1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SCCIterator.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringMap.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/AssumptionCache.h" 38 #include "llvm/Analysis/CallGraph.h" 39 #include "llvm/Analysis/CallGraphSCCPass.h" 40 #include "llvm/Analysis/InlineAdvisor.h" 41 #include "llvm/Analysis/InlineCost.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/PostDominators.h" 45 #include "llvm/Analysis/ProfileSummaryInfo.h" 46 #include "llvm/Analysis/ReplayInlineAdvisor.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/CFG.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DiagnosticInfo.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/ValueSymbolTable.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/Pass.h" 68 #include "llvm/ProfileData/InstrProf.h" 69 #include "llvm/ProfileData/SampleProf.h" 70 #include "llvm/ProfileData/SampleProfReader.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/ErrorOr.h" 76 #include "llvm/Support/GenericDomTree.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/IPO.h" 79 #include "llvm/Transforms/IPO/SampleContextTracker.h" 80 #include "llvm/Transforms/IPO/SampleProfileProbe.h" 81 #include "llvm/Transforms/Instrumentation.h" 82 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 83 #include "llvm/Transforms/Utils/Cloning.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstdint> 87 #include <functional> 88 #include <limits> 89 #include <map> 90 #include <memory> 91 #include <queue> 92 #include <string> 93 #include <system_error> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 using namespace sampleprof; 99 using ProfileCount = Function::ProfileCount; 100 #define DEBUG_TYPE "sample-profile" 101 #define CSINLINE_DEBUG DEBUG_TYPE "-inline" 102 103 STATISTIC(NumCSInlined, 104 "Number of functions inlined with context sensitive profile"); 105 STATISTIC(NumCSNotInlined, 106 "Number of functions not inlined with context sensitive profile"); 107 STATISTIC(NumMismatchedProfile, 108 "Number of functions with CFG mismatched profile"); 109 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile"); 110 111 // Command line option to specify the file to read samples from. This is 112 // mainly used for debugging. 113 static cl::opt<std::string> SampleProfileFile( 114 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 115 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 116 117 // The named file contains a set of transformations that may have been applied 118 // to the symbol names between the program from which the sample data was 119 // collected and the current program's symbols. 120 static cl::opt<std::string> SampleProfileRemappingFile( 121 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 122 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 123 124 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 125 "sample-profile-max-propagate-iterations", cl::init(100), 126 cl::desc("Maximum number of iterations to go through when propagating " 127 "sample block/edge weights through the CFG.")); 128 129 static cl::opt<unsigned> SampleProfileRecordCoverage( 130 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 131 cl::desc("Emit a warning if less than N% of records in the input profile " 132 "are matched to the IR.")); 133 134 static cl::opt<unsigned> SampleProfileSampleCoverage( 135 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 136 cl::desc("Emit a warning if less than N% of samples in the input profile " 137 "are matched to the IR.")); 138 139 static cl::opt<bool> NoWarnSampleUnused( 140 "no-warn-sample-unused", cl::init(false), cl::Hidden, 141 cl::desc("Use this option to turn off/on warnings about function with " 142 "samples but without debug information to use those samples. ")); 143 144 static cl::opt<bool> ProfileSampleAccurate( 145 "profile-sample-accurate", cl::Hidden, cl::init(false), 146 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 147 "callsite and function as having 0 samples. Otherwise, treat " 148 "un-sampled callsites and functions conservatively as unknown. ")); 149 150 static cl::opt<bool> ProfileAccurateForSymsInList( 151 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 152 cl::init(true), 153 cl::desc("For symbols in profile symbol list, regard their profiles to " 154 "be accurate. It may be overriden by profile-sample-accurate. ")); 155 156 static cl::opt<bool> ProfileMergeInlinee( 157 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true), 158 cl::desc("Merge past inlinee's profile to outline version if sample " 159 "profile loader decided not to inline a call site. It will " 160 "only be enabled when top-down order of profile loading is " 161 "enabled. ")); 162 163 static cl::opt<bool> ProfileTopDownLoad( 164 "sample-profile-top-down-load", cl::Hidden, cl::init(true), 165 cl::desc("Do profile annotation and inlining for functions in top-down " 166 "order of call graph during sample profile loading. It only " 167 "works for new pass manager. ")); 168 169 static cl::opt<bool> ProfileSizeInline( 170 "sample-profile-inline-size", cl::Hidden, cl::init(false), 171 cl::desc("Inline cold call sites in profile loader if it's beneficial " 172 "for code size.")); 173 174 static cl::opt<int> SampleColdCallSiteThreshold( 175 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45), 176 cl::desc("Threshold for inlining cold callsites")); 177 178 static cl::opt<std::string> ProfileInlineReplayFile( 179 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"), 180 cl::desc( 181 "Optimization remarks file containing inline remarks to be replayed " 182 "by inlining from sample profile loader."), 183 cl::Hidden); 184 185 namespace { 186 187 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 188 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 189 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 190 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 191 using BlockEdgeMap = 192 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 193 194 class SampleProfileLoader; 195 196 class SampleCoverageTracker { 197 public: 198 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 199 200 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 201 uint32_t Discriminator, uint64_t Samples); 202 unsigned computeCoverage(unsigned Used, unsigned Total) const; 203 unsigned countUsedRecords(const FunctionSamples *FS, 204 ProfileSummaryInfo *PSI) const; 205 unsigned countBodyRecords(const FunctionSamples *FS, 206 ProfileSummaryInfo *PSI) const; 207 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 208 uint64_t countBodySamples(const FunctionSamples *FS, 209 ProfileSummaryInfo *PSI) const; 210 211 void clear() { 212 SampleCoverage.clear(); 213 TotalUsedSamples = 0; 214 } 215 216 private: 217 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 218 using FunctionSamplesCoverageMap = 219 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 220 221 /// Coverage map for sampling records. 222 /// 223 /// This map keeps a record of sampling records that have been matched to 224 /// an IR instruction. This is used to detect some form of staleness in 225 /// profiles (see flag -sample-profile-check-coverage). 226 /// 227 /// Each entry in the map corresponds to a FunctionSamples instance. This is 228 /// another map that counts how many times the sample record at the 229 /// given location has been used. 230 FunctionSamplesCoverageMap SampleCoverage; 231 232 /// Number of samples used from the profile. 233 /// 234 /// When a sampling record is used for the first time, the samples from 235 /// that record are added to this accumulator. Coverage is later computed 236 /// based on the total number of samples available in this function and 237 /// its callsites. 238 /// 239 /// Note that this accumulator tracks samples used from a single function 240 /// and all the inlined callsites. Strictly, we should have a map of counters 241 /// keyed by FunctionSamples pointers, but these stats are cleared after 242 /// every function, so we just need to keep a single counter. 243 uint64_t TotalUsedSamples = 0; 244 245 SampleProfileLoader &SPLoader; 246 }; 247 248 class GUIDToFuncNameMapper { 249 public: 250 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 251 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 252 : CurrentReader(Reader), CurrentModule(M), 253 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 254 if (!CurrentReader.useMD5()) 255 return; 256 257 for (const auto &F : CurrentModule) { 258 StringRef OrigName = F.getName(); 259 CurrentGUIDToFuncNameMap.insert( 260 {Function::getGUID(OrigName), OrigName}); 261 262 // Local to global var promotion used by optimization like thinlto 263 // will rename the var and add suffix like ".llvm.xxx" to the 264 // original local name. In sample profile, the suffixes of function 265 // names are all stripped. Since it is possible that the mapper is 266 // built in post-thin-link phase and var promotion has been done, 267 // we need to add the substring of function name without the suffix 268 // into the GUIDToFuncNameMap. 269 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 270 if (CanonName != OrigName) 271 CurrentGUIDToFuncNameMap.insert( 272 {Function::getGUID(CanonName), CanonName}); 273 } 274 275 // Update GUIDToFuncNameMap for each function including inlinees. 276 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 277 } 278 279 ~GUIDToFuncNameMapper() { 280 if (!CurrentReader.useMD5()) 281 return; 282 283 CurrentGUIDToFuncNameMap.clear(); 284 285 // Reset GUIDToFuncNameMap for of each function as they're no 286 // longer valid at this point. 287 SetGUIDToFuncNameMapForAll(nullptr); 288 } 289 290 private: 291 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 292 std::queue<FunctionSamples *> FSToUpdate; 293 for (auto &IFS : CurrentReader.getProfiles()) { 294 FSToUpdate.push(&IFS.second); 295 } 296 297 while (!FSToUpdate.empty()) { 298 FunctionSamples *FS = FSToUpdate.front(); 299 FSToUpdate.pop(); 300 FS->GUIDToFuncNameMap = Map; 301 for (const auto &ICS : FS->getCallsiteSamples()) { 302 const FunctionSamplesMap &FSMap = ICS.second; 303 for (auto &IFS : FSMap) { 304 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 305 FSToUpdate.push(&FS); 306 } 307 } 308 } 309 } 310 311 SampleProfileReader &CurrentReader; 312 Module &CurrentModule; 313 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 314 }; 315 316 /// Sample profile pass. 317 /// 318 /// This pass reads profile data from the file specified by 319 /// -sample-profile-file and annotates every affected function with the 320 /// profile information found in that file. 321 class SampleProfileLoader { 322 public: 323 SampleProfileLoader( 324 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase, 325 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 326 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo, 327 std::function<const TargetLibraryInfo &(Function &)> GetTLI) 328 : GetAC(std::move(GetAssumptionCache)), 329 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)), 330 CoverageTracker(*this), Filename(std::string(Name)), 331 RemappingFilename(std::string(RemapName)), LTOPhase(LTOPhase) {} 332 333 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr); 334 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 335 ProfileSummaryInfo *_PSI, CallGraph *CG); 336 337 void dump() { Reader->dump(); } 338 339 protected: 340 friend class SampleCoverageTracker; 341 342 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 343 unsigned getFunctionLoc(Function &F); 344 bool emitAnnotations(Function &F); 345 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 346 ErrorOr<uint64_t> getProbeWeight(const Instruction &I); 347 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 348 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const; 349 std::vector<const FunctionSamples *> 350 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 351 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 352 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 353 bool inlineCallInstruction(CallBase &CB); 354 bool inlineHotFunctions(Function &F, 355 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 356 // Inline cold/small functions in addition to hot ones 357 bool shouldInlineColdCallee(CallBase &CallInst); 358 void emitOptimizationRemarksForInlineCandidates( 359 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 360 bool Hot); 361 void printEdgeWeight(raw_ostream &OS, Edge E); 362 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 363 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 364 bool computeBlockWeights(Function &F); 365 void findEquivalenceClasses(Function &F); 366 template <bool IsPostDom> 367 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 368 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 369 370 void propagateWeights(Function &F); 371 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 372 void buildEdges(Function &F); 373 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG); 374 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 375 void computeDominanceAndLoopInfo(Function &F); 376 void clearFunctionData(); 377 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 378 ProfileSummaryInfo *PSI); 379 380 /// Map basic blocks to their computed weights. 381 /// 382 /// The weight of a basic block is defined to be the maximum 383 /// of all the instruction weights in that block. 384 BlockWeightMap BlockWeights; 385 386 /// Map edges to their computed weights. 387 /// 388 /// Edge weights are computed by propagating basic block weights in 389 /// SampleProfile::propagateWeights. 390 EdgeWeightMap EdgeWeights; 391 392 /// Set of visited blocks during propagation. 393 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 394 395 /// Set of visited edges during propagation. 396 SmallSet<Edge, 32> VisitedEdges; 397 398 /// Equivalence classes for block weights. 399 /// 400 /// Two blocks BB1 and BB2 are in the same equivalence class if they 401 /// dominate and post-dominate each other, and they are in the same loop 402 /// nest. When this happens, the two blocks are guaranteed to execute 403 /// the same number of times. 404 EquivalenceClassMap EquivalenceClass; 405 406 /// Map from function name to Function *. Used to find the function from 407 /// the function name. If the function name contains suffix, additional 408 /// entry is added to map from the stripped name to the function if there 409 /// is one-to-one mapping. 410 StringMap<Function *> SymbolMap; 411 412 /// Dominance, post-dominance and loop information. 413 std::unique_ptr<DominatorTree> DT; 414 std::unique_ptr<PostDominatorTree> PDT; 415 std::unique_ptr<LoopInfo> LI; 416 417 std::function<AssumptionCache &(Function &)> GetAC; 418 std::function<TargetTransformInfo &(Function &)> GetTTI; 419 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 420 421 /// Predecessors for each basic block in the CFG. 422 BlockEdgeMap Predecessors; 423 424 /// Successors for each basic block in the CFG. 425 BlockEdgeMap Successors; 426 427 SampleCoverageTracker CoverageTracker; 428 429 /// Profile reader object. 430 std::unique_ptr<SampleProfileReader> Reader; 431 432 /// Profile tracker for different context. 433 std::unique_ptr<SampleContextTracker> ContextTracker; 434 435 /// Samples collected for the body of this function. 436 FunctionSamples *Samples = nullptr; 437 438 /// Name of the profile file to load. 439 std::string Filename; 440 441 /// Name of the profile remapping file to load. 442 std::string RemappingFilename; 443 444 /// Flag indicating whether the profile input loaded successfully. 445 bool ProfileIsValid = false; 446 447 /// Flag indicating whether input profile is context-sensitive 448 bool ProfileIsCS = false; 449 450 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in. 451 /// 452 /// We need to know the LTO phase because for example in ThinLTOPrelink 453 /// phase, in annotation, we should not promote indirect calls. Instead, 454 /// we will mark GUIDs that needs to be annotated to the function. 455 ThinOrFullLTOPhase LTOPhase; 456 457 /// Profile Summary Info computed from sample profile. 458 ProfileSummaryInfo *PSI = nullptr; 459 460 /// Profle Symbol list tells whether a function name appears in the binary 461 /// used to generate the current profile. 462 std::unique_ptr<ProfileSymbolList> PSL; 463 464 /// Total number of samples collected in this profile. 465 /// 466 /// This is the sum of all the samples collected in all the functions executed 467 /// at runtime. 468 uint64_t TotalCollectedSamples = 0; 469 470 /// Optimization Remark Emitter used to emit diagnostic remarks. 471 OptimizationRemarkEmitter *ORE = nullptr; 472 473 // Information recorded when we declined to inline a call site 474 // because we have determined it is too cold is accumulated for 475 // each callee function. Initially this is just the entry count. 476 struct NotInlinedProfileInfo { 477 uint64_t entryCount; 478 }; 479 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 480 481 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 482 // all the function symbols defined or declared in current module. 483 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 484 485 // All the Names used in FunctionSamples including outline function 486 // names, inline instance names and call target names. 487 StringSet<> NamesInProfile; 488 489 // For symbol in profile symbol list, whether to regard their profiles 490 // to be accurate. It is mainly decided by existance of profile symbol 491 // list and -profile-accurate-for-symsinlist flag, but it can be 492 // overriden by -profile-sample-accurate or profile-sample-accurate 493 // attribute. 494 bool ProfAccForSymsInList; 495 496 // External inline advisor used to replay inline decision from remarks. 497 std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor; 498 499 // A pseudo probe helper to correlate the imported sample counts. 500 std::unique_ptr<PseudoProbeManager> ProbeManager; 501 }; 502 503 class SampleProfileLoaderLegacyPass : public ModulePass { 504 public: 505 // Class identification, replacement for typeinfo 506 static char ID; 507 508 SampleProfileLoaderLegacyPass( 509 StringRef Name = SampleProfileFile, 510 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None) 511 : ModulePass(ID), SampleLoader( 512 Name, SampleProfileRemappingFile, LTOPhase, 513 [&](Function &F) -> AssumptionCache & { 514 return ACT->getAssumptionCache(F); 515 }, 516 [&](Function &F) -> TargetTransformInfo & { 517 return TTIWP->getTTI(F); 518 }, 519 [&](Function &F) -> TargetLibraryInfo & { 520 return TLIWP->getTLI(F); 521 }) { 522 initializeSampleProfileLoaderLegacyPassPass( 523 *PassRegistry::getPassRegistry()); 524 } 525 526 void dump() { SampleLoader.dump(); } 527 528 bool doInitialization(Module &M) override { 529 return SampleLoader.doInitialization(M); 530 } 531 532 StringRef getPassName() const override { return "Sample profile pass"; } 533 bool runOnModule(Module &M) override; 534 535 void getAnalysisUsage(AnalysisUsage &AU) const override { 536 AU.addRequired<AssumptionCacheTracker>(); 537 AU.addRequired<TargetTransformInfoWrapperPass>(); 538 AU.addRequired<TargetLibraryInfoWrapperPass>(); 539 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 540 } 541 542 private: 543 SampleProfileLoader SampleLoader; 544 AssumptionCacheTracker *ACT = nullptr; 545 TargetTransformInfoWrapperPass *TTIWP = nullptr; 546 TargetLibraryInfoWrapperPass *TLIWP = nullptr; 547 }; 548 549 } // end anonymous namespace 550 551 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 552 /// 553 /// Functions that were inlined in the original binary will be represented 554 /// in the inline stack in the sample profile. If the profile shows that 555 /// the original inline decision was "good" (i.e., the callsite is executed 556 /// frequently), then we will recreate the inline decision and apply the 557 /// profile from the inlined callsite. 558 /// 559 /// To decide whether an inlined callsite is hot, we compare the callsite 560 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 561 /// regarded as hot if the count is above the cutoff value. 562 /// 563 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 564 /// is present, functions in the profile symbol list but without profile will 565 /// be regarded as cold and much less inlining will happen in CGSCC inlining 566 /// pass, so we tend to lower the hot criteria here to allow more early 567 /// inlining to happen for warm callsites and it is helpful for performance. 568 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 569 ProfileSummaryInfo *PSI) { 570 if (!CallsiteFS) 571 return false; // The callsite was not inlined in the original binary. 572 573 assert(PSI && "PSI is expected to be non null"); 574 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 575 if (ProfAccForSymsInList) 576 return !PSI->isColdCount(CallsiteTotalSamples); 577 else 578 return PSI->isHotCount(CallsiteTotalSamples); 579 } 580 581 /// Mark as used the sample record for the given function samples at 582 /// (LineOffset, Discriminator). 583 /// 584 /// \returns true if this is the first time we mark the given record. 585 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 586 uint32_t LineOffset, 587 uint32_t Discriminator, 588 uint64_t Samples) { 589 LineLocation Loc(LineOffset, Discriminator); 590 unsigned &Count = SampleCoverage[FS][Loc]; 591 bool FirstTime = (++Count == 1); 592 if (FirstTime) 593 TotalUsedSamples += Samples; 594 return FirstTime; 595 } 596 597 /// Return the number of sample records that were applied from this profile. 598 /// 599 /// This count does not include records from cold inlined callsites. 600 unsigned 601 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 602 ProfileSummaryInfo *PSI) const { 603 auto I = SampleCoverage.find(FS); 604 605 // The size of the coverage map for FS represents the number of records 606 // that were marked used at least once. 607 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 608 609 // If there are inlined callsites in this function, count the samples found 610 // in the respective bodies. However, do not bother counting callees with 0 611 // total samples, these are callees that were never invoked at runtime. 612 for (const auto &I : FS->getCallsiteSamples()) 613 for (const auto &J : I.second) { 614 const FunctionSamples *CalleeSamples = &J.second; 615 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 616 Count += countUsedRecords(CalleeSamples, PSI); 617 } 618 619 return Count; 620 } 621 622 /// Return the number of sample records in the body of this profile. 623 /// 624 /// This count does not include records from cold inlined callsites. 625 unsigned 626 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 627 ProfileSummaryInfo *PSI) const { 628 unsigned Count = FS->getBodySamples().size(); 629 630 // Only count records in hot callsites. 631 for (const auto &I : FS->getCallsiteSamples()) 632 for (const auto &J : I.second) { 633 const FunctionSamples *CalleeSamples = &J.second; 634 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 635 Count += countBodyRecords(CalleeSamples, PSI); 636 } 637 638 return Count; 639 } 640 641 /// Return the number of samples collected in the body of this profile. 642 /// 643 /// This count does not include samples from cold inlined callsites. 644 uint64_t 645 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 646 ProfileSummaryInfo *PSI) const { 647 uint64_t Total = 0; 648 for (const auto &I : FS->getBodySamples()) 649 Total += I.second.getSamples(); 650 651 // Only count samples in hot callsites. 652 for (const auto &I : FS->getCallsiteSamples()) 653 for (const auto &J : I.second) { 654 const FunctionSamples *CalleeSamples = &J.second; 655 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 656 Total += countBodySamples(CalleeSamples, PSI); 657 } 658 659 return Total; 660 } 661 662 /// Return the fraction of sample records used in this profile. 663 /// 664 /// The returned value is an unsigned integer in the range 0-100 indicating 665 /// the percentage of sample records that were used while applying this 666 /// profile to the associated function. 667 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 668 unsigned Total) const { 669 assert(Used <= Total && 670 "number of used records cannot exceed the total number of records"); 671 return Total > 0 ? Used * 100 / Total : 100; 672 } 673 674 /// Clear all the per-function data used to load samples and propagate weights. 675 void SampleProfileLoader::clearFunctionData() { 676 BlockWeights.clear(); 677 EdgeWeights.clear(); 678 VisitedBlocks.clear(); 679 VisitedEdges.clear(); 680 EquivalenceClass.clear(); 681 DT = nullptr; 682 PDT = nullptr; 683 LI = nullptr; 684 Predecessors.clear(); 685 Successors.clear(); 686 CoverageTracker.clear(); 687 } 688 689 #ifndef NDEBUG 690 /// Print the weight of edge \p E on stream \p OS. 691 /// 692 /// \param OS Stream to emit the output to. 693 /// \param E Edge to print. 694 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 695 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 696 << "]: " << EdgeWeights[E] << "\n"; 697 } 698 699 /// Print the equivalence class of block \p BB on stream \p OS. 700 /// 701 /// \param OS Stream to emit the output to. 702 /// \param BB Block to print. 703 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 704 const BasicBlock *BB) { 705 const BasicBlock *Equiv = EquivalenceClass[BB]; 706 OS << "equivalence[" << BB->getName() 707 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 708 } 709 710 /// Print the weight of block \p BB on stream \p OS. 711 /// 712 /// \param OS Stream to emit the output to. 713 /// \param BB Block to print. 714 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 715 const BasicBlock *BB) const { 716 const auto &I = BlockWeights.find(BB); 717 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 718 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 719 } 720 #endif 721 722 /// Get the weight for an instruction. 723 /// 724 /// The "weight" of an instruction \p Inst is the number of samples 725 /// collected on that instruction at runtime. To retrieve it, we 726 /// need to compute the line number of \p Inst relative to the start of its 727 /// function. We use HeaderLineno to compute the offset. We then 728 /// look up the samples collected for \p Inst using BodySamples. 729 /// 730 /// \param Inst Instruction to query. 731 /// 732 /// \returns the weight of \p Inst. 733 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 734 if (FunctionSamples::ProfileIsProbeBased) 735 return getProbeWeight(Inst); 736 737 const DebugLoc &DLoc = Inst.getDebugLoc(); 738 if (!DLoc) 739 return std::error_code(); 740 741 const FunctionSamples *FS = findFunctionSamples(Inst); 742 if (!FS) 743 return std::error_code(); 744 745 // Ignore all intrinsics, phinodes and branch instructions. 746 // Branch and phinodes instruction usually contains debug info from sources outside of 747 // the residing basic block, thus we ignore them during annotation. 748 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 749 return std::error_code(); 750 751 // If a direct call/invoke instruction is inlined in profile 752 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 753 // it means that the inlined callsite has no sample, thus the call 754 // instruction should have 0 count. 755 if (!ProfileIsCS) 756 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 757 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 758 return 0; 759 760 const DILocation *DIL = DLoc; 761 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 762 uint32_t Discriminator = DIL->getBaseDiscriminator(); 763 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 764 if (R) { 765 bool FirstMark = 766 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 767 if (FirstMark) { 768 ORE->emit([&]() { 769 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 770 Remark << "Applied " << ore::NV("NumSamples", *R); 771 Remark << " samples from profile (offset: "; 772 Remark << ore::NV("LineOffset", LineOffset); 773 if (Discriminator) { 774 Remark << "."; 775 Remark << ore::NV("Discriminator", Discriminator); 776 } 777 Remark << ")"; 778 return Remark; 779 }); 780 } 781 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 782 << DIL->getBaseDiscriminator() << ":" << Inst 783 << " (line offset: " << LineOffset << "." 784 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 785 << ")\n"); 786 } 787 return R; 788 } 789 790 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) { 791 assert(FunctionSamples::ProfileIsProbeBased && 792 "Profile is not pseudo probe based"); 793 Optional<PseudoProbe> Probe = extractProbe(Inst); 794 if (!Probe) 795 return std::error_code(); 796 797 const FunctionSamples *FS = findFunctionSamples(Inst); 798 if (!FS) 799 return std::error_code(); 800 801 // If a direct call/invoke instruction is inlined in profile 802 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 803 // it means that the inlined callsite has no sample, thus the call 804 // instruction should have 0 count. 805 if (const auto *CB = dyn_cast<CallBase>(&Inst)) 806 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB)) 807 return 0; 808 809 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0); 810 if (R) { 811 uint64_t Samples = R.get(); 812 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 813 if (FirstMark) { 814 ORE->emit([&]() { 815 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 816 Remark << "Applied " << ore::NV("NumSamples", Samples); 817 Remark << " samples from profile (ProbeId="; 818 Remark << ore::NV("ProbeId", Probe->Id); 819 Remark << ")"; 820 return Remark; 821 }); 822 } 823 824 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst 825 << " - weight: " << R.get() << ")\n"); 826 return Samples; 827 } 828 return R; 829 } 830 831 /// Compute the weight of a basic block. 832 /// 833 /// The weight of basic block \p BB is the maximum weight of all the 834 /// instructions in BB. 835 /// 836 /// \param BB The basic block to query. 837 /// 838 /// \returns the weight for \p BB. 839 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 840 uint64_t Max = 0; 841 bool HasWeight = false; 842 for (auto &I : BB->getInstList()) { 843 const ErrorOr<uint64_t> &R = getInstWeight(I); 844 if (R) { 845 Max = std::max(Max, R.get()); 846 HasWeight = true; 847 } 848 } 849 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 850 } 851 852 /// Compute and store the weights of every basic block. 853 /// 854 /// This populates the BlockWeights map by computing 855 /// the weights of every basic block in the CFG. 856 /// 857 /// \param F The function to query. 858 bool SampleProfileLoader::computeBlockWeights(Function &F) { 859 bool Changed = false; 860 LLVM_DEBUG(dbgs() << "Block weights\n"); 861 for (const auto &BB : F) { 862 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 863 if (Weight) { 864 BlockWeights[&BB] = Weight.get(); 865 VisitedBlocks.insert(&BB); 866 Changed = true; 867 } 868 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 869 } 870 871 return Changed; 872 } 873 874 /// Get the FunctionSamples for a call instruction. 875 /// 876 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 877 /// instance in which that call instruction is calling to. It contains 878 /// all samples that resides in the inlined instance. We first find the 879 /// inlined instance in which the call instruction is from, then we 880 /// traverse its children to find the callsite with the matching 881 /// location. 882 /// 883 /// \param Inst Call/Invoke instruction to query. 884 /// 885 /// \returns The FunctionSamples pointer to the inlined instance. 886 const FunctionSamples * 887 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const { 888 const DILocation *DIL = Inst.getDebugLoc(); 889 if (!DIL) { 890 return nullptr; 891 } 892 893 StringRef CalleeName; 894 if (Function *Callee = Inst.getCalledFunction()) 895 CalleeName = FunctionSamples::getCanonicalFnName(*Callee); 896 897 if (ProfileIsCS) 898 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName); 899 900 const FunctionSamples *FS = findFunctionSamples(Inst); 901 if (FS == nullptr) 902 return nullptr; 903 904 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL), 905 CalleeName, Reader->getRemapper()); 906 } 907 908 /// Returns a vector of FunctionSamples that are the indirect call targets 909 /// of \p Inst. The vector is sorted by the total number of samples. Stores 910 /// the total call count of the indirect call in \p Sum. 911 std::vector<const FunctionSamples *> 912 SampleProfileLoader::findIndirectCallFunctionSamples( 913 const Instruction &Inst, uint64_t &Sum) const { 914 const DILocation *DIL = Inst.getDebugLoc(); 915 std::vector<const FunctionSamples *> R; 916 917 if (!DIL) { 918 return R; 919 } 920 921 const FunctionSamples *FS = findFunctionSamples(Inst); 922 if (FS == nullptr) 923 return R; 924 925 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 926 auto T = FS->findCallTargetMapAt(CallSite); 927 Sum = 0; 928 if (T) 929 for (const auto &T_C : T.get()) 930 Sum += T_C.second; 931 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) { 932 if (M->empty()) 933 return R; 934 for (const auto &NameFS : *M) { 935 Sum += NameFS.second.getEntrySamples(); 936 R.push_back(&NameFS.second); 937 } 938 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 939 if (L->getEntrySamples() != R->getEntrySamples()) 940 return L->getEntrySamples() > R->getEntrySamples(); 941 return FunctionSamples::getGUID(L->getName()) < 942 FunctionSamples::getGUID(R->getName()); 943 }); 944 } 945 return R; 946 } 947 948 /// Get the FunctionSamples for an instruction. 949 /// 950 /// The FunctionSamples of an instruction \p Inst is the inlined instance 951 /// in which that instruction is coming from. We traverse the inline stack 952 /// of that instruction, and match it with the tree nodes in the profile. 953 /// 954 /// \param Inst Instruction to query. 955 /// 956 /// \returns the FunctionSamples pointer to the inlined instance. 957 const FunctionSamples * 958 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 959 if (FunctionSamples::ProfileIsProbeBased) { 960 Optional<PseudoProbe> Probe = extractProbe(Inst); 961 if (!Probe) 962 return nullptr; 963 } 964 965 const DILocation *DIL = Inst.getDebugLoc(); 966 if (!DIL) 967 return Samples; 968 969 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 970 if (it.second) { 971 if (ProfileIsCS) 972 it.first->second = ContextTracker->getContextSamplesFor(DIL); 973 else 974 it.first->second = 975 Samples->findFunctionSamples(DIL, Reader->getRemapper()); 976 } 977 return it.first->second; 978 } 979 980 bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) { 981 if (ExternalInlineAdvisor) { 982 auto Advice = ExternalInlineAdvisor->getAdvice(CB); 983 if (!Advice->isInliningRecommended()) { 984 Advice->recordUnattemptedInlining(); 985 return false; 986 } 987 // Dummy record, we don't use it for replay. 988 Advice->recordInlining(); 989 } 990 991 Function *CalledFunction = CB.getCalledFunction(); 992 assert(CalledFunction); 993 DebugLoc DLoc = CB.getDebugLoc(); 994 BasicBlock *BB = CB.getParent(); 995 InlineParams Params = getInlineParams(); 996 Params.ComputeFullInlineCost = true; 997 // Checks if there is anything in the reachable portion of the callee at 998 // this callsite that makes this inlining potentially illegal. Need to 999 // set ComputeFullInlineCost, otherwise getInlineCost may return early 1000 // when cost exceeds threshold without checking all IRs in the callee. 1001 // The acutal cost does not matter because we only checks isNever() to 1002 // see if it is legal to inline the callsite. 1003 InlineCost Cost = 1004 getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI); 1005 if (Cost.isNever()) { 1006 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB) 1007 << "incompatible inlining"); 1008 return false; 1009 } 1010 InlineFunctionInfo IFI(nullptr, GetAC); 1011 if (InlineFunction(CB, IFI).isSuccess()) { 1012 // The call to InlineFunction erases I, so we can't pass it here. 1013 emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost, 1014 true, CSINLINE_DEBUG); 1015 return true; 1016 } 1017 return false; 1018 } 1019 1020 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) { 1021 if (!ProfileSizeInline) 1022 return false; 1023 1024 Function *Callee = CallInst.getCalledFunction(); 1025 if (Callee == nullptr) 1026 return false; 1027 1028 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee), 1029 GetAC, GetTLI); 1030 1031 if (Cost.isNever()) 1032 return false; 1033 1034 if (Cost.isAlways()) 1035 return true; 1036 1037 return Cost.getCost() <= SampleColdCallSiteThreshold; 1038 } 1039 1040 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates( 1041 const SmallVectorImpl<CallBase *> &Candidates, const Function &F, 1042 bool Hot) { 1043 for (auto I : Candidates) { 1044 Function *CalledFunction = I->getCalledFunction(); 1045 if (CalledFunction) { 1046 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt", 1047 I->getDebugLoc(), I->getParent()) 1048 << "previous inlining reattempted for " 1049 << (Hot ? "hotness: '" : "size: '") 1050 << ore::NV("Callee", CalledFunction) << "' into '" 1051 << ore::NV("Caller", &F) << "'"); 1052 } 1053 } 1054 } 1055 1056 /// Iteratively inline hot callsites of a function. 1057 /// 1058 /// Iteratively traverse all callsites of the function \p F, and find if 1059 /// the corresponding inlined instance exists and is hot in profile. If 1060 /// it is hot enough, inline the callsites and adds new callsites of the 1061 /// callee into the caller. If the call is an indirect call, first promote 1062 /// it to direct call. Each indirect call is limited with a single target. 1063 /// 1064 /// \param F function to perform iterative inlining. 1065 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 1066 /// inlined in the profiled binary. 1067 /// 1068 /// \returns True if there is any inline happened. 1069 bool SampleProfileLoader::inlineHotFunctions( 1070 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1071 DenseSet<Instruction *> PromotedInsns; 1072 1073 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 1074 // Profile symbol list is ignored when profile-sample-accurate is on. 1075 assert((!ProfAccForSymsInList || 1076 (!ProfileSampleAccurate && 1077 !F.hasFnAttribute("profile-sample-accurate"))) && 1078 "ProfAccForSymsInList should be false when profile-sample-accurate " 1079 "is enabled"); 1080 1081 DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites; 1082 bool Changed = false; 1083 while (true) { 1084 bool LocalChanged = false; 1085 SmallVector<CallBase *, 10> CIS; 1086 for (auto &BB : F) { 1087 bool Hot = false; 1088 SmallVector<CallBase *, 10> AllCandidates; 1089 SmallVector<CallBase *, 10> ColdCandidates; 1090 for (auto &I : BB.getInstList()) { 1091 const FunctionSamples *FS = nullptr; 1092 if (auto *CB = dyn_cast<CallBase>(&I)) { 1093 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) { 1094 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) && 1095 "GUIDToFuncNameMap has to be populated"); 1096 AllCandidates.push_back(CB); 1097 if (FS->getEntrySamples() > 0 || ProfileIsCS) 1098 localNotInlinedCallSites.try_emplace(CB, FS); 1099 if (callsiteIsHot(FS, PSI)) 1100 Hot = true; 1101 else if (shouldInlineColdCallee(*CB)) 1102 ColdCandidates.push_back(CB); 1103 } 1104 } 1105 } 1106 if (Hot || ExternalInlineAdvisor) { 1107 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end()); 1108 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true); 1109 } else { 1110 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end()); 1111 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false); 1112 } 1113 } 1114 for (CallBase *I : CIS) { 1115 Function *CalledFunction = I->getCalledFunction(); 1116 // Do not inline recursive calls. 1117 if (CalledFunction == &F) 1118 continue; 1119 if (I->isIndirectCall()) { 1120 if (PromotedInsns.count(I)) 1121 continue; 1122 uint64_t Sum; 1123 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 1124 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1125 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 1126 PSI->getOrCompHotCountThreshold()); 1127 continue; 1128 } 1129 if (!callsiteIsHot(FS, PSI)) 1130 continue; 1131 1132 const char *Reason = "Callee function not available"; 1133 // R->getValue() != &F is to prevent promoting a recursive call. 1134 // If it is a recursive call, we do not inline it as it could bloat 1135 // the code exponentially. There is way to better handle this, e.g. 1136 // clone the caller first, and inline the cloned caller if it is 1137 // recursive. As llvm does not inline recursive calls, we will 1138 // simply ignore it instead of handling it explicitly. 1139 auto CalleeFunctionName = FS->getFuncName(); 1140 auto R = SymbolMap.find(CalleeFunctionName); 1141 if (R != SymbolMap.end() && R->getValue() && 1142 !R->getValue()->isDeclaration() && 1143 R->getValue()->getSubprogram() && 1144 R->getValue()->hasFnAttribute("use-sample-profile") && 1145 R->getValue() != &F && 1146 isLegalToPromote(*I, R->getValue(), &Reason)) { 1147 uint64_t C = FS->getEntrySamples(); 1148 auto &DI = 1149 pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE); 1150 Sum -= C; 1151 PromotedInsns.insert(I); 1152 // If profile mismatches, we should not attempt to inline DI. 1153 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 1154 inlineCallInstruction(cast<CallBase>(DI))) { 1155 if (ProfileIsCS) 1156 ContextTracker->markContextSamplesInlined(FS); 1157 localNotInlinedCallSites.erase(I); 1158 LocalChanged = true; 1159 ++NumCSInlined; 1160 } 1161 } else { 1162 LLVM_DEBUG(dbgs() 1163 << "\nFailed to promote indirect call to " 1164 << CalleeFunctionName << " because " << Reason << "\n"); 1165 } 1166 } 1167 } else if (CalledFunction && CalledFunction->getSubprogram() && 1168 !CalledFunction->isDeclaration()) { 1169 if (inlineCallInstruction(*I)) { 1170 if (ProfileIsCS) 1171 ContextTracker->markContextSamplesInlined( 1172 localNotInlinedCallSites[I]); 1173 localNotInlinedCallSites.erase(I); 1174 LocalChanged = true; 1175 ++NumCSInlined; 1176 } 1177 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) { 1178 findCalleeFunctionSamples(*I)->findInlinedFunctions( 1179 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 1180 } 1181 } 1182 if (LocalChanged) { 1183 Changed = true; 1184 } else { 1185 break; 1186 } 1187 } 1188 1189 // Accumulate not inlined callsite information into notInlinedSamples 1190 for (const auto &Pair : localNotInlinedCallSites) { 1191 CallBase *I = Pair.getFirst(); 1192 Function *Callee = I->getCalledFunction(); 1193 if (!Callee || Callee->isDeclaration()) 1194 continue; 1195 1196 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline", 1197 I->getDebugLoc(), I->getParent()) 1198 << "previous inlining not repeated: '" 1199 << ore::NV("Callee", Callee) << "' into '" 1200 << ore::NV("Caller", &F) << "'"); 1201 1202 ++NumCSNotInlined; 1203 const FunctionSamples *FS = Pair.getSecond(); 1204 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) { 1205 continue; 1206 } 1207 1208 if (ProfileMergeInlinee) { 1209 // A function call can be replicated by optimizations like callsite 1210 // splitting or jump threading and the replicates end up sharing the 1211 // sample nested callee profile instead of slicing the original inlinee's 1212 // profile. We want to do merge exactly once by filtering out callee 1213 // profiles with a non-zero head sample count. 1214 if (FS->getHeadSamples() == 0) { 1215 // Use entry samples as head samples during the merge, as inlinees 1216 // don't have head samples. 1217 const_cast<FunctionSamples *>(FS)->addHeadSamples( 1218 FS->getEntrySamples()); 1219 1220 // Note that we have to do the merge right after processing function. 1221 // This allows OutlineFS's profile to be used for annotation during 1222 // top-down processing of functions' annotation. 1223 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee); 1224 OutlineFS->merge(*FS); 1225 } 1226 } else { 1227 auto pair = 1228 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1229 pair.first->second.entryCount += FS->getEntrySamples(); 1230 } 1231 } 1232 return Changed; 1233 } 1234 1235 /// Find equivalence classes for the given block. 1236 /// 1237 /// This finds all the blocks that are guaranteed to execute the same 1238 /// number of times as \p BB1. To do this, it traverses all the 1239 /// descendants of \p BB1 in the dominator or post-dominator tree. 1240 /// 1241 /// A block BB2 will be in the same equivalence class as \p BB1 if 1242 /// the following holds: 1243 /// 1244 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1245 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1246 /// dominate BB1 in the post-dominator tree. 1247 /// 1248 /// 2- Both BB2 and \p BB1 must be in the same loop. 1249 /// 1250 /// For every block BB2 that meets those two requirements, we set BB2's 1251 /// equivalence class to \p BB1. 1252 /// 1253 /// \param BB1 Block to check. 1254 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1255 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1256 /// with blocks from \p BB1's dominator tree, then 1257 /// this is the post-dominator tree, and vice versa. 1258 template <bool IsPostDom> 1259 void SampleProfileLoader::findEquivalencesFor( 1260 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1261 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1262 const BasicBlock *EC = EquivalenceClass[BB1]; 1263 uint64_t Weight = BlockWeights[EC]; 1264 for (const auto *BB2 : Descendants) { 1265 bool IsDomParent = DomTree->dominates(BB2, BB1); 1266 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1267 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1268 EquivalenceClass[BB2] = EC; 1269 // If BB2 is visited, then the entire EC should be marked as visited. 1270 if (VisitedBlocks.count(BB2)) { 1271 VisitedBlocks.insert(EC); 1272 } 1273 1274 // If BB2 is heavier than BB1, make BB2 have the same weight 1275 // as BB1. 1276 // 1277 // Note that we don't worry about the opposite situation here 1278 // (when BB2 is lighter than BB1). We will deal with this 1279 // during the propagation phase. Right now, we just want to 1280 // make sure that BB1 has the largest weight of all the 1281 // members of its equivalence set. 1282 Weight = std::max(Weight, BlockWeights[BB2]); 1283 } 1284 } 1285 if (EC == &EC->getParent()->getEntryBlock()) { 1286 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1287 } else { 1288 BlockWeights[EC] = Weight; 1289 } 1290 } 1291 1292 /// Find equivalence classes. 1293 /// 1294 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1295 /// the weights of all the blocks in the same equivalence class to the same 1296 /// weight. To compute the concept of equivalence, we use dominance and loop 1297 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1298 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1299 /// 1300 /// \param F The function to query. 1301 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1302 SmallVector<BasicBlock *, 8> DominatedBBs; 1303 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1304 // Find equivalence sets based on dominance and post-dominance information. 1305 for (auto &BB : F) { 1306 BasicBlock *BB1 = &BB; 1307 1308 // Compute BB1's equivalence class once. 1309 if (EquivalenceClass.count(BB1)) { 1310 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1311 continue; 1312 } 1313 1314 // By default, blocks are in their own equivalence class. 1315 EquivalenceClass[BB1] = BB1; 1316 1317 // Traverse all the blocks dominated by BB1. We are looking for 1318 // every basic block BB2 such that: 1319 // 1320 // 1- BB1 dominates BB2. 1321 // 2- BB2 post-dominates BB1. 1322 // 3- BB1 and BB2 are in the same loop nest. 1323 // 1324 // If all those conditions hold, it means that BB2 is executed 1325 // as many times as BB1, so they are placed in the same equivalence 1326 // class by making BB2's equivalence class be BB1. 1327 DominatedBBs.clear(); 1328 DT->getDescendants(BB1, DominatedBBs); 1329 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1330 1331 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1332 } 1333 1334 // Assign weights to equivalence classes. 1335 // 1336 // All the basic blocks in the same equivalence class will execute 1337 // the same number of times. Since we know that the head block in 1338 // each equivalence class has the largest weight, assign that weight 1339 // to all the blocks in that equivalence class. 1340 LLVM_DEBUG( 1341 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1342 for (auto &BI : F) { 1343 const BasicBlock *BB = &BI; 1344 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1345 if (BB != EquivBB) 1346 BlockWeights[BB] = BlockWeights[EquivBB]; 1347 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1348 } 1349 } 1350 1351 /// Visit the given edge to decide if it has a valid weight. 1352 /// 1353 /// If \p E has not been visited before, we copy to \p UnknownEdge 1354 /// and increment the count of unknown edges. 1355 /// 1356 /// \param E Edge to visit. 1357 /// \param NumUnknownEdges Current number of unknown edges. 1358 /// \param UnknownEdge Set if E has not been visited before. 1359 /// 1360 /// \returns E's weight, if known. Otherwise, return 0. 1361 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1362 Edge *UnknownEdge) { 1363 if (!VisitedEdges.count(E)) { 1364 (*NumUnknownEdges)++; 1365 *UnknownEdge = E; 1366 return 0; 1367 } 1368 1369 return EdgeWeights[E]; 1370 } 1371 1372 /// Propagate weights through incoming/outgoing edges. 1373 /// 1374 /// If the weight of a basic block is known, and there is only one edge 1375 /// with an unknown weight, we can calculate the weight of that edge. 1376 /// 1377 /// Similarly, if all the edges have a known count, we can calculate the 1378 /// count of the basic block, if needed. 1379 /// 1380 /// \param F Function to process. 1381 /// \param UpdateBlockCount Whether we should update basic block counts that 1382 /// has already been annotated. 1383 /// 1384 /// \returns True if new weights were assigned to edges or blocks. 1385 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1386 bool UpdateBlockCount) { 1387 bool Changed = false; 1388 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1389 for (const auto &BI : F) { 1390 const BasicBlock *BB = &BI; 1391 const BasicBlock *EC = EquivalenceClass[BB]; 1392 1393 // Visit all the predecessor and successor edges to determine 1394 // which ones have a weight assigned already. Note that it doesn't 1395 // matter that we only keep track of a single unknown edge. The 1396 // only case we are interested in handling is when only a single 1397 // edge is unknown (see setEdgeOrBlockWeight). 1398 for (unsigned i = 0; i < 2; i++) { 1399 uint64_t TotalWeight = 0; 1400 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1401 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1402 1403 if (i == 0) { 1404 // First, visit all predecessor edges. 1405 NumTotalEdges = Predecessors[BB].size(); 1406 for (auto *Pred : Predecessors[BB]) { 1407 Edge E = std::make_pair(Pred, BB); 1408 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1409 if (E.first == E.second) 1410 SelfReferentialEdge = E; 1411 } 1412 if (NumTotalEdges == 1) { 1413 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1414 } 1415 } else { 1416 // On the second round, visit all successor edges. 1417 NumTotalEdges = Successors[BB].size(); 1418 for (auto *Succ : Successors[BB]) { 1419 Edge E = std::make_pair(BB, Succ); 1420 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1421 } 1422 if (NumTotalEdges == 1) { 1423 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1424 } 1425 } 1426 1427 // After visiting all the edges, there are three cases that we 1428 // can handle immediately: 1429 // 1430 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1431 // In this case, we simply check that the sum of all the edges 1432 // is the same as BB's weight. If not, we change BB's weight 1433 // to match. Additionally, if BB had not been visited before, 1434 // we mark it visited. 1435 // 1436 // - Only one edge is unknown and BB has already been visited. 1437 // In this case, we can compute the weight of the edge by 1438 // subtracting the total block weight from all the known 1439 // edge weights. If the edges weight more than BB, then the 1440 // edge of the last remaining edge is set to zero. 1441 // 1442 // - There exists a self-referential edge and the weight of BB is 1443 // known. In this case, this edge can be based on BB's weight. 1444 // We add up all the other known edges and set the weight on 1445 // the self-referential edge as we did in the previous case. 1446 // 1447 // In any other case, we must continue iterating. Eventually, 1448 // all edges will get a weight, or iteration will stop when 1449 // it reaches SampleProfileMaxPropagateIterations. 1450 if (NumUnknownEdges <= 1) { 1451 uint64_t &BBWeight = BlockWeights[EC]; 1452 if (NumUnknownEdges == 0) { 1453 if (!VisitedBlocks.count(EC)) { 1454 // If we already know the weight of all edges, the weight of the 1455 // basic block can be computed. It should be no larger than the sum 1456 // of all edge weights. 1457 if (TotalWeight > BBWeight) { 1458 BBWeight = TotalWeight; 1459 Changed = true; 1460 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1461 << " known. Set weight for block: "; 1462 printBlockWeight(dbgs(), BB);); 1463 } 1464 } else if (NumTotalEdges == 1 && 1465 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1466 // If there is only one edge for the visited basic block, use the 1467 // block weight to adjust edge weight if edge weight is smaller. 1468 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1469 Changed = true; 1470 } 1471 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1472 // If there is a single unknown edge and the block has been 1473 // visited, then we can compute E's weight. 1474 if (BBWeight >= TotalWeight) 1475 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1476 else 1477 EdgeWeights[UnknownEdge] = 0; 1478 const BasicBlock *OtherEC; 1479 if (i == 0) 1480 OtherEC = EquivalenceClass[UnknownEdge.first]; 1481 else 1482 OtherEC = EquivalenceClass[UnknownEdge.second]; 1483 // Edge weights should never exceed the BB weights it connects. 1484 if (VisitedBlocks.count(OtherEC) && 1485 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1486 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1487 VisitedEdges.insert(UnknownEdge); 1488 Changed = true; 1489 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1490 printEdgeWeight(dbgs(), UnknownEdge)); 1491 } 1492 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1493 // If a block Weights 0, all its in/out edges should weight 0. 1494 if (i == 0) { 1495 for (auto *Pred : Predecessors[BB]) { 1496 Edge E = std::make_pair(Pred, BB); 1497 EdgeWeights[E] = 0; 1498 VisitedEdges.insert(E); 1499 } 1500 } else { 1501 for (auto *Succ : Successors[BB]) { 1502 Edge E = std::make_pair(BB, Succ); 1503 EdgeWeights[E] = 0; 1504 VisitedEdges.insert(E); 1505 } 1506 } 1507 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1508 uint64_t &BBWeight = BlockWeights[BB]; 1509 // We have a self-referential edge and the weight of BB is known. 1510 if (BBWeight >= TotalWeight) 1511 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1512 else 1513 EdgeWeights[SelfReferentialEdge] = 0; 1514 VisitedEdges.insert(SelfReferentialEdge); 1515 Changed = true; 1516 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1517 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1518 } 1519 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1520 BlockWeights[EC] = TotalWeight; 1521 VisitedBlocks.insert(EC); 1522 Changed = true; 1523 } 1524 } 1525 } 1526 1527 return Changed; 1528 } 1529 1530 /// Build in/out edge lists for each basic block in the CFG. 1531 /// 1532 /// We are interested in unique edges. If a block B1 has multiple 1533 /// edges to another block B2, we only add a single B1->B2 edge. 1534 void SampleProfileLoader::buildEdges(Function &F) { 1535 for (auto &BI : F) { 1536 BasicBlock *B1 = &BI; 1537 1538 // Add predecessors for B1. 1539 SmallPtrSet<BasicBlock *, 16> Visited; 1540 if (!Predecessors[B1].empty()) 1541 llvm_unreachable("Found a stale predecessors list in a basic block."); 1542 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1543 BasicBlock *B2 = *PI; 1544 if (Visited.insert(B2).second) 1545 Predecessors[B1].push_back(B2); 1546 } 1547 1548 // Add successors for B1. 1549 Visited.clear(); 1550 if (!Successors[B1].empty()) 1551 llvm_unreachable("Found a stale successors list in a basic block."); 1552 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1553 BasicBlock *B2 = *SI; 1554 if (Visited.insert(B2).second) 1555 Successors[B1].push_back(B2); 1556 } 1557 } 1558 } 1559 1560 /// Returns the sorted CallTargetMap \p M by count in descending order. 1561 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1562 const SampleRecord::CallTargetMap & M) { 1563 SmallVector<InstrProfValueData, 2> R; 1564 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1565 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1566 } 1567 return R; 1568 } 1569 1570 /// Propagate weights into edges 1571 /// 1572 /// The following rules are applied to every block BB in the CFG: 1573 /// 1574 /// - If BB has a single predecessor/successor, then the weight 1575 /// of that edge is the weight of the block. 1576 /// 1577 /// - If all incoming or outgoing edges are known except one, and the 1578 /// weight of the block is already known, the weight of the unknown 1579 /// edge will be the weight of the block minus the sum of all the known 1580 /// edges. If the sum of all the known edges is larger than BB's weight, 1581 /// we set the unknown edge weight to zero. 1582 /// 1583 /// - If there is a self-referential edge, and the weight of the block is 1584 /// known, the weight for that edge is set to the weight of the block 1585 /// minus the weight of the other incoming edges to that block (if 1586 /// known). 1587 void SampleProfileLoader::propagateWeights(Function &F) { 1588 bool Changed = true; 1589 unsigned I = 0; 1590 1591 // If BB weight is larger than its corresponding loop's header BB weight, 1592 // use the BB weight to replace the loop header BB weight. 1593 for (auto &BI : F) { 1594 BasicBlock *BB = &BI; 1595 Loop *L = LI->getLoopFor(BB); 1596 if (!L) { 1597 continue; 1598 } 1599 BasicBlock *Header = L->getHeader(); 1600 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1601 BlockWeights[Header] = BlockWeights[BB]; 1602 } 1603 } 1604 1605 // Before propagation starts, build, for each block, a list of 1606 // unique predecessors and successors. This is necessary to handle 1607 // identical edges in multiway branches. Since we visit all blocks and all 1608 // edges of the CFG, it is cleaner to build these lists once at the start 1609 // of the pass. 1610 buildEdges(F); 1611 1612 // Propagate until we converge or we go past the iteration limit. 1613 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1614 Changed = propagateThroughEdges(F, false); 1615 } 1616 1617 // The first propagation propagates BB counts from annotated BBs to unknown 1618 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1619 // to propagate edge weights. 1620 VisitedEdges.clear(); 1621 Changed = true; 1622 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1623 Changed = propagateThroughEdges(F, false); 1624 } 1625 1626 // The 3rd propagation pass allows adjust annotated BB weights that are 1627 // obviously wrong. 1628 Changed = true; 1629 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1630 Changed = propagateThroughEdges(F, true); 1631 } 1632 1633 // Generate MD_prof metadata for every branch instruction using the 1634 // edge weights computed during propagation. 1635 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1636 LLVMContext &Ctx = F.getContext(); 1637 MDBuilder MDB(Ctx); 1638 for (auto &BI : F) { 1639 BasicBlock *BB = &BI; 1640 1641 if (BlockWeights[BB]) { 1642 for (auto &I : BB->getInstList()) { 1643 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1644 continue; 1645 if (!cast<CallBase>(I).getCalledFunction()) { 1646 const DebugLoc &DLoc = I.getDebugLoc(); 1647 if (!DLoc) 1648 continue; 1649 const DILocation *DIL = DLoc; 1650 const FunctionSamples *FS = findFunctionSamples(I); 1651 if (!FS) 1652 continue; 1653 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL); 1654 auto T = FS->findCallTargetMapAt(CallSite); 1655 if (!T || T.get().empty()) 1656 continue; 1657 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1658 GetSortedValueDataFromCallTargets(T.get()); 1659 uint64_t Sum; 1660 findIndirectCallFunctionSamples(I, Sum); 1661 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1662 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1663 SortedCallTargets.size()); 1664 } else if (!isa<IntrinsicInst>(&I)) { 1665 I.setMetadata(LLVMContext::MD_prof, 1666 MDB.createBranchWeights( 1667 {static_cast<uint32_t>(BlockWeights[BB])})); 1668 } 1669 } 1670 } 1671 Instruction *TI = BB->getTerminator(); 1672 if (TI->getNumSuccessors() == 1) 1673 continue; 1674 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1675 continue; 1676 1677 DebugLoc BranchLoc = TI->getDebugLoc(); 1678 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1679 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1680 : Twine("<UNKNOWN LOCATION>")) 1681 << ".\n"); 1682 SmallVector<uint32_t, 4> Weights; 1683 uint32_t MaxWeight = 0; 1684 Instruction *MaxDestInst; 1685 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1686 BasicBlock *Succ = TI->getSuccessor(I); 1687 Edge E = std::make_pair(BB, Succ); 1688 uint64_t Weight = EdgeWeights[E]; 1689 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1690 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1691 // if needed. Sample counts in profiles are 64-bit unsigned values, 1692 // but internally branch weights are expressed as 32-bit values. 1693 if (Weight > std::numeric_limits<uint32_t>::max()) { 1694 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1695 Weight = std::numeric_limits<uint32_t>::max(); 1696 } 1697 // Weight is added by one to avoid propagation errors introduced by 1698 // 0 weights. 1699 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1700 if (Weight != 0) { 1701 if (Weight > MaxWeight) { 1702 MaxWeight = Weight; 1703 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1704 } 1705 } 1706 } 1707 1708 uint64_t TempWeight; 1709 // Only set weights if there is at least one non-zero weight. 1710 // In any other case, let the analyzer set weights. 1711 // Do not set weights if the weights are present. In ThinLTO, the profile 1712 // annotation is done twice. If the first annotation already set the 1713 // weights, the second pass does not need to set it. 1714 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1715 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1716 TI->setMetadata(LLVMContext::MD_prof, 1717 MDB.createBranchWeights(Weights)); 1718 ORE->emit([&]() { 1719 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1720 << "most popular destination for conditional branches at " 1721 << ore::NV("CondBranchesLoc", BranchLoc); 1722 }); 1723 } else { 1724 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1725 } 1726 } 1727 } 1728 1729 /// Get the line number for the function header. 1730 /// 1731 /// This looks up function \p F in the current compilation unit and 1732 /// retrieves the line number where the function is defined. This is 1733 /// line 0 for all the samples read from the profile file. Every line 1734 /// number is relative to this line. 1735 /// 1736 /// \param F Function object to query. 1737 /// 1738 /// \returns the line number where \p F is defined. If it returns 0, 1739 /// it means that there is no debug information available for \p F. 1740 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1741 if (DISubprogram *S = F.getSubprogram()) 1742 return S->getLine(); 1743 1744 if (NoWarnSampleUnused) 1745 return 0; 1746 1747 // If the start of \p F is missing, emit a diagnostic to inform the user 1748 // about the missed opportunity. 1749 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1750 "No debug information found in function " + F.getName() + 1751 ": Function profile not used", 1752 DS_Warning)); 1753 return 0; 1754 } 1755 1756 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1757 DT.reset(new DominatorTree); 1758 DT->recalculate(F); 1759 1760 PDT.reset(new PostDominatorTree(F)); 1761 1762 LI.reset(new LoopInfo); 1763 LI->analyze(*DT); 1764 } 1765 1766 /// Generate branch weight metadata for all branches in \p F. 1767 /// 1768 /// Branch weights are computed out of instruction samples using a 1769 /// propagation heuristic. Propagation proceeds in 3 phases: 1770 /// 1771 /// 1- Assignment of block weights. All the basic blocks in the function 1772 /// are initial assigned the same weight as their most frequently 1773 /// executed instruction. 1774 /// 1775 /// 2- Creation of equivalence classes. Since samples may be missing from 1776 /// blocks, we can fill in the gaps by setting the weights of all the 1777 /// blocks in the same equivalence class to the same weight. To compute 1778 /// the concept of equivalence, we use dominance and loop information. 1779 /// Two blocks B1 and B2 are in the same equivalence class if B1 1780 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1781 /// 1782 /// 3- Propagation of block weights into edges. This uses a simple 1783 /// propagation heuristic. The following rules are applied to every 1784 /// block BB in the CFG: 1785 /// 1786 /// - If BB has a single predecessor/successor, then the weight 1787 /// of that edge is the weight of the block. 1788 /// 1789 /// - If all the edges are known except one, and the weight of the 1790 /// block is already known, the weight of the unknown edge will 1791 /// be the weight of the block minus the sum of all the known 1792 /// edges. If the sum of all the known edges is larger than BB's weight, 1793 /// we set the unknown edge weight to zero. 1794 /// 1795 /// - If there is a self-referential edge, and the weight of the block is 1796 /// known, the weight for that edge is set to the weight of the block 1797 /// minus the weight of the other incoming edges to that block (if 1798 /// known). 1799 /// 1800 /// Since this propagation is not guaranteed to finalize for every CFG, we 1801 /// only allow it to proceed for a limited number of iterations (controlled 1802 /// by -sample-profile-max-propagate-iterations). 1803 /// 1804 /// FIXME: Try to replace this propagation heuristic with a scheme 1805 /// that is guaranteed to finalize. A work-list approach similar to 1806 /// the standard value propagation algorithm used by SSA-CCP might 1807 /// work here. 1808 /// 1809 /// Once all the branch weights are computed, we emit the MD_prof 1810 /// metadata on BB using the computed values for each of its branches. 1811 /// 1812 /// \param F The function to query. 1813 /// 1814 /// \returns true if \p F was modified. Returns false, otherwise. 1815 bool SampleProfileLoader::emitAnnotations(Function &F) { 1816 bool Changed = false; 1817 1818 if (FunctionSamples::ProfileIsProbeBased) { 1819 if (!ProbeManager->profileIsValid(F, *Samples)) { 1820 LLVM_DEBUG( 1821 dbgs() << "Profile is invalid due to CFG mismatch for Function " 1822 << F.getName()); 1823 ++NumMismatchedProfile; 1824 return false; 1825 } 1826 ++NumMatchedProfile; 1827 } else { 1828 if (getFunctionLoc(F) == 0) 1829 return false; 1830 1831 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1832 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1833 } 1834 1835 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1836 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1837 1838 // Compute basic block weights. 1839 Changed |= computeBlockWeights(F); 1840 1841 if (Changed) { 1842 // Add an entry count to the function using the samples gathered at the 1843 // function entry. 1844 // Sets the GUIDs that are inlined in the profiled binary. This is used 1845 // for ThinLink to make correct liveness analysis, and also make the IR 1846 // match the profiled binary before annotation. 1847 F.setEntryCount( 1848 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1849 &InlinedGUIDs); 1850 1851 // Compute dominance and loop info needed for propagation. 1852 computeDominanceAndLoopInfo(F); 1853 1854 // Find equivalence classes. 1855 findEquivalenceClasses(F); 1856 1857 // Propagate weights to all edges. 1858 propagateWeights(F); 1859 } 1860 1861 // If coverage checking was requested, compute it now. 1862 if (SampleProfileRecordCoverage) { 1863 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1864 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1865 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1866 if (Coverage < SampleProfileRecordCoverage) { 1867 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1868 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1869 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1870 Twine(Coverage) + "%) were applied", 1871 DS_Warning)); 1872 } 1873 } 1874 1875 if (SampleProfileSampleCoverage) { 1876 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1877 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1878 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1879 if (Coverage < SampleProfileSampleCoverage) { 1880 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1881 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1882 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1883 Twine(Coverage) + "%) were applied", 1884 DS_Warning)); 1885 } 1886 } 1887 return Changed; 1888 } 1889 1890 char SampleProfileLoaderLegacyPass::ID = 0; 1891 1892 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1893 "Sample Profile loader", false, false) 1894 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1895 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1896 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1897 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1898 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1899 "Sample Profile loader", false, false) 1900 1901 std::vector<Function *> 1902 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) { 1903 std::vector<Function *> FunctionOrderList; 1904 FunctionOrderList.reserve(M.size()); 1905 1906 if (!ProfileTopDownLoad || CG == nullptr) { 1907 if (ProfileMergeInlinee) { 1908 // Disable ProfileMergeInlinee if profile is not loaded in top down order, 1909 // because the profile for a function may be used for the profile 1910 // annotation of its outline copy before the profile merging of its 1911 // non-inlined inline instances, and that is not the way how 1912 // ProfileMergeInlinee is supposed to work. 1913 ProfileMergeInlinee = false; 1914 } 1915 1916 for (Function &F : M) 1917 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile")) 1918 FunctionOrderList.push_back(&F); 1919 return FunctionOrderList; 1920 } 1921 1922 assert(&CG->getModule() == &M); 1923 scc_iterator<CallGraph *> CGI = scc_begin(CG); 1924 while (!CGI.isAtEnd()) { 1925 for (CallGraphNode *node : *CGI) { 1926 auto F = node->getFunction(); 1927 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile")) 1928 FunctionOrderList.push_back(F); 1929 } 1930 ++CGI; 1931 } 1932 1933 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 1934 return FunctionOrderList; 1935 } 1936 1937 bool SampleProfileLoader::doInitialization(Module &M, 1938 FunctionAnalysisManager *FAM) { 1939 auto &Ctx = M.getContext(); 1940 1941 auto ReaderOrErr = 1942 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1943 if (std::error_code EC = ReaderOrErr.getError()) { 1944 std::string Msg = "Could not open profile: " + EC.message(); 1945 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1946 return false; 1947 } 1948 Reader = std::move(ReaderOrErr.get()); 1949 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink); 1950 Reader->collectFuncsFrom(M); 1951 if (std::error_code EC = Reader->read()) { 1952 std::string Msg = "profile reading failed: " + EC.message(); 1953 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1954 return false; 1955 } 1956 1957 PSL = Reader->getProfileSymbolList(); 1958 1959 // While profile-sample-accurate is on, ignore symbol list. 1960 ProfAccForSymsInList = 1961 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1962 if (ProfAccForSymsInList) { 1963 NamesInProfile.clear(); 1964 if (auto NameTable = Reader->getNameTable()) 1965 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1966 } 1967 1968 if (FAM && !ProfileInlineReplayFile.empty()) { 1969 ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>( 1970 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile, 1971 /*EmitRemarks=*/false); 1972 if (!ExternalInlineAdvisor->areReplayRemarksLoaded()) 1973 ExternalInlineAdvisor.reset(); 1974 } 1975 1976 // Apply tweaks if context-sensitive profile is available. 1977 if (Reader->profileIsCS()) { 1978 ProfileIsCS = true; 1979 FunctionSamples::ProfileIsCS = true; 1980 1981 // Tracker for profiles under different context 1982 ContextTracker = 1983 std::make_unique<SampleContextTracker>(Reader->getProfiles()); 1984 } 1985 1986 // Load pseudo probe descriptors for probe-based function samples. 1987 if (Reader->profileIsProbeBased()) { 1988 ProbeManager = std::make_unique<PseudoProbeManager>(M); 1989 if (!ProbeManager->moduleIsProbed(M)) { 1990 const char *Msg = 1991 "Pseudo-probe-based profile requires SampleProfileProbePass"; 1992 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1993 return false; 1994 } 1995 } 1996 1997 return true; 1998 } 1999 2000 ModulePass *llvm::createSampleProfileLoaderPass() { 2001 return new SampleProfileLoaderLegacyPass(); 2002 } 2003 2004 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 2005 return new SampleProfileLoaderLegacyPass(Name); 2006 } 2007 2008 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 2009 ProfileSummaryInfo *_PSI, CallGraph *CG) { 2010 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 2011 2012 PSI = _PSI; 2013 if (M.getProfileSummary(/* IsCS */ false) == nullptr) { 2014 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 2015 ProfileSummary::PSK_Sample); 2016 PSI->refresh(); 2017 } 2018 // Compute the total number of samples collected in this profile. 2019 for (const auto &I : Reader->getProfiles()) 2020 TotalCollectedSamples += I.second.getTotalSamples(); 2021 2022 auto Remapper = Reader->getRemapper(); 2023 // Populate the symbol map. 2024 for (const auto &N_F : M.getValueSymbolTable()) { 2025 StringRef OrigName = N_F.getKey(); 2026 Function *F = dyn_cast<Function>(N_F.getValue()); 2027 if (F == nullptr) 2028 continue; 2029 SymbolMap[OrigName] = F; 2030 auto pos = OrigName.find('.'); 2031 if (pos != StringRef::npos) { 2032 StringRef NewName = OrigName.substr(0, pos); 2033 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 2034 // Failiing to insert means there is already an entry in SymbolMap, 2035 // thus there are multiple functions that are mapped to the same 2036 // stripped name. In this case of name conflicting, set the value 2037 // to nullptr to avoid confusion. 2038 if (!r.second) 2039 r.first->second = nullptr; 2040 OrigName = NewName; 2041 } 2042 // Insert the remapped names into SymbolMap. 2043 if (Remapper) { 2044 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) { 2045 if (*MapName == OrigName) 2046 continue; 2047 SymbolMap.insert(std::make_pair(*MapName, F)); 2048 } 2049 } 2050 } 2051 2052 bool retval = false; 2053 for (auto F : buildFunctionOrder(M, CG)) { 2054 assert(!F->isDeclaration()); 2055 clearFunctionData(); 2056 retval |= runOnFunction(*F, AM); 2057 } 2058 2059 // Account for cold calls not inlined.... 2060 if (!ProfileIsCS) 2061 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 2062 notInlinedCallInfo) 2063 updateProfileCallee(pair.first, pair.second.entryCount); 2064 2065 return retval; 2066 } 2067 2068 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 2069 ACT = &getAnalysis<AssumptionCacheTracker>(); 2070 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 2071 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>(); 2072 ProfileSummaryInfo *PSI = 2073 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2074 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr); 2075 } 2076 2077 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 2078 DILocation2SampleMap.clear(); 2079 // By default the entry count is initialized to -1, which will be treated 2080 // conservatively by getEntryCount as the same as unknown (None). This is 2081 // to avoid newly added code to be treated as cold. If we have samples 2082 // this will be overwritten in emitAnnotations. 2083 uint64_t initialEntryCount = -1; 2084 2085 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 2086 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 2087 // initialize all the function entry counts to 0. It means all the 2088 // functions without profile will be regarded as cold. 2089 initialEntryCount = 0; 2090 // profile-sample-accurate is a user assertion which has a higher precedence 2091 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 2092 ProfAccForSymsInList = false; 2093 } 2094 2095 // PSL -- profile symbol list include all the symbols in sampled binary. 2096 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 2097 // old functions without samples being cold, without having to worry 2098 // about new and hot functions being mistakenly treated as cold. 2099 if (ProfAccForSymsInList) { 2100 // Initialize the entry count to 0 for functions in the list. 2101 if (PSL->contains(F.getName())) 2102 initialEntryCount = 0; 2103 2104 // Function in the symbol list but without sample will be regarded as 2105 // cold. To minimize the potential negative performance impact it could 2106 // have, we want to be a little conservative here saying if a function 2107 // shows up in the profile, no matter as outline function, inline instance 2108 // or call targets, treat the function as not being cold. This will handle 2109 // the cases such as most callsites of a function are inlined in sampled 2110 // binary but not inlined in current build (because of source code drift, 2111 // imprecise debug information, or the callsites are all cold individually 2112 // but not cold accumulatively...), so the outline function showing up as 2113 // cold in sampled binary will actually not be cold after current build. 2114 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 2115 if (NamesInProfile.count(CanonName)) 2116 initialEntryCount = -1; 2117 } 2118 2119 // Initialize entry count when the function has no existing entry 2120 // count value. 2121 if (!F.getEntryCount().hasValue()) 2122 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 2123 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 2124 if (AM) { 2125 auto &FAM = 2126 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 2127 .getManager(); 2128 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2129 } else { 2130 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2131 ORE = OwnedORE.get(); 2132 } 2133 2134 if (ProfileIsCS) 2135 Samples = ContextTracker->getBaseSamplesFor(F); 2136 else 2137 Samples = Reader->getSamplesFor(F); 2138 2139 if (Samples && !Samples->empty()) 2140 return emitAnnotations(F); 2141 return false; 2142 } 2143 2144 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 2145 ModuleAnalysisManager &AM) { 2146 FunctionAnalysisManager &FAM = 2147 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2148 2149 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 2150 return FAM.getResult<AssumptionAnalysis>(F); 2151 }; 2152 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 2153 return FAM.getResult<TargetIRAnalysis>(F); 2154 }; 2155 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { 2156 return FAM.getResult<TargetLibraryAnalysis>(F); 2157 }; 2158 2159 SampleProfileLoader SampleLoader( 2160 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 2161 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 2162 : ProfileRemappingFileName, 2163 LTOPhase, GetAssumptionCache, GetTTI, GetTLI); 2164 2165 if (!SampleLoader.doInitialization(M, &FAM)) 2166 return PreservedAnalyses::all(); 2167 2168 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 2169 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M); 2170 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG)) 2171 return PreservedAnalyses::all(); 2172 2173 return PreservedAnalyses::none(); 2174 } 2175