1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitAnd, visitOr, and visitXor functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/CmpInstAnalysis.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Transforms/Utils/Local.h" 17 #include "llvm/IR/ConstantRange.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into 26 /// a four bit mask. 27 static unsigned getFCmpCode(FCmpInst::Predicate CC) { 28 assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE && 29 "Unexpected FCmp predicate!"); 30 // Take advantage of the bit pattern of FCmpInst::Predicate here. 31 // U L G E 32 static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0 33 static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1 34 static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0 35 static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1 36 static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0 37 static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1 38 static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0 39 static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1 40 static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0 41 static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1 42 static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0 43 static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1 44 static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0 45 static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1 46 static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0 47 static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1 48 return CC; 49 } 50 51 /// This is the complement of getICmpCode, which turns an opcode and two 52 /// operands into either a constant true or false, or a brand new ICmp 53 /// instruction. The sign is passed in to determine which kind of predicate to 54 /// use in the new icmp instruction. 55 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, 56 InstCombiner::BuilderTy &Builder) { 57 ICmpInst::Predicate NewPred; 58 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) 59 return TorF; 60 return Builder.CreateICmp(NewPred, LHS, RHS); 61 } 62 63 /// This is the complement of getFCmpCode, which turns an opcode and two 64 /// operands into either a FCmp instruction, or a true/false constant. 65 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 66 InstCombiner::BuilderTy &Builder) { 67 const auto Pred = static_cast<FCmpInst::Predicate>(Code); 68 assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE && 69 "Unexpected FCmp predicate!"); 70 if (Pred == FCmpInst::FCMP_FALSE) 71 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 72 if (Pred == FCmpInst::FCMP_TRUE) 73 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 74 return Builder.CreateFCmp(Pred, LHS, RHS); 75 } 76 77 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or 78 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B)) 79 /// \param I Binary operator to transform. 80 /// \return Pointer to node that must replace the original binary operator, or 81 /// null pointer if no transformation was made. 82 static Value *SimplifyBSwap(BinaryOperator &I, 83 InstCombiner::BuilderTy &Builder) { 84 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying"); 85 86 Value *OldLHS = I.getOperand(0); 87 Value *OldRHS = I.getOperand(1); 88 89 Value *NewLHS; 90 if (!match(OldLHS, m_BSwap(m_Value(NewLHS)))) 91 return nullptr; 92 93 Value *NewRHS; 94 const APInt *C; 95 96 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) { 97 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) 98 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse()) 99 return nullptr; 100 // NewRHS initialized by the matcher. 101 } else if (match(OldRHS, m_APInt(C))) { 102 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) 103 if (!OldLHS->hasOneUse()) 104 return nullptr; 105 NewRHS = ConstantInt::get(I.getType(), C->byteSwap()); 106 } else 107 return nullptr; 108 109 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS); 110 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, 111 I.getType()); 112 return Builder.CreateCall(F, BinOp); 113 } 114 115 /// This handles expressions of the form ((val OP C1) & C2). Where 116 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. 117 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op, 118 ConstantInt *OpRHS, 119 ConstantInt *AndRHS, 120 BinaryOperator &TheAnd) { 121 Value *X = Op->getOperand(0); 122 123 switch (Op->getOpcode()) { 124 default: break; 125 case Instruction::Add: 126 if (Op->hasOneUse()) { 127 // Adding a one to a single bit bit-field should be turned into an XOR 128 // of the bit. First thing to check is to see if this AND is with a 129 // single bit constant. 130 const APInt &AndRHSV = AndRHS->getValue(); 131 132 // If there is only one bit set. 133 if (AndRHSV.isPowerOf2()) { 134 // Ok, at this point, we know that we are masking the result of the 135 // ADD down to exactly one bit. If the constant we are adding has 136 // no bits set below this bit, then we can eliminate the ADD. 137 const APInt& AddRHS = OpRHS->getValue(); 138 139 // Check to see if any bits below the one bit set in AndRHSV are set. 140 if ((AddRHS & (AndRHSV - 1)).isNullValue()) { 141 // If not, the only thing that can effect the output of the AND is 142 // the bit specified by AndRHSV. If that bit is set, the effect of 143 // the XOR is to toggle the bit. If it is clear, then the ADD has 144 // no effect. 145 if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop 146 return replaceOperand(TheAnd, 0, X); 147 } else { 148 // Pull the XOR out of the AND. 149 Value *NewAnd = Builder.CreateAnd(X, AndRHS); 150 NewAnd->takeName(Op); 151 return BinaryOperator::CreateXor(NewAnd, AndRHS); 152 } 153 } 154 } 155 } 156 break; 157 } 158 return nullptr; 159 } 160 161 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 162 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates 163 /// whether to treat V, Lo, and Hi as signed or not. 164 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, 165 bool isSigned, bool Inside) { 166 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && 167 "Lo is not < Hi in range emission code!"); 168 169 Type *Ty = V->getType(); 170 171 // V >= Min && V < Hi --> V < Hi 172 // V < Min || V >= Hi --> V >= Hi 173 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 174 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { 175 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; 176 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); 177 } 178 179 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo 180 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo 181 Value *VMinusLo = 182 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); 183 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); 184 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); 185 } 186 187 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns 188 /// that can be simplified. 189 /// One of A and B is considered the mask. The other is the value. This is 190 /// described as the "AMask" or "BMask" part of the enum. If the enum contains 191 /// only "Mask", then both A and B can be considered masks. If A is the mask, 192 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. 193 /// If both A and C are constants, this proof is also easy. 194 /// For the following explanations, we assume that A is the mask. 195 /// 196 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all 197 /// bits of A are set in B. 198 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes 199 /// 200 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all 201 /// bits of A are cleared in B. 202 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes 203 /// 204 /// "Mixed" declares that (A & B) == C and C might or might not contain any 205 /// number of one bits and zero bits. 206 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed 207 /// 208 /// "Not" means that in above descriptions "==" should be replaced by "!=". 209 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes 210 /// 211 /// If the mask A contains a single bit, then the following is equivalent: 212 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 213 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 214 enum MaskedICmpType { 215 AMask_AllOnes = 1, 216 AMask_NotAllOnes = 2, 217 BMask_AllOnes = 4, 218 BMask_NotAllOnes = 8, 219 Mask_AllZeros = 16, 220 Mask_NotAllZeros = 32, 221 AMask_Mixed = 64, 222 AMask_NotMixed = 128, 223 BMask_Mixed = 256, 224 BMask_NotMixed = 512 225 }; 226 227 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) 228 /// satisfies. 229 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, 230 ICmpInst::Predicate Pred) { 231 ConstantInt *ACst = dyn_cast<ConstantInt>(A); 232 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 233 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 234 bool IsEq = (Pred == ICmpInst::ICMP_EQ); 235 bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2()); 236 bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2()); 237 unsigned MaskVal = 0; 238 if (CCst && CCst->isZero()) { 239 // if C is zero, then both A and B qualify as mask 240 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) 241 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); 242 if (IsAPow2) 243 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) 244 : (AMask_AllOnes | AMask_Mixed)); 245 if (IsBPow2) 246 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) 247 : (BMask_AllOnes | BMask_Mixed)); 248 return MaskVal; 249 } 250 251 if (A == C) { 252 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) 253 : (AMask_NotAllOnes | AMask_NotMixed)); 254 if (IsAPow2) 255 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) 256 : (Mask_AllZeros | AMask_Mixed)); 257 } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) { 258 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); 259 } 260 261 if (B == C) { 262 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) 263 : (BMask_NotAllOnes | BMask_NotMixed)); 264 if (IsBPow2) 265 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) 266 : (Mask_AllZeros | BMask_Mixed)); 267 } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) { 268 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); 269 } 270 271 return MaskVal; 272 } 273 274 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 275 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 276 /// is adjacent to the corresponding normal flag (recording ==), this just 277 /// involves swapping those bits over. 278 static unsigned conjugateICmpMask(unsigned Mask) { 279 unsigned NewMask; 280 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | 281 AMask_Mixed | BMask_Mixed)) 282 << 1; 283 284 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | 285 AMask_NotMixed | BMask_NotMixed)) 286 >> 1; 287 288 return NewMask; 289 } 290 291 // Adapts the external decomposeBitTestICmp for local use. 292 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, 293 Value *&X, Value *&Y, Value *&Z) { 294 APInt Mask; 295 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) 296 return false; 297 298 Y = ConstantInt::get(X->getType(), Mask); 299 Z = ConstantInt::get(X->getType(), 0); 300 return true; 301 } 302 303 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). 304 /// Return the pattern classes (from MaskedICmpType) for the left hand side and 305 /// the right hand side as a pair. 306 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL 307 /// and PredR are their predicates, respectively. 308 static 309 Optional<std::pair<unsigned, unsigned>> 310 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, 311 Value *&D, Value *&E, ICmpInst *LHS, 312 ICmpInst *RHS, 313 ICmpInst::Predicate &PredL, 314 ICmpInst::Predicate &PredR) { 315 // vectors are not (yet?) supported. Don't support pointers either. 316 if (!LHS->getOperand(0)->getType()->isIntegerTy() || 317 !RHS->getOperand(0)->getType()->isIntegerTy()) 318 return None; 319 320 // Here comes the tricky part: 321 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 322 // and L11 & L12 == L21 & L22. The same goes for RHS. 323 // Now we must find those components L** and R**, that are equal, so 324 // that we can extract the parameters A, B, C, D, and E for the canonical 325 // above. 326 Value *L1 = LHS->getOperand(0); 327 Value *L2 = LHS->getOperand(1); 328 Value *L11, *L12, *L21, *L22; 329 // Check whether the icmp can be decomposed into a bit test. 330 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { 331 L21 = L22 = L1 = nullptr; 332 } else { 333 // Look for ANDs in the LHS icmp. 334 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 335 // Any icmp can be viewed as being trivially masked; if it allows us to 336 // remove one, it's worth it. 337 L11 = L1; 338 L12 = Constant::getAllOnesValue(L1->getType()); 339 } 340 341 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 342 L21 = L2; 343 L22 = Constant::getAllOnesValue(L2->getType()); 344 } 345 } 346 347 // Bail if LHS was a icmp that can't be decomposed into an equality. 348 if (!ICmpInst::isEquality(PredL)) 349 return None; 350 351 Value *R1 = RHS->getOperand(0); 352 Value *R2 = RHS->getOperand(1); 353 Value *R11, *R12; 354 bool Ok = false; 355 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { 356 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 357 A = R11; 358 D = R12; 359 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 360 A = R12; 361 D = R11; 362 } else { 363 return None; 364 } 365 E = R2; 366 R1 = nullptr; 367 Ok = true; 368 } else { 369 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 370 // As before, model no mask as a trivial mask if it'll let us do an 371 // optimization. 372 R11 = R1; 373 R12 = Constant::getAllOnesValue(R1->getType()); 374 } 375 376 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 377 A = R11; 378 D = R12; 379 E = R2; 380 Ok = true; 381 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 382 A = R12; 383 D = R11; 384 E = R2; 385 Ok = true; 386 } 387 } 388 389 // Bail if RHS was a icmp that can't be decomposed into an equality. 390 if (!ICmpInst::isEquality(PredR)) 391 return None; 392 393 // Look for ANDs on the right side of the RHS icmp. 394 if (!Ok) { 395 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 396 R11 = R2; 397 R12 = Constant::getAllOnesValue(R2->getType()); 398 } 399 400 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 401 A = R11; 402 D = R12; 403 E = R1; 404 Ok = true; 405 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 406 A = R12; 407 D = R11; 408 E = R1; 409 Ok = true; 410 } else { 411 return None; 412 } 413 } 414 if (!Ok) 415 return None; 416 417 if (L11 == A) { 418 B = L12; 419 C = L2; 420 } else if (L12 == A) { 421 B = L11; 422 C = L2; 423 } else if (L21 == A) { 424 B = L22; 425 C = L1; 426 } else if (L22 == A) { 427 B = L21; 428 C = L1; 429 } 430 431 unsigned LeftType = getMaskedICmpType(A, B, C, PredL); 432 unsigned RightType = getMaskedICmpType(A, D, E, PredR); 433 return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType)); 434 } 435 436 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single 437 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros 438 /// and the right hand side is of type BMask_Mixed. For example, 439 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). 440 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 441 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 442 Value *A, Value *B, Value *C, Value *D, Value *E, 443 ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 444 llvm::InstCombiner::BuilderTy &Builder) { 445 // We are given the canonical form: 446 // (icmp ne (A & B), 0) & (icmp eq (A & D), E). 447 // where D & E == E. 448 // 449 // If IsAnd is false, we get it in negated form: 450 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> 451 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). 452 // 453 // We currently handle the case of B, C, D, E are constant. 454 // 455 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 456 if (!BCst) 457 return nullptr; 458 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 459 if (!CCst) 460 return nullptr; 461 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 462 if (!DCst) 463 return nullptr; 464 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 465 if (!ECst) 466 return nullptr; 467 468 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 469 470 // Update E to the canonical form when D is a power of two and RHS is 471 // canonicalized as, 472 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or 473 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). 474 if (PredR != NewCC) 475 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 476 477 // If B or D is zero, skip because if LHS or RHS can be trivially folded by 478 // other folding rules and this pattern won't apply any more. 479 if (BCst->getValue() == 0 || DCst->getValue() == 0) 480 return nullptr; 481 482 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't 483 // deduce anything from it. 484 // For example, 485 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. 486 if ((BCst->getValue() & DCst->getValue()) == 0) 487 return nullptr; 488 489 // If the following two conditions are met: 490 // 491 // 1. mask B covers only a single bit that's not covered by mask D, that is, 492 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of 493 // B and D has only one bit set) and, 494 // 495 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other 496 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 497 // 498 // then that single bit in B must be one and thus the whole expression can be 499 // folded to 500 // (A & (B | D)) == (B & (B ^ D)) | E. 501 // 502 // For example, 503 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) 504 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) 505 if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) && 506 (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) { 507 APInt BorD = BCst->getValue() | DCst->getValue(); 508 APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) | 509 ECst->getValue(); 510 Value *NewMask = ConstantInt::get(BCst->getType(), BorD); 511 Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE); 512 Value *NewAnd = Builder.CreateAnd(A, NewMask); 513 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); 514 } 515 516 auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { 517 return (C1->getValue() & C2->getValue()) == C1->getValue(); 518 }; 519 auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { 520 return (C1->getValue() & C2->getValue()) == C2->getValue(); 521 }; 522 523 // In the following, we consider only the cases where B is a superset of D, B 524 // is a subset of D, or B == D because otherwise there's at least one bit 525 // covered by B but not D, in which case we can't deduce much from it, so 526 // no folding (aside from the single must-be-one bit case right above.) 527 // For example, 528 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. 529 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) 530 return nullptr; 531 532 // At this point, either B is a superset of D, B is a subset of D or B == D. 533 534 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict 535 // and the whole expression becomes false (or true if negated), otherwise, no 536 // folding. 537 // For example, 538 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. 539 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. 540 if (ECst->isZero()) { 541 if (IsSubSetOrEqual(BCst, DCst)) 542 return ConstantInt::get(LHS->getType(), !IsAnd); 543 return nullptr; 544 } 545 546 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == 547 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is 548 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes 549 // RHS. For example, 550 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 551 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 552 if (IsSuperSetOrEqual(BCst, DCst)) 553 return RHS; 554 // Otherwise, B is a subset of D. If B and E have a common bit set, 555 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. 556 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 557 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); 558 if ((BCst->getValue() & ECst->getValue()) != 0) 559 return RHS; 560 // Otherwise, LHS and RHS contradict and the whole expression becomes false 561 // (or true if negated.) For example, 562 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. 563 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. 564 return ConstantInt::get(LHS->getType(), !IsAnd); 565 } 566 567 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single 568 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side 569 /// aren't of the common mask pattern type. 570 static Value *foldLogOpOfMaskedICmpsAsymmetric( 571 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 572 Value *A, Value *B, Value *C, Value *D, Value *E, 573 ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 574 unsigned LHSMask, unsigned RHSMask, 575 llvm::InstCombiner::BuilderTy &Builder) { 576 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 577 "Expected equality predicates for masked type of icmps."); 578 // Handle Mask_NotAllZeros-BMask_Mixed cases. 579 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or 580 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) 581 // which gets swapped to 582 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). 583 if (!IsAnd) { 584 LHSMask = conjugateICmpMask(LHSMask); 585 RHSMask = conjugateICmpMask(RHSMask); 586 } 587 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { 588 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 589 LHS, RHS, IsAnd, A, B, C, D, E, 590 PredL, PredR, Builder)) { 591 return V; 592 } 593 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { 594 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 595 RHS, LHS, IsAnd, A, D, E, B, C, 596 PredR, PredL, Builder)) { 597 return V; 598 } 599 } 600 return nullptr; 601 } 602 603 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 604 /// into a single (icmp(A & X) ==/!= Y). 605 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 606 llvm::InstCombiner::BuilderTy &Builder) { 607 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 608 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 609 Optional<std::pair<unsigned, unsigned>> MaskPair = 610 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); 611 if (!MaskPair) 612 return nullptr; 613 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 614 "Expected equality predicates for masked type of icmps."); 615 unsigned LHSMask = MaskPair->first; 616 unsigned RHSMask = MaskPair->second; 617 unsigned Mask = LHSMask & RHSMask; 618 if (Mask == 0) { 619 // Even if the two sides don't share a common pattern, check if folding can 620 // still happen. 621 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( 622 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, 623 Builder)) 624 return V; 625 return nullptr; 626 } 627 628 // In full generality: 629 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 630 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 631 // 632 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 633 // equivalent to (icmp (A & X) !Op Y). 634 // 635 // Therefore, we can pretend for the rest of this function that we're dealing 636 // with the conjunction, provided we flip the sense of any comparisons (both 637 // input and output). 638 639 // In most cases we're going to produce an EQ for the "&&" case. 640 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 641 if (!IsAnd) { 642 // Convert the masking analysis into its equivalent with negated 643 // comparisons. 644 Mask = conjugateICmpMask(Mask); 645 } 646 647 if (Mask & Mask_AllZeros) { 648 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 649 // -> (icmp eq (A & (B|D)), 0) 650 Value *NewOr = Builder.CreateOr(B, D); 651 Value *NewAnd = Builder.CreateAnd(A, NewOr); 652 // We can't use C as zero because we might actually handle 653 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 654 // with B and D, having a single bit set. 655 Value *Zero = Constant::getNullValue(A->getType()); 656 return Builder.CreateICmp(NewCC, NewAnd, Zero); 657 } 658 if (Mask & BMask_AllOnes) { 659 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 660 // -> (icmp eq (A & (B|D)), (B|D)) 661 Value *NewOr = Builder.CreateOr(B, D); 662 Value *NewAnd = Builder.CreateAnd(A, NewOr); 663 return Builder.CreateICmp(NewCC, NewAnd, NewOr); 664 } 665 if (Mask & AMask_AllOnes) { 666 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 667 // -> (icmp eq (A & (B&D)), A) 668 Value *NewAnd1 = Builder.CreateAnd(B, D); 669 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); 670 return Builder.CreateICmp(NewCC, NewAnd2, A); 671 } 672 673 // Remaining cases assume at least that B and D are constant, and depend on 674 // their actual values. This isn't strictly necessary, just a "handle the 675 // easy cases for now" decision. 676 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 677 if (!BCst) 678 return nullptr; 679 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 680 if (!DCst) 681 return nullptr; 682 683 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { 684 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 685 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 686 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 687 // Only valid if one of the masks is a superset of the other (check "B&D" is 688 // the same as either B or D). 689 APInt NewMask = BCst->getValue() & DCst->getValue(); 690 691 if (NewMask == BCst->getValue()) 692 return LHS; 693 else if (NewMask == DCst->getValue()) 694 return RHS; 695 } 696 697 if (Mask & AMask_NotAllOnes) { 698 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 699 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 700 // Only valid if one of the masks is a superset of the other (check "B|D" is 701 // the same as either B or D). 702 APInt NewMask = BCst->getValue() | DCst->getValue(); 703 704 if (NewMask == BCst->getValue()) 705 return LHS; 706 else if (NewMask == DCst->getValue()) 707 return RHS; 708 } 709 710 if (Mask & BMask_Mixed) { 711 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 712 // We already know that B & C == C && D & E == E. 713 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 714 // C and E, which are shared by both the mask B and the mask D, don't 715 // contradict, then we can transform to 716 // -> (icmp eq (A & (B|D)), (C|E)) 717 // Currently, we only handle the case of B, C, D, and E being constant. 718 // We can't simply use C and E because we might actually handle 719 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 720 // with B and D, having a single bit set. 721 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 722 if (!CCst) 723 return nullptr; 724 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 725 if (!ECst) 726 return nullptr; 727 if (PredL != NewCC) 728 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); 729 if (PredR != NewCC) 730 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 731 732 // If there is a conflict, we should actually return a false for the 733 // whole construct. 734 if (((BCst->getValue() & DCst->getValue()) & 735 (CCst->getValue() ^ ECst->getValue())).getBoolValue()) 736 return ConstantInt::get(LHS->getType(), !IsAnd); 737 738 Value *NewOr1 = Builder.CreateOr(B, D); 739 Value *NewOr2 = ConstantExpr::getOr(CCst, ECst); 740 Value *NewAnd = Builder.CreateAnd(A, NewOr1); 741 return Builder.CreateICmp(NewCC, NewAnd, NewOr2); 742 } 743 744 return nullptr; 745 } 746 747 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 748 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 749 /// If \p Inverted is true then the check is for the inverted range, e.g. 750 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 751 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 752 bool Inverted) { 753 // Check the lower range comparison, e.g. x >= 0 754 // InstCombine already ensured that if there is a constant it's on the RHS. 755 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 756 if (!RangeStart) 757 return nullptr; 758 759 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 760 Cmp0->getPredicate()); 761 762 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 763 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 764 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 765 return nullptr; 766 767 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 768 Cmp1->getPredicate()); 769 770 Value *Input = Cmp0->getOperand(0); 771 Value *RangeEnd; 772 if (Cmp1->getOperand(0) == Input) { 773 // For the upper range compare we have: icmp x, n 774 RangeEnd = Cmp1->getOperand(1); 775 } else if (Cmp1->getOperand(1) == Input) { 776 // For the upper range compare we have: icmp n, x 777 RangeEnd = Cmp1->getOperand(0); 778 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 779 } else { 780 return nullptr; 781 } 782 783 // Check the upper range comparison, e.g. x < n 784 ICmpInst::Predicate NewPred; 785 switch (Pred1) { 786 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 787 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 788 default: return nullptr; 789 } 790 791 // This simplification is only valid if the upper range is not negative. 792 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); 793 if (!Known.isNonNegative()) 794 return nullptr; 795 796 if (Inverted) 797 NewPred = ICmpInst::getInversePredicate(NewPred); 798 799 return Builder.CreateICmp(NewPred, Input, RangeEnd); 800 } 801 802 static Value * 803 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS, 804 bool JoinedByAnd, 805 InstCombiner::BuilderTy &Builder) { 806 Value *X = LHS->getOperand(0); 807 if (X != RHS->getOperand(0)) 808 return nullptr; 809 810 const APInt *C1, *C2; 811 if (!match(LHS->getOperand(1), m_APInt(C1)) || 812 !match(RHS->getOperand(1), m_APInt(C2))) 813 return nullptr; 814 815 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2). 816 ICmpInst::Predicate Pred = LHS->getPredicate(); 817 if (Pred != RHS->getPredicate()) 818 return nullptr; 819 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) 820 return nullptr; 821 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) 822 return nullptr; 823 824 // The larger unsigned constant goes on the right. 825 if (C1->ugt(*C2)) 826 std::swap(C1, C2); 827 828 APInt Xor = *C1 ^ *C2; 829 if (Xor.isPowerOf2()) { 830 // If LHSC and RHSC differ by only one bit, then set that bit in X and 831 // compare against the larger constant: 832 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2 833 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2 834 // We choose an 'or' with a Pow2 constant rather than the inverse mask with 835 // 'and' because that may lead to smaller codegen from a smaller constant. 836 Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor)); 837 return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2)); 838 } 839 840 // Special case: get the ordering right when the values wrap around zero. 841 // Ie, we assumed the constants were unsigned when swapping earlier. 842 if (C1->isNullValue() && C2->isAllOnesValue()) 843 std::swap(C1, C2); 844 845 if (*C1 == *C2 - 1) { 846 // (X == 13 || X == 14) --> X - 13 <=u 1 847 // (X != 13 && X != 14) --> X - 13 >u 1 848 // An 'add' is the canonical IR form, so favor that over a 'sub'. 849 Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1))); 850 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; 851 return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1)); 852 } 853 854 return nullptr; 855 } 856 857 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 858 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 859 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, 860 BinaryOperator &Logic) { 861 bool JoinedByAnd = Logic.getOpcode() == Instruction::And; 862 assert((JoinedByAnd || Logic.getOpcode() == Instruction::Or) && 863 "Wrong opcode"); 864 ICmpInst::Predicate Pred = LHS->getPredicate(); 865 if (Pred != RHS->getPredicate()) 866 return nullptr; 867 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) 868 return nullptr; 869 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) 870 return nullptr; 871 872 // TODO support vector splats 873 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); 874 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); 875 if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero()) 876 return nullptr; 877 878 Value *A, *B, *C, *D; 879 if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) && 880 match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) { 881 if (A == D || B == D) 882 std::swap(C, D); 883 if (B == C) 884 std::swap(A, B); 885 886 if (A == C && 887 isKnownToBeAPowerOfTwo(B, false, 0, &Logic) && 888 isKnownToBeAPowerOfTwo(D, false, 0, &Logic)) { 889 Value *Mask = Builder.CreateOr(B, D); 890 Value *Masked = Builder.CreateAnd(A, Mask); 891 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 892 return Builder.CreateICmp(NewPred, Masked, Mask); 893 } 894 } 895 896 return nullptr; 897 } 898 899 /// General pattern: 900 /// X & Y 901 /// 902 /// Where Y is checking that all the high bits (covered by a mask 4294967168) 903 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 904 /// Pattern can be one of: 905 /// %t = add i32 %arg, 128 906 /// %r = icmp ult i32 %t, 256 907 /// Or 908 /// %t0 = shl i32 %arg, 24 909 /// %t1 = ashr i32 %t0, 24 910 /// %r = icmp eq i32 %t1, %arg 911 /// Or 912 /// %t0 = trunc i32 %arg to i8 913 /// %t1 = sext i8 %t0 to i32 914 /// %r = icmp eq i32 %t1, %arg 915 /// This pattern is a signed truncation check. 916 /// 917 /// And X is checking that some bit in that same mask is zero. 918 /// I.e. can be one of: 919 /// %r = icmp sgt i32 %arg, -1 920 /// Or 921 /// %t = and i32 %arg, 2147483648 922 /// %r = icmp eq i32 %t, 0 923 /// 924 /// Since we are checking that all the bits in that mask are the same, 925 /// and a particular bit is zero, what we are really checking is that all the 926 /// masked bits are zero. 927 /// So this should be transformed to: 928 /// %r = icmp ult i32 %arg, 128 929 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, 930 Instruction &CxtI, 931 InstCombiner::BuilderTy &Builder) { 932 assert(CxtI.getOpcode() == Instruction::And); 933 934 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) 935 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, 936 APInt &SignBitMask) -> bool { 937 CmpInst::Predicate Pred; 938 const APInt *I01, *I1; // powers of two; I1 == I01 << 1 939 if (!(match(ICmp, 940 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && 941 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) 942 return false; 943 // Which bit is the new sign bit as per the 'signed truncation' pattern? 944 SignBitMask = *I01; 945 return true; 946 }; 947 948 // One icmp needs to be 'signed truncation check'. 949 // We need to match this first, else we will mismatch commutative cases. 950 Value *X1; 951 APInt HighestBit; 952 ICmpInst *OtherICmp; 953 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) 954 OtherICmp = ICmp0; 955 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) 956 OtherICmp = ICmp1; 957 else 958 return nullptr; 959 960 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); 961 962 // Try to match/decompose into: icmp eq (X & Mask), 0 963 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, 964 APInt &UnsetBitsMask) -> bool { 965 CmpInst::Predicate Pred = ICmp->getPredicate(); 966 // Can it be decomposed into icmp eq (X & Mask), 0 ? 967 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), 968 Pred, X, UnsetBitsMask, 969 /*LookThroughTrunc=*/false) && 970 Pred == ICmpInst::ICMP_EQ) 971 return true; 972 // Is it icmp eq (X & Mask), 0 already? 973 const APInt *Mask; 974 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && 975 Pred == ICmpInst::ICMP_EQ) { 976 UnsetBitsMask = *Mask; 977 return true; 978 } 979 return false; 980 }; 981 982 // And the other icmp needs to be decomposable into a bit test. 983 Value *X0; 984 APInt UnsetBitsMask; 985 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) 986 return nullptr; 987 988 assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense."); 989 990 // Are they working on the same value? 991 Value *X; 992 if (X1 == X0) { 993 // Ok as is. 994 X = X1; 995 } else if (match(X0, m_Trunc(m_Specific(X1)))) { 996 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); 997 X = X1; 998 } else 999 return nullptr; 1000 1001 // So which bits should be uniform as per the 'signed truncation check'? 1002 // (all the bits starting with (i.e. including) HighestBit) 1003 APInt SignBitsMask = ~(HighestBit - 1U); 1004 1005 // UnsetBitsMask must have some common bits with SignBitsMask, 1006 if (!UnsetBitsMask.intersects(SignBitsMask)) 1007 return nullptr; 1008 1009 // Does UnsetBitsMask contain any bits outside of SignBitsMask? 1010 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { 1011 APInt OtherHighestBit = (~UnsetBitsMask) + 1U; 1012 if (!OtherHighestBit.isPowerOf2()) 1013 return nullptr; 1014 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); 1015 } 1016 // Else, if it does not, then all is ok as-is. 1017 1018 // %r = icmp ult %X, SignBit 1019 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), 1020 CxtI.getName() + ".simplified"); 1021 } 1022 1023 /// Reduce a pair of compares that check if a value has exactly 1 bit set. 1024 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, 1025 InstCombiner::BuilderTy &Builder) { 1026 // Handle 'and' / 'or' commutation: make the equality check the first operand. 1027 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) 1028 std::swap(Cmp0, Cmp1); 1029 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) 1030 std::swap(Cmp0, Cmp1); 1031 1032 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 1033 CmpInst::Predicate Pred0, Pred1; 1034 Value *X; 1035 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 1036 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 1037 m_SpecificInt(2))) && 1038 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { 1039 Value *CtPop = Cmp1->getOperand(0); 1040 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); 1041 } 1042 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 1043 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 1044 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 1045 m_SpecificInt(1))) && 1046 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { 1047 Value *CtPop = Cmp1->getOperand(0); 1048 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); 1049 } 1050 return nullptr; 1051 } 1052 1053 /// Commuted variants are assumed to be handled by calling this function again 1054 /// with the parameters swapped. 1055 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, 1056 ICmpInst *UnsignedICmp, bool IsAnd, 1057 const SimplifyQuery &Q, 1058 InstCombiner::BuilderTy &Builder) { 1059 Value *ZeroCmpOp; 1060 ICmpInst::Predicate EqPred; 1061 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || 1062 !ICmpInst::isEquality(EqPred)) 1063 return nullptr; 1064 1065 auto IsKnownNonZero = [&](Value *V) { 1066 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1067 }; 1068 1069 ICmpInst::Predicate UnsignedPred; 1070 1071 Value *A, *B; 1072 if (match(UnsignedICmp, 1073 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && 1074 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && 1075 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { 1076 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { 1077 if (!IsKnownNonZero(NonZero)) 1078 std::swap(NonZero, Other); 1079 return IsKnownNonZero(NonZero); 1080 }; 1081 1082 // Given ZeroCmpOp = (A + B) 1083 // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A 1084 // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A 1085 // 1086 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff 1087 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff 1088 // with X being the value (A/B) that is known to be non-zero, 1089 // and Y being remaining value. 1090 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1091 IsAnd) 1092 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1093 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && 1094 IsAnd && GetKnownNonZeroAndOther(B, A)) 1095 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1096 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1097 !IsAnd) 1098 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1099 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && 1100 !IsAnd && GetKnownNonZeroAndOther(B, A)) 1101 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1102 } 1103 1104 Value *Base, *Offset; 1105 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset)))) 1106 return nullptr; 1107 1108 if (!match(UnsignedICmp, 1109 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) || 1110 !ICmpInst::isUnsigned(UnsignedPred)) 1111 return nullptr; 1112 1113 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset 1114 // (no overflow and not null) 1115 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1116 UnsignedPred == ICmpInst::ICMP_UGT) && 1117 EqPred == ICmpInst::ICMP_NE && IsAnd) 1118 return Builder.CreateICmpUGT(Base, Offset); 1119 1120 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset 1121 // (overflow or null) 1122 if ((UnsignedPred == ICmpInst::ICMP_ULE || 1123 UnsignedPred == ICmpInst::ICMP_ULT) && 1124 EqPred == ICmpInst::ICMP_EQ && !IsAnd) 1125 return Builder.CreateICmpULE(Base, Offset); 1126 1127 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset 1128 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1129 IsAnd) 1130 return Builder.CreateICmpULT(Base, Offset); 1131 1132 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset 1133 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1134 !IsAnd) 1135 return Builder.CreateICmpUGE(Base, Offset); 1136 1137 return nullptr; 1138 } 1139 1140 /// Reduce logic-of-compares with equality to a constant by substituting a 1141 /// common operand with the constant. Callers are expected to call this with 1142 /// Cmp0/Cmp1 switched to handle logic op commutativity. 1143 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, 1144 BinaryOperator &Logic, 1145 InstCombiner::BuilderTy &Builder, 1146 const SimplifyQuery &Q) { 1147 bool IsAnd = Logic.getOpcode() == Instruction::And; 1148 assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op"); 1149 1150 // Match an equality compare with a non-poison constant as Cmp0. 1151 ICmpInst::Predicate Pred0; 1152 Value *X; 1153 Constant *C; 1154 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) || 1155 !isGuaranteedNotToBeUndefOrPoison(C)) 1156 return nullptr; 1157 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || 1158 (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) 1159 return nullptr; 1160 1161 // The other compare must include a common operand (X). Canonicalize the 1162 // common operand as operand 1 (Pred1 is swapped if the common operand was 1163 // operand 0). 1164 Value *Y; 1165 ICmpInst::Predicate Pred1; 1166 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X)))) 1167 return nullptr; 1168 1169 // Replace variable with constant value equivalence to remove a variable use: 1170 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) 1171 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) 1172 // Can think of the 'or' substitution with the 'and' bool equivalent: 1173 // A || B --> A || (!A && B) 1174 Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q); 1175 if (!SubstituteCmp) { 1176 // If we need to create a new instruction, require that the old compare can 1177 // be removed. 1178 if (!Cmp1->hasOneUse()) 1179 return nullptr; 1180 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C); 1181 } 1182 return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp); 1183 } 1184 1185 /// Fold (icmp)&(icmp) if possible. 1186 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, 1187 BinaryOperator &And) { 1188 const SimplifyQuery Q = SQ.getWithInstruction(&And); 1189 1190 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 1191 // if K1 and K2 are a one-bit mask. 1192 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, And)) 1193 return V; 1194 1195 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1196 1197 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 1198 if (predicatesFoldable(PredL, PredR)) { 1199 if (LHS->getOperand(0) == RHS->getOperand(1) && 1200 LHS->getOperand(1) == RHS->getOperand(0)) 1201 LHS->swapOperands(); 1202 if (LHS->getOperand(0) == RHS->getOperand(0) && 1203 LHS->getOperand(1) == RHS->getOperand(1)) { 1204 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 1205 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); 1206 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 1207 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 1208 } 1209 } 1210 1211 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) 1212 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) 1213 return V; 1214 1215 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q)) 1216 return V; 1217 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q)) 1218 return V; 1219 1220 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 1221 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) 1222 return V; 1223 1224 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 1225 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) 1226 return V; 1227 1228 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder)) 1229 return V; 1230 1231 if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder)) 1232 return V; 1233 1234 if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder)) 1235 return V; 1236 1237 if (Value *X = 1238 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder)) 1239 return X; 1240 if (Value *X = 1241 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder)) 1242 return X; 1243 1244 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). 1245 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 1246 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); 1247 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); 1248 if (!LHSC || !RHSC) 1249 return nullptr; 1250 1251 if (LHSC == RHSC && PredL == PredR) { 1252 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) 1253 // where C is a power of 2 or 1254 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 1255 if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) || 1256 (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) { 1257 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 1258 return Builder.CreateICmp(PredL, NewOr, LHSC); 1259 } 1260 } 1261 1262 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 1263 // where CMAX is the all ones value for the truncated type, 1264 // iff the lower bits of C2 and CA are zero. 1265 if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() && 1266 RHS->hasOneUse()) { 1267 Value *V; 1268 ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr; 1269 1270 // (trunc x) == C1 & (and x, CA) == C2 1271 // (and x, CA) == C2 & (trunc x) == C1 1272 if (match(RHS0, m_Trunc(m_Value(V))) && 1273 match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { 1274 SmallC = RHSC; 1275 BigC = LHSC; 1276 } else if (match(LHS0, m_Trunc(m_Value(V))) && 1277 match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { 1278 SmallC = LHSC; 1279 BigC = RHSC; 1280 } 1281 1282 if (SmallC && BigC) { 1283 unsigned BigBitSize = BigC->getType()->getBitWidth(); 1284 unsigned SmallBitSize = SmallC->getType()->getBitWidth(); 1285 1286 // Check that the low bits are zero. 1287 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 1288 if ((Low & AndC->getValue()).isNullValue() && 1289 (Low & BigC->getValue()).isNullValue()) { 1290 Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue()); 1291 APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue(); 1292 Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N); 1293 return Builder.CreateICmp(PredL, NewAnd, NewVal); 1294 } 1295 } 1296 } 1297 1298 // From here on, we only handle: 1299 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. 1300 if (LHS0 != RHS0) 1301 return nullptr; 1302 1303 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. 1304 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || 1305 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || 1306 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || 1307 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) 1308 return nullptr; 1309 1310 // We can't fold (ugt x, C) & (sgt x, C2). 1311 if (!predicatesFoldable(PredL, PredR)) 1312 return nullptr; 1313 1314 // Ensure that the larger constant is on the RHS. 1315 bool ShouldSwap; 1316 if (CmpInst::isSigned(PredL) || 1317 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) 1318 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); 1319 else 1320 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); 1321 1322 if (ShouldSwap) { 1323 std::swap(LHS, RHS); 1324 std::swap(LHSC, RHSC); 1325 std::swap(PredL, PredR); 1326 } 1327 1328 // At this point, we know we have two icmp instructions 1329 // comparing a value against two constants and and'ing the result 1330 // together. Because of the above check, we know that we only have 1331 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 1332 // (from the icmp folding check above), that the two constants 1333 // are not equal and that the larger constant is on the RHS 1334 assert(LHSC != RHSC && "Compares not folded above?"); 1335 1336 switch (PredL) { 1337 default: 1338 llvm_unreachable("Unknown integer condition code!"); 1339 case ICmpInst::ICMP_NE: 1340 switch (PredR) { 1341 default: 1342 llvm_unreachable("Unknown integer condition code!"); 1343 case ICmpInst::ICMP_ULT: 1344 // (X != 13 & X u< 14) -> X < 13 1345 if (LHSC->getValue() == (RHSC->getValue() - 1)) 1346 return Builder.CreateICmpULT(LHS0, LHSC); 1347 if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1 1348 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1349 false, true); 1350 break; // (X != 13 & X u< 15) -> no change 1351 case ICmpInst::ICMP_SLT: 1352 // (X != 13 & X s< 14) -> X < 13 1353 if (LHSC->getValue() == (RHSC->getValue() - 1)) 1354 return Builder.CreateICmpSLT(LHS0, LHSC); 1355 // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1)) 1356 if (LHSC->isMinValue(true)) 1357 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1358 true, true); 1359 break; // (X != 13 & X s< 15) -> no change 1360 case ICmpInst::ICMP_NE: 1361 // Potential folds for this case should already be handled. 1362 break; 1363 } 1364 break; 1365 case ICmpInst::ICMP_UGT: 1366 switch (PredR) { 1367 default: 1368 llvm_unreachable("Unknown integer condition code!"); 1369 case ICmpInst::ICMP_NE: 1370 // (X u> 13 & X != 14) -> X u> 14 1371 if (RHSC->getValue() == (LHSC->getValue() + 1)) 1372 return Builder.CreateICmp(PredL, LHS0, RHSC); 1373 // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1) 1374 if (RHSC->isMaxValue(false)) 1375 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1376 false, true); 1377 break; // (X u> 13 & X != 15) -> no change 1378 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1 1379 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1380 false, true); 1381 } 1382 break; 1383 case ICmpInst::ICMP_SGT: 1384 switch (PredR) { 1385 default: 1386 llvm_unreachable("Unknown integer condition code!"); 1387 case ICmpInst::ICMP_NE: 1388 // (X s> 13 & X != 14) -> X s> 14 1389 if (RHSC->getValue() == (LHSC->getValue() + 1)) 1390 return Builder.CreateICmp(PredL, LHS0, RHSC); 1391 // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1) 1392 if (RHSC->isMaxValue(true)) 1393 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1394 true, true); 1395 break; // (X s> 13 & X != 15) -> no change 1396 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1 1397 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true, 1398 true); 1399 } 1400 break; 1401 } 1402 1403 return nullptr; 1404 } 1405 1406 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1407 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1408 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1409 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1410 1411 if (LHS0 == RHS1 && RHS0 == LHS1) { 1412 // Swap RHS operands to match LHS. 1413 PredR = FCmpInst::getSwappedPredicate(PredR); 1414 std::swap(RHS0, RHS1); 1415 } 1416 1417 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1418 // Suppose the relation between x and y is R, where R is one of 1419 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 1420 // testing the desired relations. 1421 // 1422 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1423 // bool(R & CC0) && bool(R & CC1) 1424 // = bool((R & CC0) & (R & CC1)) 1425 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 1426 // 1427 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1428 // bool(R & CC0) || bool(R & CC1) 1429 // = bool((R & CC0) | (R & CC1)) 1430 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 1431 if (LHS0 == RHS0 && LHS1 == RHS1) { 1432 unsigned FCmpCodeL = getFCmpCode(PredL); 1433 unsigned FCmpCodeR = getFCmpCode(PredR); 1434 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; 1435 return getFCmpValue(NewPred, LHS0, LHS1, Builder); 1436 } 1437 1438 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1439 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1440 if (LHS0->getType() != RHS0->getType()) 1441 return nullptr; 1442 1443 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and 1444 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). 1445 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) 1446 // Ignore the constants because they are obviously not NANs: 1447 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) 1448 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) 1449 return Builder.CreateFCmp(PredL, LHS0, RHS0); 1450 } 1451 1452 return nullptr; 1453 } 1454 1455 /// This a limited reassociation for a special case (see above) where we are 1456 /// checking if two values are either both NAN (unordered) or not-NAN (ordered). 1457 /// This could be handled more generally in '-reassociation', but it seems like 1458 /// an unlikely pattern for a large number of logic ops and fcmps. 1459 static Instruction *reassociateFCmps(BinaryOperator &BO, 1460 InstCombiner::BuilderTy &Builder) { 1461 Instruction::BinaryOps Opcode = BO.getOpcode(); 1462 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1463 "Expecting and/or op for fcmp transform"); 1464 1465 // There are 4 commuted variants of the pattern. Canonicalize operands of this 1466 // logic op so an fcmp is operand 0 and a matching logic op is operand 1. 1467 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; 1468 FCmpInst::Predicate Pred; 1469 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) 1470 std::swap(Op0, Op1); 1471 1472 // Match inner binop and the predicate for combining 2 NAN checks into 1. 1473 BinaryOperator *BO1; 1474 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD 1475 : FCmpInst::FCMP_UNO; 1476 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || 1477 !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode) 1478 return nullptr; 1479 1480 // The inner logic op must have a matching fcmp operand. 1481 Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y; 1482 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1483 Pred != NanPred || X->getType() != Y->getType()) 1484 std::swap(BO10, BO11); 1485 1486 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1487 Pred != NanPred || X->getType() != Y->getType()) 1488 return nullptr; 1489 1490 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z 1491 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z 1492 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); 1493 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { 1494 // Intersect FMF from the 2 source fcmps. 1495 NewFCmpInst->copyIRFlags(Op0); 1496 NewFCmpInst->andIRFlags(BO10); 1497 } 1498 return BinaryOperator::Create(Opcode, NewFCmp, BO11); 1499 } 1500 1501 /// Match De Morgan's Laws: 1502 /// (~A & ~B) == (~(A | B)) 1503 /// (~A | ~B) == (~(A & B)) 1504 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1505 InstCombiner::BuilderTy &Builder) { 1506 auto Opcode = I.getOpcode(); 1507 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1508 "Trying to match De Morgan's Laws with something other than and/or"); 1509 1510 // Flip the logic operation. 1511 Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1512 1513 Value *A, *B; 1514 if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) && 1515 match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) && 1516 !isFreeToInvert(A, A->hasOneUse()) && 1517 !isFreeToInvert(B, B->hasOneUse())) { 1518 Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan"); 1519 return BinaryOperator::CreateNot(AndOr); 1520 } 1521 1522 return nullptr; 1523 } 1524 1525 bool InstCombiner::shouldOptimizeCast(CastInst *CI) { 1526 Value *CastSrc = CI->getOperand(0); 1527 1528 // Noop casts and casts of constants should be eliminated trivially. 1529 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) 1530 return false; 1531 1532 // If this cast is paired with another cast that can be eliminated, we prefer 1533 // to have it eliminated. 1534 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) 1535 if (isEliminableCastPair(PrecedingCI, CI)) 1536 return false; 1537 1538 return true; 1539 } 1540 1541 /// Fold {and,or,xor} (cast X), C. 1542 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, 1543 InstCombiner::BuilderTy &Builder) { 1544 Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); 1545 if (!C) 1546 return nullptr; 1547 1548 auto LogicOpc = Logic.getOpcode(); 1549 Type *DestTy = Logic.getType(); 1550 Type *SrcTy = Cast->getSrcTy(); 1551 1552 // Move the logic operation ahead of a zext or sext if the constant is 1553 // unchanged in the smaller source type. Performing the logic in a smaller 1554 // type may provide more information to later folds, and the smaller logic 1555 // instruction may be cheaper (particularly in the case of vectors). 1556 Value *X; 1557 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { 1558 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1559 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy); 1560 if (ZextTruncC == C) { 1561 // LogicOpc (zext X), C --> zext (LogicOpc X, C) 1562 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1563 return new ZExtInst(NewOp, DestTy); 1564 } 1565 } 1566 1567 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) { 1568 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1569 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy); 1570 if (SextTruncC == C) { 1571 // LogicOpc (sext X), C --> sext (LogicOpc X, C) 1572 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1573 return new SExtInst(NewOp, DestTy); 1574 } 1575 } 1576 1577 return nullptr; 1578 } 1579 1580 /// Fold {and,or,xor} (cast X), Y. 1581 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) { 1582 auto LogicOpc = I.getOpcode(); 1583 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); 1584 1585 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1586 CastInst *Cast0 = dyn_cast<CastInst>(Op0); 1587 if (!Cast0) 1588 return nullptr; 1589 1590 // This must be a cast from an integer or integer vector source type to allow 1591 // transformation of the logic operation to the source type. 1592 Type *DestTy = I.getType(); 1593 Type *SrcTy = Cast0->getSrcTy(); 1594 if (!SrcTy->isIntOrIntVectorTy()) 1595 return nullptr; 1596 1597 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder)) 1598 return Ret; 1599 1600 CastInst *Cast1 = dyn_cast<CastInst>(Op1); 1601 if (!Cast1) 1602 return nullptr; 1603 1604 // Both operands of the logic operation are casts. The casts must be of the 1605 // same type for reduction. 1606 auto CastOpcode = Cast0->getOpcode(); 1607 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy()) 1608 return nullptr; 1609 1610 Value *Cast0Src = Cast0->getOperand(0); 1611 Value *Cast1Src = Cast1->getOperand(0); 1612 1613 // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) 1614 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { 1615 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 1616 I.getName()); 1617 return CastInst::Create(CastOpcode, NewOp, DestTy); 1618 } 1619 1620 // For now, only 'and'/'or' have optimizations after this. 1621 if (LogicOpc == Instruction::Xor) 1622 return nullptr; 1623 1624 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the 1625 // cast is otherwise not optimizable. This happens for vector sexts. 1626 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); 1627 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); 1628 if (ICmp0 && ICmp1) { 1629 Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I) 1630 : foldOrOfICmps(ICmp0, ICmp1, I); 1631 if (Res) 1632 return CastInst::Create(CastOpcode, Res, DestTy); 1633 return nullptr; 1634 } 1635 1636 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the 1637 // cast is otherwise not optimizable. This happens for vector sexts. 1638 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); 1639 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); 1640 if (FCmp0 && FCmp1) 1641 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And)) 1642 return CastInst::Create(CastOpcode, R, DestTy); 1643 1644 return nullptr; 1645 } 1646 1647 static Instruction *foldAndToXor(BinaryOperator &I, 1648 InstCombiner::BuilderTy &Builder) { 1649 assert(I.getOpcode() == Instruction::And); 1650 Value *Op0 = I.getOperand(0); 1651 Value *Op1 = I.getOperand(1); 1652 Value *A, *B; 1653 1654 // Operand complexity canonicalization guarantees that the 'or' is Op0. 1655 // (A | B) & ~(A & B) --> A ^ B 1656 // (A | B) & ~(B & A) --> A ^ B 1657 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), 1658 m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) 1659 return BinaryOperator::CreateXor(A, B); 1660 1661 // (A | ~B) & (~A | B) --> ~(A ^ B) 1662 // (A | ~B) & (B | ~A) --> ~(A ^ B) 1663 // (~B | A) & (~A | B) --> ~(A ^ B) 1664 // (~B | A) & (B | ~A) --> ~(A ^ B) 1665 if (Op0->hasOneUse() || Op1->hasOneUse()) 1666 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), 1667 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 1668 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1669 1670 return nullptr; 1671 } 1672 1673 static Instruction *foldOrToXor(BinaryOperator &I, 1674 InstCombiner::BuilderTy &Builder) { 1675 assert(I.getOpcode() == Instruction::Or); 1676 Value *Op0 = I.getOperand(0); 1677 Value *Op1 = I.getOperand(1); 1678 Value *A, *B; 1679 1680 // Operand complexity canonicalization guarantees that the 'and' is Op0. 1681 // (A & B) | ~(A | B) --> ~(A ^ B) 1682 // (A & B) | ~(B | A) --> ~(A ^ B) 1683 if (Op0->hasOneUse() || Op1->hasOneUse()) 1684 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1685 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1686 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1687 1688 // (A & ~B) | (~A & B) --> A ^ B 1689 // (A & ~B) | (B & ~A) --> A ^ B 1690 // (~B & A) | (~A & B) --> A ^ B 1691 // (~B & A) | (B & ~A) --> A ^ B 1692 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 1693 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) 1694 return BinaryOperator::CreateXor(A, B); 1695 1696 return nullptr; 1697 } 1698 1699 /// Return true if a constant shift amount is always less than the specified 1700 /// bit-width. If not, the shift could create poison in the narrower type. 1701 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { 1702 if (auto *ScalarC = dyn_cast<ConstantInt>(C)) 1703 return ScalarC->getZExtValue() < BitWidth; 1704 1705 if (C->getType()->isVectorTy()) { 1706 // Check each element of a constant vector. 1707 unsigned NumElts = cast<VectorType>(C->getType())->getNumElements(); 1708 for (unsigned i = 0; i != NumElts; ++i) { 1709 Constant *Elt = C->getAggregateElement(i); 1710 if (!Elt) 1711 return false; 1712 if (isa<UndefValue>(Elt)) 1713 continue; 1714 auto *CI = dyn_cast<ConstantInt>(Elt); 1715 if (!CI || CI->getZExtValue() >= BitWidth) 1716 return false; 1717 } 1718 return true; 1719 } 1720 1721 // The constant is a constant expression or unknown. 1722 return false; 1723 } 1724 1725 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and 1726 /// a common zext operand: and (binop (zext X), C), (zext X). 1727 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) { 1728 // This transform could also apply to {or, and, xor}, but there are better 1729 // folds for those cases, so we don't expect those patterns here. AShr is not 1730 // handled because it should always be transformed to LShr in this sequence. 1731 // The subtract transform is different because it has a constant on the left. 1732 // Add/mul commute the constant to RHS; sub with constant RHS becomes add. 1733 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); 1734 Constant *C; 1735 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && 1736 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && 1737 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && 1738 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && 1739 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) 1740 return nullptr; 1741 1742 Value *X; 1743 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) 1744 return nullptr; 1745 1746 Type *Ty = And.getType(); 1747 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) 1748 return nullptr; 1749 1750 // If we're narrowing a shift, the shift amount must be safe (less than the 1751 // width) in the narrower type. If the shift amount is greater, instsimplify 1752 // usually handles that case, but we can't guarantee/assert it. 1753 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); 1754 if (Opc == Instruction::LShr || Opc == Instruction::Shl) 1755 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) 1756 return nullptr; 1757 1758 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) 1759 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) 1760 Value *NewC = ConstantExpr::getTrunc(C, X->getType()); 1761 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) 1762 : Builder.CreateBinOp(Opc, X, NewC); 1763 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); 1764 } 1765 1766 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 1767 // here. We should standardize that construct where it is needed or choose some 1768 // other way to ensure that commutated variants of patterns are not missed. 1769 Instruction *InstCombiner::visitAnd(BinaryOperator &I) { 1770 if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1), 1771 SQ.getWithInstruction(&I))) 1772 return replaceInstUsesWith(I, V); 1773 1774 if (SimplifyAssociativeOrCommutative(I)) 1775 return &I; 1776 1777 if (Instruction *X = foldVectorBinop(I)) 1778 return X; 1779 1780 // See if we can simplify any instructions used by the instruction whose sole 1781 // purpose is to compute bits we don't care about. 1782 if (SimplifyDemandedInstructionBits(I)) 1783 return &I; 1784 1785 // Do this before using distributive laws to catch simple and/or/not patterns. 1786 if (Instruction *Xor = foldAndToXor(I, Builder)) 1787 return Xor; 1788 1789 // (A|B)&(A|C) -> A|(B&C) etc 1790 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1791 return replaceInstUsesWith(I, V); 1792 1793 if (Value *V = SimplifyBSwap(I, Builder)) 1794 return replaceInstUsesWith(I, V); 1795 1796 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1797 const APInt *C; 1798 if (match(Op1, m_APInt(C))) { 1799 Value *X, *Y; 1800 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) && 1801 C->isOneValue()) { 1802 // (1 << X) & 1 --> zext(X == 0) 1803 // (1 >> X) & 1 --> zext(X == 0) 1804 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0)); 1805 return new ZExtInst(IsZero, I.getType()); 1806 } 1807 1808 const APInt *XorC; 1809 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { 1810 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 1811 Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC); 1812 Value *And = Builder.CreateAnd(X, Op1); 1813 And->takeName(Op0); 1814 return BinaryOperator::CreateXor(And, NewC); 1815 } 1816 1817 const APInt *OrC; 1818 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { 1819 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) 1820 // NOTE: This reduces the number of bits set in the & mask, which 1821 // can expose opportunities for store narrowing for scalars. 1822 // NOTE: SimplifyDemandedBits should have already removed bits from C1 1823 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in 1824 // above, but this feels safer. 1825 APInt Together = *C & *OrC; 1826 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), 1827 Together ^ *C)); 1828 And->takeName(Op0); 1829 return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(), 1830 Together)); 1831 } 1832 1833 // If the mask is only needed on one incoming arm, push the 'and' op up. 1834 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || 1835 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 1836 APInt NotAndMask(~(*C)); 1837 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); 1838 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { 1839 // Not masking anything out for the LHS, move mask to RHS. 1840 // and ({x}or X, Y), C --> {x}or X, (and Y, C) 1841 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); 1842 return BinaryOperator::Create(BinOp, X, NewRHS); 1843 } 1844 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { 1845 // Not masking anything out for the RHS, move mask to LHS. 1846 // and ({x}or X, Y), C --> {x}or (and X, C), Y 1847 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); 1848 return BinaryOperator::Create(BinOp, NewLHS, Y); 1849 } 1850 } 1851 const APInt *ShiftC; 1852 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) { 1853 unsigned Width = I.getType()->getScalarSizeInBits(); 1854 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) { 1855 // We are clearing high bits that were potentially set by sext+ashr: 1856 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC 1857 Value *Sext = Builder.CreateSExt(X, I.getType()); 1858 Constant *ShAmtC = ConstantInt::get(I.getType(), ShiftC->zext(Width)); 1859 return BinaryOperator::CreateLShr(Sext, ShAmtC); 1860 } 1861 } 1862 } 1863 1864 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { 1865 const APInt &AndRHSMask = AndRHS->getValue(); 1866 1867 // Optimize a variety of ((val OP C1) & C2) combinations... 1868 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 1869 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth 1870 // of X and OP behaves well when given trunc(C1) and X. 1871 // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt. 1872 switch (Op0I->getOpcode()) { 1873 default: 1874 break; 1875 case Instruction::Xor: 1876 case Instruction::Or: 1877 case Instruction::Mul: 1878 case Instruction::Add: 1879 case Instruction::Sub: 1880 Value *X; 1881 ConstantInt *C1; 1882 // TODO: The one use restrictions could be relaxed a little if the AND 1883 // is going to be removed. 1884 if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), 1885 m_ConstantInt(C1))))) { 1886 if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) { 1887 auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType()); 1888 Value *BinOp; 1889 Value *Op0LHS = Op0I->getOperand(0); 1890 if (isa<ZExtInst>(Op0LHS)) 1891 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1); 1892 else 1893 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X); 1894 auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType()); 1895 auto *And = Builder.CreateAnd(BinOp, TruncC2); 1896 return new ZExtInst(And, I.getType()); 1897 } 1898 } 1899 } 1900 1901 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) 1902 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) 1903 return Res; 1904 } 1905 1906 // If this is an integer truncation, and if the source is an 'and' with 1907 // immediate, transform it. This frequently occurs for bitfield accesses. 1908 { 1909 Value *X = nullptr; ConstantInt *YC = nullptr; 1910 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { 1911 // Change: and (trunc (and X, YC) to T), C2 1912 // into : and (trunc X to T), trunc(YC) & C2 1913 // This will fold the two constants together, which may allow 1914 // other simplifications. 1915 Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk"); 1916 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); 1917 C3 = ConstantExpr::getAnd(C3, AndRHS); 1918 return BinaryOperator::CreateAnd(NewCast, C3); 1919 } 1920 } 1921 } 1922 1923 if (Instruction *Z = narrowMaskedBinOp(I)) 1924 return Z; 1925 1926 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 1927 return FoldedLogic; 1928 1929 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 1930 return DeMorgan; 1931 1932 { 1933 Value *A, *B, *C; 1934 // A & (A ^ B) --> A & ~B 1935 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B))))) 1936 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B)); 1937 // (A ^ B) & A --> A & ~B 1938 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B))))) 1939 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B)); 1940 1941 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 1942 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 1943 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 1944 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 1945 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C)); 1946 1947 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 1948 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 1949 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 1950 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 1951 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); 1952 1953 // (A | B) & ((~A) ^ B) -> (A & B) 1954 // (A | B) & (B ^ (~A)) -> (A & B) 1955 // (B | A) & ((~A) ^ B) -> (A & B) 1956 // (B | A) & (B ^ (~A)) -> (A & B) 1957 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 1958 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1959 return BinaryOperator::CreateAnd(A, B); 1960 1961 // ((~A) ^ B) & (A | B) -> (A & B) 1962 // ((~A) ^ B) & (B | A) -> (A & B) 1963 // (B ^ (~A)) & (A | B) -> (A & B) 1964 // (B ^ (~A)) & (B | A) -> (A & B) 1965 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 1966 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 1967 return BinaryOperator::CreateAnd(A, B); 1968 } 1969 1970 { 1971 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 1972 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 1973 if (LHS && RHS) 1974 if (Value *Res = foldAndOfICmps(LHS, RHS, I)) 1975 return replaceInstUsesWith(I, Res); 1976 1977 // TODO: Make this recursive; it's a little tricky because an arbitrary 1978 // number of 'and' instructions might have to be created. 1979 Value *X, *Y; 1980 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1981 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1982 if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) 1983 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); 1984 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1985 if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) 1986 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); 1987 } 1988 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1989 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1990 if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) 1991 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); 1992 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1993 if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) 1994 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); 1995 } 1996 } 1997 1998 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 1999 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2000 if (Value *Res = foldLogicOfFCmps(LHS, RHS, true)) 2001 return replaceInstUsesWith(I, Res); 2002 2003 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2004 return FoldedFCmps; 2005 2006 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 2007 return CastedAnd; 2008 2009 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. 2010 Value *A; 2011 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2012 A->getType()->isIntOrIntVectorTy(1)) 2013 return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType())); 2014 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2015 A->getType()->isIntOrIntVectorTy(1)) 2016 return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType())); 2017 2018 // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0. 2019 { 2020 Value *X, *Y; 2021 const APInt *ShAmt; 2022 Type *Ty = I.getType(); 2023 if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)), 2024 m_APInt(ShAmt))), 2025 m_Deferred(X))) && 2026 *ShAmt == Ty->getScalarSizeInBits() - 1) { 2027 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 2028 return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty)); 2029 } 2030 } 2031 2032 return nullptr; 2033 } 2034 2035 Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) { 2036 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 2037 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 2038 2039 // Look through zero extends. 2040 if (Instruction *Ext = dyn_cast<ZExtInst>(Op0)) 2041 Op0 = Ext->getOperand(0); 2042 2043 if (Instruction *Ext = dyn_cast<ZExtInst>(Op1)) 2044 Op1 = Ext->getOperand(0); 2045 2046 // (A | B) | C and A | (B | C) -> bswap if possible. 2047 bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) || 2048 match(Op1, m_Or(m_Value(), m_Value())); 2049 2050 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. 2051 bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) && 2052 match(Op1, m_LogicalShift(m_Value(), m_Value())); 2053 2054 // (A & B) | (C & D) -> bswap if possible. 2055 bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) && 2056 match(Op1, m_And(m_Value(), m_Value())); 2057 2058 // (A << B) | (C & D) -> bswap if possible. 2059 // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a 2060 // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935, 2061 // C2 = 8 for i32). 2062 // This pattern can occur when the operands of the 'or' are not canonicalized 2063 // for some reason (not having only one use, for example). 2064 bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) && 2065 match(Op1, m_And(m_Value(), m_Value()))) || 2066 (match(Op0, m_And(m_Value(), m_Value())) && 2067 match(Op1, m_LogicalShift(m_Value(), m_Value()))); 2068 2069 if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh) 2070 return nullptr; 2071 2072 SmallVector<Instruction*, 4> Insts; 2073 if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts)) 2074 return nullptr; 2075 Instruction *LastInst = Insts.pop_back_val(); 2076 LastInst->removeFromParent(); 2077 2078 for (auto *Inst : Insts) 2079 Worklist.push(Inst); 2080 return LastInst; 2081 } 2082 2083 /// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic. 2084 static Instruction *matchRotate(Instruction &Or) { 2085 // TODO: Can we reduce the code duplication between this and the related 2086 // rotate matching code under visitSelect and visitTrunc? 2087 unsigned Width = Or.getType()->getScalarSizeInBits(); 2088 if (!isPowerOf2_32(Width)) 2089 return nullptr; 2090 2091 // First, find an or'd pair of opposite shifts with the same shifted operand: 2092 // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1) 2093 BinaryOperator *Or0, *Or1; 2094 if (!match(Or.getOperand(0), m_BinOp(Or0)) || 2095 !match(Or.getOperand(1), m_BinOp(Or1))) 2096 return nullptr; 2097 2098 Value *ShVal, *ShAmt0, *ShAmt1; 2099 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 2100 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 2101 return nullptr; 2102 2103 BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode(); 2104 BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode(); 2105 if (ShiftOpcode0 == ShiftOpcode1) 2106 return nullptr; 2107 2108 // Match the shift amount operands for a rotate pattern. This always matches 2109 // a subtraction on the R operand. 2110 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 2111 // The shift amount may be masked with negation: 2112 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 2113 Value *X; 2114 unsigned Mask = Width - 1; 2115 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 2116 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 2117 return X; 2118 2119 // Similar to above, but the shift amount may be extended after masking, 2120 // so return the extended value as the parameter for the intrinsic. 2121 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2122 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), 2123 m_SpecificInt(Mask)))) 2124 return L; 2125 2126 return nullptr; 2127 }; 2128 2129 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); 2130 bool SubIsOnLHS = false; 2131 if (!ShAmt) { 2132 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); 2133 SubIsOnLHS = true; 2134 } 2135 if (!ShAmt) 2136 return nullptr; 2137 2138 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || 2139 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); 2140 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2141 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); 2142 return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt }); 2143 } 2144 2145 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. 2146 static Instruction *matchOrConcat(Instruction &Or, 2147 InstCombiner::BuilderTy &Builder) { 2148 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 2149 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 2150 Type *Ty = Or.getType(); 2151 2152 unsigned Width = Ty->getScalarSizeInBits(); 2153 if ((Width & 1) != 0) 2154 return nullptr; 2155 unsigned HalfWidth = Width / 2; 2156 2157 // Canonicalize zext (lower half) to LHS. 2158 if (!isa<ZExtInst>(Op0)) 2159 std::swap(Op0, Op1); 2160 2161 // Find lower/upper half. 2162 Value *LowerSrc, *ShlVal, *UpperSrc; 2163 const APInt *C; 2164 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) || 2165 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) || 2166 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc))))) 2167 return nullptr; 2168 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || 2169 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) 2170 return nullptr; 2171 2172 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { 2173 Value *NewLower = Builder.CreateZExt(Lo, Ty); 2174 Value *NewUpper = Builder.CreateZExt(Hi, Ty); 2175 NewUpper = Builder.CreateShl(NewUpper, HalfWidth); 2176 Value *BinOp = Builder.CreateOr(NewLower, NewUpper); 2177 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty); 2178 return Builder.CreateCall(F, BinOp); 2179 }; 2180 2181 // BSWAP: Push the concat down, swapping the lower/upper sources. 2182 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) 2183 Value *LowerBSwap, *UpperBSwap; 2184 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) && 2185 match(UpperSrc, m_BSwap(m_Value(UpperBSwap)))) 2186 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); 2187 2188 // BITREVERSE: Push the concat down, swapping the lower/upper sources. 2189 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) 2190 Value *LowerBRev, *UpperBRev; 2191 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) && 2192 match(UpperSrc, m_BitReverse(m_Value(UpperBRev)))) 2193 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); 2194 2195 return nullptr; 2196 } 2197 2198 /// If all elements of two constant vectors are 0/-1 and inverses, return true. 2199 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 2200 unsigned NumElts = cast<VectorType>(C1->getType())->getNumElements(); 2201 for (unsigned i = 0; i != NumElts; ++i) { 2202 Constant *EltC1 = C1->getAggregateElement(i); 2203 Constant *EltC2 = C2->getAggregateElement(i); 2204 if (!EltC1 || !EltC2) 2205 return false; 2206 2207 // One element must be all ones, and the other must be all zeros. 2208 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 2209 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 2210 return false; 2211 } 2212 return true; 2213 } 2214 2215 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 2216 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 2217 /// B, it can be used as the condition operand of a select instruction. 2218 Value *InstCombiner::getSelectCondition(Value *A, Value *B) { 2219 // Step 1: We may have peeked through bitcasts in the caller. 2220 // Exit immediately if we don't have (vector) integer types. 2221 Type *Ty = A->getType(); 2222 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) 2223 return nullptr; 2224 2225 // Step 2: We need 0 or all-1's bitmasks. 2226 if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits()) 2227 return nullptr; 2228 2229 // Step 3: If B is the 'not' value of A, we have our answer. 2230 if (match(A, m_Not(m_Specific(B)))) { 2231 // If these are scalars or vectors of i1, A can be used directly. 2232 if (Ty->isIntOrIntVectorTy(1)) 2233 return A; 2234 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty)); 2235 } 2236 2237 // If both operands are constants, see if the constants are inverse bitmasks. 2238 Constant *AConst, *BConst; 2239 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) 2240 if (AConst == ConstantExpr::getNot(BConst)) 2241 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); 2242 2243 // Look for more complex patterns. The 'not' op may be hidden behind various 2244 // casts. Look through sexts and bitcasts to find the booleans. 2245 Value *Cond; 2246 Value *NotB; 2247 if (match(A, m_SExt(m_Value(Cond))) && 2248 Cond->getType()->isIntOrIntVectorTy(1) && 2249 match(B, m_OneUse(m_Not(m_Value(NotB))))) { 2250 NotB = peekThroughBitcast(NotB, true); 2251 if (match(NotB, m_SExt(m_Specific(Cond)))) 2252 return Cond; 2253 } 2254 2255 // All scalar (and most vector) possibilities should be handled now. 2256 // Try more matches that only apply to non-splat constant vectors. 2257 if (!Ty->isVectorTy()) 2258 return nullptr; 2259 2260 // If both operands are xor'd with constants using the same sexted boolean 2261 // operand, see if the constants are inverse bitmasks. 2262 // TODO: Use ConstantExpr::getNot()? 2263 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && 2264 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && 2265 Cond->getType()->isIntOrIntVectorTy(1) && 2266 areInverseVectorBitmasks(AConst, BConst)) { 2267 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); 2268 return Builder.CreateXor(Cond, AConst); 2269 } 2270 return nullptr; 2271 } 2272 2273 /// We have an expression of the form (A & C) | (B & D). Try to simplify this 2274 /// to "A' ? C : D", where A' is a boolean or vector of booleans. 2275 Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B, 2276 Value *D) { 2277 // The potential condition of the select may be bitcasted. In that case, look 2278 // through its bitcast and the corresponding bitcast of the 'not' condition. 2279 Type *OrigType = A->getType(); 2280 A = peekThroughBitcast(A, true); 2281 B = peekThroughBitcast(B, true); 2282 if (Value *Cond = getSelectCondition(A, B)) { 2283 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) 2284 // The bitcasts will either all exist or all not exist. The builder will 2285 // not create unnecessary casts if the types already match. 2286 Value *BitcastC = Builder.CreateBitCast(C, A->getType()); 2287 Value *BitcastD = Builder.CreateBitCast(D, A->getType()); 2288 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); 2289 return Builder.CreateBitCast(Select, OrigType); 2290 } 2291 2292 return nullptr; 2293 } 2294 2295 /// Fold (icmp)|(icmp) if possible. 2296 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 2297 BinaryOperator &Or) { 2298 const SimplifyQuery Q = SQ.getWithInstruction(&Or); 2299 2300 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 2301 // if K1 and K2 are a one-bit mask. 2302 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, Or)) 2303 return V; 2304 2305 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 2306 2307 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); 2308 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); 2309 2310 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) 2311 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) 2312 // The original condition actually refers to the following two ranges: 2313 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] 2314 // We can fold these two ranges if: 2315 // 1) C1 and C2 is unsigned greater than C3. 2316 // 2) The two ranges are separated. 2317 // 3) C1 ^ C2 is one-bit mask. 2318 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. 2319 // This implies all values in the two ranges differ by exactly one bit. 2320 2321 if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) && 2322 PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() && 2323 LHSC->getType() == RHSC->getType() && 2324 LHSC->getValue() == (RHSC->getValue())) { 2325 2326 Value *LAdd = LHS->getOperand(0); 2327 Value *RAdd = RHS->getOperand(0); 2328 2329 Value *LAddOpnd, *RAddOpnd; 2330 ConstantInt *LAddC, *RAddC; 2331 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) && 2332 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) && 2333 LAddC->getValue().ugt(LHSC->getValue()) && 2334 RAddC->getValue().ugt(LHSC->getValue())) { 2335 2336 APInt DiffC = LAddC->getValue() ^ RAddC->getValue(); 2337 if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) { 2338 ConstantInt *MaxAddC = nullptr; 2339 if (LAddC->getValue().ult(RAddC->getValue())) 2340 MaxAddC = RAddC; 2341 else 2342 MaxAddC = LAddC; 2343 2344 APInt RRangeLow = -RAddC->getValue(); 2345 APInt RRangeHigh = RRangeLow + LHSC->getValue(); 2346 APInt LRangeLow = -LAddC->getValue(); 2347 APInt LRangeHigh = LRangeLow + LHSC->getValue(); 2348 APInt LowRangeDiff = RRangeLow ^ LRangeLow; 2349 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; 2350 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow 2351 : RRangeLow - LRangeLow; 2352 2353 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && 2354 RangeDiff.ugt(LHSC->getValue())) { 2355 Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC); 2356 2357 Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC); 2358 Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC); 2359 return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC); 2360 } 2361 } 2362 } 2363 } 2364 2365 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 2366 if (predicatesFoldable(PredL, PredR)) { 2367 if (LHS->getOperand(0) == RHS->getOperand(1) && 2368 LHS->getOperand(1) == RHS->getOperand(0)) 2369 LHS->swapOperands(); 2370 if (LHS->getOperand(0) == RHS->getOperand(0) && 2371 LHS->getOperand(1) == RHS->getOperand(1)) { 2372 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 2373 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); 2374 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 2375 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 2376 } 2377 } 2378 2379 // handle (roughly): 2380 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 2381 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) 2382 return V; 2383 2384 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 2385 if (LHS->hasOneUse() || RHS->hasOneUse()) { 2386 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) 2387 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) 2388 Value *A = nullptr, *B = nullptr; 2389 if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) { 2390 B = LHS0; 2391 if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1)) 2392 A = RHS0; 2393 else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0) 2394 A = RHS->getOperand(1); 2395 } 2396 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) 2397 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) 2398 else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) { 2399 B = RHS0; 2400 if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1)) 2401 A = LHS0; 2402 else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0) 2403 A = LHS->getOperand(1); 2404 } 2405 if (A && B) 2406 return Builder.CreateICmp( 2407 ICmpInst::ICMP_UGE, 2408 Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); 2409 } 2410 2411 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q)) 2412 return V; 2413 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q)) 2414 return V; 2415 2416 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 2417 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) 2418 return V; 2419 2420 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 2421 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) 2422 return V; 2423 2424 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder)) 2425 return V; 2426 2427 if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder)) 2428 return V; 2429 2430 if (Value *X = 2431 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder)) 2432 return X; 2433 if (Value *X = 2434 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder)) 2435 return X; 2436 2437 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 2438 if (!LHSC || !RHSC) 2439 return nullptr; 2440 2441 if (LHSC == RHSC && PredL == PredR) { 2442 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 2443 if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) { 2444 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 2445 return Builder.CreateICmp(PredL, NewOr, LHSC); 2446 } 2447 } 2448 2449 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) 2450 // iff C2 + CA == C1. 2451 if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) { 2452 ConstantInt *AddC; 2453 if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC)))) 2454 if (RHSC->getValue() + AddC->getValue() == LHSC->getValue()) 2455 return Builder.CreateICmpULE(LHS0, LHSC); 2456 } 2457 2458 // From here on, we only handle: 2459 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. 2460 if (LHS0 != RHS0) 2461 return nullptr; 2462 2463 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. 2464 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || 2465 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || 2466 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || 2467 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) 2468 return nullptr; 2469 2470 // We can't fold (ugt x, C) | (sgt x, C2). 2471 if (!predicatesFoldable(PredL, PredR)) 2472 return nullptr; 2473 2474 // Ensure that the larger constant is on the RHS. 2475 bool ShouldSwap; 2476 if (CmpInst::isSigned(PredL) || 2477 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) 2478 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); 2479 else 2480 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); 2481 2482 if (ShouldSwap) { 2483 std::swap(LHS, RHS); 2484 std::swap(LHSC, RHSC); 2485 std::swap(PredL, PredR); 2486 } 2487 2488 // At this point, we know we have two icmp instructions 2489 // comparing a value against two constants and or'ing the result 2490 // together. Because of the above check, we know that we only have 2491 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the 2492 // icmp folding check above), that the two constants are not 2493 // equal. 2494 assert(LHSC != RHSC && "Compares not folded above?"); 2495 2496 switch (PredL) { 2497 default: 2498 llvm_unreachable("Unknown integer condition code!"); 2499 case ICmpInst::ICMP_EQ: 2500 switch (PredR) { 2501 default: 2502 llvm_unreachable("Unknown integer condition code!"); 2503 case ICmpInst::ICMP_EQ: 2504 // Potential folds for this case should already be handled. 2505 break; 2506 case ICmpInst::ICMP_UGT: 2507 // (X == 0 || X u> C) -> (X-1) u>= C 2508 if (LHSC->isMinValue(false)) 2509 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, 2510 false, false); 2511 // (X == 13 | X u> 14) -> no change 2512 break; 2513 case ICmpInst::ICMP_SGT: 2514 // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN 2515 if (LHSC->isMinValue(true)) 2516 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, 2517 true, false); 2518 // (X == 13 | X s> 14) -> no change 2519 break; 2520 } 2521 break; 2522 case ICmpInst::ICMP_ULT: 2523 switch (PredR) { 2524 default: 2525 llvm_unreachable("Unknown integer condition code!"); 2526 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change 2527 // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C 2528 if (RHSC->isMaxValue(false)) 2529 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), 2530 false, false); 2531 break; 2532 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 2533 assert(!RHSC->isMaxValue(false) && "Missed icmp simplification"); 2534 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, 2535 false, false); 2536 } 2537 break; 2538 case ICmpInst::ICMP_SLT: 2539 switch (PredR) { 2540 default: 2541 llvm_unreachable("Unknown integer condition code!"); 2542 case ICmpInst::ICMP_EQ: 2543 // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C 2544 if (RHSC->isMaxValue(true)) 2545 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), 2546 true, false); 2547 // (X s< 13 | X == 14) -> no change 2548 break; 2549 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2 2550 assert(!RHSC->isMaxValue(true) && "Missed icmp simplification"); 2551 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true, 2552 false); 2553 } 2554 break; 2555 } 2556 return nullptr; 2557 } 2558 2559 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 2560 // here. We should standardize that construct where it is needed or choose some 2561 // other way to ensure that commutated variants of patterns are not missed. 2562 Instruction *InstCombiner::visitOr(BinaryOperator &I) { 2563 if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1), 2564 SQ.getWithInstruction(&I))) 2565 return replaceInstUsesWith(I, V); 2566 2567 if (SimplifyAssociativeOrCommutative(I)) 2568 return &I; 2569 2570 if (Instruction *X = foldVectorBinop(I)) 2571 return X; 2572 2573 // See if we can simplify any instructions used by the instruction whose sole 2574 // purpose is to compute bits we don't care about. 2575 if (SimplifyDemandedInstructionBits(I)) 2576 return &I; 2577 2578 // Do this before using distributive laws to catch simple and/or/not patterns. 2579 if (Instruction *Xor = foldOrToXor(I, Builder)) 2580 return Xor; 2581 2582 // (A&B)|(A&C) -> A&(B|C) etc 2583 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2584 return replaceInstUsesWith(I, V); 2585 2586 if (Value *V = SimplifyBSwap(I, Builder)) 2587 return replaceInstUsesWith(I, V); 2588 2589 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 2590 return FoldedLogic; 2591 2592 if (Instruction *BSwap = matchBSwap(I)) 2593 return BSwap; 2594 2595 if (Instruction *Rotate = matchRotate(I)) 2596 return Rotate; 2597 2598 if (Instruction *Concat = matchOrConcat(I, Builder)) 2599 return replaceInstUsesWith(I, Concat); 2600 2601 Value *X, *Y; 2602 const APInt *CV; 2603 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && 2604 !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) { 2605 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 2606 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). 2607 Value *Or = Builder.CreateOr(X, Y); 2608 return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV)); 2609 } 2610 2611 // (A & C)|(B & D) 2612 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2613 Value *A, *B, *C, *D; 2614 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 2615 match(Op1, m_And(m_Value(B), m_Value(D)))) { 2616 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 2617 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 2618 if (C1 && C2) { // (A & C1)|(B & C2) 2619 Value *V1 = nullptr, *V2 = nullptr; 2620 if ((C1->getValue() & C2->getValue()).isNullValue()) { 2621 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) 2622 // iff (C1&C2) == 0 and (N&~C1) == 0 2623 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && 2624 ((V1 == B && 2625 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) 2626 (V2 == B && 2627 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V) 2628 return BinaryOperator::CreateAnd(A, 2629 Builder.getInt(C1->getValue()|C2->getValue())); 2630 // Or commutes, try both ways. 2631 if (match(B, m_Or(m_Value(V1), m_Value(V2))) && 2632 ((V1 == A && 2633 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) 2634 (V2 == A && 2635 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V) 2636 return BinaryOperator::CreateAnd(B, 2637 Builder.getInt(C1->getValue()|C2->getValue())); 2638 2639 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) 2640 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. 2641 ConstantInt *C3 = nullptr, *C4 = nullptr; 2642 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && 2643 (C3->getValue() & ~C1->getValue()).isNullValue() && 2644 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && 2645 (C4->getValue() & ~C2->getValue()).isNullValue()) { 2646 V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); 2647 return BinaryOperator::CreateAnd(V2, 2648 Builder.getInt(C1->getValue()|C2->getValue())); 2649 } 2650 } 2651 2652 if (C1->getValue() == ~C2->getValue()) { 2653 Value *X; 2654 2655 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2 2656 if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) 2657 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B); 2658 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2 2659 if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) 2660 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A); 2661 2662 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2 2663 if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) 2664 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B); 2665 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2 2666 if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) 2667 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A); 2668 } 2669 } 2670 2671 // Don't try to form a select if it's unlikely that we'll get rid of at 2672 // least one of the operands. A select is generally more expensive than the 2673 // 'or' that it is replacing. 2674 if (Op0->hasOneUse() || Op1->hasOneUse()) { 2675 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 2676 if (Value *V = matchSelectFromAndOr(A, C, B, D)) 2677 return replaceInstUsesWith(I, V); 2678 if (Value *V = matchSelectFromAndOr(A, C, D, B)) 2679 return replaceInstUsesWith(I, V); 2680 if (Value *V = matchSelectFromAndOr(C, A, B, D)) 2681 return replaceInstUsesWith(I, V); 2682 if (Value *V = matchSelectFromAndOr(C, A, D, B)) 2683 return replaceInstUsesWith(I, V); 2684 if (Value *V = matchSelectFromAndOr(B, D, A, C)) 2685 return replaceInstUsesWith(I, V); 2686 if (Value *V = matchSelectFromAndOr(B, D, C, A)) 2687 return replaceInstUsesWith(I, V); 2688 if (Value *V = matchSelectFromAndOr(D, B, A, C)) 2689 return replaceInstUsesWith(I, V); 2690 if (Value *V = matchSelectFromAndOr(D, B, C, A)) 2691 return replaceInstUsesWith(I, V); 2692 } 2693 } 2694 2695 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 2696 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2697 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2698 return BinaryOperator::CreateOr(Op0, C); 2699 2700 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 2701 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2702 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2703 return BinaryOperator::CreateOr(Op1, C); 2704 2705 // ((B | C) & A) | B -> B | (A & C) 2706 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 2707 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C)); 2708 2709 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 2710 return DeMorgan; 2711 2712 // Canonicalize xor to the RHS. 2713 bool SwappedForXor = false; 2714 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 2715 std::swap(Op0, Op1); 2716 SwappedForXor = true; 2717 } 2718 2719 // A | ( A ^ B) -> A | B 2720 // A | (~A ^ B) -> A | ~B 2721 // (A & B) | (A ^ B) 2722 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 2723 if (Op0 == A || Op0 == B) 2724 return BinaryOperator::CreateOr(A, B); 2725 2726 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 2727 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 2728 return BinaryOperator::CreateOr(A, B); 2729 2730 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 2731 Value *Not = Builder.CreateNot(B, B->getName() + ".not"); 2732 return BinaryOperator::CreateOr(Not, Op0); 2733 } 2734 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 2735 Value *Not = Builder.CreateNot(A, A->getName() + ".not"); 2736 return BinaryOperator::CreateOr(Not, Op0); 2737 } 2738 } 2739 2740 // A | ~(A | B) -> A | ~B 2741 // A | ~(A ^ B) -> A | ~B 2742 if (match(Op1, m_Not(m_Value(A)))) 2743 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 2744 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 2745 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 2746 B->getOpcode() == Instruction::Xor)) { 2747 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 2748 B->getOperand(0); 2749 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not"); 2750 return BinaryOperator::CreateOr(Not, Op0); 2751 } 2752 2753 if (SwappedForXor) 2754 std::swap(Op0, Op1); 2755 2756 { 2757 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2758 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2759 if (LHS && RHS) 2760 if (Value *Res = foldOrOfICmps(LHS, RHS, I)) 2761 return replaceInstUsesWith(I, Res); 2762 2763 // TODO: Make this recursive; it's a little tricky because an arbitrary 2764 // number of 'or' instructions might have to be created. 2765 Value *X, *Y; 2766 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2767 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2768 if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) 2769 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); 2770 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2771 if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) 2772 return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); 2773 } 2774 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2775 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2776 if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) 2777 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); 2778 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2779 if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) 2780 return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); 2781 } 2782 } 2783 2784 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2785 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2786 if (Value *Res = foldLogicOfFCmps(LHS, RHS, false)) 2787 return replaceInstUsesWith(I, Res); 2788 2789 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2790 return FoldedFCmps; 2791 2792 if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 2793 return CastedOr; 2794 2795 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 2796 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2797 A->getType()->isIntOrIntVectorTy(1)) 2798 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); 2799 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2800 A->getType()->isIntOrIntVectorTy(1)) 2801 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); 2802 2803 // Note: If we've gotten to the point of visiting the outer OR, then the 2804 // inner one couldn't be simplified. If it was a constant, then it won't 2805 // be simplified by a later pass either, so we try swapping the inner/outer 2806 // ORs in the hopes that we'll be able to simplify it this way. 2807 // (X|C) | V --> (X|V) | C 2808 ConstantInt *CI; 2809 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && 2810 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { 2811 Value *Inner = Builder.CreateOr(A, Op1); 2812 Inner->takeName(Op0); 2813 return BinaryOperator::CreateOr(Inner, CI); 2814 } 2815 2816 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 2817 // Since this OR statement hasn't been optimized further yet, we hope 2818 // that this transformation will allow the new ORs to be optimized. 2819 { 2820 Value *X = nullptr, *Y = nullptr; 2821 if (Op0->hasOneUse() && Op1->hasOneUse() && 2822 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 2823 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 2824 Value *orTrue = Builder.CreateOr(A, C); 2825 Value *orFalse = Builder.CreateOr(B, D); 2826 return SelectInst::Create(X, orTrue, orFalse); 2827 } 2828 } 2829 2830 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? -1 : X. 2831 { 2832 Value *X, *Y; 2833 const APInt *ShAmt; 2834 Type *Ty = I.getType(); 2835 if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)), 2836 m_APInt(ShAmt))), 2837 m_Deferred(X))) && 2838 *ShAmt == Ty->getScalarSizeInBits() - 1) { 2839 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 2840 return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty), 2841 X); 2842 } 2843 } 2844 2845 if (Instruction *V = 2846 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2847 return V; 2848 2849 CmpInst::Predicate Pred; 2850 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; 2851 // Check if the OR weakens the overflow condition for umul.with.overflow by 2852 // treating any non-zero result as overflow. In that case, we overflow if both 2853 // umul.with.overflow operands are != 0, as in that case the result can only 2854 // be 0, iff the multiplication overflows. 2855 if (match(&I, 2856 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)), 2857 m_Value(Ov)), 2858 m_CombineAnd(m_ICmp(Pred, 2859 m_CombineAnd(m_ExtractValue<0>( 2860 m_Deferred(UMulWithOv)), 2861 m_Value(Mul)), 2862 m_ZeroInt()), 2863 m_Value(MulIsNotZero)))) && 2864 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) && 2865 Pred == CmpInst::ICMP_NE) { 2866 Value *A, *B; 2867 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>( 2868 m_Value(A), m_Value(B)))) { 2869 Value *NotNullA = Builder.CreateIsNotNull(A); 2870 Value *NotNullB = Builder.CreateIsNotNull(B); 2871 return BinaryOperator::CreateAnd(NotNullA, NotNullB); 2872 } 2873 } 2874 2875 return nullptr; 2876 } 2877 2878 /// A ^ B can be specified using other logic ops in a variety of patterns. We 2879 /// can fold these early and efficiently by morphing an existing instruction. 2880 static Instruction *foldXorToXor(BinaryOperator &I, 2881 InstCombiner::BuilderTy &Builder) { 2882 assert(I.getOpcode() == Instruction::Xor); 2883 Value *Op0 = I.getOperand(0); 2884 Value *Op1 = I.getOperand(1); 2885 Value *A, *B; 2886 2887 // There are 4 commuted variants for each of the basic patterns. 2888 2889 // (A & B) ^ (A | B) -> A ^ B 2890 // (A & B) ^ (B | A) -> A ^ B 2891 // (A | B) ^ (A & B) -> A ^ B 2892 // (A | B) ^ (B & A) -> A ^ B 2893 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), 2894 m_c_Or(m_Deferred(A), m_Deferred(B))))) 2895 return BinaryOperator::CreateXor(A, B); 2896 2897 // (A | ~B) ^ (~A | B) -> A ^ B 2898 // (~B | A) ^ (~A | B) -> A ^ B 2899 // (~A | B) ^ (A | ~B) -> A ^ B 2900 // (B | ~A) ^ (A | ~B) -> A ^ B 2901 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), 2902 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 2903 return BinaryOperator::CreateXor(A, B); 2904 2905 // (A & ~B) ^ (~A & B) -> A ^ B 2906 // (~B & A) ^ (~A & B) -> A ^ B 2907 // (~A & B) ^ (A & ~B) -> A ^ B 2908 // (B & ~A) ^ (A & ~B) -> A ^ B 2909 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), 2910 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) 2911 return BinaryOperator::CreateXor(A, B); 2912 2913 // For the remaining cases we need to get rid of one of the operands. 2914 if (!Op0->hasOneUse() && !Op1->hasOneUse()) 2915 return nullptr; 2916 2917 // (A | B) ^ ~(A & B) -> ~(A ^ B) 2918 // (A | B) ^ ~(B & A) -> ~(A ^ B) 2919 // (A & B) ^ ~(A | B) -> ~(A ^ B) 2920 // (A & B) ^ ~(B | A) -> ~(A ^ B) 2921 // Complexity sorting ensures the not will be on the right side. 2922 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && 2923 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || 2924 (match(Op0, m_And(m_Value(A), m_Value(B))) && 2925 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) 2926 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 2927 2928 return nullptr; 2929 } 2930 2931 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, 2932 BinaryOperator &I) { 2933 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && 2934 I.getOperand(1) == RHS && "Should be 'xor' with these operands"); 2935 2936 if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { 2937 if (LHS->getOperand(0) == RHS->getOperand(1) && 2938 LHS->getOperand(1) == RHS->getOperand(0)) 2939 LHS->swapOperands(); 2940 if (LHS->getOperand(0) == RHS->getOperand(0) && 2941 LHS->getOperand(1) == RHS->getOperand(1)) { 2942 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 2943 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 2944 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); 2945 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 2946 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 2947 } 2948 } 2949 2950 // TODO: This can be generalized to compares of non-signbits using 2951 // decomposeBitTestICmp(). It could be enhanced more by using (something like) 2952 // foldLogOpOfMaskedICmps(). 2953 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 2954 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 2955 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 2956 if ((LHS->hasOneUse() || RHS->hasOneUse()) && 2957 LHS0->getType() == RHS0->getType() && 2958 LHS0->getType()->isIntOrIntVectorTy()) { 2959 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 2960 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 2961 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && 2962 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) || 2963 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && 2964 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) { 2965 Value *Zero = ConstantInt::getNullValue(LHS0->getType()); 2966 return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero); 2967 } 2968 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 2969 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 2970 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && 2971 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) || 2972 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && 2973 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) { 2974 Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType()); 2975 return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne); 2976 } 2977 } 2978 2979 // Instead of trying to imitate the folds for and/or, decompose this 'xor' 2980 // into those logic ops. That is, try to turn this into an and-of-icmps 2981 // because we have many folds for that pattern. 2982 // 2983 // This is based on a truth table definition of xor: 2984 // X ^ Y --> (X | Y) & !(X & Y) 2985 if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { 2986 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). 2987 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). 2988 if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) { 2989 // TODO: Independently handle cases where the 'and' side is a constant. 2990 ICmpInst *X = nullptr, *Y = nullptr; 2991 if (OrICmp == LHS && AndICmp == RHS) { 2992 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y 2993 X = LHS; 2994 Y = RHS; 2995 } 2996 if (OrICmp == RHS && AndICmp == LHS) { 2997 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X 2998 X = RHS; 2999 Y = LHS; 3000 } 3001 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { 3002 // Invert the predicate of 'Y', thus inverting its output. 3003 Y->setPredicate(Y->getInversePredicate()); 3004 // So, are there other uses of Y? 3005 if (!Y->hasOneUse()) { 3006 // We need to adapt other uses of Y though. Get a value that matches 3007 // the original value of Y before inversion. While this increases 3008 // immediate instruction count, we have just ensured that all the 3009 // users are freely-invertible, so that 'not' *will* get folded away. 3010 BuilderTy::InsertPointGuard Guard(Builder); 3011 // Set insertion point to right after the Y. 3012 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); 3013 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3014 // Replace all uses of Y (excluding the one in NotY!) with NotY. 3015 Worklist.pushUsersToWorkList(*Y); 3016 Y->replaceUsesWithIf(NotY, 3017 [NotY](Use &U) { return U.getUser() != NotY; }); 3018 } 3019 // All done. 3020 return Builder.CreateAnd(LHS, RHS); 3021 } 3022 } 3023 } 3024 3025 return nullptr; 3026 } 3027 3028 /// If we have a masked merge, in the canonical form of: 3029 /// (assuming that A only has one use.) 3030 /// | A | |B| 3031 /// ((x ^ y) & M) ^ y 3032 /// | D | 3033 /// * If M is inverted: 3034 /// | D | 3035 /// ((x ^ y) & ~M) ^ y 3036 /// We can canonicalize by swapping the final xor operand 3037 /// to eliminate the 'not' of the mask. 3038 /// ((x ^ y) & M) ^ x 3039 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops 3040 /// because that shortens the dependency chain and improves analysis: 3041 /// (x & M) | (y & ~M) 3042 static Instruction *visitMaskedMerge(BinaryOperator &I, 3043 InstCombiner::BuilderTy &Builder) { 3044 Value *B, *X, *D; 3045 Value *M; 3046 if (!match(&I, m_c_Xor(m_Value(B), 3047 m_OneUse(m_c_And( 3048 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), 3049 m_Value(D)), 3050 m_Value(M)))))) 3051 return nullptr; 3052 3053 Value *NotM; 3054 if (match(M, m_Not(m_Value(NotM)))) { 3055 // De-invert the mask and swap the value in B part. 3056 Value *NewA = Builder.CreateAnd(D, NotM); 3057 return BinaryOperator::CreateXor(NewA, X); 3058 } 3059 3060 Constant *C; 3061 if (D->hasOneUse() && match(M, m_Constant(C))) { 3062 // Propagating undef is unsafe. Clamp undef elements to -1. 3063 Type *EltTy = C->getType()->getScalarType(); 3064 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 3065 // Unfold. 3066 Value *LHS = Builder.CreateAnd(X, C); 3067 Value *NotC = Builder.CreateNot(C); 3068 Value *RHS = Builder.CreateAnd(B, NotC); 3069 return BinaryOperator::CreateOr(LHS, RHS); 3070 } 3071 3072 return nullptr; 3073 } 3074 3075 // Transform 3076 // ~(x ^ y) 3077 // into: 3078 // (~x) ^ y 3079 // or into 3080 // x ^ (~y) 3081 static Instruction *sinkNotIntoXor(BinaryOperator &I, 3082 InstCombiner::BuilderTy &Builder) { 3083 Value *X, *Y; 3084 // FIXME: one-use check is not needed in general, but currently we are unable 3085 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) 3086 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) 3087 return nullptr; 3088 3089 // We only want to do the transform if it is free to do. 3090 if (isFreeToInvert(X, X->hasOneUse())) { 3091 // Ok, good. 3092 } else if (isFreeToInvert(Y, Y->hasOneUse())) { 3093 std::swap(X, Y); 3094 } else 3095 return nullptr; 3096 3097 Value *NotX = Builder.CreateNot(X, X->getName() + ".not"); 3098 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan"); 3099 } 3100 3101 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 3102 // here. We should standardize that construct where it is needed or choose some 3103 // other way to ensure that commutated variants of patterns are not missed. 3104 Instruction *InstCombiner::visitXor(BinaryOperator &I) { 3105 if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1), 3106 SQ.getWithInstruction(&I))) 3107 return replaceInstUsesWith(I, V); 3108 3109 if (SimplifyAssociativeOrCommutative(I)) 3110 return &I; 3111 3112 if (Instruction *X = foldVectorBinop(I)) 3113 return X; 3114 3115 if (Instruction *NewXor = foldXorToXor(I, Builder)) 3116 return NewXor; 3117 3118 // (A&B)^(A&C) -> A&(B^C) etc 3119 if (Value *V = SimplifyUsingDistributiveLaws(I)) 3120 return replaceInstUsesWith(I, V); 3121 3122 // See if we can simplify any instructions used by the instruction whose sole 3123 // purpose is to compute bits we don't care about. 3124 if (SimplifyDemandedInstructionBits(I)) 3125 return &I; 3126 3127 if (Value *V = SimplifyBSwap(I, Builder)) 3128 return replaceInstUsesWith(I, V); 3129 3130 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3131 3132 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) 3133 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits 3134 // calls in there are unnecessary as SimplifyDemandedInstructionBits should 3135 // have already taken care of those cases. 3136 Value *M; 3137 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), 3138 m_c_And(m_Deferred(M), m_Value())))) 3139 return BinaryOperator::CreateOr(Op0, Op1); 3140 3141 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. 3142 Value *X, *Y; 3143 3144 // We must eliminate the and/or (one-use) for these transforms to not increase 3145 // the instruction count. 3146 // ~(~X & Y) --> (X | ~Y) 3147 // ~(Y & ~X) --> (X | ~Y) 3148 if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) { 3149 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3150 return BinaryOperator::CreateOr(X, NotY); 3151 } 3152 // ~(~X | Y) --> (X & ~Y) 3153 // ~(Y | ~X) --> (X & ~Y) 3154 if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) { 3155 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3156 return BinaryOperator::CreateAnd(X, NotY); 3157 } 3158 3159 if (Instruction *Xor = visitMaskedMerge(I, Builder)) 3160 return Xor; 3161 3162 // Is this a 'not' (~) fed by a binary operator? 3163 BinaryOperator *NotVal; 3164 if (match(&I, m_Not(m_BinOp(NotVal)))) { 3165 if (NotVal->getOpcode() == Instruction::And || 3166 NotVal->getOpcode() == Instruction::Or) { 3167 // Apply DeMorgan's Law when inverts are free: 3168 // ~(X & Y) --> (~X | ~Y) 3169 // ~(X | Y) --> (~X & ~Y) 3170 if (isFreeToInvert(NotVal->getOperand(0), 3171 NotVal->getOperand(0)->hasOneUse()) && 3172 isFreeToInvert(NotVal->getOperand(1), 3173 NotVal->getOperand(1)->hasOneUse())) { 3174 Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs"); 3175 Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs"); 3176 if (NotVal->getOpcode() == Instruction::And) 3177 return BinaryOperator::CreateOr(NotX, NotY); 3178 return BinaryOperator::CreateAnd(NotX, NotY); 3179 } 3180 } 3181 3182 // ~(X - Y) --> ~X + Y 3183 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) 3184 if (isa<Constant>(X) || NotVal->hasOneUse()) 3185 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); 3186 3187 // ~(~X >>s Y) --> (X >>s Y) 3188 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) 3189 return BinaryOperator::CreateAShr(X, Y); 3190 3191 // If we are inverting a right-shifted constant, we may be able to eliminate 3192 // the 'not' by inverting the constant and using the opposite shift type. 3193 // Canonicalization rules ensure that only a negative constant uses 'ashr', 3194 // but we must check that in case that transform has not fired yet. 3195 3196 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) 3197 Constant *C; 3198 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && 3199 match(C, m_Negative())) { 3200 // We matched a negative constant, so propagating undef is unsafe. 3201 // Clamp undef elements to -1. 3202 Type *EltTy = C->getType()->getScalarType(); 3203 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 3204 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); 3205 } 3206 3207 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) 3208 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && 3209 match(C, m_NonNegative())) { 3210 // We matched a non-negative constant, so propagating undef is unsafe. 3211 // Clamp undef elements to 0. 3212 Type *EltTy = C->getType()->getScalarType(); 3213 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy)); 3214 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); 3215 } 3216 3217 // ~(X + C) --> -(C + 1) - X 3218 if (match(Op0, m_Add(m_Value(X), m_Constant(C)))) 3219 return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X); 3220 } 3221 3222 // Use DeMorgan and reassociation to eliminate a 'not' op. 3223 Constant *C1; 3224 if (match(Op1, m_Constant(C1))) { 3225 Constant *C2; 3226 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { 3227 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 3228 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); 3229 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); 3230 } 3231 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { 3232 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 3233 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); 3234 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); 3235 } 3236 } 3237 3238 // not (cmp A, B) = !cmp A, B 3239 CmpInst::Predicate Pred; 3240 if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) { 3241 cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred)); 3242 return replaceInstUsesWith(I, Op0); 3243 } 3244 3245 { 3246 const APInt *RHSC; 3247 if (match(Op1, m_APInt(RHSC))) { 3248 Value *X; 3249 const APInt *C; 3250 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) { 3251 // (C - X) ^ signmask -> (C + signmask - X) 3252 Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); 3253 return BinaryOperator::CreateSub(NewC, X); 3254 } 3255 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) { 3256 // (X + C) ^ signmask -> (X + C + signmask) 3257 Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); 3258 return BinaryOperator::CreateAdd(X, NewC); 3259 } 3260 3261 // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0 3262 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && 3263 MaskedValueIsZero(X, *C, 0, &I)) { 3264 Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC); 3265 return BinaryOperator::CreateXor(X, NewC); 3266 } 3267 } 3268 } 3269 3270 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) { 3271 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 3272 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { 3273 if (Op0I->getOpcode() == Instruction::LShr) { 3274 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 3275 // E1 = "X ^ C1" 3276 BinaryOperator *E1; 3277 ConstantInt *C1; 3278 if (Op0I->hasOneUse() && 3279 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && 3280 E1->getOpcode() == Instruction::Xor && 3281 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { 3282 // fold (C1 >> C2) ^ C3 3283 ConstantInt *C2 = Op0CI, *C3 = RHSC; 3284 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 3285 FoldConst ^= C3->getValue(); 3286 // Prepare the two operands. 3287 Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2); 3288 Opnd0->takeName(Op0I); 3289 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); 3290 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); 3291 3292 return BinaryOperator::CreateXor(Opnd0, FoldVal); 3293 } 3294 } 3295 } 3296 } 3297 } 3298 3299 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 3300 return FoldedLogic; 3301 3302 // Y ^ (X | Y) --> X & ~Y 3303 // Y ^ (Y | X) --> X & ~Y 3304 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) 3305 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); 3306 // (X | Y) ^ Y --> X & ~Y 3307 // (Y | X) ^ Y --> X & ~Y 3308 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) 3309 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); 3310 3311 // Y ^ (X & Y) --> ~X & Y 3312 // Y ^ (Y & X) --> ~X & Y 3313 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) 3314 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); 3315 // (X & Y) ^ Y --> ~X & Y 3316 // (Y & X) ^ Y --> ~X & Y 3317 // Canonical form is (X & C) ^ C; don't touch that. 3318 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must 3319 // be fixed to prefer that (otherwise we get infinite looping). 3320 if (!match(Op1, m_Constant()) && 3321 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) 3322 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); 3323 3324 Value *A, *B, *C; 3325 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. 3326 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 3327 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) 3328 return BinaryOperator::CreateXor( 3329 Builder.CreateAnd(Builder.CreateNot(A), C), B); 3330 3331 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. 3332 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 3333 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) 3334 return BinaryOperator::CreateXor( 3335 Builder.CreateAnd(Builder.CreateNot(B), C), A); 3336 3337 // (A & B) ^ (A ^ B) -> (A | B) 3338 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 3339 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 3340 return BinaryOperator::CreateOr(A, B); 3341 // (A ^ B) ^ (A & B) -> (A | B) 3342 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 3343 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 3344 return BinaryOperator::CreateOr(A, B); 3345 3346 // (A & ~B) ^ ~A -> ~(A & B) 3347 // (~B & A) ^ ~A -> ~(A & B) 3348 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 3349 match(Op1, m_Not(m_Specific(A)))) 3350 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 3351 3352 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 3353 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 3354 if (Value *V = foldXorOfICmps(LHS, RHS, I)) 3355 return replaceInstUsesWith(I, V); 3356 3357 if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 3358 return CastedXor; 3359 3360 // Canonicalize a shifty way to code absolute value to the common pattern. 3361 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. 3362 // We're relying on the fact that we only do this transform when the shift has 3363 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase 3364 // instructions). 3365 if (Op0->hasNUses(2)) 3366 std::swap(Op0, Op1); 3367 3368 const APInt *ShAmt; 3369 Type *Ty = I.getType(); 3370 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 3371 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 3372 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { 3373 // B = ashr i32 A, 31 ; smear the sign bit 3374 // xor (add A, B), B ; add -1 and flip bits if negative 3375 // --> (A < 0) ? -A : A 3376 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 3377 // Copy the nuw/nsw flags from the add to the negate. 3378 auto *Add = cast<BinaryOperator>(Op0); 3379 Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(), 3380 Add->hasNoSignedWrap()); 3381 return SelectInst::Create(Cmp, Neg, A); 3382 } 3383 3384 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 3385 // 3386 // %notx = xor i32 %x, -1 3387 // %cmp1 = icmp sgt i32 %notx, %y 3388 // %smax = select i1 %cmp1, i32 %notx, i32 %y 3389 // %res = xor i32 %smax, -1 3390 // => 3391 // %noty = xor i32 %y, -1 3392 // %cmp2 = icmp slt %x, %noty 3393 // %res = select i1 %cmp2, i32 %x, i32 %noty 3394 // 3395 // Same is applicable for smin/umax/umin. 3396 if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) { 3397 Value *LHS, *RHS; 3398 SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor; 3399 if (SelectPatternResult::isMinOrMax(SPF)) { 3400 // It's possible we get here before the not has been simplified, so make 3401 // sure the input to the not isn't freely invertible. 3402 if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) { 3403 Value *NotY = Builder.CreateNot(RHS); 3404 return SelectInst::Create( 3405 Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY); 3406 } 3407 3408 // It's possible we get here before the not has been simplified, so make 3409 // sure the input to the not isn't freely invertible. 3410 if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) { 3411 Value *NotX = Builder.CreateNot(LHS); 3412 return SelectInst::Create( 3413 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y); 3414 } 3415 3416 // If both sides are freely invertible, then we can get rid of the xor 3417 // completely. 3418 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 3419 isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) { 3420 Value *NotLHS = Builder.CreateNot(LHS); 3421 Value *NotRHS = Builder.CreateNot(RHS); 3422 return SelectInst::Create( 3423 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS), 3424 NotLHS, NotRHS); 3425 } 3426 } 3427 3428 // Pull 'not' into operands of select if both operands are one-use compares. 3429 // Inverting the predicates eliminates the 'not' operation. 3430 // Example: 3431 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> 3432 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) 3433 // TODO: Canonicalize by hoisting 'not' into an arm of the select if only 3434 // 1 select operand is a cmp? 3435 if (auto *Sel = dyn_cast<SelectInst>(Op0)) { 3436 auto *CmpT = dyn_cast<CmpInst>(Sel->getTrueValue()); 3437 auto *CmpF = dyn_cast<CmpInst>(Sel->getFalseValue()); 3438 if (CmpT && CmpF && CmpT->hasOneUse() && CmpF->hasOneUse()) { 3439 CmpT->setPredicate(CmpT->getInversePredicate()); 3440 CmpF->setPredicate(CmpF->getInversePredicate()); 3441 return replaceInstUsesWith(I, Sel); 3442 } 3443 } 3444 } 3445 3446 if (Instruction *NewXor = sinkNotIntoXor(I, Builder)) 3447 return NewXor; 3448 3449 return nullptr; 3450 } 3451