xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileProber transformation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/EHUtils.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DiagnosticInfo.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/MDBuilder.h"
26 #include "llvm/IR/PseudoProbe.h"
27 #include "llvm/ProfileData/SampleProf.h"
28 #include "llvm/Support/CRC.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Transforms/Instrumentation.h"
32 #include "llvm/Transforms/Utils/ModuleUtils.h"
33 #include <unordered_set>
34 #include <vector>
35 
36 using namespace llvm;
37 #define DEBUG_TYPE "pseudo-probe"
38 
39 STATISTIC(ArtificialDbgLine,
40           "Number of probes that have an artificial debug line");
41 
42 static cl::opt<bool>
43     VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
44                       cl::desc("Do pseudo probe verification"));
45 
46 static cl::list<std::string> VerifyPseudoProbeFuncList(
47     "verify-pseudo-probe-funcs", cl::Hidden,
48     cl::desc("The option to specify the name of the functions to verify."));
49 
50 static cl::opt<bool>
51     UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
52                       cl::desc("Update pseudo probe distribution factor"));
53 
54 static uint64_t getCallStackHash(const DILocation *DIL) {
55   uint64_t Hash = 0;
56   const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
57   while (InlinedAt) {
58     Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
59     Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
60     auto Name = InlinedAt->getSubprogramLinkageName();
61     Hash ^= MD5Hash(Name);
62     InlinedAt = InlinedAt->getInlinedAt();
63   }
64   return Hash;
65 }
66 
67 static uint64_t computeCallStackHash(const Instruction &Inst) {
68   return getCallStackHash(Inst.getDebugLoc());
69 }
70 
71 bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
72   // Skip function declaration.
73   if (F->isDeclaration())
74     return false;
75   // Skip function that will not be emitted into object file. The prevailing
76   // defintion will be verified instead.
77   if (F->hasAvailableExternallyLinkage())
78     return false;
79   // Do a name matching.
80   static std::unordered_set<std::string> VerifyFuncNames(
81       VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
82   return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
83 }
84 
85 void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
86   if (VerifyPseudoProbe) {
87     PIC.registerAfterPassCallback(
88         [this](StringRef P, Any IR, const PreservedAnalyses &) {
89           this->runAfterPass(P, IR);
90         });
91   }
92 }
93 
94 // Callback to run after each transformation for the new pass manager.
95 void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
96   std::string Banner =
97       "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
98   dbgs() << Banner;
99   if (const auto **M = llvm::any_cast<const Module *>(&IR))
100     runAfterPass(*M);
101   else if (const auto **F = llvm::any_cast<const Function *>(&IR))
102     runAfterPass(*F);
103   else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR))
104     runAfterPass(*C);
105   else if (const auto **L = llvm::any_cast<const Loop *>(&IR))
106     runAfterPass(*L);
107   else
108     llvm_unreachable("Unknown IR unit");
109 }
110 
111 void PseudoProbeVerifier::runAfterPass(const Module *M) {
112   for (const Function &F : *M)
113     runAfterPass(&F);
114 }
115 
116 void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
117   for (const LazyCallGraph::Node &N : *C)
118     runAfterPass(&N.getFunction());
119 }
120 
121 void PseudoProbeVerifier::runAfterPass(const Function *F) {
122   if (!shouldVerifyFunction(F))
123     return;
124   ProbeFactorMap ProbeFactors;
125   for (const auto &BB : *F)
126     collectProbeFactors(&BB, ProbeFactors);
127   verifyProbeFactors(F, ProbeFactors);
128 }
129 
130 void PseudoProbeVerifier::runAfterPass(const Loop *L) {
131   const Function *F = L->getHeader()->getParent();
132   runAfterPass(F);
133 }
134 
135 void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
136                                               ProbeFactorMap &ProbeFactors) {
137   for (const auto &I : *Block) {
138     if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
139       uint64_t Hash = computeCallStackHash(I);
140       ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
141     }
142   }
143 }
144 
145 void PseudoProbeVerifier::verifyProbeFactors(
146     const Function *F, const ProbeFactorMap &ProbeFactors) {
147   bool BannerPrinted = false;
148   auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
149   for (const auto &I : ProbeFactors) {
150     float CurProbeFactor = I.second;
151     if (PrevProbeFactors.count(I.first)) {
152       float PrevProbeFactor = PrevProbeFactors[I.first];
153       if (std::abs(CurProbeFactor - PrevProbeFactor) >
154           DistributionFactorVariance) {
155         if (!BannerPrinted) {
156           dbgs() << "Function " << F->getName() << ":\n";
157           BannerPrinted = true;
158         }
159         dbgs() << "Probe " << I.first.first << "\tprevious factor "
160                << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
161                << format("%0.2f", CurProbeFactor) << "\n";
162       }
163     }
164 
165     // Update
166     PrevProbeFactors[I.first] = I.second;
167   }
168 }
169 
170 SampleProfileProber::SampleProfileProber(Function &Func,
171                                          const std::string &CurModuleUniqueId)
172     : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
173   BlockProbeIds.clear();
174   CallProbeIds.clear();
175   LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
176   computeProbeIdForBlocks();
177   computeProbeIdForCallsites();
178   computeCFGHash();
179 }
180 
181 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
182 // value of each BB in the CFG. The higher 32 bits record the number of edges
183 // preceded by the number of indirect calls.
184 // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
185 void SampleProfileProber::computeCFGHash() {
186   std::vector<uint8_t> Indexes;
187   JamCRC JC;
188   for (auto &BB : *F) {
189     auto *TI = BB.getTerminator();
190     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
191       auto *Succ = TI->getSuccessor(I);
192       auto Index = getBlockId(Succ);
193       for (int J = 0; J < 4; J++)
194         Indexes.push_back((uint8_t)(Index >> (J * 8)));
195     }
196   }
197 
198   JC.update(Indexes);
199 
200   FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
201                  (uint64_t)Indexes.size() << 32 | JC.getCRC();
202   // Reserve bit 60-63 for other information purpose.
203   FunctionHash &= 0x0FFFFFFFFFFFFFFF;
204   assert(FunctionHash && "Function checksum should not be zero");
205   LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
206                     << ":\n"
207                     << " CRC = " << JC.getCRC() << ", Edges = "
208                     << Indexes.size() << ", ICSites = " << CallProbeIds.size()
209                     << ", Hash = " << FunctionHash << "\n");
210 }
211 
212 void SampleProfileProber::computeProbeIdForBlocks() {
213   DenseSet<BasicBlock *> KnownColdBlocks;
214   computeEHOnlyBlocks(*F, KnownColdBlocks);
215   // Insert pseudo probe to non-cold blocks only. This will reduce IR size as
216   // well as the binary size while retaining the profile quality.
217   for (auto &BB : *F) {
218     ++LastProbeId;
219     if (!KnownColdBlocks.contains(&BB))
220       BlockProbeIds[&BB] = LastProbeId;
221   }
222 }
223 
224 void SampleProfileProber::computeProbeIdForCallsites() {
225   LLVMContext &Ctx = F->getContext();
226   Module *M = F->getParent();
227 
228   for (auto &BB : *F) {
229     for (auto &I : BB) {
230       if (!isa<CallBase>(I))
231         continue;
232       if (isa<IntrinsicInst>(&I))
233         continue;
234 
235       // The current implementation uses the lower 16 bits of the discriminator
236       // so anything larger than 0xFFFF will be ignored.
237       if (LastProbeId >= 0xFFFF) {
238         std::string Msg = "Pseudo instrumentation incomplete for " +
239                           std::string(F->getName()) + " because it's too large";
240         Ctx.diagnose(
241             DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning));
242         return;
243       }
244 
245       CallProbeIds[&I] = ++LastProbeId;
246     }
247   }
248 }
249 
250 uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
251   auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
252   return I == BlockProbeIds.end() ? 0 : I->second;
253 }
254 
255 uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
256   auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
257   return Iter == CallProbeIds.end() ? 0 : Iter->second;
258 }
259 
260 void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
261   Module *M = F.getParent();
262   MDBuilder MDB(F.getContext());
263   // Since the GUID from probe desc and inline stack are computed seperately, we
264   // need to make sure their names are consistent, so here also use the name
265   // from debug info.
266   StringRef FName = F.getName();
267   if (auto *SP = F.getSubprogram()) {
268     FName = SP->getLinkageName();
269     if (FName.empty())
270       FName = SP->getName();
271   }
272   uint64_t Guid = Function::getGUID(FName);
273 
274   // Assign an artificial debug line to a probe that doesn't come with a real
275   // line. A probe not having a debug line will get an incomplete inline
276   // context. This will cause samples collected on the probe to be counted
277   // into the base profile instead of a context profile. The line number
278   // itself is not important though.
279   auto AssignDebugLoc = [&](Instruction *I) {
280     assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
281            "Expecting pseudo probe or call instructions");
282     if (!I->getDebugLoc()) {
283       if (auto *SP = F.getSubprogram()) {
284         auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
285         I->setDebugLoc(DIL);
286         ArtificialDbgLine++;
287         LLVM_DEBUG({
288           dbgs() << "\nIn Function " << F.getName()
289                  << " Probe gets an artificial debug line\n";
290           I->dump();
291         });
292       }
293     }
294   };
295 
296   // Probe basic blocks.
297   for (auto &I : BlockProbeIds) {
298     BasicBlock *BB = I.first;
299     uint32_t Index = I.second;
300     // Insert a probe before an instruction with a valid debug line number which
301     // will be assigned to the probe. The line number will be used later to
302     // model the inline context when the probe is inlined into other functions.
303     // Debug instructions, phi nodes and lifetime markers do not have an valid
304     // line number. Real instructions generated by optimizations may not come
305     // with a line number either.
306     auto HasValidDbgLine = [](Instruction *J) {
307       return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
308              !J->isLifetimeStartOrEnd() && J->getDebugLoc();
309     };
310 
311     Instruction *J = &*BB->getFirstInsertionPt();
312     while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
313       J = J->getNextNode();
314     }
315 
316     IRBuilder<> Builder(J);
317     assert(Builder.GetInsertPoint() != BB->end() &&
318            "Cannot get the probing point");
319     Function *ProbeFn =
320         llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
321     Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
322                      Builder.getInt32(0),
323                      Builder.getInt64(PseudoProbeFullDistributionFactor)};
324     auto *Probe = Builder.CreateCall(ProbeFn, Args);
325     AssignDebugLoc(Probe);
326     // Reset the dwarf discriminator if the debug location comes with any. The
327     // discriminator field may be used by FS-AFDO later in the pipeline.
328     if (auto DIL = Probe->getDebugLoc()) {
329       if (DIL->getDiscriminator()) {
330         DIL = DIL->cloneWithDiscriminator(0);
331         Probe->setDebugLoc(DIL);
332       }
333     }
334   }
335 
336   // Probe both direct calls and indirect calls. Direct calls are probed so that
337   // their probe ID can be used as an call site identifier to represent a
338   // calling context.
339   for (auto &I : CallProbeIds) {
340     auto *Call = I.first;
341     uint32_t Index = I.second;
342     uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
343                         ? (uint32_t)PseudoProbeType::DirectCall
344                         : (uint32_t)PseudoProbeType::IndirectCall;
345     AssignDebugLoc(Call);
346     if (auto DIL = Call->getDebugLoc()) {
347       // Levarge the 32-bit discriminator field of debug data to store the ID
348       // and type of a callsite probe. This gets rid of the dependency on
349       // plumbing a customized metadata through the codegen pipeline.
350       uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
351           Index, Type, 0,
352           PseudoProbeDwarfDiscriminator::FullDistributionFactor);
353       DIL = DIL->cloneWithDiscriminator(V);
354       Call->setDebugLoc(DIL);
355     }
356   }
357 
358   // Create module-level metadata that contains function info necessary to
359   // synthesize probe-based sample counts,  which are
360   // - FunctionGUID
361   // - FunctionHash.
362   // - FunctionName
363   auto Hash = getFunctionHash();
364   auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
365   auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
366   assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
367   NMD->addOperand(MD);
368 }
369 
370 PreservedAnalyses SampleProfileProbePass::run(Module &M,
371                                               ModuleAnalysisManager &AM) {
372   auto ModuleId = getUniqueModuleId(&M);
373   // Create the pseudo probe desc metadata beforehand.
374   // Note that modules with only data but no functions will require this to
375   // be set up so that they will be known as probed later.
376   M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
377 
378   for (auto &F : M) {
379     if (F.isDeclaration())
380       continue;
381     SampleProfileProber ProbeManager(F, ModuleId);
382     ProbeManager.instrumentOneFunc(F, TM);
383   }
384 
385   return PreservedAnalyses::none();
386 }
387 
388 void PseudoProbeUpdatePass::runOnFunction(Function &F,
389                                           FunctionAnalysisManager &FAM) {
390   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
391   auto BBProfileCount = [&BFI](BasicBlock *BB) {
392     return BFI.getBlockProfileCount(BB).value_or(0);
393   };
394 
395   // Collect the sum of execution weight for each probe.
396   ProbeFactorMap ProbeFactors;
397   for (auto &Block : F) {
398     for (auto &I : Block) {
399       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
400         uint64_t Hash = computeCallStackHash(I);
401         ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
402       }
403     }
404   }
405 
406   // Fix up over-counted probes.
407   for (auto &Block : F) {
408     for (auto &I : Block) {
409       if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
410         uint64_t Hash = computeCallStackHash(I);
411         float Sum = ProbeFactors[{Probe->Id, Hash}];
412         if (Sum != 0)
413           setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
414       }
415     }
416   }
417 }
418 
419 PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
420                                              ModuleAnalysisManager &AM) {
421   if (UpdatePseudoProbe) {
422     for (auto &F : M) {
423       if (F.isDeclaration())
424         continue;
425       FunctionAnalysisManager &FAM =
426           AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
427       runOnFunction(F, FAM);
428     }
429   }
430   return PreservedAnalyses::none();
431 }
432