xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
28 /// a four bit mask.
29 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
30   assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
31          "Unexpected FCmp predicate!");
32   // Take advantage of the bit pattern of FCmpInst::Predicate here.
33   //                                                 U L G E
34   static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
35   static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
36   static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
37   static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
38   static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
39   static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
40   static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
41   static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
42   static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
43   static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
44   static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
45   static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
46   static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
47   static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
48   static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
49   static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
50   return CC;
51 }
52 
53 /// This is the complement of getICmpCode, which turns an opcode and two
54 /// operands into either a constant true or false, or a brand new ICmp
55 /// instruction. The sign is passed in to determine which kind of predicate to
56 /// use in the new icmp instruction.
57 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
58                               InstCombiner::BuilderTy &Builder) {
59   ICmpInst::Predicate NewPred;
60   if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
61     return TorF;
62   return Builder.CreateICmp(NewPred, LHS, RHS);
63 }
64 
65 /// This is the complement of getFCmpCode, which turns an opcode and two
66 /// operands into either a FCmp instruction, or a true/false constant.
67 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
68                            InstCombiner::BuilderTy &Builder) {
69   const auto Pred = static_cast<FCmpInst::Predicate>(Code);
70   assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
71          "Unexpected FCmp predicate!");
72   if (Pred == FCmpInst::FCMP_FALSE)
73     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
74   if (Pred == FCmpInst::FCMP_TRUE)
75     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
76   return Builder.CreateFCmp(Pred, LHS, RHS);
77 }
78 
79 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
80 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
81 /// \param I Binary operator to transform.
82 /// \return Pointer to node that must replace the original binary operator, or
83 ///         null pointer if no transformation was made.
84 static Value *SimplifyBSwap(BinaryOperator &I,
85                             InstCombiner::BuilderTy &Builder) {
86   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
87 
88   Value *OldLHS = I.getOperand(0);
89   Value *OldRHS = I.getOperand(1);
90 
91   Value *NewLHS;
92   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
93     return nullptr;
94 
95   Value *NewRHS;
96   const APInt *C;
97 
98   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
99     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
100     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
101       return nullptr;
102     // NewRHS initialized by the matcher.
103   } else if (match(OldRHS, m_APInt(C))) {
104     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
105     if (!OldLHS->hasOneUse())
106       return nullptr;
107     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
108   } else
109     return nullptr;
110 
111   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
112   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
113                                           I.getType());
114   return Builder.CreateCall(F, BinOp);
115 }
116 
117 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
118 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
119 /// whether to treat V, Lo, and Hi as signed or not.
120 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
121                                          const APInt &Hi, bool isSigned,
122                                          bool Inside) {
123   assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
124          "Lo is not < Hi in range emission code!");
125 
126   Type *Ty = V->getType();
127 
128   // V >= Min && V <  Hi --> V <  Hi
129   // V <  Min || V >= Hi --> V >= Hi
130   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
131   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
132     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
133     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
134   }
135 
136   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
137   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
138   Value *VMinusLo =
139       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
140   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
141   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
142 }
143 
144 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
145 /// that can be simplified.
146 /// One of A and B is considered the mask. The other is the value. This is
147 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
148 /// only "Mask", then both A and B can be considered masks. If A is the mask,
149 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
150 /// If both A and C are constants, this proof is also easy.
151 /// For the following explanations, we assume that A is the mask.
152 ///
153 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
154 /// bits of A are set in B.
155 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
156 ///
157 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
158 /// bits of A are cleared in B.
159 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
160 ///
161 /// "Mixed" declares that (A & B) == C and C might or might not contain any
162 /// number of one bits and zero bits.
163 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
164 ///
165 /// "Not" means that in above descriptions "==" should be replaced by "!=".
166 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
167 ///
168 /// If the mask A contains a single bit, then the following is equivalent:
169 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
170 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
171 enum MaskedICmpType {
172   AMask_AllOnes           =     1,
173   AMask_NotAllOnes        =     2,
174   BMask_AllOnes           =     4,
175   BMask_NotAllOnes        =     8,
176   Mask_AllZeros           =    16,
177   Mask_NotAllZeros        =    32,
178   AMask_Mixed             =    64,
179   AMask_NotMixed          =   128,
180   BMask_Mixed             =   256,
181   BMask_NotMixed          =   512
182 };
183 
184 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
185 /// satisfies.
186 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
187                                   ICmpInst::Predicate Pred) {
188   const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
189   match(A, m_APInt(ConstA));
190   match(B, m_APInt(ConstB));
191   match(C, m_APInt(ConstC));
192   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
193   bool IsAPow2 = ConstA && ConstA->isPowerOf2();
194   bool IsBPow2 = ConstB && ConstB->isPowerOf2();
195   unsigned MaskVal = 0;
196   if (ConstC && ConstC->isZero()) {
197     // if C is zero, then both A and B qualify as mask
198     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
199                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
200     if (IsAPow2)
201       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
202                        : (AMask_AllOnes | AMask_Mixed));
203     if (IsBPow2)
204       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
205                        : (BMask_AllOnes | BMask_Mixed));
206     return MaskVal;
207   }
208 
209   if (A == C) {
210     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
211                      : (AMask_NotAllOnes | AMask_NotMixed));
212     if (IsAPow2)
213       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
214                        : (Mask_AllZeros | AMask_Mixed));
215   } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
216     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
217   }
218 
219   if (B == C) {
220     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
221                      : (BMask_NotAllOnes | BMask_NotMixed));
222     if (IsBPow2)
223       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
224                        : (Mask_AllZeros | BMask_Mixed));
225   } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
226     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
227   }
228 
229   return MaskVal;
230 }
231 
232 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
233 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
234 /// is adjacent to the corresponding normal flag (recording ==), this just
235 /// involves swapping those bits over.
236 static unsigned conjugateICmpMask(unsigned Mask) {
237   unsigned NewMask;
238   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
239                      AMask_Mixed | BMask_Mixed))
240             << 1;
241 
242   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
243                       AMask_NotMixed | BMask_NotMixed))
244              >> 1;
245 
246   return NewMask;
247 }
248 
249 // Adapts the external decomposeBitTestICmp for local use.
250 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
251                                  Value *&X, Value *&Y, Value *&Z) {
252   APInt Mask;
253   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
254     return false;
255 
256   Y = ConstantInt::get(X->getType(), Mask);
257   Z = ConstantInt::get(X->getType(), 0);
258   return true;
259 }
260 
261 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
262 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
263 /// the right hand side as a pair.
264 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
265 /// and PredR are their predicates, respectively.
266 static
267 Optional<std::pair<unsigned, unsigned>>
268 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
269                          Value *&D, Value *&E, ICmpInst *LHS,
270                          ICmpInst *RHS,
271                          ICmpInst::Predicate &PredL,
272                          ICmpInst::Predicate &PredR) {
273   // Don't allow pointers. Splat vectors are fine.
274   if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
275       !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
276     return None;
277 
278   // Here comes the tricky part:
279   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
280   // and L11 & L12 == L21 & L22. The same goes for RHS.
281   // Now we must find those components L** and R**, that are equal, so
282   // that we can extract the parameters A, B, C, D, and E for the canonical
283   // above.
284   Value *L1 = LHS->getOperand(0);
285   Value *L2 = LHS->getOperand(1);
286   Value *L11, *L12, *L21, *L22;
287   // Check whether the icmp can be decomposed into a bit test.
288   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
289     L21 = L22 = L1 = nullptr;
290   } else {
291     // Look for ANDs in the LHS icmp.
292     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
293       // Any icmp can be viewed as being trivially masked; if it allows us to
294       // remove one, it's worth it.
295       L11 = L1;
296       L12 = Constant::getAllOnesValue(L1->getType());
297     }
298 
299     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
300       L21 = L2;
301       L22 = Constant::getAllOnesValue(L2->getType());
302     }
303   }
304 
305   // Bail if LHS was a icmp that can't be decomposed into an equality.
306   if (!ICmpInst::isEquality(PredL))
307     return None;
308 
309   Value *R1 = RHS->getOperand(0);
310   Value *R2 = RHS->getOperand(1);
311   Value *R11, *R12;
312   bool Ok = false;
313   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
314     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
315       A = R11;
316       D = R12;
317     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
318       A = R12;
319       D = R11;
320     } else {
321       return None;
322     }
323     E = R2;
324     R1 = nullptr;
325     Ok = true;
326   } else {
327     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
328       // As before, model no mask as a trivial mask if it'll let us do an
329       // optimization.
330       R11 = R1;
331       R12 = Constant::getAllOnesValue(R1->getType());
332     }
333 
334     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
335       A = R11;
336       D = R12;
337       E = R2;
338       Ok = true;
339     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
340       A = R12;
341       D = R11;
342       E = R2;
343       Ok = true;
344     }
345   }
346 
347   // Bail if RHS was a icmp that can't be decomposed into an equality.
348   if (!ICmpInst::isEquality(PredR))
349     return None;
350 
351   // Look for ANDs on the right side of the RHS icmp.
352   if (!Ok) {
353     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
354       R11 = R2;
355       R12 = Constant::getAllOnesValue(R2->getType());
356     }
357 
358     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
359       A = R11;
360       D = R12;
361       E = R1;
362       Ok = true;
363     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
364       A = R12;
365       D = R11;
366       E = R1;
367       Ok = true;
368     } else {
369       return None;
370     }
371 
372     assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
373   }
374 
375   if (L11 == A) {
376     B = L12;
377     C = L2;
378   } else if (L12 == A) {
379     B = L11;
380     C = L2;
381   } else if (L21 == A) {
382     B = L22;
383     C = L1;
384   } else if (L22 == A) {
385     B = L21;
386     C = L1;
387   }
388 
389   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
390   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
391   return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
392 }
393 
394 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
395 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
396 /// and the right hand side is of type BMask_Mixed. For example,
397 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
398 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
399     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
400     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
401     InstCombiner::BuilderTy &Builder) {
402   // We are given the canonical form:
403   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
404   // where D & E == E.
405   //
406   // If IsAnd is false, we get it in negated form:
407   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
408   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
409   //
410   // We currently handle the case of B, C, D, E are constant.
411   //
412   ConstantInt *BCst, *CCst, *DCst, *ECst;
413   if (!match(B, m_ConstantInt(BCst)) || !match(C, m_ConstantInt(CCst)) ||
414       !match(D, m_ConstantInt(DCst)) || !match(E, m_ConstantInt(ECst)))
415     return nullptr;
416 
417   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
418 
419   // Update E to the canonical form when D is a power of two and RHS is
420   // canonicalized as,
421   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
422   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
423   if (PredR != NewCC)
424     ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
425 
426   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
427   // other folding rules and this pattern won't apply any more.
428   if (BCst->getValue() == 0 || DCst->getValue() == 0)
429     return nullptr;
430 
431   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
432   // deduce anything from it.
433   // For example,
434   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
435   if ((BCst->getValue() & DCst->getValue()) == 0)
436     return nullptr;
437 
438   // If the following two conditions are met:
439   //
440   // 1. mask B covers only a single bit that's not covered by mask D, that is,
441   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
442   // B and D has only one bit set) and,
443   //
444   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
445   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
446   //
447   // then that single bit in B must be one and thus the whole expression can be
448   // folded to
449   //   (A & (B | D)) == (B & (B ^ D)) | E.
450   //
451   // For example,
452   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
453   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
454   if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
455       (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
456     APInt BorD = BCst->getValue() | DCst->getValue();
457     APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
458         ECst->getValue();
459     Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
460     Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
461     Value *NewAnd = Builder.CreateAnd(A, NewMask);
462     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
463   }
464 
465   auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
466     return (C1->getValue() & C2->getValue()) == C1->getValue();
467   };
468   auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
469     return (C1->getValue() & C2->getValue()) == C2->getValue();
470   };
471 
472   // In the following, we consider only the cases where B is a superset of D, B
473   // is a subset of D, or B == D because otherwise there's at least one bit
474   // covered by B but not D, in which case we can't deduce much from it, so
475   // no folding (aside from the single must-be-one bit case right above.)
476   // For example,
477   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
478   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
479     return nullptr;
480 
481   // At this point, either B is a superset of D, B is a subset of D or B == D.
482 
483   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
484   // and the whole expression becomes false (or true if negated), otherwise, no
485   // folding.
486   // For example,
487   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
488   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
489   if (ECst->isZero()) {
490     if (IsSubSetOrEqual(BCst, DCst))
491       return ConstantInt::get(LHS->getType(), !IsAnd);
492     return nullptr;
493   }
494 
495   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
496   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
497   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
498   // RHS. For example,
499   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
500   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
501   if (IsSuperSetOrEqual(BCst, DCst))
502     return RHS;
503   // Otherwise, B is a subset of D. If B and E have a common bit set,
504   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
505   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
506   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
507   if ((BCst->getValue() & ECst->getValue()) != 0)
508     return RHS;
509   // Otherwise, LHS and RHS contradict and the whole expression becomes false
510   // (or true if negated.) For example,
511   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
512   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
513   return ConstantInt::get(LHS->getType(), !IsAnd);
514 }
515 
516 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
517 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
518 /// aren't of the common mask pattern type.
519 static Value *foldLogOpOfMaskedICmpsAsymmetric(
520     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
521     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
522     unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
523   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
524          "Expected equality predicates for masked type of icmps.");
525   // Handle Mask_NotAllZeros-BMask_Mixed cases.
526   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
527   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
528   //    which gets swapped to
529   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
530   if (!IsAnd) {
531     LHSMask = conjugateICmpMask(LHSMask);
532     RHSMask = conjugateICmpMask(RHSMask);
533   }
534   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
535     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
536             LHS, RHS, IsAnd, A, B, C, D, E,
537             PredL, PredR, Builder)) {
538       return V;
539     }
540   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
541     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
542             RHS, LHS, IsAnd, A, D, E, B, C,
543             PredR, PredL, Builder)) {
544       return V;
545     }
546   }
547   return nullptr;
548 }
549 
550 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
551 /// into a single (icmp(A & X) ==/!= Y).
552 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
553                                      InstCombiner::BuilderTy &Builder) {
554   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
555   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
556   Optional<std::pair<unsigned, unsigned>> MaskPair =
557       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
558   if (!MaskPair)
559     return nullptr;
560   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
561          "Expected equality predicates for masked type of icmps.");
562   unsigned LHSMask = MaskPair->first;
563   unsigned RHSMask = MaskPair->second;
564   unsigned Mask = LHSMask & RHSMask;
565   if (Mask == 0) {
566     // Even if the two sides don't share a common pattern, check if folding can
567     // still happen.
568     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
569             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
570             Builder))
571       return V;
572     return nullptr;
573   }
574 
575   // In full generality:
576   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
577   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
578   //
579   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
580   // equivalent to (icmp (A & X) !Op Y).
581   //
582   // Therefore, we can pretend for the rest of this function that we're dealing
583   // with the conjunction, provided we flip the sense of any comparisons (both
584   // input and output).
585 
586   // In most cases we're going to produce an EQ for the "&&" case.
587   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
588   if (!IsAnd) {
589     // Convert the masking analysis into its equivalent with negated
590     // comparisons.
591     Mask = conjugateICmpMask(Mask);
592   }
593 
594   if (Mask & Mask_AllZeros) {
595     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
596     // -> (icmp eq (A & (B|D)), 0)
597     Value *NewOr = Builder.CreateOr(B, D);
598     Value *NewAnd = Builder.CreateAnd(A, NewOr);
599     // We can't use C as zero because we might actually handle
600     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
601     // with B and D, having a single bit set.
602     Value *Zero = Constant::getNullValue(A->getType());
603     return Builder.CreateICmp(NewCC, NewAnd, Zero);
604   }
605   if (Mask & BMask_AllOnes) {
606     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
607     // -> (icmp eq (A & (B|D)), (B|D))
608     Value *NewOr = Builder.CreateOr(B, D);
609     Value *NewAnd = Builder.CreateAnd(A, NewOr);
610     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
611   }
612   if (Mask & AMask_AllOnes) {
613     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
614     // -> (icmp eq (A & (B&D)), A)
615     Value *NewAnd1 = Builder.CreateAnd(B, D);
616     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
617     return Builder.CreateICmp(NewCC, NewAnd2, A);
618   }
619 
620   // Remaining cases assume at least that B and D are constant, and depend on
621   // their actual values. This isn't strictly necessary, just a "handle the
622   // easy cases for now" decision.
623   const APInt *ConstB, *ConstD;
624   if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
625     return nullptr;
626 
627   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
628     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
629     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
630     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
631     // Only valid if one of the masks is a superset of the other (check "B&D" is
632     // the same as either B or D).
633     APInt NewMask = *ConstB & *ConstD;
634     if (NewMask == *ConstB)
635       return LHS;
636     else if (NewMask == *ConstD)
637       return RHS;
638   }
639 
640   if (Mask & AMask_NotAllOnes) {
641     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
642     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
643     // Only valid if one of the masks is a superset of the other (check "B|D" is
644     // the same as either B or D).
645     APInt NewMask = *ConstB | *ConstD;
646     if (NewMask == *ConstB)
647       return LHS;
648     else if (NewMask == *ConstD)
649       return RHS;
650   }
651 
652   if (Mask & BMask_Mixed) {
653     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
654     // We already know that B & C == C && D & E == E.
655     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
656     // C and E, which are shared by both the mask B and the mask D, don't
657     // contradict, then we can transform to
658     // -> (icmp eq (A & (B|D)), (C|E))
659     // Currently, we only handle the case of B, C, D, and E being constant.
660     // We can't simply use C and E because we might actually handle
661     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
662     // with B and D, having a single bit set.
663     const APInt *OldConstC, *OldConstE;
664     if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
665       return nullptr;
666 
667     const APInt ConstC = PredL != NewCC ? *ConstB ^ *OldConstC : *OldConstC;
668     const APInt ConstE = PredR != NewCC ? *ConstD ^ *OldConstE : *OldConstE;
669 
670     // If there is a conflict, we should actually return a false for the
671     // whole construct.
672     if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
673       return ConstantInt::get(LHS->getType(), !IsAnd);
674 
675     Value *NewOr1 = Builder.CreateOr(B, D);
676     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
677     Constant *NewOr2 = ConstantInt::get(A->getType(), ConstC | ConstE);
678     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
679   }
680 
681   return nullptr;
682 }
683 
684 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
685 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
686 /// If \p Inverted is true then the check is for the inverted range, e.g.
687 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
688 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
689                                             bool Inverted) {
690   // Check the lower range comparison, e.g. x >= 0
691   // InstCombine already ensured that if there is a constant it's on the RHS.
692   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
693   if (!RangeStart)
694     return nullptr;
695 
696   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
697                                Cmp0->getPredicate());
698 
699   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
700   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
701         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
702     return nullptr;
703 
704   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
705                                Cmp1->getPredicate());
706 
707   Value *Input = Cmp0->getOperand(0);
708   Value *RangeEnd;
709   if (Cmp1->getOperand(0) == Input) {
710     // For the upper range compare we have: icmp x, n
711     RangeEnd = Cmp1->getOperand(1);
712   } else if (Cmp1->getOperand(1) == Input) {
713     // For the upper range compare we have: icmp n, x
714     RangeEnd = Cmp1->getOperand(0);
715     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
716   } else {
717     return nullptr;
718   }
719 
720   // Check the upper range comparison, e.g. x < n
721   ICmpInst::Predicate NewPred;
722   switch (Pred1) {
723     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
724     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
725     default: return nullptr;
726   }
727 
728   // This simplification is only valid if the upper range is not negative.
729   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
730   if (!Known.isNonNegative())
731     return nullptr;
732 
733   if (Inverted)
734     NewPred = ICmpInst::getInversePredicate(NewPred);
735 
736   return Builder.CreateICmp(NewPred, Input, RangeEnd);
737 }
738 
739 static Value *
740 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
741                                      bool JoinedByAnd,
742                                      InstCombiner::BuilderTy &Builder) {
743   Value *X = LHS->getOperand(0);
744   if (X != RHS->getOperand(0))
745     return nullptr;
746 
747   const APInt *C1, *C2;
748   if (!match(LHS->getOperand(1), m_APInt(C1)) ||
749       !match(RHS->getOperand(1), m_APInt(C2)))
750     return nullptr;
751 
752   // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
753   ICmpInst::Predicate Pred = LHS->getPredicate();
754   if (Pred !=  RHS->getPredicate())
755     return nullptr;
756   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
757     return nullptr;
758   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
759     return nullptr;
760 
761   // The larger unsigned constant goes on the right.
762   if (C1->ugt(*C2))
763     std::swap(C1, C2);
764 
765   APInt Xor = *C1 ^ *C2;
766   if (Xor.isPowerOf2()) {
767     // If LHSC and RHSC differ by only one bit, then set that bit in X and
768     // compare against the larger constant:
769     // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
770     // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
771     // We choose an 'or' with a Pow2 constant rather than the inverse mask with
772     // 'and' because that may lead to smaller codegen from a smaller constant.
773     Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
774     return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
775   }
776 
777   return nullptr;
778 }
779 
780 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
781 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
782 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
783                                                        ICmpInst *RHS,
784                                                        Instruction *CxtI,
785                                                        bool IsAnd,
786                                                        bool IsLogical) {
787   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
788   if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
789     return nullptr;
790 
791   if (!match(LHS->getOperand(1), m_Zero()) ||
792       !match(RHS->getOperand(1), m_Zero()))
793     return nullptr;
794 
795   Value *L1, *L2, *R1, *R2;
796   if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
797       match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
798     if (L1 == R2 || L2 == R2)
799       std::swap(R1, R2);
800     if (L2 == R1)
801       std::swap(L1, L2);
802 
803     if (L1 == R1 &&
804         isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
805         isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
806       // If this is a logical and/or, then we must prevent propagation of a
807       // poison value from the RHS by inserting freeze.
808       if (IsLogical)
809         R2 = Builder.CreateFreeze(R2);
810       Value *Mask = Builder.CreateOr(L2, R2);
811       Value *Masked = Builder.CreateAnd(L1, Mask);
812       auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
813       return Builder.CreateICmp(NewPred, Masked, Mask);
814     }
815   }
816 
817   return nullptr;
818 }
819 
820 /// General pattern:
821 ///   X & Y
822 ///
823 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
824 /// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
825 /// Pattern can be one of:
826 ///   %t = add        i32 %arg,    128
827 ///   %r = icmp   ult i32 %t,      256
828 /// Or
829 ///   %t0 = shl       i32 %arg,    24
830 ///   %t1 = ashr      i32 %t0,     24
831 ///   %r  = icmp  eq  i32 %t1,     %arg
832 /// Or
833 ///   %t0 = trunc     i32 %arg  to i8
834 ///   %t1 = sext      i8  %t0   to i32
835 ///   %r  = icmp  eq  i32 %t1,     %arg
836 /// This pattern is a signed truncation check.
837 ///
838 /// And X is checking that some bit in that same mask is zero.
839 /// I.e. can be one of:
840 ///   %r = icmp sgt i32   %arg,    -1
841 /// Or
842 ///   %t = and      i32   %arg,    2147483648
843 ///   %r = icmp eq  i32   %t,      0
844 ///
845 /// Since we are checking that all the bits in that mask are the same,
846 /// and a particular bit is zero, what we are really checking is that all the
847 /// masked bits are zero.
848 /// So this should be transformed to:
849 ///   %r = icmp ult i32 %arg, 128
850 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
851                                         Instruction &CxtI,
852                                         InstCombiner::BuilderTy &Builder) {
853   assert(CxtI.getOpcode() == Instruction::And);
854 
855   // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
856   auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
857                                             APInt &SignBitMask) -> bool {
858     CmpInst::Predicate Pred;
859     const APInt *I01, *I1; // powers of two; I1 == I01 << 1
860     if (!(match(ICmp,
861                 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
862           Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
863       return false;
864     // Which bit is the new sign bit as per the 'signed truncation' pattern?
865     SignBitMask = *I01;
866     return true;
867   };
868 
869   // One icmp needs to be 'signed truncation check'.
870   // We need to match this first, else we will mismatch commutative cases.
871   Value *X1;
872   APInt HighestBit;
873   ICmpInst *OtherICmp;
874   if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
875     OtherICmp = ICmp0;
876   else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
877     OtherICmp = ICmp1;
878   else
879     return nullptr;
880 
881   assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
882 
883   // Try to match/decompose into:  icmp eq (X & Mask), 0
884   auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
885                            APInt &UnsetBitsMask) -> bool {
886     CmpInst::Predicate Pred = ICmp->getPredicate();
887     // Can it be decomposed into  icmp eq (X & Mask), 0  ?
888     if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
889                                    Pred, X, UnsetBitsMask,
890                                    /*LookThroughTrunc=*/false) &&
891         Pred == ICmpInst::ICMP_EQ)
892       return true;
893     // Is it  icmp eq (X & Mask), 0  already?
894     const APInt *Mask;
895     if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
896         Pred == ICmpInst::ICMP_EQ) {
897       UnsetBitsMask = *Mask;
898       return true;
899     }
900     return false;
901   };
902 
903   // And the other icmp needs to be decomposable into a bit test.
904   Value *X0;
905   APInt UnsetBitsMask;
906   if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
907     return nullptr;
908 
909   assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
910 
911   // Are they working on the same value?
912   Value *X;
913   if (X1 == X0) {
914     // Ok as is.
915     X = X1;
916   } else if (match(X0, m_Trunc(m_Specific(X1)))) {
917     UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
918     X = X1;
919   } else
920     return nullptr;
921 
922   // So which bits should be uniform as per the 'signed truncation check'?
923   // (all the bits starting with (i.e. including) HighestBit)
924   APInt SignBitsMask = ~(HighestBit - 1U);
925 
926   // UnsetBitsMask must have some common bits with SignBitsMask,
927   if (!UnsetBitsMask.intersects(SignBitsMask))
928     return nullptr;
929 
930   // Does UnsetBitsMask contain any bits outside of SignBitsMask?
931   if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
932     APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
933     if (!OtherHighestBit.isPowerOf2())
934       return nullptr;
935     HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
936   }
937   // Else, if it does not, then all is ok as-is.
938 
939   // %r = icmp ult %X, SignBit
940   return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
941                                CxtI.getName() + ".simplified");
942 }
943 
944 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
945 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
946                              InstCombiner::BuilderTy &Builder) {
947   // Handle 'and' / 'or' commutation: make the equality check the first operand.
948   if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
949     std::swap(Cmp0, Cmp1);
950   else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
951     std::swap(Cmp0, Cmp1);
952 
953   // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
954   CmpInst::Predicate Pred0, Pred1;
955   Value *X;
956   if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
957       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
958                          m_SpecificInt(2))) &&
959       Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
960     Value *CtPop = Cmp1->getOperand(0);
961     return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
962   }
963   // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
964   if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
965       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
966                          m_SpecificInt(1))) &&
967       Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
968     Value *CtPop = Cmp1->getOperand(0);
969     return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
970   }
971   return nullptr;
972 }
973 
974 /// Commuted variants are assumed to be handled by calling this function again
975 /// with the parameters swapped.
976 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
977                                          ICmpInst *UnsignedICmp, bool IsAnd,
978                                          const SimplifyQuery &Q,
979                                          InstCombiner::BuilderTy &Builder) {
980   Value *ZeroCmpOp;
981   ICmpInst::Predicate EqPred;
982   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
983       !ICmpInst::isEquality(EqPred))
984     return nullptr;
985 
986   auto IsKnownNonZero = [&](Value *V) {
987     return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
988   };
989 
990   ICmpInst::Predicate UnsignedPred;
991 
992   Value *A, *B;
993   if (match(UnsignedICmp,
994             m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
995       match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
996       (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
997     auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
998       if (!IsKnownNonZero(NonZero))
999         std::swap(NonZero, Other);
1000       return IsKnownNonZero(NonZero);
1001     };
1002 
1003     // Given  ZeroCmpOp = (A + B)
1004     //   ZeroCmpOp <= A && ZeroCmpOp != 0  -->  (0-B) <  A
1005     //   ZeroCmpOp >  A || ZeroCmpOp == 0  -->  (0-B) >= A
1006     //
1007     //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
1008     //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
1009     //     with X being the value (A/B) that is known to be non-zero,
1010     //     and Y being remaining value.
1011     if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1012         IsAnd)
1013       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1014     if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1015         IsAnd && GetKnownNonZeroAndOther(B, A))
1016       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1017     if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1018         !IsAnd)
1019       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1020     if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1021         !IsAnd && GetKnownNonZeroAndOther(B, A))
1022       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1023   }
1024 
1025   Value *Base, *Offset;
1026   if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
1027     return nullptr;
1028 
1029   if (!match(UnsignedICmp,
1030              m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
1031       !ICmpInst::isUnsigned(UnsignedPred))
1032     return nullptr;
1033 
1034   // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset
1035   // (no overflow and not null)
1036   if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1037        UnsignedPred == ICmpInst::ICMP_UGT) &&
1038       EqPred == ICmpInst::ICMP_NE && IsAnd)
1039     return Builder.CreateICmpUGT(Base, Offset);
1040 
1041   // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset
1042   // (overflow or null)
1043   if ((UnsignedPred == ICmpInst::ICMP_ULE ||
1044        UnsignedPred == ICmpInst::ICMP_ULT) &&
1045       EqPred == ICmpInst::ICMP_EQ && !IsAnd)
1046     return Builder.CreateICmpULE(Base, Offset);
1047 
1048   // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset
1049   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1050       IsAnd)
1051     return Builder.CreateICmpULT(Base, Offset);
1052 
1053   // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset
1054   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1055       !IsAnd)
1056     return Builder.CreateICmpUGE(Base, Offset);
1057 
1058   return nullptr;
1059 }
1060 
1061 struct IntPart {
1062   Value *From;
1063   unsigned StartBit;
1064   unsigned NumBits;
1065 };
1066 
1067 /// Match an extraction of bits from an integer.
1068 static Optional<IntPart> matchIntPart(Value *V) {
1069   Value *X;
1070   if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1071     return None;
1072 
1073   unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1074   unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1075   Value *Y;
1076   const APInt *Shift;
1077   // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1078   // from Y, not any shifted-in zeroes.
1079   if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1080       Shift->ule(NumOriginalBits - NumExtractedBits))
1081     return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1082   return {{X, 0, NumExtractedBits}};
1083 }
1084 
1085 /// Materialize an extraction of bits from an integer in IR.
1086 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1087   Value *V = P.From;
1088   if (P.StartBit)
1089     V = Builder.CreateLShr(V, P.StartBit);
1090   Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1091   if (TruncTy != V->getType())
1092     V = Builder.CreateTrunc(V, TruncTy);
1093   return V;
1094 }
1095 
1096 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1097 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1098 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1099 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1100                                        bool IsAnd) {
1101   if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1102     return nullptr;
1103 
1104   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1105   if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
1106     return nullptr;
1107 
1108   Optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
1109   Optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
1110   Optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
1111   Optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
1112   if (!L0 || !R0 || !L1 || !R1)
1113     return nullptr;
1114 
1115   // Make sure the LHS/RHS compare a part of the same value, possibly after
1116   // an operand swap.
1117   if (L0->From != L1->From || R0->From != R1->From) {
1118     if (L0->From != R1->From || R0->From != L1->From)
1119       return nullptr;
1120     std::swap(L1, R1);
1121   }
1122 
1123   // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1124   // the low part and L1/R1 being the high part.
1125   if (L0->StartBit + L0->NumBits != L1->StartBit ||
1126       R0->StartBit + R0->NumBits != R1->StartBit) {
1127     if (L1->StartBit + L1->NumBits != L0->StartBit ||
1128         R1->StartBit + R1->NumBits != R0->StartBit)
1129       return nullptr;
1130     std::swap(L0, L1);
1131     std::swap(R0, R1);
1132   }
1133 
1134   // We can simplify to a comparison of these larger parts of the integers.
1135   IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1136   IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1137   Value *LValue = extractIntPart(L, Builder);
1138   Value *RValue = extractIntPart(R, Builder);
1139   return Builder.CreateICmp(Pred, LValue, RValue);
1140 }
1141 
1142 /// Reduce logic-of-compares with equality to a constant by substituting a
1143 /// common operand with the constant. Callers are expected to call this with
1144 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1145 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1146                                           BinaryOperator &Logic,
1147                                           InstCombiner::BuilderTy &Builder,
1148                                           const SimplifyQuery &Q) {
1149   bool IsAnd = Logic.getOpcode() == Instruction::And;
1150   assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op");
1151 
1152   // Match an equality compare with a non-poison constant as Cmp0.
1153   // Also, give up if the compare can be constant-folded to avoid looping.
1154   ICmpInst::Predicate Pred0;
1155   Value *X;
1156   Constant *C;
1157   if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1158       !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1159     return nullptr;
1160   if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1161       (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1162     return nullptr;
1163 
1164   // The other compare must include a common operand (X). Canonicalize the
1165   // common operand as operand 1 (Pred1 is swapped if the common operand was
1166   // operand 0).
1167   Value *Y;
1168   ICmpInst::Predicate Pred1;
1169   if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1170     return nullptr;
1171 
1172   // Replace variable with constant value equivalence to remove a variable use:
1173   // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1174   // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1175   // Can think of the 'or' substitution with the 'and' bool equivalent:
1176   // A || B --> A || (!A && B)
1177   Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q);
1178   if (!SubstituteCmp) {
1179     // If we need to create a new instruction, require that the old compare can
1180     // be removed.
1181     if (!Cmp1->hasOneUse())
1182       return nullptr;
1183     SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1184   }
1185   return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp);
1186 }
1187 
1188 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1189 /// or   (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1190 /// into a single comparison using range-based reasoning.
1191 static Value *foldAndOrOfICmpsUsingRanges(
1192     ICmpInst::Predicate Pred1, Value *V1, const APInt &C1,
1193     ICmpInst::Predicate Pred2, Value *V2, const APInt &C2,
1194     IRBuilderBase &Builder, bool IsAnd) {
1195   // Look through add of a constant offset on V1, V2, or both operands. This
1196   // allows us to interpret the V + C' < C'' range idiom into a proper range.
1197   const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1198   if (V1 != V2) {
1199     Value *X;
1200     if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1201       V1 = X;
1202     if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1203       V2 = X;
1204   }
1205 
1206   if (V1 != V2)
1207     return nullptr;
1208 
1209   ConstantRange CR1 = ConstantRange::makeExactICmpRegion(Pred1, C1);
1210   if (Offset1)
1211     CR1 = CR1.subtract(*Offset1);
1212 
1213   ConstantRange CR2 = ConstantRange::makeExactICmpRegion(Pred2, C2);
1214   if (Offset2)
1215     CR2 = CR2.subtract(*Offset2);
1216 
1217   Optional<ConstantRange> CR =
1218       IsAnd ? CR1.exactIntersectWith(CR2) : CR1.exactUnionWith(CR2);
1219   if (!CR)
1220     return nullptr;
1221 
1222   CmpInst::Predicate NewPred;
1223   APInt NewC, Offset;
1224   CR->getEquivalentICmp(NewPred, NewC, Offset);
1225 
1226   Type *Ty = V1->getType();
1227   Value *NewV = V1;
1228   if (Offset != 0)
1229     NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1230   return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1231 }
1232 
1233 /// Fold (icmp)&(icmp) if possible.
1234 Value *InstCombinerImpl::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1235                                         BinaryOperator &And) {
1236   const SimplifyQuery Q = SQ.getWithInstruction(&And);
1237 
1238   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
1239   // if K1 and K2 are a one-bit mask.
1240   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &And,
1241                                                /* IsAnd */ true))
1242     return V;
1243 
1244   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1245 
1246   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1247   if (predicatesFoldable(PredL, PredR)) {
1248     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1249         LHS->getOperand(1) == RHS->getOperand(0))
1250       LHS->swapOperands();
1251     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1252         LHS->getOperand(1) == RHS->getOperand(1)) {
1253       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1254       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
1255       bool IsSigned = LHS->isSigned() || RHS->isSigned();
1256       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
1257     }
1258   }
1259 
1260   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
1261   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
1262     return V;
1263 
1264   if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q))
1265     return V;
1266   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q))
1267     return V;
1268 
1269   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1270   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
1271     return V;
1272 
1273   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1274   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
1275     return V;
1276 
1277   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
1278     return V;
1279 
1280   if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder))
1281     return V;
1282 
1283   if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
1284     return V;
1285 
1286   if (Value *X =
1287           foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
1288     return X;
1289   if (Value *X =
1290           foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
1291     return X;
1292 
1293   if (Value *X = foldEqOfParts(LHS, RHS, /*IsAnd=*/true))
1294     return X;
1295 
1296   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1297   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1298 
1299   // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1300   // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
1301   if (PredL == ICmpInst::ICMP_EQ && match(LHS->getOperand(1), m_ZeroInt()) &&
1302       PredR == ICmpInst::ICMP_EQ && match(RHS->getOperand(1), m_ZeroInt()) &&
1303       LHS0->getType() == RHS0->getType()) {
1304     Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1305     return Builder.CreateICmp(PredL, NewOr,
1306                               Constant::getNullValue(NewOr->getType()));
1307   }
1308 
1309   const APInt *LHSC, *RHSC;
1310   if (!match(LHS->getOperand(1), m_APInt(LHSC)) ||
1311       !match(RHS->getOperand(1), m_APInt(RHSC)))
1312     return nullptr;
1313 
1314   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1315   // where CMAX is the all ones value for the truncated type,
1316   // iff the lower bits of C2 and CA are zero.
1317   if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
1318       RHS->hasOneUse()) {
1319     Value *V;
1320     const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
1321 
1322     // (trunc x) == C1 & (and x, CA) == C2
1323     // (and x, CA) == C2 & (trunc x) == C1
1324     if (match(RHS0, m_Trunc(m_Value(V))) &&
1325         match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
1326       SmallC = RHSC;
1327       BigC = LHSC;
1328     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
1329                match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
1330       SmallC = LHSC;
1331       BigC = RHSC;
1332     }
1333 
1334     if (SmallC && BigC) {
1335       unsigned BigBitSize = BigC->getBitWidth();
1336       unsigned SmallBitSize = SmallC->getBitWidth();
1337 
1338       // Check that the low bits are zero.
1339       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
1340       if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
1341         Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
1342         APInt N = SmallC->zext(BigBitSize) | *BigC;
1343         Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
1344         return Builder.CreateICmp(PredL, NewAnd, NewVal);
1345       }
1346     }
1347   }
1348 
1349   return foldAndOrOfICmpsUsingRanges(PredL, LHS0, *LHSC, PredR, RHS0, *RHSC,
1350                                      Builder, /* IsAnd */ true);
1351 }
1352 
1353 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1354                                           bool IsAnd) {
1355   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1356   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1357   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1358 
1359   if (LHS0 == RHS1 && RHS0 == LHS1) {
1360     // Swap RHS operands to match LHS.
1361     PredR = FCmpInst::getSwappedPredicate(PredR);
1362     std::swap(RHS0, RHS1);
1363   }
1364 
1365   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1366   // Suppose the relation between x and y is R, where R is one of
1367   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1368   // testing the desired relations.
1369   //
1370   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1371   //    bool(R & CC0) && bool(R & CC1)
1372   //  = bool((R & CC0) & (R & CC1))
1373   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1374   //
1375   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1376   //    bool(R & CC0) || bool(R & CC1)
1377   //  = bool((R & CC0) | (R & CC1))
1378   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1379   if (LHS0 == RHS0 && LHS1 == RHS1) {
1380     unsigned FCmpCodeL = getFCmpCode(PredL);
1381     unsigned FCmpCodeR = getFCmpCode(PredR);
1382     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1383     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1384   }
1385 
1386   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1387       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1388     if (LHS0->getType() != RHS0->getType())
1389       return nullptr;
1390 
1391     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1392     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1393     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1394       // Ignore the constants because they are obviously not NANs:
1395       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1396       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1397       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1398   }
1399 
1400   return nullptr;
1401 }
1402 
1403 /// This a limited reassociation for a special case (see above) where we are
1404 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1405 /// This could be handled more generally in '-reassociation', but it seems like
1406 /// an unlikely pattern for a large number of logic ops and fcmps.
1407 static Instruction *reassociateFCmps(BinaryOperator &BO,
1408                                      InstCombiner::BuilderTy &Builder) {
1409   Instruction::BinaryOps Opcode = BO.getOpcode();
1410   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1411          "Expecting and/or op for fcmp transform");
1412 
1413   // There are 4 commuted variants of the pattern. Canonicalize operands of this
1414   // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1415   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1416   FCmpInst::Predicate Pred;
1417   if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1418     std::swap(Op0, Op1);
1419 
1420   // Match inner binop and the predicate for combining 2 NAN checks into 1.
1421   Value *BO10, *BO11;
1422   FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1423                                                            : FCmpInst::FCMP_UNO;
1424   if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1425       !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1426     return nullptr;
1427 
1428   // The inner logic op must have a matching fcmp operand.
1429   Value *Y;
1430   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1431       Pred != NanPred || X->getType() != Y->getType())
1432     std::swap(BO10, BO11);
1433 
1434   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1435       Pred != NanPred || X->getType() != Y->getType())
1436     return nullptr;
1437 
1438   // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1439   // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1440   Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1441   if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1442     // Intersect FMF from the 2 source fcmps.
1443     NewFCmpInst->copyIRFlags(Op0);
1444     NewFCmpInst->andIRFlags(BO10);
1445   }
1446   return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1447 }
1448 
1449 /// Match variations of De Morgan's Laws:
1450 /// (~A & ~B) == (~(A | B))
1451 /// (~A | ~B) == (~(A & B))
1452 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1453                                        InstCombiner::BuilderTy &Builder) {
1454   const Instruction::BinaryOps Opcode = I.getOpcode();
1455   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1456          "Trying to match De Morgan's Laws with something other than and/or");
1457 
1458   // Flip the logic operation.
1459   const Instruction::BinaryOps FlippedOpcode =
1460       (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1461 
1462   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1463   Value *A, *B;
1464   if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1465       match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1466       !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1467       !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1468     Value *AndOr =
1469         Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1470     return BinaryOperator::CreateNot(AndOr);
1471   }
1472 
1473   // The 'not' ops may require reassociation.
1474   // (A & ~B) & ~C --> A & ~(B | C)
1475   // (~B & A) & ~C --> A & ~(B | C)
1476   // (A | ~B) | ~C --> A | ~(B & C)
1477   // (~B | A) | ~C --> A | ~(B & C)
1478   Value *C;
1479   if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1480       match(Op1, m_Not(m_Value(C)))) {
1481     Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
1482     return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
1483   }
1484 
1485   return nullptr;
1486 }
1487 
1488 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1489   Value *CastSrc = CI->getOperand(0);
1490 
1491   // Noop casts and casts of constants should be eliminated trivially.
1492   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1493     return false;
1494 
1495   // If this cast is paired with another cast that can be eliminated, we prefer
1496   // to have it eliminated.
1497   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1498     if (isEliminableCastPair(PrecedingCI, CI))
1499       return false;
1500 
1501   return true;
1502 }
1503 
1504 /// Fold {and,or,xor} (cast X), C.
1505 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1506                                           InstCombiner::BuilderTy &Builder) {
1507   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1508   if (!C)
1509     return nullptr;
1510 
1511   auto LogicOpc = Logic.getOpcode();
1512   Type *DestTy = Logic.getType();
1513   Type *SrcTy = Cast->getSrcTy();
1514 
1515   // Move the logic operation ahead of a zext or sext if the constant is
1516   // unchanged in the smaller source type. Performing the logic in a smaller
1517   // type may provide more information to later folds, and the smaller logic
1518   // instruction may be cheaper (particularly in the case of vectors).
1519   Value *X;
1520   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1521     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1522     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1523     if (ZextTruncC == C) {
1524       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1525       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1526       return new ZExtInst(NewOp, DestTy);
1527     }
1528   }
1529 
1530   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1531     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1532     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1533     if (SextTruncC == C) {
1534       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1535       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1536       return new SExtInst(NewOp, DestTy);
1537     }
1538   }
1539 
1540   return nullptr;
1541 }
1542 
1543 /// Fold {and,or,xor} (cast X), Y.
1544 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1545   auto LogicOpc = I.getOpcode();
1546   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1547 
1548   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1549   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1550   if (!Cast0)
1551     return nullptr;
1552 
1553   // This must be a cast from an integer or integer vector source type to allow
1554   // transformation of the logic operation to the source type.
1555   Type *DestTy = I.getType();
1556   Type *SrcTy = Cast0->getSrcTy();
1557   if (!SrcTy->isIntOrIntVectorTy())
1558     return nullptr;
1559 
1560   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1561     return Ret;
1562 
1563   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1564   if (!Cast1)
1565     return nullptr;
1566 
1567   // Both operands of the logic operation are casts. The casts must be of the
1568   // same type for reduction.
1569   auto CastOpcode = Cast0->getOpcode();
1570   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1571     return nullptr;
1572 
1573   Value *Cast0Src = Cast0->getOperand(0);
1574   Value *Cast1Src = Cast1->getOperand(0);
1575 
1576   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1577   if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1578     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1579                                         I.getName());
1580     return CastInst::Create(CastOpcode, NewOp, DestTy);
1581   }
1582 
1583   // For now, only 'and'/'or' have optimizations after this.
1584   if (LogicOpc == Instruction::Xor)
1585     return nullptr;
1586 
1587   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1588   // cast is otherwise not optimizable.  This happens for vector sexts.
1589   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1590   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1591   if (ICmp0 && ICmp1) {
1592     Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1593                                               : foldOrOfICmps(ICmp0, ICmp1, I);
1594     if (Res)
1595       return CastInst::Create(CastOpcode, Res, DestTy);
1596     return nullptr;
1597   }
1598 
1599   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1600   // cast is otherwise not optimizable.  This happens for vector sexts.
1601   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1602   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1603   if (FCmp0 && FCmp1)
1604     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1605       return CastInst::Create(CastOpcode, R, DestTy);
1606 
1607   return nullptr;
1608 }
1609 
1610 static Instruction *foldAndToXor(BinaryOperator &I,
1611                                  InstCombiner::BuilderTy &Builder) {
1612   assert(I.getOpcode() == Instruction::And);
1613   Value *Op0 = I.getOperand(0);
1614   Value *Op1 = I.getOperand(1);
1615   Value *A, *B;
1616 
1617   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1618   // (A | B) & ~(A & B) --> A ^ B
1619   // (A | B) & ~(B & A) --> A ^ B
1620   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1621                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1622     return BinaryOperator::CreateXor(A, B);
1623 
1624   // (A | ~B) & (~A | B) --> ~(A ^ B)
1625   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1626   // (~B | A) & (~A | B) --> ~(A ^ B)
1627   // (~B | A) & (B | ~A) --> ~(A ^ B)
1628   if (Op0->hasOneUse() || Op1->hasOneUse())
1629     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1630                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1631       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1632 
1633   return nullptr;
1634 }
1635 
1636 static Instruction *foldOrToXor(BinaryOperator &I,
1637                                 InstCombiner::BuilderTy &Builder) {
1638   assert(I.getOpcode() == Instruction::Or);
1639   Value *Op0 = I.getOperand(0);
1640   Value *Op1 = I.getOperand(1);
1641   Value *A, *B;
1642 
1643   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1644   // (A & B) | ~(A | B) --> ~(A ^ B)
1645   // (A & B) | ~(B | A) --> ~(A ^ B)
1646   if (Op0->hasOneUse() || Op1->hasOneUse())
1647     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1648         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1649       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1650 
1651   // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1652   // (A ^ B) | ~(A | B) --> ~(A & B)
1653   // (A ^ B) | ~(B | A) --> ~(A & B)
1654   if (Op0->hasOneUse() || Op1->hasOneUse())
1655     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1656         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1657       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1658 
1659   // (A & ~B) | (~A & B) --> A ^ B
1660   // (A & ~B) | (B & ~A) --> A ^ B
1661   // (~B & A) | (~A & B) --> A ^ B
1662   // (~B & A) | (B & ~A) --> A ^ B
1663   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1664       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1665     return BinaryOperator::CreateXor(A, B);
1666 
1667   return nullptr;
1668 }
1669 
1670 /// Return true if a constant shift amount is always less than the specified
1671 /// bit-width. If not, the shift could create poison in the narrower type.
1672 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1673   APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1674   return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1675 }
1676 
1677 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1678 /// a common zext operand: and (binop (zext X), C), (zext X).
1679 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1680   // This transform could also apply to {or, and, xor}, but there are better
1681   // folds for those cases, so we don't expect those patterns here. AShr is not
1682   // handled because it should always be transformed to LShr in this sequence.
1683   // The subtract transform is different because it has a constant on the left.
1684   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1685   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1686   Constant *C;
1687   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1688       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1689       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1690       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1691       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1692     return nullptr;
1693 
1694   Value *X;
1695   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1696     return nullptr;
1697 
1698   Type *Ty = And.getType();
1699   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1700     return nullptr;
1701 
1702   // If we're narrowing a shift, the shift amount must be safe (less than the
1703   // width) in the narrower type. If the shift amount is greater, instsimplify
1704   // usually handles that case, but we can't guarantee/assert it.
1705   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1706   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1707     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1708       return nullptr;
1709 
1710   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1711   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1712   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1713   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1714                                          : Builder.CreateBinOp(Opc, X, NewC);
1715   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1716 }
1717 
1718 /// Try folding relatively complex patterns for both And and Or operations
1719 /// with all And and Or swapped.
1720 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1721                                              InstCombiner::BuilderTy &Builder) {
1722   const Instruction::BinaryOps Opcode = I.getOpcode();
1723   assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1724 
1725   // Flip the logic operation.
1726   const Instruction::BinaryOps FlippedOpcode =
1727       (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1728 
1729   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1730   Value *A, *B, *C, *X, *Y;
1731 
1732   // (~(A | B) & C) | ... --> ...
1733   // (~(A & B) | C) & ... --> ...
1734   // TODO: One use checks are conservative. We just need to check that a total
1735   //       number of multiple used values does not exceed reduction
1736   //       in operations.
1737   if (match(Op0,
1738             m_c_BinOp(FlippedOpcode,
1739                       m_CombineAnd(m_Value(X), m_Not(m_BinOp(Opcode, m_Value(A),
1740                                                              m_Value(B)))),
1741                       m_Value(C)))) {
1742     // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1743     // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1744     if (match(Op1,
1745               m_OneUse(m_c_BinOp(FlippedOpcode,
1746                                  m_OneUse(m_Not(m_c_BinOp(Opcode, m_Specific(A),
1747                                                           m_Specific(C)))),
1748                                  m_Specific(B))))) {
1749       Value *Xor = Builder.CreateXor(B, C);
1750       return (Opcode == Instruction::Or)
1751                  ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1752                  : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1753     }
1754 
1755     // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1756     // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
1757     if (match(Op1,
1758               m_OneUse(m_c_BinOp(FlippedOpcode,
1759                                  m_OneUse(m_Not(m_c_BinOp(Opcode, m_Specific(B),
1760                                                           m_Specific(C)))),
1761                                  m_Specific(A))))) {
1762       Value *Xor = Builder.CreateXor(A, C);
1763       return (Opcode == Instruction::Or)
1764                  ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
1765                  : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
1766     }
1767 
1768     // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
1769     // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
1770     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1771                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1772       return BinaryOperator::CreateNot(Builder.CreateBinOp(
1773           Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
1774 
1775     // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
1776     // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
1777     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1778                        m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
1779       return BinaryOperator::CreateNot(Builder.CreateBinOp(
1780           Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
1781 
1782     // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
1783     // Note, the pattern with swapped and/or is not handled because the
1784     // result is more undefined than a source:
1785     // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
1786     if (Opcode == Instruction::Or && Op0->hasOneUse() &&
1787         match(Op1, m_OneUse(m_Not(m_CombineAnd(
1788                        m_Value(Y),
1789                        m_c_BinOp(Opcode, m_Specific(C),
1790                                  m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
1791       // X = ~(A | B)
1792       // Y = (C | (A ^ B)
1793       Value *Or = cast<BinaryOperator>(X)->getOperand(0);
1794       return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
1795     }
1796   }
1797 
1798   // (~A & B & C) | ... --> ...
1799   // (~A | B | C) | ... --> ...
1800   // TODO: One use checks are conservative. We just need to check that a total
1801   //       number of multiple used values does not exceed reduction
1802   //       in operations.
1803   if (match(Op0,
1804             m_OneUse(m_c_BinOp(FlippedOpcode,
1805                                m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
1806                                m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
1807       match(Op0, m_OneUse(m_c_BinOp(
1808                      FlippedOpcode,
1809                      m_c_BinOp(FlippedOpcode, m_Value(C),
1810                                m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
1811                      m_Value(B))))) {
1812     // X = ~A
1813     // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
1814     // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
1815     if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
1816                        Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
1817                        m_Specific(C))))) ||
1818         match(Op1, m_OneUse(m_Not(m_c_BinOp(
1819                        Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
1820                        m_Specific(A))))) ||
1821         match(Op1, m_OneUse(m_Not(m_c_BinOp(
1822                        Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
1823                        m_Specific(B)))))) {
1824       Value *Xor = Builder.CreateXor(B, C);
1825       return (Opcode == Instruction::Or)
1826                  ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
1827                  : BinaryOperator::CreateOr(Xor, X);
1828     }
1829 
1830     // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
1831     // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
1832     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1833                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
1834       return BinaryOperator::Create(
1835           FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
1836           X);
1837 
1838     // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
1839     // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
1840     if (match(Op1, m_OneUse(m_Not(m_OneUse(
1841                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1842       return BinaryOperator::Create(
1843           FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
1844           X);
1845   }
1846 
1847   return nullptr;
1848 }
1849 
1850 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1851 // here. We should standardize that construct where it is needed or choose some
1852 // other way to ensure that commutated variants of patterns are not missed.
1853 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
1854   Type *Ty = I.getType();
1855 
1856   if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1857                                  SQ.getWithInstruction(&I)))
1858     return replaceInstUsesWith(I, V);
1859 
1860   if (SimplifyAssociativeOrCommutative(I))
1861     return &I;
1862 
1863   if (Instruction *X = foldVectorBinop(I))
1864     return X;
1865 
1866   // See if we can simplify any instructions used by the instruction whose sole
1867   // purpose is to compute bits we don't care about.
1868   if (SimplifyDemandedInstructionBits(I))
1869     return &I;
1870 
1871   // Do this before using distributive laws to catch simple and/or/not patterns.
1872   if (Instruction *Xor = foldAndToXor(I, Builder))
1873     return Xor;
1874 
1875   if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
1876     return X;
1877 
1878   // (A|B)&(A|C) -> A|(B&C) etc
1879   if (Value *V = SimplifyUsingDistributiveLaws(I))
1880     return replaceInstUsesWith(I, V);
1881 
1882   if (Value *V = SimplifyBSwap(I, Builder))
1883     return replaceInstUsesWith(I, V);
1884 
1885   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1886 
1887   Value *X, *Y;
1888   if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1889       match(Op1, m_One())) {
1890     // (1 << X) & 1 --> zext(X == 0)
1891     // (1 >> X) & 1 --> zext(X == 0)
1892     Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
1893     return new ZExtInst(IsZero, Ty);
1894   }
1895 
1896   const APInt *C;
1897   if (match(Op1, m_APInt(C))) {
1898     const APInt *XorC;
1899     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1900       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1901       Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
1902       Value *And = Builder.CreateAnd(X, Op1);
1903       And->takeName(Op0);
1904       return BinaryOperator::CreateXor(And, NewC);
1905     }
1906 
1907     const APInt *OrC;
1908     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1909       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1910       // NOTE: This reduces the number of bits set in the & mask, which
1911       // can expose opportunities for store narrowing for scalars.
1912       // NOTE: SimplifyDemandedBits should have already removed bits from C1
1913       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1914       // above, but this feels safer.
1915       APInt Together = *C & *OrC;
1916       Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
1917       And->takeName(Op0);
1918       return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
1919     }
1920 
1921     // If the mask is only needed on one incoming arm, push the 'and' op up.
1922     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1923         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1924       APInt NotAndMask(~(*C));
1925       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1926       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1927         // Not masking anything out for the LHS, move mask to RHS.
1928         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1929         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1930         return BinaryOperator::Create(BinOp, X, NewRHS);
1931       }
1932       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1933         // Not masking anything out for the RHS, move mask to LHS.
1934         // and ({x}or X, Y), C --> {x}or (and X, C), Y
1935         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1936         return BinaryOperator::Create(BinOp, NewLHS, Y);
1937       }
1938     }
1939 
1940     unsigned Width = Ty->getScalarSizeInBits();
1941     const APInt *ShiftC;
1942     if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) {
1943       if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
1944         // We are clearing high bits that were potentially set by sext+ashr:
1945         // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
1946         Value *Sext = Builder.CreateSExt(X, Ty);
1947         Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
1948         return BinaryOperator::CreateLShr(Sext, ShAmtC);
1949       }
1950     }
1951 
1952     const APInt *AddC;
1953     if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
1954       // If we add zeros to every bit below a mask, the add has no effect:
1955       // (X + AddC) & LowMaskC --> X & LowMaskC
1956       unsigned Ctlz = C->countLeadingZeros();
1957       APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
1958       if ((*AddC & LowMask).isZero())
1959         return BinaryOperator::CreateAnd(X, Op1);
1960 
1961       // If we are masking the result of the add down to exactly one bit and
1962       // the constant we are adding has no bits set below that bit, then the
1963       // add is flipping a single bit. Example:
1964       // (X + 4) & 4 --> (X & 4) ^ 4
1965       if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
1966         assert((*C & *AddC) != 0 && "Expected common bit");
1967         Value *NewAnd = Builder.CreateAnd(X, Op1);
1968         return BinaryOperator::CreateXor(NewAnd, Op1);
1969       }
1970     }
1971 
1972     // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
1973     // bitwidth of X and OP behaves well when given trunc(C1) and X.
1974     auto isSuitableBinOpcode = [](BinaryOperator *B) {
1975       switch (B->getOpcode()) {
1976       case Instruction::Xor:
1977       case Instruction::Or:
1978       case Instruction::Mul:
1979       case Instruction::Add:
1980       case Instruction::Sub:
1981         return true;
1982       default:
1983         return false;
1984       }
1985     };
1986     BinaryOperator *BO;
1987     if (match(Op0, m_OneUse(m_BinOp(BO))) && isSuitableBinOpcode(BO)) {
1988       Value *X;
1989       const APInt *C1;
1990       // TODO: The one-use restrictions could be relaxed a little if the AND
1991       // is going to be removed.
1992       if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
1993           C->isIntN(X->getType()->getScalarSizeInBits())) {
1994         unsigned XWidth = X->getType()->getScalarSizeInBits();
1995         Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
1996         Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
1997                            ? Builder.CreateBinOp(BO->getOpcode(), X, TruncC1)
1998                            : Builder.CreateBinOp(BO->getOpcode(), TruncC1, X);
1999         Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2000         Value *And = Builder.CreateAnd(BinOp, TruncC);
2001         return new ZExtInst(And, Ty);
2002       }
2003     }
2004   }
2005 
2006   if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
2007                       m_SignMask())) &&
2008       match(Y, m_SpecificInt_ICMP(
2009                    ICmpInst::Predicate::ICMP_EQ,
2010                    APInt(Ty->getScalarSizeInBits(),
2011                          Ty->getScalarSizeInBits() -
2012                              X->getType()->getScalarSizeInBits())))) {
2013     auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2014     auto *SanitizedSignMask = cast<Constant>(Op1);
2015     // We must be careful with the undef elements of the sign bit mask, however:
2016     // the mask elt can be undef iff the shift amount for that lane was undef,
2017     // otherwise we need to sanitize undef masks to zero.
2018     SanitizedSignMask = Constant::replaceUndefsWith(
2019         SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
2020     SanitizedSignMask =
2021         Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
2022     return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
2023   }
2024 
2025   if (Instruction *Z = narrowMaskedBinOp(I))
2026     return Z;
2027 
2028   if (I.getType()->isIntOrIntVectorTy(1)) {
2029     if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2030       if (auto *I =
2031               foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2032         return I;
2033     }
2034     if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2035       if (auto *I =
2036               foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2037         return I;
2038     }
2039   }
2040 
2041   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2042     return FoldedLogic;
2043 
2044   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2045     return DeMorgan;
2046 
2047   {
2048     Value *A, *B, *C;
2049     // A & (A ^ B) --> A & ~B
2050     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2051       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
2052     // (A ^ B) & A --> A & ~B
2053     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2054       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
2055 
2056     // A & ~(A ^ B) --> A & B
2057     if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2058       return BinaryOperator::CreateAnd(Op0, B);
2059     // ~(A ^ B) & A --> A & B
2060     if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2061       return BinaryOperator::CreateAnd(Op1, B);
2062 
2063     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2064     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2065       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2066         if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2067           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
2068 
2069     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2070     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2071       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2072         if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2073           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2074 
2075     // (A | B) & ((~A) ^ B) -> (A & B)
2076     // (A | B) & (B ^ (~A)) -> (A & B)
2077     // (B | A) & ((~A) ^ B) -> (A & B)
2078     // (B | A) & (B ^ (~A)) -> (A & B)
2079     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2080         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2081       return BinaryOperator::CreateAnd(A, B);
2082 
2083     // ((~A) ^ B) & (A | B) -> (A & B)
2084     // ((~A) ^ B) & (B | A) -> (A & B)
2085     // (B ^ (~A)) & (A | B) -> (A & B)
2086     // (B ^ (~A)) & (B | A) -> (A & B)
2087     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2088         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2089       return BinaryOperator::CreateAnd(A, B);
2090   }
2091 
2092   {
2093     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2094     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2095     if (LHS && RHS)
2096       if (Value *Res = foldAndOfICmps(LHS, RHS, I))
2097         return replaceInstUsesWith(I, Res);
2098 
2099     // TODO: Make this recursive; it's a little tricky because an arbitrary
2100     // number of 'and' instructions might have to be created.
2101     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
2102       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2103         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
2104           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
2105       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2106         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
2107           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
2108     }
2109     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
2110       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2111         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
2112           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
2113       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2114         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
2115           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
2116     }
2117   }
2118 
2119   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2120     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2121       if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
2122         return replaceInstUsesWith(I, Res);
2123 
2124   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2125     return FoldedFCmps;
2126 
2127   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2128     return CastedAnd;
2129 
2130   if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2131     return Sel;
2132 
2133   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2134   // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2135   //       with binop identity constant. But creating a select with non-constant
2136   //       arm may not be reversible due to poison semantics. Is that a good
2137   //       canonicalization?
2138   Value *A;
2139   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2140       A->getType()->isIntOrIntVectorTy(1))
2141     return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
2142   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2143       A->getType()->isIntOrIntVectorTy(1))
2144     return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
2145 
2146   // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0
2147   unsigned FullShift = Ty->getScalarSizeInBits() - 1;
2148   if (match(&I, m_c_And(m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))),
2149                         m_Value(Y)))) {
2150     Constant *Zero = ConstantInt::getNullValue(Ty);
2151     Value *Cmp = Builder.CreateICmpSLT(X, Zero, "isneg");
2152     return SelectInst::Create(Cmp, Y, Zero);
2153   }
2154   // If there's a 'not' of the shifted value, swap the select operands:
2155   // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y
2156   if (match(&I, m_c_And(m_OneUse(m_Not(
2157                             m_AShr(m_Value(X), m_SpecificInt(FullShift)))),
2158                         m_Value(Y)))) {
2159     Constant *Zero = ConstantInt::getNullValue(Ty);
2160     Value *Cmp = Builder.CreateICmpSLT(X, Zero, "isneg");
2161     return SelectInst::Create(Cmp, Zero, Y);
2162   }
2163 
2164   // (~x) & y  -->  ~(x | (~y))  iff that gets rid of inversions
2165   if (sinkNotIntoOtherHandOfAndOrOr(I))
2166     return &I;
2167 
2168   // An and recurrence w/loop invariant step is equivelent to (and start, step)
2169   PHINode *PN = nullptr;
2170   Value *Start = nullptr, *Step = nullptr;
2171   if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2172     return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2173 
2174   return nullptr;
2175 }
2176 
2177 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2178                                                       bool MatchBSwaps,
2179                                                       bool MatchBitReversals) {
2180   SmallVector<Instruction *, 4> Insts;
2181   if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2182                                        Insts))
2183     return nullptr;
2184   Instruction *LastInst = Insts.pop_back_val();
2185   LastInst->removeFromParent();
2186 
2187   for (auto *Inst : Insts)
2188     Worklist.push(Inst);
2189   return LastInst;
2190 }
2191 
2192 /// Match UB-safe variants of the funnel shift intrinsic.
2193 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2194   // TODO: Can we reduce the code duplication between this and the related
2195   // rotate matching code under visitSelect and visitTrunc?
2196   unsigned Width = Or.getType()->getScalarSizeInBits();
2197 
2198   // First, find an or'd pair of opposite shifts:
2199   // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2200   BinaryOperator *Or0, *Or1;
2201   if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2202       !match(Or.getOperand(1), m_BinOp(Or1)))
2203     return nullptr;
2204 
2205   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2206   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2207       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2208       Or0->getOpcode() == Or1->getOpcode())
2209     return nullptr;
2210 
2211   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2212   if (Or0->getOpcode() == BinaryOperator::LShr) {
2213     std::swap(Or0, Or1);
2214     std::swap(ShVal0, ShVal1);
2215     std::swap(ShAmt0, ShAmt1);
2216   }
2217   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2218          Or1->getOpcode() == BinaryOperator::LShr &&
2219          "Illegal or(shift,shift) pair");
2220 
2221   // Match the shift amount operands for a funnel shift pattern. This always
2222   // matches a subtraction on the R operand.
2223   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2224     // Check for constant shift amounts that sum to the bitwidth.
2225     const APInt *LI, *RI;
2226     if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2227       if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2228         return ConstantInt::get(L->getType(), *LI);
2229 
2230     Constant *LC, *RC;
2231     if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2232         match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2233         match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2234         match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2235       return ConstantExpr::mergeUndefsWith(LC, RC);
2236 
2237     // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2238     // We limit this to X < Width in case the backend re-expands the intrinsic,
2239     // and has to reintroduce a shift modulo operation (InstCombine might remove
2240     // it after this fold). This still doesn't guarantee that the final codegen
2241     // will match this original pattern.
2242     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2243       KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2244       return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2245     }
2246 
2247     // For non-constant cases, the following patterns currently only work for
2248     // rotation patterns.
2249     // TODO: Add general funnel-shift compatible patterns.
2250     if (ShVal0 != ShVal1)
2251       return nullptr;
2252 
2253     // For non-constant cases we don't support non-pow2 shift masks.
2254     // TODO: Is it worth matching urem as well?
2255     if (!isPowerOf2_32(Width))
2256       return nullptr;
2257 
2258     // The shift amount may be masked with negation:
2259     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2260     Value *X;
2261     unsigned Mask = Width - 1;
2262     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2263         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2264       return X;
2265 
2266     // Similar to above, but the shift amount may be extended after masking,
2267     // so return the extended value as the parameter for the intrinsic.
2268     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2269         match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2270                        m_SpecificInt(Mask))))
2271       return L;
2272 
2273     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2274         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2275       return L;
2276 
2277     return nullptr;
2278   };
2279 
2280   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2281   bool IsFshl = true; // Sub on LSHR.
2282   if (!ShAmt) {
2283     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2284     IsFshl = false; // Sub on SHL.
2285   }
2286   if (!ShAmt)
2287     return nullptr;
2288 
2289   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2290   Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2291   return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
2292 }
2293 
2294 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
2295 static Instruction *matchOrConcat(Instruction &Or,
2296                                   InstCombiner::BuilderTy &Builder) {
2297   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2298   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2299   Type *Ty = Or.getType();
2300 
2301   unsigned Width = Ty->getScalarSizeInBits();
2302   if ((Width & 1) != 0)
2303     return nullptr;
2304   unsigned HalfWidth = Width / 2;
2305 
2306   // Canonicalize zext (lower half) to LHS.
2307   if (!isa<ZExtInst>(Op0))
2308     std::swap(Op0, Op1);
2309 
2310   // Find lower/upper half.
2311   Value *LowerSrc, *ShlVal, *UpperSrc;
2312   const APInt *C;
2313   if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2314       !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2315       !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2316     return nullptr;
2317   if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2318       LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2319     return nullptr;
2320 
2321   auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2322     Value *NewLower = Builder.CreateZExt(Lo, Ty);
2323     Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2324     NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2325     Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2326     Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2327     return Builder.CreateCall(F, BinOp);
2328   };
2329 
2330   // BSWAP: Push the concat down, swapping the lower/upper sources.
2331   // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2332   Value *LowerBSwap, *UpperBSwap;
2333   if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2334       match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2335     return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2336 
2337   // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2338   // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2339   Value *LowerBRev, *UpperBRev;
2340   if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2341       match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2342     return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2343 
2344   return nullptr;
2345 }
2346 
2347 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2348 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2349   unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2350   for (unsigned i = 0; i != NumElts; ++i) {
2351     Constant *EltC1 = C1->getAggregateElement(i);
2352     Constant *EltC2 = C2->getAggregateElement(i);
2353     if (!EltC1 || !EltC2)
2354       return false;
2355 
2356     // One element must be all ones, and the other must be all zeros.
2357     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2358           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2359       return false;
2360   }
2361   return true;
2362 }
2363 
2364 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2365 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2366 /// B, it can be used as the condition operand of a select instruction.
2367 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) {
2368   // We may have peeked through bitcasts in the caller.
2369   // Exit immediately if we don't have (vector) integer types.
2370   Type *Ty = A->getType();
2371   if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2372     return nullptr;
2373 
2374   // If A is the 'not' operand of B and has enough signbits, we have our answer.
2375   if (match(B, m_Not(m_Specific(A)))) {
2376     // If these are scalars or vectors of i1, A can be used directly.
2377     if (Ty->isIntOrIntVectorTy(1))
2378       return A;
2379 
2380     // If we look through a vector bitcast, the caller will bitcast the operands
2381     // to match the condition's number of bits (N x i1).
2382     // To make this poison-safe, disallow bitcast from wide element to narrow
2383     // element. That could allow poison in lanes where it was not present in the
2384     // original code.
2385     A = peekThroughBitcast(A);
2386     if (A->getType()->isIntOrIntVectorTy()) {
2387       unsigned NumSignBits = ComputeNumSignBits(A);
2388       if (NumSignBits == A->getType()->getScalarSizeInBits() &&
2389           NumSignBits <= Ty->getScalarSizeInBits())
2390         return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
2391     }
2392     return nullptr;
2393   }
2394 
2395   // If both operands are constants, see if the constants are inverse bitmasks.
2396   Constant *AConst, *BConst;
2397   if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2398     if (AConst == ConstantExpr::getNot(BConst) &&
2399         ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
2400       return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2401 
2402   // Look for more complex patterns. The 'not' op may be hidden behind various
2403   // casts. Look through sexts and bitcasts to find the booleans.
2404   Value *Cond;
2405   Value *NotB;
2406   if (match(A, m_SExt(m_Value(Cond))) &&
2407       Cond->getType()->isIntOrIntVectorTy(1)) {
2408     // A = sext i1 Cond; B = sext (not (i1 Cond))
2409     if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
2410       return Cond;
2411 
2412     // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
2413     // TODO: The one-use checks are unnecessary or misplaced. If the caller
2414     //       checked for uses on logic ops/casts, that should be enough to
2415     //       make this transform worthwhile.
2416     if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2417       NotB = peekThroughBitcast(NotB, true);
2418       if (match(NotB, m_SExt(m_Specific(Cond))))
2419         return Cond;
2420     }
2421   }
2422 
2423   // All scalar (and most vector) possibilities should be handled now.
2424   // Try more matches that only apply to non-splat constant vectors.
2425   if (!Ty->isVectorTy())
2426     return nullptr;
2427 
2428   // If both operands are xor'd with constants using the same sexted boolean
2429   // operand, see if the constants are inverse bitmasks.
2430   // TODO: Use ConstantExpr::getNot()?
2431   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2432       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2433       Cond->getType()->isIntOrIntVectorTy(1) &&
2434       areInverseVectorBitmasks(AConst, BConst)) {
2435     AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2436     return Builder.CreateXor(Cond, AConst);
2437   }
2438   return nullptr;
2439 }
2440 
2441 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2442 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2443 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2444                                               Value *D) {
2445   // The potential condition of the select may be bitcasted. In that case, look
2446   // through its bitcast and the corresponding bitcast of the 'not' condition.
2447   Type *OrigType = A->getType();
2448   A = peekThroughBitcast(A, true);
2449   B = peekThroughBitcast(B, true);
2450   if (Value *Cond = getSelectCondition(A, B)) {
2451     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2452     // If this is a vector, we may need to cast to match the condition's length.
2453     // The bitcasts will either all exist or all not exist. The builder will
2454     // not create unnecessary casts if the types already match.
2455     Type *SelTy = A->getType();
2456     if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
2457       unsigned Elts = VecTy->getElementCount().getKnownMinValue();
2458       Type *EltTy = Builder.getIntNTy(SelTy->getPrimitiveSizeInBits() / Elts);
2459       SelTy = VectorType::get(EltTy, VecTy->getElementCount());
2460     }
2461     Value *BitcastC = Builder.CreateBitCast(C, SelTy);
2462     Value *BitcastD = Builder.CreateBitCast(D, SelTy);
2463     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2464     return Builder.CreateBitCast(Select, OrigType);
2465   }
2466 
2467   return nullptr;
2468 }
2469 
2470 /// Fold (icmp)|(icmp) if possible.
2471 Value *InstCombinerImpl::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2472                                        BinaryOperator &Or) {
2473   const SimplifyQuery Q = SQ.getWithInstruction(&Or);
2474 
2475   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
2476   // if K1 and K2 are a one-bit mask.
2477   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &Or,
2478                                                /* IsAnd */ false))
2479     return V;
2480 
2481   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2482   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2483   Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
2484   const APInt *LHSC = nullptr, *RHSC = nullptr;
2485   match(LHS1, m_APInt(LHSC));
2486   match(RHS1, m_APInt(RHSC));
2487 
2488   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2489   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2490   // The original condition actually refers to the following two ranges:
2491   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2492   // We can fold these two ranges if:
2493   // 1) C1 and C2 is unsigned greater than C3.
2494   // 2) The two ranges are separated.
2495   // 3) C1 ^ C2 is one-bit mask.
2496   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2497   // This implies all values in the two ranges differ by exactly one bit.
2498   if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
2499       PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
2500       LHSC->getBitWidth() == RHSC->getBitWidth() && *LHSC == *RHSC) {
2501 
2502     Value *AddOpnd;
2503     const APInt *LAddC, *RAddC;
2504     if (match(LHS0, m_Add(m_Value(AddOpnd), m_APInt(LAddC))) &&
2505         match(RHS0, m_Add(m_Specific(AddOpnd), m_APInt(RAddC))) &&
2506         LAddC->ugt(*LHSC) && RAddC->ugt(*LHSC)) {
2507 
2508       APInt DiffC = *LAddC ^ *RAddC;
2509       if (DiffC.isPowerOf2()) {
2510         const APInt *MaxAddC = nullptr;
2511         if (LAddC->ult(*RAddC))
2512           MaxAddC = RAddC;
2513         else
2514           MaxAddC = LAddC;
2515 
2516         APInt RRangeLow = -*RAddC;
2517         APInt RRangeHigh = RRangeLow + *LHSC;
2518         APInt LRangeLow = -*LAddC;
2519         APInt LRangeHigh = LRangeLow + *LHSC;
2520         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
2521         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
2522         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
2523                                                    : RRangeLow - LRangeLow;
2524 
2525         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
2526             RangeDiff.ugt(*LHSC)) {
2527           Type *Ty = AddOpnd->getType();
2528           Value *MaskC = ConstantInt::get(Ty, ~DiffC);
2529 
2530           Value *NewAnd = Builder.CreateAnd(AddOpnd, MaskC);
2531           Value *NewAdd = Builder.CreateAdd(NewAnd,
2532                                             ConstantInt::get(Ty, *MaxAddC));
2533           return Builder.CreateICmp(LHS->getPredicate(), NewAdd,
2534                                     ConstantInt::get(Ty, *LHSC));
2535         }
2536       }
2537     }
2538   }
2539 
2540   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2541   if (predicatesFoldable(PredL, PredR)) {
2542     if (LHS0 == RHS1 && LHS1 == RHS0)
2543       LHS->swapOperands();
2544     if (LHS0 == RHS0 && LHS1 == RHS1) {
2545       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
2546       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2547       return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
2548     }
2549   }
2550 
2551   // handle (roughly):
2552   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2553   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
2554     return V;
2555 
2556   if (LHS->hasOneUse() || RHS->hasOneUse()) {
2557     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2558     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2559     Value *A = nullptr, *B = nullptr;
2560     if (PredL == ICmpInst::ICMP_EQ && match(LHS1, m_Zero())) {
2561       B = LHS0;
2562       if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS1)
2563         A = RHS0;
2564       else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2565         A = RHS1;
2566     }
2567     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2568     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2569     else if (PredR == ICmpInst::ICMP_EQ && match(RHS1, m_Zero())) {
2570       B = RHS0;
2571       if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS1)
2572         A = LHS0;
2573       else if (PredL == ICmpInst::ICMP_UGT && RHS0 == LHS0)
2574         A = LHS1;
2575     }
2576     if (A && B && B->getType()->isIntOrIntVectorTy())
2577       return Builder.CreateICmp(
2578           ICmpInst::ICMP_UGE,
2579           Builder.CreateAdd(B, Constant::getAllOnesValue(B->getType())), A);
2580   }
2581 
2582   if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q))
2583     return V;
2584   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q))
2585     return V;
2586 
2587   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2588   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
2589     return V;
2590 
2591   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2592   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
2593     return V;
2594 
2595   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
2596     return V;
2597 
2598   if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
2599     return V;
2600 
2601   if (Value *X =
2602           foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
2603     return X;
2604   if (Value *X =
2605           foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
2606     return X;
2607 
2608   if (Value *X = foldEqOfParts(LHS, RHS, /*IsAnd=*/false))
2609     return X;
2610 
2611   // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2612   // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
2613   if (PredL == ICmpInst::ICMP_NE && match(LHS1, m_ZeroInt()) &&
2614       PredR == ICmpInst::ICMP_NE && match(RHS1, m_ZeroInt()) &&
2615       LHS0->getType() == RHS0->getType()) {
2616     Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2617     return Builder.CreateICmp(PredL, NewOr,
2618                               Constant::getNullValue(NewOr->getType()));
2619   }
2620 
2621   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2622   if (!LHSC || !RHSC)
2623     return nullptr;
2624 
2625   return foldAndOrOfICmpsUsingRanges(PredL, LHS0, *LHSC, PredR, RHS0, *RHSC,
2626                                      Builder, /* IsAnd */ false);
2627 }
2628 
2629 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2630 // here. We should standardize that construct where it is needed or choose some
2631 // other way to ensure that commutated variants of patterns are not missed.
2632 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
2633   if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2634                                 SQ.getWithInstruction(&I)))
2635     return replaceInstUsesWith(I, V);
2636 
2637   if (SimplifyAssociativeOrCommutative(I))
2638     return &I;
2639 
2640   if (Instruction *X = foldVectorBinop(I))
2641     return X;
2642 
2643   // See if we can simplify any instructions used by the instruction whose sole
2644   // purpose is to compute bits we don't care about.
2645   if (SimplifyDemandedInstructionBits(I))
2646     return &I;
2647 
2648   // Do this before using distributive laws to catch simple and/or/not patterns.
2649   if (Instruction *Xor = foldOrToXor(I, Builder))
2650     return Xor;
2651 
2652   if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2653     return X;
2654 
2655   // (A&B)|(A&C) -> A&(B|C) etc
2656   if (Value *V = SimplifyUsingDistributiveLaws(I))
2657     return replaceInstUsesWith(I, V);
2658 
2659   if (Value *V = SimplifyBSwap(I, Builder))
2660     return replaceInstUsesWith(I, V);
2661 
2662   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2663   Type *Ty = I.getType();
2664   if (Ty->isIntOrIntVectorTy(1)) {
2665     if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2666       if (auto *I =
2667               foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
2668         return I;
2669     }
2670     if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2671       if (auto *I =
2672               foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
2673         return I;
2674     }
2675   }
2676 
2677   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2678     return FoldedLogic;
2679 
2680   if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
2681                                                   /*MatchBitReversals*/ true))
2682     return BitOp;
2683 
2684   if (Instruction *Funnel = matchFunnelShift(I, *this))
2685     return Funnel;
2686 
2687   if (Instruction *Concat = matchOrConcat(I, Builder))
2688     return replaceInstUsesWith(I, Concat);
2689 
2690   Value *X, *Y;
2691   const APInt *CV;
2692   if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2693       !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2694     // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2695     // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2696     Value *Or = Builder.CreateOr(X, Y);
2697     return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
2698   }
2699 
2700   // If the operands have no common bits set:
2701   // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
2702   if (match(&I,
2703             m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
2704       haveNoCommonBitsSet(Op0, Op1, DL)) {
2705     Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
2706     return BinaryOperator::CreateMul(X, IncrementY);
2707   }
2708 
2709   // (A & C) | (B & D)
2710   Value *A, *B, *C, *D;
2711   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2712       match(Op1, m_And(m_Value(B), m_Value(D)))) {
2713 
2714     // (A & C0) | (B & C1)
2715     const APInt *C0, *C1;
2716     if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
2717       Value *X;
2718       if (*C0 == ~*C1) {
2719         // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
2720         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2721           return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
2722         // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
2723         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2724           return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
2725 
2726         // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
2727         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2728           return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
2729         // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
2730         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2731           return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
2732       }
2733 
2734       if ((*C0 & *C1).isZero()) {
2735         // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
2736         // iff (C0 & C1) == 0 and (X & ~C0) == 0
2737         if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
2738             MaskedValueIsZero(X, ~*C0, 0, &I)) {
2739           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
2740           return BinaryOperator::CreateAnd(A, C01);
2741         }
2742         // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
2743         // iff (C0 & C1) == 0 and (X & ~C1) == 0
2744         if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
2745             MaskedValueIsZero(X, ~*C1, 0, &I)) {
2746           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
2747           return BinaryOperator::CreateAnd(B, C01);
2748         }
2749         // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
2750         // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
2751         const APInt *C2, *C3;
2752         if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
2753             match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
2754             (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
2755           Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
2756           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
2757           return BinaryOperator::CreateAnd(Or, C01);
2758         }
2759       }
2760     }
2761 
2762     // Don't try to form a select if it's unlikely that we'll get rid of at
2763     // least one of the operands. A select is generally more expensive than the
2764     // 'or' that it is replacing.
2765     if (Op0->hasOneUse() || Op1->hasOneUse()) {
2766       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2767       if (Value *V = matchSelectFromAndOr(A, C, B, D))
2768         return replaceInstUsesWith(I, V);
2769       if (Value *V = matchSelectFromAndOr(A, C, D, B))
2770         return replaceInstUsesWith(I, V);
2771       if (Value *V = matchSelectFromAndOr(C, A, B, D))
2772         return replaceInstUsesWith(I, V);
2773       if (Value *V = matchSelectFromAndOr(C, A, D, B))
2774         return replaceInstUsesWith(I, V);
2775       if (Value *V = matchSelectFromAndOr(B, D, A, C))
2776         return replaceInstUsesWith(I, V);
2777       if (Value *V = matchSelectFromAndOr(B, D, C, A))
2778         return replaceInstUsesWith(I, V);
2779       if (Value *V = matchSelectFromAndOr(D, B, A, C))
2780         return replaceInstUsesWith(I, V);
2781       if (Value *V = matchSelectFromAndOr(D, B, C, A))
2782         return replaceInstUsesWith(I, V);
2783     }
2784   }
2785 
2786   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2787   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2788     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2789       return BinaryOperator::CreateOr(Op0, C);
2790 
2791   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2792   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2793     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2794       return BinaryOperator::CreateOr(Op1, C);
2795 
2796   // ((B | C) & A) | B -> B | (A & C)
2797   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2798     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2799 
2800   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2801     return DeMorgan;
2802 
2803   // Canonicalize xor to the RHS.
2804   bool SwappedForXor = false;
2805   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2806     std::swap(Op0, Op1);
2807     SwappedForXor = true;
2808   }
2809 
2810   // A | ( A ^ B) -> A |  B
2811   // A | (~A ^ B) -> A | ~B
2812   // (A & B) | (A ^ B)
2813   // ~A | (A ^ B) -> ~(A & B)
2814   // The swap above should always make Op0 the 'not' for the last case.
2815   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2816     if (Op0 == A || Op0 == B)
2817       return BinaryOperator::CreateOr(A, B);
2818 
2819     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2820         match(Op0, m_And(m_Specific(B), m_Specific(A))))
2821       return BinaryOperator::CreateOr(A, B);
2822 
2823     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
2824         (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
2825       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
2826 
2827     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2828       Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2829       return BinaryOperator::CreateOr(Not, Op0);
2830     }
2831     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2832       Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2833       return BinaryOperator::CreateOr(Not, Op0);
2834     }
2835   }
2836 
2837   // A | ~(A | B) -> A | ~B
2838   // A | ~(A ^ B) -> A | ~B
2839   if (match(Op1, m_Not(m_Value(A))))
2840     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2841       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2842           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2843                                B->getOpcode() == Instruction::Xor)) {
2844         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2845                                                  B->getOperand(0);
2846         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2847         return BinaryOperator::CreateOr(Not, Op0);
2848       }
2849 
2850   if (SwappedForXor)
2851     std::swap(Op0, Op1);
2852 
2853   {
2854     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2855     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2856     if (LHS && RHS)
2857       if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2858         return replaceInstUsesWith(I, Res);
2859 
2860     // TODO: Make this recursive; it's a little tricky because an arbitrary
2861     // number of 'or' instructions might have to be created.
2862     Value *X, *Y;
2863     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2864       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2865         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2866           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2867       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2868         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2869           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2870     }
2871     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2872       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2873         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2874           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2875       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2876         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2877           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2878     }
2879   }
2880 
2881   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2882     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2883       if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2884         return replaceInstUsesWith(I, Res);
2885 
2886   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2887     return FoldedFCmps;
2888 
2889   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2890     return CastedOr;
2891 
2892   if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2893     return Sel;
2894 
2895   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2896   // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2897   //       with binop identity constant. But creating a select with non-constant
2898   //       arm may not be reversible due to poison semantics. Is that a good
2899   //       canonicalization?
2900   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2901       A->getType()->isIntOrIntVectorTy(1))
2902     return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1);
2903   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2904       A->getType()->isIntOrIntVectorTy(1))
2905     return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0);
2906 
2907   // Note: If we've gotten to the point of visiting the outer OR, then the
2908   // inner one couldn't be simplified.  If it was a constant, then it won't
2909   // be simplified by a later pass either, so we try swapping the inner/outer
2910   // ORs in the hopes that we'll be able to simplify it this way.
2911   // (X|C) | V --> (X|V) | C
2912   ConstantInt *CI;
2913   if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
2914       match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
2915     Value *Inner = Builder.CreateOr(A, Op1);
2916     Inner->takeName(Op0);
2917     return BinaryOperator::CreateOr(Inner, CI);
2918   }
2919 
2920   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2921   // Since this OR statement hasn't been optimized further yet, we hope
2922   // that this transformation will allow the new ORs to be optimized.
2923   {
2924     Value *X = nullptr, *Y = nullptr;
2925     if (Op0->hasOneUse() && Op1->hasOneUse() &&
2926         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2927         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2928       Value *orTrue = Builder.CreateOr(A, C);
2929       Value *orFalse = Builder.CreateOr(B, D);
2930       return SelectInst::Create(X, orTrue, orFalse);
2931     }
2932   }
2933 
2934   // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X)  --> X s> Y ? -1 : X.
2935   {
2936     Value *X, *Y;
2937     if (match(&I, m_c_Or(m_OneUse(m_AShr(
2938                              m_NSWSub(m_Value(Y), m_Value(X)),
2939                              m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
2940                          m_Deferred(X)))) {
2941       Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
2942       Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
2943       return SelectInst::Create(NewICmpInst, AllOnes, X);
2944     }
2945   }
2946 
2947   if (Instruction *V =
2948           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2949     return V;
2950 
2951   CmpInst::Predicate Pred;
2952   Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
2953   // Check if the OR weakens the overflow condition for umul.with.overflow by
2954   // treating any non-zero result as overflow. In that case, we overflow if both
2955   // umul.with.overflow operands are != 0, as in that case the result can only
2956   // be 0, iff the multiplication overflows.
2957   if (match(&I,
2958             m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
2959                                 m_Value(Ov)),
2960                    m_CombineAnd(m_ICmp(Pred,
2961                                        m_CombineAnd(m_ExtractValue<0>(
2962                                                         m_Deferred(UMulWithOv)),
2963                                                     m_Value(Mul)),
2964                                        m_ZeroInt()),
2965                                 m_Value(MulIsNotZero)))) &&
2966       (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
2967       Pred == CmpInst::ICMP_NE) {
2968     Value *A, *B;
2969     if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
2970                               m_Value(A), m_Value(B)))) {
2971       Value *NotNullA = Builder.CreateIsNotNull(A);
2972       Value *NotNullB = Builder.CreateIsNotNull(B);
2973       return BinaryOperator::CreateAnd(NotNullA, NotNullB);
2974     }
2975   }
2976 
2977   // (~x) | y  -->  ~(x & (~y))  iff that gets rid of inversions
2978   if (sinkNotIntoOtherHandOfAndOrOr(I))
2979     return &I;
2980 
2981   // Improve "get low bit mask up to and including bit X" pattern:
2982   //   (1 << X) | ((1 << X) + -1)  -->  -1 l>> (bitwidth(x) - 1 - X)
2983   if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
2984                        m_Shl(m_One(), m_Deferred(X)))) &&
2985       match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
2986     Value *Sub = Builder.CreateSub(
2987         ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
2988     return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
2989   }
2990 
2991   // An or recurrence w/loop invariant step is equivelent to (or start, step)
2992   PHINode *PN = nullptr;
2993   Value *Start = nullptr, *Step = nullptr;
2994   if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2995     return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
2996 
2997   return nullptr;
2998 }
2999 
3000 /// A ^ B can be specified using other logic ops in a variety of patterns. We
3001 /// can fold these early and efficiently by morphing an existing instruction.
3002 static Instruction *foldXorToXor(BinaryOperator &I,
3003                                  InstCombiner::BuilderTy &Builder) {
3004   assert(I.getOpcode() == Instruction::Xor);
3005   Value *Op0 = I.getOperand(0);
3006   Value *Op1 = I.getOperand(1);
3007   Value *A, *B;
3008 
3009   // There are 4 commuted variants for each of the basic patterns.
3010 
3011   // (A & B) ^ (A | B) -> A ^ B
3012   // (A & B) ^ (B | A) -> A ^ B
3013   // (A | B) ^ (A & B) -> A ^ B
3014   // (A | B) ^ (B & A) -> A ^ B
3015   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
3016                         m_c_Or(m_Deferred(A), m_Deferred(B)))))
3017     return BinaryOperator::CreateXor(A, B);
3018 
3019   // (A | ~B) ^ (~A | B) -> A ^ B
3020   // (~B | A) ^ (~A | B) -> A ^ B
3021   // (~A | B) ^ (A | ~B) -> A ^ B
3022   // (B | ~A) ^ (A | ~B) -> A ^ B
3023   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
3024                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
3025     return BinaryOperator::CreateXor(A, B);
3026 
3027   // (A & ~B) ^ (~A & B) -> A ^ B
3028   // (~B & A) ^ (~A & B) -> A ^ B
3029   // (~A & B) ^ (A & ~B) -> A ^ B
3030   // (B & ~A) ^ (A & ~B) -> A ^ B
3031   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
3032                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
3033     return BinaryOperator::CreateXor(A, B);
3034 
3035   // For the remaining cases we need to get rid of one of the operands.
3036   if (!Op0->hasOneUse() && !Op1->hasOneUse())
3037     return nullptr;
3038 
3039   // (A | B) ^ ~(A & B) -> ~(A ^ B)
3040   // (A | B) ^ ~(B & A) -> ~(A ^ B)
3041   // (A & B) ^ ~(A | B) -> ~(A ^ B)
3042   // (A & B) ^ ~(B | A) -> ~(A ^ B)
3043   // Complexity sorting ensures the not will be on the right side.
3044   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
3045        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
3046       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3047        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
3048     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
3049 
3050   return nullptr;
3051 }
3052 
3053 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3054                                         BinaryOperator &I) {
3055   assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
3056          I.getOperand(1) == RHS && "Should be 'xor' with these operands");
3057 
3058   if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
3059     if (LHS->getOperand(0) == RHS->getOperand(1) &&
3060         LHS->getOperand(1) == RHS->getOperand(0))
3061       LHS->swapOperands();
3062     if (LHS->getOperand(0) == RHS->getOperand(0) &&
3063         LHS->getOperand(1) == RHS->getOperand(1)) {
3064       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
3065       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
3066       unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
3067       bool IsSigned = LHS->isSigned() || RHS->isSigned();
3068       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
3069     }
3070   }
3071 
3072   // TODO: This can be generalized to compares of non-signbits using
3073   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
3074   // foldLogOpOfMaskedICmps().
3075   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3076   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
3077   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
3078   if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
3079       LHS0->getType() == RHS0->getType() &&
3080       LHS0->getType()->isIntOrIntVectorTy()) {
3081     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
3082     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
3083     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
3084          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
3085         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
3086          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
3087       Value *Zero = ConstantInt::getNullValue(LHS0->getType());
3088       return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
3089     }
3090     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
3091     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
3092     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
3093          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
3094         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
3095          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
3096       Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
3097       return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
3098     }
3099   }
3100 
3101   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
3102   // into those logic ops. That is, try to turn this into an and-of-icmps
3103   // because we have many folds for that pattern.
3104   //
3105   // This is based on a truth table definition of xor:
3106   // X ^ Y --> (X | Y) & !(X & Y)
3107   if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
3108     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
3109     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
3110     if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
3111       // TODO: Independently handle cases where the 'and' side is a constant.
3112       ICmpInst *X = nullptr, *Y = nullptr;
3113       if (OrICmp == LHS && AndICmp == RHS) {
3114         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
3115         X = LHS;
3116         Y = RHS;
3117       }
3118       if (OrICmp == RHS && AndICmp == LHS) {
3119         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
3120         X = RHS;
3121         Y = LHS;
3122       }
3123       if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3124         // Invert the predicate of 'Y', thus inverting its output.
3125         Y->setPredicate(Y->getInversePredicate());
3126         // So, are there other uses of Y?
3127         if (!Y->hasOneUse()) {
3128           // We need to adapt other uses of Y though. Get a value that matches
3129           // the original value of Y before inversion. While this increases
3130           // immediate instruction count, we have just ensured that all the
3131           // users are freely-invertible, so that 'not' *will* get folded away.
3132           BuilderTy::InsertPointGuard Guard(Builder);
3133           // Set insertion point to right after the Y.
3134           Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3135           Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3136           // Replace all uses of Y (excluding the one in NotY!) with NotY.
3137           Worklist.pushUsersToWorkList(*Y);
3138           Y->replaceUsesWithIf(NotY,
3139                                [NotY](Use &U) { return U.getUser() != NotY; });
3140         }
3141         // All done.
3142         return Builder.CreateAnd(LHS, RHS);
3143       }
3144     }
3145   }
3146 
3147   return nullptr;
3148 }
3149 
3150 /// If we have a masked merge, in the canonical form of:
3151 /// (assuming that A only has one use.)
3152 ///   |        A  |  |B|
3153 ///   ((x ^ y) & M) ^ y
3154 ///    |  D  |
3155 /// * If M is inverted:
3156 ///      |  D  |
3157 ///     ((x ^ y) & ~M) ^ y
3158 ///   We can canonicalize by swapping the final xor operand
3159 ///   to eliminate the 'not' of the mask.
3160 ///     ((x ^ y) & M) ^ x
3161 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3162 ///   because that shortens the dependency chain and improves analysis:
3163 ///     (x & M) | (y & ~M)
3164 static Instruction *visitMaskedMerge(BinaryOperator &I,
3165                                      InstCombiner::BuilderTy &Builder) {
3166   Value *B, *X, *D;
3167   Value *M;
3168   if (!match(&I, m_c_Xor(m_Value(B),
3169                          m_OneUse(m_c_And(
3170                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3171                                           m_Value(D)),
3172                              m_Value(M))))))
3173     return nullptr;
3174 
3175   Value *NotM;
3176   if (match(M, m_Not(m_Value(NotM)))) {
3177     // De-invert the mask and swap the value in B part.
3178     Value *NewA = Builder.CreateAnd(D, NotM);
3179     return BinaryOperator::CreateXor(NewA, X);
3180   }
3181 
3182   Constant *C;
3183   if (D->hasOneUse() && match(M, m_Constant(C))) {
3184     // Propagating undef is unsafe. Clamp undef elements to -1.
3185     Type *EltTy = C->getType()->getScalarType();
3186     C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3187     // Unfold.
3188     Value *LHS = Builder.CreateAnd(X, C);
3189     Value *NotC = Builder.CreateNot(C);
3190     Value *RHS = Builder.CreateAnd(B, NotC);
3191     return BinaryOperator::CreateOr(LHS, RHS);
3192   }
3193 
3194   return nullptr;
3195 }
3196 
3197 // Transform
3198 //   ~(x ^ y)
3199 // into:
3200 //   (~x) ^ y
3201 // or into
3202 //   x ^ (~y)
3203 static Instruction *sinkNotIntoXor(BinaryOperator &I,
3204                                    InstCombiner::BuilderTy &Builder) {
3205   Value *X, *Y;
3206   // FIXME: one-use check is not needed in general, but currently we are unable
3207   // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3208   if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3209     return nullptr;
3210 
3211   // We only want to do the transform if it is free to do.
3212   if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
3213     // Ok, good.
3214   } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
3215     std::swap(X, Y);
3216   } else
3217     return nullptr;
3218 
3219   Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3220   return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3221 }
3222 
3223 /// Canonicalize a shifty way to code absolute value to the more common pattern
3224 /// that uses negation and select.
3225 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
3226                                     InstCombiner::BuilderTy &Builder) {
3227   assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
3228 
3229   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3230   // We're relying on the fact that we only do this transform when the shift has
3231   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3232   // instructions).
3233   Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
3234   if (Op0->hasNUses(2))
3235     std::swap(Op0, Op1);
3236 
3237   Type *Ty = Xor.getType();
3238   Value *A;
3239   const APInt *ShAmt;
3240   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3241       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3242       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3243     // Op1 = ashr i32 A, 31   ; smear the sign bit
3244     // xor (add A, Op1), Op1  ; add -1 and flip bits if negative
3245     // --> (A < 0) ? -A : A
3246     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
3247     // Copy the nuw/nsw flags from the add to the negate.
3248     auto *Add = cast<BinaryOperator>(Op0);
3249     Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3250                                    Add->hasNoSignedWrap());
3251     return SelectInst::Create(Cmp, Neg, A);
3252   }
3253   return nullptr;
3254 }
3255 
3256 // Transform
3257 //   z = (~x) &/| y
3258 // into:
3259 //   z = ~(x |/& (~y))
3260 // iff y is free to invert and all uses of z can be freely updated.
3261 bool InstCombinerImpl::sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I) {
3262   Instruction::BinaryOps NewOpc;
3263   switch (I.getOpcode()) {
3264   case Instruction::And:
3265     NewOpc = Instruction::Or;
3266     break;
3267   case Instruction::Or:
3268     NewOpc = Instruction::And;
3269     break;
3270   default:
3271     return false;
3272   };
3273 
3274   Value *X, *Y;
3275   if (!match(&I, m_c_BinOp(m_Not(m_Value(X)), m_Value(Y))))
3276     return false;
3277 
3278   // Will we be able to fold the `not` into Y eventually?
3279   if (!InstCombiner::isFreeToInvert(Y, Y->hasOneUse()))
3280     return false;
3281 
3282   // And can our users be adapted?
3283   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3284     return false;
3285 
3286   Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3287   Value *NewBinOp =
3288       BinaryOperator::Create(NewOpc, X, NotY, I.getName() + ".not");
3289   Builder.Insert(NewBinOp);
3290   replaceInstUsesWith(I, NewBinOp);
3291   // We can not just create an outer `not`, it will most likely be immediately
3292   // folded back, reconstructing our initial pattern, and causing an
3293   // infinite combine loop, so immediately manually fold it away.
3294   freelyInvertAllUsersOf(NewBinOp);
3295   return true;
3296 }
3297 
3298 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
3299   Value *NotOp;
3300   if (!match(&I, m_Not(m_Value(NotOp))))
3301     return nullptr;
3302 
3303   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3304   // We must eliminate the and/or (one-use) for these transforms to not increase
3305   // the instruction count.
3306   //
3307   // ~(~X & Y) --> (X | ~Y)
3308   // ~(Y & ~X) --> (X | ~Y)
3309   //
3310   // Note: The logical matches do not check for the commuted patterns because
3311   //       those are handled via SimplifySelectsFeedingBinaryOp().
3312   Type *Ty = I.getType();
3313   Value *X, *Y;
3314   if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
3315     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3316     return BinaryOperator::CreateOr(X, NotY);
3317   }
3318   if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
3319     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3320     return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
3321   }
3322 
3323   // ~(~X | Y) --> (X & ~Y)
3324   // ~(Y | ~X) --> (X & ~Y)
3325   if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
3326     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3327     return BinaryOperator::CreateAnd(X, NotY);
3328   }
3329   if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
3330     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3331     return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
3332   }
3333 
3334   // Is this a 'not' (~) fed by a binary operator?
3335   BinaryOperator *NotVal;
3336   if (match(NotOp, m_BinOp(NotVal))) {
3337     if (NotVal->getOpcode() == Instruction::And ||
3338         NotVal->getOpcode() == Instruction::Or) {
3339       // Apply DeMorgan's Law when inverts are free:
3340       // ~(X & Y) --> (~X | ~Y)
3341       // ~(X | Y) --> (~X & ~Y)
3342       if (isFreeToInvert(NotVal->getOperand(0),
3343                          NotVal->getOperand(0)->hasOneUse()) &&
3344           isFreeToInvert(NotVal->getOperand(1),
3345                          NotVal->getOperand(1)->hasOneUse())) {
3346         Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
3347         Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
3348         if (NotVal->getOpcode() == Instruction::And)
3349           return BinaryOperator::CreateOr(NotX, NotY);
3350         return BinaryOperator::CreateAnd(NotX, NotY);
3351       }
3352     }
3353 
3354     // ~((-X) | Y) --> (X - 1) & (~Y)
3355     if (match(NotVal,
3356               m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
3357       Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
3358       Value *NotY = Builder.CreateNot(Y);
3359       return BinaryOperator::CreateAnd(DecX, NotY);
3360     }
3361 
3362     // ~(~X >>s Y) --> (X >>s Y)
3363     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3364       return BinaryOperator::CreateAShr(X, Y);
3365 
3366     // If we are inverting a right-shifted constant, we may be able to eliminate
3367     // the 'not' by inverting the constant and using the opposite shift type.
3368     // Canonicalization rules ensure that only a negative constant uses 'ashr',
3369     // but we must check that in case that transform has not fired yet.
3370 
3371     // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3372     Constant *C;
3373     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3374         match(C, m_Negative())) {
3375       // We matched a negative constant, so propagating undef is unsafe.
3376       // Clamp undef elements to -1.
3377       Type *EltTy = Ty->getScalarType();
3378       C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3379       return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3380     }
3381 
3382     // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3383     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3384         match(C, m_NonNegative())) {
3385       // We matched a non-negative constant, so propagating undef is unsafe.
3386       // Clamp undef elements to 0.
3387       Type *EltTy = Ty->getScalarType();
3388       C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3389       return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3390     }
3391 
3392     // ~(X + C) --> ~C - X
3393     if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
3394       return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
3395 
3396     // ~(X - Y) --> ~X + Y
3397     // FIXME: is it really beneficial to sink the `not` here?
3398     if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3399       if (isa<Constant>(X) || NotVal->hasOneUse())
3400         return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3401 
3402     // ~(~X + Y) --> X - Y
3403     if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
3404       return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
3405                                                    NotVal);
3406   }
3407 
3408   // not (cmp A, B) = !cmp A, B
3409   CmpInst::Predicate Pred;
3410   if (match(NotOp, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
3411     cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
3412     return replaceInstUsesWith(I, NotOp);
3413   }
3414 
3415   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3416   // ~min(~X, ~Y) --> max(X, Y)
3417   // ~max(~X, Y) --> min(X, ~Y)
3418   auto *II = dyn_cast<IntrinsicInst>(NotOp);
3419   if (II && II->hasOneUse()) {
3420     if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
3421         isFreeToInvert(X, X->hasOneUse()) &&
3422         isFreeToInvert(Y, Y->hasOneUse())) {
3423       Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3424       Value *NotX = Builder.CreateNot(X);
3425       Value *NotY = Builder.CreateNot(Y);
3426       Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
3427       return replaceInstUsesWith(I, InvMaxMin);
3428     }
3429     if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
3430       Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3431       Value *NotY = Builder.CreateNot(Y);
3432       Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
3433       return replaceInstUsesWith(I, InvMaxMin);
3434     }
3435   }
3436 
3437   // TODO: Remove folds if we canonicalize to intrinsics (see above).
3438   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3439   //
3440   //   %notx = xor i32 %x, -1
3441   //   %cmp1 = icmp sgt i32 %notx, %y
3442   //   %smax = select i1 %cmp1, i32 %notx, i32 %y
3443   //   %res = xor i32 %smax, -1
3444   // =>
3445   //   %noty = xor i32 %y, -1
3446   //   %cmp2 = icmp slt %x, %noty
3447   //   %res = select i1 %cmp2, i32 %x, i32 %noty
3448   //
3449   // Same is applicable for smin/umax/umin.
3450   if (NotOp->hasOneUse()) {
3451     Value *LHS, *RHS;
3452     SelectPatternFlavor SPF = matchSelectPattern(NotOp, LHS, RHS).Flavor;
3453     if (SelectPatternResult::isMinOrMax(SPF)) {
3454       // It's possible we get here before the not has been simplified, so make
3455       // sure the input to the not isn't freely invertible.
3456       if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
3457         Value *NotY = Builder.CreateNot(RHS);
3458         return SelectInst::Create(
3459             Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
3460       }
3461 
3462       // It's possible we get here before the not has been simplified, so make
3463       // sure the input to the not isn't freely invertible.
3464       if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
3465         Value *NotX = Builder.CreateNot(LHS);
3466         return SelectInst::Create(
3467             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
3468       }
3469 
3470       // If both sides are freely invertible, then we can get rid of the xor
3471       // completely.
3472       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
3473           isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
3474         Value *NotLHS = Builder.CreateNot(LHS);
3475         Value *NotRHS = Builder.CreateNot(RHS);
3476         return SelectInst::Create(
3477             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
3478             NotLHS, NotRHS);
3479       }
3480     }
3481 
3482     // Pull 'not' into operands of select if both operands are one-use compares
3483     // or one is one-use compare and the other one is a constant.
3484     // Inverting the predicates eliminates the 'not' operation.
3485     // Example:
3486     //   not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
3487     //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
3488     //   not (select ?, (cmp TPred, ?, ?), true -->
3489     //     select ?, (cmp InvTPred, ?, ?), false
3490     if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
3491       Value *TV = Sel->getTrueValue();
3492       Value *FV = Sel->getFalseValue();
3493       auto *CmpT = dyn_cast<CmpInst>(TV);
3494       auto *CmpF = dyn_cast<CmpInst>(FV);
3495       bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
3496       bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
3497       if (InvertibleT && InvertibleF) {
3498         if (CmpT)
3499           CmpT->setPredicate(CmpT->getInversePredicate());
3500         else
3501           Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
3502         if (CmpF)
3503           CmpF->setPredicate(CmpF->getInversePredicate());
3504         else
3505           Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
3506         return replaceInstUsesWith(I, Sel);
3507       }
3508     }
3509   }
3510 
3511   if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3512     return NewXor;
3513 
3514   return nullptr;
3515 }
3516 
3517 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3518 // here. We should standardize that construct where it is needed or choose some
3519 // other way to ensure that commutated variants of patterns are not missed.
3520 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
3521   if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
3522                                  SQ.getWithInstruction(&I)))
3523     return replaceInstUsesWith(I, V);
3524 
3525   if (SimplifyAssociativeOrCommutative(I))
3526     return &I;
3527 
3528   if (Instruction *X = foldVectorBinop(I))
3529     return X;
3530 
3531   if (Instruction *NewXor = foldXorToXor(I, Builder))
3532     return NewXor;
3533 
3534   // (A&B)^(A&C) -> A&(B^C) etc
3535   if (Value *V = SimplifyUsingDistributiveLaws(I))
3536     return replaceInstUsesWith(I, V);
3537 
3538   // See if we can simplify any instructions used by the instruction whose sole
3539   // purpose is to compute bits we don't care about.
3540   if (SimplifyDemandedInstructionBits(I))
3541     return &I;
3542 
3543   if (Value *V = SimplifyBSwap(I, Builder))
3544     return replaceInstUsesWith(I, V);
3545 
3546   if (Instruction *R = foldNot(I))
3547     return R;
3548 
3549   // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
3550   // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
3551   // calls in there are unnecessary as SimplifyDemandedInstructionBits should
3552   // have already taken care of those cases.
3553   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3554   Value *M;
3555   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
3556                         m_c_And(m_Deferred(M), m_Value()))))
3557     return BinaryOperator::CreateOr(Op0, Op1);
3558 
3559   if (Instruction *Xor = visitMaskedMerge(I, Builder))
3560     return Xor;
3561 
3562   Value *X, *Y;
3563   Constant *C1;
3564   if (match(Op1, m_Constant(C1))) {
3565     // Use DeMorgan and reassociation to eliminate a 'not' op.
3566     Constant *C2;
3567     if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
3568       // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3569       Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
3570       return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
3571     }
3572     if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
3573       // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3574       Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
3575       return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
3576     }
3577 
3578     // Convert xor ([trunc] (ashr X, BW-1)), C =>
3579     //   select(X >s -1, C, ~C)
3580     // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
3581     // constant depending on whether this input is less than 0.
3582     const APInt *CA;
3583     if (match(Op0, m_OneUse(m_TruncOrSelf(
3584                        m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
3585         *CA == X->getType()->getScalarSizeInBits() - 1 &&
3586         !match(C1, m_AllOnes())) {
3587       assert(!C1->isZeroValue() && "Unexpected xor with 0");
3588       Value *ICmp =
3589           Builder.CreateICmpSGT(X, Constant::getAllOnesValue(X->getType()));
3590       return SelectInst::Create(ICmp, Op1, Builder.CreateNot(Op1));
3591     }
3592   }
3593 
3594   Type *Ty = I.getType();
3595   {
3596     const APInt *RHSC;
3597     if (match(Op1, m_APInt(RHSC))) {
3598       Value *X;
3599       const APInt *C;
3600       // (C - X) ^ signmaskC --> (C + signmaskC) - X
3601       if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
3602         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
3603 
3604       // (X + C) ^ signmaskC --> X + (C + signmaskC)
3605       if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
3606         return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
3607 
3608       // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
3609       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
3610           MaskedValueIsZero(X, *C, 0, &I))
3611         return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
3612 
3613       // If RHSC is inverting the remaining bits of shifted X,
3614       // canonicalize to a 'not' before the shift to help SCEV and codegen:
3615       // (X << C) ^ RHSC --> ~X << C
3616       if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
3617           *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
3618         Value *NotX = Builder.CreateNot(X);
3619         return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
3620       }
3621       // (X >>u C) ^ RHSC --> ~X >>u C
3622       if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
3623           *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
3624         Value *NotX = Builder.CreateNot(X);
3625         return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
3626       }
3627       // TODO: We could handle 'ashr' here as well. That would be matching
3628       //       a 'not' op and moving it before the shift. Doing that requires
3629       //       preventing the inverse fold in canShiftBinOpWithConstantRHS().
3630     }
3631   }
3632 
3633   // FIXME: This should not be limited to scalar (pull into APInt match above).
3634   {
3635     Value *X;
3636     ConstantInt *C1, *C2, *C3;
3637     // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3638     if (match(Op1, m_ConstantInt(C3)) &&
3639         match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
3640                           m_ConstantInt(C2))) &&
3641         Op0->hasOneUse()) {
3642       // fold (C1 >> C2) ^ C3
3643       APInt FoldConst = C1->getValue().lshr(C2->getValue());
3644       FoldConst ^= C3->getValue();
3645       // Prepare the two operands.
3646       auto *Opnd0 = cast<Instruction>(Builder.CreateLShr(X, C2));
3647       Opnd0->takeName(cast<Instruction>(Op0));
3648       Opnd0->setDebugLoc(I.getDebugLoc());
3649       return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
3650     }
3651   }
3652 
3653   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3654     return FoldedLogic;
3655 
3656   // Y ^ (X | Y) --> X & ~Y
3657   // Y ^ (Y | X) --> X & ~Y
3658   if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
3659     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
3660   // (X | Y) ^ Y --> X & ~Y
3661   // (Y | X) ^ Y --> X & ~Y
3662   if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
3663     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
3664 
3665   // Y ^ (X & Y) --> ~X & Y
3666   // Y ^ (Y & X) --> ~X & Y
3667   if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
3668     return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
3669   // (X & Y) ^ Y --> ~X & Y
3670   // (Y & X) ^ Y --> ~X & Y
3671   // Canonical form is (X & C) ^ C; don't touch that.
3672   // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3673   //       be fixed to prefer that (otherwise we get infinite looping).
3674   if (!match(Op1, m_Constant()) &&
3675       match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
3676     return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
3677 
3678   Value *A, *B, *C;
3679   // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3680   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3681                         m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
3682       return BinaryOperator::CreateXor(
3683           Builder.CreateAnd(Builder.CreateNot(A), C), B);
3684 
3685   // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3686   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3687                         m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
3688       return BinaryOperator::CreateXor(
3689           Builder.CreateAnd(Builder.CreateNot(B), C), A);
3690 
3691   // (A & B) ^ (A ^ B) -> (A | B)
3692   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3693       match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
3694     return BinaryOperator::CreateOr(A, B);
3695   // (A ^ B) ^ (A & B) -> (A | B)
3696   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3697       match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
3698     return BinaryOperator::CreateOr(A, B);
3699 
3700   // (A & ~B) ^ ~A -> ~(A & B)
3701   // (~B & A) ^ ~A -> ~(A & B)
3702   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3703       match(Op1, m_Not(m_Specific(A))))
3704     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3705 
3706   // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
3707   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
3708     return BinaryOperator::CreateOr(A, B);
3709 
3710   // (~A | B) ^ A --> ~(A & B)
3711   if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
3712     return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
3713 
3714   // A ^ (~A | B) --> ~(A & B)
3715   if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
3716     return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
3717 
3718   // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
3719   // TODO: Loosen one-use restriction if common operand is a constant.
3720   Value *D;
3721   if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
3722       match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
3723     if (B == C || B == D)
3724       std::swap(A, B);
3725     if (A == C)
3726       std::swap(C, D);
3727     if (A == D) {
3728       Value *NotA = Builder.CreateNot(A);
3729       return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
3730     }
3731   }
3732 
3733   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3734     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3735       if (Value *V = foldXorOfICmps(LHS, RHS, I))
3736         return replaceInstUsesWith(I, V);
3737 
3738   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3739     return CastedXor;
3740 
3741   if (Instruction *Abs = canonicalizeAbs(I, Builder))
3742     return Abs;
3743 
3744   // Otherwise, if all else failed, try to hoist the xor-by-constant:
3745   //   (X ^ C) ^ Y --> (X ^ Y) ^ C
3746   // Just like we do in other places, we completely avoid the fold
3747   // for constantexprs, at least to avoid endless combine loop.
3748   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
3749                                                     m_Unless(m_ConstantExpr())),
3750                                        m_ImmConstant(C1))),
3751                         m_Value(Y))))
3752     return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
3753 
3754   return nullptr;
3755 }
3756