1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Given an exploded icmp instruction, return true if the comparison only 73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 74 /// result of the comparison is true when the input value is signed. 75 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 76 bool &TrueIfSigned) { 77 switch (Pred) { 78 case ICmpInst::ICMP_SLT: // True if LHS s< 0 79 TrueIfSigned = true; 80 return RHS.isNullValue(); 81 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 82 TrueIfSigned = true; 83 return RHS.isAllOnesValue(); 84 case ICmpInst::ICMP_SGT: // True if LHS s> -1 85 TrueIfSigned = false; 86 return RHS.isAllOnesValue(); 87 case ICmpInst::ICMP_UGT: 88 // True if LHS u> RHS and RHS == high-bit-mask - 1 89 TrueIfSigned = true; 90 return RHS.isMaxSignedValue(); 91 case ICmpInst::ICMP_UGE: 92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 93 TrueIfSigned = true; 94 return RHS.isSignMask(); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns true if the exploded icmp can be expressed as a signed comparison 101 /// to zero and updates the predicate accordingly. 102 /// The signedness of the comparison is preserved. 103 /// TODO: Refactor with decomposeBitTestICmp()? 104 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 105 if (!ICmpInst::isSigned(Pred)) 106 return false; 107 108 if (C.isNullValue()) 109 return ICmpInst::isRelational(Pred); 110 111 if (C.isOneValue()) { 112 if (Pred == ICmpInst::ICMP_SLT) { 113 Pred = ICmpInst::ICMP_SLE; 114 return true; 115 } 116 } else if (C.isAllOnesValue()) { 117 if (Pred == ICmpInst::ICMP_SGT) { 118 Pred = ICmpInst::ICMP_SGE; 119 return true; 120 } 121 } 122 123 return false; 124 } 125 126 /// Given a signed integer type and a set of known zero and one bits, compute 127 /// the maximum and minimum values that could have the specified known zero and 128 /// known one bits, returning them in Min/Max. 129 /// TODO: Move to method on KnownBits struct? 130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 131 APInt &Min, APInt &Max) { 132 assert(Known.getBitWidth() == Min.getBitWidth() && 133 Known.getBitWidth() == Max.getBitWidth() && 134 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 135 APInt UnknownBits = ~(Known.Zero|Known.One); 136 137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 138 // bit if it is unknown. 139 Min = Known.One; 140 Max = Known.One|UnknownBits; 141 142 if (UnknownBits.isNegative()) { // Sign bit is unknown 143 Min.setSignBit(); 144 Max.clearSignBit(); 145 } 146 } 147 148 /// Given an unsigned integer type and a set of known zero and one bits, compute 149 /// the maximum and minimum values that could have the specified known zero and 150 /// known one bits, returning them in Min/Max. 151 /// TODO: Move to method on KnownBits struct? 152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 153 APInt &Min, APInt &Max) { 154 assert(Known.getBitWidth() == Min.getBitWidth() && 155 Known.getBitWidth() == Max.getBitWidth() && 156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 157 APInt UnknownBits = ~(Known.Zero|Known.One); 158 159 // The minimum value is when the unknown bits are all zeros. 160 Min = Known.One; 161 // The maximum value is when the unknown bits are all ones. 162 Max = Known.One|UnknownBits; 163 } 164 165 /// This is called when we see this pattern: 166 /// cmp pred (load (gep GV, ...)), cmpcst 167 /// where GV is a global variable with a constant initializer. Try to simplify 168 /// this into some simple computation that does not need the load. For example 169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 170 /// 171 /// If AndCst is non-null, then the loaded value is masked with that constant 172 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 173 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 174 GlobalVariable *GV, 175 CmpInst &ICI, 176 ConstantInt *AndCst) { 177 Constant *Init = GV->getInitializer(); 178 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 179 return nullptr; 180 181 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 182 // Don't blow up on huge arrays. 183 if (ArrayElementCount > MaxArraySizeForCombine) 184 return nullptr; 185 186 // There are many forms of this optimization we can handle, for now, just do 187 // the simple index into a single-dimensional array. 188 // 189 // Require: GEP GV, 0, i {{, constant indices}} 190 if (GEP->getNumOperands() < 3 || 191 !isa<ConstantInt>(GEP->getOperand(1)) || 192 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 193 isa<Constant>(GEP->getOperand(2))) 194 return nullptr; 195 196 // Check that indices after the variable are constants and in-range for the 197 // type they index. Collect the indices. This is typically for arrays of 198 // structs. 199 SmallVector<unsigned, 4> LaterIndices; 200 201 Type *EltTy = Init->getType()->getArrayElementType(); 202 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 203 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 204 if (!Idx) return nullptr; // Variable index. 205 206 uint64_t IdxVal = Idx->getZExtValue(); 207 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 208 209 if (StructType *STy = dyn_cast<StructType>(EltTy)) 210 EltTy = STy->getElementType(IdxVal); 211 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 212 if (IdxVal >= ATy->getNumElements()) return nullptr; 213 EltTy = ATy->getElementType(); 214 } else { 215 return nullptr; // Unknown type. 216 } 217 218 LaterIndices.push_back(IdxVal); 219 } 220 221 enum { Overdefined = -3, Undefined = -2 }; 222 223 // Variables for our state machines. 224 225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 226 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 227 // and 87 is the second (and last) index. FirstTrueElement is -2 when 228 // undefined, otherwise set to the first true element. SecondTrueElement is 229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 230 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 231 232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 233 // form "i != 47 & i != 87". Same state transitions as for true elements. 234 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 235 236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 237 /// define a state machine that triggers for ranges of values that the index 238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 240 /// index in the range (inclusive). We use -2 for undefined here because we 241 /// use relative comparisons and don't want 0-1 to match -1. 242 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 243 244 // MagicBitvector - This is a magic bitvector where we set a bit if the 245 // comparison is true for element 'i'. If there are 64 elements or less in 246 // the array, this will fully represent all the comparison results. 247 uint64_t MagicBitvector = 0; 248 249 // Scan the array and see if one of our patterns matches. 250 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 251 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 252 Constant *Elt = Init->getAggregateElement(i); 253 if (!Elt) return nullptr; 254 255 // If this is indexing an array of structures, get the structure element. 256 if (!LaterIndices.empty()) 257 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 258 259 // If the element is masked, handle it. 260 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 261 262 // Find out if the comparison would be true or false for the i'th element. 263 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 264 CompareRHS, DL, &TLI); 265 // If the result is undef for this element, ignore it. 266 if (isa<UndefValue>(C)) { 267 // Extend range state machines to cover this element in case there is an 268 // undef in the middle of the range. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 if (FalseRangeEnd == (int)i-1) 272 FalseRangeEnd = i; 273 continue; 274 } 275 276 // If we can't compute the result for any of the elements, we have to give 277 // up evaluating the entire conditional. 278 if (!isa<ConstantInt>(C)) return nullptr; 279 280 // Otherwise, we know if the comparison is true or false for this element, 281 // update our state machines. 282 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 283 284 // State machine for single/double/range index comparison. 285 if (IsTrueForElt) { 286 // Update the TrueElement state machine. 287 if (FirstTrueElement == Undefined) 288 FirstTrueElement = TrueRangeEnd = i; // First true element. 289 else { 290 // Update double-compare state machine. 291 if (SecondTrueElement == Undefined) 292 SecondTrueElement = i; 293 else 294 SecondTrueElement = Overdefined; 295 296 // Update range state machine. 297 if (TrueRangeEnd == (int)i-1) 298 TrueRangeEnd = i; 299 else 300 TrueRangeEnd = Overdefined; 301 } 302 } else { 303 // Update the FalseElement state machine. 304 if (FirstFalseElement == Undefined) 305 FirstFalseElement = FalseRangeEnd = i; // First false element. 306 else { 307 // Update double-compare state machine. 308 if (SecondFalseElement == Undefined) 309 SecondFalseElement = i; 310 else 311 SecondFalseElement = Overdefined; 312 313 // Update range state machine. 314 if (FalseRangeEnd == (int)i-1) 315 FalseRangeEnd = i; 316 else 317 FalseRangeEnd = Overdefined; 318 } 319 } 320 321 // If this element is in range, update our magic bitvector. 322 if (i < 64 && IsTrueForElt) 323 MagicBitvector |= 1ULL << i; 324 325 // If all of our states become overdefined, bail out early. Since the 326 // predicate is expensive, only check it every 8 elements. This is only 327 // really useful for really huge arrays. 328 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 329 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 330 FalseRangeEnd == Overdefined) 331 return nullptr; 332 } 333 334 // Now that we've scanned the entire array, emit our new comparison(s). We 335 // order the state machines in complexity of the generated code. 336 Value *Idx = GEP->getOperand(2); 337 338 // If the index is larger than the pointer size of the target, truncate the 339 // index down like the GEP would do implicitly. We don't have to do this for 340 // an inbounds GEP because the index can't be out of range. 341 if (!GEP->isInBounds()) { 342 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 343 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 344 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 345 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 346 } 347 348 // If the comparison is only true for one or two elements, emit direct 349 // comparisons. 350 if (SecondTrueElement != Overdefined) { 351 // None true -> false. 352 if (FirstTrueElement == Undefined) 353 return replaceInstUsesWith(ICI, Builder.getFalse()); 354 355 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 356 357 // True for one element -> 'i == 47'. 358 if (SecondTrueElement == Undefined) 359 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 360 361 // True for two elements -> 'i == 47 | i == 72'. 362 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 363 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 364 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 365 return BinaryOperator::CreateOr(C1, C2); 366 } 367 368 // If the comparison is only false for one or two elements, emit direct 369 // comparisons. 370 if (SecondFalseElement != Overdefined) { 371 // None false -> true. 372 if (FirstFalseElement == Undefined) 373 return replaceInstUsesWith(ICI, Builder.getTrue()); 374 375 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 376 377 // False for one element -> 'i != 47'. 378 if (SecondFalseElement == Undefined) 379 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 380 381 // False for two elements -> 'i != 47 & i != 72'. 382 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 383 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 384 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 385 return BinaryOperator::CreateAnd(C1, C2); 386 } 387 388 // If the comparison can be replaced with a range comparison for the elements 389 // where it is true, emit the range check. 390 if (TrueRangeEnd != Overdefined) { 391 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 392 393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 394 if (FirstTrueElement) { 395 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 396 Idx = Builder.CreateAdd(Idx, Offs); 397 } 398 399 Value *End = ConstantInt::get(Idx->getType(), 400 TrueRangeEnd-FirstTrueElement+1); 401 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 402 } 403 404 // False range check. 405 if (FalseRangeEnd != Overdefined) { 406 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 408 if (FirstFalseElement) { 409 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 410 Idx = Builder.CreateAdd(Idx, Offs); 411 } 412 413 Value *End = ConstantInt::get(Idx->getType(), 414 FalseRangeEnd-FirstFalseElement); 415 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 416 } 417 418 // If a magic bitvector captures the entire comparison state 419 // of this load, replace it with computation that does: 420 // ((magic_cst >> i) & 1) != 0 421 { 422 Type *Ty = nullptr; 423 424 // Look for an appropriate type: 425 // - The type of Idx if the magic fits 426 // - The smallest fitting legal type 427 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 428 Ty = Idx->getType(); 429 else 430 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 431 432 if (Ty) { 433 Value *V = Builder.CreateIntCast(Idx, Ty, false); 434 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 435 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 436 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 437 } 438 } 439 440 return nullptr; 441 } 442 443 /// Return a value that can be used to compare the *offset* implied by a GEP to 444 /// zero. For example, if we have &A[i], we want to return 'i' for 445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 446 /// are involved. The above expression would also be legal to codegen as 447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 448 /// This latter form is less amenable to optimization though, and we are allowed 449 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 450 /// 451 /// If we can't emit an optimized form for this expression, this returns null. 452 /// 453 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 454 const DataLayout &DL) { 455 gep_type_iterator GTI = gep_type_begin(GEP); 456 457 // Check to see if this gep only has a single variable index. If so, and if 458 // any constant indices are a multiple of its scale, then we can compute this 459 // in terms of the scale of the variable index. For example, if the GEP 460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 461 // because the expression will cross zero at the same point. 462 unsigned i, e = GEP->getNumOperands(); 463 int64_t Offset = 0; 464 for (i = 1; i != e; ++i, ++GTI) { 465 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 466 // Compute the aggregate offset of constant indices. 467 if (CI->isZero()) continue; 468 469 // Handle a struct index, which adds its field offset to the pointer. 470 if (StructType *STy = GTI.getStructTypeOrNull()) { 471 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 472 } else { 473 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 474 Offset += Size*CI->getSExtValue(); 475 } 476 } else { 477 // Found our variable index. 478 break; 479 } 480 } 481 482 // If there are no variable indices, we must have a constant offset, just 483 // evaluate it the general way. 484 if (i == e) return nullptr; 485 486 Value *VariableIdx = GEP->getOperand(i); 487 // Determine the scale factor of the variable element. For example, this is 488 // 4 if the variable index is into an array of i32. 489 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 490 491 // Verify that there are no other variable indices. If so, emit the hard way. 492 for (++i, ++GTI; i != e; ++i, ++GTI) { 493 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 494 if (!CI) return nullptr; 495 496 // Compute the aggregate offset of constant indices. 497 if (CI->isZero()) continue; 498 499 // Handle a struct index, which adds its field offset to the pointer. 500 if (StructType *STy = GTI.getStructTypeOrNull()) { 501 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 502 } else { 503 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 504 Offset += Size*CI->getSExtValue(); 505 } 506 } 507 508 // Okay, we know we have a single variable index, which must be a 509 // pointer/array/vector index. If there is no offset, life is simple, return 510 // the index. 511 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 512 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 513 if (Offset == 0) { 514 // Cast to intptrty in case a truncation occurs. If an extension is needed, 515 // we don't need to bother extending: the extension won't affect where the 516 // computation crosses zero. 517 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 518 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 519 } 520 return VariableIdx; 521 } 522 523 // Otherwise, there is an index. The computation we will do will be modulo 524 // the pointer size. 525 Offset = SignExtend64(Offset, IntPtrWidth); 526 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 527 528 // To do this transformation, any constant index must be a multiple of the 529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 531 // multiple of the variable scale. 532 int64_t NewOffs = Offset / (int64_t)VariableScale; 533 if (Offset != NewOffs*(int64_t)VariableScale) 534 return nullptr; 535 536 // Okay, we can do this evaluation. Start by converting the index to intptr. 537 if (VariableIdx->getType() != IntPtrTy) 538 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 539 true /*Signed*/); 540 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 541 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 542 } 543 544 /// Returns true if we can rewrite Start as a GEP with pointer Base 545 /// and some integer offset. The nodes that need to be re-written 546 /// for this transformation will be added to Explored. 547 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 548 const DataLayout &DL, 549 SetVector<Value *> &Explored) { 550 SmallVector<Value *, 16> WorkList(1, Start); 551 Explored.insert(Base); 552 553 // The following traversal gives us an order which can be used 554 // when doing the final transformation. Since in the final 555 // transformation we create the PHI replacement instructions first, 556 // we don't have to get them in any particular order. 557 // 558 // However, for other instructions we will have to traverse the 559 // operands of an instruction first, which means that we have to 560 // do a post-order traversal. 561 while (!WorkList.empty()) { 562 SetVector<PHINode *> PHIs; 563 564 while (!WorkList.empty()) { 565 if (Explored.size() >= 100) 566 return false; 567 568 Value *V = WorkList.back(); 569 570 if (Explored.count(V) != 0) { 571 WorkList.pop_back(); 572 continue; 573 } 574 575 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 576 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 577 // We've found some value that we can't explore which is different from 578 // the base. Therefore we can't do this transformation. 579 return false; 580 581 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 582 auto *CI = dyn_cast<CastInst>(V); 583 if (!CI->isNoopCast(DL)) 584 return false; 585 586 if (Explored.count(CI->getOperand(0)) == 0) 587 WorkList.push_back(CI->getOperand(0)); 588 } 589 590 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 591 // We're limiting the GEP to having one index. This will preserve 592 // the original pointer type. We could handle more cases in the 593 // future. 594 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 595 GEP->getType() != Start->getType()) 596 return false; 597 598 if (Explored.count(GEP->getOperand(0)) == 0) 599 WorkList.push_back(GEP->getOperand(0)); 600 } 601 602 if (WorkList.back() == V) { 603 WorkList.pop_back(); 604 // We've finished visiting this node, mark it as such. 605 Explored.insert(V); 606 } 607 608 if (auto *PN = dyn_cast<PHINode>(V)) { 609 // We cannot transform PHIs on unsplittable basic blocks. 610 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 611 return false; 612 Explored.insert(PN); 613 PHIs.insert(PN); 614 } 615 } 616 617 // Explore the PHI nodes further. 618 for (auto *PN : PHIs) 619 for (Value *Op : PN->incoming_values()) 620 if (Explored.count(Op) == 0) 621 WorkList.push_back(Op); 622 } 623 624 // Make sure that we can do this. Since we can't insert GEPs in a basic 625 // block before a PHI node, we can't easily do this transformation if 626 // we have PHI node users of transformed instructions. 627 for (Value *Val : Explored) { 628 for (Value *Use : Val->uses()) { 629 630 auto *PHI = dyn_cast<PHINode>(Use); 631 auto *Inst = dyn_cast<Instruction>(Val); 632 633 if (Inst == Base || Inst == PHI || !Inst || !PHI || 634 Explored.count(PHI) == 0) 635 continue; 636 637 if (PHI->getParent() == Inst->getParent()) 638 return false; 639 } 640 } 641 return true; 642 } 643 644 // Sets the appropriate insert point on Builder where we can add 645 // a replacement Instruction for V (if that is possible). 646 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 647 bool Before = true) { 648 if (auto *PHI = dyn_cast<PHINode>(V)) { 649 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 650 return; 651 } 652 if (auto *I = dyn_cast<Instruction>(V)) { 653 if (!Before) 654 I = &*std::next(I->getIterator()); 655 Builder.SetInsertPoint(I); 656 return; 657 } 658 if (auto *A = dyn_cast<Argument>(V)) { 659 // Set the insertion point in the entry block. 660 BasicBlock &Entry = A->getParent()->getEntryBlock(); 661 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 662 return; 663 } 664 // Otherwise, this is a constant and we don't need to set a new 665 // insertion point. 666 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 667 } 668 669 /// Returns a re-written value of Start as an indexed GEP using Base as a 670 /// pointer. 671 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 672 const DataLayout &DL, 673 SetVector<Value *> &Explored) { 674 // Perform all the substitutions. This is a bit tricky because we can 675 // have cycles in our use-def chains. 676 // 1. Create the PHI nodes without any incoming values. 677 // 2. Create all the other values. 678 // 3. Add the edges for the PHI nodes. 679 // 4. Emit GEPs to get the original pointers. 680 // 5. Remove the original instructions. 681 Type *IndexType = IntegerType::get( 682 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 683 684 DenseMap<Value *, Value *> NewInsts; 685 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 686 687 // Create the new PHI nodes, without adding any incoming values. 688 for (Value *Val : Explored) { 689 if (Val == Base) 690 continue; 691 // Create empty phi nodes. This avoids cyclic dependencies when creating 692 // the remaining instructions. 693 if (auto *PHI = dyn_cast<PHINode>(Val)) 694 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 695 PHI->getName() + ".idx", PHI); 696 } 697 IRBuilder<> Builder(Base->getContext()); 698 699 // Create all the other instructions. 700 for (Value *Val : Explored) { 701 702 if (NewInsts.find(Val) != NewInsts.end()) 703 continue; 704 705 if (auto *CI = dyn_cast<CastInst>(Val)) { 706 // Don't get rid of the intermediate variable here; the store can grow 707 // the map which will invalidate the reference to the input value. 708 Value *V = NewInsts[CI->getOperand(0)]; 709 NewInsts[CI] = V; 710 continue; 711 } 712 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 713 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 714 : GEP->getOperand(1); 715 setInsertionPoint(Builder, GEP); 716 // Indices might need to be sign extended. GEPs will magically do 717 // this, but we need to do it ourselves here. 718 if (Index->getType()->getScalarSizeInBits() != 719 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 720 Index = Builder.CreateSExtOrTrunc( 721 Index, NewInsts[GEP->getOperand(0)]->getType(), 722 GEP->getOperand(0)->getName() + ".sext"); 723 } 724 725 auto *Op = NewInsts[GEP->getOperand(0)]; 726 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 727 NewInsts[GEP] = Index; 728 else 729 NewInsts[GEP] = Builder.CreateNSWAdd( 730 Op, Index, GEP->getOperand(0)->getName() + ".add"); 731 continue; 732 } 733 if (isa<PHINode>(Val)) 734 continue; 735 736 llvm_unreachable("Unexpected instruction type"); 737 } 738 739 // Add the incoming values to the PHI nodes. 740 for (Value *Val : Explored) { 741 if (Val == Base) 742 continue; 743 // All the instructions have been created, we can now add edges to the 744 // phi nodes. 745 if (auto *PHI = dyn_cast<PHINode>(Val)) { 746 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 747 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 748 Value *NewIncoming = PHI->getIncomingValue(I); 749 750 if (NewInsts.find(NewIncoming) != NewInsts.end()) 751 NewIncoming = NewInsts[NewIncoming]; 752 753 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 754 } 755 } 756 } 757 758 for (Value *Val : Explored) { 759 if (Val == Base) 760 continue; 761 762 // Depending on the type, for external users we have to emit 763 // a GEP or a GEP + ptrtoint. 764 setInsertionPoint(Builder, Val, false); 765 766 // If required, create an inttoptr instruction for Base. 767 Value *NewBase = Base; 768 if (!Base->getType()->isPointerTy()) 769 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 770 Start->getName() + "to.ptr"); 771 772 Value *GEP = Builder.CreateInBoundsGEP( 773 Start->getType()->getPointerElementType(), NewBase, 774 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 775 776 if (!Val->getType()->isPointerTy()) { 777 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 778 Val->getName() + ".conv"); 779 GEP = Cast; 780 } 781 Val->replaceAllUsesWith(GEP); 782 } 783 784 return NewInsts[Start]; 785 } 786 787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 788 /// the input Value as a constant indexed GEP. Returns a pair containing 789 /// the GEPs Pointer and Index. 790 static std::pair<Value *, Value *> 791 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 792 Type *IndexType = IntegerType::get(V->getContext(), 793 DL.getIndexTypeSizeInBits(V->getType())); 794 795 Constant *Index = ConstantInt::getNullValue(IndexType); 796 while (true) { 797 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 798 // We accept only inbouds GEPs here to exclude the possibility of 799 // overflow. 800 if (!GEP->isInBounds()) 801 break; 802 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 803 GEP->getType() == V->getType()) { 804 V = GEP->getOperand(0); 805 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 806 Index = ConstantExpr::getAdd( 807 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 808 continue; 809 } 810 break; 811 } 812 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 813 if (!CI->isNoopCast(DL)) 814 break; 815 V = CI->getOperand(0); 816 continue; 817 } 818 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 819 if (!CI->isNoopCast(DL)) 820 break; 821 V = CI->getOperand(0); 822 continue; 823 } 824 break; 825 } 826 return {V, Index}; 827 } 828 829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 830 /// We can look through PHIs, GEPs and casts in order to determine a common base 831 /// between GEPLHS and RHS. 832 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 833 ICmpInst::Predicate Cond, 834 const DataLayout &DL) { 835 // FIXME: Support vector of pointers. 836 if (GEPLHS->getType()->isVectorTy()) 837 return nullptr; 838 839 if (!GEPLHS->hasAllConstantIndices()) 840 return nullptr; 841 842 // Make sure the pointers have the same type. 843 if (GEPLHS->getType() != RHS->getType()) 844 return nullptr; 845 846 Value *PtrBase, *Index; 847 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 848 849 // The set of nodes that will take part in this transformation. 850 SetVector<Value *> Nodes; 851 852 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 853 return nullptr; 854 855 // We know we can re-write this as 856 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 857 // Since we've only looked through inbouds GEPs we know that we 858 // can't have overflow on either side. We can therefore re-write 859 // this as: 860 // OFFSET1 cmp OFFSET2 861 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 862 863 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 864 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 865 // offset. Since Index is the offset of LHS to the base pointer, we will now 866 // compare the offsets instead of comparing the pointers. 867 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 868 } 869 870 /// Fold comparisons between a GEP instruction and something else. At this point 871 /// we know that the GEP is on the LHS of the comparison. 872 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 873 ICmpInst::Predicate Cond, 874 Instruction &I) { 875 // Don't transform signed compares of GEPs into index compares. Even if the 876 // GEP is inbounds, the final add of the base pointer can have signed overflow 877 // and would change the result of the icmp. 878 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 879 // the maximum signed value for the pointer type. 880 if (ICmpInst::isSigned(Cond)) 881 return nullptr; 882 883 // Look through bitcasts and addrspacecasts. We do not however want to remove 884 // 0 GEPs. 885 if (!isa<GetElementPtrInst>(RHS)) 886 RHS = RHS->stripPointerCasts(); 887 888 Value *PtrBase = GEPLHS->getOperand(0); 889 // FIXME: Support vector pointer GEPs. 890 if (PtrBase == RHS && GEPLHS->isInBounds() && 891 !GEPLHS->getType()->isVectorTy()) { 892 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 893 // This transformation (ignoring the base and scales) is valid because we 894 // know pointers can't overflow since the gep is inbounds. See if we can 895 // output an optimized form. 896 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 897 898 // If not, synthesize the offset the hard way. 899 if (!Offset) 900 Offset = EmitGEPOffset(GEPLHS); 901 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 902 Constant::getNullValue(Offset->getType())); 903 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 904 // If the base pointers are different, but the indices are the same, just 905 // compare the base pointer. 906 if (PtrBase != GEPRHS->getOperand(0)) { 907 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 908 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 909 GEPRHS->getOperand(0)->getType(); 910 if (IndicesTheSame) 911 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 912 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 913 IndicesTheSame = false; 914 break; 915 } 916 917 // If all indices are the same, just compare the base pointers. 918 Type *BaseType = GEPLHS->getOperand(0)->getType(); 919 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 920 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 921 922 // If we're comparing GEPs with two base pointers that only differ in type 923 // and both GEPs have only constant indices or just one use, then fold 924 // the compare with the adjusted indices. 925 // FIXME: Support vector of pointers. 926 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 927 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 928 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 929 PtrBase->stripPointerCasts() == 930 GEPRHS->getOperand(0)->stripPointerCasts() && 931 !GEPLHS->getType()->isVectorTy()) { 932 Value *LOffset = EmitGEPOffset(GEPLHS); 933 Value *ROffset = EmitGEPOffset(GEPRHS); 934 935 // If we looked through an addrspacecast between different sized address 936 // spaces, the LHS and RHS pointers are different sized 937 // integers. Truncate to the smaller one. 938 Type *LHSIndexTy = LOffset->getType(); 939 Type *RHSIndexTy = ROffset->getType(); 940 if (LHSIndexTy != RHSIndexTy) { 941 if (LHSIndexTy->getPrimitiveSizeInBits() < 942 RHSIndexTy->getPrimitiveSizeInBits()) { 943 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 944 } else 945 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 946 } 947 948 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 949 LOffset, ROffset); 950 return replaceInstUsesWith(I, Cmp); 951 } 952 953 // Otherwise, the base pointers are different and the indices are 954 // different. Try convert this to an indexed compare by looking through 955 // PHIs/casts. 956 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 957 } 958 959 // If one of the GEPs has all zero indices, recurse. 960 if (GEPLHS->hasAllZeroIndices()) 961 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 962 ICmpInst::getSwappedPredicate(Cond), I); 963 964 // If the other GEP has all zero indices, recurse. 965 if (GEPRHS->hasAllZeroIndices()) 966 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 967 968 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 969 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 970 // If the GEPs only differ by one index, compare it. 971 unsigned NumDifferences = 0; // Keep track of # differences. 972 unsigned DiffOperand = 0; // The operand that differs. 973 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 974 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 975 Type *LHSType = GEPLHS->getOperand(i)->getType(); 976 Type *RHSType = GEPRHS->getOperand(i)->getType(); 977 // FIXME: Better support for vector of pointers. 978 if (LHSType->getPrimitiveSizeInBits() != 979 RHSType->getPrimitiveSizeInBits() || 980 (GEPLHS->getType()->isVectorTy() && 981 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 982 // Irreconcilable differences. 983 NumDifferences = 2; 984 break; 985 } 986 987 if (NumDifferences++) break; 988 DiffOperand = i; 989 } 990 991 if (NumDifferences == 0) // SAME GEP? 992 return replaceInstUsesWith(I, // No comparison is needed here. 993 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 994 995 else if (NumDifferences == 1 && GEPsInBounds) { 996 Value *LHSV = GEPLHS->getOperand(DiffOperand); 997 Value *RHSV = GEPRHS->getOperand(DiffOperand); 998 // Make sure we do a signed comparison here. 999 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1000 } 1001 } 1002 1003 // Only lower this if the icmp is the only user of the GEP or if we expect 1004 // the result to fold to a constant! 1005 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1006 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1007 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1008 Value *L = EmitGEPOffset(GEPLHS); 1009 Value *R = EmitGEPOffset(GEPRHS); 1010 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1011 } 1012 } 1013 1014 // Try convert this to an indexed compare by looking through PHIs/casts as a 1015 // last resort. 1016 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1017 } 1018 1019 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1020 const AllocaInst *Alloca, 1021 const Value *Other) { 1022 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1023 1024 // It would be tempting to fold away comparisons between allocas and any 1025 // pointer not based on that alloca (e.g. an argument). However, even 1026 // though such pointers cannot alias, they can still compare equal. 1027 // 1028 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1029 // doesn't escape we can argue that it's impossible to guess its value, and we 1030 // can therefore act as if any such guesses are wrong. 1031 // 1032 // The code below checks that the alloca doesn't escape, and that it's only 1033 // used in a comparison once (the current instruction). The 1034 // single-comparison-use condition ensures that we're trivially folding all 1035 // comparisons against the alloca consistently, and avoids the risk of 1036 // erroneously folding a comparison of the pointer with itself. 1037 1038 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1039 1040 SmallVector<const Use *, 32> Worklist; 1041 for (const Use &U : Alloca->uses()) { 1042 if (Worklist.size() >= MaxIter) 1043 return nullptr; 1044 Worklist.push_back(&U); 1045 } 1046 1047 unsigned NumCmps = 0; 1048 while (!Worklist.empty()) { 1049 assert(Worklist.size() <= MaxIter); 1050 const Use *U = Worklist.pop_back_val(); 1051 const Value *V = U->getUser(); 1052 --MaxIter; 1053 1054 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1055 isa<SelectInst>(V)) { 1056 // Track the uses. 1057 } else if (isa<LoadInst>(V)) { 1058 // Loading from the pointer doesn't escape it. 1059 continue; 1060 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1061 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1062 if (SI->getValueOperand() == U->get()) 1063 return nullptr; 1064 continue; 1065 } else if (isa<ICmpInst>(V)) { 1066 if (NumCmps++) 1067 return nullptr; // Found more than one cmp. 1068 continue; 1069 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1070 switch (Intrin->getIntrinsicID()) { 1071 // These intrinsics don't escape or compare the pointer. Memset is safe 1072 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1073 // we don't allow stores, so src cannot point to V. 1074 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1075 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1076 continue; 1077 default: 1078 return nullptr; 1079 } 1080 } else { 1081 return nullptr; 1082 } 1083 for (const Use &U : V->uses()) { 1084 if (Worklist.size() >= MaxIter) 1085 return nullptr; 1086 Worklist.push_back(&U); 1087 } 1088 } 1089 1090 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1091 return replaceInstUsesWith( 1092 ICI, 1093 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1094 } 1095 1096 /// Fold "icmp pred (X+C), X". 1097 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1098 ICmpInst::Predicate Pred) { 1099 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1100 // so the values can never be equal. Similarly for all other "or equals" 1101 // operators. 1102 assert(!!C && "C should not be zero!"); 1103 1104 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1105 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1106 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1107 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1108 Constant *R = ConstantInt::get(X->getType(), 1109 APInt::getMaxValue(C.getBitWidth()) - C); 1110 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1111 } 1112 1113 // (X+1) >u X --> X <u (0-1) --> X != 255 1114 // (X+2) >u X --> X <u (0-2) --> X <u 254 1115 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1116 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1117 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1118 ConstantInt::get(X->getType(), -C)); 1119 1120 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1121 1122 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1123 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1124 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1125 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1126 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1127 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1128 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1129 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1130 ConstantInt::get(X->getType(), SMax - C)); 1131 1132 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1133 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1134 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1135 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1136 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1137 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1138 1139 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1140 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1141 ConstantInt::get(X->getType(), SMax - (C - 1))); 1142 } 1143 1144 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1145 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1146 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1147 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1148 const APInt &AP1, 1149 const APInt &AP2) { 1150 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1151 1152 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1153 if (I.getPredicate() == I.ICMP_NE) 1154 Pred = CmpInst::getInversePredicate(Pred); 1155 return new ICmpInst(Pred, LHS, RHS); 1156 }; 1157 1158 // Don't bother doing any work for cases which InstSimplify handles. 1159 if (AP2.isNullValue()) 1160 return nullptr; 1161 1162 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1163 if (IsAShr) { 1164 if (AP2.isAllOnesValue()) 1165 return nullptr; 1166 if (AP2.isNegative() != AP1.isNegative()) 1167 return nullptr; 1168 if (AP2.sgt(AP1)) 1169 return nullptr; 1170 } 1171 1172 if (!AP1) 1173 // 'A' must be large enough to shift out the highest set bit. 1174 return getICmp(I.ICMP_UGT, A, 1175 ConstantInt::get(A->getType(), AP2.logBase2())); 1176 1177 if (AP1 == AP2) 1178 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1179 1180 int Shift; 1181 if (IsAShr && AP1.isNegative()) 1182 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1183 else 1184 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1185 1186 if (Shift > 0) { 1187 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1188 // There are multiple solutions if we are comparing against -1 and the LHS 1189 // of the ashr is not a power of two. 1190 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1191 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1192 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1193 } else if (AP1 == AP2.lshr(Shift)) { 1194 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1195 } 1196 } 1197 1198 // Shifting const2 will never be equal to const1. 1199 // FIXME: This should always be handled by InstSimplify? 1200 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1201 return replaceInstUsesWith(I, TorF); 1202 } 1203 1204 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1205 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1206 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1207 const APInt &AP1, 1208 const APInt &AP2) { 1209 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1210 1211 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1212 if (I.getPredicate() == I.ICMP_NE) 1213 Pred = CmpInst::getInversePredicate(Pred); 1214 return new ICmpInst(Pred, LHS, RHS); 1215 }; 1216 1217 // Don't bother doing any work for cases which InstSimplify handles. 1218 if (AP2.isNullValue()) 1219 return nullptr; 1220 1221 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1222 1223 if (!AP1 && AP2TrailingZeros != 0) 1224 return getICmp( 1225 I.ICMP_UGE, A, 1226 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1227 1228 if (AP1 == AP2) 1229 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1230 1231 // Get the distance between the lowest bits that are set. 1232 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1233 1234 if (Shift > 0 && AP2.shl(Shift) == AP1) 1235 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1236 1237 // Shifting const2 will never be equal to const1. 1238 // FIXME: This should always be handled by InstSimplify? 1239 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1240 return replaceInstUsesWith(I, TorF); 1241 } 1242 1243 /// The caller has matched a pattern of the form: 1244 /// I = icmp ugt (add (add A, B), CI2), CI1 1245 /// If this is of the form: 1246 /// sum = a + b 1247 /// if (sum+128 >u 255) 1248 /// Then replace it with llvm.sadd.with.overflow.i8. 1249 /// 1250 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1251 ConstantInt *CI2, ConstantInt *CI1, 1252 InstCombiner &IC) { 1253 // The transformation we're trying to do here is to transform this into an 1254 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1255 // with a narrower add, and discard the add-with-constant that is part of the 1256 // range check (if we can't eliminate it, this isn't profitable). 1257 1258 // In order to eliminate the add-with-constant, the compare can be its only 1259 // use. 1260 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1261 if (!AddWithCst->hasOneUse()) 1262 return nullptr; 1263 1264 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1265 if (!CI2->getValue().isPowerOf2()) 1266 return nullptr; 1267 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1268 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1269 return nullptr; 1270 1271 // The width of the new add formed is 1 more than the bias. 1272 ++NewWidth; 1273 1274 // Check to see that CI1 is an all-ones value with NewWidth bits. 1275 if (CI1->getBitWidth() == NewWidth || 1276 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1277 return nullptr; 1278 1279 // This is only really a signed overflow check if the inputs have been 1280 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1281 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1282 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1283 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1284 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1285 return nullptr; 1286 1287 // In order to replace the original add with a narrower 1288 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1289 // and truncates that discard the high bits of the add. Verify that this is 1290 // the case. 1291 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1292 for (User *U : OrigAdd->users()) { 1293 if (U == AddWithCst) 1294 continue; 1295 1296 // Only accept truncates for now. We would really like a nice recursive 1297 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1298 // chain to see which bits of a value are actually demanded. If the 1299 // original add had another add which was then immediately truncated, we 1300 // could still do the transformation. 1301 TruncInst *TI = dyn_cast<TruncInst>(U); 1302 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1303 return nullptr; 1304 } 1305 1306 // If the pattern matches, truncate the inputs to the narrower type and 1307 // use the sadd_with_overflow intrinsic to efficiently compute both the 1308 // result and the overflow bit. 1309 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1310 Function *F = Intrinsic::getDeclaration( 1311 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1312 1313 InstCombiner::BuilderTy &Builder = IC.Builder; 1314 1315 // Put the new code above the original add, in case there are any uses of the 1316 // add between the add and the compare. 1317 Builder.SetInsertPoint(OrigAdd); 1318 1319 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1320 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1321 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1322 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1323 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1324 1325 // The inner add was the result of the narrow add, zero extended to the 1326 // wider type. Replace it with the result computed by the intrinsic. 1327 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1328 1329 // The original icmp gets replaced with the overflow value. 1330 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1331 } 1332 1333 // Handle icmp pred X, 0 1334 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1335 CmpInst::Predicate Pred = Cmp.getPredicate(); 1336 if (!match(Cmp.getOperand(1), m_Zero())) 1337 return nullptr; 1338 1339 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1340 if (Pred == ICmpInst::ICMP_SGT) { 1341 Value *A, *B; 1342 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1343 if (SPR.Flavor == SPF_SMIN) { 1344 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1345 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1346 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1347 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1348 } 1349 } 1350 1351 // Given: 1352 // icmp eq/ne (urem %x, %y), 0 1353 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1354 // icmp eq/ne %x, 0 1355 Value *X, *Y; 1356 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1357 ICmpInst::isEquality(Pred)) { 1358 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1359 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1360 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1361 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1362 } 1363 1364 return nullptr; 1365 } 1366 1367 /// Fold icmp Pred X, C. 1368 /// TODO: This code structure does not make sense. The saturating add fold 1369 /// should be moved to some other helper and extended as noted below (it is also 1370 /// possible that code has been made unnecessary - do we canonicalize IR to 1371 /// overflow/saturating intrinsics or not?). 1372 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1373 // Match the following pattern, which is a common idiom when writing 1374 // overflow-safe integer arithmetic functions. The source performs an addition 1375 // in wider type and explicitly checks for overflow using comparisons against 1376 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1377 // 1378 // TODO: This could probably be generalized to handle other overflow-safe 1379 // operations if we worked out the formulas to compute the appropriate magic 1380 // constants. 1381 // 1382 // sum = a + b 1383 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1384 CmpInst::Predicate Pred = Cmp.getPredicate(); 1385 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1386 Value *A, *B; 1387 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1388 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1389 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1390 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1391 return Res; 1392 1393 return nullptr; 1394 } 1395 1396 /// Canonicalize icmp instructions based on dominating conditions. 1397 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1398 // This is a cheap/incomplete check for dominance - just match a single 1399 // predecessor with a conditional branch. 1400 BasicBlock *CmpBB = Cmp.getParent(); 1401 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1402 if (!DomBB) 1403 return nullptr; 1404 1405 Value *DomCond; 1406 BasicBlock *TrueBB, *FalseBB; 1407 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1408 return nullptr; 1409 1410 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1411 "Predecessor block does not point to successor?"); 1412 1413 // The branch should get simplified. Don't bother simplifying this condition. 1414 if (TrueBB == FalseBB) 1415 return nullptr; 1416 1417 // Try to simplify this compare to T/F based on the dominating condition. 1418 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1419 if (Imp) 1420 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1421 1422 CmpInst::Predicate Pred = Cmp.getPredicate(); 1423 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1424 ICmpInst::Predicate DomPred; 1425 const APInt *C, *DomC; 1426 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1427 match(Y, m_APInt(C))) { 1428 // We have 2 compares of a variable with constants. Calculate the constant 1429 // ranges of those compares to see if we can transform the 2nd compare: 1430 // DomBB: 1431 // DomCond = icmp DomPred X, DomC 1432 // br DomCond, CmpBB, FalseBB 1433 // CmpBB: 1434 // Cmp = icmp Pred X, C 1435 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1436 ConstantRange DominatingCR = 1437 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1438 : ConstantRange::makeExactICmpRegion( 1439 CmpInst::getInversePredicate(DomPred), *DomC); 1440 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1441 ConstantRange Difference = DominatingCR.difference(CR); 1442 if (Intersection.isEmptySet()) 1443 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1444 if (Difference.isEmptySet()) 1445 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1446 1447 // Canonicalizing a sign bit comparison that gets used in a branch, 1448 // pessimizes codegen by generating branch on zero instruction instead 1449 // of a test and branch. So we avoid canonicalizing in such situations 1450 // because test and branch instruction has better branch displacement 1451 // than compare and branch instruction. 1452 bool UnusedBit; 1453 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1454 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1455 return nullptr; 1456 1457 if (const APInt *EqC = Intersection.getSingleElement()) 1458 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1459 if (const APInt *NeC = Difference.getSingleElement()) 1460 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1461 } 1462 1463 return nullptr; 1464 } 1465 1466 /// Fold icmp (trunc X, Y), C. 1467 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1468 TruncInst *Trunc, 1469 const APInt &C) { 1470 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1471 Value *X = Trunc->getOperand(0); 1472 if (C.isOneValue() && C.getBitWidth() > 1) { 1473 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1474 Value *V = nullptr; 1475 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1476 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1477 ConstantInt::get(V->getType(), 1)); 1478 } 1479 1480 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1481 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1482 // of the high bits truncated out of x are known. 1483 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1484 SrcBits = X->getType()->getScalarSizeInBits(); 1485 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1486 1487 // If all the high bits are known, we can do this xform. 1488 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1489 // Pull in the high bits from known-ones set. 1490 APInt NewRHS = C.zext(SrcBits); 1491 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1492 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1493 } 1494 } 1495 1496 return nullptr; 1497 } 1498 1499 /// Fold icmp (xor X, Y), C. 1500 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1501 BinaryOperator *Xor, 1502 const APInt &C) { 1503 Value *X = Xor->getOperand(0); 1504 Value *Y = Xor->getOperand(1); 1505 const APInt *XorC; 1506 if (!match(Y, m_APInt(XorC))) 1507 return nullptr; 1508 1509 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1510 // fold the xor. 1511 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1512 bool TrueIfSigned = false; 1513 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1514 1515 // If the sign bit of the XorCst is not set, there is no change to 1516 // the operation, just stop using the Xor. 1517 if (!XorC->isNegative()) { 1518 Cmp.setOperand(0, X); 1519 Worklist.Add(Xor); 1520 return &Cmp; 1521 } 1522 1523 // Emit the opposite comparison. 1524 if (TrueIfSigned) 1525 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1526 ConstantInt::getAllOnesValue(X->getType())); 1527 else 1528 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1529 ConstantInt::getNullValue(X->getType())); 1530 } 1531 1532 if (Xor->hasOneUse()) { 1533 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1534 if (!Cmp.isEquality() && XorC->isSignMask()) { 1535 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1536 : Cmp.getSignedPredicate(); 1537 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1538 } 1539 1540 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1541 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1542 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1543 : Cmp.getSignedPredicate(); 1544 Pred = Cmp.getSwappedPredicate(Pred); 1545 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1546 } 1547 } 1548 1549 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1550 if (Pred == ICmpInst::ICMP_UGT) { 1551 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1552 if (*XorC == ~C && (C + 1).isPowerOf2()) 1553 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1554 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1555 if (*XorC == C && (C + 1).isPowerOf2()) 1556 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1557 } 1558 if (Pred == ICmpInst::ICMP_ULT) { 1559 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1560 if (*XorC == -C && C.isPowerOf2()) 1561 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1562 ConstantInt::get(X->getType(), ~C)); 1563 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1564 if (*XorC == C && (-C).isPowerOf2()) 1565 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1566 ConstantInt::get(X->getType(), ~C)); 1567 } 1568 return nullptr; 1569 } 1570 1571 /// Fold icmp (and (sh X, Y), C2), C1. 1572 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1573 const APInt &C1, const APInt &C2) { 1574 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1575 if (!Shift || !Shift->isShift()) 1576 return nullptr; 1577 1578 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1579 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1580 // code produced by the clang front-end, for bitfield access. 1581 // This seemingly simple opportunity to fold away a shift turns out to be 1582 // rather complicated. See PR17827 for details. 1583 unsigned ShiftOpcode = Shift->getOpcode(); 1584 bool IsShl = ShiftOpcode == Instruction::Shl; 1585 const APInt *C3; 1586 if (match(Shift->getOperand(1), m_APInt(C3))) { 1587 bool CanFold = false; 1588 if (ShiftOpcode == Instruction::Shl) { 1589 // For a left shift, we can fold if the comparison is not signed. We can 1590 // also fold a signed comparison if the mask value and comparison value 1591 // are not negative. These constraints may not be obvious, but we can 1592 // prove that they are correct using an SMT solver. 1593 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1594 CanFold = true; 1595 } else { 1596 bool IsAshr = ShiftOpcode == Instruction::AShr; 1597 // For a logical right shift, we can fold if the comparison is not signed. 1598 // We can also fold a signed comparison if the shifted mask value and the 1599 // shifted comparison value are not negative. These constraints may not be 1600 // obvious, but we can prove that they are correct using an SMT solver. 1601 // For an arithmetic shift right we can do the same, if we ensure 1602 // the And doesn't use any bits being shifted in. Normally these would 1603 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1604 // additional user. 1605 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1606 if (!Cmp.isSigned() || 1607 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1608 CanFold = true; 1609 } 1610 } 1611 1612 if (CanFold) { 1613 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1614 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1615 // Check to see if we are shifting out any of the bits being compared. 1616 if (SameAsC1 != C1) { 1617 // If we shifted bits out, the fold is not going to work out. As a 1618 // special case, check to see if this means that the result is always 1619 // true or false now. 1620 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1621 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1622 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1623 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1624 } else { 1625 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1626 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1627 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1628 And->setOperand(0, Shift->getOperand(0)); 1629 Worklist.Add(Shift); // Shift is dead. 1630 return &Cmp; 1631 } 1632 } 1633 } 1634 1635 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1636 // preferable because it allows the C2 << Y expression to be hoisted out of a 1637 // loop if Y is invariant and X is not. 1638 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1639 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1640 // Compute C2 << Y. 1641 Value *NewShift = 1642 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1643 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1644 1645 // Compute X & (C2 << Y). 1646 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1647 Cmp.setOperand(0, NewAnd); 1648 return &Cmp; 1649 } 1650 1651 return nullptr; 1652 } 1653 1654 /// Fold icmp (and X, C2), C1. 1655 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1656 BinaryOperator *And, 1657 const APInt &C1) { 1658 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1659 1660 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1661 // TODO: We canonicalize to the longer form for scalars because we have 1662 // better analysis/folds for icmp, and codegen may be better with icmp. 1663 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1664 match(And->getOperand(1), m_One())) 1665 return new TruncInst(And->getOperand(0), Cmp.getType()); 1666 1667 const APInt *C2; 1668 Value *X; 1669 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1670 return nullptr; 1671 1672 // Don't perform the following transforms if the AND has multiple uses 1673 if (!And->hasOneUse()) 1674 return nullptr; 1675 1676 if (Cmp.isEquality() && C1.isNullValue()) { 1677 // Restrict this fold to single-use 'and' (PR10267). 1678 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1679 if (C2->isSignMask()) { 1680 Constant *Zero = Constant::getNullValue(X->getType()); 1681 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1682 return new ICmpInst(NewPred, X, Zero); 1683 } 1684 1685 // Restrict this fold only for single-use 'and' (PR10267). 1686 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1687 if ((~(*C2) + 1).isPowerOf2()) { 1688 Constant *NegBOC = 1689 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1690 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1691 return new ICmpInst(NewPred, X, NegBOC); 1692 } 1693 } 1694 1695 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1696 // the input width without changing the value produced, eliminate the cast: 1697 // 1698 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1699 // 1700 // We can do this transformation if the constants do not have their sign bits 1701 // set or if it is an equality comparison. Extending a relational comparison 1702 // when we're checking the sign bit would not work. 1703 Value *W; 1704 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1705 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1706 // TODO: Is this a good transform for vectors? Wider types may reduce 1707 // throughput. Should this transform be limited (even for scalars) by using 1708 // shouldChangeType()? 1709 if (!Cmp.getType()->isVectorTy()) { 1710 Type *WideType = W->getType(); 1711 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1712 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1713 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1714 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1715 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1716 } 1717 } 1718 1719 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1720 return I; 1721 1722 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1723 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1724 // 1725 // iff pred isn't signed 1726 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1727 match(And->getOperand(1), m_One())) { 1728 Constant *One = cast<Constant>(And->getOperand(1)); 1729 Value *Or = And->getOperand(0); 1730 Value *A, *B, *LShr; 1731 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1732 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1733 unsigned UsesRemoved = 0; 1734 if (And->hasOneUse()) 1735 ++UsesRemoved; 1736 if (Or->hasOneUse()) 1737 ++UsesRemoved; 1738 if (LShr->hasOneUse()) 1739 ++UsesRemoved; 1740 1741 // Compute A & ((1 << B) | 1) 1742 Value *NewOr = nullptr; 1743 if (auto *C = dyn_cast<Constant>(B)) { 1744 if (UsesRemoved >= 1) 1745 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1746 } else { 1747 if (UsesRemoved >= 3) 1748 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1749 /*HasNUW=*/true), 1750 One, Or->getName()); 1751 } 1752 if (NewOr) { 1753 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1754 Cmp.setOperand(0, NewAnd); 1755 return &Cmp; 1756 } 1757 } 1758 } 1759 1760 return nullptr; 1761 } 1762 1763 /// Fold icmp (and X, Y), C. 1764 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1765 BinaryOperator *And, 1766 const APInt &C) { 1767 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1768 return I; 1769 1770 // TODO: These all require that Y is constant too, so refactor with the above. 1771 1772 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1773 Value *X = And->getOperand(0); 1774 Value *Y = And->getOperand(1); 1775 if (auto *LI = dyn_cast<LoadInst>(X)) 1776 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1777 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1778 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1779 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1780 ConstantInt *C2 = cast<ConstantInt>(Y); 1781 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1782 return Res; 1783 } 1784 1785 if (!Cmp.isEquality()) 1786 return nullptr; 1787 1788 // X & -C == -C -> X > u ~C 1789 // X & -C != -C -> X <= u ~C 1790 // iff C is a power of 2 1791 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1792 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1793 : CmpInst::ICMP_ULE; 1794 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1795 } 1796 1797 // (X & C2) == 0 -> (trunc X) >= 0 1798 // (X & C2) != 0 -> (trunc X) < 0 1799 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1800 const APInt *C2; 1801 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1802 int32_t ExactLogBase2 = C2->exactLogBase2(); 1803 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1804 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1805 if (And->getType()->isVectorTy()) 1806 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1807 Value *Trunc = Builder.CreateTrunc(X, NTy); 1808 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1809 : CmpInst::ICMP_SLT; 1810 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1811 } 1812 } 1813 1814 return nullptr; 1815 } 1816 1817 /// Fold icmp (or X, Y), C. 1818 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1819 const APInt &C) { 1820 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1821 if (C.isOneValue()) { 1822 // icmp slt signum(V) 1 --> icmp slt V, 1 1823 Value *V = nullptr; 1824 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1825 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1826 ConstantInt::get(V->getType(), 1)); 1827 } 1828 1829 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1830 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1831 // X | C == C --> X <=u C 1832 // X | C != C --> X >u C 1833 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1834 if ((C + 1).isPowerOf2()) { 1835 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1836 return new ICmpInst(Pred, OrOp0, OrOp1); 1837 } 1838 // More general: are all bits outside of a mask constant set or not set? 1839 // X | C == C --> (X & ~C) == 0 1840 // X | C != C --> (X & ~C) != 0 1841 if (Or->hasOneUse()) { 1842 Value *A = Builder.CreateAnd(OrOp0, ~C); 1843 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1844 } 1845 } 1846 1847 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1848 return nullptr; 1849 1850 Value *P, *Q; 1851 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1852 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1853 // -> and (icmp eq P, null), (icmp eq Q, null). 1854 Value *CmpP = 1855 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1856 Value *CmpQ = 1857 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1858 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1859 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1860 } 1861 1862 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1863 // a shorter form that has more potential to be folded even further. 1864 Value *X1, *X2, *X3, *X4; 1865 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1866 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1867 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1868 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1869 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1870 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1871 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1872 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1873 } 1874 1875 return nullptr; 1876 } 1877 1878 /// Fold icmp (mul X, Y), C. 1879 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1880 BinaryOperator *Mul, 1881 const APInt &C) { 1882 const APInt *MulC; 1883 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1884 return nullptr; 1885 1886 // If this is a test of the sign bit and the multiply is sign-preserving with 1887 // a constant operand, use the multiply LHS operand instead. 1888 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1889 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1890 if (MulC->isNegative()) 1891 Pred = ICmpInst::getSwappedPredicate(Pred); 1892 return new ICmpInst(Pred, Mul->getOperand(0), 1893 Constant::getNullValue(Mul->getType())); 1894 } 1895 1896 return nullptr; 1897 } 1898 1899 /// Fold icmp (shl 1, Y), C. 1900 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1901 const APInt &C) { 1902 Value *Y; 1903 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1904 return nullptr; 1905 1906 Type *ShiftType = Shl->getType(); 1907 unsigned TypeBits = C.getBitWidth(); 1908 bool CIsPowerOf2 = C.isPowerOf2(); 1909 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1910 if (Cmp.isUnsigned()) { 1911 // (1 << Y) pred C -> Y pred Log2(C) 1912 if (!CIsPowerOf2) { 1913 // (1 << Y) < 30 -> Y <= 4 1914 // (1 << Y) <= 30 -> Y <= 4 1915 // (1 << Y) >= 30 -> Y > 4 1916 // (1 << Y) > 30 -> Y > 4 1917 if (Pred == ICmpInst::ICMP_ULT) 1918 Pred = ICmpInst::ICMP_ULE; 1919 else if (Pred == ICmpInst::ICMP_UGE) 1920 Pred = ICmpInst::ICMP_UGT; 1921 } 1922 1923 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1924 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1925 unsigned CLog2 = C.logBase2(); 1926 if (CLog2 == TypeBits - 1) { 1927 if (Pred == ICmpInst::ICMP_UGE) 1928 Pred = ICmpInst::ICMP_EQ; 1929 else if (Pred == ICmpInst::ICMP_ULT) 1930 Pred = ICmpInst::ICMP_NE; 1931 } 1932 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1933 } else if (Cmp.isSigned()) { 1934 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1935 if (C.isAllOnesValue()) { 1936 // (1 << Y) <= -1 -> Y == 31 1937 if (Pred == ICmpInst::ICMP_SLE) 1938 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1939 1940 // (1 << Y) > -1 -> Y != 31 1941 if (Pred == ICmpInst::ICMP_SGT) 1942 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1943 } else if (!C) { 1944 // (1 << Y) < 0 -> Y == 31 1945 // (1 << Y) <= 0 -> Y == 31 1946 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1947 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1948 1949 // (1 << Y) >= 0 -> Y != 31 1950 // (1 << Y) > 0 -> Y != 31 1951 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1952 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1953 } 1954 } else if (Cmp.isEquality() && CIsPowerOf2) { 1955 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1956 } 1957 1958 return nullptr; 1959 } 1960 1961 /// Fold icmp (shl X, Y), C. 1962 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1963 BinaryOperator *Shl, 1964 const APInt &C) { 1965 const APInt *ShiftVal; 1966 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1967 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1968 1969 const APInt *ShiftAmt; 1970 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1971 return foldICmpShlOne(Cmp, Shl, C); 1972 1973 // Check that the shift amount is in range. If not, don't perform undefined 1974 // shifts. When the shift is visited, it will be simplified. 1975 unsigned TypeBits = C.getBitWidth(); 1976 if (ShiftAmt->uge(TypeBits)) 1977 return nullptr; 1978 1979 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1980 Value *X = Shl->getOperand(0); 1981 Type *ShType = Shl->getType(); 1982 1983 // NSW guarantees that we are only shifting out sign bits from the high bits, 1984 // so we can ASHR the compare constant without needing a mask and eliminate 1985 // the shift. 1986 if (Shl->hasNoSignedWrap()) { 1987 if (Pred == ICmpInst::ICMP_SGT) { 1988 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1989 APInt ShiftedC = C.ashr(*ShiftAmt); 1990 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1991 } 1992 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1993 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1994 APInt ShiftedC = C.ashr(*ShiftAmt); 1995 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1996 } 1997 if (Pred == ICmpInst::ICMP_SLT) { 1998 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1999 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2000 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2001 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2002 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2003 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2004 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2005 } 2006 // If this is a signed comparison to 0 and the shift is sign preserving, 2007 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2008 // do that if we're sure to not continue on in this function. 2009 if (isSignTest(Pred, C)) 2010 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2011 } 2012 2013 // NUW guarantees that we are only shifting out zero bits from the high bits, 2014 // so we can LSHR the compare constant without needing a mask and eliminate 2015 // the shift. 2016 if (Shl->hasNoUnsignedWrap()) { 2017 if (Pred == ICmpInst::ICMP_UGT) { 2018 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2019 APInt ShiftedC = C.lshr(*ShiftAmt); 2020 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2021 } 2022 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2023 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2024 APInt ShiftedC = C.lshr(*ShiftAmt); 2025 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2026 } 2027 if (Pred == ICmpInst::ICMP_ULT) { 2028 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2029 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2030 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2031 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2032 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2033 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2034 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2035 } 2036 } 2037 2038 if (Cmp.isEquality() && Shl->hasOneUse()) { 2039 // Strength-reduce the shift into an 'and'. 2040 Constant *Mask = ConstantInt::get( 2041 ShType, 2042 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2043 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2044 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2045 return new ICmpInst(Pred, And, LShrC); 2046 } 2047 2048 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2049 bool TrueIfSigned = false; 2050 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2051 // (X << 31) <s 0 --> (X & 1) != 0 2052 Constant *Mask = ConstantInt::get( 2053 ShType, 2054 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2055 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2056 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2057 And, Constant::getNullValue(ShType)); 2058 } 2059 2060 // Simplify 'shl' inequality test into 'and' equality test. 2061 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2062 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2063 if ((C + 1).isPowerOf2() && 2064 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2065 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2066 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2067 : ICmpInst::ICMP_NE, 2068 And, Constant::getNullValue(ShType)); 2069 } 2070 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2071 if (C.isPowerOf2() && 2072 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2073 Value *And = 2074 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2075 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2076 : ICmpInst::ICMP_NE, 2077 And, Constant::getNullValue(ShType)); 2078 } 2079 } 2080 2081 // Transform (icmp pred iM (shl iM %v, N), C) 2082 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2083 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2084 // This enables us to get rid of the shift in favor of a trunc that may be 2085 // free on the target. It has the additional benefit of comparing to a 2086 // smaller constant that may be more target-friendly. 2087 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2088 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2089 DL.isLegalInteger(TypeBits - Amt)) { 2090 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2091 if (ShType->isVectorTy()) 2092 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2093 Constant *NewC = 2094 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2095 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2096 } 2097 2098 return nullptr; 2099 } 2100 2101 /// Fold icmp ({al}shr X, Y), C. 2102 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2103 BinaryOperator *Shr, 2104 const APInt &C) { 2105 // An exact shr only shifts out zero bits, so: 2106 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2107 Value *X = Shr->getOperand(0); 2108 CmpInst::Predicate Pred = Cmp.getPredicate(); 2109 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2110 C.isNullValue()) 2111 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2112 2113 const APInt *ShiftVal; 2114 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2115 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2116 2117 const APInt *ShiftAmt; 2118 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2119 return nullptr; 2120 2121 // Check that the shift amount is in range. If not, don't perform undefined 2122 // shifts. When the shift is visited it will be simplified. 2123 unsigned TypeBits = C.getBitWidth(); 2124 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2125 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2126 return nullptr; 2127 2128 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2129 bool IsExact = Shr->isExact(); 2130 Type *ShrTy = Shr->getType(); 2131 // TODO: If we could guarantee that InstSimplify would handle all of the 2132 // constant-value-based preconditions in the folds below, then we could assert 2133 // those conditions rather than checking them. This is difficult because of 2134 // undef/poison (PR34838). 2135 if (IsAShr) { 2136 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2137 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2138 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2139 APInt ShiftedC = C.shl(ShAmtVal); 2140 if (ShiftedC.ashr(ShAmtVal) == C) 2141 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2142 } 2143 if (Pred == CmpInst::ICMP_SGT) { 2144 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2145 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2146 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2147 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2148 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2149 } 2150 } else { 2151 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2152 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2153 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2154 APInt ShiftedC = C.shl(ShAmtVal); 2155 if (ShiftedC.lshr(ShAmtVal) == C) 2156 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2157 } 2158 if (Pred == CmpInst::ICMP_UGT) { 2159 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2160 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2161 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2162 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2163 } 2164 } 2165 2166 if (!Cmp.isEquality()) 2167 return nullptr; 2168 2169 // Handle equality comparisons of shift-by-constant. 2170 2171 // If the comparison constant changes with the shift, the comparison cannot 2172 // succeed (bits of the comparison constant cannot match the shifted value). 2173 // This should be known by InstSimplify and already be folded to true/false. 2174 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2175 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2176 "Expected icmp+shr simplify did not occur."); 2177 2178 // If the bits shifted out are known zero, compare the unshifted value: 2179 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2180 if (Shr->isExact()) 2181 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2182 2183 if (Shr->hasOneUse()) { 2184 // Canonicalize the shift into an 'and': 2185 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2186 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2187 Constant *Mask = ConstantInt::get(ShrTy, Val); 2188 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2189 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2190 } 2191 2192 return nullptr; 2193 } 2194 2195 /// Fold icmp (udiv X, Y), C. 2196 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2197 BinaryOperator *UDiv, 2198 const APInt &C) { 2199 const APInt *C2; 2200 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2201 return nullptr; 2202 2203 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2204 2205 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2206 Value *Y = UDiv->getOperand(1); 2207 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2208 assert(!C.isMaxValue() && 2209 "icmp ugt X, UINT_MAX should have been simplified already."); 2210 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2211 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2212 } 2213 2214 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2215 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2216 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2217 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2218 ConstantInt::get(Y->getType(), C2->udiv(C))); 2219 } 2220 2221 return nullptr; 2222 } 2223 2224 /// Fold icmp ({su}div X, Y), C. 2225 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2226 BinaryOperator *Div, 2227 const APInt &C) { 2228 // Fold: icmp pred ([us]div X, C2), C -> range test 2229 // Fold this div into the comparison, producing a range check. 2230 // Determine, based on the divide type, what the range is being 2231 // checked. If there is an overflow on the low or high side, remember 2232 // it, otherwise compute the range [low, hi) bounding the new value. 2233 // See: InsertRangeTest above for the kinds of replacements possible. 2234 const APInt *C2; 2235 if (!match(Div->getOperand(1), m_APInt(C2))) 2236 return nullptr; 2237 2238 // FIXME: If the operand types don't match the type of the divide 2239 // then don't attempt this transform. The code below doesn't have the 2240 // logic to deal with a signed divide and an unsigned compare (and 2241 // vice versa). This is because (x /s C2) <s C produces different 2242 // results than (x /s C2) <u C or (x /u C2) <s C or even 2243 // (x /u C2) <u C. Simply casting the operands and result won't 2244 // work. :( The if statement below tests that condition and bails 2245 // if it finds it. 2246 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2247 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2248 return nullptr; 2249 2250 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2251 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2252 // division-by-constant cases should be present, we can not assert that they 2253 // have happened before we reach this icmp instruction. 2254 if (C2->isNullValue() || C2->isOneValue() || 2255 (DivIsSigned && C2->isAllOnesValue())) 2256 return nullptr; 2257 2258 // Compute Prod = C * C2. We are essentially solving an equation of 2259 // form X / C2 = C. We solve for X by multiplying C2 and C. 2260 // By solving for X, we can turn this into a range check instead of computing 2261 // a divide. 2262 APInt Prod = C * *C2; 2263 2264 // Determine if the product overflows by seeing if the product is not equal to 2265 // the divide. Make sure we do the same kind of divide as in the LHS 2266 // instruction that we're folding. 2267 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2268 2269 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2270 2271 // If the division is known to be exact, then there is no remainder from the 2272 // divide, so the covered range size is unit, otherwise it is the divisor. 2273 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2274 2275 // Figure out the interval that is being checked. For example, a comparison 2276 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2277 // Compute this interval based on the constants involved and the signedness of 2278 // the compare/divide. This computes a half-open interval, keeping track of 2279 // whether either value in the interval overflows. After analysis each 2280 // overflow variable is set to 0 if it's corresponding bound variable is valid 2281 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2282 int LoOverflow = 0, HiOverflow = 0; 2283 APInt LoBound, HiBound; 2284 2285 if (!DivIsSigned) { // udiv 2286 // e.g. X/5 op 3 --> [15, 20) 2287 LoBound = Prod; 2288 HiOverflow = LoOverflow = ProdOV; 2289 if (!HiOverflow) { 2290 // If this is not an exact divide, then many values in the range collapse 2291 // to the same result value. 2292 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2293 } 2294 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2295 if (C.isNullValue()) { // (X / pos) op 0 2296 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2297 LoBound = -(RangeSize - 1); 2298 HiBound = RangeSize; 2299 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2300 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2301 HiOverflow = LoOverflow = ProdOV; 2302 if (!HiOverflow) 2303 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2304 } else { // (X / pos) op neg 2305 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2306 HiBound = Prod + 1; 2307 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2308 if (!LoOverflow) { 2309 APInt DivNeg = -RangeSize; 2310 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2311 } 2312 } 2313 } else if (C2->isNegative()) { // Divisor is < 0. 2314 if (Div->isExact()) 2315 RangeSize.negate(); 2316 if (C.isNullValue()) { // (X / neg) op 0 2317 // e.g. X/-5 op 0 --> [-4, 5) 2318 LoBound = RangeSize + 1; 2319 HiBound = -RangeSize; 2320 if (HiBound == *C2) { // -INTMIN = INTMIN 2321 HiOverflow = 1; // [INTMIN+1, overflow) 2322 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2323 } 2324 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2325 // e.g. X/-5 op 3 --> [-19, -14) 2326 HiBound = Prod + 1; 2327 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2328 if (!LoOverflow) 2329 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2330 } else { // (X / neg) op neg 2331 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2332 LoOverflow = HiOverflow = ProdOV; 2333 if (!HiOverflow) 2334 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2335 } 2336 2337 // Dividing by a negative swaps the condition. LT <-> GT 2338 Pred = ICmpInst::getSwappedPredicate(Pred); 2339 } 2340 2341 Value *X = Div->getOperand(0); 2342 switch (Pred) { 2343 default: llvm_unreachable("Unhandled icmp opcode!"); 2344 case ICmpInst::ICMP_EQ: 2345 if (LoOverflow && HiOverflow) 2346 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2347 if (HiOverflow) 2348 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2349 ICmpInst::ICMP_UGE, X, 2350 ConstantInt::get(Div->getType(), LoBound)); 2351 if (LoOverflow) 2352 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2353 ICmpInst::ICMP_ULT, X, 2354 ConstantInt::get(Div->getType(), HiBound)); 2355 return replaceInstUsesWith( 2356 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2357 case ICmpInst::ICMP_NE: 2358 if (LoOverflow && HiOverflow) 2359 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2360 if (HiOverflow) 2361 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2362 ICmpInst::ICMP_ULT, X, 2363 ConstantInt::get(Div->getType(), LoBound)); 2364 if (LoOverflow) 2365 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2366 ICmpInst::ICMP_UGE, X, 2367 ConstantInt::get(Div->getType(), HiBound)); 2368 return replaceInstUsesWith(Cmp, 2369 insertRangeTest(X, LoBound, HiBound, 2370 DivIsSigned, false)); 2371 case ICmpInst::ICMP_ULT: 2372 case ICmpInst::ICMP_SLT: 2373 if (LoOverflow == +1) // Low bound is greater than input range. 2374 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2375 if (LoOverflow == -1) // Low bound is less than input range. 2376 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2377 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2378 case ICmpInst::ICMP_UGT: 2379 case ICmpInst::ICMP_SGT: 2380 if (HiOverflow == +1) // High bound greater than input range. 2381 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2382 if (HiOverflow == -1) // High bound less than input range. 2383 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2384 if (Pred == ICmpInst::ICMP_UGT) 2385 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2386 ConstantInt::get(Div->getType(), HiBound)); 2387 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2388 ConstantInt::get(Div->getType(), HiBound)); 2389 } 2390 2391 return nullptr; 2392 } 2393 2394 /// Fold icmp (sub X, Y), C. 2395 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2396 BinaryOperator *Sub, 2397 const APInt &C) { 2398 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2399 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2400 const APInt *C2; 2401 APInt SubResult; 2402 2403 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2404 if (match(X, m_APInt(C2)) && 2405 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2406 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2407 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2408 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2409 ConstantInt::get(Y->getType(), SubResult)); 2410 2411 // The following transforms are only worth it if the only user of the subtract 2412 // is the icmp. 2413 if (!Sub->hasOneUse()) 2414 return nullptr; 2415 2416 if (Sub->hasNoSignedWrap()) { 2417 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2418 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2419 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2420 2421 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2422 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2423 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2424 2425 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2426 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2427 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2428 2429 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2430 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2431 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2432 } 2433 2434 if (!match(X, m_APInt(C2))) 2435 return nullptr; 2436 2437 // C2 - Y <u C -> (Y | (C - 1)) == C2 2438 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2439 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2440 (*C2 & (C - 1)) == (C - 1)) 2441 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2442 2443 // C2 - Y >u C -> (Y | C) != C2 2444 // iff C2 & C == C and C + 1 is a power of 2 2445 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2446 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2447 2448 return nullptr; 2449 } 2450 2451 /// Fold icmp (add X, Y), C. 2452 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2453 BinaryOperator *Add, 2454 const APInt &C) { 2455 Value *Y = Add->getOperand(1); 2456 const APInt *C2; 2457 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2458 return nullptr; 2459 2460 // Fold icmp pred (add X, C2), C. 2461 Value *X = Add->getOperand(0); 2462 Type *Ty = Add->getType(); 2463 CmpInst::Predicate Pred = Cmp.getPredicate(); 2464 2465 if (!Add->hasOneUse()) 2466 return nullptr; 2467 2468 // If the add does not wrap, we can always adjust the compare by subtracting 2469 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2470 // are canonicalized to SGT/SLT/UGT/ULT. 2471 if ((Add->hasNoSignedWrap() && 2472 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2473 (Add->hasNoUnsignedWrap() && 2474 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2475 bool Overflow; 2476 APInt NewC = 2477 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2478 // If there is overflow, the result must be true or false. 2479 // TODO: Can we assert there is no overflow because InstSimplify always 2480 // handles those cases? 2481 if (!Overflow) 2482 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2483 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2484 } 2485 2486 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2487 const APInt &Upper = CR.getUpper(); 2488 const APInt &Lower = CR.getLower(); 2489 if (Cmp.isSigned()) { 2490 if (Lower.isSignMask()) 2491 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2492 if (Upper.isSignMask()) 2493 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2494 } else { 2495 if (Lower.isMinValue()) 2496 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2497 if (Upper.isMinValue()) 2498 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2499 } 2500 2501 // X+C <u C2 -> (X & -C2) == C 2502 // iff C & (C2-1) == 0 2503 // C2 is a power of 2 2504 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2505 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2506 ConstantExpr::getNeg(cast<Constant>(Y))); 2507 2508 // X+C >u C2 -> (X & ~C2) != C 2509 // iff C & C2 == 0 2510 // C2+1 is a power of 2 2511 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2512 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2513 ConstantExpr::getNeg(cast<Constant>(Y))); 2514 2515 return nullptr; 2516 } 2517 2518 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2519 Value *&RHS, ConstantInt *&Less, 2520 ConstantInt *&Equal, 2521 ConstantInt *&Greater) { 2522 // TODO: Generalize this to work with other comparison idioms or ensure 2523 // they get canonicalized into this form. 2524 2525 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2526 // Greater), where Equal, Less and Greater are placeholders for any three 2527 // constants. 2528 ICmpInst::Predicate PredA, PredB; 2529 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2530 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2531 PredA == ICmpInst::ICMP_EQ && 2532 match(SI->getFalseValue(), 2533 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2534 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2535 PredB == ICmpInst::ICMP_SLT) { 2536 return true; 2537 } 2538 return false; 2539 } 2540 2541 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2542 SelectInst *Select, 2543 ConstantInt *C) { 2544 2545 assert(C && "Cmp RHS should be a constant int!"); 2546 // If we're testing a constant value against the result of a three way 2547 // comparison, the result can be expressed directly in terms of the 2548 // original values being compared. Note: We could possibly be more 2549 // aggressive here and remove the hasOneUse test. The original select is 2550 // really likely to simplify or sink when we remove a test of the result. 2551 Value *OrigLHS, *OrigRHS; 2552 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2553 if (Cmp.hasOneUse() && 2554 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2555 C3GreaterThan)) { 2556 assert(C1LessThan && C2Equal && C3GreaterThan); 2557 2558 bool TrueWhenLessThan = 2559 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2560 ->isAllOnesValue(); 2561 bool TrueWhenEqual = 2562 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2563 ->isAllOnesValue(); 2564 bool TrueWhenGreaterThan = 2565 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2566 ->isAllOnesValue(); 2567 2568 // This generates the new instruction that will replace the original Cmp 2569 // Instruction. Instead of enumerating the various combinations when 2570 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2571 // false, we rely on chaining of ORs and future passes of InstCombine to 2572 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2573 2574 // When none of the three constants satisfy the predicate for the RHS (C), 2575 // the entire original Cmp can be simplified to a false. 2576 Value *Cond = Builder.getFalse(); 2577 if (TrueWhenLessThan) 2578 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2579 OrigLHS, OrigRHS)); 2580 if (TrueWhenEqual) 2581 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2582 OrigLHS, OrigRHS)); 2583 if (TrueWhenGreaterThan) 2584 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2585 OrigLHS, OrigRHS)); 2586 2587 return replaceInstUsesWith(Cmp, Cond); 2588 } 2589 return nullptr; 2590 } 2591 2592 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2593 InstCombiner::BuilderTy &Builder) { 2594 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2595 if (!Bitcast) 2596 return nullptr; 2597 2598 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2599 Value *Op1 = Cmp.getOperand(1); 2600 Value *BCSrcOp = Bitcast->getOperand(0); 2601 2602 // Make sure the bitcast doesn't change the number of vector elements. 2603 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2604 Bitcast->getDestTy()->getScalarSizeInBits()) { 2605 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2606 Value *X; 2607 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2608 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2609 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2610 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2611 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2612 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2613 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2614 match(Op1, m_Zero())) 2615 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2616 2617 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2618 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2619 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2620 2621 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2622 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2623 return new ICmpInst(Pred, X, 2624 ConstantInt::getAllOnesValue(X->getType())); 2625 } 2626 2627 // Zero-equality checks are preserved through unsigned floating-point casts: 2628 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2629 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2630 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2631 if (Cmp.isEquality() && match(Op1, m_Zero())) 2632 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2633 } 2634 2635 // Test to see if the operands of the icmp are casted versions of other 2636 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2637 if (Bitcast->getType()->isPointerTy() && 2638 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2639 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2640 // so eliminate it as well. 2641 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2642 Op1 = BC2->getOperand(0); 2643 2644 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2645 return new ICmpInst(Pred, BCSrcOp, Op1); 2646 } 2647 2648 // Folding: icmp <pred> iN X, C 2649 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2650 // and C is a splat of a K-bit pattern 2651 // and SC is a constant vector = <C', C', C', ..., C'> 2652 // Into: 2653 // %E = extractelement <M x iK> %vec, i32 C' 2654 // icmp <pred> iK %E, trunc(C) 2655 const APInt *C; 2656 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2657 !Bitcast->getType()->isIntegerTy() || 2658 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2659 return nullptr; 2660 2661 Value *Vec; 2662 Constant *Mask; 2663 if (match(BCSrcOp, 2664 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2665 // Check whether every element of Mask is the same constant 2666 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2667 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2668 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2669 if (C->isSplat(EltTy->getBitWidth())) { 2670 // Fold the icmp based on the value of C 2671 // If C is M copies of an iK sized bit pattern, 2672 // then: 2673 // => %E = extractelement <N x iK> %vec, i32 Elem 2674 // icmp <pred> iK %SplatVal, <pattern> 2675 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2676 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2677 return new ICmpInst(Pred, Extract, NewC); 2678 } 2679 } 2680 } 2681 return nullptr; 2682 } 2683 2684 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2685 /// where X is some kind of instruction. 2686 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2687 const APInt *C; 2688 if (!match(Cmp.getOperand(1), m_APInt(C))) 2689 return nullptr; 2690 2691 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2692 switch (BO->getOpcode()) { 2693 case Instruction::Xor: 2694 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2695 return I; 2696 break; 2697 case Instruction::And: 2698 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2699 return I; 2700 break; 2701 case Instruction::Or: 2702 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2703 return I; 2704 break; 2705 case Instruction::Mul: 2706 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2707 return I; 2708 break; 2709 case Instruction::Shl: 2710 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2711 return I; 2712 break; 2713 case Instruction::LShr: 2714 case Instruction::AShr: 2715 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2716 return I; 2717 break; 2718 case Instruction::UDiv: 2719 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2720 return I; 2721 LLVM_FALLTHROUGH; 2722 case Instruction::SDiv: 2723 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2724 return I; 2725 break; 2726 case Instruction::Sub: 2727 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2728 return I; 2729 break; 2730 case Instruction::Add: 2731 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2732 return I; 2733 break; 2734 default: 2735 break; 2736 } 2737 // TODO: These folds could be refactored to be part of the above calls. 2738 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2739 return I; 2740 } 2741 2742 // Match against CmpInst LHS being instructions other than binary operators. 2743 2744 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2745 // For now, we only support constant integers while folding the 2746 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2747 // similar to the cases handled by binary ops above. 2748 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2749 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2750 return I; 2751 } 2752 2753 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2754 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2755 return I; 2756 } 2757 2758 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2759 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2760 return I; 2761 2762 return nullptr; 2763 } 2764 2765 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2766 /// icmp eq/ne BO, C. 2767 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2768 BinaryOperator *BO, 2769 const APInt &C) { 2770 // TODO: Some of these folds could work with arbitrary constants, but this 2771 // function is limited to scalar and vector splat constants. 2772 if (!Cmp.isEquality()) 2773 return nullptr; 2774 2775 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2776 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2777 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2778 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2779 2780 switch (BO->getOpcode()) { 2781 case Instruction::SRem: 2782 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2783 if (C.isNullValue() && BO->hasOneUse()) { 2784 const APInt *BOC; 2785 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2786 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2787 return new ICmpInst(Pred, NewRem, 2788 Constant::getNullValue(BO->getType())); 2789 } 2790 } 2791 break; 2792 case Instruction::Add: { 2793 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2794 const APInt *BOC; 2795 if (match(BOp1, m_APInt(BOC))) { 2796 if (BO->hasOneUse()) { 2797 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2798 return new ICmpInst(Pred, BOp0, SubC); 2799 } 2800 } else if (C.isNullValue()) { 2801 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2802 // efficiently invertible, or if the add has just this one use. 2803 if (Value *NegVal = dyn_castNegVal(BOp1)) 2804 return new ICmpInst(Pred, BOp0, NegVal); 2805 if (Value *NegVal = dyn_castNegVal(BOp0)) 2806 return new ICmpInst(Pred, NegVal, BOp1); 2807 if (BO->hasOneUse()) { 2808 Value *Neg = Builder.CreateNeg(BOp1); 2809 Neg->takeName(BO); 2810 return new ICmpInst(Pred, BOp0, Neg); 2811 } 2812 } 2813 break; 2814 } 2815 case Instruction::Xor: 2816 if (BO->hasOneUse()) { 2817 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2818 // For the xor case, we can xor two constants together, eliminating 2819 // the explicit xor. 2820 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2821 } else if (C.isNullValue()) { 2822 // Replace ((xor A, B) != 0) with (A != B) 2823 return new ICmpInst(Pred, BOp0, BOp1); 2824 } 2825 } 2826 break; 2827 case Instruction::Sub: 2828 if (BO->hasOneUse()) { 2829 const APInt *BOC; 2830 if (match(BOp0, m_APInt(BOC))) { 2831 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2832 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2833 return new ICmpInst(Pred, BOp1, SubC); 2834 } else if (C.isNullValue()) { 2835 // Replace ((sub A, B) != 0) with (A != B). 2836 return new ICmpInst(Pred, BOp0, BOp1); 2837 } 2838 } 2839 break; 2840 case Instruction::Or: { 2841 const APInt *BOC; 2842 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2843 // Comparing if all bits outside of a constant mask are set? 2844 // Replace (X | C) == -1 with (X & ~C) == ~C. 2845 // This removes the -1 constant. 2846 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2847 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2848 return new ICmpInst(Pred, And, NotBOC); 2849 } 2850 break; 2851 } 2852 case Instruction::And: { 2853 const APInt *BOC; 2854 if (match(BOp1, m_APInt(BOC))) { 2855 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2856 if (C == *BOC && C.isPowerOf2()) 2857 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2858 BO, Constant::getNullValue(RHS->getType())); 2859 } 2860 break; 2861 } 2862 case Instruction::Mul: 2863 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2864 const APInt *BOC; 2865 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2866 // The trivial case (mul X, 0) is handled by InstSimplify. 2867 // General case : (mul X, C) != 0 iff X != 0 2868 // (mul X, C) == 0 iff X == 0 2869 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2870 } 2871 } 2872 break; 2873 case Instruction::UDiv: 2874 if (C.isNullValue()) { 2875 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2876 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2877 return new ICmpInst(NewPred, BOp1, BOp0); 2878 } 2879 break; 2880 default: 2881 break; 2882 } 2883 return nullptr; 2884 } 2885 2886 /// Fold an equality icmp with LLVM intrinsic and constant operand. 2887 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 2888 IntrinsicInst *II, 2889 const APInt &C) { 2890 Type *Ty = II->getType(); 2891 unsigned BitWidth = C.getBitWidth(); 2892 switch (II->getIntrinsicID()) { 2893 case Intrinsic::bswap: 2894 Worklist.Add(II); 2895 Cmp.setOperand(0, II->getArgOperand(0)); 2896 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2897 return &Cmp; 2898 2899 case Intrinsic::ctlz: 2900 case Intrinsic::cttz: { 2901 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2902 if (C == BitWidth) { 2903 Worklist.Add(II); 2904 Cmp.setOperand(0, II->getArgOperand(0)); 2905 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2906 return &Cmp; 2907 } 2908 2909 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2910 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2911 // Limit to one use to ensure we don't increase instruction count. 2912 unsigned Num = C.getLimitedValue(BitWidth); 2913 if (Num != BitWidth && II->hasOneUse()) { 2914 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2915 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2916 : APInt::getHighBitsSet(BitWidth, Num + 1); 2917 APInt Mask2 = IsTrailing 2918 ? APInt::getOneBitSet(BitWidth, Num) 2919 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2920 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2921 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2922 Worklist.Add(II); 2923 return &Cmp; 2924 } 2925 break; 2926 } 2927 2928 case Intrinsic::ctpop: { 2929 // popcount(A) == 0 -> A == 0 and likewise for != 2930 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2931 bool IsZero = C.isNullValue(); 2932 if (IsZero || C == BitWidth) { 2933 Worklist.Add(II); 2934 Cmp.setOperand(0, II->getArgOperand(0)); 2935 auto *NewOp = 2936 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2937 Cmp.setOperand(1, NewOp); 2938 return &Cmp; 2939 } 2940 break; 2941 } 2942 default: 2943 break; 2944 } 2945 2946 return nullptr; 2947 } 2948 2949 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2950 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2951 IntrinsicInst *II, 2952 const APInt &C) { 2953 if (Cmp.isEquality()) 2954 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 2955 2956 Type *Ty = II->getType(); 2957 unsigned BitWidth = C.getBitWidth(); 2958 switch (II->getIntrinsicID()) { 2959 case Intrinsic::ctlz: { 2960 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 2961 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2962 unsigned Num = C.getLimitedValue(); 2963 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2964 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 2965 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2966 } 2967 2968 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 2969 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2970 C.uge(1) && C.ule(BitWidth)) { 2971 unsigned Num = C.getLimitedValue(); 2972 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 2973 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 2974 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 2975 } 2976 break; 2977 } 2978 case Intrinsic::cttz: { 2979 // Limit to one use to ensure we don't increase instruction count. 2980 if (!II->hasOneUse()) 2981 return nullptr; 2982 2983 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 2984 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 2985 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 2986 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 2987 Builder.CreateAnd(II->getArgOperand(0), Mask), 2988 ConstantInt::getNullValue(Ty)); 2989 } 2990 2991 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 2992 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 2993 C.uge(1) && C.ule(BitWidth)) { 2994 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 2995 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 2996 Builder.CreateAnd(II->getArgOperand(0), Mask), 2997 ConstantInt::getNullValue(Ty)); 2998 } 2999 break; 3000 } 3001 default: 3002 break; 3003 } 3004 3005 return nullptr; 3006 } 3007 3008 /// Handle icmp with constant (but not simple integer constant) RHS. 3009 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3010 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3011 Constant *RHSC = dyn_cast<Constant>(Op1); 3012 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3013 if (!RHSC || !LHSI) 3014 return nullptr; 3015 3016 switch (LHSI->getOpcode()) { 3017 case Instruction::GetElementPtr: 3018 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3019 if (RHSC->isNullValue() && 3020 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3021 return new ICmpInst( 3022 I.getPredicate(), LHSI->getOperand(0), 3023 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3024 break; 3025 case Instruction::PHI: 3026 // Only fold icmp into the PHI if the phi and icmp are in the same 3027 // block. If in the same block, we're encouraging jump threading. If 3028 // not, we are just pessimizing the code by making an i1 phi. 3029 if (LHSI->getParent() == I.getParent()) 3030 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3031 return NV; 3032 break; 3033 case Instruction::Select: { 3034 // If either operand of the select is a constant, we can fold the 3035 // comparison into the select arms, which will cause one to be 3036 // constant folded and the select turned into a bitwise or. 3037 Value *Op1 = nullptr, *Op2 = nullptr; 3038 ConstantInt *CI = nullptr; 3039 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3040 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3041 CI = dyn_cast<ConstantInt>(Op1); 3042 } 3043 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3044 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3045 CI = dyn_cast<ConstantInt>(Op2); 3046 } 3047 3048 // We only want to perform this transformation if it will not lead to 3049 // additional code. This is true if either both sides of the select 3050 // fold to a constant (in which case the icmp is replaced with a select 3051 // which will usually simplify) or this is the only user of the 3052 // select (in which case we are trading a select+icmp for a simpler 3053 // select+icmp) or all uses of the select can be replaced based on 3054 // dominance information ("Global cases"). 3055 bool Transform = false; 3056 if (Op1 && Op2) 3057 Transform = true; 3058 else if (Op1 || Op2) { 3059 // Local case 3060 if (LHSI->hasOneUse()) 3061 Transform = true; 3062 // Global cases 3063 else if (CI && !CI->isZero()) 3064 // When Op1 is constant try replacing select with second operand. 3065 // Otherwise Op2 is constant and try replacing select with first 3066 // operand. 3067 Transform = 3068 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3069 } 3070 if (Transform) { 3071 if (!Op1) 3072 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3073 I.getName()); 3074 if (!Op2) 3075 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3076 I.getName()); 3077 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3078 } 3079 break; 3080 } 3081 case Instruction::IntToPtr: 3082 // icmp pred inttoptr(X), null -> icmp pred X, 0 3083 if (RHSC->isNullValue() && 3084 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3085 return new ICmpInst( 3086 I.getPredicate(), LHSI->getOperand(0), 3087 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3088 break; 3089 3090 case Instruction::Load: 3091 // Try to optimize things like "A[i] > 4" to index computations. 3092 if (GetElementPtrInst *GEP = 3093 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3094 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3095 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3096 !cast<LoadInst>(LHSI)->isVolatile()) 3097 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3098 return Res; 3099 } 3100 break; 3101 } 3102 3103 return nullptr; 3104 } 3105 3106 /// Some comparisons can be simplified. 3107 /// In this case, we are looking for comparisons that look like 3108 /// a check for a lossy truncation. 3109 /// Folds: 3110 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3111 /// Where Mask is some pattern that produces all-ones in low bits: 3112 /// (-1 >> y) 3113 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3114 /// ~(-1 << y) 3115 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3116 /// The Mask can be a constant, too. 3117 /// For some predicates, the operands are commutative. 3118 /// For others, x can only be on a specific side. 3119 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3120 InstCombiner::BuilderTy &Builder) { 3121 ICmpInst::Predicate SrcPred; 3122 Value *X, *M, *Y; 3123 auto m_VariableMask = m_CombineOr( 3124 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3125 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3126 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3127 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3128 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3129 if (!match(&I, m_c_ICmp(SrcPred, 3130 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3131 m_Deferred(X)))) 3132 return nullptr; 3133 3134 ICmpInst::Predicate DstPred; 3135 switch (SrcPred) { 3136 case ICmpInst::Predicate::ICMP_EQ: 3137 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3138 DstPred = ICmpInst::Predicate::ICMP_ULE; 3139 break; 3140 case ICmpInst::Predicate::ICMP_NE: 3141 // x & (-1 >> y) != x -> x u> (-1 >> y) 3142 DstPred = ICmpInst::Predicate::ICMP_UGT; 3143 break; 3144 case ICmpInst::Predicate::ICMP_UGT: 3145 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3146 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3147 DstPred = ICmpInst::Predicate::ICMP_UGT; 3148 break; 3149 case ICmpInst::Predicate::ICMP_UGE: 3150 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3151 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3152 DstPred = ICmpInst::Predicate::ICMP_ULE; 3153 break; 3154 case ICmpInst::Predicate::ICMP_ULT: 3155 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3156 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3157 DstPred = ICmpInst::Predicate::ICMP_UGT; 3158 break; 3159 case ICmpInst::Predicate::ICMP_ULE: 3160 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3161 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3162 DstPred = ICmpInst::Predicate::ICMP_ULE; 3163 break; 3164 case ICmpInst::Predicate::ICMP_SGT: 3165 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3166 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3167 return nullptr; // Ignore the other case. 3168 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3169 return nullptr; 3170 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3171 return nullptr; 3172 DstPred = ICmpInst::Predicate::ICMP_SGT; 3173 break; 3174 case ICmpInst::Predicate::ICMP_SGE: 3175 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3176 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3177 return nullptr; // Ignore the other case. 3178 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3179 return nullptr; 3180 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3181 return nullptr; 3182 DstPred = ICmpInst::Predicate::ICMP_SLE; 3183 break; 3184 case ICmpInst::Predicate::ICMP_SLT: 3185 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3186 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3187 return nullptr; // Ignore the other case. 3188 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3189 return nullptr; 3190 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3191 return nullptr; 3192 DstPred = ICmpInst::Predicate::ICMP_SGT; 3193 break; 3194 case ICmpInst::Predicate::ICMP_SLE: 3195 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3196 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3197 return nullptr; // Ignore the other case. 3198 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3199 return nullptr; 3200 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3201 return nullptr; 3202 DstPred = ICmpInst::Predicate::ICMP_SLE; 3203 break; 3204 default: 3205 llvm_unreachable("All possible folds are handled."); 3206 } 3207 3208 return Builder.CreateICmp(DstPred, X, M); 3209 } 3210 3211 /// Some comparisons can be simplified. 3212 /// In this case, we are looking for comparisons that look like 3213 /// a check for a lossy signed truncation. 3214 /// Folds: (MaskedBits is a constant.) 3215 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3216 /// Into: 3217 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3218 /// Where KeptBits = bitwidth(%x) - MaskedBits 3219 static Value * 3220 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3221 InstCombiner::BuilderTy &Builder) { 3222 ICmpInst::Predicate SrcPred; 3223 Value *X; 3224 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3225 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3226 if (!match(&I, m_c_ICmp(SrcPred, 3227 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3228 m_APInt(C1))), 3229 m_Deferred(X)))) 3230 return nullptr; 3231 3232 // Potential handling of non-splats: for each element: 3233 // * if both are undef, replace with constant 0. 3234 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3235 // * if both are not undef, and are different, bailout. 3236 // * else, only one is undef, then pick the non-undef one. 3237 3238 // The shift amount must be equal. 3239 if (*C0 != *C1) 3240 return nullptr; 3241 const APInt &MaskedBits = *C0; 3242 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3243 3244 ICmpInst::Predicate DstPred; 3245 switch (SrcPred) { 3246 case ICmpInst::Predicate::ICMP_EQ: 3247 // ((%x << MaskedBits) a>> MaskedBits) == %x 3248 // => 3249 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3250 DstPred = ICmpInst::Predicate::ICMP_ULT; 3251 break; 3252 case ICmpInst::Predicate::ICMP_NE: 3253 // ((%x << MaskedBits) a>> MaskedBits) != %x 3254 // => 3255 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3256 DstPred = ICmpInst::Predicate::ICMP_UGE; 3257 break; 3258 // FIXME: are more folds possible? 3259 default: 3260 return nullptr; 3261 } 3262 3263 auto *XType = X->getType(); 3264 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3265 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3266 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3267 3268 // KeptBits = bitwidth(%x) - MaskedBits 3269 const APInt KeptBits = BitWidth - MaskedBits; 3270 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3271 // ICmpCst = (1 << KeptBits) 3272 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3273 assert(ICmpCst.isPowerOf2()); 3274 // AddCst = (1 << (KeptBits-1)) 3275 const APInt AddCst = ICmpCst.lshr(1); 3276 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3277 3278 // T0 = add %x, AddCst 3279 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3280 // T1 = T0 DstPred ICmpCst 3281 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3282 3283 return T1; 3284 } 3285 3286 // Given pattern: 3287 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3288 // we should move shifts to the same hand of 'and', i.e. rewrite as 3289 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3290 // We are only interested in opposite logical shifts here. 3291 // If we can, we want to end up creating 'lshr' shift. 3292 static Value * 3293 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3294 InstCombiner::BuilderTy &Builder) { 3295 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3296 !I.getOperand(0)->hasOneUse()) 3297 return nullptr; 3298 3299 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3300 auto m_AnyLShr = m_LShr(m_Value(), m_Value()); 3301 3302 // Look for an 'and' of two (opposite) logical shifts. 3303 // Pick the single-use shift as XShift. 3304 Instruction *XShift, *YShift; 3305 if (!match(I.getOperand(0), 3306 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3307 m_CombineAnd(m_AnyLogicalShift, m_Instruction(YShift))))) 3308 return nullptr; 3309 3310 // If YShift is a 'lshr', swap the shifts around. 3311 if (match(YShift, m_AnyLShr)) 3312 std::swap(XShift, YShift); 3313 3314 // The shifts must be in opposite directions. 3315 auto XShiftOpcode = XShift->getOpcode(); 3316 if (XShiftOpcode == YShift->getOpcode()) 3317 return nullptr; // Do not care about same-direction shifts here. 3318 3319 Value *X, *XShAmt, *Y, *YShAmt; 3320 match(XShift, m_BinOp(m_Value(X), m_Value(XShAmt))); 3321 match(YShift, m_BinOp(m_Value(Y), m_Value(YShAmt))); 3322 3323 // If one of the values being shifted is a constant, then we will end with 3324 // and+icmp, and shift instr will be constant-folded. If they are not, 3325 // however, we will need to ensure that we won't increase instruction count. 3326 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3327 // At least one of the hands of the 'and' should be one-use shift. 3328 if (!match(I.getOperand(0), 3329 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3330 return nullptr; 3331 } 3332 3333 // Can we fold (XShAmt+YShAmt) ? 3334 Value *NewShAmt = SimplifyBinOp(Instruction::BinaryOps::Add, XShAmt, YShAmt, 3335 SQ.getWithInstruction(&I)); 3336 if (!NewShAmt) 3337 return nullptr; 3338 // Is the new shift amount smaller than the bit width? 3339 // FIXME: could also rely on ConstantRange. 3340 unsigned BitWidth = X->getType()->getScalarSizeInBits(); 3341 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3342 APInt(BitWidth, BitWidth)))) 3343 return nullptr; 3344 // All good, we can do this fold. The shift is the same that was for X. 3345 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3346 ? Builder.CreateLShr(X, NewShAmt) 3347 : Builder.CreateShl(X, NewShAmt); 3348 Value *T1 = Builder.CreateAnd(T0, Y); 3349 return Builder.CreateICmp(I.getPredicate(), T1, 3350 Constant::getNullValue(X->getType())); 3351 } 3352 3353 /// Try to fold icmp (binop), X or icmp X, (binop). 3354 /// TODO: A large part of this logic is duplicated in InstSimplify's 3355 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3356 /// duplication. 3357 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3358 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3359 3360 // Special logic for binary operators. 3361 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3362 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3363 if (!BO0 && !BO1) 3364 return nullptr; 3365 3366 const CmpInst::Predicate Pred = I.getPredicate(); 3367 Value *X; 3368 3369 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3370 // (Op1 + X) <u Op1 --> ~Op1 <u X 3371 // Op0 >u (Op0 + X) --> X >u ~Op0 3372 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3373 Pred == ICmpInst::ICMP_ULT) 3374 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3375 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3376 Pred == ICmpInst::ICMP_UGT) 3377 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3378 3379 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3380 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3381 NoOp0WrapProblem = 3382 ICmpInst::isEquality(Pred) || 3383 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3384 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3385 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3386 NoOp1WrapProblem = 3387 ICmpInst::isEquality(Pred) || 3388 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3389 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3390 3391 // Analyze the case when either Op0 or Op1 is an add instruction. 3392 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3393 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3394 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3395 A = BO0->getOperand(0); 3396 B = BO0->getOperand(1); 3397 } 3398 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3399 C = BO1->getOperand(0); 3400 D = BO1->getOperand(1); 3401 } 3402 3403 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3404 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3405 return new ICmpInst(Pred, A == Op1 ? B : A, 3406 Constant::getNullValue(Op1->getType())); 3407 3408 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3409 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3410 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3411 C == Op0 ? D : C); 3412 3413 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3414 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3415 NoOp1WrapProblem && 3416 // Try not to increase register pressure. 3417 BO0->hasOneUse() && BO1->hasOneUse()) { 3418 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3419 Value *Y, *Z; 3420 if (A == C) { 3421 // C + B == C + D -> B == D 3422 Y = B; 3423 Z = D; 3424 } else if (A == D) { 3425 // D + B == C + D -> B == C 3426 Y = B; 3427 Z = C; 3428 } else if (B == C) { 3429 // A + C == C + D -> A == D 3430 Y = A; 3431 Z = D; 3432 } else { 3433 assert(B == D); 3434 // A + D == C + D -> A == C 3435 Y = A; 3436 Z = C; 3437 } 3438 return new ICmpInst(Pred, Y, Z); 3439 } 3440 3441 // icmp slt (X + -1), Y -> icmp sle X, Y 3442 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3443 match(B, m_AllOnes())) 3444 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3445 3446 // icmp sge (X + -1), Y -> icmp sgt X, Y 3447 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3448 match(B, m_AllOnes())) 3449 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3450 3451 // icmp sle (X + 1), Y -> icmp slt X, Y 3452 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3453 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3454 3455 // icmp sgt (X + 1), Y -> icmp sge X, Y 3456 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3457 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3458 3459 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3460 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3461 match(D, m_AllOnes())) 3462 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3463 3464 // icmp sle X, (Y + -1) -> icmp slt X, Y 3465 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3466 match(D, m_AllOnes())) 3467 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3468 3469 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3470 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3471 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3472 3473 // icmp slt X, (Y + 1) -> icmp sle X, Y 3474 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3475 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3476 3477 // TODO: The subtraction-related identities shown below also hold, but 3478 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3479 // wouldn't happen even if they were implemented. 3480 // 3481 // icmp ult (X - 1), Y -> icmp ule X, Y 3482 // icmp uge (X - 1), Y -> icmp ugt X, Y 3483 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3484 // icmp ule X, (Y - 1) -> icmp ult X, Y 3485 3486 // icmp ule (X + 1), Y -> icmp ult X, Y 3487 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3488 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3489 3490 // icmp ugt (X + 1), Y -> icmp uge X, Y 3491 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3492 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3493 3494 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3495 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3496 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3497 3498 // icmp ult X, (Y + 1) -> icmp ule X, Y 3499 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3500 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3501 3502 // if C1 has greater magnitude than C2: 3503 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3504 // s.t. C3 = C1 - C2 3505 // 3506 // if C2 has greater magnitude than C1: 3507 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3508 // s.t. C3 = C2 - C1 3509 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3510 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3511 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3512 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3513 const APInt &AP1 = C1->getValue(); 3514 const APInt &AP2 = C2->getValue(); 3515 if (AP1.isNegative() == AP2.isNegative()) { 3516 APInt AP1Abs = C1->getValue().abs(); 3517 APInt AP2Abs = C2->getValue().abs(); 3518 if (AP1Abs.uge(AP2Abs)) { 3519 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3520 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3521 return new ICmpInst(Pred, NewAdd, C); 3522 } else { 3523 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3524 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3525 return new ICmpInst(Pred, A, NewAdd); 3526 } 3527 } 3528 } 3529 3530 // Analyze the case when either Op0 or Op1 is a sub instruction. 3531 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3532 A = nullptr; 3533 B = nullptr; 3534 C = nullptr; 3535 D = nullptr; 3536 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3537 A = BO0->getOperand(0); 3538 B = BO0->getOperand(1); 3539 } 3540 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3541 C = BO1->getOperand(0); 3542 D = BO1->getOperand(1); 3543 } 3544 3545 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3546 if (A == Op1 && NoOp0WrapProblem) 3547 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3548 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3549 if (C == Op0 && NoOp1WrapProblem) 3550 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3551 3552 // (A - B) >u A --> A <u B 3553 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3554 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3555 // C <u (C - D) --> C <u D 3556 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3557 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3558 3559 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3560 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3561 // Try not to increase register pressure. 3562 BO0->hasOneUse() && BO1->hasOneUse()) 3563 return new ICmpInst(Pred, A, C); 3564 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3565 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3566 // Try not to increase register pressure. 3567 BO0->hasOneUse() && BO1->hasOneUse()) 3568 return new ICmpInst(Pred, D, B); 3569 3570 // icmp (0-X) < cst --> x > -cst 3571 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3572 Value *X; 3573 if (match(BO0, m_Neg(m_Value(X)))) 3574 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3575 if (RHSC->isNotMinSignedValue()) 3576 return new ICmpInst(I.getSwappedPredicate(), X, 3577 ConstantExpr::getNeg(RHSC)); 3578 } 3579 3580 BinaryOperator *SRem = nullptr; 3581 // icmp (srem X, Y), Y 3582 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3583 SRem = BO0; 3584 // icmp Y, (srem X, Y) 3585 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3586 Op0 == BO1->getOperand(1)) 3587 SRem = BO1; 3588 if (SRem) { 3589 // We don't check hasOneUse to avoid increasing register pressure because 3590 // the value we use is the same value this instruction was already using. 3591 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3592 default: 3593 break; 3594 case ICmpInst::ICMP_EQ: 3595 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3596 case ICmpInst::ICMP_NE: 3597 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3598 case ICmpInst::ICMP_SGT: 3599 case ICmpInst::ICMP_SGE: 3600 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3601 Constant::getAllOnesValue(SRem->getType())); 3602 case ICmpInst::ICMP_SLT: 3603 case ICmpInst::ICMP_SLE: 3604 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3605 Constant::getNullValue(SRem->getType())); 3606 } 3607 } 3608 3609 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3610 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3611 switch (BO0->getOpcode()) { 3612 default: 3613 break; 3614 case Instruction::Add: 3615 case Instruction::Sub: 3616 case Instruction::Xor: { 3617 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3618 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3619 3620 const APInt *C; 3621 if (match(BO0->getOperand(1), m_APInt(C))) { 3622 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3623 if (C->isSignMask()) { 3624 ICmpInst::Predicate NewPred = 3625 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3626 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3627 } 3628 3629 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3630 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3631 ICmpInst::Predicate NewPred = 3632 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3633 NewPred = I.getSwappedPredicate(NewPred); 3634 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3635 } 3636 } 3637 break; 3638 } 3639 case Instruction::Mul: { 3640 if (!I.isEquality()) 3641 break; 3642 3643 const APInt *C; 3644 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3645 !C->isOneValue()) { 3646 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3647 // Mask = -1 >> count-trailing-zeros(C). 3648 if (unsigned TZs = C->countTrailingZeros()) { 3649 Constant *Mask = ConstantInt::get( 3650 BO0->getType(), 3651 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3652 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3653 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3654 return new ICmpInst(Pred, And1, And2); 3655 } 3656 // If there are no trailing zeros in the multiplier, just eliminate 3657 // the multiplies (no masking is needed): 3658 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3659 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3660 } 3661 break; 3662 } 3663 case Instruction::UDiv: 3664 case Instruction::LShr: 3665 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3666 break; 3667 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3668 3669 case Instruction::SDiv: 3670 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3671 break; 3672 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3673 3674 case Instruction::AShr: 3675 if (!BO0->isExact() || !BO1->isExact()) 3676 break; 3677 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3678 3679 case Instruction::Shl: { 3680 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3681 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3682 if (!NUW && !NSW) 3683 break; 3684 if (!NSW && I.isSigned()) 3685 break; 3686 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3687 } 3688 } 3689 } 3690 3691 if (BO0) { 3692 // Transform A & (L - 1) `ult` L --> L != 0 3693 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3694 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3695 3696 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3697 auto *Zero = Constant::getNullValue(BO0->getType()); 3698 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3699 } 3700 } 3701 3702 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3703 return replaceInstUsesWith(I, V); 3704 3705 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3706 return replaceInstUsesWith(I, V); 3707 3708 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 3709 return replaceInstUsesWith(I, V); 3710 3711 return nullptr; 3712 } 3713 3714 /// Fold icmp Pred min|max(X, Y), X. 3715 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3716 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3717 Value *Op0 = Cmp.getOperand(0); 3718 Value *X = Cmp.getOperand(1); 3719 3720 // Canonicalize minimum or maximum operand to LHS of the icmp. 3721 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3722 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3723 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3724 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3725 std::swap(Op0, X); 3726 Pred = Cmp.getSwappedPredicate(); 3727 } 3728 3729 Value *Y; 3730 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3731 // smin(X, Y) == X --> X s<= Y 3732 // smin(X, Y) s>= X --> X s<= Y 3733 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3734 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3735 3736 // smin(X, Y) != X --> X s> Y 3737 // smin(X, Y) s< X --> X s> Y 3738 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3739 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3740 3741 // These cases should be handled in InstSimplify: 3742 // smin(X, Y) s<= X --> true 3743 // smin(X, Y) s> X --> false 3744 return nullptr; 3745 } 3746 3747 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3748 // smax(X, Y) == X --> X s>= Y 3749 // smax(X, Y) s<= X --> X s>= Y 3750 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3751 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3752 3753 // smax(X, Y) != X --> X s< Y 3754 // smax(X, Y) s> X --> X s< Y 3755 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3756 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3757 3758 // These cases should be handled in InstSimplify: 3759 // smax(X, Y) s>= X --> true 3760 // smax(X, Y) s< X --> false 3761 return nullptr; 3762 } 3763 3764 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3765 // umin(X, Y) == X --> X u<= Y 3766 // umin(X, Y) u>= X --> X u<= Y 3767 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3768 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3769 3770 // umin(X, Y) != X --> X u> Y 3771 // umin(X, Y) u< X --> X u> Y 3772 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3773 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3774 3775 // These cases should be handled in InstSimplify: 3776 // umin(X, Y) u<= X --> true 3777 // umin(X, Y) u> X --> false 3778 return nullptr; 3779 } 3780 3781 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3782 // umax(X, Y) == X --> X u>= Y 3783 // umax(X, Y) u<= X --> X u>= Y 3784 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3785 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3786 3787 // umax(X, Y) != X --> X u< Y 3788 // umax(X, Y) u> X --> X u< Y 3789 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3790 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3791 3792 // These cases should be handled in InstSimplify: 3793 // umax(X, Y) u>= X --> true 3794 // umax(X, Y) u< X --> false 3795 return nullptr; 3796 } 3797 3798 return nullptr; 3799 } 3800 3801 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3802 if (!I.isEquality()) 3803 return nullptr; 3804 3805 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3806 const CmpInst::Predicate Pred = I.getPredicate(); 3807 Value *A, *B, *C, *D; 3808 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3809 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3810 Value *OtherVal = A == Op1 ? B : A; 3811 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3812 } 3813 3814 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3815 // A^c1 == C^c2 --> A == C^(c1^c2) 3816 ConstantInt *C1, *C2; 3817 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3818 Op1->hasOneUse()) { 3819 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3820 Value *Xor = Builder.CreateXor(C, NC); 3821 return new ICmpInst(Pred, A, Xor); 3822 } 3823 3824 // A^B == A^D -> B == D 3825 if (A == C) 3826 return new ICmpInst(Pred, B, D); 3827 if (A == D) 3828 return new ICmpInst(Pred, B, C); 3829 if (B == C) 3830 return new ICmpInst(Pred, A, D); 3831 if (B == D) 3832 return new ICmpInst(Pred, A, C); 3833 } 3834 } 3835 3836 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3837 // A == (A^B) -> B == 0 3838 Value *OtherVal = A == Op0 ? B : A; 3839 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3840 } 3841 3842 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3843 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3844 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3845 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3846 3847 if (A == C) { 3848 X = B; 3849 Y = D; 3850 Z = A; 3851 } else if (A == D) { 3852 X = B; 3853 Y = C; 3854 Z = A; 3855 } else if (B == C) { 3856 X = A; 3857 Y = D; 3858 Z = B; 3859 } else if (B == D) { 3860 X = A; 3861 Y = C; 3862 Z = B; 3863 } 3864 3865 if (X) { // Build (X^Y) & Z 3866 Op1 = Builder.CreateXor(X, Y); 3867 Op1 = Builder.CreateAnd(Op1, Z); 3868 I.setOperand(0, Op1); 3869 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3870 return &I; 3871 } 3872 } 3873 3874 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3875 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3876 ConstantInt *Cst1; 3877 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3878 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3879 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3880 match(Op1, m_ZExt(m_Value(A))))) { 3881 APInt Pow2 = Cst1->getValue() + 1; 3882 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3883 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3884 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3885 } 3886 3887 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3888 // For lshr and ashr pairs. 3889 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3890 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3891 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3892 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3893 unsigned TypeBits = Cst1->getBitWidth(); 3894 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3895 if (ShAmt < TypeBits && ShAmt != 0) { 3896 ICmpInst::Predicate NewPred = 3897 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3898 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3899 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3900 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3901 } 3902 } 3903 3904 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3905 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3906 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3907 unsigned TypeBits = Cst1->getBitWidth(); 3908 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3909 if (ShAmt < TypeBits && ShAmt != 0) { 3910 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3911 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3912 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3913 I.getName() + ".mask"); 3914 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3915 } 3916 } 3917 3918 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3919 // "icmp (and X, mask), cst" 3920 uint64_t ShAmt = 0; 3921 if (Op0->hasOneUse() && 3922 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3923 match(Op1, m_ConstantInt(Cst1)) && 3924 // Only do this when A has multiple uses. This is most important to do 3925 // when it exposes other optimizations. 3926 !A->hasOneUse()) { 3927 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3928 3929 if (ShAmt < ASize) { 3930 APInt MaskV = 3931 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3932 MaskV <<= ShAmt; 3933 3934 APInt CmpV = Cst1->getValue().zext(ASize); 3935 CmpV <<= ShAmt; 3936 3937 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3938 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3939 } 3940 } 3941 3942 // If both operands are byte-swapped or bit-reversed, just compare the 3943 // original values. 3944 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3945 // and handle more intrinsics. 3946 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3947 (match(Op0, m_BitReverse(m_Value(A))) && 3948 match(Op1, m_BitReverse(m_Value(B))))) 3949 return new ICmpInst(Pred, A, B); 3950 3951 // Canonicalize checking for a power-of-2-or-zero value: 3952 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 3953 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 3954 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 3955 m_Deferred(A)))) || 3956 !match(Op1, m_ZeroInt())) 3957 A = nullptr; 3958 3959 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 3960 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 3961 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 3962 A = Op1; 3963 else if (match(Op1, 3964 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 3965 A = Op0; 3966 3967 if (A) { 3968 Type *Ty = A->getType(); 3969 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 3970 return Pred == ICmpInst::ICMP_EQ 3971 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 3972 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 3973 } 3974 3975 return nullptr; 3976 } 3977 3978 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3979 /// far. 3980 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3981 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3982 Value *LHSCIOp = LHSCI->getOperand(0); 3983 Type *SrcTy = LHSCIOp->getType(); 3984 Type *DestTy = LHSCI->getType(); 3985 3986 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3987 // integer type is the same size as the pointer type. 3988 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3989 if (isa<VectorType>(SrcTy)) { 3990 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3991 DestTy = cast<VectorType>(DestTy)->getElementType(); 3992 } 3993 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3994 }; 3995 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3996 CompatibleSizes(SrcTy, DestTy)) { 3997 Value *RHSOp = nullptr; 3998 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3999 Value *RHSCIOp = RHSC->getOperand(0); 4000 if (RHSCIOp->getType()->getPointerAddressSpace() == 4001 LHSCIOp->getType()->getPointerAddressSpace()) { 4002 RHSOp = RHSC->getOperand(0); 4003 // If the pointer types don't match, insert a bitcast. 4004 if (LHSCIOp->getType() != RHSOp->getType()) 4005 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 4006 } 4007 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4008 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4009 } 4010 4011 if (RHSOp) 4012 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 4013 } 4014 4015 // The code below only handles extension cast instructions, so far. 4016 // Enforce this. 4017 if (LHSCI->getOpcode() != Instruction::ZExt && 4018 LHSCI->getOpcode() != Instruction::SExt) 4019 return nullptr; 4020 4021 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 4022 bool isSignedCmp = ICmp.isSigned(); 4023 4024 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4025 // Not an extension from the same type? 4026 Value *RHSCIOp = CI->getOperand(0); 4027 if (RHSCIOp->getType() != LHSCIOp->getType()) 4028 return nullptr; 4029 4030 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4031 // and the other is a zext), then we can't handle this. 4032 if (CI->getOpcode() != LHSCI->getOpcode()) 4033 return nullptr; 4034 4035 // Deal with equality cases early. 4036 if (ICmp.isEquality()) 4037 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 4038 4039 // A signed comparison of sign extended values simplifies into a 4040 // signed comparison. 4041 if (isSignedCmp && isSignedExt) 4042 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 4043 4044 // The other three cases all fold into an unsigned comparison. 4045 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 4046 } 4047 4048 // If we aren't dealing with a constant on the RHS, exit early. 4049 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4050 if (!C) 4051 return nullptr; 4052 4053 // Compute the constant that would happen if we truncated to SrcTy then 4054 // re-extended to DestTy. 4055 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4056 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 4057 4058 // If the re-extended constant didn't change... 4059 if (Res2 == C) { 4060 // Deal with equality cases early. 4061 if (ICmp.isEquality()) 4062 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 4063 4064 // A signed comparison of sign extended values simplifies into a 4065 // signed comparison. 4066 if (isSignedExt && isSignedCmp) 4067 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 4068 4069 // The other three cases all fold into an unsigned comparison. 4070 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 4071 } 4072 4073 // The re-extended constant changed, partly changed (in the case of a vector), 4074 // or could not be determined to be equal (in the case of a constant 4075 // expression), so the constant cannot be represented in the shorter type. 4076 // Consequently, we cannot emit a simple comparison. 4077 // All the cases that fold to true or false will have already been handled 4078 // by SimplifyICmpInst, so only deal with the tricky case. 4079 4080 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 4081 return nullptr; 4082 4083 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 4084 // should have been folded away previously and not enter in here. 4085 4086 // We're performing an unsigned comp with a sign extended value. 4087 // This is true if the input is >= 0. [aka >s -1] 4088 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 4089 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 4090 4091 // Finally, return the value computed. 4092 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4093 return replaceInstUsesWith(ICmp, Result); 4094 4095 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4096 return BinaryOperator::CreateNot(Result); 4097 } 4098 4099 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4100 switch (BinaryOp) { 4101 default: 4102 llvm_unreachable("Unsupported binary op"); 4103 case Instruction::Add: 4104 case Instruction::Sub: 4105 return match(RHS, m_Zero()); 4106 case Instruction::Mul: 4107 return match(RHS, m_One()); 4108 } 4109 } 4110 4111 OverflowResult InstCombiner::computeOverflow( 4112 Instruction::BinaryOps BinaryOp, bool IsSigned, 4113 Value *LHS, Value *RHS, Instruction *CxtI) const { 4114 switch (BinaryOp) { 4115 default: 4116 llvm_unreachable("Unsupported binary op"); 4117 case Instruction::Add: 4118 if (IsSigned) 4119 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4120 else 4121 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4122 case Instruction::Sub: 4123 if (IsSigned) 4124 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4125 else 4126 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4127 case Instruction::Mul: 4128 if (IsSigned) 4129 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4130 else 4131 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4132 } 4133 } 4134 4135 bool InstCombiner::OptimizeOverflowCheck( 4136 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4137 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4138 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4139 std::swap(LHS, RHS); 4140 4141 // If the overflow check was an add followed by a compare, the insertion point 4142 // may be pointing to the compare. We want to insert the new instructions 4143 // before the add in case there are uses of the add between the add and the 4144 // compare. 4145 Builder.SetInsertPoint(&OrigI); 4146 4147 if (isNeutralValue(BinaryOp, RHS)) { 4148 Result = LHS; 4149 Overflow = Builder.getFalse(); 4150 return true; 4151 } 4152 4153 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4154 case OverflowResult::MayOverflow: 4155 return false; 4156 case OverflowResult::AlwaysOverflowsLow: 4157 case OverflowResult::AlwaysOverflowsHigh: 4158 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4159 Result->takeName(&OrigI); 4160 Overflow = Builder.getTrue(); 4161 return true; 4162 case OverflowResult::NeverOverflows: 4163 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4164 Result->takeName(&OrigI); 4165 Overflow = Builder.getFalse(); 4166 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4167 if (IsSigned) 4168 Inst->setHasNoSignedWrap(); 4169 else 4170 Inst->setHasNoUnsignedWrap(); 4171 } 4172 return true; 4173 } 4174 4175 llvm_unreachable("Unexpected overflow result"); 4176 } 4177 4178 /// Recognize and process idiom involving test for multiplication 4179 /// overflow. 4180 /// 4181 /// The caller has matched a pattern of the form: 4182 /// I = cmp u (mul(zext A, zext B), V 4183 /// The function checks if this is a test for overflow and if so replaces 4184 /// multiplication with call to 'mul.with.overflow' intrinsic. 4185 /// 4186 /// \param I Compare instruction. 4187 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4188 /// the compare instruction. Must be of integer type. 4189 /// \param OtherVal The other argument of compare instruction. 4190 /// \returns Instruction which must replace the compare instruction, NULL if no 4191 /// replacement required. 4192 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4193 Value *OtherVal, InstCombiner &IC) { 4194 // Don't bother doing this transformation for pointers, don't do it for 4195 // vectors. 4196 if (!isa<IntegerType>(MulVal->getType())) 4197 return nullptr; 4198 4199 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4200 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4201 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4202 if (!MulInstr) 4203 return nullptr; 4204 assert(MulInstr->getOpcode() == Instruction::Mul); 4205 4206 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4207 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4208 assert(LHS->getOpcode() == Instruction::ZExt); 4209 assert(RHS->getOpcode() == Instruction::ZExt); 4210 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4211 4212 // Calculate type and width of the result produced by mul.with.overflow. 4213 Type *TyA = A->getType(), *TyB = B->getType(); 4214 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4215 WidthB = TyB->getPrimitiveSizeInBits(); 4216 unsigned MulWidth; 4217 Type *MulType; 4218 if (WidthB > WidthA) { 4219 MulWidth = WidthB; 4220 MulType = TyB; 4221 } else { 4222 MulWidth = WidthA; 4223 MulType = TyA; 4224 } 4225 4226 // In order to replace the original mul with a narrower mul.with.overflow, 4227 // all uses must ignore upper bits of the product. The number of used low 4228 // bits must be not greater than the width of mul.with.overflow. 4229 if (MulVal->hasNUsesOrMore(2)) 4230 for (User *U : MulVal->users()) { 4231 if (U == &I) 4232 continue; 4233 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4234 // Check if truncation ignores bits above MulWidth. 4235 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4236 if (TruncWidth > MulWidth) 4237 return nullptr; 4238 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4239 // Check if AND ignores bits above MulWidth. 4240 if (BO->getOpcode() != Instruction::And) 4241 return nullptr; 4242 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4243 const APInt &CVal = CI->getValue(); 4244 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4245 return nullptr; 4246 } else { 4247 // In this case we could have the operand of the binary operation 4248 // being defined in another block, and performing the replacement 4249 // could break the dominance relation. 4250 return nullptr; 4251 } 4252 } else { 4253 // Other uses prohibit this transformation. 4254 return nullptr; 4255 } 4256 } 4257 4258 // Recognize patterns 4259 switch (I.getPredicate()) { 4260 case ICmpInst::ICMP_EQ: 4261 case ICmpInst::ICMP_NE: 4262 // Recognize pattern: 4263 // mulval = mul(zext A, zext B) 4264 // cmp eq/neq mulval, zext trunc mulval 4265 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4266 if (Zext->hasOneUse()) { 4267 Value *ZextArg = Zext->getOperand(0); 4268 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4269 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4270 break; //Recognized 4271 } 4272 4273 // Recognize pattern: 4274 // mulval = mul(zext A, zext B) 4275 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4276 ConstantInt *CI; 4277 Value *ValToMask; 4278 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4279 if (ValToMask != MulVal) 4280 return nullptr; 4281 const APInt &CVal = CI->getValue() + 1; 4282 if (CVal.isPowerOf2()) { 4283 unsigned MaskWidth = CVal.logBase2(); 4284 if (MaskWidth == MulWidth) 4285 break; // Recognized 4286 } 4287 } 4288 return nullptr; 4289 4290 case ICmpInst::ICMP_UGT: 4291 // Recognize pattern: 4292 // mulval = mul(zext A, zext B) 4293 // cmp ugt mulval, max 4294 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4295 APInt MaxVal = APInt::getMaxValue(MulWidth); 4296 MaxVal = MaxVal.zext(CI->getBitWidth()); 4297 if (MaxVal.eq(CI->getValue())) 4298 break; // Recognized 4299 } 4300 return nullptr; 4301 4302 case ICmpInst::ICMP_UGE: 4303 // Recognize pattern: 4304 // mulval = mul(zext A, zext B) 4305 // cmp uge mulval, max+1 4306 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4307 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4308 if (MaxVal.eq(CI->getValue())) 4309 break; // Recognized 4310 } 4311 return nullptr; 4312 4313 case ICmpInst::ICMP_ULE: 4314 // Recognize pattern: 4315 // mulval = mul(zext A, zext B) 4316 // cmp ule mulval, max 4317 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4318 APInt MaxVal = APInt::getMaxValue(MulWidth); 4319 MaxVal = MaxVal.zext(CI->getBitWidth()); 4320 if (MaxVal.eq(CI->getValue())) 4321 break; // Recognized 4322 } 4323 return nullptr; 4324 4325 case ICmpInst::ICMP_ULT: 4326 // Recognize pattern: 4327 // mulval = mul(zext A, zext B) 4328 // cmp ule mulval, max + 1 4329 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4330 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4331 if (MaxVal.eq(CI->getValue())) 4332 break; // Recognized 4333 } 4334 return nullptr; 4335 4336 default: 4337 return nullptr; 4338 } 4339 4340 InstCombiner::BuilderTy &Builder = IC.Builder; 4341 Builder.SetInsertPoint(MulInstr); 4342 4343 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4344 Value *MulA = A, *MulB = B; 4345 if (WidthA < MulWidth) 4346 MulA = Builder.CreateZExt(A, MulType); 4347 if (WidthB < MulWidth) 4348 MulB = Builder.CreateZExt(B, MulType); 4349 Function *F = Intrinsic::getDeclaration( 4350 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4351 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4352 IC.Worklist.Add(MulInstr); 4353 4354 // If there are uses of mul result other than the comparison, we know that 4355 // they are truncation or binary AND. Change them to use result of 4356 // mul.with.overflow and adjust properly mask/size. 4357 if (MulVal->hasNUsesOrMore(2)) { 4358 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4359 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4360 User *U = *UI++; 4361 if (U == &I || U == OtherVal) 4362 continue; 4363 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4364 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4365 IC.replaceInstUsesWith(*TI, Mul); 4366 else 4367 TI->setOperand(0, Mul); 4368 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4369 assert(BO->getOpcode() == Instruction::And); 4370 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4371 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4372 APInt ShortMask = CI->getValue().trunc(MulWidth); 4373 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4374 Instruction *Zext = 4375 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4376 IC.Worklist.Add(Zext); 4377 IC.replaceInstUsesWith(*BO, Zext); 4378 } else { 4379 llvm_unreachable("Unexpected Binary operation"); 4380 } 4381 IC.Worklist.Add(cast<Instruction>(U)); 4382 } 4383 } 4384 if (isa<Instruction>(OtherVal)) 4385 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4386 4387 // The original icmp gets replaced with the overflow value, maybe inverted 4388 // depending on predicate. 4389 bool Inverse = false; 4390 switch (I.getPredicate()) { 4391 case ICmpInst::ICMP_NE: 4392 break; 4393 case ICmpInst::ICMP_EQ: 4394 Inverse = true; 4395 break; 4396 case ICmpInst::ICMP_UGT: 4397 case ICmpInst::ICMP_UGE: 4398 if (I.getOperand(0) == MulVal) 4399 break; 4400 Inverse = true; 4401 break; 4402 case ICmpInst::ICMP_ULT: 4403 case ICmpInst::ICMP_ULE: 4404 if (I.getOperand(1) == MulVal) 4405 break; 4406 Inverse = true; 4407 break; 4408 default: 4409 llvm_unreachable("Unexpected predicate"); 4410 } 4411 if (Inverse) { 4412 Value *Res = Builder.CreateExtractValue(Call, 1); 4413 return BinaryOperator::CreateNot(Res); 4414 } 4415 4416 return ExtractValueInst::Create(Call, 1); 4417 } 4418 4419 /// When performing a comparison against a constant, it is possible that not all 4420 /// the bits in the LHS are demanded. This helper method computes the mask that 4421 /// IS demanded. 4422 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4423 const APInt *RHS; 4424 if (!match(I.getOperand(1), m_APInt(RHS))) 4425 return APInt::getAllOnesValue(BitWidth); 4426 4427 // If this is a normal comparison, it demands all bits. If it is a sign bit 4428 // comparison, it only demands the sign bit. 4429 bool UnusedBit; 4430 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4431 return APInt::getSignMask(BitWidth); 4432 4433 switch (I.getPredicate()) { 4434 // For a UGT comparison, we don't care about any bits that 4435 // correspond to the trailing ones of the comparand. The value of these 4436 // bits doesn't impact the outcome of the comparison, because any value 4437 // greater than the RHS must differ in a bit higher than these due to carry. 4438 case ICmpInst::ICMP_UGT: 4439 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4440 4441 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4442 // Any value less than the RHS must differ in a higher bit because of carries. 4443 case ICmpInst::ICMP_ULT: 4444 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4445 4446 default: 4447 return APInt::getAllOnesValue(BitWidth); 4448 } 4449 } 4450 4451 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4452 /// should be swapped. 4453 /// The decision is based on how many times these two operands are reused 4454 /// as subtract operands and their positions in those instructions. 4455 /// The rationale is that several architectures use the same instruction for 4456 /// both subtract and cmp. Thus, it is better if the order of those operands 4457 /// match. 4458 /// \return true if Op0 and Op1 should be swapped. 4459 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4460 // Filter out pointer values as those cannot appear directly in subtract. 4461 // FIXME: we may want to go through inttoptrs or bitcasts. 4462 if (Op0->getType()->isPointerTy()) 4463 return false; 4464 // If a subtract already has the same operands as a compare, swapping would be 4465 // bad. If a subtract has the same operands as a compare but in reverse order, 4466 // then swapping is good. 4467 int GoodToSwap = 0; 4468 for (const User *U : Op0->users()) { 4469 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4470 GoodToSwap++; 4471 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4472 GoodToSwap--; 4473 } 4474 return GoodToSwap > 0; 4475 } 4476 4477 /// Check that one use is in the same block as the definition and all 4478 /// other uses are in blocks dominated by a given block. 4479 /// 4480 /// \param DI Definition 4481 /// \param UI Use 4482 /// \param DB Block that must dominate all uses of \p DI outside 4483 /// the parent block 4484 /// \return true when \p UI is the only use of \p DI in the parent block 4485 /// and all other uses of \p DI are in blocks dominated by \p DB. 4486 /// 4487 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4488 const Instruction *UI, 4489 const BasicBlock *DB) const { 4490 assert(DI && UI && "Instruction not defined\n"); 4491 // Ignore incomplete definitions. 4492 if (!DI->getParent()) 4493 return false; 4494 // DI and UI must be in the same block. 4495 if (DI->getParent() != UI->getParent()) 4496 return false; 4497 // Protect from self-referencing blocks. 4498 if (DI->getParent() == DB) 4499 return false; 4500 for (const User *U : DI->users()) { 4501 auto *Usr = cast<Instruction>(U); 4502 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4503 return false; 4504 } 4505 return true; 4506 } 4507 4508 /// Return true when the instruction sequence within a block is select-cmp-br. 4509 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4510 const BasicBlock *BB = SI->getParent(); 4511 if (!BB) 4512 return false; 4513 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4514 if (!BI || BI->getNumSuccessors() != 2) 4515 return false; 4516 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4517 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4518 return false; 4519 return true; 4520 } 4521 4522 /// True when a select result is replaced by one of its operands 4523 /// in select-icmp sequence. This will eventually result in the elimination 4524 /// of the select. 4525 /// 4526 /// \param SI Select instruction 4527 /// \param Icmp Compare instruction 4528 /// \param SIOpd Operand that replaces the select 4529 /// 4530 /// Notes: 4531 /// - The replacement is global and requires dominator information 4532 /// - The caller is responsible for the actual replacement 4533 /// 4534 /// Example: 4535 /// 4536 /// entry: 4537 /// %4 = select i1 %3, %C* %0, %C* null 4538 /// %5 = icmp eq %C* %4, null 4539 /// br i1 %5, label %9, label %7 4540 /// ... 4541 /// ; <label>:7 ; preds = %entry 4542 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4543 /// ... 4544 /// 4545 /// can be transformed to 4546 /// 4547 /// %5 = icmp eq %C* %0, null 4548 /// %6 = select i1 %3, i1 %5, i1 true 4549 /// br i1 %6, label %9, label %7 4550 /// ... 4551 /// ; <label>:7 ; preds = %entry 4552 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4553 /// 4554 /// Similar when the first operand of the select is a constant or/and 4555 /// the compare is for not equal rather than equal. 4556 /// 4557 /// NOTE: The function is only called when the select and compare constants 4558 /// are equal, the optimization can work only for EQ predicates. This is not a 4559 /// major restriction since a NE compare should be 'normalized' to an equal 4560 /// compare, which usually happens in the combiner and test case 4561 /// select-cmp-br.ll checks for it. 4562 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4563 const ICmpInst *Icmp, 4564 const unsigned SIOpd) { 4565 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4566 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4567 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4568 // The check for the single predecessor is not the best that can be 4569 // done. But it protects efficiently against cases like when SI's 4570 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4571 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4572 // replaced can be reached on either path. So the uniqueness check 4573 // guarantees that the path all uses of SI (outside SI's parent) are on 4574 // is disjoint from all other paths out of SI. But that information 4575 // is more expensive to compute, and the trade-off here is in favor 4576 // of compile-time. It should also be noticed that we check for a single 4577 // predecessor and not only uniqueness. This to handle the situation when 4578 // Succ and Succ1 points to the same basic block. 4579 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4580 NumSel++; 4581 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4582 return true; 4583 } 4584 } 4585 return false; 4586 } 4587 4588 /// Try to fold the comparison based on range information we can get by checking 4589 /// whether bits are known to be zero or one in the inputs. 4590 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4591 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4592 Type *Ty = Op0->getType(); 4593 ICmpInst::Predicate Pred = I.getPredicate(); 4594 4595 // Get scalar or pointer size. 4596 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4597 ? Ty->getScalarSizeInBits() 4598 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4599 4600 if (!BitWidth) 4601 return nullptr; 4602 4603 KnownBits Op0Known(BitWidth); 4604 KnownBits Op1Known(BitWidth); 4605 4606 if (SimplifyDemandedBits(&I, 0, 4607 getDemandedBitsLHSMask(I, BitWidth), 4608 Op0Known, 0)) 4609 return &I; 4610 4611 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4612 Op1Known, 0)) 4613 return &I; 4614 4615 // Given the known and unknown bits, compute a range that the LHS could be 4616 // in. Compute the Min, Max and RHS values based on the known bits. For the 4617 // EQ and NE we use unsigned values. 4618 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4619 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4620 if (I.isSigned()) { 4621 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4622 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4623 } else { 4624 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4625 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4626 } 4627 4628 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4629 // out that the LHS or RHS is a constant. Constant fold this now, so that 4630 // code below can assume that Min != Max. 4631 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4632 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4633 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4634 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4635 4636 // Based on the range information we know about the LHS, see if we can 4637 // simplify this comparison. For example, (x&4) < 8 is always true. 4638 switch (Pred) { 4639 default: 4640 llvm_unreachable("Unknown icmp opcode!"); 4641 case ICmpInst::ICMP_EQ: 4642 case ICmpInst::ICMP_NE: { 4643 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4644 return Pred == CmpInst::ICMP_EQ 4645 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4646 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4647 } 4648 4649 // If all bits are known zero except for one, then we know at most one bit 4650 // is set. If the comparison is against zero, then this is a check to see if 4651 // *that* bit is set. 4652 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4653 if (Op1Known.isZero()) { 4654 // If the LHS is an AND with the same constant, look through it. 4655 Value *LHS = nullptr; 4656 const APInt *LHSC; 4657 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4658 *LHSC != Op0KnownZeroInverted) 4659 LHS = Op0; 4660 4661 Value *X; 4662 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4663 APInt ValToCheck = Op0KnownZeroInverted; 4664 Type *XTy = X->getType(); 4665 if (ValToCheck.isPowerOf2()) { 4666 // ((1 << X) & 8) == 0 -> X != 3 4667 // ((1 << X) & 8) != 0 -> X == 3 4668 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4669 auto NewPred = ICmpInst::getInversePredicate(Pred); 4670 return new ICmpInst(NewPred, X, CmpC); 4671 } else if ((++ValToCheck).isPowerOf2()) { 4672 // ((1 << X) & 7) == 0 -> X >= 3 4673 // ((1 << X) & 7) != 0 -> X < 3 4674 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4675 auto NewPred = 4676 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4677 return new ICmpInst(NewPred, X, CmpC); 4678 } 4679 } 4680 4681 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4682 const APInt *CI; 4683 if (Op0KnownZeroInverted.isOneValue() && 4684 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4685 // ((8 >>u X) & 1) == 0 -> X != 3 4686 // ((8 >>u X) & 1) != 0 -> X == 3 4687 unsigned CmpVal = CI->countTrailingZeros(); 4688 auto NewPred = ICmpInst::getInversePredicate(Pred); 4689 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4690 } 4691 } 4692 break; 4693 } 4694 case ICmpInst::ICMP_ULT: { 4695 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4696 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4697 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4698 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4699 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4700 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4701 4702 const APInt *CmpC; 4703 if (match(Op1, m_APInt(CmpC))) { 4704 // A <u C -> A == C-1 if min(A)+1 == C 4705 if (*CmpC == Op0Min + 1) 4706 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4707 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4708 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4709 // exceeds the log2 of C. 4710 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4711 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4712 Constant::getNullValue(Op1->getType())); 4713 } 4714 break; 4715 } 4716 case ICmpInst::ICMP_UGT: { 4717 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4718 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4719 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4720 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4721 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4722 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4723 4724 const APInt *CmpC; 4725 if (match(Op1, m_APInt(CmpC))) { 4726 // A >u C -> A == C+1 if max(a)-1 == C 4727 if (*CmpC == Op0Max - 1) 4728 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4729 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4730 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4731 // exceeds the log2 of C. 4732 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4733 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4734 Constant::getNullValue(Op1->getType())); 4735 } 4736 break; 4737 } 4738 case ICmpInst::ICMP_SLT: { 4739 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4740 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4741 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4742 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4743 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4744 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4745 const APInt *CmpC; 4746 if (match(Op1, m_APInt(CmpC))) { 4747 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4748 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4749 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4750 } 4751 break; 4752 } 4753 case ICmpInst::ICMP_SGT: { 4754 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4755 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4756 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4757 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4758 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4759 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4760 const APInt *CmpC; 4761 if (match(Op1, m_APInt(CmpC))) { 4762 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4763 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4764 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4765 } 4766 break; 4767 } 4768 case ICmpInst::ICMP_SGE: 4769 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4770 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4771 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4772 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4773 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4774 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4775 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4776 break; 4777 case ICmpInst::ICMP_SLE: 4778 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4779 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4780 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4781 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4782 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4783 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4784 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4785 break; 4786 case ICmpInst::ICMP_UGE: 4787 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4788 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4789 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4790 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4791 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4792 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4793 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4794 break; 4795 case ICmpInst::ICMP_ULE: 4796 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4797 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4798 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4799 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4800 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4801 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4802 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4803 break; 4804 } 4805 4806 // Turn a signed comparison into an unsigned one if both operands are known to 4807 // have the same sign. 4808 if (I.isSigned() && 4809 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4810 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4811 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4812 4813 return nullptr; 4814 } 4815 4816 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4817 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4818 /// allows them to be folded in visitICmpInst. 4819 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4820 ICmpInst::Predicate Pred = I.getPredicate(); 4821 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4822 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4823 return nullptr; 4824 4825 Value *Op0 = I.getOperand(0); 4826 Value *Op1 = I.getOperand(1); 4827 auto *Op1C = dyn_cast<Constant>(Op1); 4828 if (!Op1C) 4829 return nullptr; 4830 4831 // Check if the constant operand can be safely incremented/decremented without 4832 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4833 // the edge cases for us, so we just assert on them. For vectors, we must 4834 // handle the edge cases. 4835 Type *Op1Type = Op1->getType(); 4836 bool IsSigned = I.isSigned(); 4837 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4838 auto *CI = dyn_cast<ConstantInt>(Op1C); 4839 if (CI) { 4840 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4841 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4842 } else if (Op1Type->isVectorTy()) { 4843 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4844 // are for scalar, we could remove the min/max checks. However, to do that, 4845 // we would have to use insertelement/shufflevector to replace edge values. 4846 unsigned NumElts = Op1Type->getVectorNumElements(); 4847 for (unsigned i = 0; i != NumElts; ++i) { 4848 Constant *Elt = Op1C->getAggregateElement(i); 4849 if (!Elt) 4850 return nullptr; 4851 4852 if (isa<UndefValue>(Elt)) 4853 continue; 4854 4855 // Bail out if we can't determine if this constant is min/max or if we 4856 // know that this constant is min/max. 4857 auto *CI = dyn_cast<ConstantInt>(Elt); 4858 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4859 return nullptr; 4860 } 4861 } else { 4862 // ConstantExpr? 4863 return nullptr; 4864 } 4865 4866 // Increment or decrement the constant and set the new comparison predicate: 4867 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4868 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4869 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4870 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4871 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4872 } 4873 4874 /// Integer compare with boolean values can always be turned into bitwise ops. 4875 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4876 InstCombiner::BuilderTy &Builder) { 4877 Value *A = I.getOperand(0), *B = I.getOperand(1); 4878 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4879 4880 // A boolean compared to true/false can be simplified to Op0/true/false in 4881 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4882 // Cases not handled by InstSimplify are always 'not' of Op0. 4883 if (match(B, m_Zero())) { 4884 switch (I.getPredicate()) { 4885 case CmpInst::ICMP_EQ: // A == 0 -> !A 4886 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4887 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4888 return BinaryOperator::CreateNot(A); 4889 default: 4890 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4891 } 4892 } else if (match(B, m_One())) { 4893 switch (I.getPredicate()) { 4894 case CmpInst::ICMP_NE: // A != 1 -> !A 4895 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4896 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4897 return BinaryOperator::CreateNot(A); 4898 default: 4899 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4900 } 4901 } 4902 4903 switch (I.getPredicate()) { 4904 default: 4905 llvm_unreachable("Invalid icmp instruction!"); 4906 case ICmpInst::ICMP_EQ: 4907 // icmp eq i1 A, B -> ~(A ^ B) 4908 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4909 4910 case ICmpInst::ICMP_NE: 4911 // icmp ne i1 A, B -> A ^ B 4912 return BinaryOperator::CreateXor(A, B); 4913 4914 case ICmpInst::ICMP_UGT: 4915 // icmp ugt -> icmp ult 4916 std::swap(A, B); 4917 LLVM_FALLTHROUGH; 4918 case ICmpInst::ICMP_ULT: 4919 // icmp ult i1 A, B -> ~A & B 4920 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4921 4922 case ICmpInst::ICMP_SGT: 4923 // icmp sgt -> icmp slt 4924 std::swap(A, B); 4925 LLVM_FALLTHROUGH; 4926 case ICmpInst::ICMP_SLT: 4927 // icmp slt i1 A, B -> A & ~B 4928 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4929 4930 case ICmpInst::ICMP_UGE: 4931 // icmp uge -> icmp ule 4932 std::swap(A, B); 4933 LLVM_FALLTHROUGH; 4934 case ICmpInst::ICMP_ULE: 4935 // icmp ule i1 A, B -> ~A | B 4936 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4937 4938 case ICmpInst::ICMP_SGE: 4939 // icmp sge -> icmp sle 4940 std::swap(A, B); 4941 LLVM_FALLTHROUGH; 4942 case ICmpInst::ICMP_SLE: 4943 // icmp sle i1 A, B -> A | ~B 4944 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4945 } 4946 } 4947 4948 // Transform pattern like: 4949 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4950 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4951 // Into: 4952 // (X l>> Y) != 0 4953 // (X l>> Y) == 0 4954 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4955 InstCombiner::BuilderTy &Builder) { 4956 ICmpInst::Predicate Pred, NewPred; 4957 Value *X, *Y; 4958 if (match(&Cmp, 4959 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4960 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4961 if (Cmp.getOperand(0) == X) 4962 Pred = Cmp.getSwappedPredicate(); 4963 4964 switch (Pred) { 4965 case ICmpInst::ICMP_ULE: 4966 NewPred = ICmpInst::ICMP_NE; 4967 break; 4968 case ICmpInst::ICMP_UGT: 4969 NewPred = ICmpInst::ICMP_EQ; 4970 break; 4971 default: 4972 return nullptr; 4973 } 4974 } else if (match(&Cmp, m_c_ICmp(Pred, 4975 m_OneUse(m_CombineOr( 4976 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4977 m_Add(m_Shl(m_One(), m_Value(Y)), 4978 m_AllOnes()))), 4979 m_Value(X)))) { 4980 // The variant with 'add' is not canonical, (the variant with 'not' is) 4981 // we only get it because it has extra uses, and can't be canonicalized, 4982 4983 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4984 if (Cmp.getOperand(0) == X) 4985 Pred = Cmp.getSwappedPredicate(); 4986 4987 switch (Pred) { 4988 case ICmpInst::ICMP_ULT: 4989 NewPred = ICmpInst::ICMP_NE; 4990 break; 4991 case ICmpInst::ICMP_UGE: 4992 NewPred = ICmpInst::ICMP_EQ; 4993 break; 4994 default: 4995 return nullptr; 4996 } 4997 } else 4998 return nullptr; 4999 5000 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5001 Constant *Zero = Constant::getNullValue(NewX->getType()); 5002 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5003 } 5004 5005 static Instruction *foldVectorCmp(CmpInst &Cmp, 5006 InstCombiner::BuilderTy &Builder) { 5007 // If both arguments of the cmp are shuffles that use the same mask and 5008 // shuffle within a single vector, move the shuffle after the cmp. 5009 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5010 Value *V1, *V2; 5011 Constant *M; 5012 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 5013 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 5014 V1->getType() == V2->getType() && 5015 (LHS->hasOneUse() || RHS->hasOneUse())) { 5016 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5017 CmpInst::Predicate P = Cmp.getPredicate(); 5018 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 5019 : Builder.CreateFCmp(P, V1, V2); 5020 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5021 } 5022 return nullptr; 5023 } 5024 5025 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5026 bool Changed = false; 5027 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5028 unsigned Op0Cplxity = getComplexity(Op0); 5029 unsigned Op1Cplxity = getComplexity(Op1); 5030 5031 /// Orders the operands of the compare so that they are listed from most 5032 /// complex to least complex. This puts constants before unary operators, 5033 /// before binary operators. 5034 if (Op0Cplxity < Op1Cplxity || 5035 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5036 I.swapOperands(); 5037 std::swap(Op0, Op1); 5038 Changed = true; 5039 } 5040 5041 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 5042 SQ.getWithInstruction(&I))) 5043 return replaceInstUsesWith(I, V); 5044 5045 // Comparing -val or val with non-zero is the same as just comparing val 5046 // ie, abs(val) != 0 -> val != 0 5047 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5048 Value *Cond, *SelectTrue, *SelectFalse; 5049 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5050 m_Value(SelectFalse)))) { 5051 if (Value *V = dyn_castNegVal(SelectTrue)) { 5052 if (V == SelectFalse) 5053 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5054 } 5055 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5056 if (V == SelectTrue) 5057 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5058 } 5059 } 5060 } 5061 5062 if (Op0->getType()->isIntOrIntVectorTy(1)) 5063 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5064 return Res; 5065 5066 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 5067 return NewICmp; 5068 5069 if (Instruction *Res = foldICmpWithConstant(I)) 5070 return Res; 5071 5072 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5073 return Res; 5074 5075 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5076 return Res; 5077 5078 // Test if the ICmpInst instruction is used exclusively by a select as 5079 // part of a minimum or maximum operation. If so, refrain from doing 5080 // any other folding. This helps out other analyses which understand 5081 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5082 // and CodeGen. And in this case, at least one of the comparison 5083 // operands has at least one user besides the compare (the select), 5084 // which would often largely negate the benefit of folding anyway. 5085 // 5086 // Do the same for the other patterns recognized by matchSelectPattern. 5087 if (I.hasOneUse()) 5088 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5089 Value *A, *B; 5090 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5091 if (SPR.Flavor != SPF_UNKNOWN) 5092 return nullptr; 5093 } 5094 5095 // Do this after checking for min/max to prevent infinite looping. 5096 if (Instruction *Res = foldICmpWithZero(I)) 5097 return Res; 5098 5099 // FIXME: We only do this after checking for min/max to prevent infinite 5100 // looping caused by a reverse canonicalization of these patterns for min/max. 5101 // FIXME: The organization of folds is a mess. These would naturally go into 5102 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5103 // down here after the min/max restriction. 5104 ICmpInst::Predicate Pred = I.getPredicate(); 5105 const APInt *C; 5106 if (match(Op1, m_APInt(C))) { 5107 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5108 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5109 Constant *Zero = Constant::getNullValue(Op0->getType()); 5110 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5111 } 5112 5113 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5114 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5115 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5116 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5117 } 5118 } 5119 5120 if (Instruction *Res = foldICmpInstWithConstant(I)) 5121 return Res; 5122 5123 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5124 return Res; 5125 5126 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5127 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5128 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5129 return NI; 5130 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5131 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5132 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5133 return NI; 5134 5135 // Try to optimize equality comparisons against alloca-based pointers. 5136 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5137 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5138 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5139 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5140 return New; 5141 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5142 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5143 return New; 5144 } 5145 5146 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5147 return Res; 5148 5149 if (isa<CastInst>(Op0)) { 5150 // Handle the special case of: icmp (cast bool to X), <cst> 5151 // This comes up when you have code like 5152 // int X = A < B; 5153 // if (X) ... 5154 // For generality, we handle any zero-extension of any operand comparison 5155 // with a constant or another cast from the same type. 5156 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 5157 if (Instruction *R = foldICmpWithCastAndCast(I)) 5158 return R; 5159 } 5160 5161 if (Instruction *Res = foldICmpBinOp(I)) 5162 return Res; 5163 5164 if (Instruction *Res = foldICmpWithMinMax(I)) 5165 return Res; 5166 5167 { 5168 Value *A, *B; 5169 // Transform (A & ~B) == 0 --> (A & B) != 0 5170 // and (A & ~B) != 0 --> (A & B) == 0 5171 // if A is a power of 2. 5172 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5173 match(Op1, m_Zero()) && 5174 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5175 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5176 Op1); 5177 5178 // ~X < ~Y --> Y < X 5179 // ~X < C --> X > ~C 5180 if (match(Op0, m_Not(m_Value(A)))) { 5181 if (match(Op1, m_Not(m_Value(B)))) 5182 return new ICmpInst(I.getPredicate(), B, A); 5183 5184 const APInt *C; 5185 if (match(Op1, m_APInt(C))) 5186 return new ICmpInst(I.getSwappedPredicate(), A, 5187 ConstantInt::get(Op1->getType(), ~(*C))); 5188 } 5189 5190 Instruction *AddI = nullptr; 5191 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5192 m_Instruction(AddI))) && 5193 isa<IntegerType>(A->getType())) { 5194 Value *Result; 5195 Constant *Overflow; 5196 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B, 5197 *AddI, Result, Overflow)) { 5198 replaceInstUsesWith(*AddI, Result); 5199 return replaceInstUsesWith(I, Overflow); 5200 } 5201 } 5202 5203 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5204 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5205 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5206 return R; 5207 } 5208 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5209 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5210 return R; 5211 } 5212 } 5213 5214 if (Instruction *Res = foldICmpEquality(I)) 5215 return Res; 5216 5217 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5218 // an i1 which indicates whether or not we successfully did the swap. 5219 // 5220 // Replace comparisons between the old value and the expected value with the 5221 // indicator that 'cmpxchg' returns. 5222 // 5223 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5224 // spuriously fail. In those cases, the old value may equal the expected 5225 // value but it is possible for the swap to not occur. 5226 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5227 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5228 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5229 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5230 !ACXI->isWeak()) 5231 return ExtractValueInst::Create(ACXI, 1); 5232 5233 { 5234 Value *X; 5235 const APInt *C; 5236 // icmp X+Cst, X 5237 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5238 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5239 5240 // icmp X, X+Cst 5241 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5242 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5243 } 5244 5245 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5246 return Res; 5247 5248 if (I.getType()->isVectorTy()) 5249 if (Instruction *Res = foldVectorCmp(I, Builder)) 5250 return Res; 5251 5252 return Changed ? &I : nullptr; 5253 } 5254 5255 /// Fold fcmp ([us]itofp x, cst) if possible. 5256 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5257 Constant *RHSC) { 5258 if (!isa<ConstantFP>(RHSC)) return nullptr; 5259 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5260 5261 // Get the width of the mantissa. We don't want to hack on conversions that 5262 // might lose information from the integer, e.g. "i64 -> float" 5263 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5264 if (MantissaWidth == -1) return nullptr; // Unknown. 5265 5266 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5267 5268 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5269 5270 if (I.isEquality()) { 5271 FCmpInst::Predicate P = I.getPredicate(); 5272 bool IsExact = false; 5273 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5274 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5275 5276 // If the floating point constant isn't an integer value, we know if we will 5277 // ever compare equal / not equal to it. 5278 if (!IsExact) { 5279 // TODO: Can never be -0.0 and other non-representable values 5280 APFloat RHSRoundInt(RHS); 5281 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5282 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5283 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5284 return replaceInstUsesWith(I, Builder.getFalse()); 5285 5286 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5287 return replaceInstUsesWith(I, Builder.getTrue()); 5288 } 5289 } 5290 5291 // TODO: If the constant is exactly representable, is it always OK to do 5292 // equality compares as integer? 5293 } 5294 5295 // Check to see that the input is converted from an integer type that is small 5296 // enough that preserves all bits. TODO: check here for "known" sign bits. 5297 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5298 unsigned InputSize = IntTy->getScalarSizeInBits(); 5299 5300 // Following test does NOT adjust InputSize downwards for signed inputs, 5301 // because the most negative value still requires all the mantissa bits 5302 // to distinguish it from one less than that value. 5303 if ((int)InputSize > MantissaWidth) { 5304 // Conversion would lose accuracy. Check if loss can impact comparison. 5305 int Exp = ilogb(RHS); 5306 if (Exp == APFloat::IEK_Inf) { 5307 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5308 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5309 // Conversion could create infinity. 5310 return nullptr; 5311 } else { 5312 // Note that if RHS is zero or NaN, then Exp is negative 5313 // and first condition is trivially false. 5314 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5315 // Conversion could affect comparison. 5316 return nullptr; 5317 } 5318 } 5319 5320 // Otherwise, we can potentially simplify the comparison. We know that it 5321 // will always come through as an integer value and we know the constant is 5322 // not a NAN (it would have been previously simplified). 5323 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5324 5325 ICmpInst::Predicate Pred; 5326 switch (I.getPredicate()) { 5327 default: llvm_unreachable("Unexpected predicate!"); 5328 case FCmpInst::FCMP_UEQ: 5329 case FCmpInst::FCMP_OEQ: 5330 Pred = ICmpInst::ICMP_EQ; 5331 break; 5332 case FCmpInst::FCMP_UGT: 5333 case FCmpInst::FCMP_OGT: 5334 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5335 break; 5336 case FCmpInst::FCMP_UGE: 5337 case FCmpInst::FCMP_OGE: 5338 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5339 break; 5340 case FCmpInst::FCMP_ULT: 5341 case FCmpInst::FCMP_OLT: 5342 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5343 break; 5344 case FCmpInst::FCMP_ULE: 5345 case FCmpInst::FCMP_OLE: 5346 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5347 break; 5348 case FCmpInst::FCMP_UNE: 5349 case FCmpInst::FCMP_ONE: 5350 Pred = ICmpInst::ICMP_NE; 5351 break; 5352 case FCmpInst::FCMP_ORD: 5353 return replaceInstUsesWith(I, Builder.getTrue()); 5354 case FCmpInst::FCMP_UNO: 5355 return replaceInstUsesWith(I, Builder.getFalse()); 5356 } 5357 5358 // Now we know that the APFloat is a normal number, zero or inf. 5359 5360 // See if the FP constant is too large for the integer. For example, 5361 // comparing an i8 to 300.0. 5362 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5363 5364 if (!LHSUnsigned) { 5365 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5366 // and large values. 5367 APFloat SMax(RHS.getSemantics()); 5368 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5369 APFloat::rmNearestTiesToEven); 5370 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5371 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5372 Pred == ICmpInst::ICMP_SLE) 5373 return replaceInstUsesWith(I, Builder.getTrue()); 5374 return replaceInstUsesWith(I, Builder.getFalse()); 5375 } 5376 } else { 5377 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5378 // +INF and large values. 5379 APFloat UMax(RHS.getSemantics()); 5380 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5381 APFloat::rmNearestTiesToEven); 5382 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5383 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5384 Pred == ICmpInst::ICMP_ULE) 5385 return replaceInstUsesWith(I, Builder.getTrue()); 5386 return replaceInstUsesWith(I, Builder.getFalse()); 5387 } 5388 } 5389 5390 if (!LHSUnsigned) { 5391 // See if the RHS value is < SignedMin. 5392 APFloat SMin(RHS.getSemantics()); 5393 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5394 APFloat::rmNearestTiesToEven); 5395 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5396 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5397 Pred == ICmpInst::ICMP_SGE) 5398 return replaceInstUsesWith(I, Builder.getTrue()); 5399 return replaceInstUsesWith(I, Builder.getFalse()); 5400 } 5401 } else { 5402 // See if the RHS value is < UnsignedMin. 5403 APFloat SMin(RHS.getSemantics()); 5404 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5405 APFloat::rmNearestTiesToEven); 5406 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5407 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5408 Pred == ICmpInst::ICMP_UGE) 5409 return replaceInstUsesWith(I, Builder.getTrue()); 5410 return replaceInstUsesWith(I, Builder.getFalse()); 5411 } 5412 } 5413 5414 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5415 // [0, UMAX], but it may still be fractional. See if it is fractional by 5416 // casting the FP value to the integer value and back, checking for equality. 5417 // Don't do this for zero, because -0.0 is not fractional. 5418 Constant *RHSInt = LHSUnsigned 5419 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5420 : ConstantExpr::getFPToSI(RHSC, IntTy); 5421 if (!RHS.isZero()) { 5422 bool Equal = LHSUnsigned 5423 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5424 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5425 if (!Equal) { 5426 // If we had a comparison against a fractional value, we have to adjust 5427 // the compare predicate and sometimes the value. RHSC is rounded towards 5428 // zero at this point. 5429 switch (Pred) { 5430 default: llvm_unreachable("Unexpected integer comparison!"); 5431 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5432 return replaceInstUsesWith(I, Builder.getTrue()); 5433 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5434 return replaceInstUsesWith(I, Builder.getFalse()); 5435 case ICmpInst::ICMP_ULE: 5436 // (float)int <= 4.4 --> int <= 4 5437 // (float)int <= -4.4 --> false 5438 if (RHS.isNegative()) 5439 return replaceInstUsesWith(I, Builder.getFalse()); 5440 break; 5441 case ICmpInst::ICMP_SLE: 5442 // (float)int <= 4.4 --> int <= 4 5443 // (float)int <= -4.4 --> int < -4 5444 if (RHS.isNegative()) 5445 Pred = ICmpInst::ICMP_SLT; 5446 break; 5447 case ICmpInst::ICMP_ULT: 5448 // (float)int < -4.4 --> false 5449 // (float)int < 4.4 --> int <= 4 5450 if (RHS.isNegative()) 5451 return replaceInstUsesWith(I, Builder.getFalse()); 5452 Pred = ICmpInst::ICMP_ULE; 5453 break; 5454 case ICmpInst::ICMP_SLT: 5455 // (float)int < -4.4 --> int < -4 5456 // (float)int < 4.4 --> int <= 4 5457 if (!RHS.isNegative()) 5458 Pred = ICmpInst::ICMP_SLE; 5459 break; 5460 case ICmpInst::ICMP_UGT: 5461 // (float)int > 4.4 --> int > 4 5462 // (float)int > -4.4 --> true 5463 if (RHS.isNegative()) 5464 return replaceInstUsesWith(I, Builder.getTrue()); 5465 break; 5466 case ICmpInst::ICMP_SGT: 5467 // (float)int > 4.4 --> int > 4 5468 // (float)int > -4.4 --> int >= -4 5469 if (RHS.isNegative()) 5470 Pred = ICmpInst::ICMP_SGE; 5471 break; 5472 case ICmpInst::ICMP_UGE: 5473 // (float)int >= -4.4 --> true 5474 // (float)int >= 4.4 --> int > 4 5475 if (RHS.isNegative()) 5476 return replaceInstUsesWith(I, Builder.getTrue()); 5477 Pred = ICmpInst::ICMP_UGT; 5478 break; 5479 case ICmpInst::ICMP_SGE: 5480 // (float)int >= -4.4 --> int >= -4 5481 // (float)int >= 4.4 --> int > 4 5482 if (!RHS.isNegative()) 5483 Pred = ICmpInst::ICMP_SGT; 5484 break; 5485 } 5486 } 5487 } 5488 5489 // Lower this FP comparison into an appropriate integer version of the 5490 // comparison. 5491 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5492 } 5493 5494 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5495 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5496 Constant *RHSC) { 5497 // When C is not 0.0 and infinities are not allowed: 5498 // (C / X) < 0.0 is a sign-bit test of X 5499 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5500 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5501 // 5502 // Proof: 5503 // Multiply (C / X) < 0.0 by X * X / C. 5504 // - X is non zero, if it is the flag 'ninf' is violated. 5505 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5506 // the predicate. C is also non zero by definition. 5507 // 5508 // Thus X * X / C is non zero and the transformation is valid. [qed] 5509 5510 FCmpInst::Predicate Pred = I.getPredicate(); 5511 5512 // Check that predicates are valid. 5513 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5514 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5515 return nullptr; 5516 5517 // Check that RHS operand is zero. 5518 if (!match(RHSC, m_AnyZeroFP())) 5519 return nullptr; 5520 5521 // Check fastmath flags ('ninf'). 5522 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5523 return nullptr; 5524 5525 // Check the properties of the dividend. It must not be zero to avoid a 5526 // division by zero (see Proof). 5527 const APFloat *C; 5528 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5529 return nullptr; 5530 5531 if (C->isZero()) 5532 return nullptr; 5533 5534 // Get swapped predicate if necessary. 5535 if (C->isNegative()) 5536 Pred = I.getSwappedPredicate(); 5537 5538 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5539 } 5540 5541 /// Optimize fabs(X) compared with zero. 5542 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5543 Value *X; 5544 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5545 !match(I.getOperand(1), m_PosZeroFP())) 5546 return nullptr; 5547 5548 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5549 I->setPredicate(P); 5550 I->setOperand(0, X); 5551 return I; 5552 }; 5553 5554 switch (I.getPredicate()) { 5555 case FCmpInst::FCMP_UGE: 5556 case FCmpInst::FCMP_OLT: 5557 // fabs(X) >= 0.0 --> true 5558 // fabs(X) < 0.0 --> false 5559 llvm_unreachable("fcmp should have simplified"); 5560 5561 case FCmpInst::FCMP_OGT: 5562 // fabs(X) > 0.0 --> X != 0.0 5563 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5564 5565 case FCmpInst::FCMP_UGT: 5566 // fabs(X) u> 0.0 --> X u!= 0.0 5567 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5568 5569 case FCmpInst::FCMP_OLE: 5570 // fabs(X) <= 0.0 --> X == 0.0 5571 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5572 5573 case FCmpInst::FCMP_ULE: 5574 // fabs(X) u<= 0.0 --> X u== 0.0 5575 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5576 5577 case FCmpInst::FCMP_OGE: 5578 // fabs(X) >= 0.0 --> !isnan(X) 5579 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5580 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5581 5582 case FCmpInst::FCMP_ULT: 5583 // fabs(X) u< 0.0 --> isnan(X) 5584 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5585 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5586 5587 case FCmpInst::FCMP_OEQ: 5588 case FCmpInst::FCMP_UEQ: 5589 case FCmpInst::FCMP_ONE: 5590 case FCmpInst::FCMP_UNE: 5591 case FCmpInst::FCMP_ORD: 5592 case FCmpInst::FCMP_UNO: 5593 // Look through the fabs() because it doesn't change anything but the sign. 5594 // fabs(X) == 0.0 --> X == 0.0, 5595 // fabs(X) != 0.0 --> X != 0.0 5596 // isnan(fabs(X)) --> isnan(X) 5597 // !isnan(fabs(X) --> !isnan(X) 5598 return replacePredAndOp0(&I, I.getPredicate(), X); 5599 5600 default: 5601 return nullptr; 5602 } 5603 } 5604 5605 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5606 bool Changed = false; 5607 5608 /// Orders the operands of the compare so that they are listed from most 5609 /// complex to least complex. This puts constants before unary operators, 5610 /// before binary operators. 5611 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5612 I.swapOperands(); 5613 Changed = true; 5614 } 5615 5616 const CmpInst::Predicate Pred = I.getPredicate(); 5617 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5618 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5619 SQ.getWithInstruction(&I))) 5620 return replaceInstUsesWith(I, V); 5621 5622 // Simplify 'fcmp pred X, X' 5623 Type *OpType = Op0->getType(); 5624 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 5625 if (Op0 == Op1) { 5626 switch (Pred) { 5627 default: break; 5628 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5629 case FCmpInst::FCMP_ULT: // True if unordered or less than 5630 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5631 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5632 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5633 I.setPredicate(FCmpInst::FCMP_UNO); 5634 I.setOperand(1, Constant::getNullValue(OpType)); 5635 return &I; 5636 5637 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5638 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5639 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5640 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5641 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5642 I.setPredicate(FCmpInst::FCMP_ORD); 5643 I.setOperand(1, Constant::getNullValue(OpType)); 5644 return &I; 5645 } 5646 } 5647 5648 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5649 // then canonicalize the operand to 0.0. 5650 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5651 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5652 I.setOperand(0, ConstantFP::getNullValue(OpType)); 5653 return &I; 5654 } 5655 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5656 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5657 return &I; 5658 } 5659 } 5660 5661 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5662 Value *X, *Y; 5663 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 5664 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5665 5666 // Test if the FCmpInst instruction is used exclusively by a select as 5667 // part of a minimum or maximum operation. If so, refrain from doing 5668 // any other folding. This helps out other analyses which understand 5669 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5670 // and CodeGen. And in this case, at least one of the comparison 5671 // operands has at least one user besides the compare (the select), 5672 // which would often largely negate the benefit of folding anyway. 5673 if (I.hasOneUse()) 5674 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5675 Value *A, *B; 5676 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5677 if (SPR.Flavor != SPF_UNKNOWN) 5678 return nullptr; 5679 } 5680 5681 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5682 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5683 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5684 I.setOperand(1, ConstantFP::getNullValue(OpType)); 5685 return &I; 5686 } 5687 5688 // Handle fcmp with instruction LHS and constant RHS. 5689 Instruction *LHSI; 5690 Constant *RHSC; 5691 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5692 switch (LHSI->getOpcode()) { 5693 case Instruction::PHI: 5694 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5695 // block. If in the same block, we're encouraging jump threading. If 5696 // not, we are just pessimizing the code by making an i1 phi. 5697 if (LHSI->getParent() == I.getParent()) 5698 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5699 return NV; 5700 break; 5701 case Instruction::SIToFP: 5702 case Instruction::UIToFP: 5703 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5704 return NV; 5705 break; 5706 case Instruction::FDiv: 5707 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5708 return NV; 5709 break; 5710 case Instruction::Load: 5711 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5712 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5713 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5714 !cast<LoadInst>(LHSI)->isVolatile()) 5715 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5716 return Res; 5717 break; 5718 } 5719 } 5720 5721 if (Instruction *R = foldFabsWithFcmpZero(I)) 5722 return R; 5723 5724 if (match(Op0, m_FNeg(m_Value(X)))) { 5725 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5726 Constant *C; 5727 if (match(Op1, m_Constant(C))) { 5728 Constant *NegC = ConstantExpr::getFNeg(C); 5729 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5730 } 5731 } 5732 5733 if (match(Op0, m_FPExt(m_Value(X)))) { 5734 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5735 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5736 return new FCmpInst(Pred, X, Y, "", &I); 5737 5738 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5739 const APFloat *C; 5740 if (match(Op1, m_APFloat(C))) { 5741 const fltSemantics &FPSem = 5742 X->getType()->getScalarType()->getFltSemantics(); 5743 bool Lossy; 5744 APFloat TruncC = *C; 5745 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5746 5747 // Avoid lossy conversions and denormals. 5748 // Zero is a special case that's OK to convert. 5749 APFloat Fabs = TruncC; 5750 Fabs.clearSign(); 5751 if (!Lossy && 5752 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5753 APFloat::cmpLessThan) || Fabs.isZero())) { 5754 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5755 return new FCmpInst(Pred, X, NewC, "", &I); 5756 } 5757 } 5758 } 5759 5760 if (I.getType()->isVectorTy()) 5761 if (Instruction *Res = foldVectorCmp(I, Builder)) 5762 return Res; 5763 5764 return Changed ? &I : nullptr; 5765 } 5766