1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileProber transformation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/BlockFrequencyInfo.h" 16 #include "llvm/Analysis/EHUtils.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DiagnosticInfo.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/MDBuilder.h" 26 #include "llvm/IR/PseudoProbe.h" 27 #include "llvm/ProfileData/SampleProf.h" 28 #include "llvm/Support/CRC.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Transforms/Instrumentation.h" 32 #include "llvm/Transforms/Utils/ModuleUtils.h" 33 #include <unordered_set> 34 #include <vector> 35 36 using namespace llvm; 37 #define DEBUG_TYPE "pseudo-probe" 38 39 STATISTIC(ArtificialDbgLine, 40 "Number of probes that have an artificial debug line"); 41 42 static cl::opt<bool> 43 VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden, 44 cl::desc("Do pseudo probe verification")); 45 46 static cl::list<std::string> VerifyPseudoProbeFuncList( 47 "verify-pseudo-probe-funcs", cl::Hidden, 48 cl::desc("The option to specify the name of the functions to verify.")); 49 50 static cl::opt<bool> 51 UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden, 52 cl::desc("Update pseudo probe distribution factor")); 53 54 static uint64_t getCallStackHash(const DILocation *DIL) { 55 uint64_t Hash = 0; 56 const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; 57 while (InlinedAt) { 58 Hash ^= MD5Hash(std::to_string(InlinedAt->getLine())); 59 Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn())); 60 auto Name = InlinedAt->getSubprogramLinkageName(); 61 Hash ^= MD5Hash(Name); 62 InlinedAt = InlinedAt->getInlinedAt(); 63 } 64 return Hash; 65 } 66 67 static uint64_t computeCallStackHash(const Instruction &Inst) { 68 return getCallStackHash(Inst.getDebugLoc()); 69 } 70 71 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { 72 // Skip function declaration. 73 if (F->isDeclaration()) 74 return false; 75 // Skip function that will not be emitted into object file. The prevailing 76 // defintion will be verified instead. 77 if (F->hasAvailableExternallyLinkage()) 78 return false; 79 // Do a name matching. 80 static std::unordered_set<std::string> VerifyFuncNames( 81 VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); 82 return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str()); 83 } 84 85 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { 86 if (VerifyPseudoProbe) { 87 PIC.registerAfterPassCallback( 88 [this](StringRef P, Any IR, const PreservedAnalyses &) { 89 this->runAfterPass(P, IR); 90 }); 91 } 92 } 93 94 // Callback to run after each transformation for the new pass manager. 95 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { 96 std::string Banner = 97 "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n"; 98 dbgs() << Banner; 99 if (const auto **M = llvm::any_cast<const Module *>(&IR)) 100 runAfterPass(*M); 101 else if (const auto **F = llvm::any_cast<const Function *>(&IR)) 102 runAfterPass(*F); 103 else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR)) 104 runAfterPass(*C); 105 else if (const auto **L = llvm::any_cast<const Loop *>(&IR)) 106 runAfterPass(*L); 107 else 108 llvm_unreachable("Unknown IR unit"); 109 } 110 111 void PseudoProbeVerifier::runAfterPass(const Module *M) { 112 for (const Function &F : *M) 113 runAfterPass(&F); 114 } 115 116 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { 117 for (const LazyCallGraph::Node &N : *C) 118 runAfterPass(&N.getFunction()); 119 } 120 121 void PseudoProbeVerifier::runAfterPass(const Function *F) { 122 if (!shouldVerifyFunction(F)) 123 return; 124 ProbeFactorMap ProbeFactors; 125 for (const auto &BB : *F) 126 collectProbeFactors(&BB, ProbeFactors); 127 verifyProbeFactors(F, ProbeFactors); 128 } 129 130 void PseudoProbeVerifier::runAfterPass(const Loop *L) { 131 const Function *F = L->getHeader()->getParent(); 132 runAfterPass(F); 133 } 134 135 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, 136 ProbeFactorMap &ProbeFactors) { 137 for (const auto &I : *Block) { 138 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 139 uint64_t Hash = computeCallStackHash(I); 140 ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; 141 } 142 } 143 } 144 145 void PseudoProbeVerifier::verifyProbeFactors( 146 const Function *F, const ProbeFactorMap &ProbeFactors) { 147 bool BannerPrinted = false; 148 auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; 149 for (const auto &I : ProbeFactors) { 150 float CurProbeFactor = I.second; 151 if (PrevProbeFactors.count(I.first)) { 152 float PrevProbeFactor = PrevProbeFactors[I.first]; 153 if (std::abs(CurProbeFactor - PrevProbeFactor) > 154 DistributionFactorVariance) { 155 if (!BannerPrinted) { 156 dbgs() << "Function " << F->getName() << ":\n"; 157 BannerPrinted = true; 158 } 159 dbgs() << "Probe " << I.first.first << "\tprevious factor " 160 << format("%0.2f", PrevProbeFactor) << "\tcurrent factor " 161 << format("%0.2f", CurProbeFactor) << "\n"; 162 } 163 } 164 165 // Update 166 PrevProbeFactors[I.first] = I.second; 167 } 168 } 169 170 SampleProfileProber::SampleProfileProber(Function &Func, 171 const std::string &CurModuleUniqueId) 172 : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { 173 BlockProbeIds.clear(); 174 CallProbeIds.clear(); 175 LastProbeId = (uint32_t)PseudoProbeReservedId::Last; 176 computeProbeIdForBlocks(); 177 computeProbeIdForCallsites(); 178 computeCFGHash(); 179 } 180 181 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index 182 // value of each BB in the CFG. The higher 32 bits record the number of edges 183 // preceded by the number of indirect calls. 184 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). 185 void SampleProfileProber::computeCFGHash() { 186 std::vector<uint8_t> Indexes; 187 JamCRC JC; 188 for (auto &BB : *F) { 189 auto *TI = BB.getTerminator(); 190 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { 191 auto *Succ = TI->getSuccessor(I); 192 auto Index = getBlockId(Succ); 193 for (int J = 0; J < 4; J++) 194 Indexes.push_back((uint8_t)(Index >> (J * 8))); 195 } 196 } 197 198 JC.update(Indexes); 199 200 FunctionHash = (uint64_t)CallProbeIds.size() << 48 | 201 (uint64_t)Indexes.size() << 32 | JC.getCRC(); 202 // Reserve bit 60-63 for other information purpose. 203 FunctionHash &= 0x0FFFFFFFFFFFFFFF; 204 assert(FunctionHash && "Function checksum should not be zero"); 205 LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() 206 << ":\n" 207 << " CRC = " << JC.getCRC() << ", Edges = " 208 << Indexes.size() << ", ICSites = " << CallProbeIds.size() 209 << ", Hash = " << FunctionHash << "\n"); 210 } 211 212 void SampleProfileProber::computeProbeIdForBlocks() { 213 DenseSet<BasicBlock *> KnownColdBlocks; 214 computeEHOnlyBlocks(*F, KnownColdBlocks); 215 // Insert pseudo probe to non-cold blocks only. This will reduce IR size as 216 // well as the binary size while retaining the profile quality. 217 for (auto &BB : *F) { 218 ++LastProbeId; 219 if (!KnownColdBlocks.contains(&BB)) 220 BlockProbeIds[&BB] = LastProbeId; 221 } 222 } 223 224 void SampleProfileProber::computeProbeIdForCallsites() { 225 LLVMContext &Ctx = F->getContext(); 226 Module *M = F->getParent(); 227 228 for (auto &BB : *F) { 229 for (auto &I : BB) { 230 if (!isa<CallBase>(I)) 231 continue; 232 if (isa<IntrinsicInst>(&I)) 233 continue; 234 235 // The current implementation uses the lower 16 bits of the discriminator 236 // so anything larger than 0xFFFF will be ignored. 237 if (LastProbeId >= 0xFFFF) { 238 std::string Msg = "Pseudo instrumentation incomplete for " + 239 std::string(F->getName()) + " because it's too large"; 240 Ctx.diagnose( 241 DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); 242 return; 243 } 244 245 CallProbeIds[&I] = ++LastProbeId; 246 } 247 } 248 } 249 250 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { 251 auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB)); 252 return I == BlockProbeIds.end() ? 0 : I->second; 253 } 254 255 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { 256 auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call)); 257 return Iter == CallProbeIds.end() ? 0 : Iter->second; 258 } 259 260 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { 261 Module *M = F.getParent(); 262 MDBuilder MDB(F.getContext()); 263 // Since the GUID from probe desc and inline stack are computed seperately, we 264 // need to make sure their names are consistent, so here also use the name 265 // from debug info. 266 StringRef FName = F.getName(); 267 if (auto *SP = F.getSubprogram()) { 268 FName = SP->getLinkageName(); 269 if (FName.empty()) 270 FName = SP->getName(); 271 } 272 uint64_t Guid = Function::getGUID(FName); 273 274 // Assign an artificial debug line to a probe that doesn't come with a real 275 // line. A probe not having a debug line will get an incomplete inline 276 // context. This will cause samples collected on the probe to be counted 277 // into the base profile instead of a context profile. The line number 278 // itself is not important though. 279 auto AssignDebugLoc = [&](Instruction *I) { 280 assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && 281 "Expecting pseudo probe or call instructions"); 282 if (!I->getDebugLoc()) { 283 if (auto *SP = F.getSubprogram()) { 284 auto DIL = DILocation::get(SP->getContext(), 0, 0, SP); 285 I->setDebugLoc(DIL); 286 ArtificialDbgLine++; 287 LLVM_DEBUG({ 288 dbgs() << "\nIn Function " << F.getName() 289 << " Probe gets an artificial debug line\n"; 290 I->dump(); 291 }); 292 } 293 } 294 }; 295 296 // Probe basic blocks. 297 for (auto &I : BlockProbeIds) { 298 BasicBlock *BB = I.first; 299 uint32_t Index = I.second; 300 // Insert a probe before an instruction with a valid debug line number which 301 // will be assigned to the probe. The line number will be used later to 302 // model the inline context when the probe is inlined into other functions. 303 // Debug instructions, phi nodes and lifetime markers do not have an valid 304 // line number. Real instructions generated by optimizations may not come 305 // with a line number either. 306 auto HasValidDbgLine = [](Instruction *J) { 307 return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) && 308 !J->isLifetimeStartOrEnd() && J->getDebugLoc(); 309 }; 310 311 Instruction *J = &*BB->getFirstInsertionPt(); 312 while (J != BB->getTerminator() && !HasValidDbgLine(J)) { 313 J = J->getNextNode(); 314 } 315 316 IRBuilder<> Builder(J); 317 assert(Builder.GetInsertPoint() != BB->end() && 318 "Cannot get the probing point"); 319 Function *ProbeFn = 320 llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe); 321 Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index), 322 Builder.getInt32(0), 323 Builder.getInt64(PseudoProbeFullDistributionFactor)}; 324 auto *Probe = Builder.CreateCall(ProbeFn, Args); 325 AssignDebugLoc(Probe); 326 // Reset the dwarf discriminator if the debug location comes with any. The 327 // discriminator field may be used by FS-AFDO later in the pipeline. 328 if (auto DIL = Probe->getDebugLoc()) { 329 if (DIL->getDiscriminator()) { 330 DIL = DIL->cloneWithDiscriminator(0); 331 Probe->setDebugLoc(DIL); 332 } 333 } 334 } 335 336 // Probe both direct calls and indirect calls. Direct calls are probed so that 337 // their probe ID can be used as an call site identifier to represent a 338 // calling context. 339 for (auto &I : CallProbeIds) { 340 auto *Call = I.first; 341 uint32_t Index = I.second; 342 uint32_t Type = cast<CallBase>(Call)->getCalledFunction() 343 ? (uint32_t)PseudoProbeType::DirectCall 344 : (uint32_t)PseudoProbeType::IndirectCall; 345 AssignDebugLoc(Call); 346 if (auto DIL = Call->getDebugLoc()) { 347 // Levarge the 32-bit discriminator field of debug data to store the ID 348 // and type of a callsite probe. This gets rid of the dependency on 349 // plumbing a customized metadata through the codegen pipeline. 350 uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( 351 Index, Type, 0, 352 PseudoProbeDwarfDiscriminator::FullDistributionFactor); 353 DIL = DIL->cloneWithDiscriminator(V); 354 Call->setDebugLoc(DIL); 355 } 356 } 357 358 // Create module-level metadata that contains function info necessary to 359 // synthesize probe-based sample counts, which are 360 // - FunctionGUID 361 // - FunctionHash. 362 // - FunctionName 363 auto Hash = getFunctionHash(); 364 auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName); 365 auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName); 366 assert(NMD && "llvm.pseudo_probe_desc should be pre-created"); 367 NMD->addOperand(MD); 368 } 369 370 PreservedAnalyses SampleProfileProbePass::run(Module &M, 371 ModuleAnalysisManager &AM) { 372 auto ModuleId = getUniqueModuleId(&M); 373 // Create the pseudo probe desc metadata beforehand. 374 // Note that modules with only data but no functions will require this to 375 // be set up so that they will be known as probed later. 376 M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName); 377 378 for (auto &F : M) { 379 if (F.isDeclaration()) 380 continue; 381 SampleProfileProber ProbeManager(F, ModuleId); 382 ProbeManager.instrumentOneFunc(F, TM); 383 } 384 385 return PreservedAnalyses::none(); 386 } 387 388 void PseudoProbeUpdatePass::runOnFunction(Function &F, 389 FunctionAnalysisManager &FAM) { 390 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 391 auto BBProfileCount = [&BFI](BasicBlock *BB) { 392 return BFI.getBlockProfileCount(BB).value_or(0); 393 }; 394 395 // Collect the sum of execution weight for each probe. 396 ProbeFactorMap ProbeFactors; 397 for (auto &Block : F) { 398 for (auto &I : Block) { 399 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 400 uint64_t Hash = computeCallStackHash(I); 401 ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); 402 } 403 } 404 } 405 406 // Fix up over-counted probes. 407 for (auto &Block : F) { 408 for (auto &I : Block) { 409 if (std::optional<PseudoProbe> Probe = extractProbe(I)) { 410 uint64_t Hash = computeCallStackHash(I); 411 float Sum = ProbeFactors[{Probe->Id, Hash}]; 412 if (Sum != 0) 413 setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum); 414 } 415 } 416 } 417 } 418 419 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, 420 ModuleAnalysisManager &AM) { 421 if (UpdatePseudoProbe) { 422 for (auto &F : M) { 423 if (F.isDeclaration()) 424 continue; 425 FunctionAnalysisManager &FAM = 426 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 427 runOnFunction(F, FAM); 428 } 429 } 430 return PreservedAnalyses::none(); 431 } 432