xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Object/ModuleSymbolTable.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/IPO.h"
26 #include "llvm/Transforms/IPO/FunctionAttrs.h"
27 #include "llvm/Transforms/IPO/FunctionImport.h"
28 #include "llvm/Transforms/IPO/LowerTypeTests.h"
29 #include "llvm/Transforms/Utils/Cloning.h"
30 #include "llvm/Transforms/Utils/ModuleUtils.h"
31 using namespace llvm;
32 
33 namespace {
34 
35 // Determine if a promotion alias should be created for a symbol name.
36 static bool allowPromotionAlias(const std::string &Name) {
37   // Promotion aliases are used only in inline assembly. It's safe to
38   // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
39   // and MCAsmInfoXCOFF::isAcceptableChar().
40   for (const char &C : Name) {
41     if (isAlnum(C) || C == '_' || C == '.')
42       continue;
43     return false;
44   }
45   return true;
46 }
47 
48 // Promote each local-linkage entity defined by ExportM and used by ImportM by
49 // changing visibility and appending the given ModuleId.
50 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
51                       SetVector<GlobalValue *> &PromoteExtra) {
52   DenseMap<const Comdat *, Comdat *> RenamedComdats;
53   for (auto &ExportGV : ExportM.global_values()) {
54     if (!ExportGV.hasLocalLinkage())
55       continue;
56 
57     auto Name = ExportGV.getName();
58     GlobalValue *ImportGV = nullptr;
59     if (!PromoteExtra.count(&ExportGV)) {
60       ImportGV = ImportM.getNamedValue(Name);
61       if (!ImportGV)
62         continue;
63       ImportGV->removeDeadConstantUsers();
64       if (ImportGV->use_empty()) {
65         ImportGV->eraseFromParent();
66         continue;
67       }
68     }
69 
70     std::string OldName = Name.str();
71     std::string NewName = (Name + ModuleId).str();
72 
73     if (const auto *C = ExportGV.getComdat())
74       if (C->getName() == Name)
75         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
76 
77     ExportGV.setName(NewName);
78     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
79     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
80 
81     if (ImportGV) {
82       ImportGV->setName(NewName);
83       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
84     }
85 
86     if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
87       // Create a local alias with the original name to avoid breaking
88       // references from inline assembly.
89       std::string Alias =
90           ".lto_set_conditional " + OldName + "," + NewName + "\n";
91       ExportM.appendModuleInlineAsm(Alias);
92     }
93   }
94 
95   if (!RenamedComdats.empty())
96     for (auto &GO : ExportM.global_objects())
97       if (auto *C = GO.getComdat()) {
98         auto Replacement = RenamedComdats.find(C);
99         if (Replacement != RenamedComdats.end())
100           GO.setComdat(Replacement->second);
101       }
102 }
103 
104 // Promote all internal (i.e. distinct) type ids used by the module by replacing
105 // them with external type ids formed using the module id.
106 //
107 // Note that this needs to be done before we clone the module because each clone
108 // will receive its own set of distinct metadata nodes.
109 void promoteTypeIds(Module &M, StringRef ModuleId) {
110   DenseMap<Metadata *, Metadata *> LocalToGlobal;
111   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
112     Metadata *MD =
113         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
114 
115     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
116       Metadata *&GlobalMD = LocalToGlobal[MD];
117       if (!GlobalMD) {
118         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
119         GlobalMD = MDString::get(M.getContext(), NewName);
120       }
121 
122       CI->setArgOperand(ArgNo,
123                         MetadataAsValue::get(M.getContext(), GlobalMD));
124     }
125   };
126 
127   if (Function *TypeTestFunc =
128           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
129     for (const Use &U : TypeTestFunc->uses()) {
130       auto CI = cast<CallInst>(U.getUser());
131       ExternalizeTypeId(CI, 1);
132     }
133   }
134 
135   if (Function *TypeCheckedLoadFunc =
136           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
137     for (const Use &U : TypeCheckedLoadFunc->uses()) {
138       auto CI = cast<CallInst>(U.getUser());
139       ExternalizeTypeId(CI, 2);
140     }
141   }
142 
143   for (GlobalObject &GO : M.global_objects()) {
144     SmallVector<MDNode *, 1> MDs;
145     GO.getMetadata(LLVMContext::MD_type, MDs);
146 
147     GO.eraseMetadata(LLVMContext::MD_type);
148     for (auto MD : MDs) {
149       auto I = LocalToGlobal.find(MD->getOperand(1));
150       if (I == LocalToGlobal.end()) {
151         GO.addMetadata(LLVMContext::MD_type, *MD);
152         continue;
153       }
154       GO.addMetadata(
155           LLVMContext::MD_type,
156           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
157     }
158   }
159 }
160 
161 // Drop unused globals, and drop type information from function declarations.
162 // FIXME: If we made functions typeless then there would be no need to do this.
163 void simplifyExternals(Module &M) {
164   FunctionType *EmptyFT =
165       FunctionType::get(Type::getVoidTy(M.getContext()), false);
166 
167   for (Function &F : llvm::make_early_inc_range(M)) {
168     if (F.isDeclaration() && F.use_empty()) {
169       F.eraseFromParent();
170       continue;
171     }
172 
173     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
174         // Changing the type of an intrinsic may invalidate the IR.
175         F.getName().startswith("llvm."))
176       continue;
177 
178     Function *NewF =
179         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
180                          F.getAddressSpace(), "", &M);
181     NewF->copyAttributesFrom(&F);
182     // Only copy function attribtues.
183     NewF->setAttributes(AttributeList::get(M.getContext(),
184                                            AttributeList::FunctionIndex,
185                                            F.getAttributes().getFnAttrs()));
186     NewF->takeName(&F);
187     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
188     F.eraseFromParent();
189   }
190 
191   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
192     if (GV.isDeclaration() && GV.use_empty()) {
193       GV.eraseFromParent();
194       continue;
195     }
196   }
197 }
198 
199 static void
200 filterModule(Module *M,
201              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
202   std::vector<GlobalValue *> V;
203   for (GlobalValue &GV : M->global_values())
204     if (!ShouldKeepDefinition(&GV))
205       V.push_back(&GV);
206 
207   for (GlobalValue *GV : V)
208     if (!convertToDeclaration(*GV))
209       GV->eraseFromParent();
210 }
211 
212 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
213   if (auto *F = dyn_cast<Function>(C))
214     return Fn(F);
215   if (isa<GlobalValue>(C))
216     return;
217   for (Value *Op : C->operands())
218     forEachVirtualFunction(cast<Constant>(Op), Fn);
219 }
220 
221 // Clone any @llvm[.compiler].used over to the new module and append
222 // values whose defs were cloned into that module.
223 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
224                                      bool CompilerUsed) {
225   SmallVector<GlobalValue *, 4> Used, NewUsed;
226   // First collect those in the llvm[.compiler].used set.
227   collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
228   // Next build a set of the equivalent values defined in DestM.
229   for (auto *V : Used) {
230     auto *GV = DestM.getNamedValue(V->getName());
231     if (GV && !GV->isDeclaration())
232       NewUsed.push_back(GV);
233   }
234   // Finally, add them to a llvm[.compiler].used variable in DestM.
235   if (CompilerUsed)
236     appendToCompilerUsed(DestM, NewUsed);
237   else
238     appendToUsed(DestM, NewUsed);
239 }
240 
241 // If it's possible to split M into regular and thin LTO parts, do so and write
242 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
243 // regular LTO bitcode file to OS.
244 void splitAndWriteThinLTOBitcode(
245     raw_ostream &OS, raw_ostream *ThinLinkOS,
246     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
247   std::string ModuleId = getUniqueModuleId(&M);
248   if (ModuleId.empty()) {
249     // We couldn't generate a module ID for this module, write it out as a
250     // regular LTO module with an index for summary-based dead stripping.
251     ProfileSummaryInfo PSI(M);
252     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
253     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
254     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
255 
256     if (ThinLinkOS)
257       // We don't have a ThinLTO part, but still write the module to the
258       // ThinLinkOS if requested so that the expected output file is produced.
259       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
260                          &Index);
261 
262     return;
263   }
264 
265   promoteTypeIds(M, ModuleId);
266 
267   // Returns whether a global or its associated global has attached type
268   // metadata. The former may participate in CFI or whole-program
269   // devirtualization, so they need to appear in the merged module instead of
270   // the thin LTO module. Similarly, globals that are associated with globals
271   // with type metadata need to appear in the merged module because they will
272   // reference the global's section directly.
273   auto HasTypeMetadata = [](const GlobalObject *GO) {
274     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
275       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
276         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
277           if (AssocGO->hasMetadata(LLVMContext::MD_type))
278             return true;
279     return GO->hasMetadata(LLVMContext::MD_type);
280   };
281 
282   // Collect the set of virtual functions that are eligible for virtual constant
283   // propagation. Each eligible function must not access memory, must return
284   // an integer of width <=64 bits, must take at least one argument, must not
285   // use its first argument (assumed to be "this") and all arguments other than
286   // the first one must be of <=64 bit integer type.
287   //
288   // Note that we test whether this copy of the function is readnone, rather
289   // than testing function attributes, which must hold for any copy of the
290   // function, even a less optimized version substituted at link time. This is
291   // sound because the virtual constant propagation optimizations effectively
292   // inline all implementations of the virtual function into each call site,
293   // rather than using function attributes to perform local optimization.
294   DenseSet<const Function *> EligibleVirtualFns;
295   // If any member of a comdat lives in MergedM, put all members of that
296   // comdat in MergedM to keep the comdat together.
297   DenseSet<const Comdat *> MergedMComdats;
298   for (GlobalVariable &GV : M.globals())
299     if (HasTypeMetadata(&GV)) {
300       if (const auto *C = GV.getComdat())
301         MergedMComdats.insert(C);
302       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
303         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
304         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
305             !F->arg_begin()->use_empty())
306           return;
307         for (auto &Arg : drop_begin(F->args())) {
308           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
309           if (!ArgT || ArgT->getBitWidth() > 64)
310             return;
311         }
312         if (!F->isDeclaration() &&
313             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) ==
314                 FMRB_DoesNotAccessMemory)
315           EligibleVirtualFns.insert(F);
316       });
317     }
318 
319   ValueToValueMapTy VMap;
320   std::unique_ptr<Module> MergedM(
321       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
322         if (const auto *C = GV->getComdat())
323           if (MergedMComdats.count(C))
324             return true;
325         if (auto *F = dyn_cast<Function>(GV))
326           return EligibleVirtualFns.count(F);
327         if (auto *GVar =
328                 dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
329           return HasTypeMetadata(GVar);
330         return false;
331       }));
332   StripDebugInfo(*MergedM);
333   MergedM->setModuleInlineAsm("");
334 
335   // Clone any llvm.*used globals to ensure the included values are
336   // not deleted.
337   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
338   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
339 
340   for (Function &F : *MergedM)
341     if (!F.isDeclaration()) {
342       // Reset the linkage of all functions eligible for virtual constant
343       // propagation. The canonical definitions live in the thin LTO module so
344       // that they can be imported.
345       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
346       F.setComdat(nullptr);
347     }
348 
349   SetVector<GlobalValue *> CfiFunctions;
350   for (auto &F : M)
351     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
352       CfiFunctions.insert(&F);
353 
354   // Remove all globals with type metadata, globals with comdats that live in
355   // MergedM, and aliases pointing to such globals from the thin LTO module.
356   filterModule(&M, [&](const GlobalValue *GV) {
357     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getAliaseeObject()))
358       if (HasTypeMetadata(GVar))
359         return false;
360     if (const auto *C = GV->getComdat())
361       if (MergedMComdats.count(C))
362         return false;
363     return true;
364   });
365 
366   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
367   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
368 
369   auto &Ctx = MergedM->getContext();
370   SmallVector<MDNode *, 8> CfiFunctionMDs;
371   for (auto V : CfiFunctions) {
372     Function &F = *cast<Function>(V);
373     SmallVector<MDNode *, 2> Types;
374     F.getMetadata(LLVMContext::MD_type, Types);
375 
376     SmallVector<Metadata *, 4> Elts;
377     Elts.push_back(MDString::get(Ctx, F.getName()));
378     CfiFunctionLinkage Linkage;
379     if (lowertypetests::isJumpTableCanonical(&F))
380       Linkage = CFL_Definition;
381     else if (F.hasExternalWeakLinkage())
382       Linkage = CFL_WeakDeclaration;
383     else
384       Linkage = CFL_Declaration;
385     Elts.push_back(ConstantAsMetadata::get(
386         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
387     append_range(Elts, Types);
388     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
389   }
390 
391   if(!CfiFunctionMDs.empty()) {
392     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
393     for (auto MD : CfiFunctionMDs)
394       NMD->addOperand(MD);
395   }
396 
397   SmallVector<MDNode *, 8> FunctionAliases;
398   for (auto &A : M.aliases()) {
399     if (!isa<Function>(A.getAliasee()))
400       continue;
401 
402     auto *F = cast<Function>(A.getAliasee());
403 
404     Metadata *Elts[] = {
405         MDString::get(Ctx, A.getName()),
406         MDString::get(Ctx, F->getName()),
407         ConstantAsMetadata::get(
408             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
409         ConstantAsMetadata::get(
410             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
411     };
412 
413     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
414   }
415 
416   if (!FunctionAliases.empty()) {
417     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
418     for (auto MD : FunctionAliases)
419       NMD->addOperand(MD);
420   }
421 
422   SmallVector<MDNode *, 8> Symvers;
423   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
424     Function *F = M.getFunction(Name);
425     if (!F || F->use_empty())
426       return;
427 
428     Symvers.push_back(MDTuple::get(
429         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
430   });
431 
432   if (!Symvers.empty()) {
433     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
434     for (auto MD : Symvers)
435       NMD->addOperand(MD);
436   }
437 
438   simplifyExternals(*MergedM);
439 
440   // FIXME: Try to re-use BSI and PFI from the original module here.
441   ProfileSummaryInfo PSI(M);
442   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
443 
444   // Mark the merged module as requiring full LTO. We still want an index for
445   // it though, so that it can participate in summary-based dead stripping.
446   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
447   ModuleSummaryIndex MergedMIndex =
448       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
449 
450   SmallVector<char, 0> Buffer;
451 
452   BitcodeWriter W(Buffer);
453   // Save the module hash produced for the full bitcode, which will
454   // be used in the backends, and use that in the minimized bitcode
455   // produced for the full link.
456   ModuleHash ModHash = {{0}};
457   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
458                 /*GenerateHash=*/true, &ModHash);
459   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
460   W.writeSymtab();
461   W.writeStrtab();
462   OS << Buffer;
463 
464   // If a minimized bitcode module was requested for the thin link, only
465   // the information that is needed by thin link will be written in the
466   // given OS (the merged module will be written as usual).
467   if (ThinLinkOS) {
468     Buffer.clear();
469     BitcodeWriter W2(Buffer);
470     StripDebugInfo(M);
471     W2.writeThinLinkBitcode(M, Index, ModHash);
472     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
473                    &MergedMIndex);
474     W2.writeSymtab();
475     W2.writeStrtab();
476     *ThinLinkOS << Buffer;
477   }
478 }
479 
480 // Check if the LTO Unit splitting has been enabled.
481 bool enableSplitLTOUnit(Module &M) {
482   bool EnableSplitLTOUnit = false;
483   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
484           M.getModuleFlag("EnableSplitLTOUnit")))
485     EnableSplitLTOUnit = MD->getZExtValue();
486   return EnableSplitLTOUnit;
487 }
488 
489 // Returns whether this module needs to be split because it uses type metadata.
490 bool hasTypeMetadata(Module &M) {
491   for (auto &GO : M.global_objects()) {
492     if (GO.hasMetadata(LLVMContext::MD_type))
493       return true;
494   }
495   return false;
496 }
497 
498 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
499                          function_ref<AAResults &(Function &)> AARGetter,
500                          Module &M, const ModuleSummaryIndex *Index) {
501   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
502   // See if this module has any type metadata. If so, we try to split it
503   // or at least promote type ids to enable WPD.
504   if (hasTypeMetadata(M)) {
505     if (enableSplitLTOUnit(M))
506       return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
507     // Promote type ids as needed for index-based WPD.
508     std::string ModuleId = getUniqueModuleId(&M);
509     if (!ModuleId.empty()) {
510       promoteTypeIds(M, ModuleId);
511       // Need to rebuild the index so that it contains type metadata
512       // for the newly promoted type ids.
513       // FIXME: Probably should not bother building the index at all
514       // in the caller of writeThinLTOBitcode (which does so via the
515       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
516       // anyway whenever there is type metadata (here or in
517       // splitAndWriteThinLTOBitcode). Just always build it once via the
518       // buildModuleSummaryIndex when Module(s) are ready.
519       ProfileSummaryInfo PSI(M);
520       NewIndex = std::make_unique<ModuleSummaryIndex>(
521           buildModuleSummaryIndex(M, nullptr, &PSI));
522       Index = NewIndex.get();
523     }
524   }
525 
526   // Write it out as an unsplit ThinLTO module.
527 
528   // Save the module hash produced for the full bitcode, which will
529   // be used in the backends, and use that in the minimized bitcode
530   // produced for the full link.
531   ModuleHash ModHash = {{0}};
532   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
533                      /*GenerateHash=*/true, &ModHash);
534   // If a minimized bitcode module was requested for the thin link, only
535   // the information that is needed by thin link will be written in the
536   // given OS.
537   if (ThinLinkOS && Index)
538     writeThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
539 }
540 
541 class WriteThinLTOBitcode : public ModulePass {
542   raw_ostream &OS; // raw_ostream to print on
543   // The output stream on which to emit a minimized module for use
544   // just in the thin link, if requested.
545   raw_ostream *ThinLinkOS = nullptr;
546 
547 public:
548   static char ID; // Pass identification, replacement for typeid
549   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()) {
550     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
551   }
552 
553   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
554       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
555     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
556   }
557 
558   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
559 
560   bool runOnModule(Module &M) override {
561     const ModuleSummaryIndex *Index =
562         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
563     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
564     return true;
565   }
566   void getAnalysisUsage(AnalysisUsage &AU) const override {
567     AU.setPreservesAll();
568     AU.addRequired<AssumptionCacheTracker>();
569     AU.addRequired<ModuleSummaryIndexWrapperPass>();
570     AU.addRequired<TargetLibraryInfoWrapperPass>();
571   }
572 };
573 } // anonymous namespace
574 
575 char WriteThinLTOBitcode::ID = 0;
576 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
577                       "Write ThinLTO Bitcode", false, true)
578 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
579 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
580 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
581 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
582                     "Write ThinLTO Bitcode", false, true)
583 
584 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
585                                                 raw_ostream *ThinLinkOS) {
586   return new WriteThinLTOBitcode(Str, ThinLinkOS);
587 }
588 
589 PreservedAnalyses
590 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
591   FunctionAnalysisManager &FAM =
592       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
593   writeThinLTOBitcode(OS, ThinLinkOS,
594                       [&FAM](Function &F) -> AAResults & {
595                         return FAM.getResult<AAManager>(F);
596                       },
597                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
598   return PreservedAnalyses::all();
599 }
600