447 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1448 Type *Ty = Cmp.getType(); 1449 Builder.SetInsertPoint(Phi); 1450 PHINode *NewPhi = 1451 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1452 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1453 auto *Input = 1454 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1455 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1456 NewPhi->addIncoming(BoolInput, Predecessor); 1457 } 1458 NewPhi->takeName(&Cmp); 1459 return replaceInstUsesWith(Cmp, NewPhi); 1460 } 1461 1462 return nullptr; 1463 } 1464 1465 /// Canonicalize icmp instructions based on dominating conditions. 1466 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1467 // This is a cheap/incomplete check for dominance - just match a single 1468 // predecessor with a conditional branch. 1469 BasicBlock *CmpBB = Cmp.getParent(); 1470 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1471 if (!DomBB) 1472 return nullptr; 1473 1474 Value *DomCond; 1475 BasicBlock *TrueBB, *FalseBB; 1476 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1477 return nullptr; 1478 1479 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1480 "Predecessor block does not point to successor?"); 1481 1482 // The branch should get simplified. Don't bother simplifying this condition. 1483 if (TrueBB == FalseBB) 1484 return nullptr; 1485 1486 // Try to simplify this compare to T/F based on the dominating condition. 1487 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1488 if (Imp) 1489 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1490 1491 CmpInst::Predicate Pred = Cmp.getPredicate(); 1492 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1493 ICmpInst::Predicate DomPred; 1494 const APInt *C, *DomC; 1495 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1496 match(Y, m_APInt(C))) { 1497 // We have 2 compares of a variable with constants. Calculate the constant 1498 // ranges of those compares to see if we can transform the 2nd compare: 1499 // DomBB: 1500 // DomCond = icmp DomPred X, DomC 1501 // br DomCond, CmpBB, FalseBB 1502 // CmpBB: 1503 // Cmp = icmp Pred X, C 1504 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1505 ConstantRange DominatingCR = 1506 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1507 : ConstantRange::makeExactICmpRegion( 1508 CmpInst::getInversePredicate(DomPred), *DomC); 1509 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1510 ConstantRange Difference = DominatingCR.difference(CR); 1511 if (Intersection.isEmptySet()) 1512 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1513 if (Difference.isEmptySet()) 1514 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1515 1516 // Canonicalizing a sign bit comparison that gets used in a branch, 1517 // pessimizes codegen by generating branch on zero instruction instead 1518 // of a test and branch. So we avoid canonicalizing in such situations 1519 // because test and branch instruction has better branch displacement 1520 // than compare and branch instruction. 1521 bool UnusedBit; 1522 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1523 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1524 return nullptr; 1525 1526 // Avoid an infinite loop with min/max canonicalization. 1527 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1528 if (Cmp.hasOneUse() && 1529 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1530 return nullptr; 1531 1532 if (const APInt *EqC = Intersection.getSingleElement()) 1533 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1534 if (const APInt *NeC = Difference.getSingleElement()) 1535 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1536 } 1537 1538 return nullptr; 1539 } 1540 1541 /// Fold icmp (trunc X, Y), C. 1542 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1543 TruncInst *Trunc, 1544 const APInt &C) { 1545 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1546 Value *X = Trunc->getOperand(0); 1547 if (C.isOne() && C.getBitWidth() > 1) { 1548 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1549 Value *V = nullptr; 1550 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1551 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1552 ConstantInt::get(V->getType(), 1)); 1553 } 1554 1555 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1556 SrcBits = X->getType()->getScalarSizeInBits(); 1557 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1558 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1559 // of the high bits truncated out of x are known. 1560 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1561 1562 // If all the high bits are known, we can do this xform. 1563 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1564 // Pull in the high bits from known-ones set. 1565 APInt NewRHS = C.zext(SrcBits); 1566 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1567 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1568 } 1569 } 1570 1571 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1572 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1573 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1574 Value *ShOp; 1575 const APInt *ShAmtC; 1576 bool TrueIfSigned; 1577 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1578 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1579 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1580 return TrueIfSigned 1581 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1582 ConstantInt::getNullValue(X->getType())) 1583 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1584 ConstantInt::getAllOnesValue(X->getType())); 1585 } 1586 1587 return nullptr; 1588 } 1589 1590 /// Fold icmp (xor X, Y), C. 1591 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1592 BinaryOperator *Xor, 1593 const APInt &C) { 1594 Value *X = Xor->getOperand(0); 1595 Value *Y = Xor->getOperand(1); 1596 const APInt *XorC; 1597 if (!match(Y, m_APInt(XorC))) 1598 return nullptr; 1599 1600 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1601 // fold the xor. 1602 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1603 bool TrueIfSigned = false; 1604 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1605 1606 // If the sign bit of the XorCst is not set, there is no change to 1607 // the operation, just stop using the Xor. 1608 if (!XorC->isNegative()) 1609 return replaceOperand(Cmp, 0, X); 1610 1611 // Emit the opposite comparison. 1612 if (TrueIfSigned) 1613 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1614 ConstantInt::getAllOnesValue(X->getType())); 1615 else 1616 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1617 ConstantInt::getNullValue(X->getType())); 1618 } 1619 1620 if (Xor->hasOneUse()) { 1621 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1622 if (!Cmp.isEquality() && XorC->isSignMask()) { 1623 Pred = Cmp.getFlippedSignednessPredicate(); 1624 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1625 } 1626 1627 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1628 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1629 Pred = Cmp.getFlippedSignednessPredicate(); 1630 Pred = Cmp.getSwappedPredicate(Pred); 1631 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1632 } 1633 } 1634 1635 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1636 if (Pred == ICmpInst::ICMP_UGT) { 1637 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1638 if (*XorC == ~C && (C + 1).isPowerOf2()) 1639 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1640 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1641 if (*XorC == C && (C + 1).isPowerOf2()) 1642 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1643 } 1644 if (Pred == ICmpInst::ICMP_ULT) { 1645 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1646 if (*XorC == -C && C.isPowerOf2()) 1647 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1648 ConstantInt::get(X->getType(), ~C)); 1649 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1650 if (*XorC == C && (-C).isPowerOf2()) 1651 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1652 ConstantInt::get(X->getType(), ~C)); 1653 } 1654 return nullptr; 1655 } 1656 1657 /// Fold icmp (and (sh X, Y), C2), C1. 1658 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1659 BinaryOperator *And, 1660 const APInt &C1, 1661 const APInt &C2) { 1662 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1663 if (!Shift || !Shift->isShift()) 1664 return nullptr; 1665 1666 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1667 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1668 // code produced by the clang front-end, for bitfield access. 1669 // This seemingly simple opportunity to fold away a shift turns out to be 1670 // rather complicated. See PR17827 for details. 1671 unsigned ShiftOpcode = Shift->getOpcode(); 1672 bool IsShl = ShiftOpcode == Instruction::Shl; 1673 const APInt *C3; 1674 if (match(Shift->getOperand(1), m_APInt(C3))) { 1675 APInt NewAndCst, NewCmpCst; 1676 bool AnyCmpCstBitsShiftedOut; 1677 if (ShiftOpcode == Instruction::Shl) { 1678 // For a left shift, we can fold if the comparison is not signed. We can 1679 // also fold a signed comparison if the mask value and comparison value 1680 // are not negative. These constraints may not be obvious, but we can 1681 // prove that they are correct using an SMT solver. 1682 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1683 return nullptr; 1684 1685 NewCmpCst = C1.lshr(*C3); 1686 NewAndCst = C2.lshr(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1688 } else if (ShiftOpcode == Instruction::LShr) { 1689 // For a logical right shift, we can fold if the comparison is not signed. 1690 // We can also fold a signed comparison if the shifted mask value and the 1691 // shifted comparison value are not negative. These constraints may not be 1692 // obvious, but we can prove that they are correct using an SMT solver. 1693 NewCmpCst = C1.shl(*C3); 1694 NewAndCst = C2.shl(*C3); 1695 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1696 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1697 return nullptr; 1698 } else { 1699 // For an arithmetic shift, check that both constants don't use (in a 1700 // signed sense) the top bits being shifted out. 1701 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1702 NewCmpCst = C1.shl(*C3); 1703 NewAndCst = C2.shl(*C3); 1704 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1705 if (NewAndCst.ashr(*C3) != C2) 1706 return nullptr; 1707 } 1708 1709 if (AnyCmpCstBitsShiftedOut) { 1710 // If we shifted bits out, the fold is not going to work out. As a 1711 // special case, check to see if this means that the result is always 1712 // true or false now. 1713 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1714 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1715 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1716 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1717 } else { 1718 Value *NewAnd = Builder.CreateAnd( 1719 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1720 return new ICmpInst(Cmp.getPredicate(), 1721 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1722 } 1723 } 1724 1725 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1726 // preferable because it allows the C2 << Y expression to be hoisted out of a 1727 // loop if Y is invariant and X is not. 1728 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1729 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1730 // Compute C2 << Y. 1731 Value *NewShift = 1732 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1733 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1734 1735 // Compute X & (C2 << Y). 1736 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1737 return replaceOperand(Cmp, 0, NewAnd); 1738 } 1739 1740 return nullptr; 1741 } 1742 1743 /// Fold icmp (and X, C2), C1. 1744 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1745 BinaryOperator *And, 1746 const APInt &C1) { 1747 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1748 1749 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1750 // TODO: We canonicalize to the longer form for scalars because we have 1751 // better analysis/folds for icmp, and codegen may be better with icmp. 1752 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1753 match(And->getOperand(1), m_One())) 1754 return new TruncInst(And->getOperand(0), Cmp.getType()); 1755 1756 const APInt *C2; 1757 Value *X; 1758 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1759 return nullptr; 1760 1761 // Don't perform the following transforms if the AND has multiple uses 1762 if (!And->hasOneUse()) 1763 return nullptr; 1764 1765 if (Cmp.isEquality() && C1.isZero()) { 1766 // Restrict this fold to single-use 'and' (PR10267). 1767 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1768 if (C2->isSignMask()) { 1769 Constant *Zero = Constant::getNullValue(X->getType()); 1770 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1771 return new ICmpInst(NewPred, X, Zero); 1772 } 1773 1774 // Restrict this fold only for single-use 'and' (PR10267). 1775 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1776 if ((~(*C2) + 1).isPowerOf2()) { 1777 Constant *NegBOC = 1778 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1779 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1780 return new ICmpInst(NewPred, X, NegBOC); 1781 } 1782 } 1783 1784 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1785 // the input width without changing the value produced, eliminate the cast: 1786 // 1787 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1788 // 1789 // We can do this transformation if the constants do not have their sign bits 1790 // set or if it is an equality comparison. Extending a relational comparison 1791 // when we're checking the sign bit would not work. 1792 Value *W; 1793 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1794 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1795 // TODO: Is this a good transform for vectors? Wider types may reduce 1796 // throughput. Should this transform be limited (even for scalars) by using 1797 // shouldChangeType()? 1798 if (!Cmp.getType()->isVectorTy()) { 1799 Type *WideType = W->getType(); 1800 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1801 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1802 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1803 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1804 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1805 } 1806 } 1807 1808 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1809 return I; 1810 1811 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1812 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1813 // 1814 // iff pred isn't signed 1815 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1816 match(And->getOperand(1), m_One())) { 1817 Constant *One = cast<Constant>(And->getOperand(1)); 1818 Value *Or = And->getOperand(0); 1819 Value *A, *B, *LShr; 1820 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1821 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1822 unsigned UsesRemoved = 0; 1823 if (And->hasOneUse()) 1824 ++UsesRemoved; 1825 if (Or->hasOneUse()) 1826 ++UsesRemoved; 1827 if (LShr->hasOneUse()) 1828 ++UsesRemoved; 1829 1830 // Compute A & ((1 << B) | 1) 1831 Value *NewOr = nullptr; 1832 if (auto *C = dyn_cast<Constant>(B)) { 1833 if (UsesRemoved >= 1) 1834 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1835 } else { 1836 if (UsesRemoved >= 3) 1837 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1838 /*HasNUW=*/true), 1839 One, Or->getName()); 1840 } 1841 if (NewOr) { 1842 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1843 return replaceOperand(Cmp, 0, NewAnd); 1844 } 1845 } 1846 } 1847 1848 return nullptr; 1849 } 1850 1851 /// Fold icmp (and X, Y), C. 1852 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1853 BinaryOperator *And, 1854 const APInt &C) { 1855 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1856 return I; 1857 1858 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1859 bool TrueIfNeg; 1860 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1861 // ((X - 1) & ~X) < 0 --> X == 0 1862 // ((X - 1) & ~X) >= 0 --> X != 0 1863 Value *X; 1864 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1865 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1866 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1867 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1868 } 1869 } 1870 1871 // TODO: These all require that Y is constant too, so refactor with the above. 1872 1873 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1874 Value *X = And->getOperand(0); 1875 Value *Y = And->getOperand(1); 1876 if (auto *LI = dyn_cast<LoadInst>(X)) 1877 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1878 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1879 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1880 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1881 ConstantInt *C2 = cast<ConstantInt>(Y); 1882 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1883 return Res; 1884 } 1885 1886 if (!Cmp.isEquality()) 1887 return nullptr; 1888 1889 // X & -C == -C -> X > u ~C 1890 // X & -C != -C -> X <= u ~C 1891 // iff C is a power of 2 1892 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1893 auto NewPred = 1894 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1895 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1896 } 1897 1898 return nullptr; 1899 } 1900 1901 /// Fold icmp (or X, Y), C. 1902 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1903 BinaryOperator *Or, 1904 const APInt &C) { 1905 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1906 if (C.isOne()) { 1907 // icmp slt signum(V) 1 --> icmp slt V, 1 1908 Value *V = nullptr; 1909 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1910 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1911 ConstantInt::get(V->getType(), 1)); 1912 } 1913 1914 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1915 const APInt *MaskC; 1916 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1917 if (*MaskC == C && (C + 1).isPowerOf2()) { 1918 // X | C == C --> X <=u C 1919 // X | C != C --> X >u C 1920 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1921 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1922 return new ICmpInst(Pred, OrOp0, OrOp1); 1923 } 1924 1925 // More general: canonicalize 'equality with set bits mask' to 1926 // 'equality with clear bits mask'. 1927 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1928 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1929 if (Or->hasOneUse()) { 1930 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1931 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1932 return new ICmpInst(Pred, And, NewC); 1933 } 1934 } 1935 1936 // (X | (X-1)) s< 0 --> X s< 1 1937 // (X | (X-1)) s> -1 --> X s> 0 1938 Value *X; 1939 bool TrueIfSigned; 1940 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1941 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1942 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1943 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1944 return new ICmpInst(NewPred, X, NewC); 1945 } 1946 1947 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1948 return nullptr; 1949 1950 Value *P, *Q; 1951 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1952 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1953 // -> and (icmp eq P, null), (icmp eq Q, null). 1954 Value *CmpP = 1955 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1956 Value *CmpQ = 1957 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1958 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1959 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1960 } 1961 1962 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1963 // a shorter form that has more potential to be folded even further. 1964 Value *X1, *X2, *X3, *X4; 1965 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1966 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1967 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1968 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1969 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1970 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1971 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1972 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1973 } 1974 1975 return nullptr; 1976 } 1977 1978 /// Fold icmp (mul X, Y), C. 1979 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1980 BinaryOperator *Mul, 1981 const APInt &C) { 1982 const APInt *MulC; 1983 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1984 return nullptr; 1985 1986 // If this is a test of the sign bit and the multiply is sign-preserving with 1987 // a constant operand, use the multiply LHS operand instead. 1988 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1989 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1990 if (MulC->isNegative()) 1991 Pred = ICmpInst::getSwappedPredicate(Pred); 1992 return new ICmpInst(Pred, Mul->getOperand(0), 1993 Constant::getNullValue(Mul->getType())); 1994 } 1995 1996 // If the multiply does not wrap, try to divide the compare constant by the 1997 // multiplication factor. 1998 if (Cmp.isEquality() && !MulC->isZero()) { 1999 // (mul nsw X, MulC) == C --> X == C /s MulC 2000 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2001 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 2002 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2003 } 2004 // (mul nuw X, MulC) == C --> X == C /u MulC 2005 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 2006 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2007 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2008 } 2009 } 2010 2011 return nullptr; 2012 } 2013 2014 /// Fold icmp (shl 1, Y), C. 2015 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2016 const APInt &C) { 2017 Value *Y; 2018 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2019 return nullptr; 2020 2021 Type *ShiftType = Shl->getType(); 2022 unsigned TypeBits = C.getBitWidth(); 2023 bool CIsPowerOf2 = C.isPowerOf2(); 2024 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2025 if (Cmp.isUnsigned()) { 2026 // (1 << Y) pred C -> Y pred Log2(C) 2027 if (!CIsPowerOf2) { 2028 // (1 << Y) < 30 -> Y <= 4 2029 // (1 << Y) <= 30 -> Y <= 4 2030 // (1 << Y) >= 30 -> Y > 4 2031 // (1 << Y) > 30 -> Y > 4 2032 if (Pred == ICmpInst::ICMP_ULT) 2033 Pred = ICmpInst::ICMP_ULE; 2034 else if (Pred == ICmpInst::ICMP_UGE) 2035 Pred = ICmpInst::ICMP_UGT; 2036 } 2037 2038 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2039 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2040 unsigned CLog2 = C.logBase2(); 2041 if (CLog2 == TypeBits - 1) { 2042 if (Pred == ICmpInst::ICMP_UGE) 2043 Pred = ICmpInst::ICMP_EQ; 2044 else if (Pred == ICmpInst::ICMP_ULT) 2045 Pred = ICmpInst::ICMP_NE; 2046 } 2047 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2048 } else if (Cmp.isSigned()) { 2049 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2050 if (C.isAllOnes()) { 2051 // (1 << Y) <= -1 -> Y == 31 2052 if (Pred == ICmpInst::ICMP_SLE) 2053 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2054 2055 // (1 << Y) > -1 -> Y != 31 2056 if (Pred == ICmpInst::ICMP_SGT) 2057 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2058 } else if (!C) { 2059 // (1 << Y) < 0 -> Y == 31 2060 // (1 << Y) <= 0 -> Y == 31 2061 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2062 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2063 2064 // (1 << Y) >= 0 -> Y != 31 2065 // (1 << Y) > 0 -> Y != 31 2066 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2067 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2068 } 2069 } else if (Cmp.isEquality() && CIsPowerOf2) { 2070 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2071 } 2072 2073 return nullptr; 2074 } 2075 2076 /// Fold icmp (shl X, Y), C. 2077 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2078 BinaryOperator *Shl, 2079 const APInt &C) { 2080 const APInt *ShiftVal; 2081 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2082 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2083 2084 const APInt *ShiftAmt; 2085 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2086 return foldICmpShlOne(Cmp, Shl, C); 2087 2088 // Check that the shift amount is in range. If not, don't perform undefined 2089 // shifts. When the shift is visited, it will be simplified. 2090 unsigned TypeBits = C.getBitWidth(); 2091 if (ShiftAmt->uge(TypeBits)) 2092 return nullptr; 2093 2094 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2095 Value *X = Shl->getOperand(0); 2096 Type *ShType = Shl->getType(); 2097 2098 // NSW guarantees that we are only shifting out sign bits from the high bits, 2099 // so we can ASHR the compare constant without needing a mask and eliminate 2100 // the shift. 2101 if (Shl->hasNoSignedWrap()) { 2102 if (Pred == ICmpInst::ICMP_SGT) { 2103 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2104 APInt ShiftedC = C.ashr(*ShiftAmt); 2105 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2106 } 2107 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2108 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2109 APInt ShiftedC = C.ashr(*ShiftAmt); 2110 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2111 } 2112 if (Pred == ICmpInst::ICMP_SLT) { 2113 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2114 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2115 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2116 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2117 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2118 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2119 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2120 } 2121 // If this is a signed comparison to 0 and the shift is sign preserving, 2122 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2123 // do that if we're sure to not continue on in this function. 2124 if (isSignTest(Pred, C)) 2125 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2126 } 2127 2128 // NUW guarantees that we are only shifting out zero bits from the high bits, 2129 // so we can LSHR the compare constant without needing a mask and eliminate 2130 // the shift. 2131 if (Shl->hasNoUnsignedWrap()) { 2132 if (Pred == ICmpInst::ICMP_UGT) { 2133 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2134 APInt ShiftedC = C.lshr(*ShiftAmt); 2135 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2136 } 2137 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2138 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2139 APInt ShiftedC = C.lshr(*ShiftAmt); 2140 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2141 } 2142 if (Pred == ICmpInst::ICMP_ULT) { 2143 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2144 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2145 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2146 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2147 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2148 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2149 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2150 } 2151 } 2152 2153 if (Cmp.isEquality() && Shl->hasOneUse()) { 2154 // Strength-reduce the shift into an 'and'. 2155 Constant *Mask = ConstantInt::get( 2156 ShType, 2157 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2158 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2159 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2160 return new ICmpInst(Pred, And, LShrC); 2161 } 2162 2163 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2164 bool TrueIfSigned = false; 2165 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2166 // (X << 31) <s 0 --> (X & 1) != 0 2167 Constant *Mask = ConstantInt::get( 2168 ShType, 2169 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2170 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2171 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2172 And, Constant::getNullValue(ShType)); 2173 } 2174 2175 // Simplify 'shl' inequality test into 'and' equality test. 2176 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2177 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2178 if ((C + 1).isPowerOf2() && 2179 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2180 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2181 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2182 : ICmpInst::ICMP_NE, 2183 And, Constant::getNullValue(ShType)); 2184 } 2185 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2186 if (C.isPowerOf2() && 2187 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2188 Value *And = 2189 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2190 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2191 : ICmpInst::ICMP_NE, 2192 And, Constant::getNullValue(ShType)); 2193 } 2194 } 2195 2196 // Transform (icmp pred iM (shl iM %v, N), C) 2197 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2198 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2199 // This enables us to get rid of the shift in favor of a trunc that may be 2200 // free on the target. It has the additional benefit of comparing to a 2201 // smaller constant that may be more target-friendly. 2202 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2203 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2204 DL.isLegalInteger(TypeBits - Amt)) { 2205 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2206 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2207 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2208 Constant *NewC = 2209 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2210 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2211 } 2212 2213 return nullptr; 2214 } 2215 2216 /// Fold icmp ({al}shr X, Y), C. 2217 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2218 BinaryOperator *Shr, 2219 const APInt &C) { 2220 // An exact shr only shifts out zero bits, so: 2221 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2222 Value *X = Shr->getOperand(0); 2223 CmpInst::Predicate Pred = Cmp.getPredicate(); 2224 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && C.isZero()) 2225 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2226 2227 const APInt *ShiftVal; 2228 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2229 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2230 2231 const APInt *ShiftAmt; 2232 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2233 return nullptr; 2234 2235 // Check that the shift amount is in range. If not, don't perform undefined 2236 // shifts. When the shift is visited it will be simplified. 2237 unsigned TypeBits = C.getBitWidth(); 2238 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2239 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2240 return nullptr; 2241 2242 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2243 bool IsExact = Shr->isExact(); 2244 Type *ShrTy = Shr->getType(); 2245 // TODO: If we could guarantee that InstSimplify would handle all of the 2246 // constant-value-based preconditions in the folds below, then we could assert 2247 // those conditions rather than checking them. This is difficult because of 2248 // undef/poison (PR34838). 2249 if (IsAShr) { 2250 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2251 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2252 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2253 APInt ShiftedC = C.shl(ShAmtVal); 2254 if (ShiftedC.ashr(ShAmtVal) == C) 2255 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2256 } 2257 if (Pred == CmpInst::ICMP_SGT) { 2258 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2259 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2260 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2261 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2262 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2263 } 2264 2265 // If the compare constant has significant bits above the lowest sign-bit, 2266 // then convert an unsigned cmp to a test of the sign-bit: 2267 // (ashr X, ShiftC) u> C --> X s< 0 2268 // (ashr X, ShiftC) u< C --> X s> -1 2269 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2270 if (Pred == CmpInst::ICMP_UGT) { 2271 return new ICmpInst(CmpInst::ICMP_SLT, X, 2272 ConstantInt::getNullValue(ShrTy)); 2273 } 2274 if (Pred == CmpInst::ICMP_ULT) { 2275 return new ICmpInst(CmpInst::ICMP_SGT, X, 2276 ConstantInt::getAllOnesValue(ShrTy)); 2277 } 2278 } 2279 } else { 2280 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2281 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2282 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2283 APInt ShiftedC = C.shl(ShAmtVal); 2284 if (ShiftedC.lshr(ShAmtVal) == C) 2285 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2286 } 2287 if (Pred == CmpInst::ICMP_UGT) { 2288 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2289 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2290 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2291 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2292 } 2293 } 2294 2295 if (!Cmp.isEquality()) 2296 return nullptr; 2297 2298 // Handle equality comparisons of shift-by-constant. 2299 2300 // If the comparison constant changes with the shift, the comparison cannot 2301 // succeed (bits of the comparison constant cannot match the shifted value). 2302 // This should be known by InstSimplify and already be folded to true/false. 2303 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2304 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2305 "Expected icmp+shr simplify did not occur."); 2306 2307 // If the bits shifted out are known zero, compare the unshifted value: 2308 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2309 if (Shr->isExact()) 2310 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2311 2312 if (C.isZero()) { 2313 // == 0 is u< 1. 2314 if (Pred == CmpInst::ICMP_EQ) 2315 return new ICmpInst(CmpInst::ICMP_ULT, X, 2316 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2317 else 2318 return new ICmpInst(CmpInst::ICMP_UGT, X, 2319 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2320 } 2321 2322 if (Shr->hasOneUse()) { 2323 // Canonicalize the shift into an 'and': 2324 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2325 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2326 Constant *Mask = ConstantInt::get(ShrTy, Val); 2327 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2328 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2329 } 2330 2331 return nullptr; 2332 } 2333 2334 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2335 BinaryOperator *SRem, 2336 const APInt &C) { 2337 // Match an 'is positive' or 'is negative' comparison of remainder by a 2338 // constant power-of-2 value: 2339 // (X % pow2C) sgt/slt 0 2340 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2341 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2342 return nullptr; 2343 2344 // TODO: The one-use check is standard because we do not typically want to 2345 // create longer instruction sequences, but this might be a special-case 2346 // because srem is not good for analysis or codegen. 2347 if (!SRem->hasOneUse()) 2348 return nullptr; 2349 2350 const APInt *DivisorC; 2351 if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2352 return nullptr; 2353 2354 // Mask off the sign bit and the modulo bits (low-bits). 2355 Type *Ty = SRem->getType(); 2356 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2357 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2358 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2359 2360 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2361 // bit is set. Example: 2362 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2363 if (Pred == ICmpInst::ICMP_SGT) 2364 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2365 2366 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2367 // bit is set. Example: 2368 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2369 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2370 } 2371 2372 /// Fold icmp (udiv X, Y), C. 2373 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2374 BinaryOperator *UDiv, 2375 const APInt &C) { 2376 const APInt *C2; 2377 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2378 return nullptr; 2379 2380 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2381 2382 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2383 Value *Y = UDiv->getOperand(1); 2384 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2385 assert(!C.isMaxValue() && 2386 "icmp ugt X, UINT_MAX should have been simplified already."); 2387 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2388 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2389 } 2390 2391 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2392 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2393 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2394 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2395 ConstantInt::get(Y->getType(), C2->udiv(C))); 2396 } 2397 2398 return nullptr; 2399 } 2400 2401 /// Fold icmp ({su}div X, Y), C. 2402 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2403 BinaryOperator *Div, 2404 const APInt &C) { 2405 // Fold: icmp pred ([us]div X, C2), C -> range test 2406 // Fold this div into the comparison, producing a range check. 2407 // Determine, based on the divide type, what the range is being 2408 // checked. If there is an overflow on the low or high side, remember 2409 // it, otherwise compute the range [low, hi) bounding the new value. 2410 // See: InsertRangeTest above for the kinds of replacements possible. 2411 const APInt *C2; 2412 if (!match(Div->getOperand(1), m_APInt(C2))) 2413 return nullptr; 2414 2415 // FIXME: If the operand types don't match the type of the divide 2416 // then don't attempt this transform. The code below doesn't have the 2417 // logic to deal with a signed divide and an unsigned compare (and 2418 // vice versa). This is because (x /s C2) <s C produces different 2419 // results than (x /s C2) <u C or (x /u C2) <s C or even 2420 // (x /u C2) <u C. Simply casting the operands and result won't 2421 // work. :( The if statement below tests that condition and bails 2422 // if it finds it. 2423 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2424 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2425 return nullptr; 2426 2427 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2428 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2429 // division-by-constant cases should be present, we can not assert that they 2430 // have happened before we reach this icmp instruction. 2431 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2432 return nullptr; 2433 2434 // Compute Prod = C * C2. We are essentially solving an equation of 2435 // form X / C2 = C. We solve for X by multiplying C2 and C. 2436 // By solving for X, we can turn this into a range check instead of computing 2437 // a divide. 2438 APInt Prod = C * *C2; 2439 2440 // Determine if the product overflows by seeing if the product is not equal to 2441 // the divide. Make sure we do the same kind of divide as in the LHS 2442 // instruction that we're folding. 2443 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2444 2445 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2446 2447 // If the division is known to be exact, then there is no remainder from the 2448 // divide, so the covered range size is unit, otherwise it is the divisor. 2449 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2450 2451 // Figure out the interval that is being checked. For example, a comparison 2452 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2453 // Compute this interval based on the constants involved and the signedness of 2454 // the compare/divide. This computes a half-open interval, keeping track of 2455 // whether either value in the interval overflows. After analysis each 2456 // overflow variable is set to 0 if it's corresponding bound variable is valid 2457 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2458 int LoOverflow = 0, HiOverflow = 0; 2459 APInt LoBound, HiBound; 2460 2461 if (!DivIsSigned) { // udiv 2462 // e.g. X/5 op 3 --> [15, 20) 2463 LoBound = Prod; 2464 HiOverflow = LoOverflow = ProdOV; 2465 if (!HiOverflow) { 2466 // If this is not an exact divide, then many values in the range collapse 2467 // to the same result value. 2468 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2469 } 2470 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2471 if (C.isZero()) { // (X / pos) op 0 2472 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2473 LoBound = -(RangeSize - 1); 2474 HiBound = RangeSize; 2475 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2476 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2477 HiOverflow = LoOverflow = ProdOV; 2478 if (!HiOverflow) 2479 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2480 } else { // (X / pos) op neg 2481 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2482 HiBound = Prod + 1; 2483 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2484 if (!LoOverflow) { 2485 APInt DivNeg = -RangeSize; 2486 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2487 } 2488 } 2489 } else if (C2->isNegative()) { // Divisor is < 0. 2490 if (Div->isExact()) 2491 RangeSize.negate(); 2492 if (C.isZero()) { // (X / neg) op 0 2493 // e.g. X/-5 op 0 --> [-4, 5) 2494 LoBound = RangeSize + 1; 2495 HiBound = -RangeSize; 2496 if (HiBound == *C2) { // -INTMIN = INTMIN 2497 HiOverflow = 1; // [INTMIN+1, overflow) 2498 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2499 } 2500 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2501 // e.g. X/-5 op 3 --> [-19, -14) 2502 HiBound = Prod + 1; 2503 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2504 if (!LoOverflow) 2505 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2506 } else { // (X / neg) op neg 2507 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2508 LoOverflow = HiOverflow = ProdOV; 2509 if (!HiOverflow) 2510 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2511 } 2512 2513 // Dividing by a negative swaps the condition. LT <-> GT 2514 Pred = ICmpInst::getSwappedPredicate(Pred); 2515 } 2516 2517 Value *X = Div->getOperand(0); 2518 switch (Pred) { 2519 default: llvm_unreachable("Unhandled icmp opcode!"); 2520 case ICmpInst::ICMP_EQ: 2521 if (LoOverflow && HiOverflow) 2522 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2523 if (HiOverflow) 2524 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2525 ICmpInst::ICMP_UGE, X, 2526 ConstantInt::get(Div->getType(), LoBound)); 2527 if (LoOverflow) 2528 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2529 ICmpInst::ICMP_ULT, X, 2530 ConstantInt::get(Div->getType(), HiBound)); 2531 return replaceInstUsesWith( 2532 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2533 case ICmpInst::ICMP_NE: 2534 if (LoOverflow && HiOverflow) 2535 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2536 if (HiOverflow) 2537 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2538 ICmpInst::ICMP_ULT, X, 2539 ConstantInt::get(Div->getType(), LoBound)); 2540 if (LoOverflow) 2541 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2542 ICmpInst::ICMP_UGE, X, 2543 ConstantInt::get(Div->getType(), HiBound)); 2544 return replaceInstUsesWith(Cmp, 2545 insertRangeTest(X, LoBound, HiBound, 2546 DivIsSigned, false)); 2547 case ICmpInst::ICMP_ULT: 2548 case ICmpInst::ICMP_SLT: 2549 if (LoOverflow == +1) // Low bound is greater than input range. 2550 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2551 if (LoOverflow == -1) // Low bound is less than input range. 2552 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2553 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2554 case ICmpInst::ICMP_UGT: 2555 case ICmpInst::ICMP_SGT: 2556 if (HiOverflow == +1) // High bound greater than input range. 2557 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2558 if (HiOverflow == -1) // High bound less than input range. 2559 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2560 if (Pred == ICmpInst::ICMP_UGT) 2561 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2562 ConstantInt::get(Div->getType(), HiBound)); 2563 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2564 ConstantInt::get(Div->getType(), HiBound)); 2565 } 2566 2567 return nullptr; 2568 } 2569 2570 /// Fold icmp (sub X, Y), C. 2571 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2572 BinaryOperator *Sub, 2573 const APInt &C) { 2574 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2575 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2576 Type *Ty = Sub->getType(); 2577 2578 // (SubC - Y) == C) --> Y == (SubC - C) 2579 // (SubC - Y) != C) --> Y != (SubC - C) 2580 Constant *SubC; 2581 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2582 return new ICmpInst(Pred, Y, 2583 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2584 } 2585 2586 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2587 const APInt *C2; 2588 APInt SubResult; 2589 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2590 bool HasNSW = Sub->hasNoSignedWrap(); 2591 bool HasNUW = Sub->hasNoUnsignedWrap(); 2592 if (match(X, m_APInt(C2)) && 2593 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2594 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2595 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2596 2597 // The following transforms are only worth it if the only user of the subtract 2598 // is the icmp. 2599 // TODO: This is an artificial restriction for all of the transforms below 2600 // that only need a single replacement icmp. 2601 if (!Sub->hasOneUse()) 2602 return nullptr; 2603 2604 // X - Y == 0 --> X == Y. 2605 // X - Y != 0 --> X != Y. 2606 if (Cmp.isEquality() && C.isZero()) 2607 return new ICmpInst(Pred, X, Y); 2608 2609 if (Sub->hasNoSignedWrap()) { 2610 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2611 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2612 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2613 2614 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2615 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2616 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2617 2618 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2619 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2620 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2621 2622 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2623 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2624 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2625 } 2626 2627 if (!match(X, m_APInt(C2))) 2628 return nullptr; 2629 2630 // C2 - Y <u C -> (Y | (C - 1)) == C2 2631 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2632 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2633 (*C2 & (C - 1)) == (C - 1)) 2634 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2635 2636 // C2 - Y >u C -> (Y | C) != C2 2637 // iff C2 & C == C and C + 1 is a power of 2 2638 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2639 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2640 2641 // We have handled special cases that reduce. 2642 // Canonicalize any remaining sub to add as: 2643 // (C2 - Y) > C --> (Y + ~C2) < ~C 2644 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2645 HasNUW, HasNSW); 2646 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2647 } 2648 2649 /// Fold icmp (add X, Y), C. 2650 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2651 BinaryOperator *Add, 2652 const APInt &C) { 2653 Value *Y = Add->getOperand(1); 2654 const APInt *C2; 2655 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2656 return nullptr; 2657 2658 // Fold icmp pred (add X, C2), C. 2659 Value *X = Add->getOperand(0); 2660 Type *Ty = Add->getType(); 2661 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2662 2663 // If the add does not wrap, we can always adjust the compare by subtracting 2664 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2665 // are canonicalized to SGT/SLT/UGT/ULT. 2666 if ((Add->hasNoSignedWrap() && 2667 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2668 (Add->hasNoUnsignedWrap() && 2669 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2670 bool Overflow; 2671 APInt NewC = 2672 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2673 // If there is overflow, the result must be true or false. 2674 // TODO: Can we assert there is no overflow because InstSimplify always 2675 // handles those cases? 2676 if (!Overflow) 2677 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2678 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2679 } 2680 2681 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2682 const APInt &Upper = CR.getUpper(); 2683 const APInt &Lower = CR.getLower(); 2684 if (Cmp.isSigned()) { 2685 if (Lower.isSignMask()) 2686 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2687 if (Upper.isSignMask()) 2688 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2689 } else { 2690 if (Lower.isMinValue()) 2691 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2692 if (Upper.isMinValue()) 2693 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2694 } 2695 2696 // This set of folds is intentionally placed after folds that use no-wrapping 2697 // flags because those folds are likely better for later analysis/codegen. 2698 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2699 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2700 2701 // Fold compare with offset to opposite sign compare if it eliminates offset: 2702 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2703 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2704 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2705 2706 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2707 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2708 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2709 2710 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2711 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2712 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2713 2714 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2715 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2716 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2717 2718 if (!Add->hasOneUse()) 2719 return nullptr; 2720 2721 // X+C <u C2 -> (X & -C2) == C 2722 // iff C & (C2-1) == 0 2723 // C2 is a power of 2 2724 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2725 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2726 ConstantExpr::getNeg(cast<Constant>(Y))); 2727 2728 // X+C >u C2 -> (X & ~C2) != C 2729 // iff C & C2 == 0 2730 // C2+1 is a power of 2 2731 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2732 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2733 ConstantExpr::getNeg(cast<Constant>(Y))); 2734 2735 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2736 // to the ult form. 2737 // X+C2 >u C -> X+(C2-C-1) <u ~C 2738 if (Pred == ICmpInst::ICMP_UGT) 2739 return new ICmpInst(ICmpInst::ICMP_ULT, 2740 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2741 ConstantInt::get(Ty, ~C)); 2742 2743 return nullptr; 2744 } 2745 2746 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2747 Value *&RHS, ConstantInt *&Less, 2748 ConstantInt *&Equal, 2749 ConstantInt *&Greater) { 2750 // TODO: Generalize this to work with other comparison idioms or ensure 2751 // they get canonicalized into this form. 2752 2753 // select i1 (a == b), 2754 // i32 Equal, 2755 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2756 // where Equal, Less and Greater are placeholders for any three constants. 2757 ICmpInst::Predicate PredA; 2758 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2759 !ICmpInst::isEquality(PredA)) 2760 return false; 2761 Value *EqualVal = SI->getTrueValue(); 2762 Value *UnequalVal = SI->getFalseValue(); 2763 // We still can get non-canonical predicate here, so canonicalize. 2764 if (PredA == ICmpInst::ICMP_NE) 2765 std::swap(EqualVal, UnequalVal); 2766 if (!match(EqualVal, m_ConstantInt(Equal))) 2767 return false; 2768 ICmpInst::Predicate PredB; 2769 Value *LHS2, *RHS2; 2770 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2771 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2772 return false; 2773 // We can get predicate mismatch here, so canonicalize if possible: 2774 // First, ensure that 'LHS' match. 2775 if (LHS2 != LHS) { 2776 // x sgt y <--> y slt x 2777 std::swap(LHS2, RHS2); 2778 PredB = ICmpInst::getSwappedPredicate(PredB); 2779 } 2780 if (LHS2 != LHS) 2781 return false; 2782 // We also need to canonicalize 'RHS'. 2783 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2784 // x sgt C-1 <--> x sge C <--> not(x slt C) 2785 auto FlippedStrictness = 2786 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2787 PredB, cast<Constant>(RHS2)); 2788 if (!FlippedStrictness) 2789 return false; 2790 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2791 "basic correctness failure"); 2792 RHS2 = FlippedStrictness->second; 2793 // And kind-of perform the result swap. 2794 std::swap(Less, Greater); 2795 PredB = ICmpInst::ICMP_SLT; 2796 } 2797 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2798 } 2799 2800 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2801 SelectInst *Select, 2802 ConstantInt *C) { 2803 2804 assert(C && "Cmp RHS should be a constant int!"); 2805 // If we're testing a constant value against the result of a three way 2806 // comparison, the result can be expressed directly in terms of the 2807 // original values being compared. Note: We could possibly be more 2808 // aggressive here and remove the hasOneUse test. The original select is 2809 // really likely to simplify or sink when we remove a test of the result. 2810 Value *OrigLHS, *OrigRHS; 2811 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2812 if (Cmp.hasOneUse() && 2813 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2814 C3GreaterThan)) { 2815 assert(C1LessThan && C2Equal && C3GreaterThan); 2816 2817 bool TrueWhenLessThan = 2818 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2819 ->isAllOnesValue(); 2820 bool TrueWhenEqual = 2821 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2822 ->isAllOnesValue(); 2823 bool TrueWhenGreaterThan = 2824 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2825 ->isAllOnesValue(); 2826 2827 // This generates the new instruction that will replace the original Cmp 2828 // Instruction. Instead of enumerating the various combinations when 2829 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2830 // false, we rely on chaining of ORs and future passes of InstCombine to 2831 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2832 2833 // When none of the three constants satisfy the predicate for the RHS (C), 2834 // the entire original Cmp can be simplified to a false. 2835 Value *Cond = Builder.getFalse(); 2836 if (TrueWhenLessThan) 2837 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2838 OrigLHS, OrigRHS)); 2839 if (TrueWhenEqual) 2840 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2841 OrigLHS, OrigRHS)); 2842 if (TrueWhenGreaterThan) 2843 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2844 OrigLHS, OrigRHS)); 2845 2846 return replaceInstUsesWith(Cmp, Cond); 2847 } 2848 return nullptr; 2849 } 2850 2851 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2852 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2853 if (!Bitcast) 2854 return nullptr; 2855 2856 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2857 Value *Op1 = Cmp.getOperand(1); 2858 Value *BCSrcOp = Bitcast->getOperand(0); 2859 2860 // Make sure the bitcast doesn't change the number of vector elements. 2861 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2862 Bitcast->getDestTy()->getScalarSizeInBits()) { 2863 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2864 Value *X; 2865 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2866 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2867 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2868 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2869 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2870 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2871 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2872 match(Op1, m_Zero())) 2873 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2874 2875 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2876 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2877 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2878 2879 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2880 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2881 return new ICmpInst(Pred, X, 2882 ConstantInt::getAllOnesValue(X->getType())); 2883 } 2884 2885 // Zero-equality checks are preserved through unsigned floating-point casts: 2886 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2887 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2888 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2889 if (Cmp.isEquality() && match(Op1, m_Zero())) 2890 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2891 2892 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2893 // the FP extend/truncate because that cast does not change the sign-bit. 2894 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2895 // The sign-bit is always the most significant bit in those types. 2896 const APInt *C; 2897 bool TrueIfSigned; 2898 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2899 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { 2900 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2901 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2902 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2903 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2904 Type *XType = X->getType(); 2905 2906 // We can't currently handle Power style floating point operations here. 2907 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2908 2909 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2910 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2911 NewType = VectorType::get(NewType, XVTy->getElementCount()); 2912 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2913 if (TrueIfSigned) 2914 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2915 ConstantInt::getNullValue(NewType)); 2916 else 2917 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2918 ConstantInt::getAllOnesValue(NewType)); 2919 } 2920 } 2921 } 2922 } 2923 2924 // Test to see if the operands of the icmp are casted versions of other 2925 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2926 if (Bitcast->getType()->isPointerTy() && 2927 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2928 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2929 // so eliminate it as well. 2930 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2931 Op1 = BC2->getOperand(0); 2932 2933 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2934 return new ICmpInst(Pred, BCSrcOp, Op1); 2935 } 2936 2937 const APInt *C; 2938 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2939 !Bitcast->getType()->isIntegerTy() || 2940 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2941 return nullptr; 2942 2943 // If this is checking if all elements of a vector compare are set or not, 2944 // invert the casted vector equality compare and test if all compare 2945 // elements are clear or not. Compare against zero is generally easier for 2946 // analysis and codegen. 2947 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 2948 // Example: are all elements equal? --> are zero elements not equal? 2949 // TODO: Try harder to reduce compare of 2 freely invertible operands? 2950 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 2951 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 2952 Type *ScalarTy = Bitcast->getType(); 2953 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy); 2954 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy)); 2955 } 2956 2957 // If this is checking if all elements of an extended vector are clear or not, 2958 // compare in a narrow type to eliminate the extend: 2959 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 2960 Value *X; 2961 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 2962 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 2963 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 2964 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 2965 Value *NewCast = Builder.CreateBitCast(X, NewType); 2966 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 2967 } 2968 } 2969 2970 // Folding: icmp <pred> iN X, C 2971 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2972 // and C is a splat of a K-bit pattern 2973 // and SC is a constant vector = <C', C', C', ..., C'> 2974 // Into: 2975 // %E = extractelement <M x iK> %vec, i32 C' 2976 // icmp <pred> iK %E, trunc(C) 2977 Value *Vec; 2978 ArrayRef<int> Mask; 2979 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2980 // Check whether every element of Mask is the same constant 2981 if (is_splat(Mask)) { 2982 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2983 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2984 if (C->isSplat(EltTy->getBitWidth())) { 2985 // Fold the icmp based on the value of C 2986 // If C is M copies of an iK sized bit pattern, 2987 // then: 2988 // => %E = extractelement <N x iK> %vec, i32 Elem 2989 // icmp <pred> iK %SplatVal, <pattern> 2990 Value *Elem = Builder.getInt32(Mask[0]); 2991 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2992 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2993 return new ICmpInst(Pred, Extract, NewC); 2994 } 2995 } 2996 } 2997 return nullptr; 2998 } 2999 3000 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3001 /// where X is some kind of instruction. 3002 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3003 const APInt *C; 3004 if (!match(Cmp.getOperand(1), m_APInt(C))) 3005 return nullptr; 3006 3007 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 3008 switch (BO->getOpcode()) { 3009 case Instruction::Xor: 3010 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 3011 return I; 3012 break; 3013 case Instruction::And: 3014 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 3015 return I; 3016 break; 3017 case Instruction::Or: 3018 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 3019 return I; 3020 break; 3021 case Instruction::Mul: 3022 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 3023 return I; 3024 break; 3025 case Instruction::Shl: 3026 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 3027 return I; 3028 break; 3029 case Instruction::LShr: 3030 case Instruction::AShr: 3031 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 3032 return I; 3033 break; 3034 case Instruction::SRem: 3035 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 3036 return I; 3037 break; 3038 case Instruction::UDiv: 3039 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 3040 return I; 3041 LLVM_FALLTHROUGH; 3042 case Instruction::SDiv: 3043 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 3044 return I; 3045 break; 3046 case Instruction::Sub: 3047 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 3048 return I; 3049 break; 3050 case Instruction::Add: 3051 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 3052 return I; 3053 break; 3054 default: 3055 break; 3056 } 3057 // TODO: These folds could be refactored to be part of the above calls. 3058 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 3059 return I; 3060 } 3061 3062 // Match against CmpInst LHS being instructions other than binary operators. 3063 3064 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 3065 // For now, we only support constant integers while folding the 3066 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3067 // similar to the cases handled by binary ops above. 3068 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3069 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3070 return I; 3071 } 3072 3073 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 3074 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3075 return I; 3076 } 3077 3078 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3079 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3080 return I; 3081 3082 return nullptr; 3083 } 3084 3085 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3086 /// icmp eq/ne BO, C. 3087 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3088 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3089 // TODO: Some of these folds could work with arbitrary constants, but this 3090 // function is limited to scalar and vector splat constants. 3091 if (!Cmp.isEquality()) 3092 return nullptr; 3093 3094 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3095 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3096 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3097 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3098 3099 switch (BO->getOpcode()) { 3100 case Instruction::SRem: 3101 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3102 if (C.isZero() && BO->hasOneUse()) { 3103 const APInt *BOC; 3104 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3105 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3106 return new ICmpInst(Pred, NewRem, 3107 Constant::getNullValue(BO->getType())); 3108 } 3109 } 3110 break; 3111 case Instruction::Add: { 3112 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3113 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3114 if (BO->hasOneUse()) 3115 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3116 } else if (C.isZero()) { 3117 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3118 // efficiently invertible, or if the add has just this one use. 3119 if (Value *NegVal = dyn_castNegVal(BOp1)) 3120 return new ICmpInst(Pred, BOp0, NegVal); 3121 if (Value *NegVal = dyn_castNegVal(BOp0)) 3122 return new ICmpInst(Pred, NegVal, BOp1); 3123 if (BO->hasOneUse()) { 3124 Value *Neg = Builder.CreateNeg(BOp1); 3125 Neg->takeName(BO); 3126 return new ICmpInst(Pred, BOp0, Neg); 3127 } 3128 } 3129 break; 3130 } 3131 case Instruction::Xor: 3132 if (BO->hasOneUse()) { 3133 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3134 // For the xor case, we can xor two constants together, eliminating 3135 // the explicit xor. 3136 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3137 } else if (C.isZero()) { 3138 // Replace ((xor A, B) != 0) with (A != B) 3139 return new ICmpInst(Pred, BOp0, BOp1); 3140 } 3141 } 3142 break; 3143 case Instruction::Or: { 3144 const APInt *BOC; 3145 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3146 // Comparing if all bits outside of a constant mask are set? 3147 // Replace (X | C) == -1 with (X & ~C) == ~C. 3148 // This removes the -1 constant. 3149 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3150 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3151 return new ICmpInst(Pred, And, NotBOC); 3152 } 3153 break; 3154 } 3155 case Instruction::And: { 3156 const APInt *BOC; 3157 if (match(BOp1, m_APInt(BOC))) { 3158 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3159 if (C == *BOC && C.isPowerOf2()) 3160 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3161 BO, Constant::getNullValue(RHS->getType())); 3162 } 3163 break; 3164 } 3165 case Instruction::UDiv: 3166 if (C.isZero()) { 3167 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3168 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3169 return new ICmpInst(NewPred, BOp1, BOp0); 3170 } 3171 break; 3172 default: 3173 break; 3174 } 3175 return nullptr; 3176 } 3177 3178 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3179 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3180 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3181 Type *Ty = II->getType(); 3182 unsigned BitWidth = C.getBitWidth(); 3183 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3184 3185 switch (II->getIntrinsicID()) { 3186 case Intrinsic::abs: 3187 // abs(A) == 0 -> A == 0 3188 // abs(A) == INT_MIN -> A == INT_MIN 3189 if (C.isZero() || C.isMinSignedValue()) 3190 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3191 break; 3192 3193 case Intrinsic::bswap: 3194 // bswap(A) == C -> A == bswap(C) 3195 return new ICmpInst(Pred, II->getArgOperand(0), 3196 ConstantInt::get(Ty, C.byteSwap())); 3197 3198 case Intrinsic::ctlz: 3199 case Intrinsic::cttz: { 3200 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3201 if (C == BitWidth) 3202 return new ICmpInst(Pred, II->getArgOperand(0), 3203 ConstantInt::getNullValue(Ty)); 3204 3205 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3206 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3207 // Limit to one use to ensure we don't increase instruction count. 3208 unsigned Num = C.getLimitedValue(BitWidth); 3209 if (Num != BitWidth && II->hasOneUse()) { 3210 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3211 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3212 : APInt::getHighBitsSet(BitWidth, Num + 1); 3213 APInt Mask2 = IsTrailing 3214 ? APInt::getOneBitSet(BitWidth, Num) 3215 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3216 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3217 ConstantInt::get(Ty, Mask2)); 3218 } 3219 break; 3220 } 3221 3222 case Intrinsic::ctpop: { 3223 // popcount(A) == 0 -> A == 0 and likewise for != 3224 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3225 bool IsZero = C.isZero(); 3226 if (IsZero || C == BitWidth) 3227 return new ICmpInst(Pred, II->getArgOperand(0), 3228 IsZero ? Constant::getNullValue(Ty) 3229 : Constant::getAllOnesValue(Ty)); 3230 3231 break; 3232 } 3233 3234 case Intrinsic::fshl: 3235 case Intrinsic::fshr: 3236 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3237 // (rot X, ?) == 0/-1 --> X == 0/-1 3238 // TODO: This transform is safe to re-use undef elts in a vector, but 3239 // the constant value passed in by the caller doesn't allow that. 3240 if (C.isZero() || C.isAllOnes()) 3241 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3242 3243 const APInt *RotAmtC; 3244 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3245 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3246 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3247 return new ICmpInst(Pred, II->getArgOperand(0), 3248 II->getIntrinsicID() == Intrinsic::fshl 3249 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3250 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3251 } 3252 break; 3253 3254 case Intrinsic::uadd_sat: { 3255 // uadd.sat(a, b) == 0 -> (a | b) == 0 3256 if (C.isZero()) { 3257 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3258 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3259 } 3260 break; 3261 } 3262 3263 case Intrinsic::usub_sat: { 3264 // usub.sat(a, b) == 0 -> a <= b 3265 if (C.isZero()) { 3266 ICmpInst::Predicate NewPred = 3267 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3268 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3269 } 3270 break; 3271 } 3272 default: 3273 break; 3274 } 3275 3276 return nullptr; 3277 } 3278 3279 /// Fold an icmp with LLVM intrinsics 3280 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3281 assert(Cmp.isEquality()); 3282 3283 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3284 Value *Op0 = Cmp.getOperand(0); 3285 Value *Op1 = Cmp.getOperand(1); 3286 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3287 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3288 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3289 return nullptr; 3290 3291 switch (IIOp0->getIntrinsicID()) { 3292 case Intrinsic::bswap: 3293 case Intrinsic::bitreverse: 3294 // If both operands are byte-swapped or bit-reversed, just compare the 3295 // original values. 3296 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3297 case Intrinsic::fshl: 3298 case Intrinsic::fshr: 3299 // If both operands are rotated by same amount, just compare the 3300 // original values. 3301 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3302 break; 3303 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3304 break; 3305 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3306 break; 3307 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3308 default: 3309 break; 3310 } 3311 3312 return nullptr; 3313 } 3314 3315 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3316 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3317 IntrinsicInst *II, 3318 const APInt &C) { 3319 if (Cmp.isEquality()) 3320 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3321 3322 Type *Ty = II->getType(); 3323 unsigned BitWidth = C.getBitWidth(); 3324 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3325 switch (II->getIntrinsicID()) { 3326 case Intrinsic::ctpop: { 3327 // (ctpop X > BitWidth - 1) --> X == -1 3328 Value *X = II->getArgOperand(0); 3329 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3330 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3331 ConstantInt::getAllOnesValue(Ty)); 3332 // (ctpop X < BitWidth) --> X != -1 3333 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3334 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3335 ConstantInt::getAllOnesValue(Ty)); 3336 break; 3337 } 3338 case Intrinsic::ctlz: { 3339 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3340 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3341 unsigned Num = C.getLimitedValue(); 3342 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3343 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3344 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3345 } 3346 3347 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3348 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3349 unsigned Num = C.getLimitedValue(); 3350 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3351 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3352 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3353 } 3354 break; 3355 } 3356 case Intrinsic::cttz: { 3357 // Limit to one use to ensure we don't increase instruction count. 3358 if (!II->hasOneUse()) 3359 return nullptr; 3360 3361 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3362 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3363 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3364 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3365 Builder.CreateAnd(II->getArgOperand(0), Mask), 3366 ConstantInt::getNullValue(Ty)); 3367 } 3368 3369 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3370 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3371 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3372 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3373 Builder.CreateAnd(II->getArgOperand(0), Mask), 3374 ConstantInt::getNullValue(Ty)); 3375 } 3376 break; 3377 } 3378 default: 3379 break; 3380 } 3381 3382 return nullptr; 3383 } 3384 3385 /// Handle icmp with constant (but not simple integer constant) RHS. 3386 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3387 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3388 Constant *RHSC = dyn_cast<Constant>(Op1); 3389 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3390 if (!RHSC || !LHSI) 3391 return nullptr; 3392 3393 switch (LHSI->getOpcode()) { 3394 case Instruction::GetElementPtr: 3395 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3396 if (RHSC->isNullValue() && 3397 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3398 return new ICmpInst( 3399 I.getPredicate(), LHSI->getOperand(0), 3400 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3401 break; 3402 case Instruction::PHI: 3403 // Only fold icmp into the PHI if the phi and icmp are in the same 3404 // block. If in the same block, we're encouraging jump threading. If 3405 // not, we are just pessimizing the code by making an i1 phi. 3406 if (LHSI->getParent() == I.getParent()) 3407 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3408 return NV; 3409 break; 3410 case Instruction::Select: { 3411 // If either operand of the select is a constant, we can fold the 3412 // comparison into the select arms, which will cause one to be 3413 // constant folded and the select turned into a bitwise or. 3414 Value *Op1 = nullptr, *Op2 = nullptr; 3415 ConstantInt *CI = nullptr; 3416 3417 auto SimplifyOp = [&](Value *V) { 3418 Value *Op = nullptr; 3419 if (Constant *C = dyn_cast<Constant>(V)) { 3420 Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3421 } else if (RHSC->isNullValue()) { 3422 // If null is being compared, check if it can be further simplified. 3423 Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ); 3424 } 3425 return Op; 3426 }; 3427 Op1 = SimplifyOp(LHSI->getOperand(1)); 3428 if (Op1) 3429 CI = dyn_cast<ConstantInt>(Op1); 3430 3431 Op2 = SimplifyOp(LHSI->getOperand(2)); 3432 if (Op2) 3433 CI = dyn_cast<ConstantInt>(Op2); 3434 3435 // We only want to perform this transformation if it will not lead to 3436 // additional code. This is true if either both sides of the select 3437 // fold to a constant (in which case the icmp is replaced with a select 3438 // which will usually simplify) or this is the only user of the 3439 // select (in which case we are trading a select+icmp for a simpler 3440 // select+icmp) or all uses of the select can be replaced based on 3441 // dominance information ("Global cases"). 3442 bool Transform = false; 3443 if (Op1 && Op2) 3444 Transform = true; 3445 else if (Op1 || Op2) { 3446 // Local case 3447 if (LHSI->hasOneUse()) 3448 Transform = true; 3449 // Global cases 3450 else if (CI && !CI->isZero()) 3451 // When Op1 is constant try replacing select with second operand. 3452 // Otherwise Op2 is constant and try replacing select with first 3453 // operand. 3454 Transform = 3455 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3456 } 3457 if (Transform) { 3458 if (!Op1) 3459 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3460 I.getName()); 3461 if (!Op2) 3462 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3463 I.getName()); 3464 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3465 } 3466 break; 3467 } 3468 case Instruction::IntToPtr: 3469 // icmp pred inttoptr(X), null -> icmp pred X, 0 3470 if (RHSC->isNullValue() && 3471 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3472 return new ICmpInst( 3473 I.getPredicate(), LHSI->getOperand(0), 3474 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3475 break; 3476 3477 case Instruction::Load: 3478 // Try to optimize things like "A[i] > 4" to index computations. 3479 if (GetElementPtrInst *GEP = 3480 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3481 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3482 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3483 !cast<LoadInst>(LHSI)->isVolatile()) 3484 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3485 return Res; 3486 } 3487 break; 3488 } 3489 3490 return nullptr; 3491 } 3492 3493 /// Some comparisons can be simplified. 3494 /// In this case, we are looking for comparisons that look like 3495 /// a check for a lossy truncation. 3496 /// Folds: 3497 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3498 /// Where Mask is some pattern that produces all-ones in low bits: 3499 /// (-1 >> y) 3500 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3501 /// ~(-1 << y) 3502 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3503 /// The Mask can be a constant, too. 3504 /// For some predicates, the operands are commutative. 3505 /// For others, x can only be on a specific side. 3506 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3507 InstCombiner::BuilderTy &Builder) { 3508 ICmpInst::Predicate SrcPred; 3509 Value *X, *M, *Y; 3510 auto m_VariableMask = m_CombineOr( 3511 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3512 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3513 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3514 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3515 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3516 if (!match(&I, m_c_ICmp(SrcPred, 3517 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3518 m_Deferred(X)))) 3519 return nullptr; 3520 3521 ICmpInst::Predicate DstPred; 3522 switch (SrcPred) { 3523 case ICmpInst::Predicate::ICMP_EQ: 3524 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3525 DstPred = ICmpInst::Predicate::ICMP_ULE; 3526 break; 3527 case ICmpInst::Predicate::ICMP_NE: 3528 // x & (-1 >> y) != x -> x u> (-1 >> y) 3529 DstPred = ICmpInst::Predicate::ICMP_UGT; 3530 break; 3531 case ICmpInst::Predicate::ICMP_ULT: 3532 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3533 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3534 DstPred = ICmpInst::Predicate::ICMP_UGT; 3535 break; 3536 case ICmpInst::Predicate::ICMP_UGE: 3537 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3538 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3539 DstPred = ICmpInst::Predicate::ICMP_ULE; 3540 break; 3541 case ICmpInst::Predicate::ICMP_SLT: 3542 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3543 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3544 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3545 return nullptr; 3546 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3547 return nullptr; 3548 DstPred = ICmpInst::Predicate::ICMP_SGT; 3549 break; 3550 case ICmpInst::Predicate::ICMP_SGE: 3551 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3552 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3553 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3554 return nullptr; 3555 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3556 return nullptr; 3557 DstPred = ICmpInst::Predicate::ICMP_SLE; 3558 break; 3559 case ICmpInst::Predicate::ICMP_SGT: 3560 case ICmpInst::Predicate::ICMP_SLE: 3561 return nullptr; 3562 case ICmpInst::Predicate::ICMP_UGT: 3563 case ICmpInst::Predicate::ICMP_ULE: 3564 llvm_unreachable("Instsimplify took care of commut. variant"); 3565 break; 3566 default: 3567 llvm_unreachable("All possible folds are handled."); 3568 } 3569 3570 // The mask value may be a vector constant that has undefined elements. But it 3571 // may not be safe to propagate those undefs into the new compare, so replace 3572 // those elements by copying an existing, defined, and safe scalar constant. 3573 Type *OpTy = M->getType(); 3574 auto *VecC = dyn_cast<Constant>(M); 3575 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3576 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3577 Constant *SafeReplacementConstant = nullptr; 3578 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3579 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3580 SafeReplacementConstant = VecC->getAggregateElement(i); 3581 break; 3582 } 3583 } 3584 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3585 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3586 } 3587 3588 return Builder.CreateICmp(DstPred, X, M); 3589 } 3590 3591 /// Some comparisons can be simplified. 3592 /// In this case, we are looking for comparisons that look like 3593 /// a check for a lossy signed truncation. 3594 /// Folds: (MaskedBits is a constant.) 3595 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3596 /// Into: 3597 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3598 /// Where KeptBits = bitwidth(%x) - MaskedBits 3599 static Value * 3600 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3601 InstCombiner::BuilderTy &Builder) { 3602 ICmpInst::Predicate SrcPred; 3603 Value *X; 3604 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3605 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3606 if (!match(&I, m_c_ICmp(SrcPred, 3607 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3608 m_APInt(C1))), 3609 m_Deferred(X)))) 3610 return nullptr; 3611 3612 // Potential handling of non-splats: for each element: 3613 // * if both are undef, replace with constant 0. 3614 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3615 // * if both are not undef, and are different, bailout. 3616 // * else, only one is undef, then pick the non-undef one. 3617 3618 // The shift amount must be equal. 3619 if (*C0 != *C1) 3620 return nullptr; 3621 const APInt &MaskedBits = *C0; 3622 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3623 3624 ICmpInst::Predicate DstPred; 3625 switch (SrcPred) { 3626 case ICmpInst::Predicate::ICMP_EQ: 3627 // ((%x << MaskedBits) a>> MaskedBits) == %x 3628 // => 3629 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3630 DstPred = ICmpInst::Predicate::ICMP_ULT; 3631 break; 3632 case ICmpInst::Predicate::ICMP_NE: 3633 // ((%x << MaskedBits) a>> MaskedBits) != %x 3634 // => 3635 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3636 DstPred = ICmpInst::Predicate::ICMP_UGE; 3637 break; 3638 // FIXME: are more folds possible? 3639 default: 3640 return nullptr; 3641 } 3642 3643 auto *XType = X->getType(); 3644 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3645 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3646 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3647 3648 // KeptBits = bitwidth(%x) - MaskedBits 3649 const APInt KeptBits = BitWidth - MaskedBits; 3650 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3651 // ICmpCst = (1 << KeptBits) 3652 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3653 assert(ICmpCst.isPowerOf2()); 3654 // AddCst = (1 << (KeptBits-1)) 3655 const APInt AddCst = ICmpCst.lshr(1); 3656 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3657 3658 // T0 = add %x, AddCst 3659 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3660 // T1 = T0 DstPred ICmpCst 3661 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3662 3663 return T1; 3664 } 3665 3666 // Given pattern: 3667 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3668 // we should move shifts to the same hand of 'and', i.e. rewrite as 3669 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3670 // We are only interested in opposite logical shifts here. 3671 // One of the shifts can be truncated. 3672 // If we can, we want to end up creating 'lshr' shift. 3673 static Value * 3674 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3675 InstCombiner::BuilderTy &Builder) { 3676 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3677 !I.getOperand(0)->hasOneUse()) 3678 return nullptr; 3679 3680 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3681 3682 // Look for an 'and' of two logical shifts, one of which may be truncated. 3683 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3684 Instruction *XShift, *MaybeTruncation, *YShift; 3685 if (!match( 3686 I.getOperand(0), 3687 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3688 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3689 m_AnyLogicalShift, m_Instruction(YShift))), 3690 m_Instruction(MaybeTruncation))))) 3691 return nullptr; 3692 3693 // We potentially looked past 'trunc', but only when matching YShift, 3694 // therefore YShift must have the widest type. 3695 Instruction *WidestShift = YShift; 3696 // Therefore XShift must have the shallowest type. 3697 // Or they both have identical types if there was no truncation. 3698 Instruction *NarrowestShift = XShift; 3699 3700 Type *WidestTy = WidestShift->getType(); 3701 Type *NarrowestTy = NarrowestShift->getType(); 3702 assert(NarrowestTy == I.getOperand(0)->getType() && 3703 "We did not look past any shifts while matching XShift though."); 3704 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3705 3706 // If YShift is a 'lshr', swap the shifts around. 3707 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3708 std::swap(XShift, YShift); 3709 3710 // The shifts must be in opposite directions. 3711 auto XShiftOpcode = XShift->getOpcode(); 3712 if (XShiftOpcode == YShift->getOpcode()) 3713 return nullptr; // Do not care about same-direction shifts here. 3714 3715 Value *X, *XShAmt, *Y, *YShAmt; 3716 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3717 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3718 3719 // If one of the values being shifted is a constant, then we will end with 3720 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3721 // however, we will need to ensure that we won't increase instruction count. 3722 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3723 // At least one of the hands of the 'and' should be one-use shift. 3724 if (!match(I.getOperand(0), 3725 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3726 return nullptr; 3727 if (HadTrunc) { 3728 // Due to the 'trunc', we will need to widen X. For that either the old 3729 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3730 if (!MaybeTruncation->hasOneUse() && 3731 !NarrowestShift->getOperand(1)->hasOneUse()) 3732 return nullptr; 3733 } 3734 } 3735 3736 // We have two shift amounts from two different shifts. The types of those 3737 // shift amounts may not match. If that's the case let's bailout now. 3738 if (XShAmt->getType() != YShAmt->getType()) 3739 return nullptr; 3740 3741 // As input, we have the following pattern: 3742 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3743 // We want to rewrite that as: 3744 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3745 // While we know that originally (Q+K) would not overflow 3746 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3747 // shift amounts. so it may now overflow in smaller bitwidth. 3748 // To ensure that does not happen, we need to ensure that the total maximal 3749 // shift amount is still representable in that smaller bit width. 3750 unsigned MaximalPossibleTotalShiftAmount = 3751 (WidestTy->getScalarSizeInBits() - 1) + 3752 (NarrowestTy->getScalarSizeInBits() - 1); 3753 APInt MaximalRepresentableShiftAmount = 3754 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3755 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3756 return nullptr; 3757 3758 // Can we fold (XShAmt+YShAmt) ? 3759 auto *NewShAmt = dyn_cast_or_null<Constant>( 3760 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3761 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3762 if (!NewShAmt) 3763 return nullptr; 3764 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3765 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3766 3767 // Is the new shift amount smaller than the bit width? 3768 // FIXME: could also rely on ConstantRange. 3769 if (!match(NewShAmt, 3770 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3771 APInt(WidestBitWidth, WidestBitWidth)))) 3772 return nullptr; 3773 3774 // An extra legality check is needed if we had trunc-of-lshr. 3775 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3776 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3777 WidestShift]() { 3778 // It isn't obvious whether it's worth it to analyze non-constants here. 3779 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3780 // If *any* of these preconditions matches we can perform the fold. 3781 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3782 ? NewShAmt->getSplatValue() 3783 : NewShAmt; 3784 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3785 if (NewShAmtSplat && 3786 (NewShAmtSplat->isNullValue() || 3787 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3788 return true; 3789 // We consider *min* leading zeros so a single outlier 3790 // blocks the transform as opposed to allowing it. 3791 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3792 KnownBits Known = computeKnownBits(C, SQ.DL); 3793 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3794 // If the value being shifted has at most lowest bit set we can fold. 3795 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3796 if (MaxActiveBits <= 1) 3797 return true; 3798 // Precondition: NewShAmt u<= countLeadingZeros(C) 3799 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3800 return true; 3801 } 3802 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3803 KnownBits Known = computeKnownBits(C, SQ.DL); 3804 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3805 // If the value being shifted has at most lowest bit set we can fold. 3806 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3807 if (MaxActiveBits <= 1) 3808 return true; 3809 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3810 if (NewShAmtSplat) { 3811 APInt AdjNewShAmt = 3812 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3813 if (AdjNewShAmt.ule(MinLeadZero)) 3814 return true; 3815 } 3816 } 3817 return false; // Can't tell if it's ok. 3818 }; 3819 if (!CanFold()) 3820 return nullptr; 3821 } 3822 3823 // All good, we can do this fold. 3824 X = Builder.CreateZExt(X, WidestTy); 3825 Y = Builder.CreateZExt(Y, WidestTy); 3826 // The shift is the same that was for X. 3827 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3828 ? Builder.CreateLShr(X, NewShAmt) 3829 : Builder.CreateShl(X, NewShAmt); 3830 Value *T1 = Builder.CreateAnd(T0, Y); 3831 return Builder.CreateICmp(I.getPredicate(), T1, 3832 Constant::getNullValue(WidestTy)); 3833 } 3834 3835 /// Fold 3836 /// (-1 u/ x) u< y 3837 /// ((x * y) ?/ x) != y 3838 /// to 3839 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3840 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3841 /// will mean that we are looking for the opposite answer. 3842 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3843 ICmpInst::Predicate Pred; 3844 Value *X, *Y; 3845 Instruction *Mul; 3846 Instruction *Div; 3847 bool NeedNegation; 3848 // Look for: (-1 u/ x) u</u>= y 3849 if (!I.isEquality() && 3850 match(&I, m_c_ICmp(Pred, 3851 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3852 m_Instruction(Div)), 3853 m_Value(Y)))) { 3854 Mul = nullptr; 3855 3856 // Are we checking that overflow does not happen, or does happen? 3857 switch (Pred) { 3858 case ICmpInst::Predicate::ICMP_ULT: 3859 NeedNegation = false; 3860 break; // OK 3861 case ICmpInst::Predicate::ICMP_UGE: 3862 NeedNegation = true; 3863 break; // OK 3864 default: 3865 return nullptr; // Wrong predicate. 3866 } 3867 } else // Look for: ((x * y) / x) !=/== y 3868 if (I.isEquality() && 3869 match(&I, 3870 m_c_ICmp(Pred, m_Value(Y), 3871 m_CombineAnd( 3872 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3873 m_Value(X)), 3874 m_Instruction(Mul)), 3875 m_Deferred(X))), 3876 m_Instruction(Div))))) { 3877 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3878 } else 3879 return nullptr; 3880 3881 BuilderTy::InsertPointGuard Guard(Builder); 3882 // If the pattern included (x * y), we'll want to insert new instructions 3883 // right before that original multiplication so that we can replace it. 3884 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3885 if (MulHadOtherUses) 3886 Builder.SetInsertPoint(Mul); 3887 3888 Function *F = Intrinsic::getDeclaration(I.getModule(), 3889 Div->getOpcode() == Instruction::UDiv 3890 ? Intrinsic::umul_with_overflow 3891 : Intrinsic::smul_with_overflow, 3892 X->getType()); 3893 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 3894 3895 // If the multiplication was used elsewhere, to ensure that we don't leave 3896 // "duplicate" instructions, replace uses of that original multiplication 3897 // with the multiplication result from the with.overflow intrinsic. 3898 if (MulHadOtherUses) 3899 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 3900 3901 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 3902 if (NeedNegation) // This technically increases instruction count. 3903 Res = Builder.CreateNot(Res, "mul.not.ov"); 3904 3905 // If we replaced the mul, erase it. Do this after all uses of Builder, 3906 // as the mul is used as insertion point. 3907 if (MulHadOtherUses) 3908 eraseInstFromFunction(*Mul); 3909 3910 return Res; 3911 } 3912 3913 static Instruction *foldICmpXNegX(ICmpInst &I) { 3914 CmpInst::Predicate Pred; 3915 Value *X; 3916 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 3917 return nullptr; 3918 3919 if (ICmpInst::isSigned(Pred)) 3920 Pred = ICmpInst::getSwappedPredicate(Pred); 3921 else if (ICmpInst::isUnsigned(Pred)) 3922 Pred = ICmpInst::getSignedPredicate(Pred); 3923 // else for equality-comparisons just keep the predicate. 3924 3925 return ICmpInst::Create(Instruction::ICmp, Pred, X, 3926 Constant::getNullValue(X->getType()), I.getName()); 3927 } 3928 3929 /// Try to fold icmp (binop), X or icmp X, (binop). 3930 /// TODO: A large part of this logic is duplicated in InstSimplify's 3931 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3932 /// duplication. 3933 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 3934 const SimplifyQuery &SQ) { 3935 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3936 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3937 3938 // Special logic for binary operators. 3939 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3940 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3941 if (!BO0 && !BO1) 3942 return nullptr; 3943 3944 if (Instruction *NewICmp = foldICmpXNegX(I)) 3945 return NewICmp; 3946 3947 const CmpInst::Predicate Pred = I.getPredicate(); 3948 Value *X; 3949 3950 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3951 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3952 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3953 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3954 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3955 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3956 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3957 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3958 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3959 3960 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3961 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3962 NoOp0WrapProblem = 3963 ICmpInst::isEquality(Pred) || 3964 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3965 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3966 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3967 NoOp1WrapProblem = 3968 ICmpInst::isEquality(Pred) || 3969 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3970 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3971 3972 // Analyze the case when either Op0 or Op1 is an add instruction. 3973 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3974 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3975 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3976 A = BO0->getOperand(0); 3977 B = BO0->getOperand(1); 3978 } 3979 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3980 C = BO1->getOperand(0); 3981 D = BO1->getOperand(1); 3982 } 3983 3984 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3985 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3986 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3987 return new ICmpInst(Pred, A == Op1 ? B : A, 3988 Constant::getNullValue(Op1->getType())); 3989 3990 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3991 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3992 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3993 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3994 C == Op0 ? D : C); 3995 3996 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3997 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3998 NoOp1WrapProblem) { 3999 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4000 Value *Y, *Z; 4001 if (A == C) { 4002 // C + B == C + D -> B == D 4003 Y = B; 4004 Z = D; 4005 } else if (A == D) { 4006 // D + B == C + D -> B == C 4007 Y = B; 4008 Z = C; 4009 } else if (B == C) { 4010 // A + C == C + D -> A == D 4011 Y = A; 4012 Z = D; 4013 } else { 4014 assert(B == D); 4015 // A + D == C + D -> A == C 4016 Y = A; 4017 Z = C; 4018 } 4019 return new ICmpInst(Pred, Y, Z); 4020 } 4021 4022 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4023 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4024 match(B, m_AllOnes())) 4025 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4026 4027 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4028 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4029 match(B, m_AllOnes())) 4030 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4031 4032 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4033 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4034 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4035 4036 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4037 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4038 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4039 4040 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4041 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4042 match(D, m_AllOnes())) 4043 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4044 4045 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4046 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4047 match(D, m_AllOnes())) 4048 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4049 4050 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4051 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4052 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4053 4054 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4055 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4056 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4057 4058 // TODO: The subtraction-related identities shown below also hold, but 4059 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4060 // wouldn't happen even if they were implemented. 4061 // 4062 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4063 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4064 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4065 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4066 4067 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4068 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4069 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4070 4071 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4072 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4073 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4074 4075 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4076 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4077 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4078 4079 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4080 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4081 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4082 4083 // if C1 has greater magnitude than C2: 4084 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4085 // s.t. C3 = C1 - C2 4086 // 4087 // if C2 has greater magnitude than C1: 4088 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4089 // s.t. C3 = C2 - C1 4090 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4091 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 4092 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 4093 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 4094 const APInt &AP1 = C1->getValue(); 4095 const APInt &AP2 = C2->getValue(); 4096 if (AP1.isNegative() == AP2.isNegative()) { 4097 APInt AP1Abs = C1->getValue().abs(); 4098 APInt AP2Abs = C2->getValue().abs(); 4099 if (AP1Abs.uge(AP2Abs)) { 4100 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 4101 bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1); 4102 bool HasNSW = BO0->hasNoSignedWrap(); 4103 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4104 return new ICmpInst(Pred, NewAdd, C); 4105 } else { 4106 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 4107 bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2); 4108 bool HasNSW = BO1->hasNoSignedWrap(); 4109 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4110 return new ICmpInst(Pred, A, NewAdd); 4111 } 4112 } 4113 } 4114 4115 // Analyze the case when either Op0 or Op1 is a sub instruction. 4116 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4117 A = nullptr; 4118 B = nullptr; 4119 C = nullptr; 4120 D = nullptr; 4121 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4122 A = BO0->getOperand(0); 4123 B = BO0->getOperand(1); 4124 } 4125 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4126 C = BO1->getOperand(0); 4127 D = BO1->getOperand(1); 4128 } 4129 4130 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4131 if (A == Op1 && NoOp0WrapProblem) 4132 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4133 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4134 if (C == Op0 && NoOp1WrapProblem) 4135 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4136 4137 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4138 // (A - B) u>/u<= A --> B u>/u<= A 4139 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4140 return new ICmpInst(Pred, B, A); 4141 // C u</u>= (C - D) --> C u</u>= D 4142 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4143 return new ICmpInst(Pred, C, D); 4144 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4145 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4146 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4147 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4148 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4149 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4150 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4151 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4152 4153 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4154 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4155 return new ICmpInst(Pred, A, C); 4156 4157 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4158 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4159 return new ICmpInst(Pred, D, B); 4160 4161 // icmp (0-X) < cst --> x > -cst 4162 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4163 Value *X; 4164 if (match(BO0, m_Neg(m_Value(X)))) 4165 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4166 if (RHSC->isNotMinSignedValue()) 4167 return new ICmpInst(I.getSwappedPredicate(), X, 4168 ConstantExpr::getNeg(RHSC)); 4169 } 4170 4171 { 4172 // Try to remove shared constant multiplier from equality comparison: 4173 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4174 Value *X, *Y; 4175 const APInt *C; 4176 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4177 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4178 if (!C->countTrailingZeros() || 4179 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4180 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4181 return new ICmpInst(Pred, X, Y); 4182 } 4183 4184 BinaryOperator *SRem = nullptr; 4185 // icmp (srem X, Y), Y 4186 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4187 SRem = BO0; 4188 // icmp Y, (srem X, Y) 4189 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4190 Op0 == BO1->getOperand(1)) 4191 SRem = BO1; 4192 if (SRem) { 4193 // We don't check hasOneUse to avoid increasing register pressure because 4194 // the value we use is the same value this instruction was already using. 4195 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4196 default: 4197 break; 4198 case ICmpInst::ICMP_EQ: 4199 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4200 case ICmpInst::ICMP_NE: 4201 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4202 case ICmpInst::ICMP_SGT: 4203 case ICmpInst::ICMP_SGE: 4204 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4205 Constant::getAllOnesValue(SRem->getType())); 4206 case ICmpInst::ICMP_SLT: 4207 case ICmpInst::ICMP_SLE: 4208 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4209 Constant::getNullValue(SRem->getType())); 4210 } 4211 } 4212 4213 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4214 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4215 switch (BO0->getOpcode()) { 4216 default: 4217 break; 4218 case Instruction::Add: 4219 case Instruction::Sub: 4220 case Instruction::Xor: { 4221 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4222 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4223 4224 const APInt *C; 4225 if (match(BO0->getOperand(1), m_APInt(C))) { 4226 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4227 if (C->isSignMask()) { 4228 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4229 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4230 } 4231 4232 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4233 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4234 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4235 NewPred = I.getSwappedPredicate(NewPred); 4236 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4237 } 4238 } 4239 break; 4240 } 4241 case Instruction::Mul: { 4242 if (!I.isEquality()) 4243 break; 4244 4245 const APInt *C; 4246 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4247 !C->isOne()) { 4248 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4249 // Mask = -1 >> count-trailing-zeros(C). 4250 if (unsigned TZs = C->countTrailingZeros()) { 4251 Constant *Mask = ConstantInt::get( 4252 BO0->getType(), 4253 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4254 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4255 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4256 return new ICmpInst(Pred, And1, And2); 4257 } 4258 } 4259 break; 4260 } 4261 case Instruction::UDiv: 4262 case Instruction::LShr: 4263 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4264 break; 4265 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4266 4267 case Instruction::SDiv: 4268 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4269 break; 4270 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4271 4272 case Instruction::AShr: 4273 if (!BO0->isExact() || !BO1->isExact()) 4274 break; 4275 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4276 4277 case Instruction::Shl: { 4278 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4279 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4280 if (!NUW && !NSW) 4281 break; 4282 if (!NSW && I.isSigned()) 4283 break; 4284 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4285 } 4286 } 4287 } 4288 4289 if (BO0) { 4290 // Transform A & (L - 1) `ult` L --> L != 0 4291 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4292 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4293 4294 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4295 auto *Zero = Constant::getNullValue(BO0->getType()); 4296 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4297 } 4298 } 4299 4300 if (Value *V = foldMultiplicationOverflowCheck(I)) 4301 return replaceInstUsesWith(I, V); 4302 4303 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4304 return replaceInstUsesWith(I, V); 4305 4306 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4307 return replaceInstUsesWith(I, V); 4308 4309 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4310 return replaceInstUsesWith(I, V); 4311 4312 return nullptr; 4313 } 4314 4315 /// Fold icmp Pred min|max(X, Y), X. 4316 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4317 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4318 Value *Op0 = Cmp.getOperand(0); 4319 Value *X = Cmp.getOperand(1); 4320 4321 // Canonicalize minimum or maximum operand to LHS of the icmp. 4322 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4323 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4324 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4325 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4326 std::swap(Op0, X); 4327 Pred = Cmp.getSwappedPredicate(); 4328 } 4329 4330 Value *Y; 4331 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4332 // smin(X, Y) == X --> X s<= Y 4333 // smin(X, Y) s>= X --> X s<= Y 4334 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4335 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4336 4337 // smin(X, Y) != X --> X s> Y 4338 // smin(X, Y) s< X --> X s> Y 4339 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4340 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4341 4342 // These cases should be handled in InstSimplify: 4343 // smin(X, Y) s<= X --> true 4344 // smin(X, Y) s> X --> false 4345 return nullptr; 4346 } 4347 4348 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4349 // smax(X, Y) == X --> X s>= Y 4350 // smax(X, Y) s<= X --> X s>= Y 4351 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4352 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4353 4354 // smax(X, Y) != X --> X s< Y 4355 // smax(X, Y) s> X --> X s< Y 4356 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4357 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4358 4359 // These cases should be handled in InstSimplify: 4360 // smax(X, Y) s>= X --> true 4361 // smax(X, Y) s< X --> false 4362 return nullptr; 4363 } 4364 4365 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4366 // umin(X, Y) == X --> X u<= Y 4367 // umin(X, Y) u>= X --> X u<= Y 4368 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4369 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4370 4371 // umin(X, Y) != X --> X u> Y 4372 // umin(X, Y) u< X --> X u> Y 4373 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4374 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4375 4376 // These cases should be handled in InstSimplify: 4377 // umin(X, Y) u<= X --> true 4378 // umin(X, Y) u> X --> false 4379 return nullptr; 4380 } 4381 4382 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4383 // umax(X, Y) == X --> X u>= Y 4384 // umax(X, Y) u<= X --> X u>= Y 4385 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4386 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4387 4388 // umax(X, Y) != X --> X u< Y 4389 // umax(X, Y) u> X --> X u< Y 4390 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4391 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4392 4393 // These cases should be handled in InstSimplify: 4394 // umax(X, Y) u>= X --> true 4395 // umax(X, Y) u< X --> false 4396 return nullptr; 4397 } 4398 4399 return nullptr; 4400 } 4401 4402 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4403 if (!I.isEquality()) 4404 return nullptr; 4405 4406 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4407 const CmpInst::Predicate Pred = I.getPredicate(); 4408 Value *A, *B, *C, *D; 4409 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4410 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4411 Value *OtherVal = A == Op1 ? B : A; 4412 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4413 } 4414 4415 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4416 // A^c1 == C^c2 --> A == C^(c1^c2) 4417 ConstantInt *C1, *C2; 4418 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4419 Op1->hasOneUse()) { 4420 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4421 Value *Xor = Builder.CreateXor(C, NC); 4422 return new ICmpInst(Pred, A, Xor); 4423 } 4424 4425 // A^B == A^D -> B == D 4426 if (A == C) 4427 return new ICmpInst(Pred, B, D); 4428 if (A == D) 4429 return new ICmpInst(Pred, B, C); 4430 if (B == C) 4431 return new ICmpInst(Pred, A, D); 4432 if (B == D) 4433 return new ICmpInst(Pred, A, C); 4434 } 4435 } 4436 4437 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4438 // A == (A^B) -> B == 0 4439 Value *OtherVal = A == Op0 ? B : A; 4440 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4441 } 4442 4443 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4444 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4445 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4446 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4447 4448 if (A == C) { 4449 X = B; 4450 Y = D; 4451 Z = A; 4452 } else if (A == D) { 4453 X = B; 4454 Y = C; 4455 Z = A; 4456 } else if (B == C) { 4457 X = A; 4458 Y = D; 4459 Z = B; 4460 } else if (B == D) { 4461 X = A; 4462 Y = C; 4463 Z = B; 4464 } 4465 4466 if (X) { // Build (X^Y) & Z 4467 Op1 = Builder.CreateXor(X, Y); 4468 Op1 = Builder.CreateAnd(Op1, Z); 4469 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4470 } 4471 } 4472 4473 { 4474 // Similar to above, but specialized for constant because invert is needed: 4475 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4476 Value *X, *Y; 4477 Constant *C; 4478 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4479 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4480 Value *Xor = Builder.CreateXor(X, Y); 4481 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4482 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4483 } 4484 } 4485 4486 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4487 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4488 ConstantInt *Cst1; 4489 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4490 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4491 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4492 match(Op1, m_ZExt(m_Value(A))))) { 4493 APInt Pow2 = Cst1->getValue() + 1; 4494 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4495 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4496 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4497 } 4498 4499 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4500 // For lshr and ashr pairs. 4501 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4502 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4503 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4504 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4505 unsigned TypeBits = Cst1->getBitWidth(); 4506 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4507 if (ShAmt < TypeBits && ShAmt != 0) { 4508 ICmpInst::Predicate NewPred = 4509 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4510 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4511 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4512 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4513 } 4514 } 4515 4516 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4517 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4518 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4519 unsigned TypeBits = Cst1->getBitWidth(); 4520 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4521 if (ShAmt < TypeBits && ShAmt != 0) { 4522 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4523 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4524 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4525 I.getName() + ".mask"); 4526 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4527 } 4528 } 4529 4530 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4531 // "icmp (and X, mask), cst" 4532 uint64_t ShAmt = 0; 4533 if (Op0->hasOneUse() && 4534 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4535 match(Op1, m_ConstantInt(Cst1)) && 4536 // Only do this when A has multiple uses. This is most important to do 4537 // when it exposes other optimizations. 4538 !A->hasOneUse()) { 4539 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4540 4541 if (ShAmt < ASize) { 4542 APInt MaskV = 4543 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4544 MaskV <<= ShAmt; 4545 4546 APInt CmpV = Cst1->getValue().zext(ASize); 4547 CmpV <<= ShAmt; 4548 4549 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4550 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4551 } 4552 } 4553 4554 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4555 return ICmp; 4556 4557 // Canonicalize checking for a power-of-2-or-zero value: 4558 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4559 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4560 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4561 m_Deferred(A)))) || 4562 !match(Op1, m_ZeroInt())) 4563 A = nullptr; 4564 4565 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4566 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4567 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4568 A = Op1; 4569 else if (match(Op1, 4570 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4571 A = Op0; 4572 4573 if (A) { 4574 Type *Ty = A->getType(); 4575 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4576 return Pred == ICmpInst::ICMP_EQ 4577 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4578 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4579 } 4580 4581 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4582 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4583 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4584 // of instcombine. 4585 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4586 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4587 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4588 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4589 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4590 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4591 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4592 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4593 : ICmpInst::ICMP_UGE, 4594 Add, ConstantInt::get(A->getType(), C.shl(1))); 4595 } 4596 4597 return nullptr; 4598 } 4599 4600 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4601 InstCombiner::BuilderTy &Builder) { 4602 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4603 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4604 4605 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4606 // The trunc masks high bits while the compare may effectively mask low bits. 4607 Value *X; 4608 const APInt *C; 4609 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4610 return nullptr; 4611 4612 // This matches patterns corresponding to tests of the signbit as well as: 4613 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4614 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4615 APInt Mask; 4616 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4617 Value *And = Builder.CreateAnd(X, Mask); 4618 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4619 return new ICmpInst(Pred, And, Zero); 4620 } 4621 4622 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4623 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4624 // If C is a negative power-of-2 (high-bit mask): 4625 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4626 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4627 Value *And = Builder.CreateAnd(X, MaskC); 4628 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4629 } 4630 4631 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4632 // If C is not-of-power-of-2 (one clear bit): 4633 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4634 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4635 Value *And = Builder.CreateAnd(X, MaskC); 4636 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4637 } 4638 4639 return nullptr; 4640 } 4641 4642 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4643 InstCombiner::BuilderTy &Builder) { 4644 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4645 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4646 Value *X; 4647 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4648 return nullptr; 4649 4650 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4651 bool IsSignedCmp = ICmp.isSigned(); 4652 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4653 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4654 // and the other is a zext), then we can't handle this. 4655 // TODO: This is too strict. We can handle some predicates (equality?). 4656 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4657 return nullptr; 4658 4659 // Not an extension from the same type? 4660 Value *Y = CastOp1->getOperand(0); 4661 Type *XTy = X->getType(), *YTy = Y->getType(); 4662 if (XTy != YTy) { 4663 // One of the casts must have one use because we are creating a new cast. 4664 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4665 return nullptr; 4666 // Extend the narrower operand to the type of the wider operand. 4667 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4668 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4669 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4670 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4671 else 4672 return nullptr; 4673 } 4674 4675 // (zext X) == (zext Y) --> X == Y 4676 // (sext X) == (sext Y) --> X == Y 4677 if (ICmp.isEquality()) 4678 return new ICmpInst(ICmp.getPredicate(), X, Y); 4679 4680 // A signed comparison of sign extended values simplifies into a 4681 // signed comparison. 4682 if (IsSignedCmp && IsSignedExt) 4683 return new ICmpInst(ICmp.getPredicate(), X, Y); 4684 4685 // The other three cases all fold into an unsigned comparison. 4686 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4687 } 4688 4689 // Below here, we are only folding a compare with constant. 4690 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4691 if (!C) 4692 return nullptr; 4693 4694 // Compute the constant that would happen if we truncated to SrcTy then 4695 // re-extended to DestTy. 4696 Type *SrcTy = CastOp0->getSrcTy(); 4697 Type *DestTy = CastOp0->getDestTy(); 4698 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4699 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4700 4701 // If the re-extended constant didn't change... 4702 if (Res2 == C) { 4703 if (ICmp.isEquality()) 4704 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4705 4706 // A signed comparison of sign extended values simplifies into a 4707 // signed comparison. 4708 if (IsSignedExt && IsSignedCmp) 4709 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4710 4711 // The other three cases all fold into an unsigned comparison. 4712 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4713 } 4714 4715 // The re-extended constant changed, partly changed (in the case of a vector), 4716 // or could not be determined to be equal (in the case of a constant 4717 // expression), so the constant cannot be represented in the shorter type. 4718 // All the cases that fold to true or false will have already been handled 4719 // by SimplifyICmpInst, so only deal with the tricky case. 4720 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4721 return nullptr; 4722 4723 // Is source op positive? 4724 // icmp ult (sext X), C --> icmp sgt X, -1 4725 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4726 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4727 4728 // Is source op negative? 4729 // icmp ugt (sext X), C --> icmp slt X, 0 4730 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4731 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4732 } 4733 4734 /// Handle icmp (cast x), (cast or constant). 4735 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4736 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4737 // icmp compares only pointer's value. 4738 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4739 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4740 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4741 if (SimplifiedOp0 || SimplifiedOp1) 4742 return new ICmpInst(ICmp.getPredicate(), 4743 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4744 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4745 4746 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4747 if (!CastOp0) 4748 return nullptr; 4749 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4750 return nullptr; 4751 4752 Value *Op0Src = CastOp0->getOperand(0); 4753 Type *SrcTy = CastOp0->getSrcTy(); 4754 Type *DestTy = CastOp0->getDestTy(); 4755 4756 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4757 // integer type is the same size as the pointer type. 4758 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4759 if (isa<VectorType>(SrcTy)) { 4760 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4761 DestTy = cast<VectorType>(DestTy)->getElementType(); 4762 } 4763 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4764 }; 4765 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4766 CompatibleSizes(SrcTy, DestTy)) { 4767 Value *NewOp1 = nullptr; 4768 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4769 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4770 if (PtrSrc->getType()->getPointerAddressSpace() == 4771 Op0Src->getType()->getPointerAddressSpace()) { 4772 NewOp1 = PtrToIntOp1->getOperand(0); 4773 // If the pointer types don't match, insert a bitcast. 4774 if (Op0Src->getType() != NewOp1->getType()) 4775 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4776 } 4777 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4778 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4779 } 4780 4781 if (NewOp1) 4782 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4783 } 4784 4785 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4786 return R; 4787 4788 return foldICmpWithZextOrSext(ICmp, Builder); 4789 } 4790 4791 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4792 switch (BinaryOp) { 4793 default: 4794 llvm_unreachable("Unsupported binary op"); 4795 case Instruction::Add: 4796 case Instruction::Sub: 4797 return match(RHS, m_Zero()); 4798 case Instruction::Mul: 4799 return match(RHS, m_One()); 4800 } 4801 } 4802 4803 OverflowResult 4804 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 4805 bool IsSigned, Value *LHS, Value *RHS, 4806 Instruction *CxtI) const { 4807 switch (BinaryOp) { 4808 default: 4809 llvm_unreachable("Unsupported binary op"); 4810 case Instruction::Add: 4811 if (IsSigned) 4812 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4813 else 4814 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4815 case Instruction::Sub: 4816 if (IsSigned) 4817 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4818 else 4819 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4820 case Instruction::Mul: 4821 if (IsSigned) 4822 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4823 else 4824 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4825 } 4826 } 4827 4828 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 4829 bool IsSigned, Value *LHS, 4830 Value *RHS, Instruction &OrigI, 4831 Value *&Result, 4832 Constant *&Overflow) { 4833 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4834 std::swap(LHS, RHS); 4835 4836 // If the overflow check was an add followed by a compare, the insertion point 4837 // may be pointing to the compare. We want to insert the new instructions 4838 // before the add in case there are uses of the add between the add and the 4839 // compare. 4840 Builder.SetInsertPoint(&OrigI); 4841 4842 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 4843 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 4844 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 4845 4846 if (isNeutralValue(BinaryOp, RHS)) { 4847 Result = LHS; 4848 Overflow = ConstantInt::getFalse(OverflowTy); 4849 return true; 4850 } 4851 4852 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4853 case OverflowResult::MayOverflow: 4854 return false; 4855 case OverflowResult::AlwaysOverflowsLow: 4856 case OverflowResult::AlwaysOverflowsHigh: 4857 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4858 Result->takeName(&OrigI); 4859 Overflow = ConstantInt::getTrue(OverflowTy); 4860 return true; 4861 case OverflowResult::NeverOverflows: 4862 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4863 Result->takeName(&OrigI); 4864 Overflow = ConstantInt::getFalse(OverflowTy); 4865 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4866 if (IsSigned) 4867 Inst->setHasNoSignedWrap(); 4868 else 4869 Inst->setHasNoUnsignedWrap(); 4870 } 4871 return true; 4872 } 4873 4874 llvm_unreachable("Unexpected overflow result"); 4875 } 4876 4877 /// Recognize and process idiom involving test for multiplication 4878 /// overflow. 4879 /// 4880 /// The caller has matched a pattern of the form: 4881 /// I = cmp u (mul(zext A, zext B), V 4882 /// The function checks if this is a test for overflow and if so replaces 4883 /// multiplication with call to 'mul.with.overflow' intrinsic. 4884 /// 4885 /// \param I Compare instruction. 4886 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4887 /// the compare instruction. Must be of integer type. 4888 /// \param OtherVal The other argument of compare instruction. 4889 /// \returns Instruction which must replace the compare instruction, NULL if no 4890 /// replacement required. 4891 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4892 Value *OtherVal, 4893 InstCombinerImpl &IC) { 4894 // Don't bother doing this transformation for pointers, don't do it for 4895 // vectors. 4896 if (!isa<IntegerType>(MulVal->getType())) 4897 return nullptr; 4898 4899 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4900 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4901 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4902 if (!MulInstr) 4903 return nullptr; 4904 assert(MulInstr->getOpcode() == Instruction::Mul); 4905 4906 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4907 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4908 assert(LHS->getOpcode() == Instruction::ZExt); 4909 assert(RHS->getOpcode() == Instruction::ZExt); 4910 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4911 4912 // Calculate type and width of the result produced by mul.with.overflow. 4913 Type *TyA = A->getType(), *TyB = B->getType(); 4914 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4915 WidthB = TyB->getPrimitiveSizeInBits(); 4916 unsigned MulWidth; 4917 Type *MulType; 4918 if (WidthB > WidthA) { 4919 MulWidth = WidthB; 4920 MulType = TyB; 4921 } else { 4922 MulWidth = WidthA; 4923 MulType = TyA; 4924 } 4925 4926 // In order to replace the original mul with a narrower mul.with.overflow, 4927 // all uses must ignore upper bits of the product. The number of used low 4928 // bits must be not greater than the width of mul.with.overflow. 4929 if (MulVal->hasNUsesOrMore(2)) 4930 for (User *U : MulVal->users()) { 4931 if (U == &I) 4932 continue; 4933 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4934 // Check if truncation ignores bits above MulWidth. 4935 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4936 if (TruncWidth > MulWidth) 4937 return nullptr; 4938 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4939 // Check if AND ignores bits above MulWidth. 4940 if (BO->getOpcode() != Instruction::And) 4941 return nullptr; 4942 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4943 const APInt &CVal = CI->getValue(); 4944 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4945 return nullptr; 4946 } else { 4947 // In this case we could have the operand of the binary operation 4948 // being defined in another block, and performing the replacement 4949 // could break the dominance relation. 4950 return nullptr; 4951 } 4952 } else { 4953 // Other uses prohibit this transformation. 4954 return nullptr; 4955 } 4956 } 4957 4958 // Recognize patterns 4959 switch (I.getPredicate()) { 4960 case ICmpInst::ICMP_EQ: 4961 case ICmpInst::ICMP_NE: 4962 // Recognize pattern: 4963 // mulval = mul(zext A, zext B) 4964 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4965 ConstantInt *CI; 4966 Value *ValToMask; 4967 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4968 if (ValToMask != MulVal) 4969 return nullptr; 4970 const APInt &CVal = CI->getValue() + 1; 4971 if (CVal.isPowerOf2()) { 4972 unsigned MaskWidth = CVal.logBase2(); 4973 if (MaskWidth == MulWidth) 4974 break; // Recognized 4975 } 4976 } 4977 return nullptr; 4978 4979 case ICmpInst::ICMP_UGT: 4980 // Recognize pattern: 4981 // mulval = mul(zext A, zext B) 4982 // cmp ugt mulval, max 4983 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4984 APInt MaxVal = APInt::getMaxValue(MulWidth); 4985 MaxVal = MaxVal.zext(CI->getBitWidth()); 4986 if (MaxVal.eq(CI->getValue())) 4987 break; // Recognized 4988 } 4989 return nullptr; 4990 4991 case ICmpInst::ICMP_UGE: 4992 // Recognize pattern: 4993 // mulval = mul(zext A, zext B) 4994 // cmp uge mulval, max+1 4995 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4996 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4997 if (MaxVal.eq(CI->getValue())) 4998 break; // Recognized 4999 } 5000 return nullptr; 5001 5002 case ICmpInst::ICMP_ULE: 5003 // Recognize pattern: 5004 // mulval = mul(zext A, zext B) 5005 // cmp ule mulval, max 5006 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5007 APInt MaxVal = APInt::getMaxValue(MulWidth); 5008 MaxVal = MaxVal.zext(CI->getBitWidth()); 5009 if (MaxVal.eq(CI->getValue())) 5010 break; // Recognized 5011 } 5012 return nullptr; 5013 5014 case ICmpInst::ICMP_ULT: 5015 // Recognize pattern: 5016 // mulval = mul(zext A, zext B) 5017 // cmp ule mulval, max + 1 5018 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5019 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5020 if (MaxVal.eq(CI->getValue())) 5021 break; // Recognized 5022 } 5023 return nullptr; 5024 5025 default: 5026 return nullptr; 5027 } 5028 5029 InstCombiner::BuilderTy &Builder = IC.Builder; 5030 Builder.SetInsertPoint(MulInstr); 5031 5032 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5033 Value *MulA = A, *MulB = B; 5034 if (WidthA < MulWidth) 5035 MulA = Builder.CreateZExt(A, MulType); 5036 if (WidthB < MulWidth) 5037 MulB = Builder.CreateZExt(B, MulType); 5038 Function *F = Intrinsic::getDeclaration( 5039 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5040 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5041 IC.addToWorklist(MulInstr); 5042 5043 // If there are uses of mul result other than the comparison, we know that 5044 // they are truncation or binary AND. Change them to use result of 5045 // mul.with.overflow and adjust properly mask/size. 5046 if (MulVal->hasNUsesOrMore(2)) { 5047 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5048 for (User *U : make_early_inc_range(MulVal->users())) { 5049 if (U == &I || U == OtherVal) 5050 continue; 5051 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5052 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5053 IC.replaceInstUsesWith(*TI, Mul); 5054 else 5055 TI->setOperand(0, Mul); 5056 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5057 assert(BO->getOpcode() == Instruction::And); 5058 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5059 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5060 APInt ShortMask = CI->getValue().trunc(MulWidth); 5061 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5062 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5063 IC.replaceInstUsesWith(*BO, Zext); 5064 } else { 5065 llvm_unreachable("Unexpected Binary operation"); 5066 } 5067 IC.addToWorklist(cast<Instruction>(U)); 5068 } 5069 } 5070 if (isa<Instruction>(OtherVal)) 5071 IC.addToWorklist(cast<Instruction>(OtherVal)); 5072 5073 // The original icmp gets replaced with the overflow value, maybe inverted 5074 // depending on predicate. 5075 bool Inverse = false; 5076 switch (I.getPredicate()) { 5077 case ICmpInst::ICMP_NE: 5078 break; 5079 case ICmpInst::ICMP_EQ: 5080 Inverse = true; 5081 break; 5082 case ICmpInst::ICMP_UGT: 5083 case ICmpInst::ICMP_UGE: 5084 if (I.getOperand(0) == MulVal) 5085 break; 5086 Inverse = true; 5087 break; 5088 case ICmpInst::ICMP_ULT: 5089 case ICmpInst::ICMP_ULE: 5090 if (I.getOperand(1) == MulVal) 5091 break; 5092 Inverse = true; 5093 break; 5094 default: 5095 llvm_unreachable("Unexpected predicate"); 5096 } 5097 if (Inverse) { 5098 Value *Res = Builder.CreateExtractValue(Call, 1); 5099 return BinaryOperator::CreateNot(Res); 5100 } 5101 5102 return ExtractValueInst::Create(Call, 1); 5103 } 5104 5105 /// When performing a comparison against a constant, it is possible that not all 5106 /// the bits in the LHS are demanded. This helper method computes the mask that 5107 /// IS demanded. 5108 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5109 const APInt *RHS; 5110 if (!match(I.getOperand(1), m_APInt(RHS))) 5111 return APInt::getAllOnes(BitWidth); 5112 5113 // If this is a normal comparison, it demands all bits. If it is a sign bit 5114 // comparison, it only demands the sign bit. 5115 bool UnusedBit; 5116 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5117 return APInt::getSignMask(BitWidth); 5118 5119 switch (I.getPredicate()) { 5120 // For a UGT comparison, we don't care about any bits that 5121 // correspond to the trailing ones of the comparand. The value of these 5122 // bits doesn't impact the outcome of the comparison, because any value 5123 // greater than the RHS must differ in a bit higher than these due to carry. 5124 case ICmpInst::ICMP_UGT: 5125 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5126 5127 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5128 // Any value less than the RHS must differ in a higher bit because of carries. 5129 case ICmpInst::ICMP_ULT: 5130 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5131 5132 default: 5133 return APInt::getAllOnes(BitWidth); 5134 } 5135 } 5136 5137 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5138 /// should be swapped. 5139 /// The decision is based on how many times these two operands are reused 5140 /// as subtract operands and their positions in those instructions. 5141 /// The rationale is that several architectures use the same instruction for 5142 /// both subtract and cmp. Thus, it is better if the order of those operands 5143 /// match. 5144 /// \return true if Op0 and Op1 should be swapped. 5145 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5146 // Filter out pointer values as those cannot appear directly in subtract. 5147 // FIXME: we may want to go through inttoptrs or bitcasts. 5148 if (Op0->getType()->isPointerTy()) 5149 return false; 5150 // If a subtract already has the same operands as a compare, swapping would be 5151 // bad. If a subtract has the same operands as a compare but in reverse order, 5152 // then swapping is good. 5153 int GoodToSwap = 0; 5154 for (const User *U : Op0->users()) { 5155 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5156 GoodToSwap++; 5157 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5158 GoodToSwap--; 5159 } 5160 return GoodToSwap > 0; 5161 } 5162 5163 /// Check that one use is in the same block as the definition and all 5164 /// other uses are in blocks dominated by a given block. 5165 /// 5166 /// \param DI Definition 5167 /// \param UI Use 5168 /// \param DB Block that must dominate all uses of \p DI outside 5169 /// the parent block 5170 /// \return true when \p UI is the only use of \p DI in the parent block 5171 /// and all other uses of \p DI are in blocks dominated by \p DB. 5172 /// 5173 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5174 const Instruction *UI, 5175 const BasicBlock *DB) const { 5176 assert(DI && UI && "Instruction not defined\n"); 5177 // Ignore incomplete definitions. 5178 if (!DI->getParent()) 5179 return false; 5180 // DI and UI must be in the same block. 5181 if (DI->getParent() != UI->getParent()) 5182 return false; 5183 // Protect from self-referencing blocks. 5184 if (DI->getParent() == DB) 5185 return false; 5186 for (const User *U : DI->users()) { 5187 auto *Usr = cast<Instruction>(U); 5188 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5189 return false; 5190 } 5191 return true; 5192 } 5193 5194 /// Return true when the instruction sequence within a block is select-cmp-br. 5195 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5196 const BasicBlock *BB = SI->getParent(); 5197 if (!BB) 5198 return false; 5199 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5200 if (!BI || BI->getNumSuccessors() != 2) 5201 return false; 5202 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5203 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5204 return false; 5205 return true; 5206 } 5207 5208 /// True when a select result is replaced by one of its operands 5209 /// in select-icmp sequence. This will eventually result in the elimination 5210 /// of the select. 5211 /// 5212 /// \param SI Select instruction 5213 /// \param Icmp Compare instruction 5214 /// \param SIOpd Operand that replaces the select 5215 /// 5216 /// Notes: 5217 /// - The replacement is global and requires dominator information 5218 /// - The caller is responsible for the actual replacement 5219 /// 5220 /// Example: 5221 /// 5222 /// entry: 5223 /// %4 = select i1 %3, %C* %0, %C* null 5224 /// %5 = icmp eq %C* %4, null 5225 /// br i1 %5, label %9, label %7 5226 /// ... 5227 /// ; <label>:7 ; preds = %entry 5228 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5229 /// ... 5230 /// 5231 /// can be transformed to 5232 /// 5233 /// %5 = icmp eq %C* %0, null 5234 /// %6 = select i1 %3, i1 %5, i1 true 5235 /// br i1 %6, label %9, label %7 5236 /// ... 5237 /// ; <label>:7 ; preds = %entry 5238 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5239 /// 5240 /// Similar when the first operand of the select is a constant or/and 5241 /// the compare is for not equal rather than equal. 5242 /// 5243 /// NOTE: The function is only called when the select and compare constants 5244 /// are equal, the optimization can work only for EQ predicates. This is not a 5245 /// major restriction since a NE compare should be 'normalized' to an equal 5246 /// compare, which usually happens in the combiner and test case 5247 /// select-cmp-br.ll checks for it. 5248 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5249 const ICmpInst *Icmp, 5250 const unsigned SIOpd) { 5251 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5252 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5253 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5254 // The check for the single predecessor is not the best that can be 5255 // done. But it protects efficiently against cases like when SI's 5256 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5257 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5258 // replaced can be reached on either path. So the uniqueness check 5259 // guarantees that the path all uses of SI (outside SI's parent) are on 5260 // is disjoint from all other paths out of SI. But that information 5261 // is more expensive to compute, and the trade-off here is in favor 5262 // of compile-time. It should also be noticed that we check for a single 5263 // predecessor and not only uniqueness. This to handle the situation when 5264 // Succ and Succ1 points to the same basic block. 5265 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5266 NumSel++; 5267 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5268 return true; 5269 } 5270 } 5271 return false; 5272 } 5273 5274 /// Try to fold the comparison based on range information we can get by checking 5275 /// whether bits are known to be zero or one in the inputs. 5276 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5277 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5278 Type *Ty = Op0->getType(); 5279 ICmpInst::Predicate Pred = I.getPredicate(); 5280 5281 // Get scalar or pointer size. 5282 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5283 ? Ty->getScalarSizeInBits() 5284 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5285 5286 if (!BitWidth) 5287 return nullptr; 5288 5289 KnownBits Op0Known(BitWidth); 5290 KnownBits Op1Known(BitWidth); 5291 5292 if (SimplifyDemandedBits(&I, 0, 5293 getDemandedBitsLHSMask(I, BitWidth), 5294 Op0Known, 0)) 5295 return &I; 5296 5297 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5298 return &I; 5299 5300 // Given the known and unknown bits, compute a range that the LHS could be 5301 // in. Compute the Min, Max and RHS values based on the known bits. For the 5302 // EQ and NE we use unsigned values. 5303 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5304 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5305 if (I.isSigned()) { 5306 Op0Min = Op0Known.getSignedMinValue(); 5307 Op0Max = Op0Known.getSignedMaxValue(); 5308 Op1Min = Op1Known.getSignedMinValue(); 5309 Op1Max = Op1Known.getSignedMaxValue(); 5310 } else { 5311 Op0Min = Op0Known.getMinValue(); 5312 Op0Max = Op0Known.getMaxValue(); 5313 Op1Min = Op1Known.getMinValue(); 5314 Op1Max = Op1Known.getMaxValue(); 5315 } 5316 5317 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5318 // out that the LHS or RHS is a constant. Constant fold this now, so that 5319 // code below can assume that Min != Max. 5320 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5321 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5322 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5323 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5324 5325 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5326 // min/max canonical compare with some other compare. That could lead to 5327 // conflict with select canonicalization and infinite looping. 5328 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5329 auto isMinMaxCmp = [&](Instruction &Cmp) { 5330 if (!Cmp.hasOneUse()) 5331 return false; 5332 Value *A, *B; 5333 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5334 if (!SelectPatternResult::isMinOrMax(SPF)) 5335 return false; 5336 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5337 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5338 }; 5339 if (!isMinMaxCmp(I)) { 5340 switch (Pred) { 5341 default: 5342 break; 5343 case ICmpInst::ICMP_ULT: { 5344 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5345 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5346 const APInt *CmpC; 5347 if (match(Op1, m_APInt(CmpC))) { 5348 // A <u C -> A == C-1 if min(A)+1 == C 5349 if (*CmpC == Op0Min + 1) 5350 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5351 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5352 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5353 // exceeds the log2 of C. 5354 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5355 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5356 Constant::getNullValue(Op1->getType())); 5357 } 5358 break; 5359 } 5360 case ICmpInst::ICMP_UGT: { 5361 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5362 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5363 const APInt *CmpC; 5364 if (match(Op1, m_APInt(CmpC))) { 5365 // A >u C -> A == C+1 if max(a)-1 == C 5366 if (*CmpC == Op0Max - 1) 5367 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5368 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5369 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5370 // exceeds the log2 of C. 5371 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5372 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5373 Constant::getNullValue(Op1->getType())); 5374 } 5375 break; 5376 } 5377 case ICmpInst::ICMP_SLT: { 5378 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5379 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5380 const APInt *CmpC; 5381 if (match(Op1, m_APInt(CmpC))) { 5382 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5383 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5384 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5385 } 5386 break; 5387 } 5388 case ICmpInst::ICMP_SGT: { 5389 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5390 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5391 const APInt *CmpC; 5392 if (match(Op1, m_APInt(CmpC))) { 5393 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5394 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5395 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5396 } 5397 break; 5398 } 5399 } 5400 } 5401 5402 // Based on the range information we know about the LHS, see if we can 5403 // simplify this comparison. For example, (x&4) < 8 is always true. 5404 switch (Pred) { 5405 default: 5406 llvm_unreachable("Unknown icmp opcode!"); 5407 case ICmpInst::ICMP_EQ: 5408 case ICmpInst::ICMP_NE: { 5409 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5410 return replaceInstUsesWith( 5411 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5412 5413 // If all bits are known zero except for one, then we know at most one bit 5414 // is set. If the comparison is against zero, then this is a check to see if 5415 // *that* bit is set. 5416 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5417 if (Op1Known.isZero()) { 5418 // If the LHS is an AND with the same constant, look through it. 5419 Value *LHS = nullptr; 5420 const APInt *LHSC; 5421 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5422 *LHSC != Op0KnownZeroInverted) 5423 LHS = Op0; 5424 5425 Value *X; 5426 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5427 APInt ValToCheck = Op0KnownZeroInverted; 5428 Type *XTy = X->getType(); 5429 if (ValToCheck.isPowerOf2()) { 5430 // ((1 << X) & 8) == 0 -> X != 3 5431 // ((1 << X) & 8) != 0 -> X == 3 5432 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5433 auto NewPred = ICmpInst::getInversePredicate(Pred); 5434 return new ICmpInst(NewPred, X, CmpC); 5435 } else if ((++ValToCheck).isPowerOf2()) { 5436 // ((1 << X) & 7) == 0 -> X >= 3 5437 // ((1 << X) & 7) != 0 -> X < 3 5438 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5439 auto NewPred = 5440 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5441 return new ICmpInst(NewPred, X, CmpC); 5442 } 5443 } 5444 5445 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5446 const APInt *CI; 5447 if (Op0KnownZeroInverted.isOne() && 5448 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5449 // ((8 >>u X) & 1) == 0 -> X != 3 5450 // ((8 >>u X) & 1) != 0 -> X == 3 5451 unsigned CmpVal = CI->countTrailingZeros(); 5452 auto NewPred = ICmpInst::getInversePredicate(Pred); 5453 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5454 } 5455 } 5456 break; 5457 } 5458 case ICmpInst::ICMP_ULT: { 5459 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5460 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5461 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5462 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5463 break; 5464 } 5465 case ICmpInst::ICMP_UGT: { 5466 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5467 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5468 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5469 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5470 break; 5471 } 5472 case ICmpInst::ICMP_SLT: { 5473 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5474 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5475 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5476 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5477 break; 5478 } 5479 case ICmpInst::ICMP_SGT: { 5480 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5481 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5482 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5483 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5484 break; 5485 } 5486 case ICmpInst::ICMP_SGE: 5487 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5488 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5489 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5490 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5491 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5492 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5493 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5494 break; 5495 case ICmpInst::ICMP_SLE: 5496 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5497 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5498 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5499 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5500 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5501 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5502 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5503 break; 5504 case ICmpInst::ICMP_UGE: 5505 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5506 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5507 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5508 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5509 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5510 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5511 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5512 break; 5513 case ICmpInst::ICMP_ULE: 5514 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5515 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5516 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5517 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5518 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5519 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5520 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5521 break; 5522 } 5523 5524 // Turn a signed comparison into an unsigned one if both operands are known to 5525 // have the same sign. 5526 if (I.isSigned() && 5527 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5528 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5529 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5530 5531 return nullptr; 5532 } 5533 5534 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5535 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5536 Constant *C) { 5537 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5538 "Only for relational integer predicates."); 5539 5540 Type *Type = C->getType(); 5541 bool IsSigned = ICmpInst::isSigned(Pred); 5542 5543 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5544 bool WillIncrement = 5545 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5546 5547 // Check if the constant operand can be safely incremented/decremented 5548 // without overflowing/underflowing. 5549 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5550 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5551 }; 5552 5553 Constant *SafeReplacementConstant = nullptr; 5554 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5555 // Bail out if the constant can't be safely incremented/decremented. 5556 if (!ConstantIsOk(CI)) 5557 return llvm::None; 5558 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5559 unsigned NumElts = FVTy->getNumElements(); 5560 for (unsigned i = 0; i != NumElts; ++i) { 5561 Constant *Elt = C->getAggregateElement(i); 5562 if (!Elt) 5563 return llvm::None; 5564 5565 if (isa<UndefValue>(Elt)) 5566 continue; 5567 5568 // Bail out if we can't determine if this constant is min/max or if we 5569 // know that this constant is min/max. 5570 auto *CI = dyn_cast<ConstantInt>(Elt); 5571 if (!CI || !ConstantIsOk(CI)) 5572 return llvm::None; 5573 5574 if (!SafeReplacementConstant) 5575 SafeReplacementConstant = CI; 5576 } 5577 } else { 5578 // ConstantExpr? 5579 return llvm::None; 5580 } 5581 5582 // It may not be safe to change a compare predicate in the presence of 5583 // undefined elements, so replace those elements with the first safe constant 5584 // that we found. 5585 // TODO: in case of poison, it is safe; let's replace undefs only. 5586 if (C->containsUndefOrPoisonElement()) { 5587 assert(SafeReplacementConstant && "Replacement constant not set"); 5588 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5589 } 5590 5591 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5592 5593 // Increment or decrement the constant. 5594 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5595 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5596 5597 return std::make_pair(NewPred, NewC); 5598 } 5599 5600 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5601 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5602 /// allows them to be folded in visitICmpInst. 5603 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5604 ICmpInst::Predicate Pred = I.getPredicate(); 5605 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5606 InstCombiner::isCanonicalPredicate(Pred)) 5607 return nullptr; 5608 5609 Value *Op0 = I.getOperand(0); 5610 Value *Op1 = I.getOperand(1); 5611 auto *Op1C = dyn_cast<Constant>(Op1); 5612 if (!Op1C) 5613 return nullptr; 5614 5615 auto FlippedStrictness = 5616 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5617 if (!FlippedStrictness) 5618 return nullptr; 5619 5620 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5621 } 5622 5623 /// If we have a comparison with a non-canonical predicate, if we can update 5624 /// all the users, invert the predicate and adjust all the users. 5625 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5626 // Is the predicate already canonical? 5627 CmpInst::Predicate Pred = I.getPredicate(); 5628 if (InstCombiner::isCanonicalPredicate(Pred)) 5629 return nullptr; 5630 5631 // Can all users be adjusted to predicate inversion? 5632 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5633 return nullptr; 5634 5635 // Ok, we can canonicalize comparison! 5636 // Let's first invert the comparison's predicate. 5637 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5638 I.setName(I.getName() + ".not"); 5639 5640 // And, adapt users. 5641 freelyInvertAllUsersOf(&I); 5642 5643 return &I; 5644 } 5645 5646 /// Integer compare with boolean values can always be turned into bitwise ops. 5647 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5648 InstCombiner::BuilderTy &Builder) { 5649 Value *A = I.getOperand(0), *B = I.getOperand(1); 5650 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5651 5652 // A boolean compared to true/false can be simplified to Op0/true/false in 5653 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5654 // Cases not handled by InstSimplify are always 'not' of Op0. 5655 if (match(B, m_Zero())) { 5656 switch (I.getPredicate()) { 5657 case CmpInst::ICMP_EQ: // A == 0 -> !A 5658 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5659 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5660 return BinaryOperator::CreateNot(A); 5661 default: 5662 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5663 } 5664 } else if (match(B, m_One())) { 5665 switch (I.getPredicate()) { 5666 case CmpInst::ICMP_NE: // A != 1 -> !A 5667 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5668 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5669 return BinaryOperator::CreateNot(A); 5670 default: 5671 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5672 } 5673 } 5674 5675 switch (I.getPredicate()) { 5676 default: 5677 llvm_unreachable("Invalid icmp instruction!"); 5678 case ICmpInst::ICMP_EQ: 5679 // icmp eq i1 A, B -> ~(A ^ B) 5680 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5681 5682 case ICmpInst::ICMP_NE: 5683 // icmp ne i1 A, B -> A ^ B 5684 return BinaryOperator::CreateXor(A, B); 5685 5686 case ICmpInst::ICMP_UGT: 5687 // icmp ugt -> icmp ult 5688 std::swap(A, B); 5689 LLVM_FALLTHROUGH; 5690 case ICmpInst::ICMP_ULT: 5691 // icmp ult i1 A, B -> ~A & B 5692 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5693 5694 case ICmpInst::ICMP_SGT: 5695 // icmp sgt -> icmp slt 5696 std::swap(A, B); 5697 LLVM_FALLTHROUGH; 5698 case ICmpInst::ICMP_SLT: 5699 // icmp slt i1 A, B -> A & ~B 5700 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5701 5702 case ICmpInst::ICMP_UGE: 5703 // icmp uge -> icmp ule 5704 std::swap(A, B); 5705 LLVM_FALLTHROUGH; 5706 case ICmpInst::ICMP_ULE: 5707 // icmp ule i1 A, B -> ~A | B 5708 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5709 5710 case ICmpInst::ICMP_SGE: 5711 // icmp sge -> icmp sle 5712 std::swap(A, B); 5713 LLVM_FALLTHROUGH; 5714 case ICmpInst::ICMP_SLE: 5715 // icmp sle i1 A, B -> A | ~B 5716 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5717 } 5718 } 5719 5720 // Transform pattern like: 5721 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5722 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5723 // Into: 5724 // (X l>> Y) != 0 5725 // (X l>> Y) == 0 5726 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5727 InstCombiner::BuilderTy &Builder) { 5728 ICmpInst::Predicate Pred, NewPred; 5729 Value *X, *Y; 5730 if (match(&Cmp, 5731 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5732 switch (Pred) { 5733 case ICmpInst::ICMP_ULE: 5734 NewPred = ICmpInst::ICMP_NE; 5735 break; 5736 case ICmpInst::ICMP_UGT: 5737 NewPred = ICmpInst::ICMP_EQ; 5738 break; 5739 default: 5740 return nullptr; 5741 } 5742 } else if (match(&Cmp, m_c_ICmp(Pred, 5743 m_OneUse(m_CombineOr( 5744 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5745 m_Add(m_Shl(m_One(), m_Value(Y)), 5746 m_AllOnes()))), 5747 m_Value(X)))) { 5748 // The variant with 'add' is not canonical, (the variant with 'not' is) 5749 // we only get it because it has extra uses, and can't be canonicalized, 5750 5751 switch (Pred) { 5752 case ICmpInst::ICMP_ULT: 5753 NewPred = ICmpInst::ICMP_NE; 5754 break; 5755 case ICmpInst::ICMP_UGE: 5756 NewPred = ICmpInst::ICMP_EQ; 5757 break; 5758 default: 5759 return nullptr; 5760 } 5761 } else 5762 return nullptr; 5763 5764 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5765 Constant *Zero = Constant::getNullValue(NewX->getType()); 5766 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5767 } 5768 5769 static Instruction *foldVectorCmp(CmpInst &Cmp, 5770 InstCombiner::BuilderTy &Builder) { 5771 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5772 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5773 Value *V1, *V2; 5774 ArrayRef<int> M; 5775 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5776 return nullptr; 5777 5778 // If both arguments of the cmp are shuffles that use the same mask and 5779 // shuffle within a single vector, move the shuffle after the cmp: 5780 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5781 Type *V1Ty = V1->getType(); 5782 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5783 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5784 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5785 return new ShuffleVectorInst(NewCmp, M); 5786 } 5787 5788 // Try to canonicalize compare with splatted operand and splat constant. 5789 // TODO: We could generalize this for more than splats. See/use the code in 5790 // InstCombiner::foldVectorBinop(). 5791 Constant *C; 5792 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5793 return nullptr; 5794 5795 // Length-changing splats are ok, so adjust the constants as needed: 5796 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5797 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5798 int MaskSplatIndex; 5799 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5800 // We allow undefs in matching, but this transform removes those for safety. 5801 // Demanded elements analysis should be able to recover some/all of that. 5802 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5803 ScalarC); 5804 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5805 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5806 return new ShuffleVectorInst(NewCmp, NewM); 5807 } 5808 5809 return nullptr; 5810 } 5811 5812 // extract(uadd.with.overflow(A, B), 0) ult A 5813 // -> extract(uadd.with.overflow(A, B), 1) 5814 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5815 CmpInst::Predicate Pred = I.getPredicate(); 5816 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5817 5818 Value *UAddOv; 5819 Value *A, *B; 5820 auto UAddOvResultPat = m_ExtractValue<0>( 5821 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5822 if (match(Op0, UAddOvResultPat) && 5823 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5824 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5825 (match(A, m_One()) || match(B, m_One()))) || 5826 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5827 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5828 // extract(uadd.with.overflow(A, B), 0) < A 5829 // extract(uadd.with.overflow(A, 1), 0) == 0 5830 // extract(uadd.with.overflow(A, -1), 0) != -1 5831 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5832 else if (match(Op1, UAddOvResultPat) && 5833 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5834 // A > extract(uadd.with.overflow(A, B), 0) 5835 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5836 else 5837 return nullptr; 5838 5839 return ExtractValueInst::Create(UAddOv, 1); 5840 } 5841 5842 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 5843 if (!I.getOperand(0)->getType()->isPointerTy() || 5844 NullPointerIsDefined( 5845 I.getParent()->getParent(), 5846 I.getOperand(0)->getType()->getPointerAddressSpace())) { 5847 return nullptr; 5848 } 5849 Instruction *Op; 5850 if (match(I.getOperand(0), m_Instruction(Op)) && 5851 match(I.getOperand(1), m_Zero()) && 5852 Op->isLaunderOrStripInvariantGroup()) { 5853 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 5854 Op->getOperand(0), I.getOperand(1)); 5855 } 5856 return nullptr; 5857 } 5858 5859 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 5860 bool Changed = false; 5861 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5862 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5863 unsigned Op0Cplxity = getComplexity(Op0); 5864 unsigned Op1Cplxity = getComplexity(Op1); 5865 5866 /// Orders the operands of the compare so that they are listed from most 5867 /// complex to least complex. This puts constants before unary operators, 5868 /// before binary operators. 5869 if (Op0Cplxity < Op1Cplxity || 5870 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5871 I.swapOperands(); 5872 std::swap(Op0, Op1); 5873 Changed = true; 5874 } 5875 5876 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5877 return replaceInstUsesWith(I, V); 5878 5879 // Comparing -val or val with non-zero is the same as just comparing val 5880 // ie, abs(val) != 0 -> val != 0 5881 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5882 Value *Cond, *SelectTrue, *SelectFalse; 5883 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5884 m_Value(SelectFalse)))) { 5885 if (Value *V = dyn_castNegVal(SelectTrue)) { 5886 if (V == SelectFalse) 5887 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5888 } 5889 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5890 if (V == SelectTrue) 5891 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5892 } 5893 } 5894 } 5895 5896 if (Op0->getType()->isIntOrIntVectorTy(1)) 5897 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5898 return Res; 5899 5900 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5901 return Res; 5902 5903 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5904 return Res; 5905 5906 if (Instruction *Res = foldICmpWithConstant(I)) 5907 return Res; 5908 5909 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5910 return Res; 5911 5912 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5913 return Res; 5914 5915 // Test if the ICmpInst instruction is used exclusively by a select as 5916 // part of a minimum or maximum operation. If so, refrain from doing 5917 // any other folding. This helps out other analyses which understand 5918 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5919 // and CodeGen. And in this case, at least one of the comparison 5920 // operands has at least one user besides the compare (the select), 5921 // which would often largely negate the benefit of folding anyway. 5922 // 5923 // Do the same for the other patterns recognized by matchSelectPattern. 5924 if (I.hasOneUse()) 5925 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5926 Value *A, *B; 5927 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5928 if (SPR.Flavor != SPF_UNKNOWN) 5929 return nullptr; 5930 } 5931 5932 // Do this after checking for min/max to prevent infinite looping. 5933 if (Instruction *Res = foldICmpWithZero(I)) 5934 return Res; 5935 5936 // FIXME: We only do this after checking for min/max to prevent infinite 5937 // looping caused by a reverse canonicalization of these patterns for min/max. 5938 // FIXME: The organization of folds is a mess. These would naturally go into 5939 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5940 // down here after the min/max restriction. 5941 ICmpInst::Predicate Pred = I.getPredicate(); 5942 const APInt *C; 5943 if (match(Op1, m_APInt(C))) { 5944 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5945 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5946 Constant *Zero = Constant::getNullValue(Op0->getType()); 5947 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5948 } 5949 5950 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5951 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5952 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5953 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5954 } 5955 } 5956 5957 // The folds in here may rely on wrapping flags and special constants, so 5958 // they can break up min/max idioms in some cases but not seemingly similar 5959 // patterns. 5960 // FIXME: It may be possible to enhance select folding to make this 5961 // unnecessary. It may also be moot if we canonicalize to min/max 5962 // intrinsics. 5963 if (Instruction *Res = foldICmpBinOp(I, Q)) 5964 return Res; 5965 5966 if (Instruction *Res = foldICmpInstWithConstant(I)) 5967 return Res; 5968 5969 // Try to match comparison as a sign bit test. Intentionally do this after 5970 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5971 if (Instruction *New = foldSignBitTest(I)) 5972 return New; 5973 5974 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5975 return Res; 5976 5977 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 5978 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 5979 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5980 return NI; 5981 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 5982 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 5983 return NI; 5984 5985 // Try to optimize equality comparisons against alloca-based pointers. 5986 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5987 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5988 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 5989 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5990 return New; 5991 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 5992 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5993 return New; 5994 } 5995 5996 if (Instruction *Res = foldICmpBitCast(I)) 5997 return Res; 5998 5999 // TODO: Hoist this above the min/max bailout. 6000 if (Instruction *R = foldICmpWithCastOp(I)) 6001 return R; 6002 6003 if (Instruction *Res = foldICmpWithMinMax(I)) 6004 return Res; 6005 6006 { 6007 Value *A, *B; 6008 // Transform (A & ~B) == 0 --> (A & B) != 0 6009 // and (A & ~B) != 0 --> (A & B) == 0 6010 // if A is a power of 2. 6011 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6012 match(Op1, m_Zero()) && 6013 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6014 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6015 Op1); 6016 6017 // ~X < ~Y --> Y < X 6018 // ~X < C --> X > ~C 6019 if (match(Op0, m_Not(m_Value(A)))) { 6020 if (match(Op1, m_Not(m_Value(B)))) 6021 return new ICmpInst(I.getPredicate(), B, A); 6022 6023 const APInt *C; 6024 if (match(Op1, m_APInt(C))) 6025 return new ICmpInst(I.getSwappedPredicate(), A, 6026 ConstantInt::get(Op1->getType(), ~(*C))); 6027 } 6028 6029 Instruction *AddI = nullptr; 6030 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6031 m_Instruction(AddI))) && 6032 isa<IntegerType>(A->getType())) { 6033 Value *Result; 6034 Constant *Overflow; 6035 // m_UAddWithOverflow can match patterns that do not include an explicit 6036 // "add" instruction, so check the opcode of the matched op. 6037 if (AddI->getOpcode() == Instruction::Add && 6038 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6039 Result, Overflow)) { 6040 replaceInstUsesWith(*AddI, Result); 6041 eraseInstFromFunction(*AddI); 6042 return replaceInstUsesWith(I, Overflow); 6043 } 6044 } 6045 6046 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6047 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6048 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6049 return R; 6050 } 6051 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6052 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6053 return R; 6054 } 6055 } 6056 6057 if (Instruction *Res = foldICmpEquality(I)) 6058 return Res; 6059 6060 if (Instruction *Res = foldICmpOfUAddOv(I)) 6061 return Res; 6062 6063 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6064 // an i1 which indicates whether or not we successfully did the swap. 6065 // 6066 // Replace comparisons between the old value and the expected value with the 6067 // indicator that 'cmpxchg' returns. 6068 // 6069 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6070 // spuriously fail. In those cases, the old value may equal the expected 6071 // value but it is possible for the swap to not occur. 6072 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6073 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6074 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6075 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6076 !ACXI->isWeak()) 6077 return ExtractValueInst::Create(ACXI, 1); 6078 6079 { 6080 Value *X; 6081 const APInt *C; 6082 // icmp X+Cst, X 6083 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6084 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6085 6086 // icmp X, X+Cst 6087 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6088 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6089 } 6090 6091 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6092 return Res; 6093 6094 if (I.getType()->isVectorTy()) 6095 if (Instruction *Res = foldVectorCmp(I, Builder)) 6096 return Res; 6097 6098 if (Instruction *Res = foldICmpInvariantGroup(I)) 6099 return Res; 6100 6101 return Changed ? &I : nullptr; 6102 } 6103 6104 /// Fold fcmp ([us]itofp x, cst) if possible. 6105 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6106 Instruction *LHSI, 6107 Constant *RHSC) { 6108 if (!isa<ConstantFP>(RHSC)) return nullptr; 6109 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6110 6111 // Get the width of the mantissa. We don't want to hack on conversions that 6112 // might lose information from the integer, e.g. "i64 -> float" 6113 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6114 if (MantissaWidth == -1) return nullptr; // Unknown. 6115 6116 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6117 6118 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6119 6120 if (I.isEquality()) { 6121 FCmpInst::Predicate P = I.getPredicate(); 6122 bool IsExact = false; 6123 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6124 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6125 6126 // If the floating point constant isn't an integer value, we know if we will 6127 // ever compare equal / not equal to it. 6128 if (!IsExact) { 6129 // TODO: Can never be -0.0 and other non-representable values 6130 APFloat RHSRoundInt(RHS); 6131 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6132 if (RHS != RHSRoundInt) { 6133 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6134 return replaceInstUsesWith(I, Builder.getFalse()); 6135 6136 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6137 return replaceInstUsesWith(I, Builder.getTrue()); 6138 } 6139 } 6140 6141 // TODO: If the constant is exactly representable, is it always OK to do 6142 // equality compares as integer? 6143 } 6144 6145 // Check to see that the input is converted from an integer type that is small 6146 // enough that preserves all bits. TODO: check here for "known" sign bits. 6147 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6148 unsigned InputSize = IntTy->getScalarSizeInBits(); 6149 6150 // Following test does NOT adjust InputSize downwards for signed inputs, 6151 // because the most negative value still requires all the mantissa bits 6152 // to distinguish it from one less than that value. 6153 if ((int)InputSize > MantissaWidth) { 6154 // Conversion would lose accuracy. Check if loss can impact comparison. 6155 int Exp = ilogb(RHS); 6156 if (Exp == APFloat::IEK_Inf) { 6157 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6158 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6159 // Conversion could create infinity. 6160 return nullptr; 6161 } else { 6162 // Note that if RHS is zero or NaN, then Exp is negative 6163 // and first condition is trivially false. 6164 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6165 // Conversion could affect comparison. 6166 return nullptr; 6167 } 6168 } 6169 6170 // Otherwise, we can potentially simplify the comparison. We know that it 6171 // will always come through as an integer value and we know the constant is 6172 // not a NAN (it would have been previously simplified). 6173 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6174 6175 ICmpInst::Predicate Pred; 6176 switch (I.getPredicate()) { 6177 default: llvm_unreachable("Unexpected predicate!"); 6178 case FCmpInst::FCMP_UEQ: 6179 case FCmpInst::FCMP_OEQ: 6180 Pred = ICmpInst::ICMP_EQ; 6181 break; 6182 case FCmpInst::FCMP_UGT: 6183 case FCmpInst::FCMP_OGT: 6184 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6185 break; 6186 case FCmpInst::FCMP_UGE: 6187 case FCmpInst::FCMP_OGE: 6188 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6189 break; 6190 case FCmpInst::FCMP_ULT: 6191 case FCmpInst::FCMP_OLT: 6192 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6193 break; 6194 case FCmpInst::FCMP_ULE: 6195 case FCmpInst::FCMP_OLE: 6196 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6197 break; 6198 case FCmpInst::FCMP_UNE: 6199 case FCmpInst::FCMP_ONE: 6200 Pred = ICmpInst::ICMP_NE; 6201 break; 6202 case FCmpInst::FCMP_ORD: 6203 return replaceInstUsesWith(I, Builder.getTrue()); 6204 case FCmpInst::FCMP_UNO: 6205 return replaceInstUsesWith(I, Builder.getFalse()); 6206 } 6207 6208 // Now we know that the APFloat is a normal number, zero or inf. 6209 6210 // See if the FP constant is too large for the integer. For example, 6211 // comparing an i8 to 300.0. 6212 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6213 6214 if (!LHSUnsigned) { 6215 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6216 // and large values. 6217 APFloat SMax(RHS.getSemantics()); 6218 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6219 APFloat::rmNearestTiesToEven); 6220 if (SMax < RHS) { // smax < 13123.0 6221 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6222 Pred == ICmpInst::ICMP_SLE) 6223 return replaceInstUsesWith(I, Builder.getTrue()); 6224 return replaceInstUsesWith(I, Builder.getFalse()); 6225 } 6226 } else { 6227 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6228 // +INF and large values. 6229 APFloat UMax(RHS.getSemantics()); 6230 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6231 APFloat::rmNearestTiesToEven); 6232 if (UMax < RHS) { // umax < 13123.0 6233 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6234 Pred == ICmpInst::ICMP_ULE) 6235 return replaceInstUsesWith(I, Builder.getTrue()); 6236 return replaceInstUsesWith(I, Builder.getFalse()); 6237 } 6238 } 6239 6240 if (!LHSUnsigned) { 6241 // See if the RHS value is < SignedMin. 6242 APFloat SMin(RHS.getSemantics()); 6243 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6244 APFloat::rmNearestTiesToEven); 6245 if (SMin > RHS) { // smin > 12312.0 6246 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6247 Pred == ICmpInst::ICMP_SGE) 6248 return replaceInstUsesWith(I, Builder.getTrue()); 6249 return replaceInstUsesWith(I, Builder.getFalse()); 6250 } 6251 } else { 6252 // See if the RHS value is < UnsignedMin. 6253 APFloat UMin(RHS.getSemantics()); 6254 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6255 APFloat::rmNearestTiesToEven); 6256 if (UMin > RHS) { // umin > 12312.0 6257 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6258 Pred == ICmpInst::ICMP_UGE) 6259 return replaceInstUsesWith(I, Builder.getTrue()); 6260 return replaceInstUsesWith(I, Builder.getFalse()); 6261 } 6262 } 6263 6264 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6265 // [0, UMAX], but it may still be fractional. See if it is fractional by 6266 // casting the FP value to the integer value and back, checking for equality. 6267 // Don't do this for zero, because -0.0 is not fractional. 6268 Constant *RHSInt = LHSUnsigned 6269 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6270 : ConstantExpr::getFPToSI(RHSC, IntTy); 6271 if (!RHS.isZero()) { 6272 bool Equal = LHSUnsigned 6273 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6274 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6275 if (!Equal) { 6276 // If we had a comparison against a fractional value, we have to adjust 6277 // the compare predicate and sometimes the value. RHSC is rounded towards 6278 // zero at this point. 6279 switch (Pred) { 6280 default: llvm_unreachable("Unexpected integer comparison!"); 6281 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6282 return replaceInstUsesWith(I, Builder.getTrue()); 6283 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6284 return replaceInstUsesWith(I, Builder.getFalse()); 6285 case ICmpInst::ICMP_ULE: 6286 // (float)int <= 4.4 --> int <= 4 6287 // (float)int <= -4.4 --> false 6288 if (RHS.isNegative()) 6289 return replaceInstUsesWith(I, Builder.getFalse()); 6290 break; 6291 case ICmpInst::ICMP_SLE: 6292 // (float)int <= 4.4 --> int <= 4 6293 // (float)int <= -4.4 --> int < -4 6294 if (RHS.isNegative()) 6295 Pred = ICmpInst::ICMP_SLT; 6296 break; 6297 case ICmpInst::ICMP_ULT: 6298 // (float)int < -4.4 --> false 6299 // (float)int < 4.4 --> int <= 4 6300 if (RHS.isNegative()) 6301 return replaceInstUsesWith(I, Builder.getFalse()); 6302 Pred = ICmpInst::ICMP_ULE; 6303 break; 6304 case ICmpInst::ICMP_SLT: 6305 // (float)int < -4.4 --> int < -4 6306 // (float)int < 4.4 --> int <= 4 6307 if (!RHS.isNegative()) 6308 Pred = ICmpInst::ICMP_SLE; 6309 break; 6310 case ICmpInst::ICMP_UGT: 6311 // (float)int > 4.4 --> int > 4 6312 // (float)int > -4.4 --> true 6313 if (RHS.isNegative()) 6314 return replaceInstUsesWith(I, Builder.getTrue()); 6315 break; 6316 case ICmpInst::ICMP_SGT: 6317 // (float)int > 4.4 --> int > 4 6318 // (float)int > -4.4 --> int >= -4 6319 if (RHS.isNegative()) 6320 Pred = ICmpInst::ICMP_SGE; 6321 break; 6322 case ICmpInst::ICMP_UGE: 6323 // (float)int >= -4.4 --> true 6324 // (float)int >= 4.4 --> int > 4 6325 if (RHS.isNegative()) 6326 return replaceInstUsesWith(I, Builder.getTrue()); 6327 Pred = ICmpInst::ICMP_UGT; 6328 break; 6329 case ICmpInst::ICMP_SGE: 6330 // (float)int >= -4.4 --> int >= -4 6331 // (float)int >= 4.4 --> int > 4 6332 if (!RHS.isNegative()) 6333 Pred = ICmpInst::ICMP_SGT; 6334 break; 6335 } 6336 } 6337 } 6338 6339 // Lower this FP comparison into an appropriate integer version of the 6340 // comparison. 6341 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6342 } 6343 6344 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6345 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6346 Constant *RHSC) { 6347 // When C is not 0.0 and infinities are not allowed: 6348 // (C / X) < 0.0 is a sign-bit test of X 6349 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6350 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6351 // 6352 // Proof: 6353 // Multiply (C / X) < 0.0 by X * X / C. 6354 // - X is non zero, if it is the flag 'ninf' is violated. 6355 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6356 // the predicate. C is also non zero by definition. 6357 // 6358 // Thus X * X / C is non zero and the transformation is valid. [qed] 6359 6360 FCmpInst::Predicate Pred = I.getPredicate(); 6361 6362 // Check that predicates are valid. 6363 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6364 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6365 return nullptr; 6366 6367 // Check that RHS operand is zero. 6368 if (!match(RHSC, m_AnyZeroFP())) 6369 return nullptr; 6370 6371 // Check fastmath flags ('ninf'). 6372 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6373 return nullptr; 6374 6375 // Check the properties of the dividend. It must not be zero to avoid a 6376 // division by zero (see Proof). 6377 const APFloat *C; 6378 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6379 return nullptr; 6380 6381 if (C->isZero()) 6382 return nullptr; 6383 6384 // Get swapped predicate if necessary. 6385 if (C->isNegative()) 6386 Pred = I.getSwappedPredicate(); 6387 6388 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6389 } 6390 6391 /// Optimize fabs(X) compared with zero. 6392 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6393 Value *X; 6394 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6395 !match(I.getOperand(1), m_PosZeroFP())) 6396 return nullptr; 6397 6398 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6399 I->setPredicate(P); 6400 return IC.replaceOperand(*I, 0, X); 6401 }; 6402 6403 switch (I.getPredicate()) { 6404 case FCmpInst::FCMP_UGE: 6405 case FCmpInst::FCMP_OLT: 6406 // fabs(X) >= 0.0 --> true 6407 // fabs(X) < 0.0 --> false 6408 llvm_unreachable("fcmp should have simplified"); 6409 6410 case FCmpInst::FCMP_OGT: 6411 // fabs(X) > 0.0 --> X != 0.0 6412 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6413 6414 case FCmpInst::FCMP_UGT: 6415 // fabs(X) u> 0.0 --> X u!= 0.0 6416 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6417 6418 case FCmpInst::FCMP_OLE: 6419 // fabs(X) <= 0.0 --> X == 0.0 6420 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6421 6422 case FCmpInst::FCMP_ULE: 6423 // fabs(X) u<= 0.0 --> X u== 0.0 6424 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6425 6426 case FCmpInst::FCMP_OGE: 6427 // fabs(X) >= 0.0 --> !isnan(X) 6428 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6429 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6430 6431 case FCmpInst::FCMP_ULT: 6432 // fabs(X) u< 0.0 --> isnan(X) 6433 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6434 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6435 6436 case FCmpInst::FCMP_OEQ: 6437 case FCmpInst::FCMP_UEQ: 6438 case FCmpInst::FCMP_ONE: 6439 case FCmpInst::FCMP_UNE: 6440 case FCmpInst::FCMP_ORD: 6441 case FCmpInst::FCMP_UNO: 6442 // Look through the fabs() because it doesn't change anything but the sign. 6443 // fabs(X) == 0.0 --> X == 0.0, 6444 // fabs(X) != 0.0 --> X != 0.0 6445 // isnan(fabs(X)) --> isnan(X) 6446 // !isnan(fabs(X) --> !isnan(X) 6447 return replacePredAndOp0(&I, I.getPredicate(), X); 6448 6449 default: 6450 return nullptr; 6451 } 6452 } 6453 6454 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6455 bool Changed = false; 6456 6457 /// Orders the operands of the compare so that they are listed from most 6458 /// complex to least complex. This puts constants before unary operators, 6459 /// before binary operators. 6460 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6461 I.swapOperands(); 6462 Changed = true; 6463 } 6464 6465 const CmpInst::Predicate Pred = I.getPredicate(); 6466 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6467 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6468 SQ.getWithInstruction(&I))) 6469 return replaceInstUsesWith(I, V); 6470 6471 // Simplify 'fcmp pred X, X' 6472 Type *OpType = Op0->getType(); 6473 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6474 if (Op0 == Op1) { 6475 switch (Pred) { 6476 default: break; 6477 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6478 case FCmpInst::FCMP_ULT: // True if unordered or less than 6479 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6480 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6481 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6482 I.setPredicate(FCmpInst::FCMP_UNO); 6483 I.setOperand(1, Constant::getNullValue(OpType)); 6484 return &I; 6485 6486 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6487 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6488 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6489 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6490 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6491 I.setPredicate(FCmpInst::FCMP_ORD); 6492 I.setOperand(1, Constant::getNullValue(OpType)); 6493 return &I; 6494 } 6495 } 6496 6497 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6498 // then canonicalize the operand to 0.0. 6499 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6500 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6501 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6502 6503 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6504 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6505 } 6506 6507 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6508 Value *X, *Y; 6509 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6510 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6511 6512 // Test if the FCmpInst instruction is used exclusively by a select as 6513 // part of a minimum or maximum operation. If so, refrain from doing 6514 // any other folding. This helps out other analyses which understand 6515 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6516 // and CodeGen. And in this case, at least one of the comparison 6517 // operands has at least one user besides the compare (the select), 6518 // which would often largely negate the benefit of folding anyway. 6519 if (I.hasOneUse()) 6520 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6521 Value *A, *B; 6522 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6523 if (SPR.Flavor != SPF_UNKNOWN) 6524 return nullptr; 6525 } 6526 6527 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6528 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6529 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6530 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6531 6532 // Handle fcmp with instruction LHS and constant RHS. 6533 Instruction *LHSI; 6534 Constant *RHSC; 6535 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6536 switch (LHSI->getOpcode()) { 6537 case Instruction::PHI: 6538 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6539 // block. If in the same block, we're encouraging jump threading. If 6540 // not, we are just pessimizing the code by making an i1 phi. 6541 if (LHSI->getParent() == I.getParent()) 6542 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6543 return NV; 6544 break; 6545 case Instruction::SIToFP: 6546 case Instruction::UIToFP: 6547 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6548 return NV; 6549 break; 6550 case Instruction::FDiv: 6551 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6552 return NV; 6553 break; 6554 case Instruction::Load: 6555 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6556 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6557 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6558 !cast<LoadInst>(LHSI)->isVolatile()) 6559 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6560 return Res; 6561 break; 6562 } 6563 } 6564 6565 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6566 return R; 6567 6568 if (match(Op0, m_FNeg(m_Value(X)))) { 6569 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6570 Constant *C; 6571 if (match(Op1, m_Constant(C))) { 6572 Constant *NegC = ConstantExpr::getFNeg(C); 6573 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6574 } 6575 } 6576 6577 if (match(Op0, m_FPExt(m_Value(X)))) { 6578 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6579 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6580 return new FCmpInst(Pred, X, Y, "", &I); 6581 6582 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6583 const APFloat *C; 6584 if (match(Op1, m_APFloat(C))) { 6585 const fltSemantics &FPSem = 6586 X->getType()->getScalarType()->getFltSemantics(); 6587 bool Lossy; 6588 APFloat TruncC = *C; 6589 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6590 6591 // Avoid lossy conversions and denormals. 6592 // Zero is a special case that's OK to convert. 6593 APFloat Fabs = TruncC; 6594 Fabs.clearSign(); 6595 if (!Lossy && 6596 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6597 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6598 return new FCmpInst(Pred, X, NewC, "", &I); 6599 } 6600 } 6601 } 6602 6603 // Convert a sign-bit test of an FP value into a cast and integer compare. 6604 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6605 // TODO: Handle non-zero compare constants. 6606 // TODO: Handle other predicates. 6607 const APFloat *C; 6608 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6609 m_Value(X)))) && 6610 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6611 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6612 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6613 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6614 6615 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6616 if (Pred == FCmpInst::FCMP_OLT) { 6617 Value *IntX = Builder.CreateBitCast(X, IntType); 6618 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6619 ConstantInt::getNullValue(IntType)); 6620 } 6621 } 6622 6623 if (I.getType()->isVectorTy()) 6624 if (Instruction *Res = foldVectorCmp(I, Builder)) 6625 return Res; 6626 6627 return Changed ? &I : nullptr; 6628 } 6629