xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/PartialInlining.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs partial inlining, typically by inlining an if statement
10 // that surrounds the body of the function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/PartialInlining.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/CodeExtractor.h"
54 #include "llvm/Transforms/Utils/ValueMapper.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <functional>
59 #include <iterator>
60 #include <memory>
61 #include <tuple>
62 #include <vector>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "partial-inlining"
67 
68 STATISTIC(NumPartialInlined,
69           "Number of callsites functions partially inlined into.");
70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
71                                         "cold outlined regions were partially "
72                                         "inlined into its caller(s).");
73 STATISTIC(NumColdRegionsFound,
74            "Number of cold single entry/exit regions found.");
75 STATISTIC(NumColdRegionsOutlined,
76            "Number of cold single entry/exit regions outlined.");
77 
78 // Command line option to disable partial-inlining. The default is false:
79 static cl::opt<bool>
80     DisablePartialInlining("disable-partial-inlining", cl::init(false),
81                            cl::Hidden, cl::desc("Disable partial inlining"));
82 // Command line option to disable multi-region partial-inlining. The default is
83 // false:
84 static cl::opt<bool> DisableMultiRegionPartialInline(
85     "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
86     cl::desc("Disable multi-region partial inlining"));
87 
88 // Command line option to force outlining in regions with live exit variables.
89 // The default is false:
90 static cl::opt<bool>
91     ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
92                cl::desc("Force outline regions with live exits"));
93 
94 // Command line option to enable marking outline functions with Cold Calling
95 // Convention. The default is false:
96 static cl::opt<bool>
97     MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
98                        cl::desc("Mark outline function calls with ColdCC"));
99 
100 // This is an option used by testing:
101 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
102                                       cl::init(false), cl::ZeroOrMore,
103                                       cl::ReallyHidden,
104                                       cl::desc("Skip Cost Analysis"));
105 // Used to determine if a cold region is worth outlining based on
106 // its inlining cost compared to the original function.  Default is set at 10%.
107 // ie. if the cold region reduces the inlining cost of the original function by
108 // at least 10%.
109 static cl::opt<float> MinRegionSizeRatio(
110     "min-region-size-ratio", cl::init(0.1), cl::Hidden,
111     cl::desc("Minimum ratio comparing relative sizes of each "
112              "outline candidate and original function"));
113 // Used to tune the minimum number of execution counts needed in the predecessor
114 // block to the cold edge. ie. confidence interval.
115 static cl::opt<unsigned>
116     MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
117                              cl::desc("Minimum block executions to consider "
118                                       "its BranchProbabilityInfo valid"));
119 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
120 // if the branch probability is 10% or less, then it is deemed as 'cold'.
121 static cl::opt<float> ColdBranchRatio(
122     "cold-branch-ratio", cl::init(0.1), cl::Hidden,
123     cl::desc("Minimum BranchProbability to consider a region cold."));
124 
125 static cl::opt<unsigned> MaxNumInlineBlocks(
126     "max-num-inline-blocks", cl::init(5), cl::Hidden,
127     cl::desc("Max number of blocks to be partially inlined"));
128 
129 // Command line option to set the maximum number of partial inlining allowed
130 // for the module. The default value of -1 means no limit.
131 static cl::opt<int> MaxNumPartialInlining(
132     "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
133     cl::desc("Max number of partial inlining. The default is unlimited"));
134 
135 // Used only when PGO or user annotated branch data is absent. It is
136 // the least value that is used to weigh the outline region. If BFI
137 // produces larger value, the BFI value will be used.
138 static cl::opt<int>
139     OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
140                              cl::Hidden, cl::ZeroOrMore,
141                              cl::desc("Relative frequency of outline region to "
142                                       "the entry block"));
143 
144 static cl::opt<unsigned> ExtraOutliningPenalty(
145     "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
146     cl::desc("A debug option to add additional penalty to the computed one."));
147 
148 namespace {
149 
150 struct FunctionOutliningInfo {
151   FunctionOutliningInfo() = default;
152 
153   // Returns the number of blocks to be inlined including all blocks
154   // in Entries and one return block.
155   unsigned getNumInlinedBlocks() const { return Entries.size() + 1; }
156 
157   // A set of blocks including the function entry that guard
158   // the region to be outlined.
159   SmallVector<BasicBlock *, 4> Entries;
160 
161   // The return block that is not included in the outlined region.
162   BasicBlock *ReturnBlock = nullptr;
163 
164   // The dominating block of the region to be outlined.
165   BasicBlock *NonReturnBlock = nullptr;
166 
167   // The set of blocks in Entries that that are predecessors to ReturnBlock
168   SmallVector<BasicBlock *, 4> ReturnBlockPreds;
169 };
170 
171 struct FunctionOutliningMultiRegionInfo {
172   FunctionOutliningMultiRegionInfo()
173       : ORI() {}
174 
175   // Container for outline regions
176   struct OutlineRegionInfo {
177     OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
178                       BasicBlock *EntryBlock, BasicBlock *ExitBlock,
179                       BasicBlock *ReturnBlock)
180         : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
181           ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
182     SmallVector<BasicBlock *, 8> Region;
183     BasicBlock *EntryBlock;
184     BasicBlock *ExitBlock;
185     BasicBlock *ReturnBlock;
186   };
187 
188   SmallVector<OutlineRegionInfo, 4> ORI;
189 };
190 
191 struct PartialInlinerImpl {
192 
193   PartialInlinerImpl(
194       function_ref<AssumptionCache &(Function &)> GetAC,
195       function_ref<AssumptionCache *(Function &)> LookupAC,
196       function_ref<TargetTransformInfo &(Function &)> GTTI,
197       function_ref<const TargetLibraryInfo &(Function &)> GTLI,
198       ProfileSummaryInfo &ProfSI,
199       function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr)
200       : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
201         GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {}
202 
203   bool run(Module &M);
204   // Main part of the transformation that calls helper functions to find
205   // outlining candidates, clone & outline the function, and attempt to
206   // partially inline the resulting function. Returns true if
207   // inlining was successful, false otherwise.  Also returns the outline
208   // function (only if we partially inlined early returns) as there is a
209   // possibility to further "peel" early return statements that were left in the
210   // outline function due to code size.
211   std::pair<bool, Function *> unswitchFunction(Function &F);
212 
213   // This class speculatively clones the function to be partial inlined.
214   // At the end of partial inlining, the remaining callsites to the cloned
215   // function that are not partially inlined will be fixed up to reference
216   // the original function, and the cloned function will be erased.
217   struct FunctionCloner {
218     // Two constructors, one for single region outlining, the other for
219     // multi-region outlining.
220     FunctionCloner(Function *F, FunctionOutliningInfo *OI,
221                    OptimizationRemarkEmitter &ORE,
222                    function_ref<AssumptionCache *(Function &)> LookupAC,
223                    function_ref<TargetTransformInfo &(Function &)> GetTTI);
224     FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
225                    OptimizationRemarkEmitter &ORE,
226                    function_ref<AssumptionCache *(Function &)> LookupAC,
227                    function_ref<TargetTransformInfo &(Function &)> GetTTI);
228 
229     ~FunctionCloner();
230 
231     // Prepare for function outlining: making sure there is only
232     // one incoming edge from the extracted/outlined region to
233     // the return block.
234     void normalizeReturnBlock() const;
235 
236     // Do function outlining for cold regions.
237     bool doMultiRegionFunctionOutlining();
238     // Do function outlining for region after early return block(s).
239     // NOTE: For vararg functions that do the vararg handling in the outlined
240     //       function, we temporarily generate IR that does not properly
241     //       forward varargs to the outlined function. Calling InlineFunction
242     //       will update calls to the outlined functions to properly forward
243     //       the varargs.
244     Function *doSingleRegionFunctionOutlining();
245 
246     Function *OrigFunc = nullptr;
247     Function *ClonedFunc = nullptr;
248 
249     typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
250     // Keep track of Outlined Functions and the basic block they're called from.
251     SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
252 
253     // ClonedFunc is inlined in one of its callers after function
254     // outlining.
255     bool IsFunctionInlined = false;
256     // The cost of the region to be outlined.
257     InstructionCost OutlinedRegionCost = 0;
258     // ClonedOI is specific to outlining non-early return blocks.
259     std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
260     // ClonedOMRI is specific to outlining cold regions.
261     std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
262     std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
263     OptimizationRemarkEmitter &ORE;
264     function_ref<AssumptionCache *(Function &)> LookupAC;
265     function_ref<TargetTransformInfo &(Function &)> GetTTI;
266   };
267 
268 private:
269   int NumPartialInlining = 0;
270   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
271   function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
272   function_ref<TargetTransformInfo &(Function &)> GetTTI;
273   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
274   function_ref<const TargetLibraryInfo &(Function &)> GetTLI;
275   ProfileSummaryInfo &PSI;
276 
277   // Return the frequency of the OutlininingBB relative to F's entry point.
278   // The result is no larger than 1 and is represented using BP.
279   // (Note that the outlined region's 'head' block can only have incoming
280   // edges from the guarding entry blocks).
281   BranchProbability
282   getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const;
283 
284   // Return true if the callee of CB should be partially inlined with
285   // profit.
286   bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner,
287                            BlockFrequency WeightedOutliningRcost,
288                            OptimizationRemarkEmitter &ORE) const;
289 
290   // Try to inline DuplicateFunction (cloned from F with call to
291   // the OutlinedFunction into its callers. Return true
292   // if there is any successful inlining.
293   bool tryPartialInline(FunctionCloner &Cloner);
294 
295   // Compute the mapping from use site of DuplicationFunction to the enclosing
296   // BB's profile count.
297   void
298   computeCallsiteToProfCountMap(Function *DuplicateFunction,
299                                 DenseMap<User *, uint64_t> &SiteCountMap) const;
300 
301   bool isLimitReached() const {
302     return (MaxNumPartialInlining != -1 &&
303             NumPartialInlining >= MaxNumPartialInlining);
304   }
305 
306   static CallBase *getSupportedCallBase(User *U) {
307     if (isa<CallInst>(U) || isa<InvokeInst>(U))
308       return cast<CallBase>(U);
309     llvm_unreachable("All uses must be calls");
310     return nullptr;
311   }
312 
313   static CallBase *getOneCallSiteTo(Function &F) {
314     User *User = *F.user_begin();
315     return getSupportedCallBase(User);
316   }
317 
318   std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const {
319     CallBase *CB = getOneCallSiteTo(F);
320     DebugLoc DLoc = CB->getDebugLoc();
321     BasicBlock *Block = CB->getParent();
322     return std::make_tuple(DLoc, Block);
323   }
324 
325   // Returns the costs associated with function outlining:
326   // - The first value is the non-weighted runtime cost for making the call
327   //   to the outlined function, including the addtional  setup cost in the
328   //    outlined function itself;
329   // - The second value is the estimated size of the new call sequence in
330   //   basic block Cloner.OutliningCallBB;
331   std::tuple<InstructionCost, InstructionCost>
332   computeOutliningCosts(FunctionCloner &Cloner) const;
333 
334   // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
335   // approximate both the size and runtime cost (Note that in the current
336   // inline cost analysis, there is no clear distinction there either).
337   static InstructionCost computeBBInlineCost(BasicBlock *BB,
338                                              TargetTransformInfo *TTI);
339 
340   std::unique_ptr<FunctionOutliningInfo>
341   computeOutliningInfo(Function &F) const;
342 
343   std::unique_ptr<FunctionOutliningMultiRegionInfo>
344   computeOutliningColdRegionsInfo(Function &F,
345                                   OptimizationRemarkEmitter &ORE) const;
346 };
347 
348 struct PartialInlinerLegacyPass : public ModulePass {
349   static char ID; // Pass identification, replacement for typeid
350 
351   PartialInlinerLegacyPass() : ModulePass(ID) {
352     initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
353   }
354 
355   void getAnalysisUsage(AnalysisUsage &AU) const override {
356     AU.addRequired<AssumptionCacheTracker>();
357     AU.addRequired<ProfileSummaryInfoWrapperPass>();
358     AU.addRequired<TargetTransformInfoWrapperPass>();
359     AU.addRequired<TargetLibraryInfoWrapperPass>();
360   }
361 
362   bool runOnModule(Module &M) override {
363     if (skipModule(M))
364       return false;
365 
366     AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
367     TargetTransformInfoWrapperPass *TTIWP =
368         &getAnalysis<TargetTransformInfoWrapperPass>();
369     ProfileSummaryInfo &PSI =
370         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
371 
372     auto GetAssumptionCache = [&ACT](Function &F) -> AssumptionCache & {
373       return ACT->getAssumptionCache(F);
374     };
375 
376     auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
377       return ACT->lookupAssumptionCache(F);
378     };
379 
380     auto GetTTI = [&TTIWP](Function &F) -> TargetTransformInfo & {
381       return TTIWP->getTTI(F);
382     };
383 
384     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
385       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
386     };
387 
388     return PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI,
389                               GetTLI, PSI)
390         .run(M);
391   }
392 };
393 
394 } // end anonymous namespace
395 
396 std::unique_ptr<FunctionOutliningMultiRegionInfo>
397 PartialInlinerImpl::computeOutliningColdRegionsInfo(
398     Function &F, OptimizationRemarkEmitter &ORE) const {
399   BasicBlock *EntryBlock = &F.front();
400 
401   DominatorTree DT(F);
402   LoopInfo LI(DT);
403   BranchProbabilityInfo BPI(F, LI);
404   std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
405   BlockFrequencyInfo *BFI;
406   if (!GetBFI) {
407     ScopedBFI.reset(new BlockFrequencyInfo(F, BPI, LI));
408     BFI = ScopedBFI.get();
409   } else
410     BFI = &(GetBFI(F));
411 
412   // Return if we don't have profiling information.
413   if (!PSI.hasInstrumentationProfile())
414     return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
415 
416   std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
417       std::make_unique<FunctionOutliningMultiRegionInfo>();
418 
419   auto IsSingleExit =
420       [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
421     BasicBlock *ExitBlock = nullptr;
422     for (auto *Block : BlockList) {
423       for (BasicBlock *Succ : successors(Block)) {
424         if (!is_contained(BlockList, Succ)) {
425           if (ExitBlock) {
426             ORE.emit([&]() {
427               return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
428                                               &Succ->front())
429                      << "Region dominated by "
430                      << ore::NV("Block", BlockList.front()->getName())
431                      << " has more than one region exit edge.";
432             });
433             return nullptr;
434           }
435 
436           ExitBlock = Block;
437         }
438       }
439     }
440     return ExitBlock;
441   };
442 
443   auto BBProfileCount = [BFI](BasicBlock *BB) {
444     return BFI->getBlockProfileCount(BB).getValueOr(0);
445   };
446 
447   // Use the same computeBBInlineCost function to compute the cost savings of
448   // the outlining the candidate region.
449   TargetTransformInfo *FTTI = &GetTTI(F);
450   InstructionCost OverallFunctionCost = 0;
451   for (auto &BB : F)
452     OverallFunctionCost += computeBBInlineCost(&BB, FTTI);
453 
454   LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost
455                     << "\n";);
456 
457   InstructionCost MinOutlineRegionCost = OverallFunctionCost.map(
458       [&](auto Cost) { return Cost * MinRegionSizeRatio; });
459 
460   BranchProbability MinBranchProbability(
461       static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
462       MinBlockCounterExecution);
463   bool ColdCandidateFound = false;
464   BasicBlock *CurrEntry = EntryBlock;
465   std::vector<BasicBlock *> DFS;
466   DenseMap<BasicBlock *, bool> VisitedMap;
467   DFS.push_back(CurrEntry);
468   VisitedMap[CurrEntry] = true;
469 
470   // Use Depth First Search on the basic blocks to find CFG edges that are
471   // considered cold.
472   // Cold regions considered must also have its inline cost compared to the
473   // overall inline cost of the original function.  The region is outlined only
474   // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
475   // more.
476   while (!DFS.empty()) {
477     auto *ThisBB = DFS.back();
478     DFS.pop_back();
479     // Only consider regions with predecessor blocks that are considered
480     // not-cold (default: part of the top 99.99% of all block counters)
481     // AND greater than our minimum block execution count (default: 100).
482     if (PSI.isColdBlock(ThisBB, BFI) ||
483         BBProfileCount(ThisBB) < MinBlockCounterExecution)
484       continue;
485     for (auto SI = succ_begin(ThisBB); SI != succ_end(ThisBB); ++SI) {
486       if (VisitedMap[*SI])
487         continue;
488       VisitedMap[*SI] = true;
489       DFS.push_back(*SI);
490       // If branch isn't cold, we skip to the next one.
491       BranchProbability SuccProb = BPI.getEdgeProbability(ThisBB, *SI);
492       if (SuccProb > MinBranchProbability)
493         continue;
494 
495       LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->"
496                         << SI->getName()
497                         << "\nBranch Probability = " << SuccProb << "\n";);
498 
499       SmallVector<BasicBlock *, 8> DominateVector;
500       DT.getDescendants(*SI, DominateVector);
501       assert(!DominateVector.empty() &&
502              "SI should be reachable and have at least itself as descendant");
503 
504       // We can only outline single entry regions (for now).
505       if (!DominateVector.front()->hasNPredecessors(1)) {
506         LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName()
507                           << " doesn't have a single predecessor in the "
508                              "dominator tree\n";);
509         continue;
510       }
511 
512       BasicBlock *ExitBlock = nullptr;
513       // We can only outline single exit regions (for now).
514       if (!(ExitBlock = IsSingleExit(DominateVector))) {
515         LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName()
516                           << " doesn't have a unique successor\n";);
517         continue;
518       }
519 
520       InstructionCost OutlineRegionCost = 0;
521       for (auto *BB : DominateVector)
522         OutlineRegionCost += computeBBInlineCost(BB, &GetTTI(*BB->getParent()));
523 
524       LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost
525                         << "\n";);
526 
527       if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) {
528         ORE.emit([&]() {
529           return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
530                                             &SI->front())
531                  << ore::NV("Callee", &F)
532                  << " inline cost-savings smaller than "
533                  << ore::NV("Cost", MinOutlineRegionCost);
534         });
535 
536         LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than "
537                           << MinOutlineRegionCost << "\n";);
538         continue;
539       }
540 
541       // For now, ignore blocks that belong to a SISE region that is a
542       // candidate for outlining.  In the future, we may want to look
543       // at inner regions because the outer region may have live-exit
544       // variables.
545       for (auto *BB : DominateVector)
546         VisitedMap[BB] = true;
547 
548       // ReturnBlock here means the block after the outline call
549       BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
550       FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
551           DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
552       OutliningInfo->ORI.push_back(RegInfo);
553       LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: "
554                         << DominateVector.front()->getName() << "\n";);
555       ColdCandidateFound = true;
556       NumColdRegionsFound++;
557     }
558   }
559 
560   if (ColdCandidateFound)
561     return OutliningInfo;
562 
563   return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
564 }
565 
566 std::unique_ptr<FunctionOutliningInfo>
567 PartialInlinerImpl::computeOutliningInfo(Function &F) const {
568   BasicBlock *EntryBlock = &F.front();
569   BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
570   if (!BR || BR->isUnconditional())
571     return std::unique_ptr<FunctionOutliningInfo>();
572 
573   // Returns true if Succ is BB's successor
574   auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
575     return is_contained(successors(BB), Succ);
576   };
577 
578   auto IsReturnBlock = [](BasicBlock *BB) {
579     Instruction *TI = BB->getTerminator();
580     return isa<ReturnInst>(TI);
581   };
582 
583   auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
584     if (IsReturnBlock(Succ1))
585       return std::make_tuple(Succ1, Succ2);
586     if (IsReturnBlock(Succ2))
587       return std::make_tuple(Succ2, Succ1);
588 
589     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
590   };
591 
592   // Detect a triangular shape:
593   auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
594     if (IsSuccessor(Succ1, Succ2))
595       return std::make_tuple(Succ1, Succ2);
596     if (IsSuccessor(Succ2, Succ1))
597       return std::make_tuple(Succ2, Succ1);
598 
599     return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
600   };
601 
602   std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
603       std::make_unique<FunctionOutliningInfo>();
604 
605   BasicBlock *CurrEntry = EntryBlock;
606   bool CandidateFound = false;
607   do {
608     // The number of blocks to be inlined has already reached
609     // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
610     // disables partial inlining for the function.
611     if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks)
612       break;
613 
614     if (succ_size(CurrEntry) != 2)
615       break;
616 
617     BasicBlock *Succ1 = *succ_begin(CurrEntry);
618     BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
619 
620     BasicBlock *ReturnBlock, *NonReturnBlock;
621     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
622 
623     if (ReturnBlock) {
624       OutliningInfo->Entries.push_back(CurrEntry);
625       OutliningInfo->ReturnBlock = ReturnBlock;
626       OutliningInfo->NonReturnBlock = NonReturnBlock;
627       CandidateFound = true;
628       break;
629     }
630 
631     BasicBlock *CommSucc, *OtherSucc;
632     std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
633 
634     if (!CommSucc)
635       break;
636 
637     OutliningInfo->Entries.push_back(CurrEntry);
638     CurrEntry = OtherSucc;
639   } while (true);
640 
641   if (!CandidateFound)
642     return std::unique_ptr<FunctionOutliningInfo>();
643 
644   // There should not be any successors (not in the entry set) other than
645   // {ReturnBlock, NonReturnBlock}
646   assert(OutliningInfo->Entries[0] == &F.front() &&
647          "Function Entry must be the first in Entries vector");
648   DenseSet<BasicBlock *> Entries;
649   for (BasicBlock *E : OutliningInfo->Entries)
650     Entries.insert(E);
651 
652   // Returns true of BB has Predecessor which is not
653   // in Entries set.
654   auto HasNonEntryPred = [Entries](BasicBlock *BB) {
655     for (auto *Pred : predecessors(BB)) {
656       if (!Entries.count(Pred))
657         return true;
658     }
659     return false;
660   };
661   auto CheckAndNormalizeCandidate =
662       [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
663         for (BasicBlock *E : OutliningInfo->Entries) {
664           for (auto *Succ : successors(E)) {
665             if (Entries.count(Succ))
666               continue;
667             if (Succ == OutliningInfo->ReturnBlock)
668               OutliningInfo->ReturnBlockPreds.push_back(E);
669             else if (Succ != OutliningInfo->NonReturnBlock)
670               return false;
671           }
672           // There should not be any outside incoming edges either:
673           if (HasNonEntryPred(E))
674             return false;
675         }
676         return true;
677       };
678 
679   if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
680     return std::unique_ptr<FunctionOutliningInfo>();
681 
682   // Now further growing the candidate's inlining region by
683   // peeling off dominating blocks from the outlining region:
684   while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) {
685     BasicBlock *Cand = OutliningInfo->NonReturnBlock;
686     if (succ_size(Cand) != 2)
687       break;
688 
689     if (HasNonEntryPred(Cand))
690       break;
691 
692     BasicBlock *Succ1 = *succ_begin(Cand);
693     BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
694 
695     BasicBlock *ReturnBlock, *NonReturnBlock;
696     std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
697     if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
698       break;
699 
700     if (NonReturnBlock->getSinglePredecessor() != Cand)
701       break;
702 
703     // Now grow and update OutlininigInfo:
704     OutliningInfo->Entries.push_back(Cand);
705     OutliningInfo->NonReturnBlock = NonReturnBlock;
706     OutliningInfo->ReturnBlockPreds.push_back(Cand);
707     Entries.insert(Cand);
708   }
709 
710   return OutliningInfo;
711 }
712 
713 // Check if there is PGO data or user annotated branch data:
714 static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) {
715   if (F.hasProfileData())
716     return true;
717   // Now check if any of the entry block has MD_prof data:
718   for (auto *E : OI.Entries) {
719     BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
720     if (!BR || BR->isUnconditional())
721       continue;
722     uint64_t T, F;
723     if (BR->extractProfMetadata(T, F))
724       return true;
725   }
726   return false;
727 }
728 
729 BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq(
730     FunctionCloner &Cloner) const {
731   BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
732   auto EntryFreq =
733       Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
734   auto OutliningCallFreq =
735       Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
736   // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
737   // we outlined any regions, so we may encounter situations where the
738   // OutliningCallFreq is *slightly* bigger than the EntryFreq.
739   if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency())
740     OutliningCallFreq = EntryFreq;
741 
742   auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
743       OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
744 
745   if (hasProfileData(*Cloner.OrigFunc, *Cloner.ClonedOI.get()))
746     return OutlineRegionRelFreq;
747 
748   // When profile data is not available, we need to be conservative in
749   // estimating the overall savings. Static branch prediction can usually
750   // guess the branch direction right (taken/non-taken), but the guessed
751   // branch probability is usually not biased enough. In case when the
752   // outlined region is predicted to be likely, its probability needs
753   // to be made higher (more biased) to not under-estimate the cost of
754   // function outlining. On the other hand, if the outlined region
755   // is predicted to be less likely, the predicted probablity is usually
756   // higher than the actual. For instance, the actual probability of the
757   // less likely target is only 5%, but the guessed probablity can be
758   // 40%. In the latter case, there is no need for further adjustement.
759   // FIXME: add an option for this.
760   if (OutlineRegionRelFreq < BranchProbability(45, 100))
761     return OutlineRegionRelFreq;
762 
763   OutlineRegionRelFreq = std::max(
764       OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
765 
766   return OutlineRegionRelFreq;
767 }
768 
769 bool PartialInlinerImpl::shouldPartialInline(
770     CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost,
771     OptimizationRemarkEmitter &ORE) const {
772   using namespace ore;
773 
774   Function *Callee = CB.getCalledFunction();
775   assert(Callee == Cloner.ClonedFunc);
776 
777   if (SkipCostAnalysis)
778     return isInlineViable(*Callee).isSuccess();
779 
780   Function *Caller = CB.getCaller();
781   auto &CalleeTTI = GetTTI(*Callee);
782   bool RemarksEnabled =
783       Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
784           DEBUG_TYPE);
785   InlineCost IC =
786       getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache,
787                     GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr);
788 
789   if (IC.isAlways()) {
790     ORE.emit([&]() {
791       return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB)
792              << NV("Callee", Cloner.OrigFunc)
793              << " should always be fully inlined, not partially";
794     });
795     return false;
796   }
797 
798   if (IC.isNever()) {
799     ORE.emit([&]() {
800       return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB)
801              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
802              << NV("Caller", Caller)
803              << " because it should never be inlined (cost=never)";
804     });
805     return false;
806   }
807 
808   if (!IC) {
809     ORE.emit([&]() {
810       return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB)
811              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
812              << NV("Caller", Caller) << " because too costly to inline (cost="
813              << NV("Cost", IC.getCost()) << ", threshold="
814              << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
815     });
816     return false;
817   }
818   const DataLayout &DL = Caller->getParent()->getDataLayout();
819 
820   // The savings of eliminating the call:
821   int NonWeightedSavings = getCallsiteCost(CB, DL);
822   BlockFrequency NormWeightedSavings(NonWeightedSavings);
823 
824   // Weighted saving is smaller than weighted cost, return false
825   if (NormWeightedSavings < WeightedOutliningRcost) {
826     ORE.emit([&]() {
827       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
828                                         &CB)
829              << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
830              << NV("Caller", Caller) << " runtime overhead (overhead="
831              << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
832              << ", savings="
833              << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
834              << ")"
835              << " of making the outlined call is too high";
836     });
837 
838     return false;
839   }
840 
841   ORE.emit([&]() {
842     return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB)
843            << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
844            << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
845            << " (threshold="
846            << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
847   });
848   return true;
849 }
850 
851 // TODO: Ideally  we should share Inliner's InlineCost Analysis code.
852 // For now use a simplified version. The returned 'InlineCost' will be used
853 // to esimate the size cost as well as runtime cost of the BB.
854 InstructionCost
855 PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB,
856                                         TargetTransformInfo *TTI) {
857   InstructionCost InlineCost = 0;
858   const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
859   for (Instruction &I : BB->instructionsWithoutDebug()) {
860     // Skip free instructions.
861     switch (I.getOpcode()) {
862     case Instruction::BitCast:
863     case Instruction::PtrToInt:
864     case Instruction::IntToPtr:
865     case Instruction::Alloca:
866     case Instruction::PHI:
867       continue;
868     case Instruction::GetElementPtr:
869       if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
870         continue;
871       break;
872     default:
873       break;
874     }
875 
876     if (I.isLifetimeStartOrEnd())
877       continue;
878 
879     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
880       Intrinsic::ID IID = II->getIntrinsicID();
881       SmallVector<Type *, 4> Tys;
882       FastMathFlags FMF;
883       for (Value *Val : II->args())
884         Tys.push_back(Val->getType());
885 
886       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
887         FMF = FPMO->getFastMathFlags();
888 
889       IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF);
890       InlineCost += TTI->getIntrinsicInstrCost(ICA, TTI::TCK_SizeAndLatency);
891       continue;
892     }
893 
894     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
895       InlineCost += getCallsiteCost(*CI, DL);
896       continue;
897     }
898 
899     if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
900       InlineCost += getCallsiteCost(*II, DL);
901       continue;
902     }
903 
904     if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
905       InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
906       continue;
907     }
908     InlineCost += InlineConstants::InstrCost;
909   }
910 
911   return InlineCost;
912 }
913 
914 std::tuple<InstructionCost, InstructionCost>
915 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const {
916   InstructionCost OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
917   for (auto FuncBBPair : Cloner.OutlinedFunctions) {
918     Function *OutlinedFunc = FuncBBPair.first;
919     BasicBlock* OutliningCallBB = FuncBBPair.second;
920     // Now compute the cost of the call sequence to the outlined function
921     // 'OutlinedFunction' in BB 'OutliningCallBB':
922     auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc);
923     OutliningFuncCallCost +=
924         computeBBInlineCost(OutliningCallBB, OutlinedFuncTTI);
925 
926     // Now compute the cost of the extracted/outlined function itself:
927     for (BasicBlock &BB : *OutlinedFunc)
928       OutlinedFunctionCost += computeBBInlineCost(&BB, OutlinedFuncTTI);
929   }
930   assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
931          "Outlined function cost should be no less than the outlined region");
932 
933   // The code extractor introduces a new root and exit stub blocks with
934   // additional unconditional branches. Those branches will be eliminated
935   // later with bb layout. The cost should be adjusted accordingly:
936   OutlinedFunctionCost -=
937       2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
938 
939   InstructionCost OutliningRuntimeOverhead =
940       OutliningFuncCallCost +
941       (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
942       ExtraOutliningPenalty.getValue();
943 
944   return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
945 }
946 
947 // Create the callsite to profile count map which is
948 // used to update the original function's entry count,
949 // after the function is partially inlined into the callsite.
950 void PartialInlinerImpl::computeCallsiteToProfCountMap(
951     Function *DuplicateFunction,
952     DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const {
953   std::vector<User *> Users(DuplicateFunction->user_begin(),
954                             DuplicateFunction->user_end());
955   Function *CurrentCaller = nullptr;
956   std::unique_ptr<BlockFrequencyInfo> TempBFI;
957   BlockFrequencyInfo *CurrentCallerBFI = nullptr;
958 
959   auto ComputeCurrBFI = [&,this](Function *Caller) {
960       // For the old pass manager:
961       if (!GetBFI) {
962         DominatorTree DT(*Caller);
963         LoopInfo LI(DT);
964         BranchProbabilityInfo BPI(*Caller, LI);
965         TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
966         CurrentCallerBFI = TempBFI.get();
967       } else {
968         // New pass manager:
969         CurrentCallerBFI = &(GetBFI(*Caller));
970       }
971   };
972 
973   for (User *User : Users) {
974     CallBase *CB = getSupportedCallBase(User);
975     Function *Caller = CB->getCaller();
976     if (CurrentCaller != Caller) {
977       CurrentCaller = Caller;
978       ComputeCurrBFI(Caller);
979     } else {
980       assert(CurrentCallerBFI && "CallerBFI is not set");
981     }
982     BasicBlock *CallBB = CB->getParent();
983     auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
984     if (Count)
985       CallSiteToProfCountMap[User] = *Count;
986     else
987       CallSiteToProfCountMap[User] = 0;
988   }
989 }
990 
991 PartialInlinerImpl::FunctionCloner::FunctionCloner(
992     Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
993     function_ref<AssumptionCache *(Function &)> LookupAC,
994     function_ref<TargetTransformInfo &(Function &)> GetTTI)
995     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) {
996   ClonedOI = std::make_unique<FunctionOutliningInfo>();
997 
998   // Clone the function, so that we can hack away on it.
999   ValueToValueMapTy VMap;
1000   ClonedFunc = CloneFunction(F, VMap);
1001 
1002   ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
1003   ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
1004   for (BasicBlock *BB : OI->Entries)
1005     ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
1006 
1007   for (BasicBlock *E : OI->ReturnBlockPreds) {
1008     BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
1009     ClonedOI->ReturnBlockPreds.push_back(NewE);
1010   }
1011   // Go ahead and update all uses to the duplicate, so that we can just
1012   // use the inliner functionality when we're done hacking.
1013   F->replaceAllUsesWith(ClonedFunc);
1014 }
1015 
1016 PartialInlinerImpl::FunctionCloner::FunctionCloner(
1017     Function *F, FunctionOutliningMultiRegionInfo *OI,
1018     OptimizationRemarkEmitter &ORE,
1019     function_ref<AssumptionCache *(Function &)> LookupAC,
1020     function_ref<TargetTransformInfo &(Function &)> GetTTI)
1021     : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) {
1022   ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>();
1023 
1024   // Clone the function, so that we can hack away on it.
1025   ValueToValueMapTy VMap;
1026   ClonedFunc = CloneFunction(F, VMap);
1027 
1028   // Go through all Outline Candidate Regions and update all BasicBlock
1029   // information.
1030   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1031        OI->ORI) {
1032     SmallVector<BasicBlock *, 8> Region;
1033     for (BasicBlock *BB : RegionInfo.Region)
1034       Region.push_back(cast<BasicBlock>(VMap[BB]));
1035 
1036     BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
1037     BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
1038     BasicBlock *NewReturnBlock = nullptr;
1039     if (RegionInfo.ReturnBlock)
1040       NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
1041     FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
1042         Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
1043     ClonedOMRI->ORI.push_back(MappedRegionInfo);
1044   }
1045   // Go ahead and update all uses to the duplicate, so that we can just
1046   // use the inliner functionality when we're done hacking.
1047   F->replaceAllUsesWith(ClonedFunc);
1048 }
1049 
1050 void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const {
1051   auto GetFirstPHI = [](BasicBlock *BB) {
1052     BasicBlock::iterator I = BB->begin();
1053     PHINode *FirstPhi = nullptr;
1054     while (I != BB->end()) {
1055       PHINode *Phi = dyn_cast<PHINode>(I);
1056       if (!Phi)
1057         break;
1058       if (!FirstPhi) {
1059         FirstPhi = Phi;
1060         break;
1061       }
1062     }
1063     return FirstPhi;
1064   };
1065 
1066   // Shouldn't need to normalize PHIs if we're not outlining non-early return
1067   // blocks.
1068   if (!ClonedOI)
1069     return;
1070 
1071   // Special hackery is needed with PHI nodes that have inputs from more than
1072   // one extracted block.  For simplicity, just split the PHIs into a two-level
1073   // sequence of PHIs, some of which will go in the extracted region, and some
1074   // of which will go outside.
1075   BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1076   // only split block when necessary:
1077   PHINode *FirstPhi = GetFirstPHI(PreReturn);
1078   unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1079 
1080   if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1081     return;
1082 
1083   auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1084     Value *CommonValue = PN->getIncomingValue(0);
1085     if (all_of(PN->incoming_values(),
1086                [&](Value *V) { return V == CommonValue; }))
1087       return CommonValue;
1088     return nullptr;
1089   };
1090 
1091   ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1092       ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1093   BasicBlock::iterator I = PreReturn->begin();
1094   Instruction *Ins = &ClonedOI->ReturnBlock->front();
1095   SmallVector<Instruction *, 4> DeadPhis;
1096   while (I != PreReturn->end()) {
1097     PHINode *OldPhi = dyn_cast<PHINode>(I);
1098     if (!OldPhi)
1099       break;
1100 
1101     PHINode *RetPhi =
1102         PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1103     OldPhi->replaceAllUsesWith(RetPhi);
1104     Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1105 
1106     RetPhi->addIncoming(&*I, PreReturn);
1107     for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1108       RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1109       OldPhi->removeIncomingValue(E);
1110     }
1111 
1112     // After incoming values splitting, the old phi may become trivial.
1113     // Keeping the trivial phi can introduce definition inside the outline
1114     // region which is live-out, causing necessary overhead (load, store
1115     // arg passing etc).
1116     if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1117       OldPhi->replaceAllUsesWith(OldPhiVal);
1118       DeadPhis.push_back(OldPhi);
1119     }
1120     ++I;
1121   }
1122   for (auto *DP : DeadPhis)
1123     DP->eraseFromParent();
1124 
1125   for (auto *E : ClonedOI->ReturnBlockPreds)
1126     E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1127 }
1128 
1129 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1130 
1131   auto ComputeRegionCost =
1132       [&](SmallVectorImpl<BasicBlock *> &Region) -> InstructionCost {
1133     InstructionCost Cost = 0;
1134     for (BasicBlock* BB : Region)
1135       Cost += computeBBInlineCost(BB, &GetTTI(*BB->getParent()));
1136     return Cost;
1137   };
1138 
1139   assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1140 
1141   if (ClonedOMRI->ORI.empty())
1142     return false;
1143 
1144   // The CodeExtractor needs a dominator tree.
1145   DominatorTree DT;
1146   DT.recalculate(*ClonedFunc);
1147 
1148   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1149   LoopInfo LI(DT);
1150   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1151   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1152 
1153   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
1154   CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1155 
1156   SetVector<Value *> Inputs, Outputs, Sinks;
1157   for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1158        ClonedOMRI->ORI) {
1159     InstructionCost CurrentOutlinedRegionCost =
1160         ComputeRegionCost(RegionInfo.Region);
1161 
1162     CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1163                      ClonedFuncBFI.get(), &BPI,
1164                      LookupAC(*RegionInfo.EntryBlock->getParent()),
1165                      /* AllowVarargs */ false);
1166 
1167     CE.findInputsOutputs(Inputs, Outputs, Sinks);
1168 
1169     LLVM_DEBUG({
1170       dbgs() << "inputs: " << Inputs.size() << "\n";
1171       dbgs() << "outputs: " << Outputs.size() << "\n";
1172       for (Value *value : Inputs)
1173         dbgs() << "value used in func: " << *value << "\n";
1174       for (Value *output : Outputs)
1175         dbgs() << "instr used in func: " << *output << "\n";
1176     });
1177 
1178     // Do not extract regions that have live exit variables.
1179     if (Outputs.size() > 0 && !ForceLiveExit)
1180       continue;
1181 
1182     if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) {
1183       CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc);
1184       BasicBlock *OutliningCallBB = OCS->getParent();
1185       assert(OutliningCallBB->getParent() == ClonedFunc);
1186       OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1187       NumColdRegionsOutlined++;
1188       OutlinedRegionCost += CurrentOutlinedRegionCost;
1189 
1190       if (MarkOutlinedColdCC) {
1191         OutlinedFunc->setCallingConv(CallingConv::Cold);
1192         OCS->setCallingConv(CallingConv::Cold);
1193       }
1194     } else
1195       ORE.emit([&]() {
1196         return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1197                                         &RegionInfo.Region.front()->front())
1198                << "Failed to extract region at block "
1199                << ore::NV("Block", RegionInfo.Region.front());
1200       });
1201   }
1202 
1203   return !OutlinedFunctions.empty();
1204 }
1205 
1206 Function *
1207 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1208   // Returns true if the block is to be partial inlined into the caller
1209   // (i.e. not to be extracted to the out of line function)
1210   auto ToBeInlined = [&, this](BasicBlock *BB) {
1211     return BB == ClonedOI->ReturnBlock ||
1212            llvm::is_contained(ClonedOI->Entries, BB);
1213   };
1214 
1215   assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1216   // The CodeExtractor needs a dominator tree.
1217   DominatorTree DT;
1218   DT.recalculate(*ClonedFunc);
1219 
1220   // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1221   LoopInfo LI(DT);
1222   BranchProbabilityInfo BPI(*ClonedFunc, LI);
1223   ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1224 
1225   // Gather up the blocks that we're going to extract.
1226   std::vector<BasicBlock *> ToExtract;
1227   auto *ClonedFuncTTI = &GetTTI(*ClonedFunc);
1228   ToExtract.push_back(ClonedOI->NonReturnBlock);
1229   OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost(
1230       ClonedOI->NonReturnBlock, ClonedFuncTTI);
1231   for (BasicBlock &BB : *ClonedFunc)
1232     if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1233       ToExtract.push_back(&BB);
1234       // FIXME: the code extractor may hoist/sink more code
1235       // into the outlined function which may make the outlining
1236       // overhead (the difference of the outlined function cost
1237       // and OutliningRegionCost) look larger.
1238       OutlinedRegionCost += computeBBInlineCost(&BB, ClonedFuncTTI);
1239     }
1240 
1241   // Extract the body of the if.
1242   CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1243   Function *OutlinedFunc =
1244       CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1245                     ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
1246                     /* AllowVarargs */ true)
1247           .extractCodeRegion(CEAC);
1248 
1249   if (OutlinedFunc) {
1250     BasicBlock *OutliningCallBB =
1251         PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc)->getParent();
1252     assert(OutliningCallBB->getParent() == ClonedFunc);
1253     OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1254   } else
1255     ORE.emit([&]() {
1256       return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1257                                       &ToExtract.front()->front())
1258              << "Failed to extract region at block "
1259              << ore::NV("Block", ToExtract.front());
1260     });
1261 
1262   return OutlinedFunc;
1263 }
1264 
1265 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1266   // Ditch the duplicate, since we're done with it, and rewrite all remaining
1267   // users (function pointers, etc.) back to the original function.
1268   ClonedFunc->replaceAllUsesWith(OrigFunc);
1269   ClonedFunc->eraseFromParent();
1270   if (!IsFunctionInlined) {
1271     // Remove each function that was speculatively created if there is no
1272     // reference.
1273     for (auto FuncBBPair : OutlinedFunctions) {
1274       Function *Func = FuncBBPair.first;
1275       Func->eraseFromParent();
1276     }
1277   }
1278 }
1279 
1280 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) {
1281   if (F.hasAddressTaken())
1282     return {false, nullptr};
1283 
1284   // Let inliner handle it
1285   if (F.hasFnAttribute(Attribute::AlwaysInline))
1286     return {false, nullptr};
1287 
1288   if (F.hasFnAttribute(Attribute::NoInline))
1289     return {false, nullptr};
1290 
1291   if (PSI.isFunctionEntryCold(&F))
1292     return {false, nullptr};
1293 
1294   if (F.users().empty())
1295     return {false, nullptr};
1296 
1297   OptimizationRemarkEmitter ORE(&F);
1298 
1299   // Only try to outline cold regions if we have a profile summary, which
1300   // implies we have profiling information.
1301   if (PSI.hasProfileSummary() && F.hasProfileData() &&
1302       !DisableMultiRegionPartialInline) {
1303     std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1304         computeOutliningColdRegionsInfo(F, ORE);
1305     if (OMRI) {
1306       FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI);
1307 
1308       LLVM_DEBUG({
1309         dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n";
1310         dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold()
1311                << "\n";
1312       });
1313 
1314       bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1315 
1316       if (DidOutline) {
1317         LLVM_DEBUG({
1318           dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1319           Cloner.ClonedFunc->print(dbgs());
1320           dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1321         });
1322 
1323         if (tryPartialInline(Cloner))
1324           return {true, nullptr};
1325       }
1326     }
1327   }
1328 
1329   // Fall-thru to regular partial inlining if we:
1330   //    i) can't find any cold regions to outline, or
1331   //   ii) can't inline the outlined function anywhere.
1332   std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1333   if (!OI)
1334     return {false, nullptr};
1335 
1336   FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI);
1337   Cloner.normalizeReturnBlock();
1338 
1339   Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1340 
1341   if (!OutlinedFunction)
1342     return {false, nullptr};
1343 
1344   if (tryPartialInline(Cloner))
1345     return {true, OutlinedFunction};
1346 
1347   return {false, nullptr};
1348 }
1349 
1350 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1351   if (Cloner.OutlinedFunctions.empty())
1352     return false;
1353 
1354   int SizeCost = 0;
1355   BlockFrequency WeightedRcost;
1356   int NonWeightedRcost;
1357 
1358   auto OutliningCosts = computeOutliningCosts(Cloner);
1359   assert(std::get<0>(OutliningCosts).isValid() &&
1360          std::get<1>(OutliningCosts).isValid() && "Expected valid costs");
1361 
1362   SizeCost = *std::get<0>(OutliningCosts).getValue();
1363   NonWeightedRcost = *std::get<1>(OutliningCosts).getValue();
1364 
1365   // Only calculate RelativeToEntryFreq when we are doing single region
1366   // outlining.
1367   BranchProbability RelativeToEntryFreq;
1368   if (Cloner.ClonedOI)
1369     RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1370   else
1371     // RelativeToEntryFreq doesn't make sense when we have more than one
1372     // outlined call because each call will have a different relative frequency
1373     // to the entry block.  We can consider using the average, but the
1374     // usefulness of that information is questionable. For now, assume we never
1375     // execute the calls to outlined functions.
1376     RelativeToEntryFreq = BranchProbability(0, 1);
1377 
1378   WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1379 
1380   // The call sequence(s) to the outlined function(s) are larger than the sum of
1381   // the original outlined region size(s), it does not increase the chances of
1382   // inlining the function with outlining (The inliner uses the size increase to
1383   // model the cost of inlining a callee).
1384   if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1385     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1386     DebugLoc DLoc;
1387     BasicBlock *Block;
1388     std::tie(DLoc, Block) = getOneDebugLoc(*Cloner.ClonedFunc);
1389     OrigFuncORE.emit([&]() {
1390       return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1391                                         DLoc, Block)
1392              << ore::NV("Function", Cloner.OrigFunc)
1393              << " not partially inlined into callers (Original Size = "
1394              << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1395              << ", Size of call sequence to outlined function = "
1396              << ore::NV("NewSize", SizeCost) << ")";
1397     });
1398     return false;
1399   }
1400 
1401   assert(Cloner.OrigFunc->users().empty() &&
1402          "F's users should all be replaced!");
1403 
1404   std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1405                             Cloner.ClonedFunc->user_end());
1406 
1407   DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1408   auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1409   if (CalleeEntryCount)
1410     computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1411 
1412   uint64_t CalleeEntryCountV =
1413       (CalleeEntryCount ? CalleeEntryCount->getCount() : 0);
1414 
1415   bool AnyInline = false;
1416   for (User *User : Users) {
1417     CallBase *CB = getSupportedCallBase(User);
1418 
1419     if (isLimitReached())
1420       continue;
1421 
1422     OptimizationRemarkEmitter CallerORE(CB->getCaller());
1423     if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE))
1424       continue;
1425 
1426     // Construct remark before doing the inlining, as after successful inlining
1427     // the callsite is removed.
1428     OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB);
1429     OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1430        << ore::NV("Caller", CB->getCaller());
1431 
1432     InlineFunctionInfo IFI(nullptr, GetAssumptionCache, &PSI);
1433     // We can only forward varargs when we outlined a single region, else we
1434     // bail on vararg functions.
1435     if (!InlineFunction(*CB, IFI, nullptr, true,
1436                         (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1437                                          : nullptr))
1438              .isSuccess())
1439       continue;
1440 
1441     CallerORE.emit(OR);
1442 
1443     // Now update the entry count:
1444     if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1445       uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1446       CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1447     }
1448 
1449     AnyInline = true;
1450     NumPartialInlining++;
1451     // Update the stats
1452     if (Cloner.ClonedOI)
1453       NumPartialInlined++;
1454     else
1455       NumColdOutlinePartialInlined++;
1456   }
1457 
1458   if (AnyInline) {
1459     Cloner.IsFunctionInlined = true;
1460     if (CalleeEntryCount)
1461       Cloner.OrigFunc->setEntryCount(Function::ProfileCount(
1462           CalleeEntryCountV, CalleeEntryCount->getType()));
1463     OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1464     OrigFuncORE.emit([&]() {
1465       return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1466              << "Partially inlined into at least one caller";
1467     });
1468   }
1469 
1470   return AnyInline;
1471 }
1472 
1473 bool PartialInlinerImpl::run(Module &M) {
1474   if (DisablePartialInlining)
1475     return false;
1476 
1477   std::vector<Function *> Worklist;
1478   Worklist.reserve(M.size());
1479   for (Function &F : M)
1480     if (!F.use_empty() && !F.isDeclaration())
1481       Worklist.push_back(&F);
1482 
1483   bool Changed = false;
1484   while (!Worklist.empty()) {
1485     Function *CurrFunc = Worklist.back();
1486     Worklist.pop_back();
1487 
1488     if (CurrFunc->use_empty())
1489       continue;
1490 
1491     bool Recursive = false;
1492     for (User *U : CurrFunc->users())
1493       if (Instruction *I = dyn_cast<Instruction>(U))
1494         if (I->getParent()->getParent() == CurrFunc) {
1495           Recursive = true;
1496           break;
1497         }
1498     if (Recursive)
1499       continue;
1500 
1501     std::pair<bool, Function *> Result = unswitchFunction(*CurrFunc);
1502     if (Result.second)
1503       Worklist.push_back(Result.second);
1504     Changed |= Result.first;
1505   }
1506 
1507   return Changed;
1508 }
1509 
1510 char PartialInlinerLegacyPass::ID = 0;
1511 
1512 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1513                       "Partial Inliner", false, false)
1514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1515 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1516 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1517 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1518 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1519                     "Partial Inliner", false, false)
1520 
1521 ModulePass *llvm::createPartialInliningPass() {
1522   return new PartialInlinerLegacyPass();
1523 }
1524 
1525 PreservedAnalyses PartialInlinerPass::run(Module &M,
1526                                           ModuleAnalysisManager &AM) {
1527   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1528 
1529   auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & {
1530     return FAM.getResult<AssumptionAnalysis>(F);
1531   };
1532 
1533   auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
1534     return FAM.getCachedResult<AssumptionAnalysis>(F);
1535   };
1536 
1537   auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
1538     return FAM.getResult<BlockFrequencyAnalysis>(F);
1539   };
1540 
1541   auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
1542     return FAM.getResult<TargetIRAnalysis>(F);
1543   };
1544 
1545   auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1546     return FAM.getResult<TargetLibraryAnalysis>(F);
1547   };
1548 
1549   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1550 
1551   if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI,
1552                          GetTLI, PSI, GetBFI)
1553           .run(M))
1554     return PreservedAnalyses::none();
1555   return PreservedAnalyses::all();
1556 }
1557