xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <cstring>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace PatternMatch;
72 
73 #define DEBUG_TYPE "instcombine"
74 
75 STATISTIC(NumSimplified, "Number of library calls simplified");
76 
77 static cl::opt<unsigned> GuardWideningWindow(
78     "instcombine-guard-widening-window",
79     cl::init(3),
80     cl::desc("How wide an instruction window to bypass looking for "
81              "another guard"));
82 
83 /// Return the specified type promoted as it would be to pass though a va_arg
84 /// area.
85 static Type *getPromotedType(Type *Ty) {
86   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
87     if (ITy->getBitWidth() < 32)
88       return Type::getInt32Ty(Ty->getContext());
89   }
90   return Ty;
91 }
92 
93 /// Return a constant boolean vector that has true elements in all positions
94 /// where the input constant data vector has an element with the sign bit set.
95 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
96   SmallVector<Constant *, 32> BoolVec;
97   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
98   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
99     Constant *Elt = V->getElementAsConstant(I);
100     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
101            "Unexpected constant data vector element type");
102     bool Sign = V->getElementType()->isIntegerTy()
103                     ? cast<ConstantInt>(Elt)->isNegative()
104                     : cast<ConstantFP>(Elt)->isNegative();
105     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
106   }
107   return ConstantVector::get(BoolVec);
108 }
109 
110 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
111   unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
112   unsigned CopyDstAlign = MI->getDestAlignment();
113   if (CopyDstAlign < DstAlign){
114     MI->setDestAlignment(DstAlign);
115     return MI;
116   }
117 
118   unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
119   unsigned CopySrcAlign = MI->getSourceAlignment();
120   if (CopySrcAlign < SrcAlign) {
121     MI->setSourceAlignment(SrcAlign);
122     return MI;
123   }
124 
125   // If we have a store to a location which is known constant, we can conclude
126   // that the store must be storing the constant value (else the memory
127   // wouldn't be constant), and this must be a noop.
128   if (AA->pointsToConstantMemory(MI->getDest())) {
129     // Set the size of the copy to 0, it will be deleted on the next iteration.
130     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
131     return MI;
132   }
133 
134   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
135   // load/store.
136   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
137   if (!MemOpLength) return nullptr;
138 
139   // Source and destination pointer types are always "i8*" for intrinsic.  See
140   // if the size is something we can handle with a single primitive load/store.
141   // A single load+store correctly handles overlapping memory in the memmove
142   // case.
143   uint64_t Size = MemOpLength->getLimitedValue();
144   assert(Size && "0-sized memory transferring should be removed already.");
145 
146   if (Size > 8 || (Size&(Size-1)))
147     return nullptr;  // If not 1/2/4/8 bytes, exit.
148 
149   // If it is an atomic and alignment is less than the size then we will
150   // introduce the unaligned memory access which will be later transformed
151   // into libcall in CodeGen. This is not evident performance gain so disable
152   // it now.
153   if (isa<AtomicMemTransferInst>(MI))
154     if (CopyDstAlign < Size || CopySrcAlign < Size)
155       return nullptr;
156 
157   // Use an integer load+store unless we can find something better.
158   unsigned SrcAddrSp =
159     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
160   unsigned DstAddrSp =
161     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
162 
163   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
164   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
165   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
166 
167   // If the memcpy has metadata describing the members, see if we can get the
168   // TBAA tag describing our copy.
169   MDNode *CopyMD = nullptr;
170   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
171     CopyMD = M;
172   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
173     if (M->getNumOperands() == 3 && M->getOperand(0) &&
174         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
175         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
176         M->getOperand(1) &&
177         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
178         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
179         Size &&
180         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
181       CopyMD = cast<MDNode>(M->getOperand(2));
182   }
183 
184   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
185   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
186   LoadInst *L = Builder.CreateLoad(IntType, Src);
187   // Alignment from the mem intrinsic will be better, so use it.
188   L->setAlignment(CopySrcAlign);
189   if (CopyMD)
190     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
191   MDNode *LoopMemParallelMD =
192     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
193   if (LoopMemParallelMD)
194     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
195   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
196   if (AccessGroupMD)
197     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
198 
199   StoreInst *S = Builder.CreateStore(L, Dest);
200   // Alignment from the mem intrinsic will be better, so use it.
201   S->setAlignment(CopyDstAlign);
202   if (CopyMD)
203     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
204   if (LoopMemParallelMD)
205     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
206   if (AccessGroupMD)
207     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
208 
209   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
210     // non-atomics can be volatile
211     L->setVolatile(MT->isVolatile());
212     S->setVolatile(MT->isVolatile());
213   }
214   if (isa<AtomicMemTransferInst>(MI)) {
215     // atomics have to be unordered
216     L->setOrdering(AtomicOrdering::Unordered);
217     S->setOrdering(AtomicOrdering::Unordered);
218   }
219 
220   // Set the size of the copy to 0, it will be deleted on the next iteration.
221   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
222   return MI;
223 }
224 
225 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
226   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
227   if (MI->getDestAlignment() < Alignment) {
228     MI->setDestAlignment(Alignment);
229     return MI;
230   }
231 
232   // If we have a store to a location which is known constant, we can conclude
233   // that the store must be storing the constant value (else the memory
234   // wouldn't be constant), and this must be a noop.
235   if (AA->pointsToConstantMemory(MI->getDest())) {
236     // Set the size of the copy to 0, it will be deleted on the next iteration.
237     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
238     return MI;
239   }
240 
241   // Extract the length and alignment and fill if they are constant.
242   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
243   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
244   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
245     return nullptr;
246   uint64_t Len = LenC->getLimitedValue();
247   Alignment = MI->getDestAlignment();
248   assert(Len && "0-sized memory setting should be removed already.");
249 
250   // Alignment 0 is identity for alignment 1 for memset, but not store.
251   if (Alignment == 0)
252     Alignment = 1;
253 
254   // If it is an atomic and alignment is less than the size then we will
255   // introduce the unaligned memory access which will be later transformed
256   // into libcall in CodeGen. This is not evident performance gain so disable
257   // it now.
258   if (isa<AtomicMemSetInst>(MI))
259     if (Alignment < Len)
260       return nullptr;
261 
262   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
263   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
264     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
265 
266     Value *Dest = MI->getDest();
267     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
268     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
269     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
270 
271     // Extract the fill value and store.
272     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
273     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
274                                        MI->isVolatile());
275     S->setAlignment(Alignment);
276     if (isa<AtomicMemSetInst>(MI))
277       S->setOrdering(AtomicOrdering::Unordered);
278 
279     // Set the size of the copy to 0, it will be deleted on the next iteration.
280     MI->setLength(Constant::getNullValue(LenC->getType()));
281     return MI;
282   }
283 
284   return nullptr;
285 }
286 
287 static Value *simplifyX86immShift(const IntrinsicInst &II,
288                                   InstCombiner::BuilderTy &Builder) {
289   bool LogicalShift = false;
290   bool ShiftLeft = false;
291 
292   switch (II.getIntrinsicID()) {
293   default: llvm_unreachable("Unexpected intrinsic!");
294   case Intrinsic::x86_sse2_psra_d:
295   case Intrinsic::x86_sse2_psra_w:
296   case Intrinsic::x86_sse2_psrai_d:
297   case Intrinsic::x86_sse2_psrai_w:
298   case Intrinsic::x86_avx2_psra_d:
299   case Intrinsic::x86_avx2_psra_w:
300   case Intrinsic::x86_avx2_psrai_d:
301   case Intrinsic::x86_avx2_psrai_w:
302   case Intrinsic::x86_avx512_psra_q_128:
303   case Intrinsic::x86_avx512_psrai_q_128:
304   case Intrinsic::x86_avx512_psra_q_256:
305   case Intrinsic::x86_avx512_psrai_q_256:
306   case Intrinsic::x86_avx512_psra_d_512:
307   case Intrinsic::x86_avx512_psra_q_512:
308   case Intrinsic::x86_avx512_psra_w_512:
309   case Intrinsic::x86_avx512_psrai_d_512:
310   case Intrinsic::x86_avx512_psrai_q_512:
311   case Intrinsic::x86_avx512_psrai_w_512:
312     LogicalShift = false; ShiftLeft = false;
313     break;
314   case Intrinsic::x86_sse2_psrl_d:
315   case Intrinsic::x86_sse2_psrl_q:
316   case Intrinsic::x86_sse2_psrl_w:
317   case Intrinsic::x86_sse2_psrli_d:
318   case Intrinsic::x86_sse2_psrli_q:
319   case Intrinsic::x86_sse2_psrli_w:
320   case Intrinsic::x86_avx2_psrl_d:
321   case Intrinsic::x86_avx2_psrl_q:
322   case Intrinsic::x86_avx2_psrl_w:
323   case Intrinsic::x86_avx2_psrli_d:
324   case Intrinsic::x86_avx2_psrli_q:
325   case Intrinsic::x86_avx2_psrli_w:
326   case Intrinsic::x86_avx512_psrl_d_512:
327   case Intrinsic::x86_avx512_psrl_q_512:
328   case Intrinsic::x86_avx512_psrl_w_512:
329   case Intrinsic::x86_avx512_psrli_d_512:
330   case Intrinsic::x86_avx512_psrli_q_512:
331   case Intrinsic::x86_avx512_psrli_w_512:
332     LogicalShift = true; ShiftLeft = false;
333     break;
334   case Intrinsic::x86_sse2_psll_d:
335   case Intrinsic::x86_sse2_psll_q:
336   case Intrinsic::x86_sse2_psll_w:
337   case Intrinsic::x86_sse2_pslli_d:
338   case Intrinsic::x86_sse2_pslli_q:
339   case Intrinsic::x86_sse2_pslli_w:
340   case Intrinsic::x86_avx2_psll_d:
341   case Intrinsic::x86_avx2_psll_q:
342   case Intrinsic::x86_avx2_psll_w:
343   case Intrinsic::x86_avx2_pslli_d:
344   case Intrinsic::x86_avx2_pslli_q:
345   case Intrinsic::x86_avx2_pslli_w:
346   case Intrinsic::x86_avx512_psll_d_512:
347   case Intrinsic::x86_avx512_psll_q_512:
348   case Intrinsic::x86_avx512_psll_w_512:
349   case Intrinsic::x86_avx512_pslli_d_512:
350   case Intrinsic::x86_avx512_pslli_q_512:
351   case Intrinsic::x86_avx512_pslli_w_512:
352     LogicalShift = true; ShiftLeft = true;
353     break;
354   }
355   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
356 
357   // Simplify if count is constant.
358   auto Arg1 = II.getArgOperand(1);
359   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
360   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
361   auto CInt = dyn_cast<ConstantInt>(Arg1);
362   if (!CAZ && !CDV && !CInt)
363     return nullptr;
364 
365   APInt Count(64, 0);
366   if (CDV) {
367     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
368     // operand to compute the shift amount.
369     auto VT = cast<VectorType>(CDV->getType());
370     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
371     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
372     unsigned NumSubElts = 64 / BitWidth;
373 
374     // Concatenate the sub-elements to create the 64-bit value.
375     for (unsigned i = 0; i != NumSubElts; ++i) {
376       unsigned SubEltIdx = (NumSubElts - 1) - i;
377       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
378       Count <<= BitWidth;
379       Count |= SubElt->getValue().zextOrTrunc(64);
380     }
381   }
382   else if (CInt)
383     Count = CInt->getValue();
384 
385   auto Vec = II.getArgOperand(0);
386   auto VT = cast<VectorType>(Vec->getType());
387   auto SVT = VT->getElementType();
388   unsigned VWidth = VT->getNumElements();
389   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
390 
391   // If shift-by-zero then just return the original value.
392   if (Count.isNullValue())
393     return Vec;
394 
395   // Handle cases when Shift >= BitWidth.
396   if (Count.uge(BitWidth)) {
397     // If LogicalShift - just return zero.
398     if (LogicalShift)
399       return ConstantAggregateZero::get(VT);
400 
401     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
402     Count = APInt(64, BitWidth - 1);
403   }
404 
405   // Get a constant vector of the same type as the first operand.
406   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
407   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
408 
409   if (ShiftLeft)
410     return Builder.CreateShl(Vec, ShiftVec);
411 
412   if (LogicalShift)
413     return Builder.CreateLShr(Vec, ShiftVec);
414 
415   return Builder.CreateAShr(Vec, ShiftVec);
416 }
417 
418 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
419 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
420 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
421 static Value *simplifyX86varShift(const IntrinsicInst &II,
422                                   InstCombiner::BuilderTy &Builder) {
423   bool LogicalShift = false;
424   bool ShiftLeft = false;
425 
426   switch (II.getIntrinsicID()) {
427   default: llvm_unreachable("Unexpected intrinsic!");
428   case Intrinsic::x86_avx2_psrav_d:
429   case Intrinsic::x86_avx2_psrav_d_256:
430   case Intrinsic::x86_avx512_psrav_q_128:
431   case Intrinsic::x86_avx512_psrav_q_256:
432   case Intrinsic::x86_avx512_psrav_d_512:
433   case Intrinsic::x86_avx512_psrav_q_512:
434   case Intrinsic::x86_avx512_psrav_w_128:
435   case Intrinsic::x86_avx512_psrav_w_256:
436   case Intrinsic::x86_avx512_psrav_w_512:
437     LogicalShift = false;
438     ShiftLeft = false;
439     break;
440   case Intrinsic::x86_avx2_psrlv_d:
441   case Intrinsic::x86_avx2_psrlv_d_256:
442   case Intrinsic::x86_avx2_psrlv_q:
443   case Intrinsic::x86_avx2_psrlv_q_256:
444   case Intrinsic::x86_avx512_psrlv_d_512:
445   case Intrinsic::x86_avx512_psrlv_q_512:
446   case Intrinsic::x86_avx512_psrlv_w_128:
447   case Intrinsic::x86_avx512_psrlv_w_256:
448   case Intrinsic::x86_avx512_psrlv_w_512:
449     LogicalShift = true;
450     ShiftLeft = false;
451     break;
452   case Intrinsic::x86_avx2_psllv_d:
453   case Intrinsic::x86_avx2_psllv_d_256:
454   case Intrinsic::x86_avx2_psllv_q:
455   case Intrinsic::x86_avx2_psllv_q_256:
456   case Intrinsic::x86_avx512_psllv_d_512:
457   case Intrinsic::x86_avx512_psllv_q_512:
458   case Intrinsic::x86_avx512_psllv_w_128:
459   case Intrinsic::x86_avx512_psllv_w_256:
460   case Intrinsic::x86_avx512_psllv_w_512:
461     LogicalShift = true;
462     ShiftLeft = true;
463     break;
464   }
465   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
466 
467   // Simplify if all shift amounts are constant/undef.
468   auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
469   if (!CShift)
470     return nullptr;
471 
472   auto Vec = II.getArgOperand(0);
473   auto VT = cast<VectorType>(II.getType());
474   auto SVT = VT->getVectorElementType();
475   int NumElts = VT->getNumElements();
476   int BitWidth = SVT->getIntegerBitWidth();
477 
478   // Collect each element's shift amount.
479   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
480   bool AnyOutOfRange = false;
481   SmallVector<int, 8> ShiftAmts;
482   for (int I = 0; I < NumElts; ++I) {
483     auto *CElt = CShift->getAggregateElement(I);
484     if (CElt && isa<UndefValue>(CElt)) {
485       ShiftAmts.push_back(-1);
486       continue;
487     }
488 
489     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
490     if (!COp)
491       return nullptr;
492 
493     // Handle out of range shifts.
494     // If LogicalShift - set to BitWidth (special case).
495     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
496     APInt ShiftVal = COp->getValue();
497     if (ShiftVal.uge(BitWidth)) {
498       AnyOutOfRange = LogicalShift;
499       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
500       continue;
501     }
502 
503     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
504   }
505 
506   // If all elements out of range or UNDEF, return vector of zeros/undefs.
507   // ArithmeticShift should only hit this if they are all UNDEF.
508   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
509   if (llvm::all_of(ShiftAmts, OutOfRange)) {
510     SmallVector<Constant *, 8> ConstantVec;
511     for (int Idx : ShiftAmts) {
512       if (Idx < 0) {
513         ConstantVec.push_back(UndefValue::get(SVT));
514       } else {
515         assert(LogicalShift && "Logical shift expected");
516         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
517       }
518     }
519     return ConstantVector::get(ConstantVec);
520   }
521 
522   // We can't handle only some out of range values with generic logical shifts.
523   if (AnyOutOfRange)
524     return nullptr;
525 
526   // Build the shift amount constant vector.
527   SmallVector<Constant *, 8> ShiftVecAmts;
528   for (int Idx : ShiftAmts) {
529     if (Idx < 0)
530       ShiftVecAmts.push_back(UndefValue::get(SVT));
531     else
532       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
533   }
534   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
535 
536   if (ShiftLeft)
537     return Builder.CreateShl(Vec, ShiftVec);
538 
539   if (LogicalShift)
540     return Builder.CreateLShr(Vec, ShiftVec);
541 
542   return Builder.CreateAShr(Vec, ShiftVec);
543 }
544 
545 static Value *simplifyX86pack(IntrinsicInst &II,
546                               InstCombiner::BuilderTy &Builder, bool IsSigned) {
547   Value *Arg0 = II.getArgOperand(0);
548   Value *Arg1 = II.getArgOperand(1);
549   Type *ResTy = II.getType();
550 
551   // Fast all undef handling.
552   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
553     return UndefValue::get(ResTy);
554 
555   Type *ArgTy = Arg0->getType();
556   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
557   unsigned NumSrcElts = ArgTy->getVectorNumElements();
558   assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) &&
559          "Unexpected packing types");
560 
561   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
562   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
563   unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
564   assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
565          "Unexpected packing types");
566 
567   // Constant folding.
568   if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
569     return nullptr;
570 
571   // Clamp Values - signed/unsigned both use signed clamp values, but they
572   // differ on the min/max values.
573   APInt MinValue, MaxValue;
574   if (IsSigned) {
575     // PACKSS: Truncate signed value with signed saturation.
576     // Source values less than dst minint are saturated to minint.
577     // Source values greater than dst maxint are saturated to maxint.
578     MinValue =
579         APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
580     MaxValue =
581         APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
582   } else {
583     // PACKUS: Truncate signed value with unsigned saturation.
584     // Source values less than zero are saturated to zero.
585     // Source values greater than dst maxuint are saturated to maxuint.
586     MinValue = APInt::getNullValue(SrcScalarSizeInBits);
587     MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
588   }
589 
590   auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
591   auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
592   Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
593   Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
594   Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
595   Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
596 
597   // Shuffle clamped args together at the lane level.
598   SmallVector<unsigned, 32> PackMask;
599   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
600     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
601       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
602     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
603       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
604   }
605   auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
606 
607   // Truncate to dst size.
608   return Builder.CreateTrunc(Shuffle, ResTy);
609 }
610 
611 static Value *simplifyX86movmsk(const IntrinsicInst &II,
612                                 InstCombiner::BuilderTy &Builder) {
613   Value *Arg = II.getArgOperand(0);
614   Type *ResTy = II.getType();
615   Type *ArgTy = Arg->getType();
616 
617   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
618   if (isa<UndefValue>(Arg))
619     return Constant::getNullValue(ResTy);
620 
621   // We can't easily peek through x86_mmx types.
622   if (!ArgTy->isVectorTy())
623     return nullptr;
624 
625   // Expand MOVMSK to compare/bitcast/zext:
626   // e.g. PMOVMSKB(v16i8 x):
627   // %cmp = icmp slt <16 x i8> %x, zeroinitializer
628   // %int = bitcast <16 x i1> %cmp to i16
629   // %res = zext i16 %int to i32
630   unsigned NumElts = ArgTy->getVectorNumElements();
631   Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy));
632   Type *IntegerTy = Builder.getIntNTy(NumElts);
633 
634   Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
635   Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
636   Res = Builder.CreateBitCast(Res, IntegerTy);
637   Res = Builder.CreateZExtOrTrunc(Res, ResTy);
638   return Res;
639 }
640 
641 static Value *simplifyX86addcarry(const IntrinsicInst &II,
642                                   InstCombiner::BuilderTy &Builder) {
643   Value *CarryIn = II.getArgOperand(0);
644   Value *Op1 = II.getArgOperand(1);
645   Value *Op2 = II.getArgOperand(2);
646   Type *RetTy = II.getType();
647   Type *OpTy = Op1->getType();
648   assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
649          RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
650          "Unexpected types for x86 addcarry");
651 
652   // If carry-in is zero, this is just an unsigned add with overflow.
653   if (match(CarryIn, m_ZeroInt())) {
654     Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
655                                           { Op1, Op2 });
656     // The types have to be adjusted to match the x86 call types.
657     Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
658     Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
659                                        Builder.getInt8Ty());
660     Value *Res = UndefValue::get(RetTy);
661     Res = Builder.CreateInsertValue(Res, UAddOV, 0);
662     return Builder.CreateInsertValue(Res, UAddResult, 1);
663   }
664 
665   return nullptr;
666 }
667 
668 static Value *simplifyX86insertps(const IntrinsicInst &II,
669                                   InstCombiner::BuilderTy &Builder) {
670   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
671   if (!CInt)
672     return nullptr;
673 
674   VectorType *VecTy = cast<VectorType>(II.getType());
675   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
676 
677   // The immediate permute control byte looks like this:
678   //    [3:0] - zero mask for each 32-bit lane
679   //    [5:4] - select one 32-bit destination lane
680   //    [7:6] - select one 32-bit source lane
681 
682   uint8_t Imm = CInt->getZExtValue();
683   uint8_t ZMask = Imm & 0xf;
684   uint8_t DestLane = (Imm >> 4) & 0x3;
685   uint8_t SourceLane = (Imm >> 6) & 0x3;
686 
687   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
688 
689   // If all zero mask bits are set, this was just a weird way to
690   // generate a zero vector.
691   if (ZMask == 0xf)
692     return ZeroVector;
693 
694   // Initialize by passing all of the first source bits through.
695   uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
696 
697   // We may replace the second operand with the zero vector.
698   Value *V1 = II.getArgOperand(1);
699 
700   if (ZMask) {
701     // If the zero mask is being used with a single input or the zero mask
702     // overrides the destination lane, this is a shuffle with the zero vector.
703     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
704         (ZMask & (1 << DestLane))) {
705       V1 = ZeroVector;
706       // We may still move 32-bits of the first source vector from one lane
707       // to another.
708       ShuffleMask[DestLane] = SourceLane;
709       // The zero mask may override the previous insert operation.
710       for (unsigned i = 0; i < 4; ++i)
711         if ((ZMask >> i) & 0x1)
712           ShuffleMask[i] = i + 4;
713     } else {
714       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
715       return nullptr;
716     }
717   } else {
718     // Replace the selected destination lane with the selected source lane.
719     ShuffleMask[DestLane] = SourceLane + 4;
720   }
721 
722   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
723 }
724 
725 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
726 /// or conversion to a shuffle vector.
727 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
728                                ConstantInt *CILength, ConstantInt *CIIndex,
729                                InstCombiner::BuilderTy &Builder) {
730   auto LowConstantHighUndef = [&](uint64_t Val) {
731     Type *IntTy64 = Type::getInt64Ty(II.getContext());
732     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
733                         UndefValue::get(IntTy64)};
734     return ConstantVector::get(Args);
735   };
736 
737   // See if we're dealing with constant values.
738   Constant *C0 = dyn_cast<Constant>(Op0);
739   ConstantInt *CI0 =
740       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
741          : nullptr;
742 
743   // Attempt to constant fold.
744   if (CILength && CIIndex) {
745     // From AMD documentation: "The bit index and field length are each six
746     // bits in length other bits of the field are ignored."
747     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
748     APInt APLength = CILength->getValue().zextOrTrunc(6);
749 
750     unsigned Index = APIndex.getZExtValue();
751 
752     // From AMD documentation: "a value of zero in the field length is
753     // defined as length of 64".
754     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
755 
756     // From AMD documentation: "If the sum of the bit index + length field
757     // is greater than 64, the results are undefined".
758     unsigned End = Index + Length;
759 
760     // Note that both field index and field length are 8-bit quantities.
761     // Since variables 'Index' and 'Length' are unsigned values
762     // obtained from zero-extending field index and field length
763     // respectively, their sum should never wrap around.
764     if (End > 64)
765       return UndefValue::get(II.getType());
766 
767     // If we are inserting whole bytes, we can convert this to a shuffle.
768     // Lowering can recognize EXTRQI shuffle masks.
769     if ((Length % 8) == 0 && (Index % 8) == 0) {
770       // Convert bit indices to byte indices.
771       Length /= 8;
772       Index /= 8;
773 
774       Type *IntTy8 = Type::getInt8Ty(II.getContext());
775       Type *IntTy32 = Type::getInt32Ty(II.getContext());
776       VectorType *ShufTy = VectorType::get(IntTy8, 16);
777 
778       SmallVector<Constant *, 16> ShuffleMask;
779       for (int i = 0; i != (int)Length; ++i)
780         ShuffleMask.push_back(
781             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
782       for (int i = Length; i != 8; ++i)
783         ShuffleMask.push_back(
784             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
785       for (int i = 8; i != 16; ++i)
786         ShuffleMask.push_back(UndefValue::get(IntTy32));
787 
788       Value *SV = Builder.CreateShuffleVector(
789           Builder.CreateBitCast(Op0, ShufTy),
790           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
791       return Builder.CreateBitCast(SV, II.getType());
792     }
793 
794     // Constant Fold - shift Index'th bit to lowest position and mask off
795     // Length bits.
796     if (CI0) {
797       APInt Elt = CI0->getValue();
798       Elt.lshrInPlace(Index);
799       Elt = Elt.zextOrTrunc(Length);
800       return LowConstantHighUndef(Elt.getZExtValue());
801     }
802 
803     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
804     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
805       Value *Args[] = {Op0, CILength, CIIndex};
806       Module *M = II.getModule();
807       Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
808       return Builder.CreateCall(F, Args);
809     }
810   }
811 
812   // Constant Fold - extraction from zero is always {zero, undef}.
813   if (CI0 && CI0->isZero())
814     return LowConstantHighUndef(0);
815 
816   return nullptr;
817 }
818 
819 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
820 /// folding or conversion to a shuffle vector.
821 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
822                                  APInt APLength, APInt APIndex,
823                                  InstCombiner::BuilderTy &Builder) {
824   // From AMD documentation: "The bit index and field length are each six bits
825   // in length other bits of the field are ignored."
826   APIndex = APIndex.zextOrTrunc(6);
827   APLength = APLength.zextOrTrunc(6);
828 
829   // Attempt to constant fold.
830   unsigned Index = APIndex.getZExtValue();
831 
832   // From AMD documentation: "a value of zero in the field length is
833   // defined as length of 64".
834   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
835 
836   // From AMD documentation: "If the sum of the bit index + length field
837   // is greater than 64, the results are undefined".
838   unsigned End = Index + Length;
839 
840   // Note that both field index and field length are 8-bit quantities.
841   // Since variables 'Index' and 'Length' are unsigned values
842   // obtained from zero-extending field index and field length
843   // respectively, their sum should never wrap around.
844   if (End > 64)
845     return UndefValue::get(II.getType());
846 
847   // If we are inserting whole bytes, we can convert this to a shuffle.
848   // Lowering can recognize INSERTQI shuffle masks.
849   if ((Length % 8) == 0 && (Index % 8) == 0) {
850     // Convert bit indices to byte indices.
851     Length /= 8;
852     Index /= 8;
853 
854     Type *IntTy8 = Type::getInt8Ty(II.getContext());
855     Type *IntTy32 = Type::getInt32Ty(II.getContext());
856     VectorType *ShufTy = VectorType::get(IntTy8, 16);
857 
858     SmallVector<Constant *, 16> ShuffleMask;
859     for (int i = 0; i != (int)Index; ++i)
860       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
861     for (int i = 0; i != (int)Length; ++i)
862       ShuffleMask.push_back(
863           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
864     for (int i = Index + Length; i != 8; ++i)
865       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
866     for (int i = 8; i != 16; ++i)
867       ShuffleMask.push_back(UndefValue::get(IntTy32));
868 
869     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
870                                             Builder.CreateBitCast(Op1, ShufTy),
871                                             ConstantVector::get(ShuffleMask));
872     return Builder.CreateBitCast(SV, II.getType());
873   }
874 
875   // See if we're dealing with constant values.
876   Constant *C0 = dyn_cast<Constant>(Op0);
877   Constant *C1 = dyn_cast<Constant>(Op1);
878   ConstantInt *CI00 =
879       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
880          : nullptr;
881   ConstantInt *CI10 =
882       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
883          : nullptr;
884 
885   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
886   if (CI00 && CI10) {
887     APInt V00 = CI00->getValue();
888     APInt V10 = CI10->getValue();
889     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
890     V00 = V00 & ~Mask;
891     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
892     APInt Val = V00 | V10;
893     Type *IntTy64 = Type::getInt64Ty(II.getContext());
894     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
895                         UndefValue::get(IntTy64)};
896     return ConstantVector::get(Args);
897   }
898 
899   // If we were an INSERTQ call, we'll save demanded elements if we convert to
900   // INSERTQI.
901   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
902     Type *IntTy8 = Type::getInt8Ty(II.getContext());
903     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
904     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
905 
906     Value *Args[] = {Op0, Op1, CILength, CIIndex};
907     Module *M = II.getModule();
908     Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
909     return Builder.CreateCall(F, Args);
910   }
911 
912   return nullptr;
913 }
914 
915 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
916 static Value *simplifyX86pshufb(const IntrinsicInst &II,
917                                 InstCombiner::BuilderTy &Builder) {
918   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
919   if (!V)
920     return nullptr;
921 
922   auto *VecTy = cast<VectorType>(II.getType());
923   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
924   unsigned NumElts = VecTy->getNumElements();
925   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
926          "Unexpected number of elements in shuffle mask!");
927 
928   // Construct a shuffle mask from constant integers or UNDEFs.
929   Constant *Indexes[64] = {nullptr};
930 
931   // Each byte in the shuffle control mask forms an index to permute the
932   // corresponding byte in the destination operand.
933   for (unsigned I = 0; I < NumElts; ++I) {
934     Constant *COp = V->getAggregateElement(I);
935     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
936       return nullptr;
937 
938     if (isa<UndefValue>(COp)) {
939       Indexes[I] = UndefValue::get(MaskEltTy);
940       continue;
941     }
942 
943     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
944 
945     // If the most significant bit (bit[7]) of each byte of the shuffle
946     // control mask is set, then zero is written in the result byte.
947     // The zero vector is in the right-hand side of the resulting
948     // shufflevector.
949 
950     // The value of each index for the high 128-bit lane is the least
951     // significant 4 bits of the respective shuffle control byte.
952     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
953     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
954   }
955 
956   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
957   auto V1 = II.getArgOperand(0);
958   auto V2 = Constant::getNullValue(VecTy);
959   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
960 }
961 
962 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
963 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
964                                     InstCombiner::BuilderTy &Builder) {
965   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
966   if (!V)
967     return nullptr;
968 
969   auto *VecTy = cast<VectorType>(II.getType());
970   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
971   unsigned NumElts = VecTy->getVectorNumElements();
972   bool IsPD = VecTy->getScalarType()->isDoubleTy();
973   unsigned NumLaneElts = IsPD ? 2 : 4;
974   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
975 
976   // Construct a shuffle mask from constant integers or UNDEFs.
977   Constant *Indexes[16] = {nullptr};
978 
979   // The intrinsics only read one or two bits, clear the rest.
980   for (unsigned I = 0; I < NumElts; ++I) {
981     Constant *COp = V->getAggregateElement(I);
982     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
983       return nullptr;
984 
985     if (isa<UndefValue>(COp)) {
986       Indexes[I] = UndefValue::get(MaskEltTy);
987       continue;
988     }
989 
990     APInt Index = cast<ConstantInt>(COp)->getValue();
991     Index = Index.zextOrTrunc(32).getLoBits(2);
992 
993     // The PD variants uses bit 1 to select per-lane element index, so
994     // shift down to convert to generic shuffle mask index.
995     if (IsPD)
996       Index.lshrInPlace(1);
997 
998     // The _256 variants are a bit trickier since the mask bits always index
999     // into the corresponding 128 half. In order to convert to a generic
1000     // shuffle, we have to make that explicit.
1001     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1002 
1003     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1004   }
1005 
1006   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1007   auto V1 = II.getArgOperand(0);
1008   auto V2 = UndefValue::get(V1->getType());
1009   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1010 }
1011 
1012 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1013 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1014                                 InstCombiner::BuilderTy &Builder) {
1015   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1016   if (!V)
1017     return nullptr;
1018 
1019   auto *VecTy = cast<VectorType>(II.getType());
1020   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1021   unsigned Size = VecTy->getNumElements();
1022   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1023          "Unexpected shuffle mask size");
1024 
1025   // Construct a shuffle mask from constant integers or UNDEFs.
1026   Constant *Indexes[64] = {nullptr};
1027 
1028   for (unsigned I = 0; I < Size; ++I) {
1029     Constant *COp = V->getAggregateElement(I);
1030     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1031       return nullptr;
1032 
1033     if (isa<UndefValue>(COp)) {
1034       Indexes[I] = UndefValue::get(MaskEltTy);
1035       continue;
1036     }
1037 
1038     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1039     Index &= Size - 1;
1040     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1041   }
1042 
1043   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
1044   auto V1 = II.getArgOperand(0);
1045   auto V2 = UndefValue::get(VecTy);
1046   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1047 }
1048 
1049 // TODO, Obvious Missing Transforms:
1050 // * Narrow width by halfs excluding zero/undef lanes
1051 Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) {
1052   Value *LoadPtr = II.getArgOperand(0);
1053   unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1054 
1055   // If the mask is all ones or undefs, this is a plain vector load of the 1st
1056   // argument.
1057   if (maskIsAllOneOrUndef(II.getArgOperand(2)))
1058     return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1059                                      "unmaskedload");
1060 
1061   // If we can unconditionally load from this address, replace with a
1062   // load/select idiom. TODO: use DT for context sensitive query
1063   if (isDereferenceableAndAlignedPointer(LoadPtr, II.getType(), Alignment,
1064                                          II.getModule()->getDataLayout(),
1065                                          &II, nullptr)) {
1066     Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1067                                          "unmaskedload");
1068     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
1069   }
1070 
1071   return nullptr;
1072 }
1073 
1074 // TODO, Obvious Missing Transforms:
1075 // * Single constant active lane -> store
1076 // * Narrow width by halfs excluding zero/undef lanes
1077 Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) {
1078   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1079   if (!ConstMask)
1080     return nullptr;
1081 
1082   // If the mask is all zeros, this instruction does nothing.
1083   if (ConstMask->isNullValue())
1084     return eraseInstFromFunction(II);
1085 
1086   // If the mask is all ones, this is a plain vector store of the 1st argument.
1087   if (ConstMask->isAllOnesValue()) {
1088     Value *StorePtr = II.getArgOperand(1);
1089     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1090     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1091   }
1092 
1093   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1094   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1095   APInt UndefElts(DemandedElts.getBitWidth(), 0);
1096   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1097                                             DemandedElts, UndefElts)) {
1098     II.setOperand(0, V);
1099     return &II;
1100   }
1101 
1102   return nullptr;
1103 }
1104 
1105 // TODO, Obvious Missing Transforms:
1106 // * Single constant active lane load -> load
1107 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
1108 // * Adjacent vector addresses -> masked.load
1109 // * Narrow width by halfs excluding zero/undef lanes
1110 // * Vector splat address w/known mask -> scalar load
1111 // * Vector incrementing address -> vector masked load
1112 Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) {
1113   return nullptr;
1114 }
1115 
1116 // TODO, Obvious Missing Transforms:
1117 // * Single constant active lane -> store
1118 // * Adjacent vector addresses -> masked.store
1119 // * Narrow store width by halfs excluding zero/undef lanes
1120 // * Vector splat address w/known mask -> scalar store
1121 // * Vector incrementing address -> vector masked store
1122 Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) {
1123   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1124   if (!ConstMask)
1125     return nullptr;
1126 
1127   // If the mask is all zeros, a scatter does nothing.
1128   if (ConstMask->isNullValue())
1129     return eraseInstFromFunction(II);
1130 
1131   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1132   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1133   APInt UndefElts(DemandedElts.getBitWidth(), 0);
1134   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1135                                             DemandedElts, UndefElts)) {
1136     II.setOperand(0, V);
1137     return &II;
1138   }
1139   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1),
1140                                             DemandedElts, UndefElts)) {
1141     II.setOperand(1, V);
1142     return &II;
1143   }
1144 
1145   return nullptr;
1146 }
1147 
1148 /// This function transforms launder.invariant.group and strip.invariant.group
1149 /// like:
1150 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
1151 /// launder(strip(%x)) -> launder(%x)
1152 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
1153 /// strip(launder(%x)) -> strip(%x)
1154 /// This is legal because it preserves the most recent information about
1155 /// the presence or absence of invariant.group.
1156 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
1157                                                     InstCombiner &IC) {
1158   auto *Arg = II.getArgOperand(0);
1159   auto *StrippedArg = Arg->stripPointerCasts();
1160   auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
1161   if (StrippedArg == StrippedInvariantGroupsArg)
1162     return nullptr; // No launders/strips to remove.
1163 
1164   Value *Result = nullptr;
1165 
1166   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
1167     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
1168   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
1169     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
1170   else
1171     llvm_unreachable(
1172         "simplifyInvariantGroupIntrinsic only handles launder and strip");
1173   if (Result->getType()->getPointerAddressSpace() !=
1174       II.getType()->getPointerAddressSpace())
1175     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
1176   if (Result->getType() != II.getType())
1177     Result = IC.Builder.CreateBitCast(Result, II.getType());
1178 
1179   return cast<Instruction>(Result);
1180 }
1181 
1182 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1183   assert((II.getIntrinsicID() == Intrinsic::cttz ||
1184           II.getIntrinsicID() == Intrinsic::ctlz) &&
1185          "Expected cttz or ctlz intrinsic");
1186   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1187   Value *Op0 = II.getArgOperand(0);
1188   Value *X;
1189   // ctlz(bitreverse(x)) -> cttz(x)
1190   // cttz(bitreverse(x)) -> ctlz(x)
1191   if (match(Op0, m_BitReverse(m_Value(X)))) {
1192     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
1193     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
1194     return CallInst::Create(F, {X, II.getArgOperand(1)});
1195   }
1196 
1197   if (IsTZ) {
1198     // cttz(-x) -> cttz(x)
1199     if (match(Op0, m_Neg(m_Value(X)))) {
1200       II.setOperand(0, X);
1201       return &II;
1202     }
1203 
1204     // cttz(abs(x)) -> cttz(x)
1205     // cttz(nabs(x)) -> cttz(x)
1206     Value *Y;
1207     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
1208     if (SPF == SPF_ABS || SPF == SPF_NABS) {
1209       II.setOperand(0, X);
1210       return &II;
1211     }
1212   }
1213 
1214   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
1215 
1216   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1217   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1218                                 : Known.countMaxLeadingZeros();
1219   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1220                                 : Known.countMinLeadingZeros();
1221 
1222   // If all bits above (ctlz) or below (cttz) the first known one are known
1223   // zero, this value is constant.
1224   // FIXME: This should be in InstSimplify because we're replacing an
1225   // instruction with a constant.
1226   if (PossibleZeros == DefiniteZeros) {
1227     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
1228     return IC.replaceInstUsesWith(II, C);
1229   }
1230 
1231   // If the input to cttz/ctlz is known to be non-zero,
1232   // then change the 'ZeroIsUndef' parameter to 'true'
1233   // because we know the zero behavior can't affect the result.
1234   if (!Known.One.isNullValue() ||
1235       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1236                      &IC.getDominatorTree())) {
1237     if (!match(II.getArgOperand(1), m_One())) {
1238       II.setOperand(1, IC.Builder.getTrue());
1239       return &II;
1240     }
1241   }
1242 
1243   // Add range metadata since known bits can't completely reflect what we know.
1244   // TODO: Handle splat vectors.
1245   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1246   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1247     Metadata *LowAndHigh[] = {
1248         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1249         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1250     II.setMetadata(LLVMContext::MD_range,
1251                    MDNode::get(II.getContext(), LowAndHigh));
1252     return &II;
1253   }
1254 
1255   return nullptr;
1256 }
1257 
1258 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1259   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1260          "Expected ctpop intrinsic");
1261   Value *Op0 = II.getArgOperand(0);
1262   Value *X;
1263   // ctpop(bitreverse(x)) -> ctpop(x)
1264   // ctpop(bswap(x)) -> ctpop(x)
1265   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) {
1266     II.setOperand(0, X);
1267     return &II;
1268   }
1269 
1270   // FIXME: Try to simplify vectors of integers.
1271   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1272   if (!IT)
1273     return nullptr;
1274 
1275   unsigned BitWidth = IT->getBitWidth();
1276   KnownBits Known(BitWidth);
1277   IC.computeKnownBits(Op0, Known, 0, &II);
1278 
1279   unsigned MinCount = Known.countMinPopulation();
1280   unsigned MaxCount = Known.countMaxPopulation();
1281 
1282   // Add range metadata since known bits can't completely reflect what we know.
1283   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1284     Metadata *LowAndHigh[] = {
1285         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1286         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1287     II.setMetadata(LLVMContext::MD_range,
1288                    MDNode::get(II.getContext(), LowAndHigh));
1289     return &II;
1290   }
1291 
1292   return nullptr;
1293 }
1294 
1295 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1296 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1297 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1298 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1299   Value *Ptr = II.getOperand(0);
1300   Value *Mask = II.getOperand(1);
1301   Constant *ZeroVec = Constant::getNullValue(II.getType());
1302 
1303   // Special case a zero mask since that's not a ConstantDataVector.
1304   // This masked load instruction creates a zero vector.
1305   if (isa<ConstantAggregateZero>(Mask))
1306     return IC.replaceInstUsesWith(II, ZeroVec);
1307 
1308   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1309   if (!ConstMask)
1310     return nullptr;
1311 
1312   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1313   // to allow target-independent optimizations.
1314 
1315   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1316   // the LLVM intrinsic definition for the pointer argument.
1317   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1318   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1319   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1320 
1321   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1322   // on each element's most significant bit (the sign bit).
1323   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1324 
1325   // The pass-through vector for an x86 masked load is a zero vector.
1326   CallInst *NewMaskedLoad =
1327       IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1328   return IC.replaceInstUsesWith(II, NewMaskedLoad);
1329 }
1330 
1331 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1332 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1333 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1334 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1335   Value *Ptr = II.getOperand(0);
1336   Value *Mask = II.getOperand(1);
1337   Value *Vec = II.getOperand(2);
1338 
1339   // Special case a zero mask since that's not a ConstantDataVector:
1340   // this masked store instruction does nothing.
1341   if (isa<ConstantAggregateZero>(Mask)) {
1342     IC.eraseInstFromFunction(II);
1343     return true;
1344   }
1345 
1346   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1347   // anything else at this level.
1348   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1349     return false;
1350 
1351   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1352   if (!ConstMask)
1353     return false;
1354 
1355   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1356   // to allow target-independent optimizations.
1357 
1358   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1359   // the LLVM intrinsic definition for the pointer argument.
1360   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1361   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1362   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1363 
1364   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1365   // on each element's most significant bit (the sign bit).
1366   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1367 
1368   IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1369 
1370   // 'Replace uses' doesn't work for stores. Erase the original masked store.
1371   IC.eraseInstFromFunction(II);
1372   return true;
1373 }
1374 
1375 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1376 //
1377 // A single NaN input is folded to minnum, so we rely on that folding for
1378 // handling NaNs.
1379 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1380                            const APFloat &Src2) {
1381   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1382 
1383   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1384   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1385   if (Cmp0 == APFloat::cmpEqual)
1386     return maxnum(Src1, Src2);
1387 
1388   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1389   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1390   if (Cmp1 == APFloat::cmpEqual)
1391     return maxnum(Src0, Src2);
1392 
1393   return maxnum(Src0, Src1);
1394 }
1395 
1396 /// Convert a table lookup to shufflevector if the mask is constant.
1397 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1398 /// which case we could lower the shufflevector with rev64 instructions
1399 /// as it's actually a byte reverse.
1400 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
1401                                InstCombiner::BuilderTy &Builder) {
1402   // Bail out if the mask is not a constant.
1403   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
1404   if (!C)
1405     return nullptr;
1406 
1407   auto *VecTy = cast<VectorType>(II.getType());
1408   unsigned NumElts = VecTy->getNumElements();
1409 
1410   // Only perform this transformation for <8 x i8> vector types.
1411   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
1412     return nullptr;
1413 
1414   uint32_t Indexes[8];
1415 
1416   for (unsigned I = 0; I < NumElts; ++I) {
1417     Constant *COp = C->getAggregateElement(I);
1418 
1419     if (!COp || !isa<ConstantInt>(COp))
1420       return nullptr;
1421 
1422     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
1423 
1424     // Make sure the mask indices are in range.
1425     if (Indexes[I] >= NumElts)
1426       return nullptr;
1427   }
1428 
1429   auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
1430                                               makeArrayRef(Indexes));
1431   auto *V1 = II.getArgOperand(0);
1432   auto *V2 = Constant::getNullValue(V1->getType());
1433   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1434 }
1435 
1436 /// Convert a vector load intrinsic into a simple llvm load instruction.
1437 /// This is beneficial when the underlying object being addressed comes
1438 /// from a constant, since we get constant-folding for free.
1439 static Value *simplifyNeonVld1(const IntrinsicInst &II,
1440                                unsigned MemAlign,
1441                                InstCombiner::BuilderTy &Builder) {
1442   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
1443 
1444   if (!IntrAlign)
1445     return nullptr;
1446 
1447   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
1448                        MemAlign : IntrAlign->getLimitedValue();
1449 
1450   if (!isPowerOf2_32(Alignment))
1451     return nullptr;
1452 
1453   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
1454                                           PointerType::get(II.getType(), 0));
1455   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment);
1456 }
1457 
1458 // Returns true iff the 2 intrinsics have the same operands, limiting the
1459 // comparison to the first NumOperands.
1460 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1461                              unsigned NumOperands) {
1462   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1463   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1464   for (unsigned i = 0; i < NumOperands; i++)
1465     if (I.getArgOperand(i) != E.getArgOperand(i))
1466       return false;
1467   return true;
1468 }
1469 
1470 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1471 // immediately followed by an end (ignoring debuginfo or other
1472 // start/end intrinsics in between). As this handles only the most trivial
1473 // cases, tracking the nesting level is not needed:
1474 //
1475 //   call @llvm.foo.start(i1 0) ; &I
1476 //   call @llvm.foo.start(i1 0)
1477 //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1478 //   call @llvm.foo.end(i1 0)
1479 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1480                                       unsigned EndID, InstCombiner &IC) {
1481   assert(I.getIntrinsicID() == StartID &&
1482          "Start intrinsic does not have expected ID");
1483   BasicBlock::iterator BI(I), BE(I.getParent()->end());
1484   for (++BI; BI != BE; ++BI) {
1485     if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1486       if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1487         continue;
1488       if (E->getIntrinsicID() == EndID &&
1489           haveSameOperands(I, *E, E->getNumArgOperands())) {
1490         IC.eraseInstFromFunction(*E);
1491         IC.eraseInstFromFunction(I);
1492         return true;
1493       }
1494     }
1495     break;
1496   }
1497 
1498   return false;
1499 }
1500 
1501 // Convert NVVM intrinsics to target-generic LLVM code where possible.
1502 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1503   // Each NVVM intrinsic we can simplify can be replaced with one of:
1504   //
1505   //  * an LLVM intrinsic,
1506   //  * an LLVM cast operation,
1507   //  * an LLVM binary operation, or
1508   //  * ad-hoc LLVM IR for the particular operation.
1509 
1510   // Some transformations are only valid when the module's
1511   // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1512   // transformations are valid regardless of the module's ftz setting.
1513   enum FtzRequirementTy {
1514     FTZ_Any,       // Any ftz setting is ok.
1515     FTZ_MustBeOn,  // Transformation is valid only if ftz is on.
1516     FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1517   };
1518   // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1519   // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1520   // simplify.
1521   enum SpecialCase {
1522     SPC_Reciprocal,
1523   };
1524 
1525   // SimplifyAction is a poor-man's variant (plus an additional flag) that
1526   // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1527   struct SimplifyAction {
1528     // Invariant: At most one of these Optionals has a value.
1529     Optional<Intrinsic::ID> IID;
1530     Optional<Instruction::CastOps> CastOp;
1531     Optional<Instruction::BinaryOps> BinaryOp;
1532     Optional<SpecialCase> Special;
1533 
1534     FtzRequirementTy FtzRequirement = FTZ_Any;
1535 
1536     SimplifyAction() = default;
1537 
1538     SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1539         : IID(IID), FtzRequirement(FtzReq) {}
1540 
1541     // Cast operations don't have anything to do with FTZ, so we skip that
1542     // argument.
1543     SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1544 
1545     SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1546         : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1547 
1548     SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1549         : Special(Special), FtzRequirement(FtzReq) {}
1550   };
1551 
1552   // Try to generate a SimplifyAction describing how to replace our
1553   // IntrinsicInstr with target-generic LLVM IR.
1554   const SimplifyAction Action = [II]() -> SimplifyAction {
1555     switch (II->getIntrinsicID()) {
1556     // NVVM intrinsics that map directly to LLVM intrinsics.
1557     case Intrinsic::nvvm_ceil_d:
1558       return {Intrinsic::ceil, FTZ_Any};
1559     case Intrinsic::nvvm_ceil_f:
1560       return {Intrinsic::ceil, FTZ_MustBeOff};
1561     case Intrinsic::nvvm_ceil_ftz_f:
1562       return {Intrinsic::ceil, FTZ_MustBeOn};
1563     case Intrinsic::nvvm_fabs_d:
1564       return {Intrinsic::fabs, FTZ_Any};
1565     case Intrinsic::nvvm_fabs_f:
1566       return {Intrinsic::fabs, FTZ_MustBeOff};
1567     case Intrinsic::nvvm_fabs_ftz_f:
1568       return {Intrinsic::fabs, FTZ_MustBeOn};
1569     case Intrinsic::nvvm_floor_d:
1570       return {Intrinsic::floor, FTZ_Any};
1571     case Intrinsic::nvvm_floor_f:
1572       return {Intrinsic::floor, FTZ_MustBeOff};
1573     case Intrinsic::nvvm_floor_ftz_f:
1574       return {Intrinsic::floor, FTZ_MustBeOn};
1575     case Intrinsic::nvvm_fma_rn_d:
1576       return {Intrinsic::fma, FTZ_Any};
1577     case Intrinsic::nvvm_fma_rn_f:
1578       return {Intrinsic::fma, FTZ_MustBeOff};
1579     case Intrinsic::nvvm_fma_rn_ftz_f:
1580       return {Intrinsic::fma, FTZ_MustBeOn};
1581     case Intrinsic::nvvm_fmax_d:
1582       return {Intrinsic::maxnum, FTZ_Any};
1583     case Intrinsic::nvvm_fmax_f:
1584       return {Intrinsic::maxnum, FTZ_MustBeOff};
1585     case Intrinsic::nvvm_fmax_ftz_f:
1586       return {Intrinsic::maxnum, FTZ_MustBeOn};
1587     case Intrinsic::nvvm_fmin_d:
1588       return {Intrinsic::minnum, FTZ_Any};
1589     case Intrinsic::nvvm_fmin_f:
1590       return {Intrinsic::minnum, FTZ_MustBeOff};
1591     case Intrinsic::nvvm_fmin_ftz_f:
1592       return {Intrinsic::minnum, FTZ_MustBeOn};
1593     case Intrinsic::nvvm_round_d:
1594       return {Intrinsic::round, FTZ_Any};
1595     case Intrinsic::nvvm_round_f:
1596       return {Intrinsic::round, FTZ_MustBeOff};
1597     case Intrinsic::nvvm_round_ftz_f:
1598       return {Intrinsic::round, FTZ_MustBeOn};
1599     case Intrinsic::nvvm_sqrt_rn_d:
1600       return {Intrinsic::sqrt, FTZ_Any};
1601     case Intrinsic::nvvm_sqrt_f:
1602       // nvvm_sqrt_f is a special case.  For  most intrinsics, foo_ftz_f is the
1603       // ftz version, and foo_f is the non-ftz version.  But nvvm_sqrt_f adopts
1604       // the ftz-ness of the surrounding code.  sqrt_rn_f and sqrt_rn_ftz_f are
1605       // the versions with explicit ftz-ness.
1606       return {Intrinsic::sqrt, FTZ_Any};
1607     case Intrinsic::nvvm_sqrt_rn_f:
1608       return {Intrinsic::sqrt, FTZ_MustBeOff};
1609     case Intrinsic::nvvm_sqrt_rn_ftz_f:
1610       return {Intrinsic::sqrt, FTZ_MustBeOn};
1611     case Intrinsic::nvvm_trunc_d:
1612       return {Intrinsic::trunc, FTZ_Any};
1613     case Intrinsic::nvvm_trunc_f:
1614       return {Intrinsic::trunc, FTZ_MustBeOff};
1615     case Intrinsic::nvvm_trunc_ftz_f:
1616       return {Intrinsic::trunc, FTZ_MustBeOn};
1617 
1618     // NVVM intrinsics that map to LLVM cast operations.
1619     //
1620     // Note that llvm's target-generic conversion operators correspond to the rz
1621     // (round to zero) versions of the nvvm conversion intrinsics, even though
1622     // most everything else here uses the rn (round to nearest even) nvvm ops.
1623     case Intrinsic::nvvm_d2i_rz:
1624     case Intrinsic::nvvm_f2i_rz:
1625     case Intrinsic::nvvm_d2ll_rz:
1626     case Intrinsic::nvvm_f2ll_rz:
1627       return {Instruction::FPToSI};
1628     case Intrinsic::nvvm_d2ui_rz:
1629     case Intrinsic::nvvm_f2ui_rz:
1630     case Intrinsic::nvvm_d2ull_rz:
1631     case Intrinsic::nvvm_f2ull_rz:
1632       return {Instruction::FPToUI};
1633     case Intrinsic::nvvm_i2d_rz:
1634     case Intrinsic::nvvm_i2f_rz:
1635     case Intrinsic::nvvm_ll2d_rz:
1636     case Intrinsic::nvvm_ll2f_rz:
1637       return {Instruction::SIToFP};
1638     case Intrinsic::nvvm_ui2d_rz:
1639     case Intrinsic::nvvm_ui2f_rz:
1640     case Intrinsic::nvvm_ull2d_rz:
1641     case Intrinsic::nvvm_ull2f_rz:
1642       return {Instruction::UIToFP};
1643 
1644     // NVVM intrinsics that map to LLVM binary ops.
1645     case Intrinsic::nvvm_add_rn_d:
1646       return {Instruction::FAdd, FTZ_Any};
1647     case Intrinsic::nvvm_add_rn_f:
1648       return {Instruction::FAdd, FTZ_MustBeOff};
1649     case Intrinsic::nvvm_add_rn_ftz_f:
1650       return {Instruction::FAdd, FTZ_MustBeOn};
1651     case Intrinsic::nvvm_mul_rn_d:
1652       return {Instruction::FMul, FTZ_Any};
1653     case Intrinsic::nvvm_mul_rn_f:
1654       return {Instruction::FMul, FTZ_MustBeOff};
1655     case Intrinsic::nvvm_mul_rn_ftz_f:
1656       return {Instruction::FMul, FTZ_MustBeOn};
1657     case Intrinsic::nvvm_div_rn_d:
1658       return {Instruction::FDiv, FTZ_Any};
1659     case Intrinsic::nvvm_div_rn_f:
1660       return {Instruction::FDiv, FTZ_MustBeOff};
1661     case Intrinsic::nvvm_div_rn_ftz_f:
1662       return {Instruction::FDiv, FTZ_MustBeOn};
1663 
1664     // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1665     // need special handling.
1666     //
1667     // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1668     // as well.
1669     case Intrinsic::nvvm_rcp_rn_d:
1670       return {SPC_Reciprocal, FTZ_Any};
1671     case Intrinsic::nvvm_rcp_rn_f:
1672       return {SPC_Reciprocal, FTZ_MustBeOff};
1673     case Intrinsic::nvvm_rcp_rn_ftz_f:
1674       return {SPC_Reciprocal, FTZ_MustBeOn};
1675 
1676     // We do not currently simplify intrinsics that give an approximate answer.
1677     // These include:
1678     //
1679     //   - nvvm_cos_approx_{f,ftz_f}
1680     //   - nvvm_ex2_approx_{d,f,ftz_f}
1681     //   - nvvm_lg2_approx_{d,f,ftz_f}
1682     //   - nvvm_sin_approx_{f,ftz_f}
1683     //   - nvvm_sqrt_approx_{f,ftz_f}
1684     //   - nvvm_rsqrt_approx_{d,f,ftz_f}
1685     //   - nvvm_div_approx_{ftz_d,ftz_f,f}
1686     //   - nvvm_rcp_approx_ftz_d
1687     //
1688     // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1689     // means that fastmath is enabled in the intrinsic.  Unfortunately only
1690     // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1691     // information gets lost and we can't select on it.
1692     //
1693     // TODO: div and rcp are lowered to a binary op, so these we could in theory
1694     // lower them to "fast fdiv".
1695 
1696     default:
1697       return {};
1698     }
1699   }();
1700 
1701   // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1702   // can bail out now.  (Notice that in the case that IID is not an NVVM
1703   // intrinsic, we don't have to look up any module metadata, as
1704   // FtzRequirementTy will be FTZ_Any.)
1705   if (Action.FtzRequirement != FTZ_Any) {
1706     bool FtzEnabled =
1707         II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1708         "true";
1709 
1710     if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1711       return nullptr;
1712   }
1713 
1714   // Simplify to target-generic intrinsic.
1715   if (Action.IID) {
1716     SmallVector<Value *, 4> Args(II->arg_operands());
1717     // All the target-generic intrinsics currently of interest to us have one
1718     // type argument, equal to that of the nvvm intrinsic's argument.
1719     Type *Tys[] = {II->getArgOperand(0)->getType()};
1720     return CallInst::Create(
1721         Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1722   }
1723 
1724   // Simplify to target-generic binary op.
1725   if (Action.BinaryOp)
1726     return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1727                                   II->getArgOperand(1), II->getName());
1728 
1729   // Simplify to target-generic cast op.
1730   if (Action.CastOp)
1731     return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1732                             II->getName());
1733 
1734   // All that's left are the special cases.
1735   if (!Action.Special)
1736     return nullptr;
1737 
1738   switch (*Action.Special) {
1739   case SPC_Reciprocal:
1740     // Simplify reciprocal.
1741     return BinaryOperator::Create(
1742         Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1743         II->getArgOperand(0), II->getName());
1744   }
1745   llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1746 }
1747 
1748 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1749   removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1750   return nullptr;
1751 }
1752 
1753 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1754   removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1755   return nullptr;
1756 }
1757 
1758 static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
1759   assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
1760   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
1761   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
1762     Call.setArgOperand(0, Arg1);
1763     Call.setArgOperand(1, Arg0);
1764     return &Call;
1765   }
1766   return nullptr;
1767 }
1768 
1769 Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
1770   WithOverflowInst *WO = cast<WithOverflowInst>(II);
1771   Value *OperationResult = nullptr;
1772   Constant *OverflowResult = nullptr;
1773   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
1774                             WO->getRHS(), *WO, OperationResult, OverflowResult))
1775     return CreateOverflowTuple(WO, OperationResult, OverflowResult);
1776   return nullptr;
1777 }
1778 
1779 /// CallInst simplification. This mostly only handles folding of intrinsic
1780 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1781 /// lifting.
1782 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1783   if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
1784     return replaceInstUsesWith(CI, V);
1785 
1786   if (isFreeCall(&CI, &TLI))
1787     return visitFree(CI);
1788 
1789   // If the caller function is nounwind, mark the call as nounwind, even if the
1790   // callee isn't.
1791   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1792     CI.setDoesNotThrow();
1793     return &CI;
1794   }
1795 
1796   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1797   if (!II) return visitCallBase(CI);
1798 
1799   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1800   // instead of in visitCallBase.
1801   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1802     bool Changed = false;
1803 
1804     // memmove/cpy/set of zero bytes is a noop.
1805     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1806       if (NumBytes->isNullValue())
1807         return eraseInstFromFunction(CI);
1808 
1809       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1810         if (CI->getZExtValue() == 1) {
1811           // Replace the instruction with just byte operations.  We would
1812           // transform other cases to loads/stores, but we don't know if
1813           // alignment is sufficient.
1814         }
1815     }
1816 
1817     // No other transformations apply to volatile transfers.
1818     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1819       if (M->isVolatile())
1820         return nullptr;
1821 
1822     // If we have a memmove and the source operation is a constant global,
1823     // then the source and dest pointers can't alias, so we can change this
1824     // into a call to memcpy.
1825     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1826       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1827         if (GVSrc->isConstant()) {
1828           Module *M = CI.getModule();
1829           Intrinsic::ID MemCpyID =
1830               isa<AtomicMemMoveInst>(MMI)
1831                   ? Intrinsic::memcpy_element_unordered_atomic
1832                   : Intrinsic::memcpy;
1833           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1834                            CI.getArgOperand(1)->getType(),
1835                            CI.getArgOperand(2)->getType() };
1836           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1837           Changed = true;
1838         }
1839     }
1840 
1841     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1842       // memmove(x,x,size) -> noop.
1843       if (MTI->getSource() == MTI->getDest())
1844         return eraseInstFromFunction(CI);
1845     }
1846 
1847     // If we can determine a pointer alignment that is bigger than currently
1848     // set, update the alignment.
1849     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1850       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1851         return I;
1852     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1853       if (Instruction *I = SimplifyAnyMemSet(MSI))
1854         return I;
1855     }
1856 
1857     if (Changed) return II;
1858   }
1859 
1860   // For vector result intrinsics, use the generic demanded vector support.
1861   if (II->getType()->isVectorTy()) {
1862     auto VWidth = II->getType()->getVectorNumElements();
1863     APInt UndefElts(VWidth, 0);
1864     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1865     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1866       if (V != II)
1867         return replaceInstUsesWith(*II, V);
1868       return II;
1869     }
1870   }
1871 
1872   if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1873     return I;
1874 
1875   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1876                                               unsigned DemandedWidth) {
1877     APInt UndefElts(Width, 0);
1878     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1879     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1880   };
1881 
1882   Intrinsic::ID IID = II->getIntrinsicID();
1883   switch (IID) {
1884   default: break;
1885   case Intrinsic::objectsize:
1886     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1887       return replaceInstUsesWith(CI, V);
1888     return nullptr;
1889   case Intrinsic::bswap: {
1890     Value *IIOperand = II->getArgOperand(0);
1891     Value *X = nullptr;
1892 
1893     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1894     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1895       unsigned C = X->getType()->getPrimitiveSizeInBits() -
1896         IIOperand->getType()->getPrimitiveSizeInBits();
1897       Value *CV = ConstantInt::get(X->getType(), C);
1898       Value *V = Builder.CreateLShr(X, CV);
1899       return new TruncInst(V, IIOperand->getType());
1900     }
1901     break;
1902   }
1903   case Intrinsic::masked_load:
1904     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1905       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1906     break;
1907   case Intrinsic::masked_store:
1908     return simplifyMaskedStore(*II);
1909   case Intrinsic::masked_gather:
1910     return simplifyMaskedGather(*II);
1911   case Intrinsic::masked_scatter:
1912     return simplifyMaskedScatter(*II);
1913   case Intrinsic::launder_invariant_group:
1914   case Intrinsic::strip_invariant_group:
1915     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1916       return replaceInstUsesWith(*II, SkippedBarrier);
1917     break;
1918   case Intrinsic::powi:
1919     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1920       // 0 and 1 are handled in instsimplify
1921 
1922       // powi(x, -1) -> 1/x
1923       if (Power->isMinusOne())
1924         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1925                                           II->getArgOperand(0));
1926       // powi(x, 2) -> x*x
1927       if (Power->equalsInt(2))
1928         return BinaryOperator::CreateFMul(II->getArgOperand(0),
1929                                           II->getArgOperand(0));
1930     }
1931     break;
1932 
1933   case Intrinsic::cttz:
1934   case Intrinsic::ctlz:
1935     if (auto *I = foldCttzCtlz(*II, *this))
1936       return I;
1937     break;
1938 
1939   case Intrinsic::ctpop:
1940     if (auto *I = foldCtpop(*II, *this))
1941       return I;
1942     break;
1943 
1944   case Intrinsic::fshl:
1945   case Intrinsic::fshr: {
1946     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1947     Type *Ty = II->getType();
1948     unsigned BitWidth = Ty->getScalarSizeInBits();
1949     Constant *ShAmtC;
1950     if (match(II->getArgOperand(2), m_Constant(ShAmtC)) &&
1951         !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) {
1952       // Canonicalize a shift amount constant operand to modulo the bit-width.
1953       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1954       Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1955       if (ModuloC != ShAmtC) {
1956         II->setArgOperand(2, ModuloC);
1957         return II;
1958       }
1959       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1960                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1961              "Shift amount expected to be modulo bitwidth");
1962 
1963       // Canonicalize funnel shift right by constant to funnel shift left. This
1964       // is not entirely arbitrary. For historical reasons, the backend may
1965       // recognize rotate left patterns but miss rotate right patterns.
1966       if (IID == Intrinsic::fshr) {
1967         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1968         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1969         Module *Mod = II->getModule();
1970         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1971         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1972       }
1973       assert(IID == Intrinsic::fshl &&
1974              "All funnel shifts by simple constants should go left");
1975 
1976       // fshl(X, 0, C) --> shl X, C
1977       // fshl(X, undef, C) --> shl X, C
1978       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1979         return BinaryOperator::CreateShl(Op0, ShAmtC);
1980 
1981       // fshl(0, X, C) --> lshr X, (BW-C)
1982       // fshl(undef, X, C) --> lshr X, (BW-C)
1983       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1984         return BinaryOperator::CreateLShr(Op1,
1985                                           ConstantExpr::getSub(WidthC, ShAmtC));
1986 
1987       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1988       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1989         Module *Mod = II->getModule();
1990         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1991         return CallInst::Create(Bswap, { Op0 });
1992       }
1993     }
1994 
1995     // Left or right might be masked.
1996     if (SimplifyDemandedInstructionBits(*II))
1997       return &CI;
1998 
1999     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2000     // so only the low bits of the shift amount are demanded if the bitwidth is
2001     // a power-of-2.
2002     if (!isPowerOf2_32(BitWidth))
2003       break;
2004     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2005     KnownBits Op2Known(BitWidth);
2006     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2007       return &CI;
2008     break;
2009   }
2010   case Intrinsic::uadd_with_overflow:
2011   case Intrinsic::sadd_with_overflow: {
2012     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2013       return I;
2014     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2015       return I;
2016 
2017     // Given 2 constant operands whose sum does not overflow:
2018     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2019     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2020     Value *X;
2021     const APInt *C0, *C1;
2022     Value *Arg0 = II->getArgOperand(0);
2023     Value *Arg1 = II->getArgOperand(1);
2024     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2025     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
2026                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
2027     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2028       bool Overflow;
2029       APInt NewC =
2030           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2031       if (!Overflow)
2032         return replaceInstUsesWith(
2033             *II, Builder.CreateBinaryIntrinsic(
2034                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2035     }
2036     break;
2037   }
2038 
2039   case Intrinsic::umul_with_overflow:
2040   case Intrinsic::smul_with_overflow:
2041     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2042       return I;
2043     LLVM_FALLTHROUGH;
2044 
2045   case Intrinsic::usub_with_overflow:
2046     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2047       return I;
2048     break;
2049 
2050   case Intrinsic::ssub_with_overflow: {
2051     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2052       return I;
2053 
2054     Constant *C;
2055     Value *Arg0 = II->getArgOperand(0);
2056     Value *Arg1 = II->getArgOperand(1);
2057     // Given a constant C that is not the minimum signed value
2058     // for an integer of a given bit width:
2059     //
2060     // ssubo X, C -> saddo X, -C
2061     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2062       Value *NegVal = ConstantExpr::getNeg(C);
2063       // Build a saddo call that is equivalent to the discovered
2064       // ssubo call.
2065       return replaceInstUsesWith(
2066           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2067                                              Arg0, NegVal));
2068     }
2069 
2070     break;
2071   }
2072 
2073   case Intrinsic::uadd_sat:
2074   case Intrinsic::sadd_sat:
2075     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2076       return I;
2077     LLVM_FALLTHROUGH;
2078   case Intrinsic::usub_sat:
2079   case Intrinsic::ssub_sat: {
2080     SaturatingInst *SI = cast<SaturatingInst>(II);
2081     Type *Ty = SI->getType();
2082     Value *Arg0 = SI->getLHS();
2083     Value *Arg1 = SI->getRHS();
2084 
2085     // Make use of known overflow information.
2086     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2087                                         Arg0, Arg1, SI);
2088     switch (OR) {
2089       case OverflowResult::MayOverflow:
2090         break;
2091       case OverflowResult::NeverOverflows:
2092         if (SI->isSigned())
2093           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2094         else
2095           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2096       case OverflowResult::AlwaysOverflowsLow: {
2097         unsigned BitWidth = Ty->getScalarSizeInBits();
2098         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2099         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2100       }
2101       case OverflowResult::AlwaysOverflowsHigh: {
2102         unsigned BitWidth = Ty->getScalarSizeInBits();
2103         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2104         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2105       }
2106     }
2107 
2108     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2109     Constant *C;
2110     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2111         C->isNotMinSignedValue()) {
2112       Value *NegVal = ConstantExpr::getNeg(C);
2113       return replaceInstUsesWith(
2114           *II, Builder.CreateBinaryIntrinsic(
2115               Intrinsic::sadd_sat, Arg0, NegVal));
2116     }
2117 
2118     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2119     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2120     // if Val and Val2 have the same sign
2121     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2122       Value *X;
2123       const APInt *Val, *Val2;
2124       APInt NewVal;
2125       bool IsUnsigned =
2126           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2127       if (Other->getIntrinsicID() == IID &&
2128           match(Arg1, m_APInt(Val)) &&
2129           match(Other->getArgOperand(0), m_Value(X)) &&
2130           match(Other->getArgOperand(1), m_APInt(Val2))) {
2131         if (IsUnsigned)
2132           NewVal = Val->uadd_sat(*Val2);
2133         else if (Val->isNonNegative() == Val2->isNonNegative()) {
2134           bool Overflow;
2135           NewVal = Val->sadd_ov(*Val2, Overflow);
2136           if (Overflow) {
2137             // Both adds together may add more than SignedMaxValue
2138             // without saturating the final result.
2139             break;
2140           }
2141         } else {
2142           // Cannot fold saturated addition with different signs.
2143           break;
2144         }
2145 
2146         return replaceInstUsesWith(
2147             *II, Builder.CreateBinaryIntrinsic(
2148                      IID, X, ConstantInt::get(II->getType(), NewVal)));
2149       }
2150     }
2151     break;
2152   }
2153 
2154   case Intrinsic::minnum:
2155   case Intrinsic::maxnum:
2156   case Intrinsic::minimum:
2157   case Intrinsic::maximum: {
2158     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2159       return I;
2160     Value *Arg0 = II->getArgOperand(0);
2161     Value *Arg1 = II->getArgOperand(1);
2162     Value *X, *Y;
2163     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2164         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2165       // If both operands are negated, invert the call and negate the result:
2166       // min(-X, -Y) --> -(max(X, Y))
2167       // max(-X, -Y) --> -(min(X, Y))
2168       Intrinsic::ID NewIID;
2169       switch (IID) {
2170       case Intrinsic::maxnum:
2171         NewIID = Intrinsic::minnum;
2172         break;
2173       case Intrinsic::minnum:
2174         NewIID = Intrinsic::maxnum;
2175         break;
2176       case Intrinsic::maximum:
2177         NewIID = Intrinsic::minimum;
2178         break;
2179       case Intrinsic::minimum:
2180         NewIID = Intrinsic::maximum;
2181         break;
2182       default:
2183         llvm_unreachable("unexpected intrinsic ID");
2184       }
2185       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2186       Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
2187       FNeg->copyIRFlags(II);
2188       return FNeg;
2189     }
2190 
2191     // m(m(X, C2), C1) -> m(X, C)
2192     const APFloat *C1, *C2;
2193     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2194       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2195           ((match(M->getArgOperand(0), m_Value(X)) &&
2196             match(M->getArgOperand(1), m_APFloat(C2))) ||
2197            (match(M->getArgOperand(1), m_Value(X)) &&
2198             match(M->getArgOperand(0), m_APFloat(C2))))) {
2199         APFloat Res(0.0);
2200         switch (IID) {
2201         case Intrinsic::maxnum:
2202           Res = maxnum(*C1, *C2);
2203           break;
2204         case Intrinsic::minnum:
2205           Res = minnum(*C1, *C2);
2206           break;
2207         case Intrinsic::maximum:
2208           Res = maximum(*C1, *C2);
2209           break;
2210         case Intrinsic::minimum:
2211           Res = minimum(*C1, *C2);
2212           break;
2213         default:
2214           llvm_unreachable("unexpected intrinsic ID");
2215         }
2216         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
2217             IID, X, ConstantFP::get(Arg0->getType(), Res));
2218         NewCall->copyIRFlags(II);
2219         return replaceInstUsesWith(*II, NewCall);
2220       }
2221     }
2222 
2223     break;
2224   }
2225   case Intrinsic::fmuladd: {
2226     // Canonicalize fast fmuladd to the separate fmul + fadd.
2227     if (II->isFast()) {
2228       BuilderTy::FastMathFlagGuard Guard(Builder);
2229       Builder.setFastMathFlags(II->getFastMathFlags());
2230       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2231                                       II->getArgOperand(1));
2232       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2233       Add->takeName(II);
2234       return replaceInstUsesWith(*II, Add);
2235     }
2236 
2237     LLVM_FALLTHROUGH;
2238   }
2239   case Intrinsic::fma: {
2240     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2241       return I;
2242 
2243     // fma fneg(x), fneg(y), z -> fma x, y, z
2244     Value *Src0 = II->getArgOperand(0);
2245     Value *Src1 = II->getArgOperand(1);
2246     Value *X, *Y;
2247     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2248       II->setArgOperand(0, X);
2249       II->setArgOperand(1, Y);
2250       return II;
2251     }
2252 
2253     // fma fabs(x), fabs(x), z -> fma x, x, z
2254     if (match(Src0, m_FAbs(m_Value(X))) &&
2255         match(Src1, m_FAbs(m_Specific(X)))) {
2256       II->setArgOperand(0, X);
2257       II->setArgOperand(1, X);
2258       return II;
2259     }
2260 
2261     // fma x, 1, z -> fadd x, z
2262     if (match(Src1, m_FPOne())) {
2263       auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
2264       FAdd->copyFastMathFlags(II);
2265       return FAdd;
2266     }
2267 
2268     break;
2269   }
2270   case Intrinsic::fabs: {
2271     Value *Cond;
2272     Constant *LHS, *RHS;
2273     if (match(II->getArgOperand(0),
2274               m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2275       CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
2276       CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
2277       return SelectInst::Create(Cond, Call0, Call1);
2278     }
2279 
2280     LLVM_FALLTHROUGH;
2281   }
2282   case Intrinsic::ceil:
2283   case Intrinsic::floor:
2284   case Intrinsic::round:
2285   case Intrinsic::nearbyint:
2286   case Intrinsic::rint:
2287   case Intrinsic::trunc: {
2288     Value *ExtSrc;
2289     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2290       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2291       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2292       return new FPExtInst(NarrowII, II->getType());
2293     }
2294     break;
2295   }
2296   case Intrinsic::cos:
2297   case Intrinsic::amdgcn_cos: {
2298     Value *X;
2299     Value *Src = II->getArgOperand(0);
2300     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2301       // cos(-x) -> cos(x)
2302       // cos(fabs(x)) -> cos(x)
2303       II->setArgOperand(0, X);
2304       return II;
2305     }
2306     break;
2307   }
2308   case Intrinsic::sin: {
2309     Value *X;
2310     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2311       // sin(-x) --> -sin(x)
2312       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2313       Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin);
2314       FNeg->copyFastMathFlags(II);
2315       return FNeg;
2316     }
2317     break;
2318   }
2319   case Intrinsic::ppc_altivec_lvx:
2320   case Intrinsic::ppc_altivec_lvxl:
2321     // Turn PPC lvx -> load if the pointer is known aligned.
2322     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2323                                    &DT) >= 16) {
2324       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2325                                          PointerType::getUnqual(II->getType()));
2326       return new LoadInst(II->getType(), Ptr);
2327     }
2328     break;
2329   case Intrinsic::ppc_vsx_lxvw4x:
2330   case Intrinsic::ppc_vsx_lxvd2x: {
2331     // Turn PPC VSX loads into normal loads.
2332     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2333                                        PointerType::getUnqual(II->getType()));
2334     return new LoadInst(II->getType(), Ptr, Twine(""), false, 1);
2335   }
2336   case Intrinsic::ppc_altivec_stvx:
2337   case Intrinsic::ppc_altivec_stvxl:
2338     // Turn stvx -> store if the pointer is known aligned.
2339     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2340                                    &DT) >= 16) {
2341       Type *OpPtrTy =
2342         PointerType::getUnqual(II->getArgOperand(0)->getType());
2343       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2344       return new StoreInst(II->getArgOperand(0), Ptr);
2345     }
2346     break;
2347   case Intrinsic::ppc_vsx_stxvw4x:
2348   case Intrinsic::ppc_vsx_stxvd2x: {
2349     // Turn PPC VSX stores into normal stores.
2350     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2351     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2352     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
2353   }
2354   case Intrinsic::ppc_qpx_qvlfs:
2355     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2356     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2357                                    &DT) >= 16) {
2358       Type *VTy = VectorType::get(Builder.getFloatTy(),
2359                                   II->getType()->getVectorNumElements());
2360       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2361                                          PointerType::getUnqual(VTy));
2362       Value *Load = Builder.CreateLoad(VTy, Ptr);
2363       return new FPExtInst(Load, II->getType());
2364     }
2365     break;
2366   case Intrinsic::ppc_qpx_qvlfd:
2367     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2368     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
2369                                    &DT) >= 32) {
2370       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2371                                          PointerType::getUnqual(II->getType()));
2372       return new LoadInst(II->getType(), Ptr);
2373     }
2374     break;
2375   case Intrinsic::ppc_qpx_qvstfs:
2376     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2377     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2378                                    &DT) >= 16) {
2379       Type *VTy = VectorType::get(Builder.getFloatTy(),
2380           II->getArgOperand(0)->getType()->getVectorNumElements());
2381       Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
2382       Type *OpPtrTy = PointerType::getUnqual(VTy);
2383       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2384       return new StoreInst(TOp, Ptr);
2385     }
2386     break;
2387   case Intrinsic::ppc_qpx_qvstfd:
2388     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2389     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
2390                                    &DT) >= 32) {
2391       Type *OpPtrTy =
2392         PointerType::getUnqual(II->getArgOperand(0)->getType());
2393       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2394       return new StoreInst(II->getArgOperand(0), Ptr);
2395     }
2396     break;
2397 
2398   case Intrinsic::x86_bmi_bextr_32:
2399   case Intrinsic::x86_bmi_bextr_64:
2400   case Intrinsic::x86_tbm_bextri_u32:
2401   case Intrinsic::x86_tbm_bextri_u64:
2402     // If the RHS is a constant we can try some simplifications.
2403     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2404       uint64_t Shift = C->getZExtValue();
2405       uint64_t Length = (Shift >> 8) & 0xff;
2406       Shift &= 0xff;
2407       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2408       // If the length is 0 or the shift is out of range, replace with zero.
2409       if (Length == 0 || Shift >= BitWidth)
2410         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2411       // If the LHS is also a constant, we can completely constant fold this.
2412       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2413         uint64_t Result = InC->getZExtValue() >> Shift;
2414         if (Length > BitWidth)
2415           Length = BitWidth;
2416         Result &= maskTrailingOnes<uint64_t>(Length);
2417         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2418       }
2419       // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2420       // are only masking bits that a shift already cleared?
2421     }
2422     break;
2423 
2424   case Intrinsic::x86_bmi_bzhi_32:
2425   case Intrinsic::x86_bmi_bzhi_64:
2426     // If the RHS is a constant we can try some simplifications.
2427     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2428       uint64_t Index = C->getZExtValue() & 0xff;
2429       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2430       if (Index >= BitWidth)
2431         return replaceInstUsesWith(CI, II->getArgOperand(0));
2432       if (Index == 0)
2433         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2434       // If the LHS is also a constant, we can completely constant fold this.
2435       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2436         uint64_t Result = InC->getZExtValue();
2437         Result &= maskTrailingOnes<uint64_t>(Index);
2438         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2439       }
2440       // TODO should we convert this to an AND if the RHS is constant?
2441     }
2442     break;
2443 
2444   case Intrinsic::x86_vcvtph2ps_128:
2445   case Intrinsic::x86_vcvtph2ps_256: {
2446     auto Arg = II->getArgOperand(0);
2447     auto ArgType = cast<VectorType>(Arg->getType());
2448     auto RetType = cast<VectorType>(II->getType());
2449     unsigned ArgWidth = ArgType->getNumElements();
2450     unsigned RetWidth = RetType->getNumElements();
2451     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2452     assert(ArgType->isIntOrIntVectorTy() &&
2453            ArgType->getScalarSizeInBits() == 16 &&
2454            "CVTPH2PS input type should be 16-bit integer vector");
2455     assert(RetType->getScalarType()->isFloatTy() &&
2456            "CVTPH2PS output type should be 32-bit float vector");
2457 
2458     // Constant folding: Convert to generic half to single conversion.
2459     if (isa<ConstantAggregateZero>(Arg))
2460       return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
2461 
2462     if (isa<ConstantDataVector>(Arg)) {
2463       auto VectorHalfAsShorts = Arg;
2464       if (RetWidth < ArgWidth) {
2465         SmallVector<uint32_t, 8> SubVecMask;
2466         for (unsigned i = 0; i != RetWidth; ++i)
2467           SubVecMask.push_back((int)i);
2468         VectorHalfAsShorts = Builder.CreateShuffleVector(
2469             Arg, UndefValue::get(ArgType), SubVecMask);
2470       }
2471 
2472       auto VectorHalfType =
2473           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2474       auto VectorHalfs =
2475           Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2476       auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
2477       return replaceInstUsesWith(*II, VectorFloats);
2478     }
2479 
2480     // We only use the lowest lanes of the argument.
2481     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
2482       II->setArgOperand(0, V);
2483       return II;
2484     }
2485     break;
2486   }
2487 
2488   case Intrinsic::x86_sse_cvtss2si:
2489   case Intrinsic::x86_sse_cvtss2si64:
2490   case Intrinsic::x86_sse_cvttss2si:
2491   case Intrinsic::x86_sse_cvttss2si64:
2492   case Intrinsic::x86_sse2_cvtsd2si:
2493   case Intrinsic::x86_sse2_cvtsd2si64:
2494   case Intrinsic::x86_sse2_cvttsd2si:
2495   case Intrinsic::x86_sse2_cvttsd2si64:
2496   case Intrinsic::x86_avx512_vcvtss2si32:
2497   case Intrinsic::x86_avx512_vcvtss2si64:
2498   case Intrinsic::x86_avx512_vcvtss2usi32:
2499   case Intrinsic::x86_avx512_vcvtss2usi64:
2500   case Intrinsic::x86_avx512_vcvtsd2si32:
2501   case Intrinsic::x86_avx512_vcvtsd2si64:
2502   case Intrinsic::x86_avx512_vcvtsd2usi32:
2503   case Intrinsic::x86_avx512_vcvtsd2usi64:
2504   case Intrinsic::x86_avx512_cvttss2si:
2505   case Intrinsic::x86_avx512_cvttss2si64:
2506   case Intrinsic::x86_avx512_cvttss2usi:
2507   case Intrinsic::x86_avx512_cvttss2usi64:
2508   case Intrinsic::x86_avx512_cvttsd2si:
2509   case Intrinsic::x86_avx512_cvttsd2si64:
2510   case Intrinsic::x86_avx512_cvttsd2usi:
2511   case Intrinsic::x86_avx512_cvttsd2usi64: {
2512     // These intrinsics only demand the 0th element of their input vectors. If
2513     // we can simplify the input based on that, do so now.
2514     Value *Arg = II->getArgOperand(0);
2515     unsigned VWidth = Arg->getType()->getVectorNumElements();
2516     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2517       II->setArgOperand(0, V);
2518       return II;
2519     }
2520     break;
2521   }
2522 
2523   case Intrinsic::x86_mmx_pmovmskb:
2524   case Intrinsic::x86_sse_movmsk_ps:
2525   case Intrinsic::x86_sse2_movmsk_pd:
2526   case Intrinsic::x86_sse2_pmovmskb_128:
2527   case Intrinsic::x86_avx_movmsk_pd_256:
2528   case Intrinsic::x86_avx_movmsk_ps_256:
2529   case Intrinsic::x86_avx2_pmovmskb:
2530     if (Value *V = simplifyX86movmsk(*II, Builder))
2531       return replaceInstUsesWith(*II, V);
2532     break;
2533 
2534   case Intrinsic::x86_sse_comieq_ss:
2535   case Intrinsic::x86_sse_comige_ss:
2536   case Intrinsic::x86_sse_comigt_ss:
2537   case Intrinsic::x86_sse_comile_ss:
2538   case Intrinsic::x86_sse_comilt_ss:
2539   case Intrinsic::x86_sse_comineq_ss:
2540   case Intrinsic::x86_sse_ucomieq_ss:
2541   case Intrinsic::x86_sse_ucomige_ss:
2542   case Intrinsic::x86_sse_ucomigt_ss:
2543   case Intrinsic::x86_sse_ucomile_ss:
2544   case Intrinsic::x86_sse_ucomilt_ss:
2545   case Intrinsic::x86_sse_ucomineq_ss:
2546   case Intrinsic::x86_sse2_comieq_sd:
2547   case Intrinsic::x86_sse2_comige_sd:
2548   case Intrinsic::x86_sse2_comigt_sd:
2549   case Intrinsic::x86_sse2_comile_sd:
2550   case Intrinsic::x86_sse2_comilt_sd:
2551   case Intrinsic::x86_sse2_comineq_sd:
2552   case Intrinsic::x86_sse2_ucomieq_sd:
2553   case Intrinsic::x86_sse2_ucomige_sd:
2554   case Intrinsic::x86_sse2_ucomigt_sd:
2555   case Intrinsic::x86_sse2_ucomile_sd:
2556   case Intrinsic::x86_sse2_ucomilt_sd:
2557   case Intrinsic::x86_sse2_ucomineq_sd:
2558   case Intrinsic::x86_avx512_vcomi_ss:
2559   case Intrinsic::x86_avx512_vcomi_sd:
2560   case Intrinsic::x86_avx512_mask_cmp_ss:
2561   case Intrinsic::x86_avx512_mask_cmp_sd: {
2562     // These intrinsics only demand the 0th element of their input vectors. If
2563     // we can simplify the input based on that, do so now.
2564     bool MadeChange = false;
2565     Value *Arg0 = II->getArgOperand(0);
2566     Value *Arg1 = II->getArgOperand(1);
2567     unsigned VWidth = Arg0->getType()->getVectorNumElements();
2568     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2569       II->setArgOperand(0, V);
2570       MadeChange = true;
2571     }
2572     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2573       II->setArgOperand(1, V);
2574       MadeChange = true;
2575     }
2576     if (MadeChange)
2577       return II;
2578     break;
2579   }
2580   case Intrinsic::x86_avx512_cmp_pd_128:
2581   case Intrinsic::x86_avx512_cmp_pd_256:
2582   case Intrinsic::x86_avx512_cmp_pd_512:
2583   case Intrinsic::x86_avx512_cmp_ps_128:
2584   case Intrinsic::x86_avx512_cmp_ps_256:
2585   case Intrinsic::x86_avx512_cmp_ps_512: {
2586     // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2587     Value *Arg0 = II->getArgOperand(0);
2588     Value *Arg1 = II->getArgOperand(1);
2589     bool Arg0IsZero = match(Arg0, m_PosZeroFP());
2590     if (Arg0IsZero)
2591       std::swap(Arg0, Arg1);
2592     Value *A, *B;
2593     // This fold requires only the NINF(not +/- inf) since inf minus
2594     // inf is nan.
2595     // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2596     // equal for both compares.
2597     // NNAN is not needed because nans compare the same for both compares.
2598     // The compare intrinsic uses the above assumptions and therefore
2599     // doesn't require additional flags.
2600     if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2601          match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
2602          cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2603       if (Arg0IsZero)
2604         std::swap(A, B);
2605       II->setArgOperand(0, A);
2606       II->setArgOperand(1, B);
2607       return II;
2608     }
2609     break;
2610   }
2611 
2612   case Intrinsic::x86_avx512_add_ps_512:
2613   case Intrinsic::x86_avx512_div_ps_512:
2614   case Intrinsic::x86_avx512_mul_ps_512:
2615   case Intrinsic::x86_avx512_sub_ps_512:
2616   case Intrinsic::x86_avx512_add_pd_512:
2617   case Intrinsic::x86_avx512_div_pd_512:
2618   case Intrinsic::x86_avx512_mul_pd_512:
2619   case Intrinsic::x86_avx512_sub_pd_512:
2620     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2621     // IR operations.
2622     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2623       if (R->getValue() == 4) {
2624         Value *Arg0 = II->getArgOperand(0);
2625         Value *Arg1 = II->getArgOperand(1);
2626 
2627         Value *V;
2628         switch (IID) {
2629         default: llvm_unreachable("Case stmts out of sync!");
2630         case Intrinsic::x86_avx512_add_ps_512:
2631         case Intrinsic::x86_avx512_add_pd_512:
2632           V = Builder.CreateFAdd(Arg0, Arg1);
2633           break;
2634         case Intrinsic::x86_avx512_sub_ps_512:
2635         case Intrinsic::x86_avx512_sub_pd_512:
2636           V = Builder.CreateFSub(Arg0, Arg1);
2637           break;
2638         case Intrinsic::x86_avx512_mul_ps_512:
2639         case Intrinsic::x86_avx512_mul_pd_512:
2640           V = Builder.CreateFMul(Arg0, Arg1);
2641           break;
2642         case Intrinsic::x86_avx512_div_ps_512:
2643         case Intrinsic::x86_avx512_div_pd_512:
2644           V = Builder.CreateFDiv(Arg0, Arg1);
2645           break;
2646         }
2647 
2648         return replaceInstUsesWith(*II, V);
2649       }
2650     }
2651     break;
2652 
2653   case Intrinsic::x86_avx512_mask_add_ss_round:
2654   case Intrinsic::x86_avx512_mask_div_ss_round:
2655   case Intrinsic::x86_avx512_mask_mul_ss_round:
2656   case Intrinsic::x86_avx512_mask_sub_ss_round:
2657   case Intrinsic::x86_avx512_mask_add_sd_round:
2658   case Intrinsic::x86_avx512_mask_div_sd_round:
2659   case Intrinsic::x86_avx512_mask_mul_sd_round:
2660   case Intrinsic::x86_avx512_mask_sub_sd_round:
2661     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2662     // IR operations.
2663     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2664       if (R->getValue() == 4) {
2665         // Extract the element as scalars.
2666         Value *Arg0 = II->getArgOperand(0);
2667         Value *Arg1 = II->getArgOperand(1);
2668         Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
2669         Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
2670 
2671         Value *V;
2672         switch (IID) {
2673         default: llvm_unreachable("Case stmts out of sync!");
2674         case Intrinsic::x86_avx512_mask_add_ss_round:
2675         case Intrinsic::x86_avx512_mask_add_sd_round:
2676           V = Builder.CreateFAdd(LHS, RHS);
2677           break;
2678         case Intrinsic::x86_avx512_mask_sub_ss_round:
2679         case Intrinsic::x86_avx512_mask_sub_sd_round:
2680           V = Builder.CreateFSub(LHS, RHS);
2681           break;
2682         case Intrinsic::x86_avx512_mask_mul_ss_round:
2683         case Intrinsic::x86_avx512_mask_mul_sd_round:
2684           V = Builder.CreateFMul(LHS, RHS);
2685           break;
2686         case Intrinsic::x86_avx512_mask_div_ss_round:
2687         case Intrinsic::x86_avx512_mask_div_sd_round:
2688           V = Builder.CreateFDiv(LHS, RHS);
2689           break;
2690         }
2691 
2692         // Handle the masking aspect of the intrinsic.
2693         Value *Mask = II->getArgOperand(3);
2694         auto *C = dyn_cast<ConstantInt>(Mask);
2695         // We don't need a select if we know the mask bit is a 1.
2696         if (!C || !C->getValue()[0]) {
2697           // Cast the mask to an i1 vector and then extract the lowest element.
2698           auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
2699                              cast<IntegerType>(Mask->getType())->getBitWidth());
2700           Mask = Builder.CreateBitCast(Mask, MaskTy);
2701           Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
2702           // Extract the lowest element from the passthru operand.
2703           Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
2704                                                           (uint64_t)0);
2705           V = Builder.CreateSelect(Mask, V, Passthru);
2706         }
2707 
2708         // Insert the result back into the original argument 0.
2709         V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2710 
2711         return replaceInstUsesWith(*II, V);
2712       }
2713     }
2714     break;
2715 
2716   // Constant fold ashr( <A x Bi>, Ci ).
2717   // Constant fold lshr( <A x Bi>, Ci ).
2718   // Constant fold shl( <A x Bi>, Ci ).
2719   case Intrinsic::x86_sse2_psrai_d:
2720   case Intrinsic::x86_sse2_psrai_w:
2721   case Intrinsic::x86_avx2_psrai_d:
2722   case Intrinsic::x86_avx2_psrai_w:
2723   case Intrinsic::x86_avx512_psrai_q_128:
2724   case Intrinsic::x86_avx512_psrai_q_256:
2725   case Intrinsic::x86_avx512_psrai_d_512:
2726   case Intrinsic::x86_avx512_psrai_q_512:
2727   case Intrinsic::x86_avx512_psrai_w_512:
2728   case Intrinsic::x86_sse2_psrli_d:
2729   case Intrinsic::x86_sse2_psrli_q:
2730   case Intrinsic::x86_sse2_psrli_w:
2731   case Intrinsic::x86_avx2_psrli_d:
2732   case Intrinsic::x86_avx2_psrli_q:
2733   case Intrinsic::x86_avx2_psrli_w:
2734   case Intrinsic::x86_avx512_psrli_d_512:
2735   case Intrinsic::x86_avx512_psrli_q_512:
2736   case Intrinsic::x86_avx512_psrli_w_512:
2737   case Intrinsic::x86_sse2_pslli_d:
2738   case Intrinsic::x86_sse2_pslli_q:
2739   case Intrinsic::x86_sse2_pslli_w:
2740   case Intrinsic::x86_avx2_pslli_d:
2741   case Intrinsic::x86_avx2_pslli_q:
2742   case Intrinsic::x86_avx2_pslli_w:
2743   case Intrinsic::x86_avx512_pslli_d_512:
2744   case Intrinsic::x86_avx512_pslli_q_512:
2745   case Intrinsic::x86_avx512_pslli_w_512:
2746     if (Value *V = simplifyX86immShift(*II, Builder))
2747       return replaceInstUsesWith(*II, V);
2748     break;
2749 
2750   case Intrinsic::x86_sse2_psra_d:
2751   case Intrinsic::x86_sse2_psra_w:
2752   case Intrinsic::x86_avx2_psra_d:
2753   case Intrinsic::x86_avx2_psra_w:
2754   case Intrinsic::x86_avx512_psra_q_128:
2755   case Intrinsic::x86_avx512_psra_q_256:
2756   case Intrinsic::x86_avx512_psra_d_512:
2757   case Intrinsic::x86_avx512_psra_q_512:
2758   case Intrinsic::x86_avx512_psra_w_512:
2759   case Intrinsic::x86_sse2_psrl_d:
2760   case Intrinsic::x86_sse2_psrl_q:
2761   case Intrinsic::x86_sse2_psrl_w:
2762   case Intrinsic::x86_avx2_psrl_d:
2763   case Intrinsic::x86_avx2_psrl_q:
2764   case Intrinsic::x86_avx2_psrl_w:
2765   case Intrinsic::x86_avx512_psrl_d_512:
2766   case Intrinsic::x86_avx512_psrl_q_512:
2767   case Intrinsic::x86_avx512_psrl_w_512:
2768   case Intrinsic::x86_sse2_psll_d:
2769   case Intrinsic::x86_sse2_psll_q:
2770   case Intrinsic::x86_sse2_psll_w:
2771   case Intrinsic::x86_avx2_psll_d:
2772   case Intrinsic::x86_avx2_psll_q:
2773   case Intrinsic::x86_avx2_psll_w:
2774   case Intrinsic::x86_avx512_psll_d_512:
2775   case Intrinsic::x86_avx512_psll_q_512:
2776   case Intrinsic::x86_avx512_psll_w_512: {
2777     if (Value *V = simplifyX86immShift(*II, Builder))
2778       return replaceInstUsesWith(*II, V);
2779 
2780     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2781     // operand to compute the shift amount.
2782     Value *Arg1 = II->getArgOperand(1);
2783     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2784            "Unexpected packed shift size");
2785     unsigned VWidth = Arg1->getType()->getVectorNumElements();
2786 
2787     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2788       II->setArgOperand(1, V);
2789       return II;
2790     }
2791     break;
2792   }
2793 
2794   case Intrinsic::x86_avx2_psllv_d:
2795   case Intrinsic::x86_avx2_psllv_d_256:
2796   case Intrinsic::x86_avx2_psllv_q:
2797   case Intrinsic::x86_avx2_psllv_q_256:
2798   case Intrinsic::x86_avx512_psllv_d_512:
2799   case Intrinsic::x86_avx512_psllv_q_512:
2800   case Intrinsic::x86_avx512_psllv_w_128:
2801   case Intrinsic::x86_avx512_psllv_w_256:
2802   case Intrinsic::x86_avx512_psllv_w_512:
2803   case Intrinsic::x86_avx2_psrav_d:
2804   case Intrinsic::x86_avx2_psrav_d_256:
2805   case Intrinsic::x86_avx512_psrav_q_128:
2806   case Intrinsic::x86_avx512_psrav_q_256:
2807   case Intrinsic::x86_avx512_psrav_d_512:
2808   case Intrinsic::x86_avx512_psrav_q_512:
2809   case Intrinsic::x86_avx512_psrav_w_128:
2810   case Intrinsic::x86_avx512_psrav_w_256:
2811   case Intrinsic::x86_avx512_psrav_w_512:
2812   case Intrinsic::x86_avx2_psrlv_d:
2813   case Intrinsic::x86_avx2_psrlv_d_256:
2814   case Intrinsic::x86_avx2_psrlv_q:
2815   case Intrinsic::x86_avx2_psrlv_q_256:
2816   case Intrinsic::x86_avx512_psrlv_d_512:
2817   case Intrinsic::x86_avx512_psrlv_q_512:
2818   case Intrinsic::x86_avx512_psrlv_w_128:
2819   case Intrinsic::x86_avx512_psrlv_w_256:
2820   case Intrinsic::x86_avx512_psrlv_w_512:
2821     if (Value *V = simplifyX86varShift(*II, Builder))
2822       return replaceInstUsesWith(*II, V);
2823     break;
2824 
2825   case Intrinsic::x86_sse2_packssdw_128:
2826   case Intrinsic::x86_sse2_packsswb_128:
2827   case Intrinsic::x86_avx2_packssdw:
2828   case Intrinsic::x86_avx2_packsswb:
2829   case Intrinsic::x86_avx512_packssdw_512:
2830   case Intrinsic::x86_avx512_packsswb_512:
2831     if (Value *V = simplifyX86pack(*II, Builder, true))
2832       return replaceInstUsesWith(*II, V);
2833     break;
2834 
2835   case Intrinsic::x86_sse2_packuswb_128:
2836   case Intrinsic::x86_sse41_packusdw:
2837   case Intrinsic::x86_avx2_packusdw:
2838   case Intrinsic::x86_avx2_packuswb:
2839   case Intrinsic::x86_avx512_packusdw_512:
2840   case Intrinsic::x86_avx512_packuswb_512:
2841     if (Value *V = simplifyX86pack(*II, Builder, false))
2842       return replaceInstUsesWith(*II, V);
2843     break;
2844 
2845   case Intrinsic::x86_pclmulqdq:
2846   case Intrinsic::x86_pclmulqdq_256:
2847   case Intrinsic::x86_pclmulqdq_512: {
2848     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2849       unsigned Imm = C->getZExtValue();
2850 
2851       bool MadeChange = false;
2852       Value *Arg0 = II->getArgOperand(0);
2853       Value *Arg1 = II->getArgOperand(1);
2854       unsigned VWidth = Arg0->getType()->getVectorNumElements();
2855 
2856       APInt UndefElts1(VWidth, 0);
2857       APInt DemandedElts1 = APInt::getSplat(VWidth,
2858                                             APInt(2, (Imm & 0x01) ? 2 : 1));
2859       if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
2860                                                 UndefElts1)) {
2861         II->setArgOperand(0, V);
2862         MadeChange = true;
2863       }
2864 
2865       APInt UndefElts2(VWidth, 0);
2866       APInt DemandedElts2 = APInt::getSplat(VWidth,
2867                                             APInt(2, (Imm & 0x10) ? 2 : 1));
2868       if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
2869                                                 UndefElts2)) {
2870         II->setArgOperand(1, V);
2871         MadeChange = true;
2872       }
2873 
2874       // If either input elements are undef, the result is zero.
2875       if (DemandedElts1.isSubsetOf(UndefElts1) ||
2876           DemandedElts2.isSubsetOf(UndefElts2))
2877         return replaceInstUsesWith(*II,
2878                                    ConstantAggregateZero::get(II->getType()));
2879 
2880       if (MadeChange)
2881         return II;
2882     }
2883     break;
2884   }
2885 
2886   case Intrinsic::x86_sse41_insertps:
2887     if (Value *V = simplifyX86insertps(*II, Builder))
2888       return replaceInstUsesWith(*II, V);
2889     break;
2890 
2891   case Intrinsic::x86_sse4a_extrq: {
2892     Value *Op0 = II->getArgOperand(0);
2893     Value *Op1 = II->getArgOperand(1);
2894     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2895     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2896     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2897            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2898            VWidth1 == 16 && "Unexpected operand sizes");
2899 
2900     // See if we're dealing with constant values.
2901     Constant *C1 = dyn_cast<Constant>(Op1);
2902     ConstantInt *CILength =
2903         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2904            : nullptr;
2905     ConstantInt *CIIndex =
2906         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2907            : nullptr;
2908 
2909     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2910     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2911       return replaceInstUsesWith(*II, V);
2912 
2913     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2914     // operands and the lowest 16-bits of the second.
2915     bool MadeChange = false;
2916     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2917       II->setArgOperand(0, V);
2918       MadeChange = true;
2919     }
2920     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2921       II->setArgOperand(1, V);
2922       MadeChange = true;
2923     }
2924     if (MadeChange)
2925       return II;
2926     break;
2927   }
2928 
2929   case Intrinsic::x86_sse4a_extrqi: {
2930     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2931     // bits of the lower 64-bits. The upper 64-bits are undefined.
2932     Value *Op0 = II->getArgOperand(0);
2933     unsigned VWidth = Op0->getType()->getVectorNumElements();
2934     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2935            "Unexpected operand size");
2936 
2937     // See if we're dealing with constant values.
2938     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2939     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2940 
2941     // Attempt to simplify to a constant or shuffle vector.
2942     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2943       return replaceInstUsesWith(*II, V);
2944 
2945     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2946     // operand.
2947     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2948       II->setArgOperand(0, V);
2949       return II;
2950     }
2951     break;
2952   }
2953 
2954   case Intrinsic::x86_sse4a_insertq: {
2955     Value *Op0 = II->getArgOperand(0);
2956     Value *Op1 = II->getArgOperand(1);
2957     unsigned VWidth = Op0->getType()->getVectorNumElements();
2958     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2959            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2960            Op1->getType()->getVectorNumElements() == 2 &&
2961            "Unexpected operand size");
2962 
2963     // See if we're dealing with constant values.
2964     Constant *C1 = dyn_cast<Constant>(Op1);
2965     ConstantInt *CI11 =
2966         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2967            : nullptr;
2968 
2969     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2970     if (CI11) {
2971       const APInt &V11 = CI11->getValue();
2972       APInt Len = V11.zextOrTrunc(6);
2973       APInt Idx = V11.lshr(8).zextOrTrunc(6);
2974       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2975         return replaceInstUsesWith(*II, V);
2976     }
2977 
2978     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2979     // operand.
2980     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2981       II->setArgOperand(0, V);
2982       return II;
2983     }
2984     break;
2985   }
2986 
2987   case Intrinsic::x86_sse4a_insertqi: {
2988     // INSERTQI: Extract lowest Length bits from lower half of second source and
2989     // insert over first source starting at Index bit. The upper 64-bits are
2990     // undefined.
2991     Value *Op0 = II->getArgOperand(0);
2992     Value *Op1 = II->getArgOperand(1);
2993     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2994     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2995     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2996            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2997            VWidth1 == 2 && "Unexpected operand sizes");
2998 
2999     // See if we're dealing with constant values.
3000     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
3001     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
3002 
3003     // Attempt to simplify to a constant or shuffle vector.
3004     if (CILength && CIIndex) {
3005       APInt Len = CILength->getValue().zextOrTrunc(6);
3006       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
3007       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
3008         return replaceInstUsesWith(*II, V);
3009     }
3010 
3011     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
3012     // operands.
3013     bool MadeChange = false;
3014     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
3015       II->setArgOperand(0, V);
3016       MadeChange = true;
3017     }
3018     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
3019       II->setArgOperand(1, V);
3020       MadeChange = true;
3021     }
3022     if (MadeChange)
3023       return II;
3024     break;
3025   }
3026 
3027   case Intrinsic::x86_sse41_pblendvb:
3028   case Intrinsic::x86_sse41_blendvps:
3029   case Intrinsic::x86_sse41_blendvpd:
3030   case Intrinsic::x86_avx_blendv_ps_256:
3031   case Intrinsic::x86_avx_blendv_pd_256:
3032   case Intrinsic::x86_avx2_pblendvb: {
3033     // fold (blend A, A, Mask) -> A
3034     Value *Op0 = II->getArgOperand(0);
3035     Value *Op1 = II->getArgOperand(1);
3036     Value *Mask = II->getArgOperand(2);
3037     if (Op0 == Op1)
3038       return replaceInstUsesWith(CI, Op0);
3039 
3040     // Zero Mask - select 1st argument.
3041     if (isa<ConstantAggregateZero>(Mask))
3042       return replaceInstUsesWith(CI, Op0);
3043 
3044     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
3045     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
3046       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
3047       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
3048     }
3049 
3050     // Convert to a vector select if we can bypass casts and find a boolean
3051     // vector condition value.
3052     Value *BoolVec;
3053     Mask = peekThroughBitcast(Mask);
3054     if (match(Mask, m_SExt(m_Value(BoolVec))) &&
3055         BoolVec->getType()->isVectorTy() &&
3056         BoolVec->getType()->getScalarSizeInBits() == 1) {
3057       assert(Mask->getType()->getPrimitiveSizeInBits() ==
3058              II->getType()->getPrimitiveSizeInBits() &&
3059              "Not expecting mask and operands with different sizes");
3060 
3061       unsigned NumMaskElts = Mask->getType()->getVectorNumElements();
3062       unsigned NumOperandElts = II->getType()->getVectorNumElements();
3063       if (NumMaskElts == NumOperandElts)
3064         return SelectInst::Create(BoolVec, Op1, Op0);
3065 
3066       // If the mask has less elements than the operands, each mask bit maps to
3067       // multiple elements of the operands. Bitcast back and forth.
3068       if (NumMaskElts < NumOperandElts) {
3069         Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
3070         Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
3071         Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
3072         return new BitCastInst(Sel, II->getType());
3073       }
3074     }
3075 
3076     break;
3077   }
3078 
3079   case Intrinsic::x86_ssse3_pshuf_b_128:
3080   case Intrinsic::x86_avx2_pshuf_b:
3081   case Intrinsic::x86_avx512_pshuf_b_512:
3082     if (Value *V = simplifyX86pshufb(*II, Builder))
3083       return replaceInstUsesWith(*II, V);
3084     break;
3085 
3086   case Intrinsic::x86_avx_vpermilvar_ps:
3087   case Intrinsic::x86_avx_vpermilvar_ps_256:
3088   case Intrinsic::x86_avx512_vpermilvar_ps_512:
3089   case Intrinsic::x86_avx_vpermilvar_pd:
3090   case Intrinsic::x86_avx_vpermilvar_pd_256:
3091   case Intrinsic::x86_avx512_vpermilvar_pd_512:
3092     if (Value *V = simplifyX86vpermilvar(*II, Builder))
3093       return replaceInstUsesWith(*II, V);
3094     break;
3095 
3096   case Intrinsic::x86_avx2_permd:
3097   case Intrinsic::x86_avx2_permps:
3098   case Intrinsic::x86_avx512_permvar_df_256:
3099   case Intrinsic::x86_avx512_permvar_df_512:
3100   case Intrinsic::x86_avx512_permvar_di_256:
3101   case Intrinsic::x86_avx512_permvar_di_512:
3102   case Intrinsic::x86_avx512_permvar_hi_128:
3103   case Intrinsic::x86_avx512_permvar_hi_256:
3104   case Intrinsic::x86_avx512_permvar_hi_512:
3105   case Intrinsic::x86_avx512_permvar_qi_128:
3106   case Intrinsic::x86_avx512_permvar_qi_256:
3107   case Intrinsic::x86_avx512_permvar_qi_512:
3108   case Intrinsic::x86_avx512_permvar_sf_512:
3109   case Intrinsic::x86_avx512_permvar_si_512:
3110     if (Value *V = simplifyX86vpermv(*II, Builder))
3111       return replaceInstUsesWith(*II, V);
3112     break;
3113 
3114   case Intrinsic::x86_avx_maskload_ps:
3115   case Intrinsic::x86_avx_maskload_pd:
3116   case Intrinsic::x86_avx_maskload_ps_256:
3117   case Intrinsic::x86_avx_maskload_pd_256:
3118   case Intrinsic::x86_avx2_maskload_d:
3119   case Intrinsic::x86_avx2_maskload_q:
3120   case Intrinsic::x86_avx2_maskload_d_256:
3121   case Intrinsic::x86_avx2_maskload_q_256:
3122     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
3123       return I;
3124     break;
3125 
3126   case Intrinsic::x86_sse2_maskmov_dqu:
3127   case Intrinsic::x86_avx_maskstore_ps:
3128   case Intrinsic::x86_avx_maskstore_pd:
3129   case Intrinsic::x86_avx_maskstore_ps_256:
3130   case Intrinsic::x86_avx_maskstore_pd_256:
3131   case Intrinsic::x86_avx2_maskstore_d:
3132   case Intrinsic::x86_avx2_maskstore_q:
3133   case Intrinsic::x86_avx2_maskstore_d_256:
3134   case Intrinsic::x86_avx2_maskstore_q_256:
3135     if (simplifyX86MaskedStore(*II, *this))
3136       return nullptr;
3137     break;
3138 
3139   case Intrinsic::x86_addcarry_32:
3140   case Intrinsic::x86_addcarry_64:
3141     if (Value *V = simplifyX86addcarry(*II, Builder))
3142       return replaceInstUsesWith(*II, V);
3143     break;
3144 
3145   case Intrinsic::ppc_altivec_vperm:
3146     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3147     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3148     // a vectorshuffle for little endian, we must undo the transformation
3149     // performed on vec_perm in altivec.h.  That is, we must complement
3150     // the permutation mask with respect to 31 and reverse the order of
3151     // V1 and V2.
3152     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3153       assert(Mask->getType()->getVectorNumElements() == 16 &&
3154              "Bad type for intrinsic!");
3155 
3156       // Check that all of the elements are integer constants or undefs.
3157       bool AllEltsOk = true;
3158       for (unsigned i = 0; i != 16; ++i) {
3159         Constant *Elt = Mask->getAggregateElement(i);
3160         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
3161           AllEltsOk = false;
3162           break;
3163         }
3164       }
3165 
3166       if (AllEltsOk) {
3167         // Cast the input vectors to byte vectors.
3168         Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
3169                                            Mask->getType());
3170         Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
3171                                            Mask->getType());
3172         Value *Result = UndefValue::get(Op0->getType());
3173 
3174         // Only extract each element once.
3175         Value *ExtractedElts[32];
3176         memset(ExtractedElts, 0, sizeof(ExtractedElts));
3177 
3178         for (unsigned i = 0; i != 16; ++i) {
3179           if (isa<UndefValue>(Mask->getAggregateElement(i)))
3180             continue;
3181           unsigned Idx =
3182             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
3183           Idx &= 31;  // Match the hardware behavior.
3184           if (DL.isLittleEndian())
3185             Idx = 31 - Idx;
3186 
3187           if (!ExtractedElts[Idx]) {
3188             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3189             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
3190             ExtractedElts[Idx] =
3191               Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
3192                                            Builder.getInt32(Idx&15));
3193           }
3194 
3195           // Insert this value into the result vector.
3196           Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
3197                                                Builder.getInt32(i));
3198         }
3199         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3200       }
3201     }
3202     break;
3203 
3204   case Intrinsic::arm_neon_vld1: {
3205     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
3206                                           DL, II, &AC, &DT);
3207     if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
3208       return replaceInstUsesWith(*II, V);
3209     break;
3210   }
3211 
3212   case Intrinsic::arm_neon_vld2:
3213   case Intrinsic::arm_neon_vld3:
3214   case Intrinsic::arm_neon_vld4:
3215   case Intrinsic::arm_neon_vld2lane:
3216   case Intrinsic::arm_neon_vld3lane:
3217   case Intrinsic::arm_neon_vld4lane:
3218   case Intrinsic::arm_neon_vst1:
3219   case Intrinsic::arm_neon_vst2:
3220   case Intrinsic::arm_neon_vst3:
3221   case Intrinsic::arm_neon_vst4:
3222   case Intrinsic::arm_neon_vst2lane:
3223   case Intrinsic::arm_neon_vst3lane:
3224   case Intrinsic::arm_neon_vst4lane: {
3225     unsigned MemAlign =
3226         getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3227     unsigned AlignArg = II->getNumArgOperands() - 1;
3228     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3229     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3230       II->setArgOperand(AlignArg,
3231                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
3232                                          MemAlign, false));
3233       return II;
3234     }
3235     break;
3236   }
3237 
3238   case Intrinsic::arm_neon_vtbl1:
3239   case Intrinsic::aarch64_neon_tbl1:
3240     if (Value *V = simplifyNeonTbl1(*II, Builder))
3241       return replaceInstUsesWith(*II, V);
3242     break;
3243 
3244   case Intrinsic::arm_neon_vmulls:
3245   case Intrinsic::arm_neon_vmullu:
3246   case Intrinsic::aarch64_neon_smull:
3247   case Intrinsic::aarch64_neon_umull: {
3248     Value *Arg0 = II->getArgOperand(0);
3249     Value *Arg1 = II->getArgOperand(1);
3250 
3251     // Handle mul by zero first:
3252     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
3253       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3254     }
3255 
3256     // Check for constant LHS & RHS - in this case we just simplify.
3257     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3258                  IID == Intrinsic::aarch64_neon_umull);
3259     VectorType *NewVT = cast<VectorType>(II->getType());
3260     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3261       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3262         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3263         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3264 
3265         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
3266       }
3267 
3268       // Couldn't simplify - canonicalize constant to the RHS.
3269       std::swap(Arg0, Arg1);
3270     }
3271 
3272     // Handle mul by one:
3273     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3274       if (ConstantInt *Splat =
3275               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3276         if (Splat->isOne())
3277           return CastInst::CreateIntegerCast(Arg0, II->getType(),
3278                                              /*isSigned=*/!Zext);
3279 
3280     break;
3281   }
3282   case Intrinsic::arm_neon_aesd:
3283   case Intrinsic::arm_neon_aese:
3284   case Intrinsic::aarch64_crypto_aesd:
3285   case Intrinsic::aarch64_crypto_aese: {
3286     Value *DataArg = II->getArgOperand(0);
3287     Value *KeyArg  = II->getArgOperand(1);
3288 
3289     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3290     Value *Data, *Key;
3291     if (match(KeyArg, m_ZeroInt()) &&
3292         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3293       II->setArgOperand(0, Data);
3294       II->setArgOperand(1, Key);
3295       return II;
3296     }
3297     break;
3298   }
3299   case Intrinsic::amdgcn_rcp: {
3300     Value *Src = II->getArgOperand(0);
3301 
3302     // TODO: Move to ConstantFolding/InstSimplify?
3303     if (isa<UndefValue>(Src))
3304       return replaceInstUsesWith(CI, Src);
3305 
3306     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3307       const APFloat &ArgVal = C->getValueAPF();
3308       APFloat Val(ArgVal.getSemantics(), 1.0);
3309       APFloat::opStatus Status = Val.divide(ArgVal,
3310                                             APFloat::rmNearestTiesToEven);
3311       // Only do this if it was exact and therefore not dependent on the
3312       // rounding mode.
3313       if (Status == APFloat::opOK)
3314         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
3315     }
3316 
3317     break;
3318   }
3319   case Intrinsic::amdgcn_rsq: {
3320     Value *Src = II->getArgOperand(0);
3321 
3322     // TODO: Move to ConstantFolding/InstSimplify?
3323     if (isa<UndefValue>(Src))
3324       return replaceInstUsesWith(CI, Src);
3325     break;
3326   }
3327   case Intrinsic::amdgcn_frexp_mant:
3328   case Intrinsic::amdgcn_frexp_exp: {
3329     Value *Src = II->getArgOperand(0);
3330     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3331       int Exp;
3332       APFloat Significand = frexp(C->getValueAPF(), Exp,
3333                                   APFloat::rmNearestTiesToEven);
3334 
3335       if (IID == Intrinsic::amdgcn_frexp_mant) {
3336         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3337                                                        Significand));
3338       }
3339 
3340       // Match instruction special case behavior.
3341       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3342         Exp = 0;
3343 
3344       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3345     }
3346 
3347     if (isa<UndefValue>(Src))
3348       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
3349 
3350     break;
3351   }
3352   case Intrinsic::amdgcn_class: {
3353     enum  {
3354       S_NAN = 1 << 0,        // Signaling NaN
3355       Q_NAN = 1 << 1,        // Quiet NaN
3356       N_INFINITY = 1 << 2,   // Negative infinity
3357       N_NORMAL = 1 << 3,     // Negative normal
3358       N_SUBNORMAL = 1 << 4,  // Negative subnormal
3359       N_ZERO = 1 << 5,       // Negative zero
3360       P_ZERO = 1 << 6,       // Positive zero
3361       P_SUBNORMAL = 1 << 7,  // Positive subnormal
3362       P_NORMAL = 1 << 8,     // Positive normal
3363       P_INFINITY = 1 << 9    // Positive infinity
3364     };
3365 
3366     const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3367       N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3368 
3369     Value *Src0 = II->getArgOperand(0);
3370     Value *Src1 = II->getArgOperand(1);
3371     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3372     if (!CMask) {
3373       if (isa<UndefValue>(Src0))
3374         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3375 
3376       if (isa<UndefValue>(Src1))
3377         return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3378       break;
3379     }
3380 
3381     uint32_t Mask = CMask->getZExtValue();
3382 
3383     // If all tests are made, it doesn't matter what the value is.
3384     if ((Mask & FullMask) == FullMask)
3385       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3386 
3387     if ((Mask & FullMask) == 0)
3388       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3389 
3390     if (Mask == (S_NAN | Q_NAN)) {
3391       // Equivalent of isnan. Replace with standard fcmp.
3392       Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
3393       FCmp->takeName(II);
3394       return replaceInstUsesWith(*II, FCmp);
3395     }
3396 
3397     if (Mask == (N_ZERO | P_ZERO)) {
3398       // Equivalent of == 0.
3399       Value *FCmp = Builder.CreateFCmpOEQ(
3400         Src0, ConstantFP::get(Src0->getType(), 0.0));
3401 
3402       FCmp->takeName(II);
3403       return replaceInstUsesWith(*II, FCmp);
3404     }
3405 
3406     // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
3407     if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) {
3408       II->setArgOperand(1, ConstantInt::get(Src1->getType(),
3409                                             Mask & ~(S_NAN | Q_NAN)));
3410       return II;
3411     }
3412 
3413     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3414     if (!CVal) {
3415       if (isa<UndefValue>(Src0))
3416         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3417 
3418       // Clamp mask to used bits
3419       if ((Mask & FullMask) != Mask) {
3420         CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
3421           { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3422         );
3423 
3424         NewCall->takeName(II);
3425         return replaceInstUsesWith(*II, NewCall);
3426       }
3427 
3428       break;
3429     }
3430 
3431     const APFloat &Val = CVal->getValueAPF();
3432 
3433     bool Result =
3434       ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3435       ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3436       ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3437       ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3438       ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3439       ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3440       ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3441       ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3442       ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3443       ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3444 
3445     return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3446   }
3447   case Intrinsic::amdgcn_cvt_pkrtz: {
3448     Value *Src0 = II->getArgOperand(0);
3449     Value *Src1 = II->getArgOperand(1);
3450     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3451       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3452         const fltSemantics &HalfSem
3453           = II->getType()->getScalarType()->getFltSemantics();
3454         bool LosesInfo;
3455         APFloat Val0 = C0->getValueAPF();
3456         APFloat Val1 = C1->getValueAPF();
3457         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3458         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3459 
3460         Constant *Folded = ConstantVector::get({
3461             ConstantFP::get(II->getContext(), Val0),
3462             ConstantFP::get(II->getContext(), Val1) });
3463         return replaceInstUsesWith(*II, Folded);
3464       }
3465     }
3466 
3467     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3468       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3469 
3470     break;
3471   }
3472   case Intrinsic::amdgcn_cvt_pknorm_i16:
3473   case Intrinsic::amdgcn_cvt_pknorm_u16:
3474   case Intrinsic::amdgcn_cvt_pk_i16:
3475   case Intrinsic::amdgcn_cvt_pk_u16: {
3476     Value *Src0 = II->getArgOperand(0);
3477     Value *Src1 = II->getArgOperand(1);
3478 
3479     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3480       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3481 
3482     break;
3483   }
3484   case Intrinsic::amdgcn_ubfe:
3485   case Intrinsic::amdgcn_sbfe: {
3486     // Decompose simple cases into standard shifts.
3487     Value *Src = II->getArgOperand(0);
3488     if (isa<UndefValue>(Src))
3489       return replaceInstUsesWith(*II, Src);
3490 
3491     unsigned Width;
3492     Type *Ty = II->getType();
3493     unsigned IntSize = Ty->getIntegerBitWidth();
3494 
3495     ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3496     if (CWidth) {
3497       Width = CWidth->getZExtValue();
3498       if ((Width & (IntSize - 1)) == 0)
3499         return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3500 
3501       if (Width >= IntSize) {
3502         // Hardware ignores high bits, so remove those.
3503         II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3504                                               Width & (IntSize - 1)));
3505         return II;
3506       }
3507     }
3508 
3509     unsigned Offset;
3510     ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3511     if (COffset) {
3512       Offset = COffset->getZExtValue();
3513       if (Offset >= IntSize) {
3514         II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3515                                               Offset & (IntSize - 1)));
3516         return II;
3517       }
3518     }
3519 
3520     bool Signed = IID == Intrinsic::amdgcn_sbfe;
3521 
3522     if (!CWidth || !COffset)
3523       break;
3524 
3525     // The case of Width == 0 is handled above, which makes this tranformation
3526     // safe.  If Width == 0, then the ashr and lshr instructions become poison
3527     // value since the shift amount would be equal to the bit size.
3528     assert(Width != 0);
3529 
3530     // TODO: This allows folding to undef when the hardware has specific
3531     // behavior?
3532     if (Offset + Width < IntSize) {
3533       Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
3534       Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
3535                                  : Builder.CreateLShr(Shl, IntSize - Width);
3536       RightShift->takeName(II);
3537       return replaceInstUsesWith(*II, RightShift);
3538     }
3539 
3540     Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
3541                                : Builder.CreateLShr(Src, Offset);
3542 
3543     RightShift->takeName(II);
3544     return replaceInstUsesWith(*II, RightShift);
3545   }
3546   case Intrinsic::amdgcn_exp:
3547   case Intrinsic::amdgcn_exp_compr: {
3548     ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1));
3549     unsigned EnBits = En->getZExtValue();
3550     if (EnBits == 0xf)
3551       break; // All inputs enabled.
3552 
3553     bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
3554     bool Changed = false;
3555     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3556       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3557           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3558         Value *Src = II->getArgOperand(I + 2);
3559         if (!isa<UndefValue>(Src)) {
3560           II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3561           Changed = true;
3562         }
3563       }
3564     }
3565 
3566     if (Changed)
3567       return II;
3568 
3569     break;
3570   }
3571   case Intrinsic::amdgcn_fmed3: {
3572     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3573     // for the shader.
3574 
3575     Value *Src0 = II->getArgOperand(0);
3576     Value *Src1 = II->getArgOperand(1);
3577     Value *Src2 = II->getArgOperand(2);
3578 
3579     // Checking for NaN before canonicalization provides better fidelity when
3580     // mapping other operations onto fmed3 since the order of operands is
3581     // unchanged.
3582     CallInst *NewCall = nullptr;
3583     if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
3584       NewCall = Builder.CreateMinNum(Src1, Src2);
3585     } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
3586       NewCall = Builder.CreateMinNum(Src0, Src2);
3587     } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3588       NewCall = Builder.CreateMaxNum(Src0, Src1);
3589     }
3590 
3591     if (NewCall) {
3592       NewCall->copyFastMathFlags(II);
3593       NewCall->takeName(II);
3594       return replaceInstUsesWith(*II, NewCall);
3595     }
3596 
3597     bool Swap = false;
3598     // Canonicalize constants to RHS operands.
3599     //
3600     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3601     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3602       std::swap(Src0, Src1);
3603       Swap = true;
3604     }
3605 
3606     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3607       std::swap(Src1, Src2);
3608       Swap = true;
3609     }
3610 
3611     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3612       std::swap(Src0, Src1);
3613       Swap = true;
3614     }
3615 
3616     if (Swap) {
3617       II->setArgOperand(0, Src0);
3618       II->setArgOperand(1, Src1);
3619       II->setArgOperand(2, Src2);
3620       return II;
3621     }
3622 
3623     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3624       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3625         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3626           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3627                                        C2->getValueAPF());
3628           return replaceInstUsesWith(*II,
3629             ConstantFP::get(Builder.getContext(), Result));
3630         }
3631       }
3632     }
3633 
3634     break;
3635   }
3636   case Intrinsic::amdgcn_icmp:
3637   case Intrinsic::amdgcn_fcmp: {
3638     const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2));
3639     // Guard against invalid arguments.
3640     int64_t CCVal = CC->getZExtValue();
3641     bool IsInteger = IID == Intrinsic::amdgcn_icmp;
3642     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3643                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3644         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3645                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3646       break;
3647 
3648     Value *Src0 = II->getArgOperand(0);
3649     Value *Src1 = II->getArgOperand(1);
3650 
3651     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3652       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3653         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
3654         if (CCmp->isNullValue()) {
3655           return replaceInstUsesWith(
3656               *II, ConstantExpr::getSExt(CCmp, II->getType()));
3657         }
3658 
3659         // The result of V_ICMP/V_FCMP assembly instructions (which this
3660         // intrinsic exposes) is one bit per thread, masked with the EXEC
3661         // register (which contains the bitmask of live threads). So a
3662         // comparison that always returns true is the same as a read of the
3663         // EXEC register.
3664         Function *NewF = Intrinsic::getDeclaration(
3665             II->getModule(), Intrinsic::read_register, II->getType());
3666         Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3667         MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3668         Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3669         CallInst *NewCall = Builder.CreateCall(NewF, Args);
3670         NewCall->addAttribute(AttributeList::FunctionIndex,
3671                               Attribute::Convergent);
3672         NewCall->takeName(II);
3673         return replaceInstUsesWith(*II, NewCall);
3674       }
3675 
3676       // Canonicalize constants to RHS.
3677       CmpInst::Predicate SwapPred
3678         = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3679       II->setArgOperand(0, Src1);
3680       II->setArgOperand(1, Src0);
3681       II->setArgOperand(2, ConstantInt::get(CC->getType(),
3682                                             static_cast<int>(SwapPred)));
3683       return II;
3684     }
3685 
3686     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3687       break;
3688 
3689     // Canonicalize compare eq with true value to compare != 0
3690     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3691     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3692     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3693     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3694     Value *ExtSrc;
3695     if (CCVal == CmpInst::ICMP_EQ &&
3696         ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3697          (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3698         ExtSrc->getType()->isIntegerTy(1)) {
3699       II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3700       II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3701       return II;
3702     }
3703 
3704     CmpInst::Predicate SrcPred;
3705     Value *SrcLHS;
3706     Value *SrcRHS;
3707 
3708     // Fold compare eq/ne with 0 from a compare result as the predicate to the
3709     // intrinsic. The typical use is a wave vote function in the library, which
3710     // will be fed from a user code condition compared with 0. Fold in the
3711     // redundant compare.
3712 
3713     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3714     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
3715     //
3716     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3717     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3718     if (match(Src1, m_Zero()) &&
3719         match(Src0,
3720               m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3721       if (CCVal == CmpInst::ICMP_EQ)
3722         SrcPred = CmpInst::getInversePredicate(SrcPred);
3723 
3724       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3725         Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3726 
3727       Type *Ty = SrcLHS->getType();
3728       if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
3729         // Promote to next legal integer type.
3730         unsigned Width = CmpType->getBitWidth();
3731         unsigned NewWidth = Width;
3732 
3733         // Don't do anything for i1 comparisons.
3734         if (Width == 1)
3735           break;
3736 
3737         if (Width <= 16)
3738           NewWidth = 16;
3739         else if (Width <= 32)
3740           NewWidth = 32;
3741         else if (Width <= 64)
3742           NewWidth = 64;
3743         else if (Width > 64)
3744           break; // Can't handle this.
3745 
3746         if (Width != NewWidth) {
3747           IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
3748           if (CmpInst::isSigned(SrcPred)) {
3749             SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
3750             SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
3751           } else {
3752             SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
3753             SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
3754           }
3755         }
3756       } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
3757         break;
3758 
3759       Function *NewF =
3760           Intrinsic::getDeclaration(II->getModule(), NewIID,
3761                                     { II->getType(),
3762                                       SrcLHS->getType() });
3763       Value *Args[] = { SrcLHS, SrcRHS,
3764                         ConstantInt::get(CC->getType(), SrcPred) };
3765       CallInst *NewCall = Builder.CreateCall(NewF, Args);
3766       NewCall->takeName(II);
3767       return replaceInstUsesWith(*II, NewCall);
3768     }
3769 
3770     break;
3771   }
3772   case Intrinsic::amdgcn_wqm_vote: {
3773     // wqm_vote is identity when the argument is constant.
3774     if (!isa<Constant>(II->getArgOperand(0)))
3775       break;
3776 
3777     return replaceInstUsesWith(*II, II->getArgOperand(0));
3778   }
3779   case Intrinsic::amdgcn_kill: {
3780     const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
3781     if (!C || !C->getZExtValue())
3782       break;
3783 
3784     // amdgcn.kill(i1 1) is a no-op
3785     return eraseInstFromFunction(CI);
3786   }
3787   case Intrinsic::amdgcn_update_dpp: {
3788     Value *Old = II->getArgOperand(0);
3789 
3790     auto BC = cast<ConstantInt>(II->getArgOperand(5));
3791     auto RM = cast<ConstantInt>(II->getArgOperand(3));
3792     auto BM = cast<ConstantInt>(II->getArgOperand(4));
3793     if (BC->isZeroValue() ||
3794         RM->getZExtValue() != 0xF ||
3795         BM->getZExtValue() != 0xF ||
3796         isa<UndefValue>(Old))
3797       break;
3798 
3799     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3800     II->setOperand(0, UndefValue::get(Old->getType()));
3801     return II;
3802   }
3803   case Intrinsic::amdgcn_readfirstlane:
3804   case Intrinsic::amdgcn_readlane: {
3805     // A constant value is trivially uniform.
3806     if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0)))
3807       return replaceInstUsesWith(*II, C);
3808 
3809     // The rest of these may not be safe if the exec may not be the same between
3810     // the def and use.
3811     Value *Src = II->getArgOperand(0);
3812     Instruction *SrcInst = dyn_cast<Instruction>(Src);
3813     if (SrcInst && SrcInst->getParent() != II->getParent())
3814       break;
3815 
3816     // readfirstlane (readfirstlane x) -> readfirstlane x
3817     // readlane (readfirstlane x), y -> readfirstlane x
3818     if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>()))
3819       return replaceInstUsesWith(*II, Src);
3820 
3821     if (IID == Intrinsic::amdgcn_readfirstlane) {
3822       // readfirstlane (readlane x, y) -> readlane x, y
3823       if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>()))
3824         return replaceInstUsesWith(*II, Src);
3825     } else {
3826       // readlane (readlane x, y), y -> readlane x, y
3827       if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>(
3828                   m_Value(), m_Specific(II->getArgOperand(1)))))
3829         return replaceInstUsesWith(*II, Src);
3830     }
3831 
3832     break;
3833   }
3834   case Intrinsic::stackrestore: {
3835     // If the save is right next to the restore, remove the restore.  This can
3836     // happen when variable allocas are DCE'd.
3837     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3838       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
3839         // Skip over debug info.
3840         if (SS->getNextNonDebugInstruction() == II) {
3841           return eraseInstFromFunction(CI);
3842         }
3843       }
3844     }
3845 
3846     // Scan down this block to see if there is another stack restore in the
3847     // same block without an intervening call/alloca.
3848     BasicBlock::iterator BI(II);
3849     Instruction *TI = II->getParent()->getTerminator();
3850     bool CannotRemove = false;
3851     for (++BI; &*BI != TI; ++BI) {
3852       if (isa<AllocaInst>(BI)) {
3853         CannotRemove = true;
3854         break;
3855       }
3856       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3857         if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
3858           // If there is a stackrestore below this one, remove this one.
3859           if (II2->getIntrinsicID() == Intrinsic::stackrestore)
3860             return eraseInstFromFunction(CI);
3861 
3862           // Bail if we cross over an intrinsic with side effects, such as
3863           // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3864           if (II2->mayHaveSideEffects()) {
3865             CannotRemove = true;
3866             break;
3867           }
3868         } else {
3869           // If we found a non-intrinsic call, we can't remove the stack
3870           // restore.
3871           CannotRemove = true;
3872           break;
3873         }
3874       }
3875     }
3876 
3877     // If the stack restore is in a return, resume, or unwind block and if there
3878     // are no allocas or calls between the restore and the return, nuke the
3879     // restore.
3880     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3881       return eraseInstFromFunction(CI);
3882     break;
3883   }
3884   case Intrinsic::lifetime_start:
3885     // Asan needs to poison memory to detect invalid access which is possible
3886     // even for empty lifetime range.
3887     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3888         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3889       break;
3890 
3891     if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3892                                   Intrinsic::lifetime_end, *this))
3893       return nullptr;
3894     break;
3895   case Intrinsic::assume: {
3896     Value *IIOperand = II->getArgOperand(0);
3897     // Remove an assume if it is followed by an identical assume.
3898     // TODO: Do we need this? Unless there are conflicting assumptions, the
3899     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3900     Instruction *Next = II->getNextNonDebugInstruction();
3901     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3902       return eraseInstFromFunction(CI);
3903 
3904     // Canonicalize assume(a && b) -> assume(a); assume(b);
3905     // Note: New assumption intrinsics created here are registered by
3906     // the InstCombineIRInserter object.
3907     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3908     Value *AssumeIntrinsic = II->getCalledValue();
3909     Value *A, *B;
3910     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3911       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName());
3912       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3913       return eraseInstFromFunction(*II);
3914     }
3915     // assume(!(a || b)) -> assume(!a); assume(!b);
3916     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
3917       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3918                          Builder.CreateNot(A), II->getName());
3919       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3920                          Builder.CreateNot(B), II->getName());
3921       return eraseInstFromFunction(*II);
3922     }
3923 
3924     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3925     // (if assume is valid at the load)
3926     CmpInst::Predicate Pred;
3927     Instruction *LHS;
3928     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3929         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3930         LHS->getType()->isPointerTy() &&
3931         isValidAssumeForContext(II, LHS, &DT)) {
3932       MDNode *MD = MDNode::get(II->getContext(), None);
3933       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3934       return eraseInstFromFunction(*II);
3935 
3936       // TODO: apply nonnull return attributes to calls and invokes
3937       // TODO: apply range metadata for range check patterns?
3938     }
3939 
3940     // If there is a dominating assume with the same condition as this one,
3941     // then this one is redundant, and should be removed.
3942     KnownBits Known(1);
3943     computeKnownBits(IIOperand, Known, 0, II);
3944     if (Known.isAllOnes())
3945       return eraseInstFromFunction(*II);
3946 
3947     // Update the cache of affected values for this assumption (we might be
3948     // here because we just simplified the condition).
3949     AC.updateAffectedValues(II);
3950     break;
3951   }
3952   case Intrinsic::experimental_gc_relocate: {
3953     // Translate facts known about a pointer before relocating into
3954     // facts about the relocate value, while being careful to
3955     // preserve relocation semantics.
3956     Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
3957 
3958     // Remove the relocation if unused, note that this check is required
3959     // to prevent the cases below from looping forever.
3960     if (II->use_empty())
3961       return eraseInstFromFunction(*II);
3962 
3963     // Undef is undef, even after relocation.
3964     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
3965     // most practical collectors, but there was discussion in the review thread
3966     // about whether it was legal for all possible collectors.
3967     if (isa<UndefValue>(DerivedPtr))
3968       // Use undef of gc_relocate's type to replace it.
3969       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3970 
3971     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3972       // The relocation of null will be null for most any collector.
3973       // TODO: provide a hook for this in GCStrategy.  There might be some
3974       // weird collector this property does not hold for.
3975       if (isa<ConstantPointerNull>(DerivedPtr))
3976         // Use null-pointer of gc_relocate's type to replace it.
3977         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
3978 
3979       // isKnownNonNull -> nonnull attribute
3980       if (!II->hasRetAttr(Attribute::NonNull) &&
3981           isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
3982         II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
3983         return II;
3984       }
3985     }
3986 
3987     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3988     // Canonicalize on the type from the uses to the defs
3989 
3990     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3991     break;
3992   }
3993 
3994   case Intrinsic::experimental_guard: {
3995     // Is this guard followed by another guard?  We scan forward over a small
3996     // fixed window of instructions to handle common cases with conditions
3997     // computed between guards.
3998     Instruction *NextInst = II->getNextNode();
3999     for (unsigned i = 0; i < GuardWideningWindow; i++) {
4000       // Note: Using context-free form to avoid compile time blow up
4001       if (!isSafeToSpeculativelyExecute(NextInst))
4002         break;
4003       NextInst = NextInst->getNextNode();
4004     }
4005     Value *NextCond = nullptr;
4006     if (match(NextInst,
4007               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
4008       Value *CurrCond = II->getArgOperand(0);
4009 
4010       // Remove a guard that it is immediately preceded by an identical guard.
4011       if (CurrCond == NextCond)
4012         return eraseInstFromFunction(*NextInst);
4013 
4014       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
4015       Instruction* MoveI = II->getNextNode();
4016       while (MoveI != NextInst) {
4017         auto *Temp = MoveI;
4018         MoveI = MoveI->getNextNode();
4019         Temp->moveBefore(II);
4020       }
4021       II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
4022       return eraseInstFromFunction(*NextInst);
4023     }
4024     break;
4025   }
4026   }
4027   return visitCallBase(*II);
4028 }
4029 
4030 // Fence instruction simplification
4031 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
4032   // Remove identical consecutive fences.
4033   Instruction *Next = FI.getNextNonDebugInstruction();
4034   if (auto *NFI = dyn_cast<FenceInst>(Next))
4035     if (FI.isIdenticalTo(NFI))
4036       return eraseInstFromFunction(FI);
4037   return nullptr;
4038 }
4039 
4040 // InvokeInst simplification
4041 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
4042   return visitCallBase(II);
4043 }
4044 
4045 // CallBrInst simplification
4046 Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) {
4047   return visitCallBase(CBI);
4048 }
4049 
4050 /// If this cast does not affect the value passed through the varargs area, we
4051 /// can eliminate the use of the cast.
4052 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
4053                                          const DataLayout &DL,
4054                                          const CastInst *const CI,
4055                                          const int ix) {
4056   if (!CI->isLosslessCast())
4057     return false;
4058 
4059   // If this is a GC intrinsic, avoid munging types.  We need types for
4060   // statepoint reconstruction in SelectionDAG.
4061   // TODO: This is probably something which should be expanded to all
4062   // intrinsics since the entire point of intrinsics is that
4063   // they are understandable by the optimizer.
4064   if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call))
4065     return false;
4066 
4067   // The size of ByVal or InAlloca arguments is derived from the type, so we
4068   // can't change to a type with a different size.  If the size were
4069   // passed explicitly we could avoid this check.
4070   if (!Call.isByValOrInAllocaArgument(ix))
4071     return true;
4072 
4073   Type* SrcTy =
4074             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
4075   Type *DstTy = Call.isByValArgument(ix)
4076                     ? Call.getParamByValType(ix)
4077                     : cast<PointerType>(CI->getType())->getElementType();
4078   if (!SrcTy->isSized() || !DstTy->isSized())
4079     return false;
4080   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
4081     return false;
4082   return true;
4083 }
4084 
4085 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
4086   if (!CI->getCalledFunction()) return nullptr;
4087 
4088   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4089     replaceInstUsesWith(*From, With);
4090   };
4091   auto InstCombineErase = [this](Instruction *I) {
4092     eraseInstFromFunction(*I);
4093   };
4094   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
4095                                InstCombineErase);
4096   if (Value *With = Simplifier.optimizeCall(CI)) {
4097     ++NumSimplified;
4098     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4099   }
4100 
4101   return nullptr;
4102 }
4103 
4104 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
4105   // Strip off at most one level of pointer casts, looking for an alloca.  This
4106   // is good enough in practice and simpler than handling any number of casts.
4107   Value *Underlying = TrampMem->stripPointerCasts();
4108   if (Underlying != TrampMem &&
4109       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4110     return nullptr;
4111   if (!isa<AllocaInst>(Underlying))
4112     return nullptr;
4113 
4114   IntrinsicInst *InitTrampoline = nullptr;
4115   for (User *U : TrampMem->users()) {
4116     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4117     if (!II)
4118       return nullptr;
4119     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4120       if (InitTrampoline)
4121         // More than one init_trampoline writes to this value.  Give up.
4122         return nullptr;
4123       InitTrampoline = II;
4124       continue;
4125     }
4126     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4127       // Allow any number of calls to adjust.trampoline.
4128       continue;
4129     return nullptr;
4130   }
4131 
4132   // No call to init.trampoline found.
4133   if (!InitTrampoline)
4134     return nullptr;
4135 
4136   // Check that the alloca is being used in the expected way.
4137   if (InitTrampoline->getOperand(0) != TrampMem)
4138     return nullptr;
4139 
4140   return InitTrampoline;
4141 }
4142 
4143 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
4144                                                Value *TrampMem) {
4145   // Visit all the previous instructions in the basic block, and try to find a
4146   // init.trampoline which has a direct path to the adjust.trampoline.
4147   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4148                             E = AdjustTramp->getParent()->begin();
4149        I != E;) {
4150     Instruction *Inst = &*--I;
4151     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
4152       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4153           II->getOperand(0) == TrampMem)
4154         return II;
4155     if (Inst->mayWriteToMemory())
4156       return nullptr;
4157   }
4158   return nullptr;
4159 }
4160 
4161 // Given a call to llvm.adjust.trampoline, find and return the corresponding
4162 // call to llvm.init.trampoline if the call to the trampoline can be optimized
4163 // to a direct call to a function.  Otherwise return NULL.
4164 static IntrinsicInst *findInitTrampoline(Value *Callee) {
4165   Callee = Callee->stripPointerCasts();
4166   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4167   if (!AdjustTramp ||
4168       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4169     return nullptr;
4170 
4171   Value *TrampMem = AdjustTramp->getOperand(0);
4172 
4173   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
4174     return IT;
4175   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4176     return IT;
4177   return nullptr;
4178 }
4179 
4180 /// Improvements for call, callbr and invoke instructions.
4181 Instruction *InstCombiner::visitCallBase(CallBase &Call) {
4182   if (isAllocLikeFn(&Call, &TLI))
4183     return visitAllocSite(Call);
4184 
4185   bool Changed = false;
4186 
4187   // Mark any parameters that are known to be non-null with the nonnull
4188   // attribute.  This is helpful for inlining calls to functions with null
4189   // checks on their arguments.
4190   SmallVector<unsigned, 4> ArgNos;
4191   unsigned ArgNo = 0;
4192 
4193   for (Value *V : Call.args()) {
4194     if (V->getType()->isPointerTy() &&
4195         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
4196         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
4197       ArgNos.push_back(ArgNo);
4198     ArgNo++;
4199   }
4200 
4201   assert(ArgNo == Call.arg_size() && "sanity check");
4202 
4203   if (!ArgNos.empty()) {
4204     AttributeList AS = Call.getAttributes();
4205     LLVMContext &Ctx = Call.getContext();
4206     AS = AS.addParamAttribute(Ctx, ArgNos,
4207                               Attribute::get(Ctx, Attribute::NonNull));
4208     Call.setAttributes(AS);
4209     Changed = true;
4210   }
4211 
4212   // If the callee is a pointer to a function, attempt to move any casts to the
4213   // arguments of the call/callbr/invoke.
4214   Value *Callee = Call.getCalledValue();
4215   if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
4216     return nullptr;
4217 
4218   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
4219     // Remove the convergent attr on calls when the callee is not convergent.
4220     if (Call.isConvergent() && !CalleeF->isConvergent() &&
4221         !CalleeF->isIntrinsic()) {
4222       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4223                         << "\n");
4224       Call.setNotConvergent();
4225       return &Call;
4226     }
4227 
4228     // If the call and callee calling conventions don't match, this call must
4229     // be unreachable, as the call is undefined.
4230     if (CalleeF->getCallingConv() != Call.getCallingConv() &&
4231         // Only do this for calls to a function with a body.  A prototype may
4232         // not actually end up matching the implementation's calling conv for a
4233         // variety of reasons (e.g. it may be written in assembly).
4234         !CalleeF->isDeclaration()) {
4235       Instruction *OldCall = &Call;
4236       CreateNonTerminatorUnreachable(OldCall);
4237       // If OldCall does not return void then replaceAllUsesWith undef.
4238       // This allows ValueHandlers and custom metadata to adjust itself.
4239       if (!OldCall->getType()->isVoidTy())
4240         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
4241       if (isa<CallInst>(OldCall))
4242         return eraseInstFromFunction(*OldCall);
4243 
4244       // We cannot remove an invoke or a callbr, because it would change thexi
4245       // CFG, just change the callee to a null pointer.
4246       cast<CallBase>(OldCall)->setCalledFunction(
4247           CalleeF->getFunctionType(),
4248           Constant::getNullValue(CalleeF->getType()));
4249       return nullptr;
4250     }
4251   }
4252 
4253   if ((isa<ConstantPointerNull>(Callee) &&
4254        !NullPointerIsDefined(Call.getFunction())) ||
4255       isa<UndefValue>(Callee)) {
4256     // If Call does not return void then replaceAllUsesWith undef.
4257     // This allows ValueHandlers and custom metadata to adjust itself.
4258     if (!Call.getType()->isVoidTy())
4259       replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
4260 
4261     if (Call.isTerminator()) {
4262       // Can't remove an invoke or callbr because we cannot change the CFG.
4263       return nullptr;
4264     }
4265 
4266     // This instruction is not reachable, just remove it.
4267     CreateNonTerminatorUnreachable(&Call);
4268     return eraseInstFromFunction(Call);
4269   }
4270 
4271   if (IntrinsicInst *II = findInitTrampoline(Callee))
4272     return transformCallThroughTrampoline(Call, *II);
4273 
4274   PointerType *PTy = cast<PointerType>(Callee->getType());
4275   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4276   if (FTy->isVarArg()) {
4277     int ix = FTy->getNumParams();
4278     // See if we can optimize any arguments passed through the varargs area of
4279     // the call.
4280     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
4281          I != E; ++I, ++ix) {
4282       CastInst *CI = dyn_cast<CastInst>(*I);
4283       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
4284         *I = CI->getOperand(0);
4285 
4286         // Update the byval type to match the argument type.
4287         if (Call.isByValArgument(ix)) {
4288           Call.removeParamAttr(ix, Attribute::ByVal);
4289           Call.addParamAttr(
4290               ix, Attribute::getWithByValType(
4291                       Call.getContext(),
4292                       CI->getOperand(0)->getType()->getPointerElementType()));
4293         }
4294         Changed = true;
4295       }
4296     }
4297   }
4298 
4299   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4300     // Inline asm calls cannot throw - mark them 'nounwind'.
4301     Call.setDoesNotThrow();
4302     Changed = true;
4303   }
4304 
4305   // Try to optimize the call if possible, we require DataLayout for most of
4306   // this.  None of these calls are seen as possibly dead so go ahead and
4307   // delete the instruction now.
4308   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4309     Instruction *I = tryOptimizeCall(CI);
4310     // If we changed something return the result, etc. Otherwise let
4311     // the fallthrough check.
4312     if (I) return eraseInstFromFunction(*I);
4313   }
4314 
4315   return Changed ? &Call : nullptr;
4316 }
4317 
4318 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4319 /// the arguments of the call/callbr/invoke.
4320 bool InstCombiner::transformConstExprCastCall(CallBase &Call) {
4321   auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
4322   if (!Callee)
4323     return false;
4324 
4325   // If this is a call to a thunk function, don't remove the cast. Thunks are
4326   // used to transparently forward all incoming parameters and outgoing return
4327   // values, so it's important to leave the cast in place.
4328   if (Callee->hasFnAttribute("thunk"))
4329     return false;
4330 
4331   // If this is a musttail call, the callee's prototype must match the caller's
4332   // prototype with the exception of pointee types. The code below doesn't
4333   // implement that, so we can't do this transform.
4334   // TODO: Do the transform if it only requires adding pointer casts.
4335   if (Call.isMustTailCall())
4336     return false;
4337 
4338   Instruction *Caller = &Call;
4339   const AttributeList &CallerPAL = Call.getAttributes();
4340 
4341   // Okay, this is a cast from a function to a different type.  Unless doing so
4342   // would cause a type conversion of one of our arguments, change this call to
4343   // be a direct call with arguments casted to the appropriate types.
4344   FunctionType *FT = Callee->getFunctionType();
4345   Type *OldRetTy = Caller->getType();
4346   Type *NewRetTy = FT->getReturnType();
4347 
4348   // Check to see if we are changing the return type...
4349   if (OldRetTy != NewRetTy) {
4350 
4351     if (NewRetTy->isStructTy())
4352       return false; // TODO: Handle multiple return values.
4353 
4354     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4355       if (Callee->isDeclaration())
4356         return false;   // Cannot transform this return value.
4357 
4358       if (!Caller->use_empty() &&
4359           // void -> non-void is handled specially
4360           !NewRetTy->isVoidTy())
4361         return false;   // Cannot transform this return value.
4362     }
4363 
4364     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4365       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4366       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4367         return false;   // Attribute not compatible with transformed value.
4368     }
4369 
4370     // If the callbase is an invoke/callbr instruction, and the return value is
4371     // used by a PHI node in a successor, we cannot change the return type of
4372     // the call because there is no place to put the cast instruction (without
4373     // breaking the critical edge).  Bail out in this case.
4374     if (!Caller->use_empty()) {
4375       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
4376         for (User *U : II->users())
4377           if (PHINode *PN = dyn_cast<PHINode>(U))
4378             if (PN->getParent() == II->getNormalDest() ||
4379                 PN->getParent() == II->getUnwindDest())
4380               return false;
4381       // FIXME: Be conservative for callbr to avoid a quadratic search.
4382       if (isa<CallBrInst>(Caller))
4383         return false;
4384     }
4385   }
4386 
4387   unsigned NumActualArgs = Call.arg_size();
4388   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4389 
4390   // Prevent us turning:
4391   // declare void @takes_i32_inalloca(i32* inalloca)
4392   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4393   //
4394   // into:
4395   //  call void @takes_i32_inalloca(i32* null)
4396   //
4397   //  Similarly, avoid folding away bitcasts of byval calls.
4398   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4399       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
4400     return false;
4401 
4402   auto AI = Call.arg_begin();
4403   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4404     Type *ParamTy = FT->getParamType(i);
4405     Type *ActTy = (*AI)->getType();
4406 
4407     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4408       return false;   // Cannot transform this parameter value.
4409 
4410     if (AttrBuilder(CallerPAL.getParamAttributes(i))
4411             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
4412       return false;   // Attribute not compatible with transformed value.
4413 
4414     if (Call.isInAllocaArgument(i))
4415       return false;   // Cannot transform to and from inalloca.
4416 
4417     // If the parameter is passed as a byval argument, then we have to have a
4418     // sized type and the sized type has to have the same size as the old type.
4419     if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4420       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
4421       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
4422         return false;
4423 
4424       Type *CurElTy = Call.getParamByValType(i);
4425       if (DL.getTypeAllocSize(CurElTy) !=
4426           DL.getTypeAllocSize(ParamPTy->getElementType()))
4427         return false;
4428     }
4429   }
4430 
4431   if (Callee->isDeclaration()) {
4432     // Do not delete arguments unless we have a function body.
4433     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4434       return false;
4435 
4436     // If the callee is just a declaration, don't change the varargsness of the
4437     // call.  We don't want to introduce a varargs call where one doesn't
4438     // already exist.
4439     PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType());
4440     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4441       return false;
4442 
4443     // If both the callee and the cast type are varargs, we still have to make
4444     // sure the number of fixed parameters are the same or we have the same
4445     // ABI issues as if we introduce a varargs call.
4446     if (FT->isVarArg() &&
4447         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4448         FT->getNumParams() !=
4449         cast<FunctionType>(APTy->getElementType())->getNumParams())
4450       return false;
4451   }
4452 
4453   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4454       !CallerPAL.isEmpty()) {
4455     // In this case we have more arguments than the new function type, but we
4456     // won't be dropping them.  Check that these extra arguments have attributes
4457     // that are compatible with being a vararg call argument.
4458     unsigned SRetIdx;
4459     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4460         SRetIdx > FT->getNumParams())
4461       return false;
4462   }
4463 
4464   // Okay, we decided that this is a safe thing to do: go ahead and start
4465   // inserting cast instructions as necessary.
4466   SmallVector<Value *, 8> Args;
4467   SmallVector<AttributeSet, 8> ArgAttrs;
4468   Args.reserve(NumActualArgs);
4469   ArgAttrs.reserve(NumActualArgs);
4470 
4471   // Get any return attributes.
4472   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4473 
4474   // If the return value is not being used, the type may not be compatible
4475   // with the existing attributes.  Wipe out any problematic attributes.
4476   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4477 
4478   LLVMContext &Ctx = Call.getContext();
4479   AI = Call.arg_begin();
4480   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4481     Type *ParamTy = FT->getParamType(i);
4482 
4483     Value *NewArg = *AI;
4484     if ((*AI)->getType() != ParamTy)
4485       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4486     Args.push_back(NewArg);
4487 
4488     // Add any parameter attributes.
4489     if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4490       AttrBuilder AB(CallerPAL.getParamAttributes(i));
4491       AB.addByValAttr(NewArg->getType()->getPointerElementType());
4492       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
4493     } else
4494       ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4495   }
4496 
4497   // If the function takes more arguments than the call was taking, add them
4498   // now.
4499   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4500     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4501     ArgAttrs.push_back(AttributeSet());
4502   }
4503 
4504   // If we are removing arguments to the function, emit an obnoxious warning.
4505   if (FT->getNumParams() < NumActualArgs) {
4506     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4507     if (FT->isVarArg()) {
4508       // Add all of the arguments in their promoted form to the arg list.
4509       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4510         Type *PTy = getPromotedType((*AI)->getType());
4511         Value *NewArg = *AI;
4512         if (PTy != (*AI)->getType()) {
4513           // Must promote to pass through va_arg area!
4514           Instruction::CastOps opcode =
4515             CastInst::getCastOpcode(*AI, false, PTy, false);
4516           NewArg = Builder.CreateCast(opcode, *AI, PTy);
4517         }
4518         Args.push_back(NewArg);
4519 
4520         // Add any parameter attributes.
4521         ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4522       }
4523     }
4524   }
4525 
4526   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
4527 
4528   if (NewRetTy->isVoidTy())
4529     Caller->setName("");   // Void type should not have a name.
4530 
4531   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4532          "missing argument attributes");
4533   AttributeList NewCallerPAL = AttributeList::get(
4534       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4535 
4536   SmallVector<OperandBundleDef, 1> OpBundles;
4537   Call.getOperandBundlesAsDefs(OpBundles);
4538 
4539   CallBase *NewCall;
4540   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4541     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4542                                    II->getUnwindDest(), Args, OpBundles);
4543   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4544     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
4545                                    CBI->getIndirectDests(), Args, OpBundles);
4546   } else {
4547     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4548     cast<CallInst>(NewCall)->setTailCallKind(
4549         cast<CallInst>(Caller)->getTailCallKind());
4550   }
4551   NewCall->takeName(Caller);
4552   NewCall->setCallingConv(Call.getCallingConv());
4553   NewCall->setAttributes(NewCallerPAL);
4554 
4555   // Preserve the weight metadata for the new call instruction. The metadata
4556   // is used by SamplePGO to check callsite's hotness.
4557   uint64_t W;
4558   if (Caller->extractProfTotalWeight(W))
4559     NewCall->setProfWeight(W);
4560 
4561   // Insert a cast of the return type as necessary.
4562   Instruction *NC = NewCall;
4563   Value *NV = NC;
4564   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4565     if (!NV->getType()->isVoidTy()) {
4566       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4567       NC->setDebugLoc(Caller->getDebugLoc());
4568 
4569       // If this is an invoke/callbr instruction, we should insert it after the
4570       // first non-phi instruction in the normal successor block.
4571       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4572         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
4573         InsertNewInstBefore(NC, *I);
4574       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4575         BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
4576         InsertNewInstBefore(NC, *I);
4577       } else {
4578         // Otherwise, it's a call, just insert cast right after the call.
4579         InsertNewInstBefore(NC, *Caller);
4580       }
4581       Worklist.AddUsersToWorkList(*Caller);
4582     } else {
4583       NV = UndefValue::get(Caller->getType());
4584     }
4585   }
4586 
4587   if (!Caller->use_empty())
4588     replaceInstUsesWith(*Caller, NV);
4589   else if (Caller->hasValueHandle()) {
4590     if (OldRetTy == NV->getType())
4591       ValueHandleBase::ValueIsRAUWd(Caller, NV);
4592     else
4593       // We cannot call ValueIsRAUWd with a different type, and the
4594       // actual tracked value will disappear.
4595       ValueHandleBase::ValueIsDeleted(Caller);
4596   }
4597 
4598   eraseInstFromFunction(*Caller);
4599   return true;
4600 }
4601 
4602 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4603 /// intrinsic pair into a direct call to the underlying function.
4604 Instruction *
4605 InstCombiner::transformCallThroughTrampoline(CallBase &Call,
4606                                              IntrinsicInst &Tramp) {
4607   Value *Callee = Call.getCalledValue();
4608   Type *CalleeTy = Callee->getType();
4609   FunctionType *FTy = Call.getFunctionType();
4610   AttributeList Attrs = Call.getAttributes();
4611 
4612   // If the call already has the 'nest' attribute somewhere then give up -
4613   // otherwise 'nest' would occur twice after splicing in the chain.
4614   if (Attrs.hasAttrSomewhere(Attribute::Nest))
4615     return nullptr;
4616 
4617   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4618   FunctionType *NestFTy = NestF->getFunctionType();
4619 
4620   AttributeList NestAttrs = NestF->getAttributes();
4621   if (!NestAttrs.isEmpty()) {
4622     unsigned NestArgNo = 0;
4623     Type *NestTy = nullptr;
4624     AttributeSet NestAttr;
4625 
4626     // Look for a parameter marked with the 'nest' attribute.
4627     for (FunctionType::param_iterator I = NestFTy->param_begin(),
4628                                       E = NestFTy->param_end();
4629          I != E; ++NestArgNo, ++I) {
4630       AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4631       if (AS.hasAttribute(Attribute::Nest)) {
4632         // Record the parameter type and any other attributes.
4633         NestTy = *I;
4634         NestAttr = AS;
4635         break;
4636       }
4637     }
4638 
4639     if (NestTy) {
4640       std::vector<Value*> NewArgs;
4641       std::vector<AttributeSet> NewArgAttrs;
4642       NewArgs.reserve(Call.arg_size() + 1);
4643       NewArgAttrs.reserve(Call.arg_size());
4644 
4645       // Insert the nest argument into the call argument list, which may
4646       // mean appending it.  Likewise for attributes.
4647 
4648       {
4649         unsigned ArgNo = 0;
4650         auto I = Call.arg_begin(), E = Call.arg_end();
4651         do {
4652           if (ArgNo == NestArgNo) {
4653             // Add the chain argument and attributes.
4654             Value *NestVal = Tramp.getArgOperand(2);
4655             if (NestVal->getType() != NestTy)
4656               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4657             NewArgs.push_back(NestVal);
4658             NewArgAttrs.push_back(NestAttr);
4659           }
4660 
4661           if (I == E)
4662             break;
4663 
4664           // Add the original argument and attributes.
4665           NewArgs.push_back(*I);
4666           NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
4667 
4668           ++ArgNo;
4669           ++I;
4670         } while (true);
4671       }
4672 
4673       // The trampoline may have been bitcast to a bogus type (FTy).
4674       // Handle this by synthesizing a new function type, equal to FTy
4675       // with the chain parameter inserted.
4676 
4677       std::vector<Type*> NewTypes;
4678       NewTypes.reserve(FTy->getNumParams()+1);
4679 
4680       // Insert the chain's type into the list of parameter types, which may
4681       // mean appending it.
4682       {
4683         unsigned ArgNo = 0;
4684         FunctionType::param_iterator I = FTy->param_begin(),
4685           E = FTy->param_end();
4686 
4687         do {
4688           if (ArgNo == NestArgNo)
4689             // Add the chain's type.
4690             NewTypes.push_back(NestTy);
4691 
4692           if (I == E)
4693             break;
4694 
4695           // Add the original type.
4696           NewTypes.push_back(*I);
4697 
4698           ++ArgNo;
4699           ++I;
4700         } while (true);
4701       }
4702 
4703       // Replace the trampoline call with a direct call.  Let the generic
4704       // code sort out any function type mismatches.
4705       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
4706                                                 FTy->isVarArg());
4707       Constant *NewCallee =
4708         NestF->getType() == PointerType::getUnqual(NewFTy) ?
4709         NestF : ConstantExpr::getBitCast(NestF,
4710                                          PointerType::getUnqual(NewFTy));
4711       AttributeList NewPAL =
4712           AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4713                              Attrs.getRetAttributes(), NewArgAttrs);
4714 
4715       SmallVector<OperandBundleDef, 1> OpBundles;
4716       Call.getOperandBundlesAsDefs(OpBundles);
4717 
4718       Instruction *NewCaller;
4719       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4720         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
4721                                        II->getNormalDest(), II->getUnwindDest(),
4722                                        NewArgs, OpBundles);
4723         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4724         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4725       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4726         NewCaller =
4727             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
4728                                CBI->getIndirectDests(), NewArgs, OpBundles);
4729         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4730         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4731       } else {
4732         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
4733         cast<CallInst>(NewCaller)->setTailCallKind(
4734             cast<CallInst>(Call).getTailCallKind());
4735         cast<CallInst>(NewCaller)->setCallingConv(
4736             cast<CallInst>(Call).getCallingConv());
4737         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4738       }
4739       NewCaller->setDebugLoc(Call.getDebugLoc());
4740 
4741       return NewCaller;
4742     }
4743   }
4744 
4745   // Replace the trampoline call with a direct call.  Since there is no 'nest'
4746   // parameter, there is no need to adjust the argument list.  Let the generic
4747   // code sort out any function type mismatches.
4748   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
4749   Call.setCalledFunction(FTy, NewCallee);
4750   return &Call;
4751 }
4752