1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Instructions.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/IR/PassManager.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Object/ModuleSymbolTable.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Transforms/IPO.h" 26 #include "llvm/Transforms/IPO/FunctionAttrs.h" 27 #include "llvm/Transforms/IPO/FunctionImport.h" 28 #include "llvm/Transforms/IPO/LowerTypeTests.h" 29 #include "llvm/Transforms/Utils/Cloning.h" 30 #include "llvm/Transforms/Utils/ModuleUtils.h" 31 using namespace llvm; 32 33 namespace { 34 35 // Determine if a promotion alias should be created for a symbol name. 36 static bool allowPromotionAlias(const std::string &Name) { 37 // Promotion aliases are used only in inline assembly. It's safe to 38 // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar() 39 // and MCAsmInfoXCOFF::isAcceptableChar(). 40 for (const char &C : Name) { 41 if (isAlnum(C) || C == '_' || C == '.') 42 continue; 43 return false; 44 } 45 return true; 46 } 47 48 // Promote each local-linkage entity defined by ExportM and used by ImportM by 49 // changing visibility and appending the given ModuleId. 50 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 51 SetVector<GlobalValue *> &PromoteExtra) { 52 DenseMap<const Comdat *, Comdat *> RenamedComdats; 53 for (auto &ExportGV : ExportM.global_values()) { 54 if (!ExportGV.hasLocalLinkage()) 55 continue; 56 57 auto Name = ExportGV.getName(); 58 GlobalValue *ImportGV = nullptr; 59 if (!PromoteExtra.count(&ExportGV)) { 60 ImportGV = ImportM.getNamedValue(Name); 61 if (!ImportGV) 62 continue; 63 ImportGV->removeDeadConstantUsers(); 64 if (ImportGV->use_empty()) { 65 ImportGV->eraseFromParent(); 66 continue; 67 } 68 } 69 70 std::string OldName = Name.str(); 71 std::string NewName = (Name + ModuleId).str(); 72 73 if (const auto *C = ExportGV.getComdat()) 74 if (C->getName() == Name) 75 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 76 77 ExportGV.setName(NewName); 78 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 79 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 80 81 if (ImportGV) { 82 ImportGV->setName(NewName); 83 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 84 } 85 86 if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) { 87 // Create a local alias with the original name to avoid breaking 88 // references from inline assembly. 89 std::string Alias = 90 ".lto_set_conditional " + OldName + "," + NewName + "\n"; 91 ExportM.appendModuleInlineAsm(Alias); 92 } 93 } 94 95 if (!RenamedComdats.empty()) 96 for (auto &GO : ExportM.global_objects()) 97 if (auto *C = GO.getComdat()) { 98 auto Replacement = RenamedComdats.find(C); 99 if (Replacement != RenamedComdats.end()) 100 GO.setComdat(Replacement->second); 101 } 102 } 103 104 // Promote all internal (i.e. distinct) type ids used by the module by replacing 105 // them with external type ids formed using the module id. 106 // 107 // Note that this needs to be done before we clone the module because each clone 108 // will receive its own set of distinct metadata nodes. 109 void promoteTypeIds(Module &M, StringRef ModuleId) { 110 DenseMap<Metadata *, Metadata *> LocalToGlobal; 111 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 112 Metadata *MD = 113 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 114 115 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 116 Metadata *&GlobalMD = LocalToGlobal[MD]; 117 if (!GlobalMD) { 118 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 119 GlobalMD = MDString::get(M.getContext(), NewName); 120 } 121 122 CI->setArgOperand(ArgNo, 123 MetadataAsValue::get(M.getContext(), GlobalMD)); 124 } 125 }; 126 127 if (Function *TypeTestFunc = 128 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 129 for (const Use &U : TypeTestFunc->uses()) { 130 auto CI = cast<CallInst>(U.getUser()); 131 ExternalizeTypeId(CI, 1); 132 } 133 } 134 135 if (Function *TypeCheckedLoadFunc = 136 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 137 for (const Use &U : TypeCheckedLoadFunc->uses()) { 138 auto CI = cast<CallInst>(U.getUser()); 139 ExternalizeTypeId(CI, 2); 140 } 141 } 142 143 for (GlobalObject &GO : M.global_objects()) { 144 SmallVector<MDNode *, 1> MDs; 145 GO.getMetadata(LLVMContext::MD_type, MDs); 146 147 GO.eraseMetadata(LLVMContext::MD_type); 148 for (auto MD : MDs) { 149 auto I = LocalToGlobal.find(MD->getOperand(1)); 150 if (I == LocalToGlobal.end()) { 151 GO.addMetadata(LLVMContext::MD_type, *MD); 152 continue; 153 } 154 GO.addMetadata( 155 LLVMContext::MD_type, 156 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 157 } 158 } 159 } 160 161 // Drop unused globals, and drop type information from function declarations. 162 // FIXME: If we made functions typeless then there would be no need to do this. 163 void simplifyExternals(Module &M) { 164 FunctionType *EmptyFT = 165 FunctionType::get(Type::getVoidTy(M.getContext()), false); 166 167 for (Function &F : llvm::make_early_inc_range(M)) { 168 if (F.isDeclaration() && F.use_empty()) { 169 F.eraseFromParent(); 170 continue; 171 } 172 173 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 174 // Changing the type of an intrinsic may invalidate the IR. 175 F.getName().startswith("llvm.")) 176 continue; 177 178 Function *NewF = 179 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 180 F.getAddressSpace(), "", &M); 181 NewF->copyAttributesFrom(&F); 182 // Only copy function attribtues. 183 NewF->setAttributes(AttributeList::get(M.getContext(), 184 AttributeList::FunctionIndex, 185 F.getAttributes().getFnAttrs())); 186 NewF->takeName(&F); 187 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 188 F.eraseFromParent(); 189 } 190 191 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 192 if (GV.isDeclaration() && GV.use_empty()) { 193 GV.eraseFromParent(); 194 continue; 195 } 196 } 197 } 198 199 static void 200 filterModule(Module *M, 201 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 202 std::vector<GlobalValue *> V; 203 for (GlobalValue &GV : M->global_values()) 204 if (!ShouldKeepDefinition(&GV)) 205 V.push_back(&GV); 206 207 for (GlobalValue *GV : V) 208 if (!convertToDeclaration(*GV)) 209 GV->eraseFromParent(); 210 } 211 212 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 213 if (auto *F = dyn_cast<Function>(C)) 214 return Fn(F); 215 if (isa<GlobalValue>(C)) 216 return; 217 for (Value *Op : C->operands()) 218 forEachVirtualFunction(cast<Constant>(Op), Fn); 219 } 220 221 // Clone any @llvm[.compiler].used over to the new module and append 222 // values whose defs were cloned into that module. 223 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM, 224 bool CompilerUsed) { 225 SmallVector<GlobalValue *, 4> Used, NewUsed; 226 // First collect those in the llvm[.compiler].used set. 227 collectUsedGlobalVariables(SrcM, Used, CompilerUsed); 228 // Next build a set of the equivalent values defined in DestM. 229 for (auto *V : Used) { 230 auto *GV = DestM.getNamedValue(V->getName()); 231 if (GV && !GV->isDeclaration()) 232 NewUsed.push_back(GV); 233 } 234 // Finally, add them to a llvm[.compiler].used variable in DestM. 235 if (CompilerUsed) 236 appendToCompilerUsed(DestM, NewUsed); 237 else 238 appendToUsed(DestM, NewUsed); 239 } 240 241 // If it's possible to split M into regular and thin LTO parts, do so and write 242 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 243 // regular LTO bitcode file to OS. 244 void splitAndWriteThinLTOBitcode( 245 raw_ostream &OS, raw_ostream *ThinLinkOS, 246 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 247 std::string ModuleId = getUniqueModuleId(&M); 248 if (ModuleId.empty()) { 249 // We couldn't generate a module ID for this module, write it out as a 250 // regular LTO module with an index for summary-based dead stripping. 251 ProfileSummaryInfo PSI(M); 252 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 253 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 254 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 255 256 if (ThinLinkOS) 257 // We don't have a ThinLTO part, but still write the module to the 258 // ThinLinkOS if requested so that the expected output file is produced. 259 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 260 &Index); 261 262 return; 263 } 264 265 promoteTypeIds(M, ModuleId); 266 267 // Returns whether a global or its associated global has attached type 268 // metadata. The former may participate in CFI or whole-program 269 // devirtualization, so they need to appear in the merged module instead of 270 // the thin LTO module. Similarly, globals that are associated with globals 271 // with type metadata need to appear in the merged module because they will 272 // reference the global's section directly. 273 auto HasTypeMetadata = [](const GlobalObject *GO) { 274 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 275 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 276 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 277 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 278 return true; 279 return GO->hasMetadata(LLVMContext::MD_type); 280 }; 281 282 // Collect the set of virtual functions that are eligible for virtual constant 283 // propagation. Each eligible function must not access memory, must return 284 // an integer of width <=64 bits, must take at least one argument, must not 285 // use its first argument (assumed to be "this") and all arguments other than 286 // the first one must be of <=64 bit integer type. 287 // 288 // Note that we test whether this copy of the function is readnone, rather 289 // than testing function attributes, which must hold for any copy of the 290 // function, even a less optimized version substituted at link time. This is 291 // sound because the virtual constant propagation optimizations effectively 292 // inline all implementations of the virtual function into each call site, 293 // rather than using function attributes to perform local optimization. 294 DenseSet<const Function *> EligibleVirtualFns; 295 // If any member of a comdat lives in MergedM, put all members of that 296 // comdat in MergedM to keep the comdat together. 297 DenseSet<const Comdat *> MergedMComdats; 298 for (GlobalVariable &GV : M.globals()) 299 if (HasTypeMetadata(&GV)) { 300 if (const auto *C = GV.getComdat()) 301 MergedMComdats.insert(C); 302 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 303 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 304 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 305 !F->arg_begin()->use_empty()) 306 return; 307 for (auto &Arg : drop_begin(F->args())) { 308 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 309 if (!ArgT || ArgT->getBitWidth() > 64) 310 return; 311 } 312 if (!F->isDeclaration() && 313 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == 314 FMRB_DoesNotAccessMemory) 315 EligibleVirtualFns.insert(F); 316 }); 317 } 318 319 ValueToValueMapTy VMap; 320 std::unique_ptr<Module> MergedM( 321 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 322 if (const auto *C = GV->getComdat()) 323 if (MergedMComdats.count(C)) 324 return true; 325 if (auto *F = dyn_cast<Function>(GV)) 326 return EligibleVirtualFns.count(F); 327 if (auto *GVar = 328 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 329 return HasTypeMetadata(GVar); 330 return false; 331 })); 332 StripDebugInfo(*MergedM); 333 MergedM->setModuleInlineAsm(""); 334 335 // Clone any llvm.*used globals to ensure the included values are 336 // not deleted. 337 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false); 338 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true); 339 340 for (Function &F : *MergedM) 341 if (!F.isDeclaration()) { 342 // Reset the linkage of all functions eligible for virtual constant 343 // propagation. The canonical definitions live in the thin LTO module so 344 // that they can be imported. 345 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 346 F.setComdat(nullptr); 347 } 348 349 SetVector<GlobalValue *> CfiFunctions; 350 for (auto &F : M) 351 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 352 CfiFunctions.insert(&F); 353 354 // Remove all globals with type metadata, globals with comdats that live in 355 // MergedM, and aliases pointing to such globals from the thin LTO module. 356 filterModule(&M, [&](const GlobalValue *GV) { 357 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject())) 358 if (HasTypeMetadata(GVar)) 359 return false; 360 if (const auto *C = GV->getComdat()) 361 if (MergedMComdats.count(C)) 362 return false; 363 return true; 364 }); 365 366 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 367 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 368 369 auto &Ctx = MergedM->getContext(); 370 SmallVector<MDNode *, 8> CfiFunctionMDs; 371 for (auto V : CfiFunctions) { 372 Function &F = *cast<Function>(V); 373 SmallVector<MDNode *, 2> Types; 374 F.getMetadata(LLVMContext::MD_type, Types); 375 376 SmallVector<Metadata *, 4> Elts; 377 Elts.push_back(MDString::get(Ctx, F.getName())); 378 CfiFunctionLinkage Linkage; 379 if (lowertypetests::isJumpTableCanonical(&F)) 380 Linkage = CFL_Definition; 381 else if (F.hasExternalWeakLinkage()) 382 Linkage = CFL_WeakDeclaration; 383 else 384 Linkage = CFL_Declaration; 385 Elts.push_back(ConstantAsMetadata::get( 386 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 387 append_range(Elts, Types); 388 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 389 } 390 391 if(!CfiFunctionMDs.empty()) { 392 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 393 for (auto MD : CfiFunctionMDs) 394 NMD->addOperand(MD); 395 } 396 397 SmallVector<MDNode *, 8> FunctionAliases; 398 for (auto &A : M.aliases()) { 399 if (!isa<Function>(A.getAliasee())) 400 continue; 401 402 auto *F = cast<Function>(A.getAliasee()); 403 404 Metadata *Elts[] = { 405 MDString::get(Ctx, A.getName()), 406 MDString::get(Ctx, F->getName()), 407 ConstantAsMetadata::get( 408 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 409 ConstantAsMetadata::get( 410 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 411 }; 412 413 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 414 } 415 416 if (!FunctionAliases.empty()) { 417 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 418 for (auto MD : FunctionAliases) 419 NMD->addOperand(MD); 420 } 421 422 SmallVector<MDNode *, 8> Symvers; 423 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 424 Function *F = M.getFunction(Name); 425 if (!F || F->use_empty()) 426 return; 427 428 Symvers.push_back(MDTuple::get( 429 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 430 }); 431 432 if (!Symvers.empty()) { 433 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 434 for (auto MD : Symvers) 435 NMD->addOperand(MD); 436 } 437 438 simplifyExternals(*MergedM); 439 440 // FIXME: Try to re-use BSI and PFI from the original module here. 441 ProfileSummaryInfo PSI(M); 442 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 443 444 // Mark the merged module as requiring full LTO. We still want an index for 445 // it though, so that it can participate in summary-based dead stripping. 446 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 447 ModuleSummaryIndex MergedMIndex = 448 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 449 450 SmallVector<char, 0> Buffer; 451 452 BitcodeWriter W(Buffer); 453 // Save the module hash produced for the full bitcode, which will 454 // be used in the backends, and use that in the minimized bitcode 455 // produced for the full link. 456 ModuleHash ModHash = {{0}}; 457 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 458 /*GenerateHash=*/true, &ModHash); 459 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 460 W.writeSymtab(); 461 W.writeStrtab(); 462 OS << Buffer; 463 464 // If a minimized bitcode module was requested for the thin link, only 465 // the information that is needed by thin link will be written in the 466 // given OS (the merged module will be written as usual). 467 if (ThinLinkOS) { 468 Buffer.clear(); 469 BitcodeWriter W2(Buffer); 470 StripDebugInfo(M); 471 W2.writeThinLinkBitcode(M, Index, ModHash); 472 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 473 &MergedMIndex); 474 W2.writeSymtab(); 475 W2.writeStrtab(); 476 *ThinLinkOS << Buffer; 477 } 478 } 479 480 // Check if the LTO Unit splitting has been enabled. 481 bool enableSplitLTOUnit(Module &M) { 482 bool EnableSplitLTOUnit = false; 483 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 484 M.getModuleFlag("EnableSplitLTOUnit"))) 485 EnableSplitLTOUnit = MD->getZExtValue(); 486 return EnableSplitLTOUnit; 487 } 488 489 // Returns whether this module needs to be split because it uses type metadata. 490 bool hasTypeMetadata(Module &M) { 491 for (auto &GO : M.global_objects()) { 492 if (GO.hasMetadata(LLVMContext::MD_type)) 493 return true; 494 } 495 return false; 496 } 497 498 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 499 function_ref<AAResults &(Function &)> AARGetter, 500 Module &M, const ModuleSummaryIndex *Index) { 501 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 502 // See if this module has any type metadata. If so, we try to split it 503 // or at least promote type ids to enable WPD. 504 if (hasTypeMetadata(M)) { 505 if (enableSplitLTOUnit(M)) 506 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 507 // Promote type ids as needed for index-based WPD. 508 std::string ModuleId = getUniqueModuleId(&M); 509 if (!ModuleId.empty()) { 510 promoteTypeIds(M, ModuleId); 511 // Need to rebuild the index so that it contains type metadata 512 // for the newly promoted type ids. 513 // FIXME: Probably should not bother building the index at all 514 // in the caller of writeThinLTOBitcode (which does so via the 515 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 516 // anyway whenever there is type metadata (here or in 517 // splitAndWriteThinLTOBitcode). Just always build it once via the 518 // buildModuleSummaryIndex when Module(s) are ready. 519 ProfileSummaryInfo PSI(M); 520 NewIndex = std::make_unique<ModuleSummaryIndex>( 521 buildModuleSummaryIndex(M, nullptr, &PSI)); 522 Index = NewIndex.get(); 523 } 524 } 525 526 // Write it out as an unsplit ThinLTO module. 527 528 // Save the module hash produced for the full bitcode, which will 529 // be used in the backends, and use that in the minimized bitcode 530 // produced for the full link. 531 ModuleHash ModHash = {{0}}; 532 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 533 /*GenerateHash=*/true, &ModHash); 534 // If a minimized bitcode module was requested for the thin link, only 535 // the information that is needed by thin link will be written in the 536 // given OS. 537 if (ThinLinkOS && Index) 538 writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 539 } 540 541 class WriteThinLTOBitcode : public ModulePass { 542 raw_ostream &OS; // raw_ostream to print on 543 // The output stream on which to emit a minimized module for use 544 // just in the thin link, if requested. 545 raw_ostream *ThinLinkOS = nullptr; 546 547 public: 548 static char ID; // Pass identification, replacement for typeid 549 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()) { 550 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 551 } 552 553 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 554 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 555 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 556 } 557 558 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 559 560 bool runOnModule(Module &M) override { 561 const ModuleSummaryIndex *Index = 562 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 563 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 564 return true; 565 } 566 void getAnalysisUsage(AnalysisUsage &AU) const override { 567 AU.setPreservesAll(); 568 AU.addRequired<AssumptionCacheTracker>(); 569 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 570 AU.addRequired<TargetLibraryInfoWrapperPass>(); 571 } 572 }; 573 } // anonymous namespace 574 575 char WriteThinLTOBitcode::ID = 0; 576 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 577 "Write ThinLTO Bitcode", false, true) 578 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 579 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 580 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 581 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 582 "Write ThinLTO Bitcode", false, true) 583 584 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 585 raw_ostream *ThinLinkOS) { 586 return new WriteThinLTOBitcode(Str, ThinLinkOS); 587 } 588 589 PreservedAnalyses 590 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 591 FunctionAnalysisManager &FAM = 592 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 593 writeThinLTOBitcode(OS, ThinLinkOS, 594 [&FAM](Function &F) -> AAResults & { 595 return FAM.getResult<AAManager>(F); 596 }, 597 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 598 return PreservedAnalyses::all(); 599 } 600