1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countr_zero() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 Constant *NewC = 825 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 826 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 827 } 828 829 // More general combining of constants in the wide type. 830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 831 Constant *NarrowC; 832 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 833 Value *WideC = Builder.CreateSExt(NarrowC, Ty); 834 Value *NewC = Builder.CreateAdd(WideC, Op1C); 835 Value *WideX = Builder.CreateSExt(X, Ty); 836 return BinaryOperator::CreateAdd(WideX, NewC); 837 } 838 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 839 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 840 Value *WideC = Builder.CreateZExt(NarrowC, Ty); 841 Value *NewC = Builder.CreateAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateZExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 846 return nullptr; 847 } 848 849 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 850 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 851 Type *Ty = Add.getType(); 852 Constant *Op1C; 853 if (!match(Op1, m_ImmConstant(Op1C))) 854 return nullptr; 855 856 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 857 return NV; 858 859 Value *X; 860 Constant *Op00C; 861 862 // add (sub C1, X), C2 --> sub (add C1, C2), X 863 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 864 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 865 866 Value *Y; 867 868 // add (sub X, Y), -1 --> add (not Y), X 869 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 870 match(Op1, m_AllOnes())) 871 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 872 873 // zext(bool) + C -> bool ? C + 1 : C 874 if (match(Op0, m_ZExt(m_Value(X))) && 875 X->getType()->getScalarSizeInBits() == 1) 876 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 877 // sext(bool) + C -> bool ? C - 1 : C 878 if (match(Op0, m_SExt(m_Value(X))) && 879 X->getType()->getScalarSizeInBits() == 1) 880 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 881 882 // ~X + C --> (C-1) - X 883 if (match(Op0, m_Not(m_Value(X)))) { 884 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW 885 auto *COne = ConstantInt::get(Op1C->getType(), 1); 886 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add); 887 BinaryOperator *Res = 888 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X); 889 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV); 890 return Res; 891 } 892 893 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 894 const APInt *C; 895 unsigned BitWidth = Ty->getScalarSizeInBits(); 896 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 897 m_SpecificIntAllowUndef(BitWidth - 1)))) && 898 match(Op1, m_One())) 899 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 900 901 if (!match(Op1, m_APInt(C))) 902 return nullptr; 903 904 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 905 Constant *Op01C; 906 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) 907 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 908 909 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 910 const APInt *C2; 911 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 912 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 913 914 if (C->isSignMask()) { 915 // If wrapping is not allowed, then the addition must set the sign bit: 916 // X + (signmask) --> X | signmask 917 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 918 return BinaryOperator::CreateOr(Op0, Op1); 919 920 // If wrapping is allowed, then the addition flips the sign bit of LHS: 921 // X + (signmask) --> X ^ signmask 922 return BinaryOperator::CreateXor(Op0, Op1); 923 } 924 925 // Is this add the last step in a convoluted sext? 926 // add(zext(xor i16 X, -32768), -32768) --> sext X 927 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 928 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 929 return CastInst::Create(Instruction::SExt, X, Ty); 930 931 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 932 // (X ^ signmask) + C --> (X + (signmask ^ C)) 933 if (C2->isSignMask()) 934 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 935 936 // If X has no high-bits set above an xor mask: 937 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 938 if (C2->isMask()) { 939 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 940 if ((*C2 | LHSKnown.Zero).isAllOnes()) 941 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 942 } 943 944 // Look for a math+logic pattern that corresponds to sext-in-register of a 945 // value with cleared high bits. Convert that into a pair of shifts: 946 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 947 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 948 if (Op0->hasOneUse() && *C2 == -(*C)) { 949 unsigned BitWidth = Ty->getScalarSizeInBits(); 950 unsigned ShAmt = 0; 951 if (C->isPowerOf2()) 952 ShAmt = BitWidth - C->logBase2() - 1; 953 else if (C2->isPowerOf2()) 954 ShAmt = BitWidth - C2->logBase2() - 1; 955 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 956 0, &Add)) { 957 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 958 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 959 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 960 } 961 } 962 } 963 964 if (C->isOne() && Op0->hasOneUse()) { 965 // add (sext i1 X), 1 --> zext (not X) 966 // TODO: The smallest IR representation is (select X, 0, 1), and that would 967 // not require the one-use check. But we need to remove a transform in 968 // visitSelect and make sure that IR value tracking for select is equal or 969 // better than for these ops. 970 if (match(Op0, m_SExt(m_Value(X))) && 971 X->getType()->getScalarSizeInBits() == 1) 972 return new ZExtInst(Builder.CreateNot(X), Ty); 973 974 // Shifts and add used to flip and mask off the low bit: 975 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 976 const APInt *C3; 977 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 978 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 979 Value *NotX = Builder.CreateNot(X); 980 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 981 } 982 } 983 984 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero. 985 // TODO: There's a general form for any constant on the outer add. 986 if (C->isOne()) { 987 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) { 988 const SimplifyQuery Q = SQ.getWithInstruction(&Add); 989 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 990 return new ZExtInst(X, Ty); 991 } 992 } 993 994 return nullptr; 995 } 996 997 // match variations of a^2 + 2*a*b + b^2 998 // 999 // to reuse the code between the FP and Int versions, the instruction OpCodes 1000 // and constant types have been turned into template parameters. 1001 // 1002 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with; 1003 // should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int 1004 // (we're matching `X<<1` instead of `X*2` for Int) 1005 template <bool FP, typename Mul2Rhs> 1006 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, 1007 Value *&B) { 1008 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul; 1009 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add; 1010 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl; 1011 1012 // (a * a) + (((a * 2) + b) * b) 1013 if (match(&I, m_c_BinOp( 1014 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))), 1015 m_OneUse(m_BinOp( 1016 MulOp, 1017 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs), 1018 m_Value(B)), 1019 m_Deferred(B)))))) 1020 return true; 1021 1022 // ((a * b) * 2) or ((a * 2) * b) 1023 // + 1024 // (a * a + b * b) or (b * b + a * a) 1025 return match( 1026 &I, 1027 m_c_BinOp(AddOp, 1028 m_CombineOr( 1029 m_OneUse(m_BinOp( 1030 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)), 1031 m_OneUse(m_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs), 1032 m_Value(B)))), 1033 m_OneUse(m_c_BinOp( 1034 AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)), 1035 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B)))))); 1036 } 1037 1038 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1039 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) { 1040 Value *A, *B; 1041 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) { 1042 Value *AB = Builder.CreateAdd(A, B); 1043 return BinaryOperator::CreateMul(AB, AB); 1044 } 1045 return nullptr; 1046 } 1047 1048 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1049 // Requires `nsz` and `reassoc`. 1050 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) { 1051 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch"); 1052 Value *A, *B; 1053 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) { 1054 Value *AB = Builder.CreateFAddFMF(A, B, &I); 1055 return BinaryOperator::CreateFMulFMF(AB, AB, &I); 1056 } 1057 return nullptr; 1058 } 1059 1060 // Matches multiplication expression Op * C where C is a constant. Returns the 1061 // constant value in C and the other operand in Op. Returns true if such a 1062 // match is found. 1063 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 1064 const APInt *AI; 1065 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 1066 C = *AI; 1067 return true; 1068 } 1069 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1070 C = APInt(AI->getBitWidth(), 1); 1071 C <<= *AI; 1072 return true; 1073 } 1074 return false; 1075 } 1076 1077 // Matches remainder expression Op % C where C is a constant. Returns the 1078 // constant value in C and the other operand in Op. Returns the signedness of 1079 // the remainder operation in IsSigned. Returns true if such a match is 1080 // found. 1081 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1082 const APInt *AI; 1083 IsSigned = false; 1084 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1085 IsSigned = true; 1086 C = *AI; 1087 return true; 1088 } 1089 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1090 C = *AI; 1091 return true; 1092 } 1093 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1094 C = *AI + 1; 1095 return true; 1096 } 1097 return false; 1098 } 1099 1100 // Matches division expression Op / C with the given signedness as indicated 1101 // by IsSigned, where C is a constant. Returns the constant value in C and the 1102 // other operand in Op. Returns true if such a match is found. 1103 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1104 const APInt *AI; 1105 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1106 C = *AI; 1107 return true; 1108 } 1109 if (!IsSigned) { 1110 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1111 C = *AI; 1112 return true; 1113 } 1114 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1115 C = APInt(AI->getBitWidth(), 1); 1116 C <<= *AI; 1117 return true; 1118 } 1119 } 1120 return false; 1121 } 1122 1123 // Returns whether C0 * C1 with the given signedness overflows. 1124 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1125 bool overflow; 1126 if (IsSigned) 1127 (void)C0.smul_ov(C1, overflow); 1128 else 1129 (void)C0.umul_ov(C1, overflow); 1130 return overflow; 1131 } 1132 1133 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1134 // does not overflow. 1135 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1136 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1137 Value *X, *MulOpV; 1138 APInt C0, MulOpC; 1139 bool IsSigned; 1140 // Match I = X % C0 + MulOpV * C0 1141 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1142 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1143 C0 == MulOpC) { 1144 Value *RemOpV; 1145 APInt C1; 1146 bool Rem2IsSigned; 1147 // Match MulOpC = RemOpV % C1 1148 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1149 IsSigned == Rem2IsSigned) { 1150 Value *DivOpV; 1151 APInt DivOpC; 1152 // Match RemOpV = X / C0 1153 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1154 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1155 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1156 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1157 : Builder.CreateURem(X, NewDivisor, "urem"); 1158 } 1159 } 1160 } 1161 1162 return nullptr; 1163 } 1164 1165 /// Fold 1166 /// (1 << NBits) - 1 1167 /// Into: 1168 /// ~(-(1 << NBits)) 1169 /// Because a 'not' is better for bit-tracking analysis and other transforms 1170 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1171 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1172 InstCombiner::BuilderTy &Builder) { 1173 Value *NBits; 1174 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1175 return nullptr; 1176 1177 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1178 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1179 // Be wary of constant folding. 1180 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1181 // Always NSW. But NUW propagates from `add`. 1182 BOp->setHasNoSignedWrap(); 1183 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1184 } 1185 1186 return BinaryOperator::CreateNot(NotMask, I.getName()); 1187 } 1188 1189 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1190 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1191 Type *Ty = I.getType(); 1192 auto getUAddSat = [&]() { 1193 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1194 }; 1195 1196 // add (umin X, ~Y), Y --> uaddsat X, Y 1197 Value *X, *Y; 1198 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1199 m_Deferred(Y)))) 1200 return CallInst::Create(getUAddSat(), { X, Y }); 1201 1202 // add (umin X, ~C), C --> uaddsat X, C 1203 const APInt *C, *NotC; 1204 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1205 *C == ~*NotC) 1206 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1207 1208 return nullptr; 1209 } 1210 1211 // Transform: 1212 // (add A, (shl (neg B), Y)) 1213 // -> (sub A, (shl B, Y)) 1214 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, 1215 const BinaryOperator &I) { 1216 Value *A, *B, *Cnt; 1217 if (match(&I, 1218 m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))), 1219 m_Value(A)))) { 1220 Value *NewShl = Builder.CreateShl(B, Cnt); 1221 return BinaryOperator::CreateSub(A, NewShl); 1222 } 1223 return nullptr; 1224 } 1225 1226 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1227 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1228 // Division must be by power-of-2, but not the minimum signed value. 1229 Value *X; 1230 const APInt *DivC; 1231 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1232 DivC->isNegative()) 1233 return nullptr; 1234 1235 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1236 // low bits set. It recognizes two canonical patterns: 1237 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the 1238 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN). 1239 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1). 1240 // Note that, by the time we end up here, if possible, ugt has been 1241 // canonicalized into eq. 1242 const APInt *MaskC, *MaskCCmp; 1243 ICmpInst::Predicate Pred; 1244 if (!match(Add.getOperand(1), 1245 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1246 m_APInt(MaskCCmp))))) 1247 return nullptr; 1248 1249 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) && 1250 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC)) 1251 return nullptr; 1252 1253 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1254 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT 1255 ? (*MaskC == (SMin | (*DivC - 1))) 1256 : (*DivC == 2 && *MaskC == SMin + 1); 1257 if (!IsMaskValid) 1258 return nullptr; 1259 1260 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1261 return BinaryOperator::CreateAShr( 1262 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1263 } 1264 1265 Instruction *InstCombinerImpl:: 1266 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1267 BinaryOperator &I) { 1268 assert((I.getOpcode() == Instruction::Add || 1269 I.getOpcode() == Instruction::Or || 1270 I.getOpcode() == Instruction::Sub) && 1271 "Expecting add/or/sub instruction"); 1272 1273 // We have a subtraction/addition between a (potentially truncated) *logical* 1274 // right-shift of X and a "select". 1275 Value *X, *Select; 1276 Instruction *LowBitsToSkip, *Extract; 1277 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1278 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1279 m_Instruction(Extract))), 1280 m_Value(Select)))) 1281 return nullptr; 1282 1283 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1284 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1285 return nullptr; 1286 1287 Type *XTy = X->getType(); 1288 bool HadTrunc = I.getType() != XTy; 1289 1290 // If there was a truncation of extracted value, then we'll need to produce 1291 // one extra instruction, so we need to ensure one instruction will go away. 1292 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1293 return nullptr; 1294 1295 // Extraction should extract high NBits bits, with shift amount calculated as: 1296 // low bits to skip = shift bitwidth - high bits to extract 1297 // The shift amount itself may be extended, and we need to look past zero-ext 1298 // when matching NBits, that will matter for matching later. 1299 Constant *C; 1300 Value *NBits; 1301 if (!match( 1302 LowBitsToSkip, 1303 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1304 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1305 APInt(C->getType()->getScalarSizeInBits(), 1306 X->getType()->getScalarSizeInBits())))) 1307 return nullptr; 1308 1309 // Sign-extending value can be zero-extended if we `sub`tract it, 1310 // or sign-extended otherwise. 1311 auto SkipExtInMagic = [&I](Value *&V) { 1312 if (I.getOpcode() == Instruction::Sub) 1313 match(V, m_ZExtOrSelf(m_Value(V))); 1314 else 1315 match(V, m_SExtOrSelf(m_Value(V))); 1316 }; 1317 1318 // Now, finally validate the sign-extending magic. 1319 // `select` itself may be appropriately extended, look past that. 1320 SkipExtInMagic(Select); 1321 1322 ICmpInst::Predicate Pred; 1323 const APInt *Thr; 1324 Value *SignExtendingValue, *Zero; 1325 bool ShouldSignext; 1326 // It must be a select between two values we will later establish to be a 1327 // sign-extending value and a zero constant. The condition guarding the 1328 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1329 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1330 m_Value(SignExtendingValue), m_Value(Zero))) || 1331 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1332 return nullptr; 1333 1334 // icmp-select pair is commutative. 1335 if (!ShouldSignext) 1336 std::swap(SignExtendingValue, Zero); 1337 1338 // If we should not perform sign-extension then we must add/or/subtract zero. 1339 if (!match(Zero, m_Zero())) 1340 return nullptr; 1341 // Otherwise, it should be some constant, left-shifted by the same NBits we 1342 // had in `lshr`. Said left-shift can also be appropriately extended. 1343 // Again, we must look past zero-ext when looking for NBits. 1344 SkipExtInMagic(SignExtendingValue); 1345 Constant *SignExtendingValueBaseConstant; 1346 if (!match(SignExtendingValue, 1347 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1348 m_ZExtOrSelf(m_Specific(NBits))))) 1349 return nullptr; 1350 // If we `sub`, then the constant should be one, else it should be all-ones. 1351 if (I.getOpcode() == Instruction::Sub 1352 ? !match(SignExtendingValueBaseConstant, m_One()) 1353 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1354 return nullptr; 1355 1356 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1357 Extract->getName() + ".sext"); 1358 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1359 if (!HadTrunc) 1360 return NewAShr; 1361 1362 Builder.Insert(NewAShr); 1363 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1364 } 1365 1366 /// This is a specialization of a more general transform from 1367 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1368 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1369 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1370 InstCombiner::BuilderTy &Builder) { 1371 // TODO: Also handle mul by doubling the shift amount? 1372 assert((I.getOpcode() == Instruction::Add || 1373 I.getOpcode() == Instruction::Sub) && 1374 "Expected add/sub"); 1375 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1376 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1377 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1378 return nullptr; 1379 1380 Value *X, *Y, *ShAmt; 1381 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1382 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1383 return nullptr; 1384 1385 // No-wrap propagates only when all ops have no-wrap. 1386 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1387 Op1->hasNoSignedWrap(); 1388 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1389 Op1->hasNoUnsignedWrap(); 1390 1391 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1392 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1393 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1394 NewI->setHasNoSignedWrap(HasNSW); 1395 NewI->setHasNoUnsignedWrap(HasNUW); 1396 } 1397 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1398 NewShl->setHasNoSignedWrap(HasNSW); 1399 NewShl->setHasNoUnsignedWrap(HasNUW); 1400 return NewShl; 1401 } 1402 1403 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1404 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1405 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1406 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1407 // Skip the odd bitwidth types. 1408 if ((BitWidth & 0x1)) 1409 return nullptr; 1410 1411 unsigned HalfBits = BitWidth >> 1; 1412 APInt HalfMask = APInt::getMaxValue(HalfBits); 1413 1414 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1415 Value *XLo, *YLo; 1416 Value *CrossSum; 1417 // Require one-use on the multiply to avoid increasing the number of 1418 // multiplications. 1419 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1420 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo)))))) 1421 return nullptr; 1422 1423 // XLo = X & HalfMask 1424 // YLo = Y & HalfMask 1425 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1426 // to enhance robustness 1427 Value *X, *Y; 1428 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1429 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1430 return nullptr; 1431 1432 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1433 // X' can be either X or XLo in the pattern (and the same for Y') 1434 if (match(CrossSum, 1435 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1436 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1437 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1438 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1439 return BinaryOperator::CreateMul(X, Y); 1440 1441 return nullptr; 1442 } 1443 1444 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1445 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1446 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1447 SQ.getWithInstruction(&I))) 1448 return replaceInstUsesWith(I, V); 1449 1450 if (SimplifyAssociativeOrCommutative(I)) 1451 return &I; 1452 1453 if (Instruction *X = foldVectorBinop(I)) 1454 return X; 1455 1456 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1457 return Phi; 1458 1459 // (A*B)+(A*C) -> A*(B+C) etc 1460 if (Value *V = foldUsingDistributiveLaws(I)) 1461 return replaceInstUsesWith(I, V); 1462 1463 if (Instruction *R = foldBoxMultiply(I)) 1464 return R; 1465 1466 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1467 return R; 1468 1469 if (Instruction *X = foldAddWithConstant(I)) 1470 return X; 1471 1472 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1473 return X; 1474 1475 if (Instruction *R = foldBinOpShiftWithShift(I)) 1476 return R; 1477 1478 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I)) 1479 return R; 1480 1481 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1482 Type *Ty = I.getType(); 1483 if (Ty->isIntOrIntVectorTy(1)) 1484 return BinaryOperator::CreateXor(LHS, RHS); 1485 1486 // X + X --> X << 1 1487 if (LHS == RHS) { 1488 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1489 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1490 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1491 return Shl; 1492 } 1493 1494 Value *A, *B; 1495 if (match(LHS, m_Neg(m_Value(A)))) { 1496 // -A + -B --> -(A + B) 1497 if (match(RHS, m_Neg(m_Value(B)))) 1498 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1499 1500 // -A + B --> B - A 1501 auto *Sub = BinaryOperator::CreateSub(RHS, A); 1502 auto *OB0 = cast<OverflowingBinaryOperator>(LHS); 1503 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap()); 1504 1505 return Sub; 1506 } 1507 1508 // A + -B --> A - B 1509 if (match(RHS, m_Neg(m_Value(B)))) 1510 return BinaryOperator::CreateSub(LHS, B); 1511 1512 if (Value *V = checkForNegativeOperand(I, Builder)) 1513 return replaceInstUsesWith(I, V); 1514 1515 // (A + 1) + ~B --> A - B 1516 // ~B + (A + 1) --> A - B 1517 // (~B + A) + 1 --> A - B 1518 // (A + ~B) + 1 --> A - B 1519 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1520 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1521 return BinaryOperator::CreateSub(A, B); 1522 1523 // (A + RHS) + RHS --> A + (RHS << 1) 1524 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1525 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1526 1527 // LHS + (A + LHS) --> A + (LHS << 1) 1528 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1529 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1530 1531 { 1532 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1533 Constant *C1, *C2; 1534 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1535 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1536 (LHS->hasOneUse() || RHS->hasOneUse())) { 1537 Value *Sub = Builder.CreateSub(A, B); 1538 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1539 } 1540 1541 // Canonicalize a constant sub operand as an add operand for better folding: 1542 // (C1 - A) + B --> (B - A) + C1 1543 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))), 1544 m_Value(B)))) { 1545 Value *Sub = Builder.CreateSub(B, A, "reass.sub"); 1546 return BinaryOperator::CreateAdd(Sub, C1); 1547 } 1548 } 1549 1550 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1551 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1552 1553 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1554 const APInt *C1, *C2; 1555 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1556 APInt one(C2->getBitWidth(), 1); 1557 APInt minusC1 = -(*C1); 1558 if (minusC1 == (one << *C2)) { 1559 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1560 return BinaryOperator::CreateSRem(RHS, NewRHS); 1561 } 1562 } 1563 1564 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1565 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1566 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) { 1567 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1568 return BinaryOperator::CreateAnd(A, NewMask); 1569 } 1570 1571 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1572 if ((match(RHS, m_ZExt(m_Value(A))) && 1573 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1574 (match(LHS, m_ZExt(m_Value(A))) && 1575 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1576 return new ZExtInst(B, LHS->getType()); 1577 1578 // zext(A) + sext(A) --> 0 if A is i1 1579 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) && 1580 A->getType()->isIntOrIntVectorTy(1)) 1581 return replaceInstUsesWith(I, Constant::getNullValue(I.getType())); 1582 1583 // A+B --> A|B iff A and B have no bits set in common. 1584 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS); 1585 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I))) 1586 return BinaryOperator::CreateDisjointOr(LHS, RHS); 1587 1588 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1589 return Ext; 1590 1591 // (add (xor A, B) (and A, B)) --> (or A, B) 1592 // (add (and A, B) (xor A, B)) --> (or A, B) 1593 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1594 m_c_And(m_Deferred(A), m_Deferred(B))))) 1595 return BinaryOperator::CreateOr(A, B); 1596 1597 // (add (or A, B) (and A, B)) --> (add A, B) 1598 // (add (and A, B) (or A, B)) --> (add A, B) 1599 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1600 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1601 // Replacing operands in-place to preserve nuw/nsw flags. 1602 replaceOperand(I, 0, A); 1603 replaceOperand(I, 1, B); 1604 return &I; 1605 } 1606 1607 // (add A (or A, -A)) --> (and (add A, -1) A) 1608 // (add A (or -A, A)) --> (and (add A, -1) A) 1609 // (add (or A, -A) A) --> (and (add A, -1) A) 1610 // (add (or -A, A) A) --> (and (add A, -1) A) 1611 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1612 m_Deferred(A)))))) { 1613 Value *Add = 1614 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1615 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1616 return BinaryOperator::CreateAnd(Add, A); 1617 } 1618 1619 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1620 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1621 if (match(&I, 1622 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1623 m_AllOnes()))) { 1624 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1625 Value *Dec = Builder.CreateAdd(A, AllOnes); 1626 Value *Not = Builder.CreateXor(A, AllOnes); 1627 return BinaryOperator::CreateAnd(Dec, Not); 1628 } 1629 1630 // Disguised reassociation/factorization: 1631 // ~(A * C1) + A 1632 // ((A * -C1) - 1) + A 1633 // ((A * -C1) + A) - 1 1634 // (A * (1 - C1)) - 1 1635 if (match(&I, 1636 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1637 m_Deferred(A)))) { 1638 Type *Ty = I.getType(); 1639 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1640 Value *NewMul = Builder.CreateMul(A, NewMulC); 1641 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1642 } 1643 1644 // (A * -2**C) + B --> B - (A << C) 1645 const APInt *NegPow2C; 1646 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1647 m_Value(B)))) { 1648 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero()); 1649 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1650 return BinaryOperator::CreateSub(B, Shl); 1651 } 1652 1653 // Canonicalize signum variant that ends in add: 1654 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1655 ICmpInst::Predicate Pred; 1656 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1657 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) && 1658 match(RHS, m_OneUse(m_ZExt( 1659 m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) && 1660 Pred == CmpInst::ICMP_SGT) { 1661 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1662 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1663 return BinaryOperator::CreateOr(LHS, Zext); 1664 } 1665 1666 if (Instruction *Ashr = foldAddToAshr(I)) 1667 return Ashr; 1668 1669 // (~X) + (~Y) --> -2 - (X + Y) 1670 { 1671 // To ensure we can save instructions we need to ensure that we consume both 1672 // LHS/RHS (i.e they have a `not`). 1673 bool ConsumesLHS, ConsumesRHS; 1674 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS && 1675 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) { 1676 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder); 1677 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder); 1678 assert(NotLHS != nullptr && NotRHS != nullptr && 1679 "isFreeToInvert desynced with getFreelyInverted"); 1680 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS); 1681 return BinaryOperator::CreateSub( 1682 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS); 1683 } 1684 } 1685 1686 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1687 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1688 // computeKnownBits. 1689 bool Changed = false; 1690 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) { 1691 Changed = true; 1692 I.setHasNoSignedWrap(true); 1693 } 1694 if (!I.hasNoUnsignedWrap() && 1695 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) { 1696 Changed = true; 1697 I.setHasNoUnsignedWrap(true); 1698 } 1699 1700 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1701 return V; 1702 1703 if (Instruction *V = 1704 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1705 return V; 1706 1707 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1708 return SatAdd; 1709 1710 // usub.sat(A, B) + B => umax(A, B) 1711 if (match(&I, m_c_BinOp( 1712 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1713 m_Deferred(B)))) { 1714 return replaceInstUsesWith(I, 1715 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1716 } 1717 1718 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1719 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1720 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1721 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I))) 1722 return replaceInstUsesWith( 1723 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1724 {Builder.CreateOr(A, B)})); 1725 1726 // Fold the log2_ceil idiom: 1727 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1)) 1728 // --> 1729 // BW - ctlz(A - 1, false) 1730 const APInt *XorC; 1731 if (match(&I, 1732 m_c_Add( 1733 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)), 1734 m_One())), 1735 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor( 1736 m_OneUse(m_TruncOrSelf(m_OneUse( 1737 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))), 1738 m_APInt(XorC))))))) && 1739 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) && 1740 *XorC == A->getType()->getScalarSizeInBits() - 1) { 1741 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType())); 1742 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()}, 1743 {Sub, Builder.getFalse()}); 1744 Value *Ret = Builder.CreateSub( 1745 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()), 1746 Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true); 1747 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType())); 1748 } 1749 1750 if (Instruction *Res = foldSquareSumInt(I)) 1751 return Res; 1752 1753 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 1754 return Res; 1755 1756 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 1757 return Res; 1758 1759 return Changed ? &I : nullptr; 1760 } 1761 1762 /// Eliminate an op from a linear interpolation (lerp) pattern. 1763 static Instruction *factorizeLerp(BinaryOperator &I, 1764 InstCombiner::BuilderTy &Builder) { 1765 Value *X, *Y, *Z; 1766 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1767 m_OneUse(m_FSub(m_FPOne(), 1768 m_Value(Z))))), 1769 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1770 return nullptr; 1771 1772 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1773 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1774 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1775 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1776 } 1777 1778 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1779 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1780 InstCombiner::BuilderTy &Builder) { 1781 assert((I.getOpcode() == Instruction::FAdd || 1782 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1783 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1784 "FP factorization requires FMF"); 1785 1786 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1787 return Lerp; 1788 1789 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1790 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1791 return nullptr; 1792 1793 Value *X, *Y, *Z; 1794 bool IsFMul; 1795 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1796 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1797 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1798 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1799 IsFMul = true; 1800 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1801 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1802 IsFMul = false; 1803 else 1804 return nullptr; 1805 1806 // (X * Z) + (Y * Z) --> (X + Y) * Z 1807 // (X * Z) - (Y * Z) --> (X - Y) * Z 1808 // (X / Z) + (Y / Z) --> (X + Y) / Z 1809 // (X / Z) - (Y / Z) --> (X - Y) / Z 1810 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1811 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1812 : Builder.CreateFSubFMF(X, Y, &I); 1813 1814 // Bail out if we just created a denormal constant. 1815 // TODO: This is copied from a previous implementation. Is it necessary? 1816 const APFloat *C; 1817 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1818 return nullptr; 1819 1820 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1821 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1822 } 1823 1824 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1825 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1826 I.getFastMathFlags(), 1827 SQ.getWithInstruction(&I))) 1828 return replaceInstUsesWith(I, V); 1829 1830 if (SimplifyAssociativeOrCommutative(I)) 1831 return &I; 1832 1833 if (Instruction *X = foldVectorBinop(I)) 1834 return X; 1835 1836 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1837 return Phi; 1838 1839 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1840 return FoldedFAdd; 1841 1842 // (-X) + Y --> Y - X 1843 Value *X, *Y; 1844 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1845 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1846 1847 // Similar to above, but look through fmul/fdiv for the negated term. 1848 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1849 Value *Z; 1850 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1851 m_Value(Z)))) { 1852 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1853 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1854 } 1855 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1856 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1857 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1858 m_Value(Z))) || 1859 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1860 m_Value(Z)))) { 1861 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1862 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1863 } 1864 1865 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1866 // integer add followed by a promotion. 1867 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1868 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1869 Value *LHSIntVal = LHSConv->getOperand(0); 1870 Type *FPType = LHSConv->getType(); 1871 1872 // TODO: This check is overly conservative. In many cases known bits 1873 // analysis can tell us that the result of the addition has less significant 1874 // bits than the integer type can hold. 1875 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1876 Type *FScalarTy = FTy->getScalarType(); 1877 Type *IScalarTy = ITy->getScalarType(); 1878 1879 // Do we have enough bits in the significand to represent the result of 1880 // the integer addition? 1881 unsigned MaxRepresentableBits = 1882 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1883 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1884 }; 1885 1886 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1887 // ... if the constant fits in the integer value. This is useful for things 1888 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1889 // requires a constant pool load, and generally allows the add to be better 1890 // instcombined. 1891 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1892 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1893 Constant *CI = ConstantFoldCastOperand(Instruction::FPToSI, CFP, 1894 LHSIntVal->getType(), DL); 1895 if (LHSConv->hasOneUse() && 1896 ConstantFoldCastOperand(Instruction::SIToFP, CI, I.getType(), DL) == 1897 CFP && 1898 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1899 // Insert the new integer add. 1900 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1901 return new SIToFPInst(NewAdd, I.getType()); 1902 } 1903 } 1904 1905 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1906 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1907 Value *RHSIntVal = RHSConv->getOperand(0); 1908 // It's enough to check LHS types only because we require int types to 1909 // be the same for this transform. 1910 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1911 // Only do this if x/y have the same type, if at least one of them has a 1912 // single use (so we don't increase the number of int->fp conversions), 1913 // and if the integer add will not overflow. 1914 if (LHSIntVal->getType() == RHSIntVal->getType() && 1915 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1916 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1917 // Insert the new integer add. 1918 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1919 return new SIToFPInst(NewAdd, I.getType()); 1920 } 1921 } 1922 } 1923 } 1924 1925 // Handle specials cases for FAdd with selects feeding the operation 1926 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1927 return replaceInstUsesWith(I, V); 1928 1929 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1930 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1931 return F; 1932 1933 if (Instruction *F = foldSquareSumFP(I)) 1934 return F; 1935 1936 // Try to fold fadd into start value of reduction intrinsic. 1937 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1938 m_AnyZeroFP(), m_Value(X))), 1939 m_Value(Y)))) { 1940 // fadd (rdx 0.0, X), Y --> rdx Y, X 1941 return replaceInstUsesWith( 1942 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1943 {X->getType()}, {Y, X}, &I)); 1944 } 1945 const APFloat *StartC, *C; 1946 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1947 m_APFloat(StartC), m_Value(X)))) && 1948 match(RHS, m_APFloat(C))) { 1949 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1950 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1951 return replaceInstUsesWith( 1952 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1953 {X->getType()}, {NewStartC, X}, &I)); 1954 } 1955 1956 // (X * MulC) + X --> X * (MulC + 1.0) 1957 Constant *MulC; 1958 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1959 m_Deferred(X)))) { 1960 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1961 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1962 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1963 } 1964 1965 // (-X - Y) + (X + Z) --> Z - Y 1966 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 1967 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 1968 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 1969 1970 if (Value *V = FAddCombine(Builder).simplify(&I)) 1971 return replaceInstUsesWith(I, V); 1972 } 1973 1974 // minumum(X, Y) + maximum(X, Y) => X + Y. 1975 if (match(&I, 1976 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 1977 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 1978 m_Deferred(Y))))) { 1979 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I); 1980 // We cannot preserve ninf if nnan flag is not set. 1981 // If X is NaN and Y is Inf then in original program we had NaN + NaN, 1982 // while in optimized version NaN + Inf and this is a poison with ninf flag. 1983 if (!Result->hasNoNaNs()) 1984 Result->setHasNoInfs(false); 1985 return Result; 1986 } 1987 1988 return nullptr; 1989 } 1990 1991 /// Optimize pointer differences into the same array into a size. Consider: 1992 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1993 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1994 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1995 Type *Ty, bool IsNUW) { 1996 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1997 // this. 1998 bool Swapped = false; 1999 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 2000 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 2001 std::swap(LHS, RHS); 2002 Swapped = true; 2003 } 2004 2005 // Require at least one GEP with a common base pointer on both sides. 2006 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 2007 // (gep X, ...) - X 2008 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2009 RHS->stripPointerCasts()) { 2010 GEP1 = LHSGEP; 2011 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 2012 // (gep X, ...) - (gep X, ...) 2013 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2014 RHSGEP->getOperand(0)->stripPointerCasts()) { 2015 GEP1 = LHSGEP; 2016 GEP2 = RHSGEP; 2017 } 2018 } 2019 } 2020 2021 if (!GEP1) 2022 return nullptr; 2023 2024 if (GEP2) { 2025 // (gep X, ...) - (gep X, ...) 2026 // 2027 // Avoid duplicating the arithmetic if there are more than one non-constant 2028 // indices between the two GEPs and either GEP has a non-constant index and 2029 // multiple users. If zero non-constant index, the result is a constant and 2030 // there is no duplication. If one non-constant index, the result is an add 2031 // or sub with a constant, which is no larger than the original code, and 2032 // there's no duplicated arithmetic, even if either GEP has multiple 2033 // users. If more than one non-constant indices combined, as long as the GEP 2034 // with at least one non-constant index doesn't have multiple users, there 2035 // is no duplication. 2036 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 2037 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 2038 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 2039 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 2040 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 2041 return nullptr; 2042 } 2043 } 2044 2045 // Emit the offset of the GEP and an intptr_t. 2046 Value *Result = EmitGEPOffset(GEP1); 2047 2048 // If this is a single inbounds GEP and the original sub was nuw, 2049 // then the final multiplication is also nuw. 2050 if (auto *I = dyn_cast<Instruction>(Result)) 2051 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 2052 I->getOpcode() == Instruction::Mul) 2053 I->setHasNoUnsignedWrap(); 2054 2055 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 2056 // If both GEPs are inbounds, then the subtract does not have signed overflow. 2057 if (GEP2) { 2058 Value *Offset = EmitGEPOffset(GEP2); 2059 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 2060 GEP1->isInBounds() && GEP2->isInBounds()); 2061 } 2062 2063 // If we have p - gep(p, ...) then we have to negate the result. 2064 if (Swapped) 2065 Result = Builder.CreateNeg(Result, "diff.neg"); 2066 2067 return Builder.CreateIntCast(Result, Ty, true); 2068 } 2069 2070 static Instruction *foldSubOfMinMax(BinaryOperator &I, 2071 InstCombiner::BuilderTy &Builder) { 2072 Value *Op0 = I.getOperand(0); 2073 Value *Op1 = I.getOperand(1); 2074 Type *Ty = I.getType(); 2075 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 2076 if (!MinMax) 2077 return nullptr; 2078 2079 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 2080 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 2081 Value *X = MinMax->getLHS(); 2082 Value *Y = MinMax->getRHS(); 2083 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 2084 (Op0->hasOneUse() || Op1->hasOneUse())) { 2085 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2086 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2087 return CallInst::Create(F, {X, Y}); 2088 } 2089 2090 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 2091 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 2092 Value *Z; 2093 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 2094 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 2095 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 2096 return BinaryOperator::CreateAdd(X, USub); 2097 } 2098 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 2099 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 2100 return BinaryOperator::CreateAdd(X, USub); 2101 } 2102 } 2103 2104 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 2105 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 2106 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 2107 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 2108 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2109 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2110 return CallInst::Create(F, {Op0, Z}); 2111 } 2112 2113 return nullptr; 2114 } 2115 2116 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 2117 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 2118 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 2119 SQ.getWithInstruction(&I))) 2120 return replaceInstUsesWith(I, V); 2121 2122 if (Instruction *X = foldVectorBinop(I)) 2123 return X; 2124 2125 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2126 return Phi; 2127 2128 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2129 2130 // If this is a 'B = x-(-A)', change to B = x+A. 2131 // We deal with this without involving Negator to preserve NSW flag. 2132 if (Value *V = dyn_castNegVal(Op1)) { 2133 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 2134 2135 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 2136 assert(BO->getOpcode() == Instruction::Sub && 2137 "Expected a subtraction operator!"); 2138 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 2139 Res->setHasNoSignedWrap(true); 2140 } else { 2141 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 2142 Res->setHasNoSignedWrap(true); 2143 } 2144 2145 return Res; 2146 } 2147 2148 // Try this before Negator to preserve NSW flag. 2149 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 2150 return R; 2151 2152 Constant *C; 2153 if (match(Op0, m_ImmConstant(C))) { 2154 Value *X; 2155 Constant *C2; 2156 2157 // C-(X+C2) --> (C-C2)-X 2158 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) { 2159 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW 2160 // => (C-C2)-X can have NSW/NUW 2161 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I); 2162 BinaryOperator *Res = 2163 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 2164 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2165 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() && 2166 WillNotSOV); 2167 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 2168 OBO1->hasNoUnsignedWrap()); 2169 return Res; 2170 } 2171 } 2172 2173 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 2174 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2175 return Ext; 2176 2177 bool Changed = false; 2178 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2179 Changed = true; 2180 I.setHasNoSignedWrap(true); 2181 } 2182 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2183 Changed = true; 2184 I.setHasNoUnsignedWrap(true); 2185 } 2186 2187 return Changed ? &I : nullptr; 2188 }; 2189 2190 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 2191 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 2192 // a pure negation used by a select that looks like abs/nabs. 2193 bool IsNegation = match(Op0, m_ZeroInt()); 2194 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 2195 const Instruction *UI = dyn_cast<Instruction>(U); 2196 if (!UI) 2197 return false; 2198 return match(UI, 2199 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 2200 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 2201 })) { 2202 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation && 2203 I.hasNoSignedWrap(), 2204 Op1, *this)) 2205 return BinaryOperator::CreateAdd(NegOp1, Op0); 2206 } 2207 if (IsNegation) 2208 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 2209 2210 // (A*B)-(A*C) -> A*(B-C) etc 2211 if (Value *V = foldUsingDistributiveLaws(I)) 2212 return replaceInstUsesWith(I, V); 2213 2214 if (I.getType()->isIntOrIntVectorTy(1)) 2215 return BinaryOperator::CreateXor(Op0, Op1); 2216 2217 // Replace (-1 - A) with (~A). 2218 if (match(Op0, m_AllOnes())) 2219 return BinaryOperator::CreateNot(Op1); 2220 2221 // (X + -1) - Y --> ~Y + X 2222 Value *X, *Y; 2223 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2224 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2225 2226 // Reassociate sub/add sequences to create more add instructions and 2227 // reduce dependency chains: 2228 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2229 Value *Z; 2230 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2231 m_Value(Z))))) { 2232 Value *XZ = Builder.CreateAdd(X, Z); 2233 Value *YW = Builder.CreateAdd(Y, Op1); 2234 return BinaryOperator::CreateSub(XZ, YW); 2235 } 2236 2237 // ((X - Y) - Op1) --> X - (Y + Op1) 2238 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2239 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0); 2240 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap(); 2241 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap(); 2242 Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW, 2243 /* HasNSW */ HasNSW); 2244 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add); 2245 Sub->setHasNoUnsignedWrap(HasNUW); 2246 Sub->setHasNoSignedWrap(HasNSW); 2247 return Sub; 2248 } 2249 2250 { 2251 // (X + Z) - (Y + Z) --> (X - Y) 2252 // This is done in other passes, but we want to be able to consume this 2253 // pattern in InstCombine so we can generate it without creating infinite 2254 // loops. 2255 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) && 2256 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z)))) 2257 return BinaryOperator::CreateSub(X, Y); 2258 2259 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1) 2260 Constant *CX, *CY; 2261 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) && 2262 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) { 2263 Value *OpsSub = Builder.CreateSub(X, Y); 2264 Constant *ConstsSub = ConstantExpr::getSub(CX, CY); 2265 return BinaryOperator::CreateAdd(OpsSub, ConstsSub); 2266 } 2267 } 2268 2269 // (~X) - (~Y) --> Y - X 2270 { 2271 // Need to ensure we can consume at least one of the `not` instructions, 2272 // otherwise this can inf loop. 2273 bool ConsumesOp0, ConsumesOp1; 2274 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 2275 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 2276 (ConsumesOp0 || ConsumesOp1)) { 2277 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 2278 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 2279 assert(NotOp0 != nullptr && NotOp1 != nullptr && 2280 "isFreeToInvert desynced with getFreelyInverted"); 2281 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2282 } 2283 } 2284 2285 auto m_AddRdx = [](Value *&Vec) { 2286 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2287 }; 2288 Value *V0, *V1; 2289 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2290 V0->getType() == V1->getType()) { 2291 // Difference of sums is sum of differences: 2292 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2293 Value *Sub = Builder.CreateSub(V0, V1); 2294 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2295 {Sub->getType()}, {Sub}); 2296 return replaceInstUsesWith(I, Rdx); 2297 } 2298 2299 if (Constant *C = dyn_cast<Constant>(Op0)) { 2300 Value *X; 2301 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2302 // C - (zext bool) --> bool ? C - 1 : C 2303 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2304 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2305 // C - (sext bool) --> bool ? C + 1 : C 2306 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2307 2308 // C - ~X == X + (1+C) 2309 if (match(Op1, m_Not(m_Value(X)))) 2310 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2311 2312 // Try to fold constant sub into select arguments. 2313 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2314 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2315 return R; 2316 2317 // Try to fold constant sub into PHI values. 2318 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2319 if (Instruction *R = foldOpIntoPhi(I, PN)) 2320 return R; 2321 2322 Constant *C2; 2323 2324 // C-(C2-X) --> X+(C-C2) 2325 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2326 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2327 } 2328 2329 const APInt *Op0C; 2330 if (match(Op0, m_APInt(Op0C))) { 2331 if (Op0C->isMask()) { 2332 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2333 // zero. 2334 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 2335 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2336 return BinaryOperator::CreateXor(Op1, Op0); 2337 } 2338 2339 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2340 // (C3 - ((C2 & C3) - 1)) is pow2 2341 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2342 // C2 is negative pow2 || sub nuw 2343 const APInt *C2, *C3; 2344 BinaryOperator *InnerSub; 2345 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2346 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2347 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2348 APInt C2AndC3 = *C2 & *C3; 2349 APInt C2AndC3Minus1 = C2AndC3 - 1; 2350 APInt C2AddC3 = *C2 + *C3; 2351 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2352 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2353 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2354 return BinaryOperator::CreateAdd( 2355 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2356 } 2357 } 2358 } 2359 2360 { 2361 Value *Y; 2362 // X-(X+Y) == -Y X-(Y+X) == -Y 2363 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2364 return BinaryOperator::CreateNeg(Y); 2365 2366 // (X-Y)-X == -Y 2367 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2368 return BinaryOperator::CreateNeg(Y); 2369 } 2370 2371 // (sub (or A, B) (and A, B)) --> (xor A, B) 2372 { 2373 Value *A, *B; 2374 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2375 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2376 return BinaryOperator::CreateXor(A, B); 2377 } 2378 2379 // (sub (add A, B) (or A, B)) --> (and A, B) 2380 { 2381 Value *A, *B; 2382 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2383 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2384 return BinaryOperator::CreateAnd(A, B); 2385 } 2386 2387 // (sub (add A, B) (and A, B)) --> (or A, B) 2388 { 2389 Value *A, *B; 2390 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2391 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2392 return BinaryOperator::CreateOr(A, B); 2393 } 2394 2395 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2396 { 2397 Value *A, *B; 2398 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2399 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2400 (Op0->hasOneUse() || Op1->hasOneUse())) 2401 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2402 } 2403 2404 // (sub (or A, B), (xor A, B)) --> (and A, B) 2405 { 2406 Value *A, *B; 2407 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2408 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2409 return BinaryOperator::CreateAnd(A, B); 2410 } 2411 2412 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2413 { 2414 Value *A, *B; 2415 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2416 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2417 (Op0->hasOneUse() || Op1->hasOneUse())) 2418 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2419 } 2420 2421 { 2422 Value *Y; 2423 // ((X | Y) - X) --> (~X & Y) 2424 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2425 return BinaryOperator::CreateAnd( 2426 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2427 } 2428 2429 { 2430 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2431 Value *X; 2432 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2433 m_OneUse(m_Neg(m_Value(X))))))) { 2434 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2435 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2436 } 2437 } 2438 2439 { 2440 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2441 Constant *C; 2442 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2443 return BinaryOperator::CreateNeg( 2444 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2445 } 2446 } 2447 2448 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2449 return R; 2450 2451 { 2452 // If we have a subtraction between some value and a select between 2453 // said value and something else, sink subtraction into select hands, i.e.: 2454 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2455 // -> 2456 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2457 // or 2458 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2459 // -> 2460 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2461 // This will result in select between new subtraction and 0. 2462 auto SinkSubIntoSelect = 2463 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2464 auto SubBuilder) -> Instruction * { 2465 Value *Cond, *TrueVal, *FalseVal; 2466 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2467 m_Value(FalseVal))))) 2468 return nullptr; 2469 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2470 return nullptr; 2471 // While it is really tempting to just create two subtractions and let 2472 // InstCombine fold one of those to 0, it isn't possible to do so 2473 // because of worklist visitation order. So ugly it is. 2474 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2475 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2476 Constant *Zero = Constant::getNullValue(Ty); 2477 SelectInst *NewSel = 2478 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2479 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2480 // Preserve prof metadata if any. 2481 NewSel->copyMetadata(cast<Instruction>(*Select)); 2482 return NewSel; 2483 }; 2484 if (Instruction *NewSel = SinkSubIntoSelect( 2485 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2486 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2487 return Builder->CreateSub(OtherHandOfSelect, 2488 /*OtherHandOfSub=*/Op1); 2489 })) 2490 return NewSel; 2491 if (Instruction *NewSel = SinkSubIntoSelect( 2492 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2493 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2494 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2495 OtherHandOfSelect); 2496 })) 2497 return NewSel; 2498 } 2499 2500 // (X - (X & Y)) --> (X & ~Y) 2501 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2502 (Op1->hasOneUse() || isa<Constant>(Y))) 2503 return BinaryOperator::CreateAnd( 2504 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2505 2506 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2507 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2508 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2509 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2510 // As long as Y is freely invertible, this will be neutral or a win. 2511 // Note: We don't generate the inverse max/min, just create the 'not' of 2512 // it and let other folds do the rest. 2513 if (match(Op0, m_Not(m_Value(X))) && 2514 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2515 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2516 Value *Not = Builder.CreateNot(Op1); 2517 return BinaryOperator::CreateSub(Not, X); 2518 } 2519 if (match(Op1, m_Not(m_Value(X))) && 2520 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2521 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2522 Value *Not = Builder.CreateNot(Op0); 2523 return BinaryOperator::CreateSub(X, Not); 2524 } 2525 2526 // Optimize pointer differences into the same array into a size. Consider: 2527 // &A[10] - &A[0]: we should compile this to "10". 2528 Value *LHSOp, *RHSOp; 2529 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2530 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2531 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2532 I.hasNoUnsignedWrap())) 2533 return replaceInstUsesWith(I, Res); 2534 2535 // trunc(p)-trunc(q) -> trunc(p-q) 2536 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2537 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2538 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2539 /* IsNUW */ false)) 2540 return replaceInstUsesWith(I, Res); 2541 2542 // Canonicalize a shifty way to code absolute value to the common pattern. 2543 // There are 2 potential commuted variants. 2544 // We're relying on the fact that we only do this transform when the shift has 2545 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2546 // instructions). 2547 Value *A; 2548 const APInt *ShAmt; 2549 Type *Ty = I.getType(); 2550 unsigned BitWidth = Ty->getScalarSizeInBits(); 2551 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2552 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2553 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2554 // B = ashr i32 A, 31 ; smear the sign bit 2555 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2556 // --> (A < 0) ? -A : A 2557 Value *IsNeg = Builder.CreateIsNeg(A); 2558 // Copy the nuw/nsw flags from the sub to the negate. 2559 Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2560 I.hasNoSignedWrap()); 2561 return SelectInst::Create(IsNeg, NegA, A); 2562 } 2563 2564 // If we are subtracting a low-bit masked subset of some value from an add 2565 // of that same value with no low bits changed, that is clearing some low bits 2566 // of the sum: 2567 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2568 const APInt *AddC, *AndC; 2569 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2570 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2571 unsigned Cttz = AddC->countr_zero(); 2572 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2573 if ((HighMask & *AndC).isZero()) 2574 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2575 } 2576 2577 if (Instruction *V = 2578 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2579 return V; 2580 2581 // X - usub.sat(X, Y) => umin(X, Y) 2582 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2583 m_Value(Y))))) 2584 return replaceInstUsesWith( 2585 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2586 2587 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2588 // TODO: The one-use restriction is not strictly necessary, but it may 2589 // require improving other pattern matching and/or codegen. 2590 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2591 return replaceInstUsesWith( 2592 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2593 2594 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2595 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2596 return replaceInstUsesWith( 2597 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2598 2599 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2600 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2601 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2602 return BinaryOperator::CreateNeg(USub); 2603 } 2604 2605 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2606 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2607 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2608 return BinaryOperator::CreateNeg(USub); 2609 } 2610 2611 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2612 if (match(Op0, m_SpecificInt(BitWidth)) && 2613 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2614 return replaceInstUsesWith( 2615 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2616 {Builder.CreateNot(X)})); 2617 2618 // Reduce multiplies for difference-of-squares by factoring: 2619 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2620 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2621 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2622 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2623 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2624 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2625 OBO1->hasNoSignedWrap() && BitWidth > 2; 2626 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2627 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2628 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2629 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2630 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2631 return replaceInstUsesWith(I, Mul); 2632 } 2633 2634 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y) 2635 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) && 2636 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) { 2637 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) { 2638 Value *Sub = 2639 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true); 2640 Value *Call = 2641 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue()); 2642 return replaceInstUsesWith(I, Call); 2643 } 2644 } 2645 2646 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 2647 return Res; 2648 2649 return TryToNarrowDeduceFlags(); 2650 } 2651 2652 /// This eliminates floating-point negation in either 'fneg(X)' or 2653 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2654 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2655 // This is limited with one-use because fneg is assumed better for 2656 // reassociation and cheaper in codegen than fmul/fdiv. 2657 // TODO: Should the m_OneUse restriction be removed? 2658 Instruction *FNegOp; 2659 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2660 return nullptr; 2661 2662 Value *X; 2663 Constant *C; 2664 2665 // Fold negation into constant operand. 2666 // -(X * C) --> X * (-C) 2667 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2668 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2669 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2670 // -(X / C) --> X / (-C) 2671 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2672 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2673 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2674 // -(C / X) --> (-C) / X 2675 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2676 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2677 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2678 2679 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2680 // not apply to the fdiv. Everything else propagates from the fneg. 2681 // TODO: We could propagate nsz/ninf from fdiv alone? 2682 FastMathFlags FMF = I.getFastMathFlags(); 2683 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2684 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2685 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2686 return FDiv; 2687 } 2688 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2689 // -(X + C) --> -X + -C --> -C - X 2690 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2691 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2692 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2693 2694 return nullptr; 2695 } 2696 2697 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp, 2698 Instruction &FMFSource) { 2699 Value *X, *Y; 2700 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) { 2701 return cast<Instruction>(Builder.CreateFMulFMF( 2702 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2703 } 2704 2705 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) { 2706 return cast<Instruction>(Builder.CreateFDivFMF( 2707 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2708 } 2709 2710 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) { 2711 // Make sure to preserve flags and metadata on the call. 2712 if (II->getIntrinsicID() == Intrinsic::ldexp) { 2713 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags(); 2714 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2715 Builder.setFastMathFlags(FMF); 2716 2717 CallInst *New = Builder.CreateCall( 2718 II->getCalledFunction(), 2719 {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)}); 2720 New->copyMetadata(*II); 2721 return New; 2722 } 2723 } 2724 2725 return nullptr; 2726 } 2727 2728 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2729 Value *Op = I.getOperand(0); 2730 2731 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2732 getSimplifyQuery().getWithInstruction(&I))) 2733 return replaceInstUsesWith(I, V); 2734 2735 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2736 return X; 2737 2738 Value *X, *Y; 2739 2740 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2741 if (I.hasNoSignedZeros() && 2742 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2743 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2744 2745 Value *OneUse; 2746 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2747 return nullptr; 2748 2749 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I)) 2750 return replaceInstUsesWith(I, R); 2751 2752 // Try to eliminate fneg if at least 1 arm of the select is negated. 2753 Value *Cond; 2754 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2755 // Unlike most transforms, this one is not safe to propagate nsz unless 2756 // it is present on the original select. We union the flags from the select 2757 // and fneg and then remove nsz if needed. 2758 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2759 S->copyFastMathFlags(&I); 2760 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2761 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags(); 2762 S->setFastMathFlags(FMF); 2763 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2764 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2765 S->setHasNoSignedZeros(false); 2766 } 2767 }; 2768 // -(Cond ? -P : Y) --> Cond ? P : -Y 2769 Value *P; 2770 if (match(X, m_FNeg(m_Value(P)))) { 2771 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2772 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2773 propagateSelectFMF(NewSel, P == Y); 2774 return NewSel; 2775 } 2776 // -(Cond ? X : -P) --> Cond ? -X : P 2777 if (match(Y, m_FNeg(m_Value(P)))) { 2778 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2779 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2780 propagateSelectFMF(NewSel, P == X); 2781 return NewSel; 2782 } 2783 } 2784 2785 // fneg (copysign x, y) -> copysign x, (fneg y) 2786 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2787 // The source copysign has an additional value input, so we can't propagate 2788 // flags the copysign doesn't also have. 2789 FastMathFlags FMF = I.getFastMathFlags(); 2790 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2791 2792 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2793 Builder.setFastMathFlags(FMF); 2794 2795 Value *NegY = Builder.CreateFNeg(Y); 2796 Value *NewCopySign = Builder.CreateCopySign(X, NegY); 2797 return replaceInstUsesWith(I, NewCopySign); 2798 } 2799 2800 return nullptr; 2801 } 2802 2803 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2804 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2805 I.getFastMathFlags(), 2806 getSimplifyQuery().getWithInstruction(&I))) 2807 return replaceInstUsesWith(I, V); 2808 2809 if (Instruction *X = foldVectorBinop(I)) 2810 return X; 2811 2812 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2813 return Phi; 2814 2815 // Subtraction from -0.0 is the canonical form of fneg. 2816 // fsub -0.0, X ==> fneg X 2817 // fsub nsz 0.0, X ==> fneg nsz X 2818 // 2819 // FIXME This matcher does not respect FTZ or DAZ yet: 2820 // fsub -0.0, Denorm ==> +-0 2821 // fneg Denorm ==> -Denorm 2822 Value *Op; 2823 if (match(&I, m_FNeg(m_Value(Op)))) 2824 return UnaryOperator::CreateFNegFMF(Op, &I); 2825 2826 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2827 return X; 2828 2829 Value *X, *Y; 2830 Constant *C; 2831 2832 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2833 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2834 // Canonicalize to fadd to make analysis easier. 2835 // This can also help codegen because fadd is commutative. 2836 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2837 // killed later. We still limit that particular transform with 'hasOneUse' 2838 // because an fneg is assumed better/cheaper than a generic fsub. 2839 if (I.hasNoSignedZeros() || cannotBeNegativeZero(Op0, SQ.DL, SQ.TLI)) { 2840 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2841 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2842 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2843 } 2844 } 2845 2846 // (-X) - Op1 --> -(X + Op1) 2847 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2848 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2849 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2850 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2851 } 2852 2853 if (isa<Constant>(Op0)) 2854 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2855 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2856 return NV; 2857 2858 // X - C --> X + (-C) 2859 // But don't transform constant expressions because there's an inverse fold 2860 // for X + (-Y) --> X - Y. 2861 if (match(Op1, m_ImmConstant(C))) 2862 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2863 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 2864 2865 // X - (-Y) --> X + Y 2866 if (match(Op1, m_FNeg(m_Value(Y)))) 2867 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2868 2869 // Similar to above, but look through a cast of the negated value: 2870 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2871 Type *Ty = I.getType(); 2872 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2873 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2874 2875 // X - (fpext(-Y)) --> X + fpext(Y) 2876 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2877 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2878 2879 // Similar to above, but look through fmul/fdiv of the negated value: 2880 // Op0 - (-X * Y) --> Op0 + (X * Y) 2881 // Op0 - (Y * -X) --> Op0 + (X * Y) 2882 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2883 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2884 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2885 } 2886 // Op0 - (-X / Y) --> Op0 + (X / Y) 2887 // Op0 - (X / -Y) --> Op0 + (X / Y) 2888 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2889 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2890 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2891 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2892 } 2893 2894 // Handle special cases for FSub with selects feeding the operation 2895 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2896 return replaceInstUsesWith(I, V); 2897 2898 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2899 // (Y - X) - Y --> -X 2900 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2901 return UnaryOperator::CreateFNegFMF(X, &I); 2902 2903 // Y - (X + Y) --> -X 2904 // Y - (Y + X) --> -X 2905 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2906 return UnaryOperator::CreateFNegFMF(X, &I); 2907 2908 // (X * C) - X --> X * (C - 1.0) 2909 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2910 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2911 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2912 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2913 } 2914 // X - (X * C) --> X * (1.0 - C) 2915 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2916 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2917 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2918 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2919 } 2920 2921 // Reassociate fsub/fadd sequences to create more fadd instructions and 2922 // reduce dependency chains: 2923 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2924 Value *Z; 2925 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2926 m_Value(Z))))) { 2927 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2928 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2929 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2930 } 2931 2932 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2933 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2934 m_Value(Vec))); 2935 }; 2936 Value *A0, *A1, *V0, *V1; 2937 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2938 V0->getType() == V1->getType()) { 2939 // Difference of sums is sum of differences: 2940 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2941 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2942 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2943 {Sub->getType()}, {A0, Sub}, &I); 2944 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2945 } 2946 2947 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2948 return F; 2949 2950 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2951 // functionality has been subsumed by simple pattern matching here and in 2952 // InstSimplify. We should let a dedicated reassociation pass handle more 2953 // complex pattern matching and remove this from InstCombine. 2954 if (Value *V = FAddCombine(Builder).simplify(&I)) 2955 return replaceInstUsesWith(I, V); 2956 2957 // (X - Y) - Op1 --> X - (Y + Op1) 2958 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2959 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2960 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2961 } 2962 } 2963 2964 return nullptr; 2965 } 2966