1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Statepoint.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <cstring> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace PatternMatch; 72 73 #define DEBUG_TYPE "instcombine" 74 75 STATISTIC(NumSimplified, "Number of library calls simplified"); 76 77 static cl::opt<unsigned> GuardWideningWindow( 78 "instcombine-guard-widening-window", 79 cl::init(3), 80 cl::desc("How wide an instruction window to bypass looking for " 81 "another guard")); 82 83 /// Return the specified type promoted as it would be to pass though a va_arg 84 /// area. 85 static Type *getPromotedType(Type *Ty) { 86 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 87 if (ITy->getBitWidth() < 32) 88 return Type::getInt32Ty(Ty->getContext()); 89 } 90 return Ty; 91 } 92 93 /// Return a constant boolean vector that has true elements in all positions 94 /// where the input constant data vector has an element with the sign bit set. 95 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { 96 SmallVector<Constant *, 32> BoolVec; 97 IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); 98 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { 99 Constant *Elt = V->getElementAsConstant(I); 100 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) && 101 "Unexpected constant data vector element type"); 102 bool Sign = V->getElementType()->isIntegerTy() 103 ? cast<ConstantInt>(Elt)->isNegative() 104 : cast<ConstantFP>(Elt)->isNegative(); 105 BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); 106 } 107 return ConstantVector::get(BoolVec); 108 } 109 110 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 111 unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 112 unsigned CopyDstAlign = MI->getDestAlignment(); 113 if (CopyDstAlign < DstAlign){ 114 MI->setDestAlignment(DstAlign); 115 return MI; 116 } 117 118 unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 119 unsigned CopySrcAlign = MI->getSourceAlignment(); 120 if (CopySrcAlign < SrcAlign) { 121 MI->setSourceAlignment(SrcAlign); 122 return MI; 123 } 124 125 // If we have a store to a location which is known constant, we can conclude 126 // that the store must be storing the constant value (else the memory 127 // wouldn't be constant), and this must be a noop. 128 if (AA->pointsToConstantMemory(MI->getDest())) { 129 // Set the size of the copy to 0, it will be deleted on the next iteration. 130 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 131 return MI; 132 } 133 134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 135 // load/store. 136 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 137 if (!MemOpLength) return nullptr; 138 139 // Source and destination pointer types are always "i8*" for intrinsic. See 140 // if the size is something we can handle with a single primitive load/store. 141 // A single load+store correctly handles overlapping memory in the memmove 142 // case. 143 uint64_t Size = MemOpLength->getLimitedValue(); 144 assert(Size && "0-sized memory transferring should be removed already."); 145 146 if (Size > 8 || (Size&(Size-1))) 147 return nullptr; // If not 1/2/4/8 bytes, exit. 148 149 // If it is an atomic and alignment is less than the size then we will 150 // introduce the unaligned memory access which will be later transformed 151 // into libcall in CodeGen. This is not evident performance gain so disable 152 // it now. 153 if (isa<AtomicMemTransferInst>(MI)) 154 if (CopyDstAlign < Size || CopySrcAlign < Size) 155 return nullptr; 156 157 // Use an integer load+store unless we can find something better. 158 unsigned SrcAddrSp = 159 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); 160 unsigned DstAddrSp = 161 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); 162 163 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 164 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); 165 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); 166 167 // If the memcpy has metadata describing the members, see if we can get the 168 // TBAA tag describing our copy. 169 MDNode *CopyMD = nullptr; 170 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { 171 CopyMD = M; 172 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { 173 if (M->getNumOperands() == 3 && M->getOperand(0) && 174 mdconst::hasa<ConstantInt>(M->getOperand(0)) && 175 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && 176 M->getOperand(1) && 177 mdconst::hasa<ConstantInt>(M->getOperand(1)) && 178 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == 179 Size && 180 M->getOperand(2) && isa<MDNode>(M->getOperand(2))) 181 CopyMD = cast<MDNode>(M->getOperand(2)); 182 } 183 184 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); 185 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); 186 LoadInst *L = Builder.CreateLoad(IntType, Src); 187 // Alignment from the mem intrinsic will be better, so use it. 188 L->setAlignment(CopySrcAlign); 189 if (CopyMD) 190 L->setMetadata(LLVMContext::MD_tbaa, CopyMD); 191 MDNode *LoopMemParallelMD = 192 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 193 if (LoopMemParallelMD) 194 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 195 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 196 if (AccessGroupMD) 197 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 198 199 StoreInst *S = Builder.CreateStore(L, Dest); 200 // Alignment from the mem intrinsic will be better, so use it. 201 S->setAlignment(CopyDstAlign); 202 if (CopyMD) 203 S->setMetadata(LLVMContext::MD_tbaa, CopyMD); 204 if (LoopMemParallelMD) 205 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 206 if (AccessGroupMD) 207 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 208 209 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 210 // non-atomics can be volatile 211 L->setVolatile(MT->isVolatile()); 212 S->setVolatile(MT->isVolatile()); 213 } 214 if (isa<AtomicMemTransferInst>(MI)) { 215 // atomics have to be unordered 216 L->setOrdering(AtomicOrdering::Unordered); 217 S->setOrdering(AtomicOrdering::Unordered); 218 } 219 220 // Set the size of the copy to 0, it will be deleted on the next iteration. 221 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 222 return MI; 223 } 224 225 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) { 226 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 227 if (MI->getDestAlignment() < Alignment) { 228 MI->setDestAlignment(Alignment); 229 return MI; 230 } 231 232 // If we have a store to a location which is known constant, we can conclude 233 // that the store must be storing the constant value (else the memory 234 // wouldn't be constant), and this must be a noop. 235 if (AA->pointsToConstantMemory(MI->getDest())) { 236 // Set the size of the copy to 0, it will be deleted on the next iteration. 237 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 238 return MI; 239 } 240 241 // Extract the length and alignment and fill if they are constant. 242 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 243 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 244 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 245 return nullptr; 246 uint64_t Len = LenC->getLimitedValue(); 247 Alignment = MI->getDestAlignment(); 248 assert(Len && "0-sized memory setting should be removed already."); 249 250 // Alignment 0 is identity for alignment 1 for memset, but not store. 251 if (Alignment == 0) 252 Alignment = 1; 253 254 // If it is an atomic and alignment is less than the size then we will 255 // introduce the unaligned memory access which will be later transformed 256 // into libcall in CodeGen. This is not evident performance gain so disable 257 // it now. 258 if (isa<AtomicMemSetInst>(MI)) 259 if (Alignment < Len) 260 return nullptr; 261 262 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 263 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 264 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 265 266 Value *Dest = MI->getDest(); 267 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); 268 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); 269 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); 270 271 // Extract the fill value and store. 272 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 273 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, 274 MI->isVolatile()); 275 S->setAlignment(Alignment); 276 if (isa<AtomicMemSetInst>(MI)) 277 S->setOrdering(AtomicOrdering::Unordered); 278 279 // Set the size of the copy to 0, it will be deleted on the next iteration. 280 MI->setLength(Constant::getNullValue(LenC->getType())); 281 return MI; 282 } 283 284 return nullptr; 285 } 286 287 static Value *simplifyX86immShift(const IntrinsicInst &II, 288 InstCombiner::BuilderTy &Builder) { 289 bool LogicalShift = false; 290 bool ShiftLeft = false; 291 292 switch (II.getIntrinsicID()) { 293 default: llvm_unreachable("Unexpected intrinsic!"); 294 case Intrinsic::x86_sse2_psra_d: 295 case Intrinsic::x86_sse2_psra_w: 296 case Intrinsic::x86_sse2_psrai_d: 297 case Intrinsic::x86_sse2_psrai_w: 298 case Intrinsic::x86_avx2_psra_d: 299 case Intrinsic::x86_avx2_psra_w: 300 case Intrinsic::x86_avx2_psrai_d: 301 case Intrinsic::x86_avx2_psrai_w: 302 case Intrinsic::x86_avx512_psra_q_128: 303 case Intrinsic::x86_avx512_psrai_q_128: 304 case Intrinsic::x86_avx512_psra_q_256: 305 case Intrinsic::x86_avx512_psrai_q_256: 306 case Intrinsic::x86_avx512_psra_d_512: 307 case Intrinsic::x86_avx512_psra_q_512: 308 case Intrinsic::x86_avx512_psra_w_512: 309 case Intrinsic::x86_avx512_psrai_d_512: 310 case Intrinsic::x86_avx512_psrai_q_512: 311 case Intrinsic::x86_avx512_psrai_w_512: 312 LogicalShift = false; ShiftLeft = false; 313 break; 314 case Intrinsic::x86_sse2_psrl_d: 315 case Intrinsic::x86_sse2_psrl_q: 316 case Intrinsic::x86_sse2_psrl_w: 317 case Intrinsic::x86_sse2_psrli_d: 318 case Intrinsic::x86_sse2_psrli_q: 319 case Intrinsic::x86_sse2_psrli_w: 320 case Intrinsic::x86_avx2_psrl_d: 321 case Intrinsic::x86_avx2_psrl_q: 322 case Intrinsic::x86_avx2_psrl_w: 323 case Intrinsic::x86_avx2_psrli_d: 324 case Intrinsic::x86_avx2_psrli_q: 325 case Intrinsic::x86_avx2_psrli_w: 326 case Intrinsic::x86_avx512_psrl_d_512: 327 case Intrinsic::x86_avx512_psrl_q_512: 328 case Intrinsic::x86_avx512_psrl_w_512: 329 case Intrinsic::x86_avx512_psrli_d_512: 330 case Intrinsic::x86_avx512_psrli_q_512: 331 case Intrinsic::x86_avx512_psrli_w_512: 332 LogicalShift = true; ShiftLeft = false; 333 break; 334 case Intrinsic::x86_sse2_psll_d: 335 case Intrinsic::x86_sse2_psll_q: 336 case Intrinsic::x86_sse2_psll_w: 337 case Intrinsic::x86_sse2_pslli_d: 338 case Intrinsic::x86_sse2_pslli_q: 339 case Intrinsic::x86_sse2_pslli_w: 340 case Intrinsic::x86_avx2_psll_d: 341 case Intrinsic::x86_avx2_psll_q: 342 case Intrinsic::x86_avx2_psll_w: 343 case Intrinsic::x86_avx2_pslli_d: 344 case Intrinsic::x86_avx2_pslli_q: 345 case Intrinsic::x86_avx2_pslli_w: 346 case Intrinsic::x86_avx512_psll_d_512: 347 case Intrinsic::x86_avx512_psll_q_512: 348 case Intrinsic::x86_avx512_psll_w_512: 349 case Intrinsic::x86_avx512_pslli_d_512: 350 case Intrinsic::x86_avx512_pslli_q_512: 351 case Intrinsic::x86_avx512_pslli_w_512: 352 LogicalShift = true; ShiftLeft = true; 353 break; 354 } 355 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); 356 357 // Simplify if count is constant. 358 auto Arg1 = II.getArgOperand(1); 359 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1); 360 auto CDV = dyn_cast<ConstantDataVector>(Arg1); 361 auto CInt = dyn_cast<ConstantInt>(Arg1); 362 if (!CAZ && !CDV && !CInt) 363 return nullptr; 364 365 APInt Count(64, 0); 366 if (CDV) { 367 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector 368 // operand to compute the shift amount. 369 auto VT = cast<VectorType>(CDV->getType()); 370 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); 371 assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); 372 unsigned NumSubElts = 64 / BitWidth; 373 374 // Concatenate the sub-elements to create the 64-bit value. 375 for (unsigned i = 0; i != NumSubElts; ++i) { 376 unsigned SubEltIdx = (NumSubElts - 1) - i; 377 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); 378 Count <<= BitWidth; 379 Count |= SubElt->getValue().zextOrTrunc(64); 380 } 381 } 382 else if (CInt) 383 Count = CInt->getValue(); 384 385 auto Vec = II.getArgOperand(0); 386 auto VT = cast<VectorType>(Vec->getType()); 387 auto SVT = VT->getElementType(); 388 unsigned VWidth = VT->getNumElements(); 389 unsigned BitWidth = SVT->getPrimitiveSizeInBits(); 390 391 // If shift-by-zero then just return the original value. 392 if (Count.isNullValue()) 393 return Vec; 394 395 // Handle cases when Shift >= BitWidth. 396 if (Count.uge(BitWidth)) { 397 // If LogicalShift - just return zero. 398 if (LogicalShift) 399 return ConstantAggregateZero::get(VT); 400 401 // If ArithmeticShift - clamp Shift to (BitWidth - 1). 402 Count = APInt(64, BitWidth - 1); 403 } 404 405 // Get a constant vector of the same type as the first operand. 406 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); 407 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); 408 409 if (ShiftLeft) 410 return Builder.CreateShl(Vec, ShiftVec); 411 412 if (LogicalShift) 413 return Builder.CreateLShr(Vec, ShiftVec); 414 415 return Builder.CreateAShr(Vec, ShiftVec); 416 } 417 418 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. 419 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out 420 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). 421 static Value *simplifyX86varShift(const IntrinsicInst &II, 422 InstCombiner::BuilderTy &Builder) { 423 bool LogicalShift = false; 424 bool ShiftLeft = false; 425 426 switch (II.getIntrinsicID()) { 427 default: llvm_unreachable("Unexpected intrinsic!"); 428 case Intrinsic::x86_avx2_psrav_d: 429 case Intrinsic::x86_avx2_psrav_d_256: 430 case Intrinsic::x86_avx512_psrav_q_128: 431 case Intrinsic::x86_avx512_psrav_q_256: 432 case Intrinsic::x86_avx512_psrav_d_512: 433 case Intrinsic::x86_avx512_psrav_q_512: 434 case Intrinsic::x86_avx512_psrav_w_128: 435 case Intrinsic::x86_avx512_psrav_w_256: 436 case Intrinsic::x86_avx512_psrav_w_512: 437 LogicalShift = false; 438 ShiftLeft = false; 439 break; 440 case Intrinsic::x86_avx2_psrlv_d: 441 case Intrinsic::x86_avx2_psrlv_d_256: 442 case Intrinsic::x86_avx2_psrlv_q: 443 case Intrinsic::x86_avx2_psrlv_q_256: 444 case Intrinsic::x86_avx512_psrlv_d_512: 445 case Intrinsic::x86_avx512_psrlv_q_512: 446 case Intrinsic::x86_avx512_psrlv_w_128: 447 case Intrinsic::x86_avx512_psrlv_w_256: 448 case Intrinsic::x86_avx512_psrlv_w_512: 449 LogicalShift = true; 450 ShiftLeft = false; 451 break; 452 case Intrinsic::x86_avx2_psllv_d: 453 case Intrinsic::x86_avx2_psllv_d_256: 454 case Intrinsic::x86_avx2_psllv_q: 455 case Intrinsic::x86_avx2_psllv_q_256: 456 case Intrinsic::x86_avx512_psllv_d_512: 457 case Intrinsic::x86_avx512_psllv_q_512: 458 case Intrinsic::x86_avx512_psllv_w_128: 459 case Intrinsic::x86_avx512_psllv_w_256: 460 case Intrinsic::x86_avx512_psllv_w_512: 461 LogicalShift = true; 462 ShiftLeft = true; 463 break; 464 } 465 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); 466 467 // Simplify if all shift amounts are constant/undef. 468 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1)); 469 if (!CShift) 470 return nullptr; 471 472 auto Vec = II.getArgOperand(0); 473 auto VT = cast<VectorType>(II.getType()); 474 auto SVT = VT->getVectorElementType(); 475 int NumElts = VT->getNumElements(); 476 int BitWidth = SVT->getIntegerBitWidth(); 477 478 // Collect each element's shift amount. 479 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. 480 bool AnyOutOfRange = false; 481 SmallVector<int, 8> ShiftAmts; 482 for (int I = 0; I < NumElts; ++I) { 483 auto *CElt = CShift->getAggregateElement(I); 484 if (CElt && isa<UndefValue>(CElt)) { 485 ShiftAmts.push_back(-1); 486 continue; 487 } 488 489 auto *COp = dyn_cast_or_null<ConstantInt>(CElt); 490 if (!COp) 491 return nullptr; 492 493 // Handle out of range shifts. 494 // If LogicalShift - set to BitWidth (special case). 495 // If ArithmeticShift - set to (BitWidth - 1) (sign splat). 496 APInt ShiftVal = COp->getValue(); 497 if (ShiftVal.uge(BitWidth)) { 498 AnyOutOfRange = LogicalShift; 499 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); 500 continue; 501 } 502 503 ShiftAmts.push_back((int)ShiftVal.getZExtValue()); 504 } 505 506 // If all elements out of range or UNDEF, return vector of zeros/undefs. 507 // ArithmeticShift should only hit this if they are all UNDEF. 508 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; 509 if (llvm::all_of(ShiftAmts, OutOfRange)) { 510 SmallVector<Constant *, 8> ConstantVec; 511 for (int Idx : ShiftAmts) { 512 if (Idx < 0) { 513 ConstantVec.push_back(UndefValue::get(SVT)); 514 } else { 515 assert(LogicalShift && "Logical shift expected"); 516 ConstantVec.push_back(ConstantInt::getNullValue(SVT)); 517 } 518 } 519 return ConstantVector::get(ConstantVec); 520 } 521 522 // We can't handle only some out of range values with generic logical shifts. 523 if (AnyOutOfRange) 524 return nullptr; 525 526 // Build the shift amount constant vector. 527 SmallVector<Constant *, 8> ShiftVecAmts; 528 for (int Idx : ShiftAmts) { 529 if (Idx < 0) 530 ShiftVecAmts.push_back(UndefValue::get(SVT)); 531 else 532 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); 533 } 534 auto ShiftVec = ConstantVector::get(ShiftVecAmts); 535 536 if (ShiftLeft) 537 return Builder.CreateShl(Vec, ShiftVec); 538 539 if (LogicalShift) 540 return Builder.CreateLShr(Vec, ShiftVec); 541 542 return Builder.CreateAShr(Vec, ShiftVec); 543 } 544 545 static Value *simplifyX86pack(IntrinsicInst &II, 546 InstCombiner::BuilderTy &Builder, bool IsSigned) { 547 Value *Arg0 = II.getArgOperand(0); 548 Value *Arg1 = II.getArgOperand(1); 549 Type *ResTy = II.getType(); 550 551 // Fast all undef handling. 552 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1)) 553 return UndefValue::get(ResTy); 554 555 Type *ArgTy = Arg0->getType(); 556 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; 557 unsigned NumSrcElts = ArgTy->getVectorNumElements(); 558 assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) && 559 "Unexpected packing types"); 560 561 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; 562 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); 563 unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits(); 564 assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) && 565 "Unexpected packing types"); 566 567 // Constant folding. 568 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1)) 569 return nullptr; 570 571 // Clamp Values - signed/unsigned both use signed clamp values, but they 572 // differ on the min/max values. 573 APInt MinValue, MaxValue; 574 if (IsSigned) { 575 // PACKSS: Truncate signed value with signed saturation. 576 // Source values less than dst minint are saturated to minint. 577 // Source values greater than dst maxint are saturated to maxint. 578 MinValue = 579 APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); 580 MaxValue = 581 APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); 582 } else { 583 // PACKUS: Truncate signed value with unsigned saturation. 584 // Source values less than zero are saturated to zero. 585 // Source values greater than dst maxuint are saturated to maxuint. 586 MinValue = APInt::getNullValue(SrcScalarSizeInBits); 587 MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits); 588 } 589 590 auto *MinC = Constant::getIntegerValue(ArgTy, MinValue); 591 auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue); 592 Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0); 593 Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1); 594 Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0); 595 Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1); 596 597 // Shuffle clamped args together at the lane level. 598 SmallVector<unsigned, 32> PackMask; 599 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 600 for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) 601 PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane)); 602 for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) 603 PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts); 604 } 605 auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask); 606 607 // Truncate to dst size. 608 return Builder.CreateTrunc(Shuffle, ResTy); 609 } 610 611 static Value *simplifyX86movmsk(const IntrinsicInst &II, 612 InstCombiner::BuilderTy &Builder) { 613 Value *Arg = II.getArgOperand(0); 614 Type *ResTy = II.getType(); 615 Type *ArgTy = Arg->getType(); 616 617 // movmsk(undef) -> zero as we must ensure the upper bits are zero. 618 if (isa<UndefValue>(Arg)) 619 return Constant::getNullValue(ResTy); 620 621 // We can't easily peek through x86_mmx types. 622 if (!ArgTy->isVectorTy()) 623 return nullptr; 624 625 // Expand MOVMSK to compare/bitcast/zext: 626 // e.g. PMOVMSKB(v16i8 x): 627 // %cmp = icmp slt <16 x i8> %x, zeroinitializer 628 // %int = bitcast <16 x i1> %cmp to i16 629 // %res = zext i16 %int to i32 630 unsigned NumElts = ArgTy->getVectorNumElements(); 631 Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy)); 632 Type *IntegerTy = Builder.getIntNTy(NumElts); 633 634 Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy); 635 Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy)); 636 Res = Builder.CreateBitCast(Res, IntegerTy); 637 Res = Builder.CreateZExtOrTrunc(Res, ResTy); 638 return Res; 639 } 640 641 static Value *simplifyX86addcarry(const IntrinsicInst &II, 642 InstCombiner::BuilderTy &Builder) { 643 Value *CarryIn = II.getArgOperand(0); 644 Value *Op1 = II.getArgOperand(1); 645 Value *Op2 = II.getArgOperand(2); 646 Type *RetTy = II.getType(); 647 Type *OpTy = Op1->getType(); 648 assert(RetTy->getStructElementType(0)->isIntegerTy(8) && 649 RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() && 650 "Unexpected types for x86 addcarry"); 651 652 // If carry-in is zero, this is just an unsigned add with overflow. 653 if (match(CarryIn, m_ZeroInt())) { 654 Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy, 655 { Op1, Op2 }); 656 // The types have to be adjusted to match the x86 call types. 657 Value *UAddResult = Builder.CreateExtractValue(UAdd, 0); 658 Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1), 659 Builder.getInt8Ty()); 660 Value *Res = UndefValue::get(RetTy); 661 Res = Builder.CreateInsertValue(Res, UAddOV, 0); 662 return Builder.CreateInsertValue(Res, UAddResult, 1); 663 } 664 665 return nullptr; 666 } 667 668 static Value *simplifyX86insertps(const IntrinsicInst &II, 669 InstCombiner::BuilderTy &Builder) { 670 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); 671 if (!CInt) 672 return nullptr; 673 674 VectorType *VecTy = cast<VectorType>(II.getType()); 675 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); 676 677 // The immediate permute control byte looks like this: 678 // [3:0] - zero mask for each 32-bit lane 679 // [5:4] - select one 32-bit destination lane 680 // [7:6] - select one 32-bit source lane 681 682 uint8_t Imm = CInt->getZExtValue(); 683 uint8_t ZMask = Imm & 0xf; 684 uint8_t DestLane = (Imm >> 4) & 0x3; 685 uint8_t SourceLane = (Imm >> 6) & 0x3; 686 687 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); 688 689 // If all zero mask bits are set, this was just a weird way to 690 // generate a zero vector. 691 if (ZMask == 0xf) 692 return ZeroVector; 693 694 // Initialize by passing all of the first source bits through. 695 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; 696 697 // We may replace the second operand with the zero vector. 698 Value *V1 = II.getArgOperand(1); 699 700 if (ZMask) { 701 // If the zero mask is being used with a single input or the zero mask 702 // overrides the destination lane, this is a shuffle with the zero vector. 703 if ((II.getArgOperand(0) == II.getArgOperand(1)) || 704 (ZMask & (1 << DestLane))) { 705 V1 = ZeroVector; 706 // We may still move 32-bits of the first source vector from one lane 707 // to another. 708 ShuffleMask[DestLane] = SourceLane; 709 // The zero mask may override the previous insert operation. 710 for (unsigned i = 0; i < 4; ++i) 711 if ((ZMask >> i) & 0x1) 712 ShuffleMask[i] = i + 4; 713 } else { 714 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? 715 return nullptr; 716 } 717 } else { 718 // Replace the selected destination lane with the selected source lane. 719 ShuffleMask[DestLane] = SourceLane + 4; 720 } 721 722 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); 723 } 724 725 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding 726 /// or conversion to a shuffle vector. 727 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, 728 ConstantInt *CILength, ConstantInt *CIIndex, 729 InstCombiner::BuilderTy &Builder) { 730 auto LowConstantHighUndef = [&](uint64_t Val) { 731 Type *IntTy64 = Type::getInt64Ty(II.getContext()); 732 Constant *Args[] = {ConstantInt::get(IntTy64, Val), 733 UndefValue::get(IntTy64)}; 734 return ConstantVector::get(Args); 735 }; 736 737 // See if we're dealing with constant values. 738 Constant *C0 = dyn_cast<Constant>(Op0); 739 ConstantInt *CI0 = 740 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) 741 : nullptr; 742 743 // Attempt to constant fold. 744 if (CILength && CIIndex) { 745 // From AMD documentation: "The bit index and field length are each six 746 // bits in length other bits of the field are ignored." 747 APInt APIndex = CIIndex->getValue().zextOrTrunc(6); 748 APInt APLength = CILength->getValue().zextOrTrunc(6); 749 750 unsigned Index = APIndex.getZExtValue(); 751 752 // From AMD documentation: "a value of zero in the field length is 753 // defined as length of 64". 754 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); 755 756 // From AMD documentation: "If the sum of the bit index + length field 757 // is greater than 64, the results are undefined". 758 unsigned End = Index + Length; 759 760 // Note that both field index and field length are 8-bit quantities. 761 // Since variables 'Index' and 'Length' are unsigned values 762 // obtained from zero-extending field index and field length 763 // respectively, their sum should never wrap around. 764 if (End > 64) 765 return UndefValue::get(II.getType()); 766 767 // If we are inserting whole bytes, we can convert this to a shuffle. 768 // Lowering can recognize EXTRQI shuffle masks. 769 if ((Length % 8) == 0 && (Index % 8) == 0) { 770 // Convert bit indices to byte indices. 771 Length /= 8; 772 Index /= 8; 773 774 Type *IntTy8 = Type::getInt8Ty(II.getContext()); 775 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 776 VectorType *ShufTy = VectorType::get(IntTy8, 16); 777 778 SmallVector<Constant *, 16> ShuffleMask; 779 for (int i = 0; i != (int)Length; ++i) 780 ShuffleMask.push_back( 781 Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); 782 for (int i = Length; i != 8; ++i) 783 ShuffleMask.push_back( 784 Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); 785 for (int i = 8; i != 16; ++i) 786 ShuffleMask.push_back(UndefValue::get(IntTy32)); 787 788 Value *SV = Builder.CreateShuffleVector( 789 Builder.CreateBitCast(Op0, ShufTy), 790 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); 791 return Builder.CreateBitCast(SV, II.getType()); 792 } 793 794 // Constant Fold - shift Index'th bit to lowest position and mask off 795 // Length bits. 796 if (CI0) { 797 APInt Elt = CI0->getValue(); 798 Elt.lshrInPlace(Index); 799 Elt = Elt.zextOrTrunc(Length); 800 return LowConstantHighUndef(Elt.getZExtValue()); 801 } 802 803 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. 804 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { 805 Value *Args[] = {Op0, CILength, CIIndex}; 806 Module *M = II.getModule(); 807 Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); 808 return Builder.CreateCall(F, Args); 809 } 810 } 811 812 // Constant Fold - extraction from zero is always {zero, undef}. 813 if (CI0 && CI0->isZero()) 814 return LowConstantHighUndef(0); 815 816 return nullptr; 817 } 818 819 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant 820 /// folding or conversion to a shuffle vector. 821 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, 822 APInt APLength, APInt APIndex, 823 InstCombiner::BuilderTy &Builder) { 824 // From AMD documentation: "The bit index and field length are each six bits 825 // in length other bits of the field are ignored." 826 APIndex = APIndex.zextOrTrunc(6); 827 APLength = APLength.zextOrTrunc(6); 828 829 // Attempt to constant fold. 830 unsigned Index = APIndex.getZExtValue(); 831 832 // From AMD documentation: "a value of zero in the field length is 833 // defined as length of 64". 834 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); 835 836 // From AMD documentation: "If the sum of the bit index + length field 837 // is greater than 64, the results are undefined". 838 unsigned End = Index + Length; 839 840 // Note that both field index and field length are 8-bit quantities. 841 // Since variables 'Index' and 'Length' are unsigned values 842 // obtained from zero-extending field index and field length 843 // respectively, their sum should never wrap around. 844 if (End > 64) 845 return UndefValue::get(II.getType()); 846 847 // If we are inserting whole bytes, we can convert this to a shuffle. 848 // Lowering can recognize INSERTQI shuffle masks. 849 if ((Length % 8) == 0 && (Index % 8) == 0) { 850 // Convert bit indices to byte indices. 851 Length /= 8; 852 Index /= 8; 853 854 Type *IntTy8 = Type::getInt8Ty(II.getContext()); 855 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 856 VectorType *ShufTy = VectorType::get(IntTy8, 16); 857 858 SmallVector<Constant *, 16> ShuffleMask; 859 for (int i = 0; i != (int)Index; ++i) 860 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); 861 for (int i = 0; i != (int)Length; ++i) 862 ShuffleMask.push_back( 863 Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); 864 for (int i = Index + Length; i != 8; ++i) 865 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); 866 for (int i = 8; i != 16; ++i) 867 ShuffleMask.push_back(UndefValue::get(IntTy32)); 868 869 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), 870 Builder.CreateBitCast(Op1, ShufTy), 871 ConstantVector::get(ShuffleMask)); 872 return Builder.CreateBitCast(SV, II.getType()); 873 } 874 875 // See if we're dealing with constant values. 876 Constant *C0 = dyn_cast<Constant>(Op0); 877 Constant *C1 = dyn_cast<Constant>(Op1); 878 ConstantInt *CI00 = 879 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) 880 : nullptr; 881 ConstantInt *CI10 = 882 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) 883 : nullptr; 884 885 // Constant Fold - insert bottom Length bits starting at the Index'th bit. 886 if (CI00 && CI10) { 887 APInt V00 = CI00->getValue(); 888 APInt V10 = CI10->getValue(); 889 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); 890 V00 = V00 & ~Mask; 891 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); 892 APInt Val = V00 | V10; 893 Type *IntTy64 = Type::getInt64Ty(II.getContext()); 894 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), 895 UndefValue::get(IntTy64)}; 896 return ConstantVector::get(Args); 897 } 898 899 // If we were an INSERTQ call, we'll save demanded elements if we convert to 900 // INSERTQI. 901 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { 902 Type *IntTy8 = Type::getInt8Ty(II.getContext()); 903 Constant *CILength = ConstantInt::get(IntTy8, Length, false); 904 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); 905 906 Value *Args[] = {Op0, Op1, CILength, CIIndex}; 907 Module *M = II.getModule(); 908 Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); 909 return Builder.CreateCall(F, Args); 910 } 911 912 return nullptr; 913 } 914 915 /// Attempt to convert pshufb* to shufflevector if the mask is constant. 916 static Value *simplifyX86pshufb(const IntrinsicInst &II, 917 InstCombiner::BuilderTy &Builder) { 918 Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); 919 if (!V) 920 return nullptr; 921 922 auto *VecTy = cast<VectorType>(II.getType()); 923 auto *MaskEltTy = Type::getInt32Ty(II.getContext()); 924 unsigned NumElts = VecTy->getNumElements(); 925 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && 926 "Unexpected number of elements in shuffle mask!"); 927 928 // Construct a shuffle mask from constant integers or UNDEFs. 929 Constant *Indexes[64] = {nullptr}; 930 931 // Each byte in the shuffle control mask forms an index to permute the 932 // corresponding byte in the destination operand. 933 for (unsigned I = 0; I < NumElts; ++I) { 934 Constant *COp = V->getAggregateElement(I); 935 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) 936 return nullptr; 937 938 if (isa<UndefValue>(COp)) { 939 Indexes[I] = UndefValue::get(MaskEltTy); 940 continue; 941 } 942 943 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue(); 944 945 // If the most significant bit (bit[7]) of each byte of the shuffle 946 // control mask is set, then zero is written in the result byte. 947 // The zero vector is in the right-hand side of the resulting 948 // shufflevector. 949 950 // The value of each index for the high 128-bit lane is the least 951 // significant 4 bits of the respective shuffle control byte. 952 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); 953 Indexes[I] = ConstantInt::get(MaskEltTy, Index); 954 } 955 956 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); 957 auto V1 = II.getArgOperand(0); 958 auto V2 = Constant::getNullValue(VecTy); 959 return Builder.CreateShuffleVector(V1, V2, ShuffleMask); 960 } 961 962 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. 963 static Value *simplifyX86vpermilvar(const IntrinsicInst &II, 964 InstCombiner::BuilderTy &Builder) { 965 Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); 966 if (!V) 967 return nullptr; 968 969 auto *VecTy = cast<VectorType>(II.getType()); 970 auto *MaskEltTy = Type::getInt32Ty(II.getContext()); 971 unsigned NumElts = VecTy->getVectorNumElements(); 972 bool IsPD = VecTy->getScalarType()->isDoubleTy(); 973 unsigned NumLaneElts = IsPD ? 2 : 4; 974 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); 975 976 // Construct a shuffle mask from constant integers or UNDEFs. 977 Constant *Indexes[16] = {nullptr}; 978 979 // The intrinsics only read one or two bits, clear the rest. 980 for (unsigned I = 0; I < NumElts; ++I) { 981 Constant *COp = V->getAggregateElement(I); 982 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) 983 return nullptr; 984 985 if (isa<UndefValue>(COp)) { 986 Indexes[I] = UndefValue::get(MaskEltTy); 987 continue; 988 } 989 990 APInt Index = cast<ConstantInt>(COp)->getValue(); 991 Index = Index.zextOrTrunc(32).getLoBits(2); 992 993 // The PD variants uses bit 1 to select per-lane element index, so 994 // shift down to convert to generic shuffle mask index. 995 if (IsPD) 996 Index.lshrInPlace(1); 997 998 // The _256 variants are a bit trickier since the mask bits always index 999 // into the corresponding 128 half. In order to convert to a generic 1000 // shuffle, we have to make that explicit. 1001 Index += APInt(32, (I / NumLaneElts) * NumLaneElts); 1002 1003 Indexes[I] = ConstantInt::get(MaskEltTy, Index); 1004 } 1005 1006 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); 1007 auto V1 = II.getArgOperand(0); 1008 auto V2 = UndefValue::get(V1->getType()); 1009 return Builder.CreateShuffleVector(V1, V2, ShuffleMask); 1010 } 1011 1012 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. 1013 static Value *simplifyX86vpermv(const IntrinsicInst &II, 1014 InstCombiner::BuilderTy &Builder) { 1015 auto *V = dyn_cast<Constant>(II.getArgOperand(1)); 1016 if (!V) 1017 return nullptr; 1018 1019 auto *VecTy = cast<VectorType>(II.getType()); 1020 auto *MaskEltTy = Type::getInt32Ty(II.getContext()); 1021 unsigned Size = VecTy->getNumElements(); 1022 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && 1023 "Unexpected shuffle mask size"); 1024 1025 // Construct a shuffle mask from constant integers or UNDEFs. 1026 Constant *Indexes[64] = {nullptr}; 1027 1028 for (unsigned I = 0; I < Size; ++I) { 1029 Constant *COp = V->getAggregateElement(I); 1030 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) 1031 return nullptr; 1032 1033 if (isa<UndefValue>(COp)) { 1034 Indexes[I] = UndefValue::get(MaskEltTy); 1035 continue; 1036 } 1037 1038 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue(); 1039 Index &= Size - 1; 1040 Indexes[I] = ConstantInt::get(MaskEltTy, Index); 1041 } 1042 1043 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); 1044 auto V1 = II.getArgOperand(0); 1045 auto V2 = UndefValue::get(VecTy); 1046 return Builder.CreateShuffleVector(V1, V2, ShuffleMask); 1047 } 1048 1049 // TODO, Obvious Missing Transforms: 1050 // * Narrow width by halfs excluding zero/undef lanes 1051 Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) { 1052 Value *LoadPtr = II.getArgOperand(0); 1053 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue(); 1054 1055 // If the mask is all ones or undefs, this is a plain vector load of the 1st 1056 // argument. 1057 if (maskIsAllOneOrUndef(II.getArgOperand(2))) 1058 return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 1059 "unmaskedload"); 1060 1061 // If we can unconditionally load from this address, replace with a 1062 // load/select idiom. TODO: use DT for context sensitive query 1063 if (isDereferenceableAndAlignedPointer(LoadPtr, II.getType(), Alignment, 1064 II.getModule()->getDataLayout(), 1065 &II, nullptr)) { 1066 Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 1067 "unmaskedload"); 1068 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 1069 } 1070 1071 return nullptr; 1072 } 1073 1074 // TODO, Obvious Missing Transforms: 1075 // * Single constant active lane -> store 1076 // * Narrow width by halfs excluding zero/undef lanes 1077 Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) { 1078 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 1079 if (!ConstMask) 1080 return nullptr; 1081 1082 // If the mask is all zeros, this instruction does nothing. 1083 if (ConstMask->isNullValue()) 1084 return eraseInstFromFunction(II); 1085 1086 // If the mask is all ones, this is a plain vector store of the 1st argument. 1087 if (ConstMask->isAllOnesValue()) { 1088 Value *StorePtr = II.getArgOperand(1); 1089 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue(); 1090 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 1091 } 1092 1093 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 1094 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 1095 APInt UndefElts(DemandedElts.getBitWidth(), 0); 1096 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), 1097 DemandedElts, UndefElts)) { 1098 II.setOperand(0, V); 1099 return &II; 1100 } 1101 1102 return nullptr; 1103 } 1104 1105 // TODO, Obvious Missing Transforms: 1106 // * Single constant active lane load -> load 1107 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 1108 // * Adjacent vector addresses -> masked.load 1109 // * Narrow width by halfs excluding zero/undef lanes 1110 // * Vector splat address w/known mask -> scalar load 1111 // * Vector incrementing address -> vector masked load 1112 Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) { 1113 return nullptr; 1114 } 1115 1116 // TODO, Obvious Missing Transforms: 1117 // * Single constant active lane -> store 1118 // * Adjacent vector addresses -> masked.store 1119 // * Narrow store width by halfs excluding zero/undef lanes 1120 // * Vector splat address w/known mask -> scalar store 1121 // * Vector incrementing address -> vector masked store 1122 Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) { 1123 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 1124 if (!ConstMask) 1125 return nullptr; 1126 1127 // If the mask is all zeros, a scatter does nothing. 1128 if (ConstMask->isNullValue()) 1129 return eraseInstFromFunction(II); 1130 1131 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 1132 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 1133 APInt UndefElts(DemandedElts.getBitWidth(), 0); 1134 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), 1135 DemandedElts, UndefElts)) { 1136 II.setOperand(0, V); 1137 return &II; 1138 } 1139 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), 1140 DemandedElts, UndefElts)) { 1141 II.setOperand(1, V); 1142 return &II; 1143 } 1144 1145 return nullptr; 1146 } 1147 1148 /// This function transforms launder.invariant.group and strip.invariant.group 1149 /// like: 1150 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 1151 /// launder(strip(%x)) -> launder(%x) 1152 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 1153 /// strip(launder(%x)) -> strip(%x) 1154 /// This is legal because it preserves the most recent information about 1155 /// the presence or absence of invariant.group. 1156 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 1157 InstCombiner &IC) { 1158 auto *Arg = II.getArgOperand(0); 1159 auto *StrippedArg = Arg->stripPointerCasts(); 1160 auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups(); 1161 if (StrippedArg == StrippedInvariantGroupsArg) 1162 return nullptr; // No launders/strips to remove. 1163 1164 Value *Result = nullptr; 1165 1166 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 1167 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 1168 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 1169 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 1170 else 1171 llvm_unreachable( 1172 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 1173 if (Result->getType()->getPointerAddressSpace() != 1174 II.getType()->getPointerAddressSpace()) 1175 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 1176 if (Result->getType() != II.getType()) 1177 Result = IC.Builder.CreateBitCast(Result, II.getType()); 1178 1179 return cast<Instruction>(Result); 1180 } 1181 1182 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { 1183 assert((II.getIntrinsicID() == Intrinsic::cttz || 1184 II.getIntrinsicID() == Intrinsic::ctlz) && 1185 "Expected cttz or ctlz intrinsic"); 1186 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 1187 Value *Op0 = II.getArgOperand(0); 1188 Value *X; 1189 // ctlz(bitreverse(x)) -> cttz(x) 1190 // cttz(bitreverse(x)) -> ctlz(x) 1191 if (match(Op0, m_BitReverse(m_Value(X)))) { 1192 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 1193 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 1194 return CallInst::Create(F, {X, II.getArgOperand(1)}); 1195 } 1196 1197 if (IsTZ) { 1198 // cttz(-x) -> cttz(x) 1199 if (match(Op0, m_Neg(m_Value(X)))) { 1200 II.setOperand(0, X); 1201 return &II; 1202 } 1203 1204 // cttz(abs(x)) -> cttz(x) 1205 // cttz(nabs(x)) -> cttz(x) 1206 Value *Y; 1207 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 1208 if (SPF == SPF_ABS || SPF == SPF_NABS) { 1209 II.setOperand(0, X); 1210 return &II; 1211 } 1212 } 1213 1214 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 1215 1216 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 1217 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 1218 : Known.countMaxLeadingZeros(); 1219 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 1220 : Known.countMinLeadingZeros(); 1221 1222 // If all bits above (ctlz) or below (cttz) the first known one are known 1223 // zero, this value is constant. 1224 // FIXME: This should be in InstSimplify because we're replacing an 1225 // instruction with a constant. 1226 if (PossibleZeros == DefiniteZeros) { 1227 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 1228 return IC.replaceInstUsesWith(II, C); 1229 } 1230 1231 // If the input to cttz/ctlz is known to be non-zero, 1232 // then change the 'ZeroIsUndef' parameter to 'true' 1233 // because we know the zero behavior can't affect the result. 1234 if (!Known.One.isNullValue() || 1235 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, 1236 &IC.getDominatorTree())) { 1237 if (!match(II.getArgOperand(1), m_One())) { 1238 II.setOperand(1, IC.Builder.getTrue()); 1239 return &II; 1240 } 1241 } 1242 1243 // Add range metadata since known bits can't completely reflect what we know. 1244 // TODO: Handle splat vectors. 1245 auto *IT = dyn_cast<IntegerType>(Op0->getType()); 1246 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 1247 Metadata *LowAndHigh[] = { 1248 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), 1249 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; 1250 II.setMetadata(LLVMContext::MD_range, 1251 MDNode::get(II.getContext(), LowAndHigh)); 1252 return &II; 1253 } 1254 1255 return nullptr; 1256 } 1257 1258 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) { 1259 assert(II.getIntrinsicID() == Intrinsic::ctpop && 1260 "Expected ctpop intrinsic"); 1261 Value *Op0 = II.getArgOperand(0); 1262 Value *X; 1263 // ctpop(bitreverse(x)) -> ctpop(x) 1264 // ctpop(bswap(x)) -> ctpop(x) 1265 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) { 1266 II.setOperand(0, X); 1267 return &II; 1268 } 1269 1270 // FIXME: Try to simplify vectors of integers. 1271 auto *IT = dyn_cast<IntegerType>(Op0->getType()); 1272 if (!IT) 1273 return nullptr; 1274 1275 unsigned BitWidth = IT->getBitWidth(); 1276 KnownBits Known(BitWidth); 1277 IC.computeKnownBits(Op0, Known, 0, &II); 1278 1279 unsigned MinCount = Known.countMinPopulation(); 1280 unsigned MaxCount = Known.countMaxPopulation(); 1281 1282 // Add range metadata since known bits can't completely reflect what we know. 1283 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 1284 Metadata *LowAndHigh[] = { 1285 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), 1286 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; 1287 II.setMetadata(LLVMContext::MD_range, 1288 MDNode::get(II.getContext(), LowAndHigh)); 1289 return &II; 1290 } 1291 1292 return nullptr; 1293 } 1294 1295 // TODO: If the x86 backend knew how to convert a bool vector mask back to an 1296 // XMM register mask efficiently, we could transform all x86 masked intrinsics 1297 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. 1298 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { 1299 Value *Ptr = II.getOperand(0); 1300 Value *Mask = II.getOperand(1); 1301 Constant *ZeroVec = Constant::getNullValue(II.getType()); 1302 1303 // Special case a zero mask since that's not a ConstantDataVector. 1304 // This masked load instruction creates a zero vector. 1305 if (isa<ConstantAggregateZero>(Mask)) 1306 return IC.replaceInstUsesWith(II, ZeroVec); 1307 1308 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); 1309 if (!ConstMask) 1310 return nullptr; 1311 1312 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic 1313 // to allow target-independent optimizations. 1314 1315 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match 1316 // the LLVM intrinsic definition for the pointer argument. 1317 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1318 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); 1319 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); 1320 1321 // Second, convert the x86 XMM integer vector mask to a vector of bools based 1322 // on each element's most significant bit (the sign bit). 1323 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); 1324 1325 // The pass-through vector for an x86 masked load is a zero vector. 1326 CallInst *NewMaskedLoad = 1327 IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); 1328 return IC.replaceInstUsesWith(II, NewMaskedLoad); 1329 } 1330 1331 // TODO: If the x86 backend knew how to convert a bool vector mask back to an 1332 // XMM register mask efficiently, we could transform all x86 masked intrinsics 1333 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. 1334 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { 1335 Value *Ptr = II.getOperand(0); 1336 Value *Mask = II.getOperand(1); 1337 Value *Vec = II.getOperand(2); 1338 1339 // Special case a zero mask since that's not a ConstantDataVector: 1340 // this masked store instruction does nothing. 1341 if (isa<ConstantAggregateZero>(Mask)) { 1342 IC.eraseInstFromFunction(II); 1343 return true; 1344 } 1345 1346 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do 1347 // anything else at this level. 1348 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) 1349 return false; 1350 1351 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); 1352 if (!ConstMask) 1353 return false; 1354 1355 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic 1356 // to allow target-independent optimizations. 1357 1358 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match 1359 // the LLVM intrinsic definition for the pointer argument. 1360 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1361 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); 1362 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); 1363 1364 // Second, convert the x86 XMM integer vector mask to a vector of bools based 1365 // on each element's most significant bit (the sign bit). 1366 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); 1367 1368 IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask); 1369 1370 // 'Replace uses' doesn't work for stores. Erase the original masked store. 1371 IC.eraseInstFromFunction(II); 1372 return true; 1373 } 1374 1375 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. 1376 // 1377 // A single NaN input is folded to minnum, so we rely on that folding for 1378 // handling NaNs. 1379 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, 1380 const APFloat &Src2) { 1381 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); 1382 1383 APFloat::cmpResult Cmp0 = Max3.compare(Src0); 1384 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); 1385 if (Cmp0 == APFloat::cmpEqual) 1386 return maxnum(Src1, Src2); 1387 1388 APFloat::cmpResult Cmp1 = Max3.compare(Src1); 1389 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); 1390 if (Cmp1 == APFloat::cmpEqual) 1391 return maxnum(Src0, Src2); 1392 1393 return maxnum(Src0, Src1); 1394 } 1395 1396 /// Convert a table lookup to shufflevector if the mask is constant. 1397 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 1398 /// which case we could lower the shufflevector with rev64 instructions 1399 /// as it's actually a byte reverse. 1400 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 1401 InstCombiner::BuilderTy &Builder) { 1402 // Bail out if the mask is not a constant. 1403 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 1404 if (!C) 1405 return nullptr; 1406 1407 auto *VecTy = cast<VectorType>(II.getType()); 1408 unsigned NumElts = VecTy->getNumElements(); 1409 1410 // Only perform this transformation for <8 x i8> vector types. 1411 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 1412 return nullptr; 1413 1414 uint32_t Indexes[8]; 1415 1416 for (unsigned I = 0; I < NumElts; ++I) { 1417 Constant *COp = C->getAggregateElement(I); 1418 1419 if (!COp || !isa<ConstantInt>(COp)) 1420 return nullptr; 1421 1422 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 1423 1424 // Make sure the mask indices are in range. 1425 if (Indexes[I] >= NumElts) 1426 return nullptr; 1427 } 1428 1429 auto *ShuffleMask = ConstantDataVector::get(II.getContext(), 1430 makeArrayRef(Indexes)); 1431 auto *V1 = II.getArgOperand(0); 1432 auto *V2 = Constant::getNullValue(V1->getType()); 1433 return Builder.CreateShuffleVector(V1, V2, ShuffleMask); 1434 } 1435 1436 /// Convert a vector load intrinsic into a simple llvm load instruction. 1437 /// This is beneficial when the underlying object being addressed comes 1438 /// from a constant, since we get constant-folding for free. 1439 static Value *simplifyNeonVld1(const IntrinsicInst &II, 1440 unsigned MemAlign, 1441 InstCombiner::BuilderTy &Builder) { 1442 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 1443 1444 if (!IntrAlign) 1445 return nullptr; 1446 1447 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ? 1448 MemAlign : IntrAlign->getLimitedValue(); 1449 1450 if (!isPowerOf2_32(Alignment)) 1451 return nullptr; 1452 1453 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 1454 PointerType::get(II.getType(), 0)); 1455 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment); 1456 } 1457 1458 // Returns true iff the 2 intrinsics have the same operands, limiting the 1459 // comparison to the first NumOperands. 1460 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 1461 unsigned NumOperands) { 1462 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); 1463 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); 1464 for (unsigned i = 0; i < NumOperands; i++) 1465 if (I.getArgOperand(i) != E.getArgOperand(i)) 1466 return false; 1467 return true; 1468 } 1469 1470 // Remove trivially empty start/end intrinsic ranges, i.e. a start 1471 // immediately followed by an end (ignoring debuginfo or other 1472 // start/end intrinsics in between). As this handles only the most trivial 1473 // cases, tracking the nesting level is not needed: 1474 // 1475 // call @llvm.foo.start(i1 0) ; &I 1476 // call @llvm.foo.start(i1 0) 1477 // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed 1478 // call @llvm.foo.end(i1 0) 1479 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, 1480 unsigned EndID, InstCombiner &IC) { 1481 assert(I.getIntrinsicID() == StartID && 1482 "Start intrinsic does not have expected ID"); 1483 BasicBlock::iterator BI(I), BE(I.getParent()->end()); 1484 for (++BI; BI != BE; ++BI) { 1485 if (auto *E = dyn_cast<IntrinsicInst>(BI)) { 1486 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID) 1487 continue; 1488 if (E->getIntrinsicID() == EndID && 1489 haveSameOperands(I, *E, E->getNumArgOperands())) { 1490 IC.eraseInstFromFunction(*E); 1491 IC.eraseInstFromFunction(I); 1492 return true; 1493 } 1494 } 1495 break; 1496 } 1497 1498 return false; 1499 } 1500 1501 // Convert NVVM intrinsics to target-generic LLVM code where possible. 1502 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) { 1503 // Each NVVM intrinsic we can simplify can be replaced with one of: 1504 // 1505 // * an LLVM intrinsic, 1506 // * an LLVM cast operation, 1507 // * an LLVM binary operation, or 1508 // * ad-hoc LLVM IR for the particular operation. 1509 1510 // Some transformations are only valid when the module's 1511 // flush-denormals-to-zero (ftz) setting is true/false, whereas other 1512 // transformations are valid regardless of the module's ftz setting. 1513 enum FtzRequirementTy { 1514 FTZ_Any, // Any ftz setting is ok. 1515 FTZ_MustBeOn, // Transformation is valid only if ftz is on. 1516 FTZ_MustBeOff, // Transformation is valid only if ftz is off. 1517 }; 1518 // Classes of NVVM intrinsics that can't be replaced one-to-one with a 1519 // target-generic intrinsic, cast op, or binary op but that we can nonetheless 1520 // simplify. 1521 enum SpecialCase { 1522 SPC_Reciprocal, 1523 }; 1524 1525 // SimplifyAction is a poor-man's variant (plus an additional flag) that 1526 // represents how to replace an NVVM intrinsic with target-generic LLVM IR. 1527 struct SimplifyAction { 1528 // Invariant: At most one of these Optionals has a value. 1529 Optional<Intrinsic::ID> IID; 1530 Optional<Instruction::CastOps> CastOp; 1531 Optional<Instruction::BinaryOps> BinaryOp; 1532 Optional<SpecialCase> Special; 1533 1534 FtzRequirementTy FtzRequirement = FTZ_Any; 1535 1536 SimplifyAction() = default; 1537 1538 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) 1539 : IID(IID), FtzRequirement(FtzReq) {} 1540 1541 // Cast operations don't have anything to do with FTZ, so we skip that 1542 // argument. 1543 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} 1544 1545 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) 1546 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} 1547 1548 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) 1549 : Special(Special), FtzRequirement(FtzReq) {} 1550 }; 1551 1552 // Try to generate a SimplifyAction describing how to replace our 1553 // IntrinsicInstr with target-generic LLVM IR. 1554 const SimplifyAction Action = [II]() -> SimplifyAction { 1555 switch (II->getIntrinsicID()) { 1556 // NVVM intrinsics that map directly to LLVM intrinsics. 1557 case Intrinsic::nvvm_ceil_d: 1558 return {Intrinsic::ceil, FTZ_Any}; 1559 case Intrinsic::nvvm_ceil_f: 1560 return {Intrinsic::ceil, FTZ_MustBeOff}; 1561 case Intrinsic::nvvm_ceil_ftz_f: 1562 return {Intrinsic::ceil, FTZ_MustBeOn}; 1563 case Intrinsic::nvvm_fabs_d: 1564 return {Intrinsic::fabs, FTZ_Any}; 1565 case Intrinsic::nvvm_fabs_f: 1566 return {Intrinsic::fabs, FTZ_MustBeOff}; 1567 case Intrinsic::nvvm_fabs_ftz_f: 1568 return {Intrinsic::fabs, FTZ_MustBeOn}; 1569 case Intrinsic::nvvm_floor_d: 1570 return {Intrinsic::floor, FTZ_Any}; 1571 case Intrinsic::nvvm_floor_f: 1572 return {Intrinsic::floor, FTZ_MustBeOff}; 1573 case Intrinsic::nvvm_floor_ftz_f: 1574 return {Intrinsic::floor, FTZ_MustBeOn}; 1575 case Intrinsic::nvvm_fma_rn_d: 1576 return {Intrinsic::fma, FTZ_Any}; 1577 case Intrinsic::nvvm_fma_rn_f: 1578 return {Intrinsic::fma, FTZ_MustBeOff}; 1579 case Intrinsic::nvvm_fma_rn_ftz_f: 1580 return {Intrinsic::fma, FTZ_MustBeOn}; 1581 case Intrinsic::nvvm_fmax_d: 1582 return {Intrinsic::maxnum, FTZ_Any}; 1583 case Intrinsic::nvvm_fmax_f: 1584 return {Intrinsic::maxnum, FTZ_MustBeOff}; 1585 case Intrinsic::nvvm_fmax_ftz_f: 1586 return {Intrinsic::maxnum, FTZ_MustBeOn}; 1587 case Intrinsic::nvvm_fmin_d: 1588 return {Intrinsic::minnum, FTZ_Any}; 1589 case Intrinsic::nvvm_fmin_f: 1590 return {Intrinsic::minnum, FTZ_MustBeOff}; 1591 case Intrinsic::nvvm_fmin_ftz_f: 1592 return {Intrinsic::minnum, FTZ_MustBeOn}; 1593 case Intrinsic::nvvm_round_d: 1594 return {Intrinsic::round, FTZ_Any}; 1595 case Intrinsic::nvvm_round_f: 1596 return {Intrinsic::round, FTZ_MustBeOff}; 1597 case Intrinsic::nvvm_round_ftz_f: 1598 return {Intrinsic::round, FTZ_MustBeOn}; 1599 case Intrinsic::nvvm_sqrt_rn_d: 1600 return {Intrinsic::sqrt, FTZ_Any}; 1601 case Intrinsic::nvvm_sqrt_f: 1602 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the 1603 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts 1604 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are 1605 // the versions with explicit ftz-ness. 1606 return {Intrinsic::sqrt, FTZ_Any}; 1607 case Intrinsic::nvvm_sqrt_rn_f: 1608 return {Intrinsic::sqrt, FTZ_MustBeOff}; 1609 case Intrinsic::nvvm_sqrt_rn_ftz_f: 1610 return {Intrinsic::sqrt, FTZ_MustBeOn}; 1611 case Intrinsic::nvvm_trunc_d: 1612 return {Intrinsic::trunc, FTZ_Any}; 1613 case Intrinsic::nvvm_trunc_f: 1614 return {Intrinsic::trunc, FTZ_MustBeOff}; 1615 case Intrinsic::nvvm_trunc_ftz_f: 1616 return {Intrinsic::trunc, FTZ_MustBeOn}; 1617 1618 // NVVM intrinsics that map to LLVM cast operations. 1619 // 1620 // Note that llvm's target-generic conversion operators correspond to the rz 1621 // (round to zero) versions of the nvvm conversion intrinsics, even though 1622 // most everything else here uses the rn (round to nearest even) nvvm ops. 1623 case Intrinsic::nvvm_d2i_rz: 1624 case Intrinsic::nvvm_f2i_rz: 1625 case Intrinsic::nvvm_d2ll_rz: 1626 case Intrinsic::nvvm_f2ll_rz: 1627 return {Instruction::FPToSI}; 1628 case Intrinsic::nvvm_d2ui_rz: 1629 case Intrinsic::nvvm_f2ui_rz: 1630 case Intrinsic::nvvm_d2ull_rz: 1631 case Intrinsic::nvvm_f2ull_rz: 1632 return {Instruction::FPToUI}; 1633 case Intrinsic::nvvm_i2d_rz: 1634 case Intrinsic::nvvm_i2f_rz: 1635 case Intrinsic::nvvm_ll2d_rz: 1636 case Intrinsic::nvvm_ll2f_rz: 1637 return {Instruction::SIToFP}; 1638 case Intrinsic::nvvm_ui2d_rz: 1639 case Intrinsic::nvvm_ui2f_rz: 1640 case Intrinsic::nvvm_ull2d_rz: 1641 case Intrinsic::nvvm_ull2f_rz: 1642 return {Instruction::UIToFP}; 1643 1644 // NVVM intrinsics that map to LLVM binary ops. 1645 case Intrinsic::nvvm_add_rn_d: 1646 return {Instruction::FAdd, FTZ_Any}; 1647 case Intrinsic::nvvm_add_rn_f: 1648 return {Instruction::FAdd, FTZ_MustBeOff}; 1649 case Intrinsic::nvvm_add_rn_ftz_f: 1650 return {Instruction::FAdd, FTZ_MustBeOn}; 1651 case Intrinsic::nvvm_mul_rn_d: 1652 return {Instruction::FMul, FTZ_Any}; 1653 case Intrinsic::nvvm_mul_rn_f: 1654 return {Instruction::FMul, FTZ_MustBeOff}; 1655 case Intrinsic::nvvm_mul_rn_ftz_f: 1656 return {Instruction::FMul, FTZ_MustBeOn}; 1657 case Intrinsic::nvvm_div_rn_d: 1658 return {Instruction::FDiv, FTZ_Any}; 1659 case Intrinsic::nvvm_div_rn_f: 1660 return {Instruction::FDiv, FTZ_MustBeOff}; 1661 case Intrinsic::nvvm_div_rn_ftz_f: 1662 return {Instruction::FDiv, FTZ_MustBeOn}; 1663 1664 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but 1665 // need special handling. 1666 // 1667 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just 1668 // as well. 1669 case Intrinsic::nvvm_rcp_rn_d: 1670 return {SPC_Reciprocal, FTZ_Any}; 1671 case Intrinsic::nvvm_rcp_rn_f: 1672 return {SPC_Reciprocal, FTZ_MustBeOff}; 1673 case Intrinsic::nvvm_rcp_rn_ftz_f: 1674 return {SPC_Reciprocal, FTZ_MustBeOn}; 1675 1676 // We do not currently simplify intrinsics that give an approximate answer. 1677 // These include: 1678 // 1679 // - nvvm_cos_approx_{f,ftz_f} 1680 // - nvvm_ex2_approx_{d,f,ftz_f} 1681 // - nvvm_lg2_approx_{d,f,ftz_f} 1682 // - nvvm_sin_approx_{f,ftz_f} 1683 // - nvvm_sqrt_approx_{f,ftz_f} 1684 // - nvvm_rsqrt_approx_{d,f,ftz_f} 1685 // - nvvm_div_approx_{ftz_d,ftz_f,f} 1686 // - nvvm_rcp_approx_ftz_d 1687 // 1688 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" 1689 // means that fastmath is enabled in the intrinsic. Unfortunately only 1690 // binary operators (currently) have a fastmath bit in SelectionDAG, so this 1691 // information gets lost and we can't select on it. 1692 // 1693 // TODO: div and rcp are lowered to a binary op, so these we could in theory 1694 // lower them to "fast fdiv". 1695 1696 default: 1697 return {}; 1698 } 1699 }(); 1700 1701 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we 1702 // can bail out now. (Notice that in the case that IID is not an NVVM 1703 // intrinsic, we don't have to look up any module metadata, as 1704 // FtzRequirementTy will be FTZ_Any.) 1705 if (Action.FtzRequirement != FTZ_Any) { 1706 bool FtzEnabled = 1707 II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() == 1708 "true"; 1709 1710 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) 1711 return nullptr; 1712 } 1713 1714 // Simplify to target-generic intrinsic. 1715 if (Action.IID) { 1716 SmallVector<Value *, 4> Args(II->arg_operands()); 1717 // All the target-generic intrinsics currently of interest to us have one 1718 // type argument, equal to that of the nvvm intrinsic's argument. 1719 Type *Tys[] = {II->getArgOperand(0)->getType()}; 1720 return CallInst::Create( 1721 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); 1722 } 1723 1724 // Simplify to target-generic binary op. 1725 if (Action.BinaryOp) 1726 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), 1727 II->getArgOperand(1), II->getName()); 1728 1729 // Simplify to target-generic cast op. 1730 if (Action.CastOp) 1731 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), 1732 II->getName()); 1733 1734 // All that's left are the special cases. 1735 if (!Action.Special) 1736 return nullptr; 1737 1738 switch (*Action.Special) { 1739 case SPC_Reciprocal: 1740 // Simplify reciprocal. 1741 return BinaryOperator::Create( 1742 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), 1743 II->getArgOperand(0), II->getName()); 1744 } 1745 llvm_unreachable("All SpecialCase enumerators should be handled in switch."); 1746 } 1747 1748 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { 1749 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); 1750 return nullptr; 1751 } 1752 1753 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { 1754 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); 1755 return nullptr; 1756 } 1757 1758 static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) { 1759 assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap"); 1760 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 1761 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 1762 Call.setArgOperand(0, Arg1); 1763 Call.setArgOperand(1, Arg0); 1764 return &Call; 1765 } 1766 return nullptr; 1767 } 1768 1769 Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 1770 WithOverflowInst *WO = cast<WithOverflowInst>(II); 1771 Value *OperationResult = nullptr; 1772 Constant *OverflowResult = nullptr; 1773 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 1774 WO->getRHS(), *WO, OperationResult, OverflowResult)) 1775 return CreateOverflowTuple(WO, OperationResult, OverflowResult); 1776 return nullptr; 1777 } 1778 1779 /// CallInst simplification. This mostly only handles folding of intrinsic 1780 /// instructions. For normal calls, it allows visitCallBase to do the heavy 1781 /// lifting. 1782 Instruction *InstCombiner::visitCallInst(CallInst &CI) { 1783 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) 1784 return replaceInstUsesWith(CI, V); 1785 1786 if (isFreeCall(&CI, &TLI)) 1787 return visitFree(CI); 1788 1789 // If the caller function is nounwind, mark the call as nounwind, even if the 1790 // callee isn't. 1791 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 1792 CI.setDoesNotThrow(); 1793 return &CI; 1794 } 1795 1796 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 1797 if (!II) return visitCallBase(CI); 1798 1799 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 1800 // instead of in visitCallBase. 1801 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 1802 bool Changed = false; 1803 1804 // memmove/cpy/set of zero bytes is a noop. 1805 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 1806 if (NumBytes->isNullValue()) 1807 return eraseInstFromFunction(CI); 1808 1809 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) 1810 if (CI->getZExtValue() == 1) { 1811 // Replace the instruction with just byte operations. We would 1812 // transform other cases to loads/stores, but we don't know if 1813 // alignment is sufficient. 1814 } 1815 } 1816 1817 // No other transformations apply to volatile transfers. 1818 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 1819 if (M->isVolatile()) 1820 return nullptr; 1821 1822 // If we have a memmove and the source operation is a constant global, 1823 // then the source and dest pointers can't alias, so we can change this 1824 // into a call to memcpy. 1825 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 1826 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 1827 if (GVSrc->isConstant()) { 1828 Module *M = CI.getModule(); 1829 Intrinsic::ID MemCpyID = 1830 isa<AtomicMemMoveInst>(MMI) 1831 ? Intrinsic::memcpy_element_unordered_atomic 1832 : Intrinsic::memcpy; 1833 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 1834 CI.getArgOperand(1)->getType(), 1835 CI.getArgOperand(2)->getType() }; 1836 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 1837 Changed = true; 1838 } 1839 } 1840 1841 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1842 // memmove(x,x,size) -> noop. 1843 if (MTI->getSource() == MTI->getDest()) 1844 return eraseInstFromFunction(CI); 1845 } 1846 1847 // If we can determine a pointer alignment that is bigger than currently 1848 // set, update the alignment. 1849 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1850 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 1851 return I; 1852 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 1853 if (Instruction *I = SimplifyAnyMemSet(MSI)) 1854 return I; 1855 } 1856 1857 if (Changed) return II; 1858 } 1859 1860 // For vector result intrinsics, use the generic demanded vector support. 1861 if (II->getType()->isVectorTy()) { 1862 auto VWidth = II->getType()->getVectorNumElements(); 1863 APInt UndefElts(VWidth, 0); 1864 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1865 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { 1866 if (V != II) 1867 return replaceInstUsesWith(*II, V); 1868 return II; 1869 } 1870 } 1871 1872 if (Instruction *I = SimplifyNVVMIntrinsic(II, *this)) 1873 return I; 1874 1875 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, 1876 unsigned DemandedWidth) { 1877 APInt UndefElts(Width, 0); 1878 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); 1879 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); 1880 }; 1881 1882 Intrinsic::ID IID = II->getIntrinsicID(); 1883 switch (IID) { 1884 default: break; 1885 case Intrinsic::objectsize: 1886 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) 1887 return replaceInstUsesWith(CI, V); 1888 return nullptr; 1889 case Intrinsic::bswap: { 1890 Value *IIOperand = II->getArgOperand(0); 1891 Value *X = nullptr; 1892 1893 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1894 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1895 unsigned C = X->getType()->getPrimitiveSizeInBits() - 1896 IIOperand->getType()->getPrimitiveSizeInBits(); 1897 Value *CV = ConstantInt::get(X->getType(), C); 1898 Value *V = Builder.CreateLShr(X, CV); 1899 return new TruncInst(V, IIOperand->getType()); 1900 } 1901 break; 1902 } 1903 case Intrinsic::masked_load: 1904 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1905 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1906 break; 1907 case Intrinsic::masked_store: 1908 return simplifyMaskedStore(*II); 1909 case Intrinsic::masked_gather: 1910 return simplifyMaskedGather(*II); 1911 case Intrinsic::masked_scatter: 1912 return simplifyMaskedScatter(*II); 1913 case Intrinsic::launder_invariant_group: 1914 case Intrinsic::strip_invariant_group: 1915 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1916 return replaceInstUsesWith(*II, SkippedBarrier); 1917 break; 1918 case Intrinsic::powi: 1919 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 1920 // 0 and 1 are handled in instsimplify 1921 1922 // powi(x, -1) -> 1/x 1923 if (Power->isMinusOne()) 1924 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), 1925 II->getArgOperand(0)); 1926 // powi(x, 2) -> x*x 1927 if (Power->equalsInt(2)) 1928 return BinaryOperator::CreateFMul(II->getArgOperand(0), 1929 II->getArgOperand(0)); 1930 } 1931 break; 1932 1933 case Intrinsic::cttz: 1934 case Intrinsic::ctlz: 1935 if (auto *I = foldCttzCtlz(*II, *this)) 1936 return I; 1937 break; 1938 1939 case Intrinsic::ctpop: 1940 if (auto *I = foldCtpop(*II, *this)) 1941 return I; 1942 break; 1943 1944 case Intrinsic::fshl: 1945 case Intrinsic::fshr: { 1946 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1947 Type *Ty = II->getType(); 1948 unsigned BitWidth = Ty->getScalarSizeInBits(); 1949 Constant *ShAmtC; 1950 if (match(II->getArgOperand(2), m_Constant(ShAmtC)) && 1951 !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) { 1952 // Canonicalize a shift amount constant operand to modulo the bit-width. 1953 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 1954 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); 1955 if (ModuloC != ShAmtC) { 1956 II->setArgOperand(2, ModuloC); 1957 return II; 1958 } 1959 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == 1960 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && 1961 "Shift amount expected to be modulo bitwidth"); 1962 1963 // Canonicalize funnel shift right by constant to funnel shift left. This 1964 // is not entirely arbitrary. For historical reasons, the backend may 1965 // recognize rotate left patterns but miss rotate right patterns. 1966 if (IID == Intrinsic::fshr) { 1967 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) 1968 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 1969 Module *Mod = II->getModule(); 1970 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 1971 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 1972 } 1973 assert(IID == Intrinsic::fshl && 1974 "All funnel shifts by simple constants should go left"); 1975 1976 // fshl(X, 0, C) --> shl X, C 1977 // fshl(X, undef, C) --> shl X, C 1978 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 1979 return BinaryOperator::CreateShl(Op0, ShAmtC); 1980 1981 // fshl(0, X, C) --> lshr X, (BW-C) 1982 // fshl(undef, X, C) --> lshr X, (BW-C) 1983 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 1984 return BinaryOperator::CreateLShr(Op1, 1985 ConstantExpr::getSub(WidthC, ShAmtC)); 1986 1987 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 1988 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 1989 Module *Mod = II->getModule(); 1990 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 1991 return CallInst::Create(Bswap, { Op0 }); 1992 } 1993 } 1994 1995 // Left or right might be masked. 1996 if (SimplifyDemandedInstructionBits(*II)) 1997 return &CI; 1998 1999 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 2000 // so only the low bits of the shift amount are demanded if the bitwidth is 2001 // a power-of-2. 2002 if (!isPowerOf2_32(BitWidth)) 2003 break; 2004 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 2005 KnownBits Op2Known(BitWidth); 2006 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 2007 return &CI; 2008 break; 2009 } 2010 case Intrinsic::uadd_with_overflow: 2011 case Intrinsic::sadd_with_overflow: { 2012 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) 2013 return I; 2014 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2015 return I; 2016 2017 // Given 2 constant operands whose sum does not overflow: 2018 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 2019 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 2020 Value *X; 2021 const APInt *C0, *C1; 2022 Value *Arg0 = II->getArgOperand(0); 2023 Value *Arg1 = II->getArgOperand(1); 2024 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 2025 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) 2026 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); 2027 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 2028 bool Overflow; 2029 APInt NewC = 2030 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 2031 if (!Overflow) 2032 return replaceInstUsesWith( 2033 *II, Builder.CreateBinaryIntrinsic( 2034 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 2035 } 2036 break; 2037 } 2038 2039 case Intrinsic::umul_with_overflow: 2040 case Intrinsic::smul_with_overflow: 2041 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) 2042 return I; 2043 LLVM_FALLTHROUGH; 2044 2045 case Intrinsic::usub_with_overflow: 2046 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2047 return I; 2048 break; 2049 2050 case Intrinsic::ssub_with_overflow: { 2051 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2052 return I; 2053 2054 Constant *C; 2055 Value *Arg0 = II->getArgOperand(0); 2056 Value *Arg1 = II->getArgOperand(1); 2057 // Given a constant C that is not the minimum signed value 2058 // for an integer of a given bit width: 2059 // 2060 // ssubo X, C -> saddo X, -C 2061 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 2062 Value *NegVal = ConstantExpr::getNeg(C); 2063 // Build a saddo call that is equivalent to the discovered 2064 // ssubo call. 2065 return replaceInstUsesWith( 2066 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 2067 Arg0, NegVal)); 2068 } 2069 2070 break; 2071 } 2072 2073 case Intrinsic::uadd_sat: 2074 case Intrinsic::sadd_sat: 2075 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) 2076 return I; 2077 LLVM_FALLTHROUGH; 2078 case Intrinsic::usub_sat: 2079 case Intrinsic::ssub_sat: { 2080 SaturatingInst *SI = cast<SaturatingInst>(II); 2081 Type *Ty = SI->getType(); 2082 Value *Arg0 = SI->getLHS(); 2083 Value *Arg1 = SI->getRHS(); 2084 2085 // Make use of known overflow information. 2086 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 2087 Arg0, Arg1, SI); 2088 switch (OR) { 2089 case OverflowResult::MayOverflow: 2090 break; 2091 case OverflowResult::NeverOverflows: 2092 if (SI->isSigned()) 2093 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 2094 else 2095 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 2096 case OverflowResult::AlwaysOverflowsLow: { 2097 unsigned BitWidth = Ty->getScalarSizeInBits(); 2098 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 2099 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 2100 } 2101 case OverflowResult::AlwaysOverflowsHigh: { 2102 unsigned BitWidth = Ty->getScalarSizeInBits(); 2103 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 2104 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 2105 } 2106 } 2107 2108 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 2109 Constant *C; 2110 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 2111 C->isNotMinSignedValue()) { 2112 Value *NegVal = ConstantExpr::getNeg(C); 2113 return replaceInstUsesWith( 2114 *II, Builder.CreateBinaryIntrinsic( 2115 Intrinsic::sadd_sat, Arg0, NegVal)); 2116 } 2117 2118 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 2119 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 2120 // if Val and Val2 have the same sign 2121 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 2122 Value *X; 2123 const APInt *Val, *Val2; 2124 APInt NewVal; 2125 bool IsUnsigned = 2126 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 2127 if (Other->getIntrinsicID() == IID && 2128 match(Arg1, m_APInt(Val)) && 2129 match(Other->getArgOperand(0), m_Value(X)) && 2130 match(Other->getArgOperand(1), m_APInt(Val2))) { 2131 if (IsUnsigned) 2132 NewVal = Val->uadd_sat(*Val2); 2133 else if (Val->isNonNegative() == Val2->isNonNegative()) { 2134 bool Overflow; 2135 NewVal = Val->sadd_ov(*Val2, Overflow); 2136 if (Overflow) { 2137 // Both adds together may add more than SignedMaxValue 2138 // without saturating the final result. 2139 break; 2140 } 2141 } else { 2142 // Cannot fold saturated addition with different signs. 2143 break; 2144 } 2145 2146 return replaceInstUsesWith( 2147 *II, Builder.CreateBinaryIntrinsic( 2148 IID, X, ConstantInt::get(II->getType(), NewVal))); 2149 } 2150 } 2151 break; 2152 } 2153 2154 case Intrinsic::minnum: 2155 case Intrinsic::maxnum: 2156 case Intrinsic::minimum: 2157 case Intrinsic::maximum: { 2158 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) 2159 return I; 2160 Value *Arg0 = II->getArgOperand(0); 2161 Value *Arg1 = II->getArgOperand(1); 2162 Value *X, *Y; 2163 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 2164 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 2165 // If both operands are negated, invert the call and negate the result: 2166 // min(-X, -Y) --> -(max(X, Y)) 2167 // max(-X, -Y) --> -(min(X, Y)) 2168 Intrinsic::ID NewIID; 2169 switch (IID) { 2170 case Intrinsic::maxnum: 2171 NewIID = Intrinsic::minnum; 2172 break; 2173 case Intrinsic::minnum: 2174 NewIID = Intrinsic::maxnum; 2175 break; 2176 case Intrinsic::maximum: 2177 NewIID = Intrinsic::minimum; 2178 break; 2179 case Intrinsic::minimum: 2180 NewIID = Intrinsic::maximum; 2181 break; 2182 default: 2183 llvm_unreachable("unexpected intrinsic ID"); 2184 } 2185 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 2186 Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall); 2187 FNeg->copyIRFlags(II); 2188 return FNeg; 2189 } 2190 2191 // m(m(X, C2), C1) -> m(X, C) 2192 const APFloat *C1, *C2; 2193 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 2194 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 2195 ((match(M->getArgOperand(0), m_Value(X)) && 2196 match(M->getArgOperand(1), m_APFloat(C2))) || 2197 (match(M->getArgOperand(1), m_Value(X)) && 2198 match(M->getArgOperand(0), m_APFloat(C2))))) { 2199 APFloat Res(0.0); 2200 switch (IID) { 2201 case Intrinsic::maxnum: 2202 Res = maxnum(*C1, *C2); 2203 break; 2204 case Intrinsic::minnum: 2205 Res = minnum(*C1, *C2); 2206 break; 2207 case Intrinsic::maximum: 2208 Res = maximum(*C1, *C2); 2209 break; 2210 case Intrinsic::minimum: 2211 Res = minimum(*C1, *C2); 2212 break; 2213 default: 2214 llvm_unreachable("unexpected intrinsic ID"); 2215 } 2216 Instruction *NewCall = Builder.CreateBinaryIntrinsic( 2217 IID, X, ConstantFP::get(Arg0->getType(), Res)); 2218 NewCall->copyIRFlags(II); 2219 return replaceInstUsesWith(*II, NewCall); 2220 } 2221 } 2222 2223 break; 2224 } 2225 case Intrinsic::fmuladd: { 2226 // Canonicalize fast fmuladd to the separate fmul + fadd. 2227 if (II->isFast()) { 2228 BuilderTy::FastMathFlagGuard Guard(Builder); 2229 Builder.setFastMathFlags(II->getFastMathFlags()); 2230 Value *Mul = Builder.CreateFMul(II->getArgOperand(0), 2231 II->getArgOperand(1)); 2232 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); 2233 Add->takeName(II); 2234 return replaceInstUsesWith(*II, Add); 2235 } 2236 2237 LLVM_FALLTHROUGH; 2238 } 2239 case Intrinsic::fma: { 2240 if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) 2241 return I; 2242 2243 // fma fneg(x), fneg(y), z -> fma x, y, z 2244 Value *Src0 = II->getArgOperand(0); 2245 Value *Src1 = II->getArgOperand(1); 2246 Value *X, *Y; 2247 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 2248 II->setArgOperand(0, X); 2249 II->setArgOperand(1, Y); 2250 return II; 2251 } 2252 2253 // fma fabs(x), fabs(x), z -> fma x, x, z 2254 if (match(Src0, m_FAbs(m_Value(X))) && 2255 match(Src1, m_FAbs(m_Specific(X)))) { 2256 II->setArgOperand(0, X); 2257 II->setArgOperand(1, X); 2258 return II; 2259 } 2260 2261 // fma x, 1, z -> fadd x, z 2262 if (match(Src1, m_FPOne())) { 2263 auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2)); 2264 FAdd->copyFastMathFlags(II); 2265 return FAdd; 2266 } 2267 2268 break; 2269 } 2270 case Intrinsic::fabs: { 2271 Value *Cond; 2272 Constant *LHS, *RHS; 2273 if (match(II->getArgOperand(0), 2274 m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) { 2275 CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS}); 2276 CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS}); 2277 return SelectInst::Create(Cond, Call0, Call1); 2278 } 2279 2280 LLVM_FALLTHROUGH; 2281 } 2282 case Intrinsic::ceil: 2283 case Intrinsic::floor: 2284 case Intrinsic::round: 2285 case Intrinsic::nearbyint: 2286 case Intrinsic::rint: 2287 case Intrinsic::trunc: { 2288 Value *ExtSrc; 2289 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 2290 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 2291 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 2292 return new FPExtInst(NarrowII, II->getType()); 2293 } 2294 break; 2295 } 2296 case Intrinsic::cos: 2297 case Intrinsic::amdgcn_cos: { 2298 Value *X; 2299 Value *Src = II->getArgOperand(0); 2300 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { 2301 // cos(-x) -> cos(x) 2302 // cos(fabs(x)) -> cos(x) 2303 II->setArgOperand(0, X); 2304 return II; 2305 } 2306 break; 2307 } 2308 case Intrinsic::sin: { 2309 Value *X; 2310 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 2311 // sin(-x) --> -sin(x) 2312 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); 2313 Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin); 2314 FNeg->copyFastMathFlags(II); 2315 return FNeg; 2316 } 2317 break; 2318 } 2319 case Intrinsic::ppc_altivec_lvx: 2320 case Intrinsic::ppc_altivec_lvxl: 2321 // Turn PPC lvx -> load if the pointer is known aligned. 2322 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, 2323 &DT) >= 16) { 2324 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), 2325 PointerType::getUnqual(II->getType())); 2326 return new LoadInst(II->getType(), Ptr); 2327 } 2328 break; 2329 case Intrinsic::ppc_vsx_lxvw4x: 2330 case Intrinsic::ppc_vsx_lxvd2x: { 2331 // Turn PPC VSX loads into normal loads. 2332 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), 2333 PointerType::getUnqual(II->getType())); 2334 return new LoadInst(II->getType(), Ptr, Twine(""), false, 1); 2335 } 2336 case Intrinsic::ppc_altivec_stvx: 2337 case Intrinsic::ppc_altivec_stvxl: 2338 // Turn stvx -> store if the pointer is known aligned. 2339 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, 2340 &DT) >= 16) { 2341 Type *OpPtrTy = 2342 PointerType::getUnqual(II->getArgOperand(0)->getType()); 2343 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); 2344 return new StoreInst(II->getArgOperand(0), Ptr); 2345 } 2346 break; 2347 case Intrinsic::ppc_vsx_stxvw4x: 2348 case Intrinsic::ppc_vsx_stxvd2x: { 2349 // Turn PPC VSX stores into normal stores. 2350 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); 2351 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); 2352 return new StoreInst(II->getArgOperand(0), Ptr, false, 1); 2353 } 2354 case Intrinsic::ppc_qpx_qvlfs: 2355 // Turn PPC QPX qvlfs -> load if the pointer is known aligned. 2356 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, 2357 &DT) >= 16) { 2358 Type *VTy = VectorType::get(Builder.getFloatTy(), 2359 II->getType()->getVectorNumElements()); 2360 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), 2361 PointerType::getUnqual(VTy)); 2362 Value *Load = Builder.CreateLoad(VTy, Ptr); 2363 return new FPExtInst(Load, II->getType()); 2364 } 2365 break; 2366 case Intrinsic::ppc_qpx_qvlfd: 2367 // Turn PPC QPX qvlfd -> load if the pointer is known aligned. 2368 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC, 2369 &DT) >= 32) { 2370 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), 2371 PointerType::getUnqual(II->getType())); 2372 return new LoadInst(II->getType(), Ptr); 2373 } 2374 break; 2375 case Intrinsic::ppc_qpx_qvstfs: 2376 // Turn PPC QPX qvstfs -> store if the pointer is known aligned. 2377 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, 2378 &DT) >= 16) { 2379 Type *VTy = VectorType::get(Builder.getFloatTy(), 2380 II->getArgOperand(0)->getType()->getVectorNumElements()); 2381 Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy); 2382 Type *OpPtrTy = PointerType::getUnqual(VTy); 2383 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); 2384 return new StoreInst(TOp, Ptr); 2385 } 2386 break; 2387 case Intrinsic::ppc_qpx_qvstfd: 2388 // Turn PPC QPX qvstfd -> store if the pointer is known aligned. 2389 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC, 2390 &DT) >= 32) { 2391 Type *OpPtrTy = 2392 PointerType::getUnqual(II->getArgOperand(0)->getType()); 2393 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); 2394 return new StoreInst(II->getArgOperand(0), Ptr); 2395 } 2396 break; 2397 2398 case Intrinsic::x86_bmi_bextr_32: 2399 case Intrinsic::x86_bmi_bextr_64: 2400 case Intrinsic::x86_tbm_bextri_u32: 2401 case Intrinsic::x86_tbm_bextri_u64: 2402 // If the RHS is a constant we can try some simplifications. 2403 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 2404 uint64_t Shift = C->getZExtValue(); 2405 uint64_t Length = (Shift >> 8) & 0xff; 2406 Shift &= 0xff; 2407 unsigned BitWidth = II->getType()->getIntegerBitWidth(); 2408 // If the length is 0 or the shift is out of range, replace with zero. 2409 if (Length == 0 || Shift >= BitWidth) 2410 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); 2411 // If the LHS is also a constant, we can completely constant fold this. 2412 if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) { 2413 uint64_t Result = InC->getZExtValue() >> Shift; 2414 if (Length > BitWidth) 2415 Length = BitWidth; 2416 Result &= maskTrailingOnes<uint64_t>(Length); 2417 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); 2418 } 2419 // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we 2420 // are only masking bits that a shift already cleared? 2421 } 2422 break; 2423 2424 case Intrinsic::x86_bmi_bzhi_32: 2425 case Intrinsic::x86_bmi_bzhi_64: 2426 // If the RHS is a constant we can try some simplifications. 2427 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 2428 uint64_t Index = C->getZExtValue() & 0xff; 2429 unsigned BitWidth = II->getType()->getIntegerBitWidth(); 2430 if (Index >= BitWidth) 2431 return replaceInstUsesWith(CI, II->getArgOperand(0)); 2432 if (Index == 0) 2433 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); 2434 // If the LHS is also a constant, we can completely constant fold this. 2435 if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) { 2436 uint64_t Result = InC->getZExtValue(); 2437 Result &= maskTrailingOnes<uint64_t>(Index); 2438 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); 2439 } 2440 // TODO should we convert this to an AND if the RHS is constant? 2441 } 2442 break; 2443 2444 case Intrinsic::x86_vcvtph2ps_128: 2445 case Intrinsic::x86_vcvtph2ps_256: { 2446 auto Arg = II->getArgOperand(0); 2447 auto ArgType = cast<VectorType>(Arg->getType()); 2448 auto RetType = cast<VectorType>(II->getType()); 2449 unsigned ArgWidth = ArgType->getNumElements(); 2450 unsigned RetWidth = RetType->getNumElements(); 2451 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); 2452 assert(ArgType->isIntOrIntVectorTy() && 2453 ArgType->getScalarSizeInBits() == 16 && 2454 "CVTPH2PS input type should be 16-bit integer vector"); 2455 assert(RetType->getScalarType()->isFloatTy() && 2456 "CVTPH2PS output type should be 32-bit float vector"); 2457 2458 // Constant folding: Convert to generic half to single conversion. 2459 if (isa<ConstantAggregateZero>(Arg)) 2460 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); 2461 2462 if (isa<ConstantDataVector>(Arg)) { 2463 auto VectorHalfAsShorts = Arg; 2464 if (RetWidth < ArgWidth) { 2465 SmallVector<uint32_t, 8> SubVecMask; 2466 for (unsigned i = 0; i != RetWidth; ++i) 2467 SubVecMask.push_back((int)i); 2468 VectorHalfAsShorts = Builder.CreateShuffleVector( 2469 Arg, UndefValue::get(ArgType), SubVecMask); 2470 } 2471 2472 auto VectorHalfType = 2473 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); 2474 auto VectorHalfs = 2475 Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType); 2476 auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType); 2477 return replaceInstUsesWith(*II, VectorFloats); 2478 } 2479 2480 // We only use the lowest lanes of the argument. 2481 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { 2482 II->setArgOperand(0, V); 2483 return II; 2484 } 2485 break; 2486 } 2487 2488 case Intrinsic::x86_sse_cvtss2si: 2489 case Intrinsic::x86_sse_cvtss2si64: 2490 case Intrinsic::x86_sse_cvttss2si: 2491 case Intrinsic::x86_sse_cvttss2si64: 2492 case Intrinsic::x86_sse2_cvtsd2si: 2493 case Intrinsic::x86_sse2_cvtsd2si64: 2494 case Intrinsic::x86_sse2_cvttsd2si: 2495 case Intrinsic::x86_sse2_cvttsd2si64: 2496 case Intrinsic::x86_avx512_vcvtss2si32: 2497 case Intrinsic::x86_avx512_vcvtss2si64: 2498 case Intrinsic::x86_avx512_vcvtss2usi32: 2499 case Intrinsic::x86_avx512_vcvtss2usi64: 2500 case Intrinsic::x86_avx512_vcvtsd2si32: 2501 case Intrinsic::x86_avx512_vcvtsd2si64: 2502 case Intrinsic::x86_avx512_vcvtsd2usi32: 2503 case Intrinsic::x86_avx512_vcvtsd2usi64: 2504 case Intrinsic::x86_avx512_cvttss2si: 2505 case Intrinsic::x86_avx512_cvttss2si64: 2506 case Intrinsic::x86_avx512_cvttss2usi: 2507 case Intrinsic::x86_avx512_cvttss2usi64: 2508 case Intrinsic::x86_avx512_cvttsd2si: 2509 case Intrinsic::x86_avx512_cvttsd2si64: 2510 case Intrinsic::x86_avx512_cvttsd2usi: 2511 case Intrinsic::x86_avx512_cvttsd2usi64: { 2512 // These intrinsics only demand the 0th element of their input vectors. If 2513 // we can simplify the input based on that, do so now. 2514 Value *Arg = II->getArgOperand(0); 2515 unsigned VWidth = Arg->getType()->getVectorNumElements(); 2516 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { 2517 II->setArgOperand(0, V); 2518 return II; 2519 } 2520 break; 2521 } 2522 2523 case Intrinsic::x86_mmx_pmovmskb: 2524 case Intrinsic::x86_sse_movmsk_ps: 2525 case Intrinsic::x86_sse2_movmsk_pd: 2526 case Intrinsic::x86_sse2_pmovmskb_128: 2527 case Intrinsic::x86_avx_movmsk_pd_256: 2528 case Intrinsic::x86_avx_movmsk_ps_256: 2529 case Intrinsic::x86_avx2_pmovmskb: 2530 if (Value *V = simplifyX86movmsk(*II, Builder)) 2531 return replaceInstUsesWith(*II, V); 2532 break; 2533 2534 case Intrinsic::x86_sse_comieq_ss: 2535 case Intrinsic::x86_sse_comige_ss: 2536 case Intrinsic::x86_sse_comigt_ss: 2537 case Intrinsic::x86_sse_comile_ss: 2538 case Intrinsic::x86_sse_comilt_ss: 2539 case Intrinsic::x86_sse_comineq_ss: 2540 case Intrinsic::x86_sse_ucomieq_ss: 2541 case Intrinsic::x86_sse_ucomige_ss: 2542 case Intrinsic::x86_sse_ucomigt_ss: 2543 case Intrinsic::x86_sse_ucomile_ss: 2544 case Intrinsic::x86_sse_ucomilt_ss: 2545 case Intrinsic::x86_sse_ucomineq_ss: 2546 case Intrinsic::x86_sse2_comieq_sd: 2547 case Intrinsic::x86_sse2_comige_sd: 2548 case Intrinsic::x86_sse2_comigt_sd: 2549 case Intrinsic::x86_sse2_comile_sd: 2550 case Intrinsic::x86_sse2_comilt_sd: 2551 case Intrinsic::x86_sse2_comineq_sd: 2552 case Intrinsic::x86_sse2_ucomieq_sd: 2553 case Intrinsic::x86_sse2_ucomige_sd: 2554 case Intrinsic::x86_sse2_ucomigt_sd: 2555 case Intrinsic::x86_sse2_ucomile_sd: 2556 case Intrinsic::x86_sse2_ucomilt_sd: 2557 case Intrinsic::x86_sse2_ucomineq_sd: 2558 case Intrinsic::x86_avx512_vcomi_ss: 2559 case Intrinsic::x86_avx512_vcomi_sd: 2560 case Intrinsic::x86_avx512_mask_cmp_ss: 2561 case Intrinsic::x86_avx512_mask_cmp_sd: { 2562 // These intrinsics only demand the 0th element of their input vectors. If 2563 // we can simplify the input based on that, do so now. 2564 bool MadeChange = false; 2565 Value *Arg0 = II->getArgOperand(0); 2566 Value *Arg1 = II->getArgOperand(1); 2567 unsigned VWidth = Arg0->getType()->getVectorNumElements(); 2568 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { 2569 II->setArgOperand(0, V); 2570 MadeChange = true; 2571 } 2572 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { 2573 II->setArgOperand(1, V); 2574 MadeChange = true; 2575 } 2576 if (MadeChange) 2577 return II; 2578 break; 2579 } 2580 case Intrinsic::x86_avx512_cmp_pd_128: 2581 case Intrinsic::x86_avx512_cmp_pd_256: 2582 case Intrinsic::x86_avx512_cmp_pd_512: 2583 case Intrinsic::x86_avx512_cmp_ps_128: 2584 case Intrinsic::x86_avx512_cmp_ps_256: 2585 case Intrinsic::x86_avx512_cmp_ps_512: { 2586 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a) 2587 Value *Arg0 = II->getArgOperand(0); 2588 Value *Arg1 = II->getArgOperand(1); 2589 bool Arg0IsZero = match(Arg0, m_PosZeroFP()); 2590 if (Arg0IsZero) 2591 std::swap(Arg0, Arg1); 2592 Value *A, *B; 2593 // This fold requires only the NINF(not +/- inf) since inf minus 2594 // inf is nan. 2595 // NSZ(No Signed Zeros) is not needed because zeros of any sign are 2596 // equal for both compares. 2597 // NNAN is not needed because nans compare the same for both compares. 2598 // The compare intrinsic uses the above assumptions and therefore 2599 // doesn't require additional flags. 2600 if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) && 2601 match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) && 2602 cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) { 2603 if (Arg0IsZero) 2604 std::swap(A, B); 2605 II->setArgOperand(0, A); 2606 II->setArgOperand(1, B); 2607 return II; 2608 } 2609 break; 2610 } 2611 2612 case Intrinsic::x86_avx512_add_ps_512: 2613 case Intrinsic::x86_avx512_div_ps_512: 2614 case Intrinsic::x86_avx512_mul_ps_512: 2615 case Intrinsic::x86_avx512_sub_ps_512: 2616 case Intrinsic::x86_avx512_add_pd_512: 2617 case Intrinsic::x86_avx512_div_pd_512: 2618 case Intrinsic::x86_avx512_mul_pd_512: 2619 case Intrinsic::x86_avx512_sub_pd_512: 2620 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular 2621 // IR operations. 2622 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 2623 if (R->getValue() == 4) { 2624 Value *Arg0 = II->getArgOperand(0); 2625 Value *Arg1 = II->getArgOperand(1); 2626 2627 Value *V; 2628 switch (IID) { 2629 default: llvm_unreachable("Case stmts out of sync!"); 2630 case Intrinsic::x86_avx512_add_ps_512: 2631 case Intrinsic::x86_avx512_add_pd_512: 2632 V = Builder.CreateFAdd(Arg0, Arg1); 2633 break; 2634 case Intrinsic::x86_avx512_sub_ps_512: 2635 case Intrinsic::x86_avx512_sub_pd_512: 2636 V = Builder.CreateFSub(Arg0, Arg1); 2637 break; 2638 case Intrinsic::x86_avx512_mul_ps_512: 2639 case Intrinsic::x86_avx512_mul_pd_512: 2640 V = Builder.CreateFMul(Arg0, Arg1); 2641 break; 2642 case Intrinsic::x86_avx512_div_ps_512: 2643 case Intrinsic::x86_avx512_div_pd_512: 2644 V = Builder.CreateFDiv(Arg0, Arg1); 2645 break; 2646 } 2647 2648 return replaceInstUsesWith(*II, V); 2649 } 2650 } 2651 break; 2652 2653 case Intrinsic::x86_avx512_mask_add_ss_round: 2654 case Intrinsic::x86_avx512_mask_div_ss_round: 2655 case Intrinsic::x86_avx512_mask_mul_ss_round: 2656 case Intrinsic::x86_avx512_mask_sub_ss_round: 2657 case Intrinsic::x86_avx512_mask_add_sd_round: 2658 case Intrinsic::x86_avx512_mask_div_sd_round: 2659 case Intrinsic::x86_avx512_mask_mul_sd_round: 2660 case Intrinsic::x86_avx512_mask_sub_sd_round: 2661 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular 2662 // IR operations. 2663 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) { 2664 if (R->getValue() == 4) { 2665 // Extract the element as scalars. 2666 Value *Arg0 = II->getArgOperand(0); 2667 Value *Arg1 = II->getArgOperand(1); 2668 Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0); 2669 Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0); 2670 2671 Value *V; 2672 switch (IID) { 2673 default: llvm_unreachable("Case stmts out of sync!"); 2674 case Intrinsic::x86_avx512_mask_add_ss_round: 2675 case Intrinsic::x86_avx512_mask_add_sd_round: 2676 V = Builder.CreateFAdd(LHS, RHS); 2677 break; 2678 case Intrinsic::x86_avx512_mask_sub_ss_round: 2679 case Intrinsic::x86_avx512_mask_sub_sd_round: 2680 V = Builder.CreateFSub(LHS, RHS); 2681 break; 2682 case Intrinsic::x86_avx512_mask_mul_ss_round: 2683 case Intrinsic::x86_avx512_mask_mul_sd_round: 2684 V = Builder.CreateFMul(LHS, RHS); 2685 break; 2686 case Intrinsic::x86_avx512_mask_div_ss_round: 2687 case Intrinsic::x86_avx512_mask_div_sd_round: 2688 V = Builder.CreateFDiv(LHS, RHS); 2689 break; 2690 } 2691 2692 // Handle the masking aspect of the intrinsic. 2693 Value *Mask = II->getArgOperand(3); 2694 auto *C = dyn_cast<ConstantInt>(Mask); 2695 // We don't need a select if we know the mask bit is a 1. 2696 if (!C || !C->getValue()[0]) { 2697 // Cast the mask to an i1 vector and then extract the lowest element. 2698 auto *MaskTy = VectorType::get(Builder.getInt1Ty(), 2699 cast<IntegerType>(Mask->getType())->getBitWidth()); 2700 Mask = Builder.CreateBitCast(Mask, MaskTy); 2701 Mask = Builder.CreateExtractElement(Mask, (uint64_t)0); 2702 // Extract the lowest element from the passthru operand. 2703 Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2), 2704 (uint64_t)0); 2705 V = Builder.CreateSelect(Mask, V, Passthru); 2706 } 2707 2708 // Insert the result back into the original argument 0. 2709 V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0); 2710 2711 return replaceInstUsesWith(*II, V); 2712 } 2713 } 2714 break; 2715 2716 // Constant fold ashr( <A x Bi>, Ci ). 2717 // Constant fold lshr( <A x Bi>, Ci ). 2718 // Constant fold shl( <A x Bi>, Ci ). 2719 case Intrinsic::x86_sse2_psrai_d: 2720 case Intrinsic::x86_sse2_psrai_w: 2721 case Intrinsic::x86_avx2_psrai_d: 2722 case Intrinsic::x86_avx2_psrai_w: 2723 case Intrinsic::x86_avx512_psrai_q_128: 2724 case Intrinsic::x86_avx512_psrai_q_256: 2725 case Intrinsic::x86_avx512_psrai_d_512: 2726 case Intrinsic::x86_avx512_psrai_q_512: 2727 case Intrinsic::x86_avx512_psrai_w_512: 2728 case Intrinsic::x86_sse2_psrli_d: 2729 case Intrinsic::x86_sse2_psrli_q: 2730 case Intrinsic::x86_sse2_psrli_w: 2731 case Intrinsic::x86_avx2_psrli_d: 2732 case Intrinsic::x86_avx2_psrli_q: 2733 case Intrinsic::x86_avx2_psrli_w: 2734 case Intrinsic::x86_avx512_psrli_d_512: 2735 case Intrinsic::x86_avx512_psrli_q_512: 2736 case Intrinsic::x86_avx512_psrli_w_512: 2737 case Intrinsic::x86_sse2_pslli_d: 2738 case Intrinsic::x86_sse2_pslli_q: 2739 case Intrinsic::x86_sse2_pslli_w: 2740 case Intrinsic::x86_avx2_pslli_d: 2741 case Intrinsic::x86_avx2_pslli_q: 2742 case Intrinsic::x86_avx2_pslli_w: 2743 case Intrinsic::x86_avx512_pslli_d_512: 2744 case Intrinsic::x86_avx512_pslli_q_512: 2745 case Intrinsic::x86_avx512_pslli_w_512: 2746 if (Value *V = simplifyX86immShift(*II, Builder)) 2747 return replaceInstUsesWith(*II, V); 2748 break; 2749 2750 case Intrinsic::x86_sse2_psra_d: 2751 case Intrinsic::x86_sse2_psra_w: 2752 case Intrinsic::x86_avx2_psra_d: 2753 case Intrinsic::x86_avx2_psra_w: 2754 case Intrinsic::x86_avx512_psra_q_128: 2755 case Intrinsic::x86_avx512_psra_q_256: 2756 case Intrinsic::x86_avx512_psra_d_512: 2757 case Intrinsic::x86_avx512_psra_q_512: 2758 case Intrinsic::x86_avx512_psra_w_512: 2759 case Intrinsic::x86_sse2_psrl_d: 2760 case Intrinsic::x86_sse2_psrl_q: 2761 case Intrinsic::x86_sse2_psrl_w: 2762 case Intrinsic::x86_avx2_psrl_d: 2763 case Intrinsic::x86_avx2_psrl_q: 2764 case Intrinsic::x86_avx2_psrl_w: 2765 case Intrinsic::x86_avx512_psrl_d_512: 2766 case Intrinsic::x86_avx512_psrl_q_512: 2767 case Intrinsic::x86_avx512_psrl_w_512: 2768 case Intrinsic::x86_sse2_psll_d: 2769 case Intrinsic::x86_sse2_psll_q: 2770 case Intrinsic::x86_sse2_psll_w: 2771 case Intrinsic::x86_avx2_psll_d: 2772 case Intrinsic::x86_avx2_psll_q: 2773 case Intrinsic::x86_avx2_psll_w: 2774 case Intrinsic::x86_avx512_psll_d_512: 2775 case Intrinsic::x86_avx512_psll_q_512: 2776 case Intrinsic::x86_avx512_psll_w_512: { 2777 if (Value *V = simplifyX86immShift(*II, Builder)) 2778 return replaceInstUsesWith(*II, V); 2779 2780 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector 2781 // operand to compute the shift amount. 2782 Value *Arg1 = II->getArgOperand(1); 2783 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && 2784 "Unexpected packed shift size"); 2785 unsigned VWidth = Arg1->getType()->getVectorNumElements(); 2786 2787 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { 2788 II->setArgOperand(1, V); 2789 return II; 2790 } 2791 break; 2792 } 2793 2794 case Intrinsic::x86_avx2_psllv_d: 2795 case Intrinsic::x86_avx2_psllv_d_256: 2796 case Intrinsic::x86_avx2_psllv_q: 2797 case Intrinsic::x86_avx2_psllv_q_256: 2798 case Intrinsic::x86_avx512_psllv_d_512: 2799 case Intrinsic::x86_avx512_psllv_q_512: 2800 case Intrinsic::x86_avx512_psllv_w_128: 2801 case Intrinsic::x86_avx512_psllv_w_256: 2802 case Intrinsic::x86_avx512_psllv_w_512: 2803 case Intrinsic::x86_avx2_psrav_d: 2804 case Intrinsic::x86_avx2_psrav_d_256: 2805 case Intrinsic::x86_avx512_psrav_q_128: 2806 case Intrinsic::x86_avx512_psrav_q_256: 2807 case Intrinsic::x86_avx512_psrav_d_512: 2808 case Intrinsic::x86_avx512_psrav_q_512: 2809 case Intrinsic::x86_avx512_psrav_w_128: 2810 case Intrinsic::x86_avx512_psrav_w_256: 2811 case Intrinsic::x86_avx512_psrav_w_512: 2812 case Intrinsic::x86_avx2_psrlv_d: 2813 case Intrinsic::x86_avx2_psrlv_d_256: 2814 case Intrinsic::x86_avx2_psrlv_q: 2815 case Intrinsic::x86_avx2_psrlv_q_256: 2816 case Intrinsic::x86_avx512_psrlv_d_512: 2817 case Intrinsic::x86_avx512_psrlv_q_512: 2818 case Intrinsic::x86_avx512_psrlv_w_128: 2819 case Intrinsic::x86_avx512_psrlv_w_256: 2820 case Intrinsic::x86_avx512_psrlv_w_512: 2821 if (Value *V = simplifyX86varShift(*II, Builder)) 2822 return replaceInstUsesWith(*II, V); 2823 break; 2824 2825 case Intrinsic::x86_sse2_packssdw_128: 2826 case Intrinsic::x86_sse2_packsswb_128: 2827 case Intrinsic::x86_avx2_packssdw: 2828 case Intrinsic::x86_avx2_packsswb: 2829 case Intrinsic::x86_avx512_packssdw_512: 2830 case Intrinsic::x86_avx512_packsswb_512: 2831 if (Value *V = simplifyX86pack(*II, Builder, true)) 2832 return replaceInstUsesWith(*II, V); 2833 break; 2834 2835 case Intrinsic::x86_sse2_packuswb_128: 2836 case Intrinsic::x86_sse41_packusdw: 2837 case Intrinsic::x86_avx2_packusdw: 2838 case Intrinsic::x86_avx2_packuswb: 2839 case Intrinsic::x86_avx512_packusdw_512: 2840 case Intrinsic::x86_avx512_packuswb_512: 2841 if (Value *V = simplifyX86pack(*II, Builder, false)) 2842 return replaceInstUsesWith(*II, V); 2843 break; 2844 2845 case Intrinsic::x86_pclmulqdq: 2846 case Intrinsic::x86_pclmulqdq_256: 2847 case Intrinsic::x86_pclmulqdq_512: { 2848 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 2849 unsigned Imm = C->getZExtValue(); 2850 2851 bool MadeChange = false; 2852 Value *Arg0 = II->getArgOperand(0); 2853 Value *Arg1 = II->getArgOperand(1); 2854 unsigned VWidth = Arg0->getType()->getVectorNumElements(); 2855 2856 APInt UndefElts1(VWidth, 0); 2857 APInt DemandedElts1 = APInt::getSplat(VWidth, 2858 APInt(2, (Imm & 0x01) ? 2 : 1)); 2859 if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1, 2860 UndefElts1)) { 2861 II->setArgOperand(0, V); 2862 MadeChange = true; 2863 } 2864 2865 APInt UndefElts2(VWidth, 0); 2866 APInt DemandedElts2 = APInt::getSplat(VWidth, 2867 APInt(2, (Imm & 0x10) ? 2 : 1)); 2868 if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2, 2869 UndefElts2)) { 2870 II->setArgOperand(1, V); 2871 MadeChange = true; 2872 } 2873 2874 // If either input elements are undef, the result is zero. 2875 if (DemandedElts1.isSubsetOf(UndefElts1) || 2876 DemandedElts2.isSubsetOf(UndefElts2)) 2877 return replaceInstUsesWith(*II, 2878 ConstantAggregateZero::get(II->getType())); 2879 2880 if (MadeChange) 2881 return II; 2882 } 2883 break; 2884 } 2885 2886 case Intrinsic::x86_sse41_insertps: 2887 if (Value *V = simplifyX86insertps(*II, Builder)) 2888 return replaceInstUsesWith(*II, V); 2889 break; 2890 2891 case Intrinsic::x86_sse4a_extrq: { 2892 Value *Op0 = II->getArgOperand(0); 2893 Value *Op1 = II->getArgOperand(1); 2894 unsigned VWidth0 = Op0->getType()->getVectorNumElements(); 2895 unsigned VWidth1 = Op1->getType()->getVectorNumElements(); 2896 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && 2897 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && 2898 VWidth1 == 16 && "Unexpected operand sizes"); 2899 2900 // See if we're dealing with constant values. 2901 Constant *C1 = dyn_cast<Constant>(Op1); 2902 ConstantInt *CILength = 2903 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) 2904 : nullptr; 2905 ConstantInt *CIIndex = 2906 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) 2907 : nullptr; 2908 2909 // Attempt to simplify to a constant, shuffle vector or EXTRQI call. 2910 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) 2911 return replaceInstUsesWith(*II, V); 2912 2913 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector 2914 // operands and the lowest 16-bits of the second. 2915 bool MadeChange = false; 2916 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { 2917 II->setArgOperand(0, V); 2918 MadeChange = true; 2919 } 2920 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { 2921 II->setArgOperand(1, V); 2922 MadeChange = true; 2923 } 2924 if (MadeChange) 2925 return II; 2926 break; 2927 } 2928 2929 case Intrinsic::x86_sse4a_extrqi: { 2930 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining 2931 // bits of the lower 64-bits. The upper 64-bits are undefined. 2932 Value *Op0 = II->getArgOperand(0); 2933 unsigned VWidth = Op0->getType()->getVectorNumElements(); 2934 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && 2935 "Unexpected operand size"); 2936 2937 // See if we're dealing with constant values. 2938 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1)); 2939 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2)); 2940 2941 // Attempt to simplify to a constant or shuffle vector. 2942 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) 2943 return replaceInstUsesWith(*II, V); 2944 2945 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector 2946 // operand. 2947 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { 2948 II->setArgOperand(0, V); 2949 return II; 2950 } 2951 break; 2952 } 2953 2954 case Intrinsic::x86_sse4a_insertq: { 2955 Value *Op0 = II->getArgOperand(0); 2956 Value *Op1 = II->getArgOperand(1); 2957 unsigned VWidth = Op0->getType()->getVectorNumElements(); 2958 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && 2959 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && 2960 Op1->getType()->getVectorNumElements() == 2 && 2961 "Unexpected operand size"); 2962 2963 // See if we're dealing with constant values. 2964 Constant *C1 = dyn_cast<Constant>(Op1); 2965 ConstantInt *CI11 = 2966 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) 2967 : nullptr; 2968 2969 // Attempt to simplify to a constant, shuffle vector or INSERTQI call. 2970 if (CI11) { 2971 const APInt &V11 = CI11->getValue(); 2972 APInt Len = V11.zextOrTrunc(6); 2973 APInt Idx = V11.lshr(8).zextOrTrunc(6); 2974 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) 2975 return replaceInstUsesWith(*II, V); 2976 } 2977 2978 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector 2979 // operand. 2980 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { 2981 II->setArgOperand(0, V); 2982 return II; 2983 } 2984 break; 2985 } 2986 2987 case Intrinsic::x86_sse4a_insertqi: { 2988 // INSERTQI: Extract lowest Length bits from lower half of second source and 2989 // insert over first source starting at Index bit. The upper 64-bits are 2990 // undefined. 2991 Value *Op0 = II->getArgOperand(0); 2992 Value *Op1 = II->getArgOperand(1); 2993 unsigned VWidth0 = Op0->getType()->getVectorNumElements(); 2994 unsigned VWidth1 = Op1->getType()->getVectorNumElements(); 2995 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && 2996 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && 2997 VWidth1 == 2 && "Unexpected operand sizes"); 2998 2999 // See if we're dealing with constant values. 3000 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2)); 3001 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3)); 3002 3003 // Attempt to simplify to a constant or shuffle vector. 3004 if (CILength && CIIndex) { 3005 APInt Len = CILength->getValue().zextOrTrunc(6); 3006 APInt Idx = CIIndex->getValue().zextOrTrunc(6); 3007 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) 3008 return replaceInstUsesWith(*II, V); 3009 } 3010 3011 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector 3012 // operands. 3013 bool MadeChange = false; 3014 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { 3015 II->setArgOperand(0, V); 3016 MadeChange = true; 3017 } 3018 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { 3019 II->setArgOperand(1, V); 3020 MadeChange = true; 3021 } 3022 if (MadeChange) 3023 return II; 3024 break; 3025 } 3026 3027 case Intrinsic::x86_sse41_pblendvb: 3028 case Intrinsic::x86_sse41_blendvps: 3029 case Intrinsic::x86_sse41_blendvpd: 3030 case Intrinsic::x86_avx_blendv_ps_256: 3031 case Intrinsic::x86_avx_blendv_pd_256: 3032 case Intrinsic::x86_avx2_pblendvb: { 3033 // fold (blend A, A, Mask) -> A 3034 Value *Op0 = II->getArgOperand(0); 3035 Value *Op1 = II->getArgOperand(1); 3036 Value *Mask = II->getArgOperand(2); 3037 if (Op0 == Op1) 3038 return replaceInstUsesWith(CI, Op0); 3039 3040 // Zero Mask - select 1st argument. 3041 if (isa<ConstantAggregateZero>(Mask)) 3042 return replaceInstUsesWith(CI, Op0); 3043 3044 // Constant Mask - select 1st/2nd argument lane based on top bit of mask. 3045 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) { 3046 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); 3047 return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); 3048 } 3049 3050 // Convert to a vector select if we can bypass casts and find a boolean 3051 // vector condition value. 3052 Value *BoolVec; 3053 Mask = peekThroughBitcast(Mask); 3054 if (match(Mask, m_SExt(m_Value(BoolVec))) && 3055 BoolVec->getType()->isVectorTy() && 3056 BoolVec->getType()->getScalarSizeInBits() == 1) { 3057 assert(Mask->getType()->getPrimitiveSizeInBits() == 3058 II->getType()->getPrimitiveSizeInBits() && 3059 "Not expecting mask and operands with different sizes"); 3060 3061 unsigned NumMaskElts = Mask->getType()->getVectorNumElements(); 3062 unsigned NumOperandElts = II->getType()->getVectorNumElements(); 3063 if (NumMaskElts == NumOperandElts) 3064 return SelectInst::Create(BoolVec, Op1, Op0); 3065 3066 // If the mask has less elements than the operands, each mask bit maps to 3067 // multiple elements of the operands. Bitcast back and forth. 3068 if (NumMaskElts < NumOperandElts) { 3069 Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType()); 3070 Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType()); 3071 Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0); 3072 return new BitCastInst(Sel, II->getType()); 3073 } 3074 } 3075 3076 break; 3077 } 3078 3079 case Intrinsic::x86_ssse3_pshuf_b_128: 3080 case Intrinsic::x86_avx2_pshuf_b: 3081 case Intrinsic::x86_avx512_pshuf_b_512: 3082 if (Value *V = simplifyX86pshufb(*II, Builder)) 3083 return replaceInstUsesWith(*II, V); 3084 break; 3085 3086 case Intrinsic::x86_avx_vpermilvar_ps: 3087 case Intrinsic::x86_avx_vpermilvar_ps_256: 3088 case Intrinsic::x86_avx512_vpermilvar_ps_512: 3089 case Intrinsic::x86_avx_vpermilvar_pd: 3090 case Intrinsic::x86_avx_vpermilvar_pd_256: 3091 case Intrinsic::x86_avx512_vpermilvar_pd_512: 3092 if (Value *V = simplifyX86vpermilvar(*II, Builder)) 3093 return replaceInstUsesWith(*II, V); 3094 break; 3095 3096 case Intrinsic::x86_avx2_permd: 3097 case Intrinsic::x86_avx2_permps: 3098 case Intrinsic::x86_avx512_permvar_df_256: 3099 case Intrinsic::x86_avx512_permvar_df_512: 3100 case Intrinsic::x86_avx512_permvar_di_256: 3101 case Intrinsic::x86_avx512_permvar_di_512: 3102 case Intrinsic::x86_avx512_permvar_hi_128: 3103 case Intrinsic::x86_avx512_permvar_hi_256: 3104 case Intrinsic::x86_avx512_permvar_hi_512: 3105 case Intrinsic::x86_avx512_permvar_qi_128: 3106 case Intrinsic::x86_avx512_permvar_qi_256: 3107 case Intrinsic::x86_avx512_permvar_qi_512: 3108 case Intrinsic::x86_avx512_permvar_sf_512: 3109 case Intrinsic::x86_avx512_permvar_si_512: 3110 if (Value *V = simplifyX86vpermv(*II, Builder)) 3111 return replaceInstUsesWith(*II, V); 3112 break; 3113 3114 case Intrinsic::x86_avx_maskload_ps: 3115 case Intrinsic::x86_avx_maskload_pd: 3116 case Intrinsic::x86_avx_maskload_ps_256: 3117 case Intrinsic::x86_avx_maskload_pd_256: 3118 case Intrinsic::x86_avx2_maskload_d: 3119 case Intrinsic::x86_avx2_maskload_q: 3120 case Intrinsic::x86_avx2_maskload_d_256: 3121 case Intrinsic::x86_avx2_maskload_q_256: 3122 if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) 3123 return I; 3124 break; 3125 3126 case Intrinsic::x86_sse2_maskmov_dqu: 3127 case Intrinsic::x86_avx_maskstore_ps: 3128 case Intrinsic::x86_avx_maskstore_pd: 3129 case Intrinsic::x86_avx_maskstore_ps_256: 3130 case Intrinsic::x86_avx_maskstore_pd_256: 3131 case Intrinsic::x86_avx2_maskstore_d: 3132 case Intrinsic::x86_avx2_maskstore_q: 3133 case Intrinsic::x86_avx2_maskstore_d_256: 3134 case Intrinsic::x86_avx2_maskstore_q_256: 3135 if (simplifyX86MaskedStore(*II, *this)) 3136 return nullptr; 3137 break; 3138 3139 case Intrinsic::x86_addcarry_32: 3140 case Intrinsic::x86_addcarry_64: 3141 if (Value *V = simplifyX86addcarry(*II, Builder)) 3142 return replaceInstUsesWith(*II, V); 3143 break; 3144 3145 case Intrinsic::ppc_altivec_vperm: 3146 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. 3147 // Note that ppc_altivec_vperm has a big-endian bias, so when creating 3148 // a vectorshuffle for little endian, we must undo the transformation 3149 // performed on vec_perm in altivec.h. That is, we must complement 3150 // the permutation mask with respect to 31 and reverse the order of 3151 // V1 and V2. 3152 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) { 3153 assert(Mask->getType()->getVectorNumElements() == 16 && 3154 "Bad type for intrinsic!"); 3155 3156 // Check that all of the elements are integer constants or undefs. 3157 bool AllEltsOk = true; 3158 for (unsigned i = 0; i != 16; ++i) { 3159 Constant *Elt = Mask->getAggregateElement(i); 3160 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { 3161 AllEltsOk = false; 3162 break; 3163 } 3164 } 3165 3166 if (AllEltsOk) { 3167 // Cast the input vectors to byte vectors. 3168 Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0), 3169 Mask->getType()); 3170 Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1), 3171 Mask->getType()); 3172 Value *Result = UndefValue::get(Op0->getType()); 3173 3174 // Only extract each element once. 3175 Value *ExtractedElts[32]; 3176 memset(ExtractedElts, 0, sizeof(ExtractedElts)); 3177 3178 for (unsigned i = 0; i != 16; ++i) { 3179 if (isa<UndefValue>(Mask->getAggregateElement(i))) 3180 continue; 3181 unsigned Idx = 3182 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); 3183 Idx &= 31; // Match the hardware behavior. 3184 if (DL.isLittleEndian()) 3185 Idx = 31 - Idx; 3186 3187 if (!ExtractedElts[Idx]) { 3188 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; 3189 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; 3190 ExtractedElts[Idx] = 3191 Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, 3192 Builder.getInt32(Idx&15)); 3193 } 3194 3195 // Insert this value into the result vector. 3196 Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx], 3197 Builder.getInt32(i)); 3198 } 3199 return CastInst::Create(Instruction::BitCast, Result, CI.getType()); 3200 } 3201 } 3202 break; 3203 3204 case Intrinsic::arm_neon_vld1: { 3205 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), 3206 DL, II, &AC, &DT); 3207 if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder)) 3208 return replaceInstUsesWith(*II, V); 3209 break; 3210 } 3211 3212 case Intrinsic::arm_neon_vld2: 3213 case Intrinsic::arm_neon_vld3: 3214 case Intrinsic::arm_neon_vld4: 3215 case Intrinsic::arm_neon_vld2lane: 3216 case Intrinsic::arm_neon_vld3lane: 3217 case Intrinsic::arm_neon_vld4lane: 3218 case Intrinsic::arm_neon_vst1: 3219 case Intrinsic::arm_neon_vst2: 3220 case Intrinsic::arm_neon_vst3: 3221 case Intrinsic::arm_neon_vst4: 3222 case Intrinsic::arm_neon_vst2lane: 3223 case Intrinsic::arm_neon_vst3lane: 3224 case Intrinsic::arm_neon_vst4lane: { 3225 unsigned MemAlign = 3226 getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); 3227 unsigned AlignArg = II->getNumArgOperands() - 1; 3228 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); 3229 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { 3230 II->setArgOperand(AlignArg, 3231 ConstantInt::get(Type::getInt32Ty(II->getContext()), 3232 MemAlign, false)); 3233 return II; 3234 } 3235 break; 3236 } 3237 3238 case Intrinsic::arm_neon_vtbl1: 3239 case Intrinsic::aarch64_neon_tbl1: 3240 if (Value *V = simplifyNeonTbl1(*II, Builder)) 3241 return replaceInstUsesWith(*II, V); 3242 break; 3243 3244 case Intrinsic::arm_neon_vmulls: 3245 case Intrinsic::arm_neon_vmullu: 3246 case Intrinsic::aarch64_neon_smull: 3247 case Intrinsic::aarch64_neon_umull: { 3248 Value *Arg0 = II->getArgOperand(0); 3249 Value *Arg1 = II->getArgOperand(1); 3250 3251 // Handle mul by zero first: 3252 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 3253 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 3254 } 3255 3256 // Check for constant LHS & RHS - in this case we just simplify. 3257 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 3258 IID == Intrinsic::aarch64_neon_umull); 3259 VectorType *NewVT = cast<VectorType>(II->getType()); 3260 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 3261 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 3262 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); 3263 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); 3264 3265 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); 3266 } 3267 3268 // Couldn't simplify - canonicalize constant to the RHS. 3269 std::swap(Arg0, Arg1); 3270 } 3271 3272 // Handle mul by one: 3273 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 3274 if (ConstantInt *Splat = 3275 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 3276 if (Splat->isOne()) 3277 return CastInst::CreateIntegerCast(Arg0, II->getType(), 3278 /*isSigned=*/!Zext); 3279 3280 break; 3281 } 3282 case Intrinsic::arm_neon_aesd: 3283 case Intrinsic::arm_neon_aese: 3284 case Intrinsic::aarch64_crypto_aesd: 3285 case Intrinsic::aarch64_crypto_aese: { 3286 Value *DataArg = II->getArgOperand(0); 3287 Value *KeyArg = II->getArgOperand(1); 3288 3289 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 3290 Value *Data, *Key; 3291 if (match(KeyArg, m_ZeroInt()) && 3292 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 3293 II->setArgOperand(0, Data); 3294 II->setArgOperand(1, Key); 3295 return II; 3296 } 3297 break; 3298 } 3299 case Intrinsic::amdgcn_rcp: { 3300 Value *Src = II->getArgOperand(0); 3301 3302 // TODO: Move to ConstantFolding/InstSimplify? 3303 if (isa<UndefValue>(Src)) 3304 return replaceInstUsesWith(CI, Src); 3305 3306 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 3307 const APFloat &ArgVal = C->getValueAPF(); 3308 APFloat Val(ArgVal.getSemantics(), 1.0); 3309 APFloat::opStatus Status = Val.divide(ArgVal, 3310 APFloat::rmNearestTiesToEven); 3311 // Only do this if it was exact and therefore not dependent on the 3312 // rounding mode. 3313 if (Status == APFloat::opOK) 3314 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); 3315 } 3316 3317 break; 3318 } 3319 case Intrinsic::amdgcn_rsq: { 3320 Value *Src = II->getArgOperand(0); 3321 3322 // TODO: Move to ConstantFolding/InstSimplify? 3323 if (isa<UndefValue>(Src)) 3324 return replaceInstUsesWith(CI, Src); 3325 break; 3326 } 3327 case Intrinsic::amdgcn_frexp_mant: 3328 case Intrinsic::amdgcn_frexp_exp: { 3329 Value *Src = II->getArgOperand(0); 3330 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { 3331 int Exp; 3332 APFloat Significand = frexp(C->getValueAPF(), Exp, 3333 APFloat::rmNearestTiesToEven); 3334 3335 if (IID == Intrinsic::amdgcn_frexp_mant) { 3336 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), 3337 Significand)); 3338 } 3339 3340 // Match instruction special case behavior. 3341 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) 3342 Exp = 0; 3343 3344 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); 3345 } 3346 3347 if (isa<UndefValue>(Src)) 3348 return replaceInstUsesWith(CI, UndefValue::get(II->getType())); 3349 3350 break; 3351 } 3352 case Intrinsic::amdgcn_class: { 3353 enum { 3354 S_NAN = 1 << 0, // Signaling NaN 3355 Q_NAN = 1 << 1, // Quiet NaN 3356 N_INFINITY = 1 << 2, // Negative infinity 3357 N_NORMAL = 1 << 3, // Negative normal 3358 N_SUBNORMAL = 1 << 4, // Negative subnormal 3359 N_ZERO = 1 << 5, // Negative zero 3360 P_ZERO = 1 << 6, // Positive zero 3361 P_SUBNORMAL = 1 << 7, // Positive subnormal 3362 P_NORMAL = 1 << 8, // Positive normal 3363 P_INFINITY = 1 << 9 // Positive infinity 3364 }; 3365 3366 const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | 3367 N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; 3368 3369 Value *Src0 = II->getArgOperand(0); 3370 Value *Src1 = II->getArgOperand(1); 3371 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); 3372 if (!CMask) { 3373 if (isa<UndefValue>(Src0)) 3374 return replaceInstUsesWith(*II, UndefValue::get(II->getType())); 3375 3376 if (isa<UndefValue>(Src1)) 3377 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); 3378 break; 3379 } 3380 3381 uint32_t Mask = CMask->getZExtValue(); 3382 3383 // If all tests are made, it doesn't matter what the value is. 3384 if ((Mask & FullMask) == FullMask) 3385 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true)); 3386 3387 if ((Mask & FullMask) == 0) 3388 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); 3389 3390 if (Mask == (S_NAN | Q_NAN)) { 3391 // Equivalent of isnan. Replace with standard fcmp. 3392 Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0); 3393 FCmp->takeName(II); 3394 return replaceInstUsesWith(*II, FCmp); 3395 } 3396 3397 if (Mask == (N_ZERO | P_ZERO)) { 3398 // Equivalent of == 0. 3399 Value *FCmp = Builder.CreateFCmpOEQ( 3400 Src0, ConstantFP::get(Src0->getType(), 0.0)); 3401 3402 FCmp->takeName(II); 3403 return replaceInstUsesWith(*II, FCmp); 3404 } 3405 3406 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other 3407 if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) { 3408 II->setArgOperand(1, ConstantInt::get(Src1->getType(), 3409 Mask & ~(S_NAN | Q_NAN))); 3410 return II; 3411 } 3412 3413 const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0); 3414 if (!CVal) { 3415 if (isa<UndefValue>(Src0)) 3416 return replaceInstUsesWith(*II, UndefValue::get(II->getType())); 3417 3418 // Clamp mask to used bits 3419 if ((Mask & FullMask) != Mask) { 3420 CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(), 3421 { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) } 3422 ); 3423 3424 NewCall->takeName(II); 3425 return replaceInstUsesWith(*II, NewCall); 3426 } 3427 3428 break; 3429 } 3430 3431 const APFloat &Val = CVal->getValueAPF(); 3432 3433 bool Result = 3434 ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || 3435 ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || 3436 ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || 3437 ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || 3438 ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || 3439 ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || 3440 ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || 3441 ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || 3442 ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || 3443 ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); 3444 3445 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result)); 3446 } 3447 case Intrinsic::amdgcn_cvt_pkrtz: { 3448 Value *Src0 = II->getArgOperand(0); 3449 Value *Src1 = II->getArgOperand(1); 3450 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 3451 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 3452 const fltSemantics &HalfSem 3453 = II->getType()->getScalarType()->getFltSemantics(); 3454 bool LosesInfo; 3455 APFloat Val0 = C0->getValueAPF(); 3456 APFloat Val1 = C1->getValueAPF(); 3457 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 3458 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); 3459 3460 Constant *Folded = ConstantVector::get({ 3461 ConstantFP::get(II->getContext(), Val0), 3462 ConstantFP::get(II->getContext(), Val1) }); 3463 return replaceInstUsesWith(*II, Folded); 3464 } 3465 } 3466 3467 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) 3468 return replaceInstUsesWith(*II, UndefValue::get(II->getType())); 3469 3470 break; 3471 } 3472 case Intrinsic::amdgcn_cvt_pknorm_i16: 3473 case Intrinsic::amdgcn_cvt_pknorm_u16: 3474 case Intrinsic::amdgcn_cvt_pk_i16: 3475 case Intrinsic::amdgcn_cvt_pk_u16: { 3476 Value *Src0 = II->getArgOperand(0); 3477 Value *Src1 = II->getArgOperand(1); 3478 3479 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) 3480 return replaceInstUsesWith(*II, UndefValue::get(II->getType())); 3481 3482 break; 3483 } 3484 case Intrinsic::amdgcn_ubfe: 3485 case Intrinsic::amdgcn_sbfe: { 3486 // Decompose simple cases into standard shifts. 3487 Value *Src = II->getArgOperand(0); 3488 if (isa<UndefValue>(Src)) 3489 return replaceInstUsesWith(*II, Src); 3490 3491 unsigned Width; 3492 Type *Ty = II->getType(); 3493 unsigned IntSize = Ty->getIntegerBitWidth(); 3494 3495 ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2)); 3496 if (CWidth) { 3497 Width = CWidth->getZExtValue(); 3498 if ((Width & (IntSize - 1)) == 0) 3499 return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty)); 3500 3501 if (Width >= IntSize) { 3502 // Hardware ignores high bits, so remove those. 3503 II->setArgOperand(2, ConstantInt::get(CWidth->getType(), 3504 Width & (IntSize - 1))); 3505 return II; 3506 } 3507 } 3508 3509 unsigned Offset; 3510 ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1)); 3511 if (COffset) { 3512 Offset = COffset->getZExtValue(); 3513 if (Offset >= IntSize) { 3514 II->setArgOperand(1, ConstantInt::get(COffset->getType(), 3515 Offset & (IntSize - 1))); 3516 return II; 3517 } 3518 } 3519 3520 bool Signed = IID == Intrinsic::amdgcn_sbfe; 3521 3522 if (!CWidth || !COffset) 3523 break; 3524 3525 // The case of Width == 0 is handled above, which makes this tranformation 3526 // safe. If Width == 0, then the ashr and lshr instructions become poison 3527 // value since the shift amount would be equal to the bit size. 3528 assert(Width != 0); 3529 3530 // TODO: This allows folding to undef when the hardware has specific 3531 // behavior? 3532 if (Offset + Width < IntSize) { 3533 Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width); 3534 Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width) 3535 : Builder.CreateLShr(Shl, IntSize - Width); 3536 RightShift->takeName(II); 3537 return replaceInstUsesWith(*II, RightShift); 3538 } 3539 3540 Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset) 3541 : Builder.CreateLShr(Src, Offset); 3542 3543 RightShift->takeName(II); 3544 return replaceInstUsesWith(*II, RightShift); 3545 } 3546 case Intrinsic::amdgcn_exp: 3547 case Intrinsic::amdgcn_exp_compr: { 3548 ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1)); 3549 unsigned EnBits = En->getZExtValue(); 3550 if (EnBits == 0xf) 3551 break; // All inputs enabled. 3552 3553 bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; 3554 bool Changed = false; 3555 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { 3556 if ((!IsCompr && (EnBits & (1 << I)) == 0) || 3557 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { 3558 Value *Src = II->getArgOperand(I + 2); 3559 if (!isa<UndefValue>(Src)) { 3560 II->setArgOperand(I + 2, UndefValue::get(Src->getType())); 3561 Changed = true; 3562 } 3563 } 3564 } 3565 3566 if (Changed) 3567 return II; 3568 3569 break; 3570 } 3571 case Intrinsic::amdgcn_fmed3: { 3572 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled 3573 // for the shader. 3574 3575 Value *Src0 = II->getArgOperand(0); 3576 Value *Src1 = II->getArgOperand(1); 3577 Value *Src2 = II->getArgOperand(2); 3578 3579 // Checking for NaN before canonicalization provides better fidelity when 3580 // mapping other operations onto fmed3 since the order of operands is 3581 // unchanged. 3582 CallInst *NewCall = nullptr; 3583 if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) { 3584 NewCall = Builder.CreateMinNum(Src1, Src2); 3585 } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) { 3586 NewCall = Builder.CreateMinNum(Src0, Src2); 3587 } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) { 3588 NewCall = Builder.CreateMaxNum(Src0, Src1); 3589 } 3590 3591 if (NewCall) { 3592 NewCall->copyFastMathFlags(II); 3593 NewCall->takeName(II); 3594 return replaceInstUsesWith(*II, NewCall); 3595 } 3596 3597 bool Swap = false; 3598 // Canonicalize constants to RHS operands. 3599 // 3600 // fmed3(c0, x, c1) -> fmed3(x, c0, c1) 3601 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 3602 std::swap(Src0, Src1); 3603 Swap = true; 3604 } 3605 3606 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { 3607 std::swap(Src1, Src2); 3608 Swap = true; 3609 } 3610 3611 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { 3612 std::swap(Src0, Src1); 3613 Swap = true; 3614 } 3615 3616 if (Swap) { 3617 II->setArgOperand(0, Src0); 3618 II->setArgOperand(1, Src1); 3619 II->setArgOperand(2, Src2); 3620 return II; 3621 } 3622 3623 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { 3624 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { 3625 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { 3626 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), 3627 C2->getValueAPF()); 3628 return replaceInstUsesWith(*II, 3629 ConstantFP::get(Builder.getContext(), Result)); 3630 } 3631 } 3632 } 3633 3634 break; 3635 } 3636 case Intrinsic::amdgcn_icmp: 3637 case Intrinsic::amdgcn_fcmp: { 3638 const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2)); 3639 // Guard against invalid arguments. 3640 int64_t CCVal = CC->getZExtValue(); 3641 bool IsInteger = IID == Intrinsic::amdgcn_icmp; 3642 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || 3643 CCVal > CmpInst::LAST_ICMP_PREDICATE)) || 3644 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || 3645 CCVal > CmpInst::LAST_FCMP_PREDICATE))) 3646 break; 3647 3648 Value *Src0 = II->getArgOperand(0); 3649 Value *Src1 = II->getArgOperand(1); 3650 3651 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { 3652 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { 3653 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); 3654 if (CCmp->isNullValue()) { 3655 return replaceInstUsesWith( 3656 *II, ConstantExpr::getSExt(CCmp, II->getType())); 3657 } 3658 3659 // The result of V_ICMP/V_FCMP assembly instructions (which this 3660 // intrinsic exposes) is one bit per thread, masked with the EXEC 3661 // register (which contains the bitmask of live threads). So a 3662 // comparison that always returns true is the same as a read of the 3663 // EXEC register. 3664 Function *NewF = Intrinsic::getDeclaration( 3665 II->getModule(), Intrinsic::read_register, II->getType()); 3666 Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")}; 3667 MDNode *MD = MDNode::get(II->getContext(), MDArgs); 3668 Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)}; 3669 CallInst *NewCall = Builder.CreateCall(NewF, Args); 3670 NewCall->addAttribute(AttributeList::FunctionIndex, 3671 Attribute::Convergent); 3672 NewCall->takeName(II); 3673 return replaceInstUsesWith(*II, NewCall); 3674 } 3675 3676 // Canonicalize constants to RHS. 3677 CmpInst::Predicate SwapPred 3678 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); 3679 II->setArgOperand(0, Src1); 3680 II->setArgOperand(1, Src0); 3681 II->setArgOperand(2, ConstantInt::get(CC->getType(), 3682 static_cast<int>(SwapPred))); 3683 return II; 3684 } 3685 3686 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) 3687 break; 3688 3689 // Canonicalize compare eq with true value to compare != 0 3690 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) 3691 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) 3692 // llvm.amdgcn.icmp(sext (i1 x), -1, eq) 3693 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) 3694 Value *ExtSrc; 3695 if (CCVal == CmpInst::ICMP_EQ && 3696 ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) || 3697 (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) && 3698 ExtSrc->getType()->isIntegerTy(1)) { 3699 II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType())); 3700 II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); 3701 return II; 3702 } 3703 3704 CmpInst::Predicate SrcPred; 3705 Value *SrcLHS; 3706 Value *SrcRHS; 3707 3708 // Fold compare eq/ne with 0 from a compare result as the predicate to the 3709 // intrinsic. The typical use is a wave vote function in the library, which 3710 // will be fed from a user code condition compared with 0. Fold in the 3711 // redundant compare. 3712 3713 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) 3714 // -> llvm.amdgcn.[if]cmp(a, b, pred) 3715 // 3716 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) 3717 // -> llvm.amdgcn.[if]cmp(a, b, inv pred) 3718 if (match(Src1, m_Zero()) && 3719 match(Src0, 3720 m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) { 3721 if (CCVal == CmpInst::ICMP_EQ) 3722 SrcPred = CmpInst::getInversePredicate(SrcPred); 3723 3724 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ? 3725 Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp; 3726 3727 Type *Ty = SrcLHS->getType(); 3728 if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { 3729 // Promote to next legal integer type. 3730 unsigned Width = CmpType->getBitWidth(); 3731 unsigned NewWidth = Width; 3732 3733 // Don't do anything for i1 comparisons. 3734 if (Width == 1) 3735 break; 3736 3737 if (Width <= 16) 3738 NewWidth = 16; 3739 else if (Width <= 32) 3740 NewWidth = 32; 3741 else if (Width <= 64) 3742 NewWidth = 64; 3743 else if (Width > 64) 3744 break; // Can't handle this. 3745 3746 if (Width != NewWidth) { 3747 IntegerType *CmpTy = Builder.getIntNTy(NewWidth); 3748 if (CmpInst::isSigned(SrcPred)) { 3749 SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy); 3750 SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy); 3751 } else { 3752 SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy); 3753 SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy); 3754 } 3755 } 3756 } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) 3757 break; 3758 3759 Function *NewF = 3760 Intrinsic::getDeclaration(II->getModule(), NewIID, 3761 { II->getType(), 3762 SrcLHS->getType() }); 3763 Value *Args[] = { SrcLHS, SrcRHS, 3764 ConstantInt::get(CC->getType(), SrcPred) }; 3765 CallInst *NewCall = Builder.CreateCall(NewF, Args); 3766 NewCall->takeName(II); 3767 return replaceInstUsesWith(*II, NewCall); 3768 } 3769 3770 break; 3771 } 3772 case Intrinsic::amdgcn_wqm_vote: { 3773 // wqm_vote is identity when the argument is constant. 3774 if (!isa<Constant>(II->getArgOperand(0))) 3775 break; 3776 3777 return replaceInstUsesWith(*II, II->getArgOperand(0)); 3778 } 3779 case Intrinsic::amdgcn_kill: { 3780 const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0)); 3781 if (!C || !C->getZExtValue()) 3782 break; 3783 3784 // amdgcn.kill(i1 1) is a no-op 3785 return eraseInstFromFunction(CI); 3786 } 3787 case Intrinsic::amdgcn_update_dpp: { 3788 Value *Old = II->getArgOperand(0); 3789 3790 auto BC = cast<ConstantInt>(II->getArgOperand(5)); 3791 auto RM = cast<ConstantInt>(II->getArgOperand(3)); 3792 auto BM = cast<ConstantInt>(II->getArgOperand(4)); 3793 if (BC->isZeroValue() || 3794 RM->getZExtValue() != 0xF || 3795 BM->getZExtValue() != 0xF || 3796 isa<UndefValue>(Old)) 3797 break; 3798 3799 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. 3800 II->setOperand(0, UndefValue::get(Old->getType())); 3801 return II; 3802 } 3803 case Intrinsic::amdgcn_readfirstlane: 3804 case Intrinsic::amdgcn_readlane: { 3805 // A constant value is trivially uniform. 3806 if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0))) 3807 return replaceInstUsesWith(*II, C); 3808 3809 // The rest of these may not be safe if the exec may not be the same between 3810 // the def and use. 3811 Value *Src = II->getArgOperand(0); 3812 Instruction *SrcInst = dyn_cast<Instruction>(Src); 3813 if (SrcInst && SrcInst->getParent() != II->getParent()) 3814 break; 3815 3816 // readfirstlane (readfirstlane x) -> readfirstlane x 3817 // readlane (readfirstlane x), y -> readfirstlane x 3818 if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) 3819 return replaceInstUsesWith(*II, Src); 3820 3821 if (IID == Intrinsic::amdgcn_readfirstlane) { 3822 // readfirstlane (readlane x, y) -> readlane x, y 3823 if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>())) 3824 return replaceInstUsesWith(*II, Src); 3825 } else { 3826 // readlane (readlane x, y), y -> readlane x, y 3827 if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>( 3828 m_Value(), m_Specific(II->getArgOperand(1))))) 3829 return replaceInstUsesWith(*II, Src); 3830 } 3831 3832 break; 3833 } 3834 case Intrinsic::stackrestore: { 3835 // If the save is right next to the restore, remove the restore. This can 3836 // happen when variable allocas are DCE'd. 3837 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 3838 if (SS->getIntrinsicID() == Intrinsic::stacksave) { 3839 // Skip over debug info. 3840 if (SS->getNextNonDebugInstruction() == II) { 3841 return eraseInstFromFunction(CI); 3842 } 3843 } 3844 } 3845 3846 // Scan down this block to see if there is another stack restore in the 3847 // same block without an intervening call/alloca. 3848 BasicBlock::iterator BI(II); 3849 Instruction *TI = II->getParent()->getTerminator(); 3850 bool CannotRemove = false; 3851 for (++BI; &*BI != TI; ++BI) { 3852 if (isa<AllocaInst>(BI)) { 3853 CannotRemove = true; 3854 break; 3855 } 3856 if (CallInst *BCI = dyn_cast<CallInst>(BI)) { 3857 if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) { 3858 // If there is a stackrestore below this one, remove this one. 3859 if (II2->getIntrinsicID() == Intrinsic::stackrestore) 3860 return eraseInstFromFunction(CI); 3861 3862 // Bail if we cross over an intrinsic with side effects, such as 3863 // llvm.stacksave, llvm.read_register, or llvm.setjmp. 3864 if (II2->mayHaveSideEffects()) { 3865 CannotRemove = true; 3866 break; 3867 } 3868 } else { 3869 // If we found a non-intrinsic call, we can't remove the stack 3870 // restore. 3871 CannotRemove = true; 3872 break; 3873 } 3874 } 3875 } 3876 3877 // If the stack restore is in a return, resume, or unwind block and if there 3878 // are no allocas or calls between the restore and the return, nuke the 3879 // restore. 3880 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 3881 return eraseInstFromFunction(CI); 3882 break; 3883 } 3884 case Intrinsic::lifetime_start: 3885 // Asan needs to poison memory to detect invalid access which is possible 3886 // even for empty lifetime range. 3887 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3888 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3889 break; 3890 3891 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, 3892 Intrinsic::lifetime_end, *this)) 3893 return nullptr; 3894 break; 3895 case Intrinsic::assume: { 3896 Value *IIOperand = II->getArgOperand(0); 3897 // Remove an assume if it is followed by an identical assume. 3898 // TODO: Do we need this? Unless there are conflicting assumptions, the 3899 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 3900 Instruction *Next = II->getNextNonDebugInstruction(); 3901 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 3902 return eraseInstFromFunction(CI); 3903 3904 // Canonicalize assume(a && b) -> assume(a); assume(b); 3905 // Note: New assumption intrinsics created here are registered by 3906 // the InstCombineIRInserter object. 3907 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 3908 Value *AssumeIntrinsic = II->getCalledValue(); 3909 Value *A, *B; 3910 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { 3911 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName()); 3912 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 3913 return eraseInstFromFunction(*II); 3914 } 3915 // assume(!(a || b)) -> assume(!a); assume(!b); 3916 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { 3917 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 3918 Builder.CreateNot(A), II->getName()); 3919 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 3920 Builder.CreateNot(B), II->getName()); 3921 return eraseInstFromFunction(*II); 3922 } 3923 3924 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 3925 // (if assume is valid at the load) 3926 CmpInst::Predicate Pred; 3927 Instruction *LHS; 3928 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 3929 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 3930 LHS->getType()->isPointerTy() && 3931 isValidAssumeForContext(II, LHS, &DT)) { 3932 MDNode *MD = MDNode::get(II->getContext(), None); 3933 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 3934 return eraseInstFromFunction(*II); 3935 3936 // TODO: apply nonnull return attributes to calls and invokes 3937 // TODO: apply range metadata for range check patterns? 3938 } 3939 3940 // If there is a dominating assume with the same condition as this one, 3941 // then this one is redundant, and should be removed. 3942 KnownBits Known(1); 3943 computeKnownBits(IIOperand, Known, 0, II); 3944 if (Known.isAllOnes()) 3945 return eraseInstFromFunction(*II); 3946 3947 // Update the cache of affected values for this assumption (we might be 3948 // here because we just simplified the condition). 3949 AC.updateAffectedValues(II); 3950 break; 3951 } 3952 case Intrinsic::experimental_gc_relocate: { 3953 // Translate facts known about a pointer before relocating into 3954 // facts about the relocate value, while being careful to 3955 // preserve relocation semantics. 3956 Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr(); 3957 3958 // Remove the relocation if unused, note that this check is required 3959 // to prevent the cases below from looping forever. 3960 if (II->use_empty()) 3961 return eraseInstFromFunction(*II); 3962 3963 // Undef is undef, even after relocation. 3964 // TODO: provide a hook for this in GCStrategy. This is clearly legal for 3965 // most practical collectors, but there was discussion in the review thread 3966 // about whether it was legal for all possible collectors. 3967 if (isa<UndefValue>(DerivedPtr)) 3968 // Use undef of gc_relocate's type to replace it. 3969 return replaceInstUsesWith(*II, UndefValue::get(II->getType())); 3970 3971 if (auto *PT = dyn_cast<PointerType>(II->getType())) { 3972 // The relocation of null will be null for most any collector. 3973 // TODO: provide a hook for this in GCStrategy. There might be some 3974 // weird collector this property does not hold for. 3975 if (isa<ConstantPointerNull>(DerivedPtr)) 3976 // Use null-pointer of gc_relocate's type to replace it. 3977 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); 3978 3979 // isKnownNonNull -> nonnull attribute 3980 if (!II->hasRetAttr(Attribute::NonNull) && 3981 isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) { 3982 II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 3983 return II; 3984 } 3985 } 3986 3987 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 3988 // Canonicalize on the type from the uses to the defs 3989 3990 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 3991 break; 3992 } 3993 3994 case Intrinsic::experimental_guard: { 3995 // Is this guard followed by another guard? We scan forward over a small 3996 // fixed window of instructions to handle common cases with conditions 3997 // computed between guards. 3998 Instruction *NextInst = II->getNextNode(); 3999 for (unsigned i = 0; i < GuardWideningWindow; i++) { 4000 // Note: Using context-free form to avoid compile time blow up 4001 if (!isSafeToSpeculativelyExecute(NextInst)) 4002 break; 4003 NextInst = NextInst->getNextNode(); 4004 } 4005 Value *NextCond = nullptr; 4006 if (match(NextInst, 4007 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 4008 Value *CurrCond = II->getArgOperand(0); 4009 4010 // Remove a guard that it is immediately preceded by an identical guard. 4011 if (CurrCond == NextCond) 4012 return eraseInstFromFunction(*NextInst); 4013 4014 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 4015 Instruction* MoveI = II->getNextNode(); 4016 while (MoveI != NextInst) { 4017 auto *Temp = MoveI; 4018 MoveI = MoveI->getNextNode(); 4019 Temp->moveBefore(II); 4020 } 4021 II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond)); 4022 return eraseInstFromFunction(*NextInst); 4023 } 4024 break; 4025 } 4026 } 4027 return visitCallBase(*II); 4028 } 4029 4030 // Fence instruction simplification 4031 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) { 4032 // Remove identical consecutive fences. 4033 Instruction *Next = FI.getNextNonDebugInstruction(); 4034 if (auto *NFI = dyn_cast<FenceInst>(Next)) 4035 if (FI.isIdenticalTo(NFI)) 4036 return eraseInstFromFunction(FI); 4037 return nullptr; 4038 } 4039 4040 // InvokeInst simplification 4041 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { 4042 return visitCallBase(II); 4043 } 4044 4045 // CallBrInst simplification 4046 Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) { 4047 return visitCallBase(CBI); 4048 } 4049 4050 /// If this cast does not affect the value passed through the varargs area, we 4051 /// can eliminate the use of the cast. 4052 static bool isSafeToEliminateVarargsCast(const CallBase &Call, 4053 const DataLayout &DL, 4054 const CastInst *const CI, 4055 const int ix) { 4056 if (!CI->isLosslessCast()) 4057 return false; 4058 4059 // If this is a GC intrinsic, avoid munging types. We need types for 4060 // statepoint reconstruction in SelectionDAG. 4061 // TODO: This is probably something which should be expanded to all 4062 // intrinsics since the entire point of intrinsics is that 4063 // they are understandable by the optimizer. 4064 if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call)) 4065 return false; 4066 4067 // The size of ByVal or InAlloca arguments is derived from the type, so we 4068 // can't change to a type with a different size. If the size were 4069 // passed explicitly we could avoid this check. 4070 if (!Call.isByValOrInAllocaArgument(ix)) 4071 return true; 4072 4073 Type* SrcTy = 4074 cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); 4075 Type *DstTy = Call.isByValArgument(ix) 4076 ? Call.getParamByValType(ix) 4077 : cast<PointerType>(CI->getType())->getElementType(); 4078 if (!SrcTy->isSized() || !DstTy->isSized()) 4079 return false; 4080 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) 4081 return false; 4082 return true; 4083 } 4084 4085 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { 4086 if (!CI->getCalledFunction()) return nullptr; 4087 4088 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 4089 replaceInstUsesWith(*From, With); 4090 }; 4091 auto InstCombineErase = [this](Instruction *I) { 4092 eraseInstFromFunction(*I); 4093 }; 4094 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, 4095 InstCombineErase); 4096 if (Value *With = Simplifier.optimizeCall(CI)) { 4097 ++NumSimplified; 4098 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 4099 } 4100 4101 return nullptr; 4102 } 4103 4104 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 4105 // Strip off at most one level of pointer casts, looking for an alloca. This 4106 // is good enough in practice and simpler than handling any number of casts. 4107 Value *Underlying = TrampMem->stripPointerCasts(); 4108 if (Underlying != TrampMem && 4109 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 4110 return nullptr; 4111 if (!isa<AllocaInst>(Underlying)) 4112 return nullptr; 4113 4114 IntrinsicInst *InitTrampoline = nullptr; 4115 for (User *U : TrampMem->users()) { 4116 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4117 if (!II) 4118 return nullptr; 4119 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 4120 if (InitTrampoline) 4121 // More than one init_trampoline writes to this value. Give up. 4122 return nullptr; 4123 InitTrampoline = II; 4124 continue; 4125 } 4126 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 4127 // Allow any number of calls to adjust.trampoline. 4128 continue; 4129 return nullptr; 4130 } 4131 4132 // No call to init.trampoline found. 4133 if (!InitTrampoline) 4134 return nullptr; 4135 4136 // Check that the alloca is being used in the expected way. 4137 if (InitTrampoline->getOperand(0) != TrampMem) 4138 return nullptr; 4139 4140 return InitTrampoline; 4141 } 4142 4143 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 4144 Value *TrampMem) { 4145 // Visit all the previous instructions in the basic block, and try to find a 4146 // init.trampoline which has a direct path to the adjust.trampoline. 4147 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 4148 E = AdjustTramp->getParent()->begin(); 4149 I != E;) { 4150 Instruction *Inst = &*--I; 4151 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 4152 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 4153 II->getOperand(0) == TrampMem) 4154 return II; 4155 if (Inst->mayWriteToMemory()) 4156 return nullptr; 4157 } 4158 return nullptr; 4159 } 4160 4161 // Given a call to llvm.adjust.trampoline, find and return the corresponding 4162 // call to llvm.init.trampoline if the call to the trampoline can be optimized 4163 // to a direct call to a function. Otherwise return NULL. 4164 static IntrinsicInst *findInitTrampoline(Value *Callee) { 4165 Callee = Callee->stripPointerCasts(); 4166 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 4167 if (!AdjustTramp || 4168 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 4169 return nullptr; 4170 4171 Value *TrampMem = AdjustTramp->getOperand(0); 4172 4173 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 4174 return IT; 4175 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 4176 return IT; 4177 return nullptr; 4178 } 4179 4180 /// Improvements for call, callbr and invoke instructions. 4181 Instruction *InstCombiner::visitCallBase(CallBase &Call) { 4182 if (isAllocLikeFn(&Call, &TLI)) 4183 return visitAllocSite(Call); 4184 4185 bool Changed = false; 4186 4187 // Mark any parameters that are known to be non-null with the nonnull 4188 // attribute. This is helpful for inlining calls to functions with null 4189 // checks on their arguments. 4190 SmallVector<unsigned, 4> ArgNos; 4191 unsigned ArgNo = 0; 4192 4193 for (Value *V : Call.args()) { 4194 if (V->getType()->isPointerTy() && 4195 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 4196 isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) 4197 ArgNos.push_back(ArgNo); 4198 ArgNo++; 4199 } 4200 4201 assert(ArgNo == Call.arg_size() && "sanity check"); 4202 4203 if (!ArgNos.empty()) { 4204 AttributeList AS = Call.getAttributes(); 4205 LLVMContext &Ctx = Call.getContext(); 4206 AS = AS.addParamAttribute(Ctx, ArgNos, 4207 Attribute::get(Ctx, Attribute::NonNull)); 4208 Call.setAttributes(AS); 4209 Changed = true; 4210 } 4211 4212 // If the callee is a pointer to a function, attempt to move any casts to the 4213 // arguments of the call/callbr/invoke. 4214 Value *Callee = Call.getCalledValue(); 4215 if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) 4216 return nullptr; 4217 4218 if (Function *CalleeF = dyn_cast<Function>(Callee)) { 4219 // Remove the convergent attr on calls when the callee is not convergent. 4220 if (Call.isConvergent() && !CalleeF->isConvergent() && 4221 !CalleeF->isIntrinsic()) { 4222 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 4223 << "\n"); 4224 Call.setNotConvergent(); 4225 return &Call; 4226 } 4227 4228 // If the call and callee calling conventions don't match, this call must 4229 // be unreachable, as the call is undefined. 4230 if (CalleeF->getCallingConv() != Call.getCallingConv() && 4231 // Only do this for calls to a function with a body. A prototype may 4232 // not actually end up matching the implementation's calling conv for a 4233 // variety of reasons (e.g. it may be written in assembly). 4234 !CalleeF->isDeclaration()) { 4235 Instruction *OldCall = &Call; 4236 CreateNonTerminatorUnreachable(OldCall); 4237 // If OldCall does not return void then replaceAllUsesWith undef. 4238 // This allows ValueHandlers and custom metadata to adjust itself. 4239 if (!OldCall->getType()->isVoidTy()) 4240 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); 4241 if (isa<CallInst>(OldCall)) 4242 return eraseInstFromFunction(*OldCall); 4243 4244 // We cannot remove an invoke or a callbr, because it would change thexi 4245 // CFG, just change the callee to a null pointer. 4246 cast<CallBase>(OldCall)->setCalledFunction( 4247 CalleeF->getFunctionType(), 4248 Constant::getNullValue(CalleeF->getType())); 4249 return nullptr; 4250 } 4251 } 4252 4253 if ((isa<ConstantPointerNull>(Callee) && 4254 !NullPointerIsDefined(Call.getFunction())) || 4255 isa<UndefValue>(Callee)) { 4256 // If Call does not return void then replaceAllUsesWith undef. 4257 // This allows ValueHandlers and custom metadata to adjust itself. 4258 if (!Call.getType()->isVoidTy()) 4259 replaceInstUsesWith(Call, UndefValue::get(Call.getType())); 4260 4261 if (Call.isTerminator()) { 4262 // Can't remove an invoke or callbr because we cannot change the CFG. 4263 return nullptr; 4264 } 4265 4266 // This instruction is not reachable, just remove it. 4267 CreateNonTerminatorUnreachable(&Call); 4268 return eraseInstFromFunction(Call); 4269 } 4270 4271 if (IntrinsicInst *II = findInitTrampoline(Callee)) 4272 return transformCallThroughTrampoline(Call, *II); 4273 4274 PointerType *PTy = cast<PointerType>(Callee->getType()); 4275 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 4276 if (FTy->isVarArg()) { 4277 int ix = FTy->getNumParams(); 4278 // See if we can optimize any arguments passed through the varargs area of 4279 // the call. 4280 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); 4281 I != E; ++I, ++ix) { 4282 CastInst *CI = dyn_cast<CastInst>(*I); 4283 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { 4284 *I = CI->getOperand(0); 4285 4286 // Update the byval type to match the argument type. 4287 if (Call.isByValArgument(ix)) { 4288 Call.removeParamAttr(ix, Attribute::ByVal); 4289 Call.addParamAttr( 4290 ix, Attribute::getWithByValType( 4291 Call.getContext(), 4292 CI->getOperand(0)->getType()->getPointerElementType())); 4293 } 4294 Changed = true; 4295 } 4296 } 4297 } 4298 4299 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 4300 // Inline asm calls cannot throw - mark them 'nounwind'. 4301 Call.setDoesNotThrow(); 4302 Changed = true; 4303 } 4304 4305 // Try to optimize the call if possible, we require DataLayout for most of 4306 // this. None of these calls are seen as possibly dead so go ahead and 4307 // delete the instruction now. 4308 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 4309 Instruction *I = tryOptimizeCall(CI); 4310 // If we changed something return the result, etc. Otherwise let 4311 // the fallthrough check. 4312 if (I) return eraseInstFromFunction(*I); 4313 } 4314 4315 return Changed ? &Call : nullptr; 4316 } 4317 4318 /// If the callee is a constexpr cast of a function, attempt to move the cast to 4319 /// the arguments of the call/callbr/invoke. 4320 bool InstCombiner::transformConstExprCastCall(CallBase &Call) { 4321 auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 4322 if (!Callee) 4323 return false; 4324 4325 // If this is a call to a thunk function, don't remove the cast. Thunks are 4326 // used to transparently forward all incoming parameters and outgoing return 4327 // values, so it's important to leave the cast in place. 4328 if (Callee->hasFnAttribute("thunk")) 4329 return false; 4330 4331 // If this is a musttail call, the callee's prototype must match the caller's 4332 // prototype with the exception of pointee types. The code below doesn't 4333 // implement that, so we can't do this transform. 4334 // TODO: Do the transform if it only requires adding pointer casts. 4335 if (Call.isMustTailCall()) 4336 return false; 4337 4338 Instruction *Caller = &Call; 4339 const AttributeList &CallerPAL = Call.getAttributes(); 4340 4341 // Okay, this is a cast from a function to a different type. Unless doing so 4342 // would cause a type conversion of one of our arguments, change this call to 4343 // be a direct call with arguments casted to the appropriate types. 4344 FunctionType *FT = Callee->getFunctionType(); 4345 Type *OldRetTy = Caller->getType(); 4346 Type *NewRetTy = FT->getReturnType(); 4347 4348 // Check to see if we are changing the return type... 4349 if (OldRetTy != NewRetTy) { 4350 4351 if (NewRetTy->isStructTy()) 4352 return false; // TODO: Handle multiple return values. 4353 4354 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 4355 if (Callee->isDeclaration()) 4356 return false; // Cannot transform this return value. 4357 4358 if (!Caller->use_empty() && 4359 // void -> non-void is handled specially 4360 !NewRetTy->isVoidTy()) 4361 return false; // Cannot transform this return value. 4362 } 4363 4364 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 4365 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 4366 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 4367 return false; // Attribute not compatible with transformed value. 4368 } 4369 4370 // If the callbase is an invoke/callbr instruction, and the return value is 4371 // used by a PHI node in a successor, we cannot change the return type of 4372 // the call because there is no place to put the cast instruction (without 4373 // breaking the critical edge). Bail out in this case. 4374 if (!Caller->use_empty()) { 4375 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) 4376 for (User *U : II->users()) 4377 if (PHINode *PN = dyn_cast<PHINode>(U)) 4378 if (PN->getParent() == II->getNormalDest() || 4379 PN->getParent() == II->getUnwindDest()) 4380 return false; 4381 // FIXME: Be conservative for callbr to avoid a quadratic search. 4382 if (isa<CallBrInst>(Caller)) 4383 return false; 4384 } 4385 } 4386 4387 unsigned NumActualArgs = Call.arg_size(); 4388 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 4389 4390 // Prevent us turning: 4391 // declare void @takes_i32_inalloca(i32* inalloca) 4392 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 4393 // 4394 // into: 4395 // call void @takes_i32_inalloca(i32* null) 4396 // 4397 // Similarly, avoid folding away bitcasts of byval calls. 4398 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 4399 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 4400 return false; 4401 4402 auto AI = Call.arg_begin(); 4403 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 4404 Type *ParamTy = FT->getParamType(i); 4405 Type *ActTy = (*AI)->getType(); 4406 4407 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 4408 return false; // Cannot transform this parameter value. 4409 4410 if (AttrBuilder(CallerPAL.getParamAttributes(i)) 4411 .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) 4412 return false; // Attribute not compatible with transformed value. 4413 4414 if (Call.isInAllocaArgument(i)) 4415 return false; // Cannot transform to and from inalloca. 4416 4417 // If the parameter is passed as a byval argument, then we have to have a 4418 // sized type and the sized type has to have the same size as the old type. 4419 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { 4420 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); 4421 if (!ParamPTy || !ParamPTy->getElementType()->isSized()) 4422 return false; 4423 4424 Type *CurElTy = Call.getParamByValType(i); 4425 if (DL.getTypeAllocSize(CurElTy) != 4426 DL.getTypeAllocSize(ParamPTy->getElementType())) 4427 return false; 4428 } 4429 } 4430 4431 if (Callee->isDeclaration()) { 4432 // Do not delete arguments unless we have a function body. 4433 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 4434 return false; 4435 4436 // If the callee is just a declaration, don't change the varargsness of the 4437 // call. We don't want to introduce a varargs call where one doesn't 4438 // already exist. 4439 PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType()); 4440 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) 4441 return false; 4442 4443 // If both the callee and the cast type are varargs, we still have to make 4444 // sure the number of fixed parameters are the same or we have the same 4445 // ABI issues as if we introduce a varargs call. 4446 if (FT->isVarArg() && 4447 cast<FunctionType>(APTy->getElementType())->isVarArg() && 4448 FT->getNumParams() != 4449 cast<FunctionType>(APTy->getElementType())->getNumParams()) 4450 return false; 4451 } 4452 4453 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 4454 !CallerPAL.isEmpty()) { 4455 // In this case we have more arguments than the new function type, but we 4456 // won't be dropping them. Check that these extra arguments have attributes 4457 // that are compatible with being a vararg call argument. 4458 unsigned SRetIdx; 4459 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 4460 SRetIdx > FT->getNumParams()) 4461 return false; 4462 } 4463 4464 // Okay, we decided that this is a safe thing to do: go ahead and start 4465 // inserting cast instructions as necessary. 4466 SmallVector<Value *, 8> Args; 4467 SmallVector<AttributeSet, 8> ArgAttrs; 4468 Args.reserve(NumActualArgs); 4469 ArgAttrs.reserve(NumActualArgs); 4470 4471 // Get any return attributes. 4472 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 4473 4474 // If the return value is not being used, the type may not be compatible 4475 // with the existing attributes. Wipe out any problematic attributes. 4476 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 4477 4478 LLVMContext &Ctx = Call.getContext(); 4479 AI = Call.arg_begin(); 4480 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 4481 Type *ParamTy = FT->getParamType(i); 4482 4483 Value *NewArg = *AI; 4484 if ((*AI)->getType() != ParamTy) 4485 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 4486 Args.push_back(NewArg); 4487 4488 // Add any parameter attributes. 4489 if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { 4490 AttrBuilder AB(CallerPAL.getParamAttributes(i)); 4491 AB.addByValAttr(NewArg->getType()->getPointerElementType()); 4492 ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); 4493 } else 4494 ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); 4495 } 4496 4497 // If the function takes more arguments than the call was taking, add them 4498 // now. 4499 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 4500 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 4501 ArgAttrs.push_back(AttributeSet()); 4502 } 4503 4504 // If we are removing arguments to the function, emit an obnoxious warning. 4505 if (FT->getNumParams() < NumActualArgs) { 4506 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 4507 if (FT->isVarArg()) { 4508 // Add all of the arguments in their promoted form to the arg list. 4509 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 4510 Type *PTy = getPromotedType((*AI)->getType()); 4511 Value *NewArg = *AI; 4512 if (PTy != (*AI)->getType()) { 4513 // Must promote to pass through va_arg area! 4514 Instruction::CastOps opcode = 4515 CastInst::getCastOpcode(*AI, false, PTy, false); 4516 NewArg = Builder.CreateCast(opcode, *AI, PTy); 4517 } 4518 Args.push_back(NewArg); 4519 4520 // Add any parameter attributes. 4521 ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); 4522 } 4523 } 4524 } 4525 4526 AttributeSet FnAttrs = CallerPAL.getFnAttributes(); 4527 4528 if (NewRetTy->isVoidTy()) 4529 Caller->setName(""); // Void type should not have a name. 4530 4531 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 4532 "missing argument attributes"); 4533 AttributeList NewCallerPAL = AttributeList::get( 4534 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 4535 4536 SmallVector<OperandBundleDef, 1> OpBundles; 4537 Call.getOperandBundlesAsDefs(OpBundles); 4538 4539 CallBase *NewCall; 4540 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 4541 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 4542 II->getUnwindDest(), Args, OpBundles); 4543 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 4544 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), 4545 CBI->getIndirectDests(), Args, OpBundles); 4546 } else { 4547 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 4548 cast<CallInst>(NewCall)->setTailCallKind( 4549 cast<CallInst>(Caller)->getTailCallKind()); 4550 } 4551 NewCall->takeName(Caller); 4552 NewCall->setCallingConv(Call.getCallingConv()); 4553 NewCall->setAttributes(NewCallerPAL); 4554 4555 // Preserve the weight metadata for the new call instruction. The metadata 4556 // is used by SamplePGO to check callsite's hotness. 4557 uint64_t W; 4558 if (Caller->extractProfTotalWeight(W)) 4559 NewCall->setProfWeight(W); 4560 4561 // Insert a cast of the return type as necessary. 4562 Instruction *NC = NewCall; 4563 Value *NV = NC; 4564 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 4565 if (!NV->getType()->isVoidTy()) { 4566 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 4567 NC->setDebugLoc(Caller->getDebugLoc()); 4568 4569 // If this is an invoke/callbr instruction, we should insert it after the 4570 // first non-phi instruction in the normal successor block. 4571 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 4572 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); 4573 InsertNewInstBefore(NC, *I); 4574 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 4575 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); 4576 InsertNewInstBefore(NC, *I); 4577 } else { 4578 // Otherwise, it's a call, just insert cast right after the call. 4579 InsertNewInstBefore(NC, *Caller); 4580 } 4581 Worklist.AddUsersToWorkList(*Caller); 4582 } else { 4583 NV = UndefValue::get(Caller->getType()); 4584 } 4585 } 4586 4587 if (!Caller->use_empty()) 4588 replaceInstUsesWith(*Caller, NV); 4589 else if (Caller->hasValueHandle()) { 4590 if (OldRetTy == NV->getType()) 4591 ValueHandleBase::ValueIsRAUWd(Caller, NV); 4592 else 4593 // We cannot call ValueIsRAUWd with a different type, and the 4594 // actual tracked value will disappear. 4595 ValueHandleBase::ValueIsDeleted(Caller); 4596 } 4597 4598 eraseInstFromFunction(*Caller); 4599 return true; 4600 } 4601 4602 /// Turn a call to a function created by init_trampoline / adjust_trampoline 4603 /// intrinsic pair into a direct call to the underlying function. 4604 Instruction * 4605 InstCombiner::transformCallThroughTrampoline(CallBase &Call, 4606 IntrinsicInst &Tramp) { 4607 Value *Callee = Call.getCalledValue(); 4608 Type *CalleeTy = Callee->getType(); 4609 FunctionType *FTy = Call.getFunctionType(); 4610 AttributeList Attrs = Call.getAttributes(); 4611 4612 // If the call already has the 'nest' attribute somewhere then give up - 4613 // otherwise 'nest' would occur twice after splicing in the chain. 4614 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 4615 return nullptr; 4616 4617 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 4618 FunctionType *NestFTy = NestF->getFunctionType(); 4619 4620 AttributeList NestAttrs = NestF->getAttributes(); 4621 if (!NestAttrs.isEmpty()) { 4622 unsigned NestArgNo = 0; 4623 Type *NestTy = nullptr; 4624 AttributeSet NestAttr; 4625 4626 // Look for a parameter marked with the 'nest' attribute. 4627 for (FunctionType::param_iterator I = NestFTy->param_begin(), 4628 E = NestFTy->param_end(); 4629 I != E; ++NestArgNo, ++I) { 4630 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); 4631 if (AS.hasAttribute(Attribute::Nest)) { 4632 // Record the parameter type and any other attributes. 4633 NestTy = *I; 4634 NestAttr = AS; 4635 break; 4636 } 4637 } 4638 4639 if (NestTy) { 4640 std::vector<Value*> NewArgs; 4641 std::vector<AttributeSet> NewArgAttrs; 4642 NewArgs.reserve(Call.arg_size() + 1); 4643 NewArgAttrs.reserve(Call.arg_size()); 4644 4645 // Insert the nest argument into the call argument list, which may 4646 // mean appending it. Likewise for attributes. 4647 4648 { 4649 unsigned ArgNo = 0; 4650 auto I = Call.arg_begin(), E = Call.arg_end(); 4651 do { 4652 if (ArgNo == NestArgNo) { 4653 // Add the chain argument and attributes. 4654 Value *NestVal = Tramp.getArgOperand(2); 4655 if (NestVal->getType() != NestTy) 4656 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 4657 NewArgs.push_back(NestVal); 4658 NewArgAttrs.push_back(NestAttr); 4659 } 4660 4661 if (I == E) 4662 break; 4663 4664 // Add the original argument and attributes. 4665 NewArgs.push_back(*I); 4666 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 4667 4668 ++ArgNo; 4669 ++I; 4670 } while (true); 4671 } 4672 4673 // The trampoline may have been bitcast to a bogus type (FTy). 4674 // Handle this by synthesizing a new function type, equal to FTy 4675 // with the chain parameter inserted. 4676 4677 std::vector<Type*> NewTypes; 4678 NewTypes.reserve(FTy->getNumParams()+1); 4679 4680 // Insert the chain's type into the list of parameter types, which may 4681 // mean appending it. 4682 { 4683 unsigned ArgNo = 0; 4684 FunctionType::param_iterator I = FTy->param_begin(), 4685 E = FTy->param_end(); 4686 4687 do { 4688 if (ArgNo == NestArgNo) 4689 // Add the chain's type. 4690 NewTypes.push_back(NestTy); 4691 4692 if (I == E) 4693 break; 4694 4695 // Add the original type. 4696 NewTypes.push_back(*I); 4697 4698 ++ArgNo; 4699 ++I; 4700 } while (true); 4701 } 4702 4703 // Replace the trampoline call with a direct call. Let the generic 4704 // code sort out any function type mismatches. 4705 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 4706 FTy->isVarArg()); 4707 Constant *NewCallee = 4708 NestF->getType() == PointerType::getUnqual(NewFTy) ? 4709 NestF : ConstantExpr::getBitCast(NestF, 4710 PointerType::getUnqual(NewFTy)); 4711 AttributeList NewPAL = 4712 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), 4713 Attrs.getRetAttributes(), NewArgAttrs); 4714 4715 SmallVector<OperandBundleDef, 1> OpBundles; 4716 Call.getOperandBundlesAsDefs(OpBundles); 4717 4718 Instruction *NewCaller; 4719 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 4720 NewCaller = InvokeInst::Create(NewFTy, NewCallee, 4721 II->getNormalDest(), II->getUnwindDest(), 4722 NewArgs, OpBundles); 4723 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 4724 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 4725 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 4726 NewCaller = 4727 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), 4728 CBI->getIndirectDests(), NewArgs, OpBundles); 4729 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 4730 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 4731 } else { 4732 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); 4733 cast<CallInst>(NewCaller)->setTailCallKind( 4734 cast<CallInst>(Call).getTailCallKind()); 4735 cast<CallInst>(NewCaller)->setCallingConv( 4736 cast<CallInst>(Call).getCallingConv()); 4737 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 4738 } 4739 NewCaller->setDebugLoc(Call.getDebugLoc()); 4740 4741 return NewCaller; 4742 } 4743 } 4744 4745 // Replace the trampoline call with a direct call. Since there is no 'nest' 4746 // parameter, there is no need to adjust the argument list. Let the generic 4747 // code sort out any function type mismatches. 4748 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); 4749 Call.setCalledFunction(FTy, NewCallee); 4750 return &Call; 4751 } 4752