1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 53 #include <algorithm> 54 55 using namespace llvm; 56 using namespace omp; 57 58 #define DEBUG_TYPE "openmp-opt" 59 60 static cl::opt<bool> DisableOpenMPOptimizations( 61 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."), 62 cl::Hidden, cl::init(false)); 63 64 static cl::opt<bool> EnableParallelRegionMerging( 65 "openmp-opt-enable-merging", 66 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 67 cl::init(false)); 68 69 static cl::opt<bool> 70 DisableInternalization("openmp-opt-disable-internalization", 71 cl::desc("Disable function internalization."), 72 cl::Hidden, cl::init(false)); 73 74 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 75 cl::Hidden); 76 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 77 cl::init(false), cl::Hidden); 78 79 static cl::opt<bool> HideMemoryTransferLatency( 80 "openmp-hide-memory-transfer-latency", 81 cl::desc("[WIP] Tries to hide the latency of host to device memory" 82 " transfers"), 83 cl::Hidden, cl::init(false)); 84 85 static cl::opt<bool> DisableOpenMPOptDeglobalization( 86 "openmp-opt-disable-deglobalization", 87 cl::desc("Disable OpenMP optimizations involving deglobalization."), 88 cl::Hidden, cl::init(false)); 89 90 static cl::opt<bool> DisableOpenMPOptSPMDization( 91 "openmp-opt-disable-spmdization", 92 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 93 cl::Hidden, cl::init(false)); 94 95 static cl::opt<bool> DisableOpenMPOptFolding( 96 "openmp-opt-disable-folding", 97 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 98 cl::init(false)); 99 100 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 101 "openmp-opt-disable-state-machine-rewrite", 102 cl::desc("Disable OpenMP optimizations that replace the state machine."), 103 cl::Hidden, cl::init(false)); 104 105 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 106 "openmp-opt-disable-barrier-elimination", 107 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 108 cl::Hidden, cl::init(false)); 109 110 static cl::opt<bool> PrintModuleAfterOptimizations( 111 "openmp-opt-print-module-after", 112 cl::desc("Print the current module after OpenMP optimizations."), 113 cl::Hidden, cl::init(false)); 114 115 static cl::opt<bool> PrintModuleBeforeOptimizations( 116 "openmp-opt-print-module-before", 117 cl::desc("Print the current module before OpenMP optimizations."), 118 cl::Hidden, cl::init(false)); 119 120 static cl::opt<bool> AlwaysInlineDeviceFunctions( 121 "openmp-opt-inline-device", 122 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 123 cl::init(false)); 124 125 static cl::opt<bool> 126 EnableVerboseRemarks("openmp-opt-verbose-remarks", 127 cl::desc("Enables more verbose remarks."), cl::Hidden, 128 cl::init(false)); 129 130 static cl::opt<unsigned> 131 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 132 cl::desc("Maximal number of attributor iterations."), 133 cl::init(256)); 134 135 static cl::opt<unsigned> 136 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden, 137 cl::desc("Maximum amount of shared memory to use."), 138 cl::init(std::numeric_limits<unsigned>::max())); 139 140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 141 "Number of OpenMP runtime calls deduplicated"); 142 STATISTIC(NumOpenMPParallelRegionsDeleted, 143 "Number of OpenMP parallel regions deleted"); 144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 145 "Number of OpenMP runtime functions identified"); 146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 147 "Number of OpenMP runtime function uses identified"); 148 STATISTIC(NumOpenMPTargetRegionKernels, 149 "Number of OpenMP target region entry points (=kernels) identified"); 150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 151 "Number of OpenMP target region entry points (=kernels) executed in " 152 "SPMD-mode instead of generic-mode"); 153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 154 "Number of OpenMP target region entry points (=kernels) executed in " 155 "generic-mode without a state machines"); 156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 157 "Number of OpenMP target region entry points (=kernels) executed in " 158 "generic-mode with customized state machines with fallback"); 159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 160 "Number of OpenMP target region entry points (=kernels) executed in " 161 "generic-mode with customized state machines without fallback"); 162 STATISTIC( 163 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 164 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 165 STATISTIC(NumOpenMPParallelRegionsMerged, 166 "Number of OpenMP parallel regions merged"); 167 STATISTIC(NumBytesMovedToSharedMemory, 168 "Amount of memory pushed to shared memory"); 169 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 170 171 #if !defined(NDEBUG) 172 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 173 #endif 174 175 namespace { 176 177 struct AAHeapToShared; 178 179 struct AAICVTracker; 180 181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 182 /// Attributor runs. 183 struct OMPInformationCache : public InformationCache { 184 OMPInformationCache(Module &M, AnalysisGetter &AG, 185 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 186 KernelSet &Kernels) 187 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 188 Kernels(Kernels) { 189 190 OMPBuilder.initialize(); 191 initializeRuntimeFunctions(); 192 initializeInternalControlVars(); 193 } 194 195 /// Generic information that describes an internal control variable. 196 struct InternalControlVarInfo { 197 /// The kind, as described by InternalControlVar enum. 198 InternalControlVar Kind; 199 200 /// The name of the ICV. 201 StringRef Name; 202 203 /// Environment variable associated with this ICV. 204 StringRef EnvVarName; 205 206 /// Initial value kind. 207 ICVInitValue InitKind; 208 209 /// Initial value. 210 ConstantInt *InitValue; 211 212 /// Setter RTL function associated with this ICV. 213 RuntimeFunction Setter; 214 215 /// Getter RTL function associated with this ICV. 216 RuntimeFunction Getter; 217 218 /// RTL Function corresponding to the override clause of this ICV 219 RuntimeFunction Clause; 220 }; 221 222 /// Generic information that describes a runtime function 223 struct RuntimeFunctionInfo { 224 225 /// The kind, as described by the RuntimeFunction enum. 226 RuntimeFunction Kind; 227 228 /// The name of the function. 229 StringRef Name; 230 231 /// Flag to indicate a variadic function. 232 bool IsVarArg; 233 234 /// The return type of the function. 235 Type *ReturnType; 236 237 /// The argument types of the function. 238 SmallVector<Type *, 8> ArgumentTypes; 239 240 /// The declaration if available. 241 Function *Declaration = nullptr; 242 243 /// Uses of this runtime function per function containing the use. 244 using UseVector = SmallVector<Use *, 16>; 245 246 /// Clear UsesMap for runtime function. 247 void clearUsesMap() { UsesMap.clear(); } 248 249 /// Boolean conversion that is true if the runtime function was found. 250 operator bool() const { return Declaration; } 251 252 /// Return the vector of uses in function \p F. 253 UseVector &getOrCreateUseVector(Function *F) { 254 std::shared_ptr<UseVector> &UV = UsesMap[F]; 255 if (!UV) 256 UV = std::make_shared<UseVector>(); 257 return *UV; 258 } 259 260 /// Return the vector of uses in function \p F or `nullptr` if there are 261 /// none. 262 const UseVector *getUseVector(Function &F) const { 263 auto I = UsesMap.find(&F); 264 if (I != UsesMap.end()) 265 return I->second.get(); 266 return nullptr; 267 } 268 269 /// Return how many functions contain uses of this runtime function. 270 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 271 272 /// Return the number of arguments (or the minimal number for variadic 273 /// functions). 274 size_t getNumArgs() const { return ArgumentTypes.size(); } 275 276 /// Run the callback \p CB on each use and forget the use if the result is 277 /// true. The callback will be fed the function in which the use was 278 /// encountered as second argument. 279 void foreachUse(SmallVectorImpl<Function *> &SCC, 280 function_ref<bool(Use &, Function &)> CB) { 281 for (Function *F : SCC) 282 foreachUse(CB, F); 283 } 284 285 /// Run the callback \p CB on each use within the function \p F and forget 286 /// the use if the result is true. 287 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 288 SmallVector<unsigned, 8> ToBeDeleted; 289 ToBeDeleted.clear(); 290 291 unsigned Idx = 0; 292 UseVector &UV = getOrCreateUseVector(F); 293 294 for (Use *U : UV) { 295 if (CB(*U, *F)) 296 ToBeDeleted.push_back(Idx); 297 ++Idx; 298 } 299 300 // Remove the to-be-deleted indices in reverse order as prior 301 // modifications will not modify the smaller indices. 302 while (!ToBeDeleted.empty()) { 303 unsigned Idx = ToBeDeleted.pop_back_val(); 304 UV[Idx] = UV.back(); 305 UV.pop_back(); 306 } 307 } 308 309 private: 310 /// Map from functions to all uses of this runtime function contained in 311 /// them. 312 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 313 314 public: 315 /// Iterators for the uses of this runtime function. 316 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 317 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 318 }; 319 320 /// An OpenMP-IR-Builder instance 321 OpenMPIRBuilder OMPBuilder; 322 323 /// Map from runtime function kind to the runtime function description. 324 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 325 RuntimeFunction::OMPRTL___last> 326 RFIs; 327 328 /// Map from function declarations/definitions to their runtime enum type. 329 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 330 331 /// Map from ICV kind to the ICV description. 332 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 333 InternalControlVar::ICV___last> 334 ICVs; 335 336 /// Helper to initialize all internal control variable information for those 337 /// defined in OMPKinds.def. 338 void initializeInternalControlVars() { 339 #define ICV_RT_SET(_Name, RTL) \ 340 { \ 341 auto &ICV = ICVs[_Name]; \ 342 ICV.Setter = RTL; \ 343 } 344 #define ICV_RT_GET(Name, RTL) \ 345 { \ 346 auto &ICV = ICVs[Name]; \ 347 ICV.Getter = RTL; \ 348 } 349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 350 { \ 351 auto &ICV = ICVs[Enum]; \ 352 ICV.Name = _Name; \ 353 ICV.Kind = Enum; \ 354 ICV.InitKind = Init; \ 355 ICV.EnvVarName = _EnvVarName; \ 356 switch (ICV.InitKind) { \ 357 case ICV_IMPLEMENTATION_DEFINED: \ 358 ICV.InitValue = nullptr; \ 359 break; \ 360 case ICV_ZERO: \ 361 ICV.InitValue = ConstantInt::get( \ 362 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 363 break; \ 364 case ICV_FALSE: \ 365 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 366 break; \ 367 case ICV_LAST: \ 368 break; \ 369 } \ 370 } 371 #include "llvm/Frontend/OpenMP/OMPKinds.def" 372 } 373 374 /// Returns true if the function declaration \p F matches the runtime 375 /// function types, that is, return type \p RTFRetType, and argument types 376 /// \p RTFArgTypes. 377 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 378 SmallVector<Type *, 8> &RTFArgTypes) { 379 // TODO: We should output information to the user (under debug output 380 // and via remarks). 381 382 if (!F) 383 return false; 384 if (F->getReturnType() != RTFRetType) 385 return false; 386 if (F->arg_size() != RTFArgTypes.size()) 387 return false; 388 389 auto *RTFTyIt = RTFArgTypes.begin(); 390 for (Argument &Arg : F->args()) { 391 if (Arg.getType() != *RTFTyIt) 392 return false; 393 394 ++RTFTyIt; 395 } 396 397 return true; 398 } 399 400 // Helper to collect all uses of the declaration in the UsesMap. 401 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 402 unsigned NumUses = 0; 403 if (!RFI.Declaration) 404 return NumUses; 405 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 406 407 if (CollectStats) { 408 NumOpenMPRuntimeFunctionsIdentified += 1; 409 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 410 } 411 412 // TODO: We directly convert uses into proper calls and unknown uses. 413 for (Use &U : RFI.Declaration->uses()) { 414 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 415 if (ModuleSlice.count(UserI->getFunction())) { 416 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 417 ++NumUses; 418 } 419 } else { 420 RFI.getOrCreateUseVector(nullptr).push_back(&U); 421 ++NumUses; 422 } 423 } 424 return NumUses; 425 } 426 427 // Helper function to recollect uses of a runtime function. 428 void recollectUsesForFunction(RuntimeFunction RTF) { 429 auto &RFI = RFIs[RTF]; 430 RFI.clearUsesMap(); 431 collectUses(RFI, /*CollectStats*/ false); 432 } 433 434 // Helper function to recollect uses of all runtime functions. 435 void recollectUses() { 436 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 437 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 438 } 439 440 // Helper function to inherit the calling convention of the function callee. 441 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 442 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 443 CI->setCallingConv(Fn->getCallingConv()); 444 } 445 446 /// Helper to initialize all runtime function information for those defined 447 /// in OpenMPKinds.def. 448 void initializeRuntimeFunctions() { 449 Module &M = *((*ModuleSlice.begin())->getParent()); 450 451 // Helper macros for handling __VA_ARGS__ in OMP_RTL 452 #define OMP_TYPE(VarName, ...) \ 453 Type *VarName = OMPBuilder.VarName; \ 454 (void)VarName; 455 456 #define OMP_ARRAY_TYPE(VarName, ...) \ 457 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 458 (void)VarName##Ty; \ 459 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 460 (void)VarName##PtrTy; 461 462 #define OMP_FUNCTION_TYPE(VarName, ...) \ 463 FunctionType *VarName = OMPBuilder.VarName; \ 464 (void)VarName; \ 465 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 466 (void)VarName##Ptr; 467 468 #define OMP_STRUCT_TYPE(VarName, ...) \ 469 StructType *VarName = OMPBuilder.VarName; \ 470 (void)VarName; \ 471 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 472 (void)VarName##Ptr; 473 474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 475 { \ 476 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 477 Function *F = M.getFunction(_Name); \ 478 RTLFunctions.insert(F); \ 479 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 480 RuntimeFunctionIDMap[F] = _Enum; \ 481 auto &RFI = RFIs[_Enum]; \ 482 RFI.Kind = _Enum; \ 483 RFI.Name = _Name; \ 484 RFI.IsVarArg = _IsVarArg; \ 485 RFI.ReturnType = OMPBuilder._ReturnType; \ 486 RFI.ArgumentTypes = std::move(ArgsTypes); \ 487 RFI.Declaration = F; \ 488 unsigned NumUses = collectUses(RFI); \ 489 (void)NumUses; \ 490 LLVM_DEBUG({ \ 491 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 492 << " found\n"; \ 493 if (RFI.Declaration) \ 494 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 495 << RFI.getNumFunctionsWithUses() \ 496 << " different functions.\n"; \ 497 }); \ 498 } \ 499 } 500 #include "llvm/Frontend/OpenMP/OMPKinds.def" 501 502 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 503 // functions, except if `optnone` is present. 504 if (isOpenMPDevice(M)) { 505 for (Function &F : M) { 506 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 507 if (F.hasFnAttribute(Attribute::NoInline) && 508 F.getName().startswith(Prefix) && 509 !F.hasFnAttribute(Attribute::OptimizeNone)) 510 F.removeFnAttr(Attribute::NoInline); 511 } 512 } 513 514 // TODO: We should attach the attributes defined in OMPKinds.def. 515 } 516 517 /// Collection of known kernels (\see Kernel) in the module. 518 KernelSet &Kernels; 519 520 /// Collection of known OpenMP runtime functions.. 521 DenseSet<const Function *> RTLFunctions; 522 }; 523 524 template <typename Ty, bool InsertInvalidates = true> 525 struct BooleanStateWithSetVector : public BooleanState { 526 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 527 bool insert(const Ty &Elem) { 528 if (InsertInvalidates) 529 BooleanState::indicatePessimisticFixpoint(); 530 return Set.insert(Elem); 531 } 532 533 const Ty &operator[](int Idx) const { return Set[Idx]; } 534 bool operator==(const BooleanStateWithSetVector &RHS) const { 535 return BooleanState::operator==(RHS) && Set == RHS.Set; 536 } 537 bool operator!=(const BooleanStateWithSetVector &RHS) const { 538 return !(*this == RHS); 539 } 540 541 bool empty() const { return Set.empty(); } 542 size_t size() const { return Set.size(); } 543 544 /// "Clamp" this state with \p RHS. 545 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 546 BooleanState::operator^=(RHS); 547 Set.insert(RHS.Set.begin(), RHS.Set.end()); 548 return *this; 549 } 550 551 private: 552 /// A set to keep track of elements. 553 SetVector<Ty> Set; 554 555 public: 556 typename decltype(Set)::iterator begin() { return Set.begin(); } 557 typename decltype(Set)::iterator end() { return Set.end(); } 558 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 559 typename decltype(Set)::const_iterator end() const { return Set.end(); } 560 }; 561 562 template <typename Ty, bool InsertInvalidates = true> 563 using BooleanStateWithPtrSetVector = 564 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 565 566 struct KernelInfoState : AbstractState { 567 /// Flag to track if we reached a fixpoint. 568 bool IsAtFixpoint = false; 569 570 /// The parallel regions (identified by the outlined parallel functions) that 571 /// can be reached from the associated function. 572 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 573 ReachedKnownParallelRegions; 574 575 /// State to track what parallel region we might reach. 576 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 577 578 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 579 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 580 /// false. 581 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 582 583 /// The __kmpc_target_init call in this kernel, if any. If we find more than 584 /// one we abort as the kernel is malformed. 585 CallBase *KernelInitCB = nullptr; 586 587 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 588 /// one we abort as the kernel is malformed. 589 CallBase *KernelDeinitCB = nullptr; 590 591 /// Flag to indicate if the associated function is a kernel entry. 592 bool IsKernelEntry = false; 593 594 /// State to track what kernel entries can reach the associated function. 595 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 596 597 /// State to indicate if we can track parallel level of the associated 598 /// function. We will give up tracking if we encounter unknown caller or the 599 /// caller is __kmpc_parallel_51. 600 BooleanStateWithSetVector<uint8_t> ParallelLevels; 601 602 /// Abstract State interface 603 ///{ 604 605 KernelInfoState() = default; 606 KernelInfoState(bool BestState) { 607 if (!BestState) 608 indicatePessimisticFixpoint(); 609 } 610 611 /// See AbstractState::isValidState(...) 612 bool isValidState() const override { return true; } 613 614 /// See AbstractState::isAtFixpoint(...) 615 bool isAtFixpoint() const override { return IsAtFixpoint; } 616 617 /// See AbstractState::indicatePessimisticFixpoint(...) 618 ChangeStatus indicatePessimisticFixpoint() override { 619 IsAtFixpoint = true; 620 ReachingKernelEntries.indicatePessimisticFixpoint(); 621 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 622 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 623 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 624 return ChangeStatus::CHANGED; 625 } 626 627 /// See AbstractState::indicateOptimisticFixpoint(...) 628 ChangeStatus indicateOptimisticFixpoint() override { 629 IsAtFixpoint = true; 630 ReachingKernelEntries.indicateOptimisticFixpoint(); 631 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 632 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 633 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 634 return ChangeStatus::UNCHANGED; 635 } 636 637 /// Return the assumed state 638 KernelInfoState &getAssumed() { return *this; } 639 const KernelInfoState &getAssumed() const { return *this; } 640 641 bool operator==(const KernelInfoState &RHS) const { 642 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 643 return false; 644 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 645 return false; 646 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 647 return false; 648 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 649 return false; 650 return true; 651 } 652 653 /// Returns true if this kernel contains any OpenMP parallel regions. 654 bool mayContainParallelRegion() { 655 return !ReachedKnownParallelRegions.empty() || 656 !ReachedUnknownParallelRegions.empty(); 657 } 658 659 /// Return empty set as the best state of potential values. 660 static KernelInfoState getBestState() { return KernelInfoState(true); } 661 662 static KernelInfoState getBestState(KernelInfoState &KIS) { 663 return getBestState(); 664 } 665 666 /// Return full set as the worst state of potential values. 667 static KernelInfoState getWorstState() { return KernelInfoState(false); } 668 669 /// "Clamp" this state with \p KIS. 670 KernelInfoState operator^=(const KernelInfoState &KIS) { 671 // Do not merge two different _init and _deinit call sites. 672 if (KIS.KernelInitCB) { 673 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 674 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 675 "assumptions."); 676 KernelInitCB = KIS.KernelInitCB; 677 } 678 if (KIS.KernelDeinitCB) { 679 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 680 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 681 "assumptions."); 682 KernelDeinitCB = KIS.KernelDeinitCB; 683 } 684 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 685 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 686 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 687 return *this; 688 } 689 690 KernelInfoState operator&=(const KernelInfoState &KIS) { 691 return (*this ^= KIS); 692 } 693 694 ///} 695 }; 696 697 /// Used to map the values physically (in the IR) stored in an offload 698 /// array, to a vector in memory. 699 struct OffloadArray { 700 /// Physical array (in the IR). 701 AllocaInst *Array = nullptr; 702 /// Mapped values. 703 SmallVector<Value *, 8> StoredValues; 704 /// Last stores made in the offload array. 705 SmallVector<StoreInst *, 8> LastAccesses; 706 707 OffloadArray() = default; 708 709 /// Initializes the OffloadArray with the values stored in \p Array before 710 /// instruction \p Before is reached. Returns false if the initialization 711 /// fails. 712 /// This MUST be used immediately after the construction of the object. 713 bool initialize(AllocaInst &Array, Instruction &Before) { 714 if (!Array.getAllocatedType()->isArrayTy()) 715 return false; 716 717 if (!getValues(Array, Before)) 718 return false; 719 720 this->Array = &Array; 721 return true; 722 } 723 724 static const unsigned DeviceIDArgNum = 1; 725 static const unsigned BasePtrsArgNum = 3; 726 static const unsigned PtrsArgNum = 4; 727 static const unsigned SizesArgNum = 5; 728 729 private: 730 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 731 /// \p Array, leaving StoredValues with the values stored before the 732 /// instruction \p Before is reached. 733 bool getValues(AllocaInst &Array, Instruction &Before) { 734 // Initialize container. 735 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 736 StoredValues.assign(NumValues, nullptr); 737 LastAccesses.assign(NumValues, nullptr); 738 739 // TODO: This assumes the instruction \p Before is in the same 740 // BasicBlock as Array. Make it general, for any control flow graph. 741 BasicBlock *BB = Array.getParent(); 742 if (BB != Before.getParent()) 743 return false; 744 745 const DataLayout &DL = Array.getModule()->getDataLayout(); 746 const unsigned int PointerSize = DL.getPointerSize(); 747 748 for (Instruction &I : *BB) { 749 if (&I == &Before) 750 break; 751 752 if (!isa<StoreInst>(&I)) 753 continue; 754 755 auto *S = cast<StoreInst>(&I); 756 int64_t Offset = -1; 757 auto *Dst = 758 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 759 if (Dst == &Array) { 760 int64_t Idx = Offset / PointerSize; 761 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 762 LastAccesses[Idx] = S; 763 } 764 } 765 766 return isFilled(); 767 } 768 769 /// Returns true if all values in StoredValues and 770 /// LastAccesses are not nullptrs. 771 bool isFilled() { 772 const unsigned NumValues = StoredValues.size(); 773 for (unsigned I = 0; I < NumValues; ++I) { 774 if (!StoredValues[I] || !LastAccesses[I]) 775 return false; 776 } 777 778 return true; 779 } 780 }; 781 782 struct OpenMPOpt { 783 784 using OptimizationRemarkGetter = 785 function_ref<OptimizationRemarkEmitter &(Function *)>; 786 787 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 788 OptimizationRemarkGetter OREGetter, 789 OMPInformationCache &OMPInfoCache, Attributor &A) 790 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 791 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 792 793 /// Check if any remarks are enabled for openmp-opt 794 bool remarksEnabled() { 795 auto &Ctx = M.getContext(); 796 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 797 } 798 799 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 800 bool run(bool IsModulePass) { 801 if (SCC.empty()) 802 return false; 803 804 bool Changed = false; 805 806 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 807 << " functions in a slice with " 808 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 809 810 if (IsModulePass) { 811 Changed |= runAttributor(IsModulePass); 812 813 // Recollect uses, in case Attributor deleted any. 814 OMPInfoCache.recollectUses(); 815 816 // TODO: This should be folded into buildCustomStateMachine. 817 Changed |= rewriteDeviceCodeStateMachine(); 818 819 if (remarksEnabled()) 820 analysisGlobalization(); 821 822 Changed |= eliminateBarriers(); 823 } else { 824 if (PrintICVValues) 825 printICVs(); 826 if (PrintOpenMPKernels) 827 printKernels(); 828 829 Changed |= runAttributor(IsModulePass); 830 831 // Recollect uses, in case Attributor deleted any. 832 OMPInfoCache.recollectUses(); 833 834 Changed |= deleteParallelRegions(); 835 836 if (HideMemoryTransferLatency) 837 Changed |= hideMemTransfersLatency(); 838 Changed |= deduplicateRuntimeCalls(); 839 if (EnableParallelRegionMerging) { 840 if (mergeParallelRegions()) { 841 deduplicateRuntimeCalls(); 842 Changed = true; 843 } 844 } 845 846 Changed |= eliminateBarriers(); 847 } 848 849 return Changed; 850 } 851 852 /// Print initial ICV values for testing. 853 /// FIXME: This should be done from the Attributor once it is added. 854 void printICVs() const { 855 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 856 ICV_proc_bind}; 857 858 for (Function *F : OMPInfoCache.ModuleSlice) { 859 for (auto ICV : ICVs) { 860 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 861 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 862 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 863 << " Value: " 864 << (ICVInfo.InitValue 865 ? toString(ICVInfo.InitValue->getValue(), 10, true) 866 : "IMPLEMENTATION_DEFINED"); 867 }; 868 869 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 870 } 871 } 872 } 873 874 /// Print OpenMP GPU kernels for testing. 875 void printKernels() const { 876 for (Function *F : SCC) { 877 if (!OMPInfoCache.Kernels.count(F)) 878 continue; 879 880 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 881 return ORA << "OpenMP GPU kernel " 882 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 883 }; 884 885 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 886 } 887 } 888 889 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 890 /// given it has to be the callee or a nullptr is returned. 891 static CallInst *getCallIfRegularCall( 892 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 893 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 894 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 895 (!RFI || 896 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 897 return CI; 898 return nullptr; 899 } 900 901 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 902 /// the callee or a nullptr is returned. 903 static CallInst *getCallIfRegularCall( 904 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 905 CallInst *CI = dyn_cast<CallInst>(&V); 906 if (CI && !CI->hasOperandBundles() && 907 (!RFI || 908 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 909 return CI; 910 return nullptr; 911 } 912 913 private: 914 /// Merge parallel regions when it is safe. 915 bool mergeParallelRegions() { 916 const unsigned CallbackCalleeOperand = 2; 917 const unsigned CallbackFirstArgOperand = 3; 918 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 919 920 // Check if there are any __kmpc_fork_call calls to merge. 921 OMPInformationCache::RuntimeFunctionInfo &RFI = 922 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 923 924 if (!RFI.Declaration) 925 return false; 926 927 // Unmergable calls that prevent merging a parallel region. 928 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 929 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 930 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 931 }; 932 933 bool Changed = false; 934 LoopInfo *LI = nullptr; 935 DominatorTree *DT = nullptr; 936 937 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 938 939 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 940 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 941 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 942 BasicBlock *CGEndBB = 943 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 944 assert(StartBB != nullptr && "StartBB should not be null"); 945 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 946 assert(EndBB != nullptr && "EndBB should not be null"); 947 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 948 }; 949 950 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 951 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 952 ReplacementValue = &Inner; 953 return CodeGenIP; 954 }; 955 956 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 957 958 /// Create a sequential execution region within a merged parallel region, 959 /// encapsulated in a master construct with a barrier for synchronization. 960 auto CreateSequentialRegion = [&](Function *OuterFn, 961 BasicBlock *OuterPredBB, 962 Instruction *SeqStartI, 963 Instruction *SeqEndI) { 964 // Isolate the instructions of the sequential region to a separate 965 // block. 966 BasicBlock *ParentBB = SeqStartI->getParent(); 967 BasicBlock *SeqEndBB = 968 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 969 BasicBlock *SeqAfterBB = 970 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 971 BasicBlock *SeqStartBB = 972 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 973 974 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 975 "Expected a different CFG"); 976 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 977 ParentBB->getTerminator()->eraseFromParent(); 978 979 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 980 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 981 BasicBlock *CGEndBB = 982 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 983 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 984 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 985 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 986 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 987 }; 988 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 989 990 // Find outputs from the sequential region to outside users and 991 // broadcast their values to them. 992 for (Instruction &I : *SeqStartBB) { 993 SmallPtrSet<Instruction *, 4> OutsideUsers; 994 for (User *Usr : I.users()) { 995 Instruction &UsrI = *cast<Instruction>(Usr); 996 // Ignore outputs to LT intrinsics, code extraction for the merged 997 // parallel region will fix them. 998 if (UsrI.isLifetimeStartOrEnd()) 999 continue; 1000 1001 if (UsrI.getParent() != SeqStartBB) 1002 OutsideUsers.insert(&UsrI); 1003 } 1004 1005 if (OutsideUsers.empty()) 1006 continue; 1007 1008 // Emit an alloca in the outer region to store the broadcasted 1009 // value. 1010 const DataLayout &DL = M.getDataLayout(); 1011 AllocaInst *AllocaI = new AllocaInst( 1012 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1013 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1014 1015 // Emit a store instruction in the sequential BB to update the 1016 // value. 1017 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1018 1019 // Emit a load instruction and replace the use of the output value 1020 // with it. 1021 for (Instruction *UsrI : OutsideUsers) { 1022 LoadInst *LoadI = new LoadInst( 1023 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1024 UsrI->replaceUsesOfWith(&I, LoadI); 1025 } 1026 } 1027 1028 OpenMPIRBuilder::LocationDescription Loc( 1029 InsertPointTy(ParentBB, ParentBB->end()), DL); 1030 InsertPointTy SeqAfterIP = 1031 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1032 1033 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1034 1035 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1036 1037 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1038 << "\n"); 1039 }; 1040 1041 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1042 // contained in BB and only separated by instructions that can be 1043 // redundantly executed in parallel. The block BB is split before the first 1044 // call (in MergableCIs) and after the last so the entire region we merge 1045 // into a single parallel region is contained in a single basic block 1046 // without any other instructions. We use the OpenMPIRBuilder to outline 1047 // that block and call the resulting function via __kmpc_fork_call. 1048 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1049 BasicBlock *BB) { 1050 // TODO: Change the interface to allow single CIs expanded, e.g, to 1051 // include an outer loop. 1052 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1053 1054 auto Remark = [&](OptimizationRemark OR) { 1055 OR << "Parallel region merged with parallel region" 1056 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1057 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1058 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1059 if (CI != MergableCIs.back()) 1060 OR << ", "; 1061 } 1062 return OR << "."; 1063 }; 1064 1065 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1066 1067 Function *OriginalFn = BB->getParent(); 1068 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1069 << " parallel regions in " << OriginalFn->getName() 1070 << "\n"); 1071 1072 // Isolate the calls to merge in a separate block. 1073 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1074 BasicBlock *AfterBB = 1075 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1076 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1077 "omp.par.merged"); 1078 1079 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1080 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1081 BB->getTerminator()->eraseFromParent(); 1082 1083 // Create sequential regions for sequential instructions that are 1084 // in-between mergable parallel regions. 1085 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1086 It != End; ++It) { 1087 Instruction *ForkCI = *It; 1088 Instruction *NextForkCI = *(It + 1); 1089 1090 // Continue if there are not in-between instructions. 1091 if (ForkCI->getNextNode() == NextForkCI) 1092 continue; 1093 1094 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1095 NextForkCI->getPrevNode()); 1096 } 1097 1098 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1099 DL); 1100 IRBuilder<>::InsertPoint AllocaIP( 1101 &OriginalFn->getEntryBlock(), 1102 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1103 // Create the merged parallel region with default proc binding, to 1104 // avoid overriding binding settings, and without explicit cancellation. 1105 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1106 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1107 OMP_PROC_BIND_default, /* IsCancellable */ false); 1108 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1109 1110 // Perform the actual outlining. 1111 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1112 1113 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1114 1115 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1116 // callbacks. 1117 SmallVector<Value *, 8> Args; 1118 for (auto *CI : MergableCIs) { 1119 Value *Callee = CI->getArgOperand(CallbackCalleeOperand); 1120 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; 1121 Args.clear(); 1122 Args.push_back(OutlinedFn->getArg(0)); 1123 Args.push_back(OutlinedFn->getArg(1)); 1124 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1125 ++U) 1126 Args.push_back(CI->getArgOperand(U)); 1127 1128 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1129 if (CI->getDebugLoc()) 1130 NewCI->setDebugLoc(CI->getDebugLoc()); 1131 1132 // Forward parameter attributes from the callback to the callee. 1133 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1134 ++U) 1135 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1136 NewCI->addParamAttr( 1137 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1138 1139 // Emit an explicit barrier to replace the implicit fork-join barrier. 1140 if (CI != MergableCIs.back()) { 1141 // TODO: Remove barrier if the merged parallel region includes the 1142 // 'nowait' clause. 1143 OMPInfoCache.OMPBuilder.createBarrier( 1144 InsertPointTy(NewCI->getParent(), 1145 NewCI->getNextNode()->getIterator()), 1146 OMPD_parallel); 1147 } 1148 1149 CI->eraseFromParent(); 1150 } 1151 1152 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1153 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1154 CGUpdater.reanalyzeFunction(*OriginalFn); 1155 1156 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1157 1158 return true; 1159 }; 1160 1161 // Helper function that identifes sequences of 1162 // __kmpc_fork_call uses in a basic block. 1163 auto DetectPRsCB = [&](Use &U, Function &F) { 1164 CallInst *CI = getCallIfRegularCall(U, &RFI); 1165 BB2PRMap[CI->getParent()].insert(CI); 1166 1167 return false; 1168 }; 1169 1170 BB2PRMap.clear(); 1171 RFI.foreachUse(SCC, DetectPRsCB); 1172 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1173 // Find mergable parallel regions within a basic block that are 1174 // safe to merge, that is any in-between instructions can safely 1175 // execute in parallel after merging. 1176 // TODO: support merging across basic-blocks. 1177 for (auto &It : BB2PRMap) { 1178 auto &CIs = It.getSecond(); 1179 if (CIs.size() < 2) 1180 continue; 1181 1182 BasicBlock *BB = It.getFirst(); 1183 SmallVector<CallInst *, 4> MergableCIs; 1184 1185 /// Returns true if the instruction is mergable, false otherwise. 1186 /// A terminator instruction is unmergable by definition since merging 1187 /// works within a BB. Instructions before the mergable region are 1188 /// mergable if they are not calls to OpenMP runtime functions that may 1189 /// set different execution parameters for subsequent parallel regions. 1190 /// Instructions in-between parallel regions are mergable if they are not 1191 /// calls to any non-intrinsic function since that may call a non-mergable 1192 /// OpenMP runtime function. 1193 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1194 // We do not merge across BBs, hence return false (unmergable) if the 1195 // instruction is a terminator. 1196 if (I.isTerminator()) 1197 return false; 1198 1199 if (!isa<CallInst>(&I)) 1200 return true; 1201 1202 CallInst *CI = cast<CallInst>(&I); 1203 if (IsBeforeMergableRegion) { 1204 Function *CalledFunction = CI->getCalledFunction(); 1205 if (!CalledFunction) 1206 return false; 1207 // Return false (unmergable) if the call before the parallel 1208 // region calls an explicit affinity (proc_bind) or number of 1209 // threads (num_threads) compiler-generated function. Those settings 1210 // may be incompatible with following parallel regions. 1211 // TODO: ICV tracking to detect compatibility. 1212 for (const auto &RFI : UnmergableCallsInfo) { 1213 if (CalledFunction == RFI.Declaration) 1214 return false; 1215 } 1216 } else { 1217 // Return false (unmergable) if there is a call instruction 1218 // in-between parallel regions when it is not an intrinsic. It 1219 // may call an unmergable OpenMP runtime function in its callpath. 1220 // TODO: Keep track of possible OpenMP calls in the callpath. 1221 if (!isa<IntrinsicInst>(CI)) 1222 return false; 1223 } 1224 1225 return true; 1226 }; 1227 // Find maximal number of parallel region CIs that are safe to merge. 1228 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1229 Instruction &I = *It; 1230 ++It; 1231 1232 if (CIs.count(&I)) { 1233 MergableCIs.push_back(cast<CallInst>(&I)); 1234 continue; 1235 } 1236 1237 // Continue expanding if the instruction is mergable. 1238 if (IsMergable(I, MergableCIs.empty())) 1239 continue; 1240 1241 // Forward the instruction iterator to skip the next parallel region 1242 // since there is an unmergable instruction which can affect it. 1243 for (; It != End; ++It) { 1244 Instruction &SkipI = *It; 1245 if (CIs.count(&SkipI)) { 1246 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1247 << " due to " << I << "\n"); 1248 ++It; 1249 break; 1250 } 1251 } 1252 1253 // Store mergable regions found. 1254 if (MergableCIs.size() > 1) { 1255 MergableCIsVector.push_back(MergableCIs); 1256 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1257 << " parallel regions in block " << BB->getName() 1258 << " of function " << BB->getParent()->getName() 1259 << "\n";); 1260 } 1261 1262 MergableCIs.clear(); 1263 } 1264 1265 if (!MergableCIsVector.empty()) { 1266 Changed = true; 1267 1268 for (auto &MergableCIs : MergableCIsVector) 1269 Merge(MergableCIs, BB); 1270 MergableCIsVector.clear(); 1271 } 1272 } 1273 1274 if (Changed) { 1275 /// Re-collect use for fork calls, emitted barrier calls, and 1276 /// any emitted master/end_master calls. 1277 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1278 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1279 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1280 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1281 } 1282 1283 return Changed; 1284 } 1285 1286 /// Try to delete parallel regions if possible. 1287 bool deleteParallelRegions() { 1288 const unsigned CallbackCalleeOperand = 2; 1289 1290 OMPInformationCache::RuntimeFunctionInfo &RFI = 1291 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1292 1293 if (!RFI.Declaration) 1294 return false; 1295 1296 bool Changed = false; 1297 auto DeleteCallCB = [&](Use &U, Function &) { 1298 CallInst *CI = getCallIfRegularCall(U); 1299 if (!CI) 1300 return false; 1301 auto *Fn = dyn_cast<Function>( 1302 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1303 if (!Fn) 1304 return false; 1305 if (!Fn->onlyReadsMemory()) 1306 return false; 1307 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1308 return false; 1309 1310 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1311 << CI->getCaller()->getName() << "\n"); 1312 1313 auto Remark = [&](OptimizationRemark OR) { 1314 return OR << "Removing parallel region with no side-effects."; 1315 }; 1316 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1317 1318 CGUpdater.removeCallSite(*CI); 1319 CI->eraseFromParent(); 1320 Changed = true; 1321 ++NumOpenMPParallelRegionsDeleted; 1322 return true; 1323 }; 1324 1325 RFI.foreachUse(SCC, DeleteCallCB); 1326 1327 return Changed; 1328 } 1329 1330 /// Try to eliminate runtime calls by reusing existing ones. 1331 bool deduplicateRuntimeCalls() { 1332 bool Changed = false; 1333 1334 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1335 OMPRTL_omp_get_num_threads, 1336 OMPRTL_omp_in_parallel, 1337 OMPRTL_omp_get_cancellation, 1338 OMPRTL_omp_get_thread_limit, 1339 OMPRTL_omp_get_supported_active_levels, 1340 OMPRTL_omp_get_level, 1341 OMPRTL_omp_get_ancestor_thread_num, 1342 OMPRTL_omp_get_team_size, 1343 OMPRTL_omp_get_active_level, 1344 OMPRTL_omp_in_final, 1345 OMPRTL_omp_get_proc_bind, 1346 OMPRTL_omp_get_num_places, 1347 OMPRTL_omp_get_num_procs, 1348 OMPRTL_omp_get_place_num, 1349 OMPRTL_omp_get_partition_num_places, 1350 OMPRTL_omp_get_partition_place_nums}; 1351 1352 // Global-tid is handled separately. 1353 SmallSetVector<Value *, 16> GTIdArgs; 1354 collectGlobalThreadIdArguments(GTIdArgs); 1355 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1356 << " global thread ID arguments\n"); 1357 1358 for (Function *F : SCC) { 1359 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1360 Changed |= deduplicateRuntimeCalls( 1361 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1362 1363 // __kmpc_global_thread_num is special as we can replace it with an 1364 // argument in enough cases to make it worth trying. 1365 Value *GTIdArg = nullptr; 1366 for (Argument &Arg : F->args()) 1367 if (GTIdArgs.count(&Arg)) { 1368 GTIdArg = &Arg; 1369 break; 1370 } 1371 Changed |= deduplicateRuntimeCalls( 1372 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1373 } 1374 1375 return Changed; 1376 } 1377 1378 /// Tries to hide the latency of runtime calls that involve host to 1379 /// device memory transfers by splitting them into their "issue" and "wait" 1380 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1381 /// moved downards as much as possible. The "issue" issues the memory transfer 1382 /// asynchronously, returning a handle. The "wait" waits in the returned 1383 /// handle for the memory transfer to finish. 1384 bool hideMemTransfersLatency() { 1385 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1386 bool Changed = false; 1387 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1388 auto *RTCall = getCallIfRegularCall(U, &RFI); 1389 if (!RTCall) 1390 return false; 1391 1392 OffloadArray OffloadArrays[3]; 1393 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1394 return false; 1395 1396 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1397 1398 // TODO: Check if can be moved upwards. 1399 bool WasSplit = false; 1400 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1401 if (WaitMovementPoint) 1402 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1403 1404 Changed |= WasSplit; 1405 return WasSplit; 1406 }; 1407 RFI.foreachUse(SCC, SplitMemTransfers); 1408 1409 return Changed; 1410 } 1411 1412 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1413 /// TODO: Make this an AA and expand it to work across blocks and functions. 1414 bool eliminateBarriers() { 1415 bool Changed = false; 1416 1417 if (DisableOpenMPOptBarrierElimination) 1418 return /*Changed=*/false; 1419 1420 if (OMPInfoCache.Kernels.empty()) 1421 return /*Changed=*/false; 1422 1423 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1424 1425 class BarrierInfo { 1426 Instruction *I; 1427 enum ImplicitBarrierType Type; 1428 1429 public: 1430 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1431 BarrierInfo(Instruction &I) : I(&I) {} 1432 1433 bool isImplicit() { return !I; } 1434 1435 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1436 1437 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1438 1439 Instruction *getInstruction() { return I; } 1440 }; 1441 1442 for (Function *Kernel : OMPInfoCache.Kernels) { 1443 for (BasicBlock &BB : *Kernel) { 1444 SmallVector<BarrierInfo, 8> BarriersInBlock; 1445 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1446 1447 // Add the kernel entry implicit barrier. 1448 if (&Kernel->getEntryBlock() == &BB) 1449 BarriersInBlock.push_back(IBT_ENTRY); 1450 1451 // Find implicit and explicit aligned barriers in the same basic block. 1452 for (Instruction &I : BB) { 1453 if (isa<ReturnInst>(I)) { 1454 // Add the implicit barrier when exiting the kernel. 1455 BarriersInBlock.push_back(IBT_EXIT); 1456 continue; 1457 } 1458 CallBase *CB = dyn_cast<CallBase>(&I); 1459 if (!CB) 1460 continue; 1461 1462 auto IsAlignBarrierCB = [&](CallBase &CB) { 1463 switch (CB.getIntrinsicID()) { 1464 case Intrinsic::nvvm_barrier0: 1465 case Intrinsic::nvvm_barrier0_and: 1466 case Intrinsic::nvvm_barrier0_or: 1467 case Intrinsic::nvvm_barrier0_popc: 1468 return true; 1469 default: 1470 break; 1471 } 1472 return hasAssumption(CB, 1473 KnownAssumptionString("ompx_aligned_barrier")); 1474 }; 1475 1476 if (IsAlignBarrierCB(*CB)) { 1477 // Add an explicit aligned barrier. 1478 BarriersInBlock.push_back(I); 1479 } 1480 } 1481 1482 if (BarriersInBlock.size() <= 1) 1483 continue; 1484 1485 // A barrier in a barrier pair is removeable if all instructions 1486 // between the barriers in the pair are side-effect free modulo the 1487 // barrier operation. 1488 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1489 BarrierInfo *EndBI) { 1490 assert( 1491 !StartBI->isImplicitExit() && 1492 "Expected start barrier to be other than a kernel exit barrier"); 1493 assert( 1494 !EndBI->isImplicitEntry() && 1495 "Expected end barrier to be other than a kernel entry barrier"); 1496 // If StarBI instructions is null then this the implicit 1497 // kernel entry barrier, so iterate from the first instruction in the 1498 // entry block. 1499 Instruction *I = (StartBI->isImplicitEntry()) 1500 ? &Kernel->getEntryBlock().front() 1501 : StartBI->getInstruction()->getNextNode(); 1502 assert(I && "Expected non-null start instruction"); 1503 Instruction *E = (EndBI->isImplicitExit()) 1504 ? I->getParent()->getTerminator() 1505 : EndBI->getInstruction(); 1506 assert(E && "Expected non-null end instruction"); 1507 1508 for (; I != E; I = I->getNextNode()) { 1509 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1510 continue; 1511 1512 auto IsPotentiallyAffectedByBarrier = 1513 [](Optional<MemoryLocation> Loc) { 1514 const Value *Obj = (Loc && Loc->Ptr) 1515 ? getUnderlyingObject(Loc->Ptr) 1516 : nullptr; 1517 if (!Obj) { 1518 LLVM_DEBUG( 1519 dbgs() 1520 << "Access to unknown location requires barriers\n"); 1521 return true; 1522 } 1523 if (isa<UndefValue>(Obj)) 1524 return false; 1525 if (isa<AllocaInst>(Obj)) 1526 return false; 1527 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1528 if (GV->isConstant()) 1529 return false; 1530 if (GV->isThreadLocal()) 1531 return false; 1532 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1533 return false; 1534 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1535 return false; 1536 } 1537 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1538 << "' requires barriers\n"); 1539 return true; 1540 }; 1541 1542 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1543 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1544 if (IsPotentiallyAffectedByBarrier(Loc)) 1545 return false; 1546 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1547 Optional<MemoryLocation> Loc = 1548 MemoryLocation::getForSource(MTI); 1549 if (IsPotentiallyAffectedByBarrier(Loc)) 1550 return false; 1551 } 1552 continue; 1553 } 1554 1555 if (auto *LI = dyn_cast<LoadInst>(I)) 1556 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1557 continue; 1558 1559 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1560 if (IsPotentiallyAffectedByBarrier(Loc)) 1561 return false; 1562 } 1563 1564 return true; 1565 }; 1566 1567 // Iterate barrier pairs and remove an explicit barrier if analysis 1568 // deems it removeable. 1569 for (auto *It = BarriersInBlock.begin(), 1570 *End = BarriersInBlock.end() - 1; 1571 It != End; ++It) { 1572 1573 BarrierInfo *StartBI = It; 1574 BarrierInfo *EndBI = (It + 1); 1575 1576 // Cannot remove when both are implicit barriers, continue. 1577 if (StartBI->isImplicit() && EndBI->isImplicit()) 1578 continue; 1579 1580 if (!IsBarrierRemoveable(StartBI, EndBI)) 1581 continue; 1582 1583 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1584 "Expected at least one explicit barrier to remove."); 1585 1586 // Remove an explicit barrier, check first, then second. 1587 if (!StartBI->isImplicit()) { 1588 LLVM_DEBUG(dbgs() << "Remove start barrier " 1589 << *StartBI->getInstruction() << "\n"); 1590 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1591 } else { 1592 LLVM_DEBUG(dbgs() << "Remove end barrier " 1593 << *EndBI->getInstruction() << "\n"); 1594 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1595 } 1596 } 1597 1598 if (BarriersToBeDeleted.empty()) 1599 continue; 1600 1601 Changed = true; 1602 for (Instruction *I : BarriersToBeDeleted) { 1603 ++NumBarriersEliminated; 1604 auto Remark = [&](OptimizationRemark OR) { 1605 return OR << "Redundant barrier eliminated."; 1606 }; 1607 1608 if (EnableVerboseRemarks) 1609 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1610 I->eraseFromParent(); 1611 } 1612 } 1613 } 1614 1615 return Changed; 1616 } 1617 1618 void analysisGlobalization() { 1619 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1620 1621 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1622 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1623 auto Remark = [&](OptimizationRemarkMissed ORM) { 1624 return ORM 1625 << "Found thread data sharing on the GPU. " 1626 << "Expect degraded performance due to data globalization."; 1627 }; 1628 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1629 } 1630 1631 return false; 1632 }; 1633 1634 RFI.foreachUse(SCC, CheckGlobalization); 1635 } 1636 1637 /// Maps the values stored in the offload arrays passed as arguments to 1638 /// \p RuntimeCall into the offload arrays in \p OAs. 1639 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1640 MutableArrayRef<OffloadArray> OAs) { 1641 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1642 1643 // A runtime call that involves memory offloading looks something like: 1644 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1645 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1646 // ...) 1647 // So, the idea is to access the allocas that allocate space for these 1648 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1649 // Therefore: 1650 // i8** %offload_baseptrs. 1651 Value *BasePtrsArg = 1652 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1653 // i8** %offload_ptrs. 1654 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1655 // i8** %offload_sizes. 1656 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1657 1658 // Get values stored in **offload_baseptrs. 1659 auto *V = getUnderlyingObject(BasePtrsArg); 1660 if (!isa<AllocaInst>(V)) 1661 return false; 1662 auto *BasePtrsArray = cast<AllocaInst>(V); 1663 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1664 return false; 1665 1666 // Get values stored in **offload_baseptrs. 1667 V = getUnderlyingObject(PtrsArg); 1668 if (!isa<AllocaInst>(V)) 1669 return false; 1670 auto *PtrsArray = cast<AllocaInst>(V); 1671 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1672 return false; 1673 1674 // Get values stored in **offload_sizes. 1675 V = getUnderlyingObject(SizesArg); 1676 // If it's a [constant] global array don't analyze it. 1677 if (isa<GlobalValue>(V)) 1678 return isa<Constant>(V); 1679 if (!isa<AllocaInst>(V)) 1680 return false; 1681 1682 auto *SizesArray = cast<AllocaInst>(V); 1683 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1684 return false; 1685 1686 return true; 1687 } 1688 1689 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1690 /// For now this is a way to test that the function getValuesInOffloadArrays 1691 /// is working properly. 1692 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1693 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1694 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1695 1696 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1697 std::string ValuesStr; 1698 raw_string_ostream Printer(ValuesStr); 1699 std::string Separator = " --- "; 1700 1701 for (auto *BP : OAs[0].StoredValues) { 1702 BP->print(Printer); 1703 Printer << Separator; 1704 } 1705 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1706 ValuesStr.clear(); 1707 1708 for (auto *P : OAs[1].StoredValues) { 1709 P->print(Printer); 1710 Printer << Separator; 1711 } 1712 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1713 ValuesStr.clear(); 1714 1715 for (auto *S : OAs[2].StoredValues) { 1716 S->print(Printer); 1717 Printer << Separator; 1718 } 1719 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1720 } 1721 1722 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1723 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1724 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1725 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1726 // Make it traverse the CFG. 1727 1728 Instruction *CurrentI = &RuntimeCall; 1729 bool IsWorthIt = false; 1730 while ((CurrentI = CurrentI->getNextNode())) { 1731 1732 // TODO: Once we detect the regions to be offloaded we should use the 1733 // alias analysis manager to check if CurrentI may modify one of 1734 // the offloaded regions. 1735 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1736 if (IsWorthIt) 1737 return CurrentI; 1738 1739 return nullptr; 1740 } 1741 1742 // FIXME: For now if we move it over anything without side effect 1743 // is worth it. 1744 IsWorthIt = true; 1745 } 1746 1747 // Return end of BasicBlock. 1748 return RuntimeCall.getParent()->getTerminator(); 1749 } 1750 1751 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1752 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1753 Instruction &WaitMovementPoint) { 1754 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1755 // function. Used for storing information of the async transfer, allowing to 1756 // wait on it later. 1757 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1758 auto *F = RuntimeCall.getCaller(); 1759 Instruction *FirstInst = &(F->getEntryBlock().front()); 1760 AllocaInst *Handle = new AllocaInst( 1761 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1762 1763 // Add "issue" runtime call declaration: 1764 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1765 // i8**, i8**, i64*, i64*) 1766 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1767 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1768 1769 // Change RuntimeCall call site for its asynchronous version. 1770 SmallVector<Value *, 16> Args; 1771 for (auto &Arg : RuntimeCall.args()) 1772 Args.push_back(Arg.get()); 1773 Args.push_back(Handle); 1774 1775 CallInst *IssueCallsite = 1776 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1777 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1778 RuntimeCall.eraseFromParent(); 1779 1780 // Add "wait" runtime call declaration: 1781 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1782 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1783 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1784 1785 Value *WaitParams[2] = { 1786 IssueCallsite->getArgOperand( 1787 OffloadArray::DeviceIDArgNum), // device_id. 1788 Handle // handle to wait on. 1789 }; 1790 CallInst *WaitCallsite = CallInst::Create( 1791 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1792 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1793 1794 return true; 1795 } 1796 1797 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1798 bool GlobalOnly, bool &SingleChoice) { 1799 if (CurrentIdent == NextIdent) 1800 return CurrentIdent; 1801 1802 // TODO: Figure out how to actually combine multiple debug locations. For 1803 // now we just keep an existing one if there is a single choice. 1804 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1805 SingleChoice = !CurrentIdent; 1806 return NextIdent; 1807 } 1808 return nullptr; 1809 } 1810 1811 /// Return an `struct ident_t*` value that represents the ones used in the 1812 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1813 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1814 /// return value we create one from scratch. We also do not yet combine 1815 /// information, e.g., the source locations, see combinedIdentStruct. 1816 Value * 1817 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1818 Function &F, bool GlobalOnly) { 1819 bool SingleChoice = true; 1820 Value *Ident = nullptr; 1821 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1822 CallInst *CI = getCallIfRegularCall(U, &RFI); 1823 if (!CI || &F != &Caller) 1824 return false; 1825 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1826 /* GlobalOnly */ true, SingleChoice); 1827 return false; 1828 }; 1829 RFI.foreachUse(SCC, CombineIdentStruct); 1830 1831 if (!Ident || !SingleChoice) { 1832 // The IRBuilder uses the insertion block to get to the module, this is 1833 // unfortunate but we work around it for now. 1834 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1835 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1836 &F.getEntryBlock(), F.getEntryBlock().begin())); 1837 // Create a fallback location if non was found. 1838 // TODO: Use the debug locations of the calls instead. 1839 uint32_t SrcLocStrSize; 1840 Constant *Loc = 1841 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1842 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1843 } 1844 return Ident; 1845 } 1846 1847 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1848 /// \p ReplVal if given. 1849 bool deduplicateRuntimeCalls(Function &F, 1850 OMPInformationCache::RuntimeFunctionInfo &RFI, 1851 Value *ReplVal = nullptr) { 1852 auto *UV = RFI.getUseVector(F); 1853 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1854 return false; 1855 1856 LLVM_DEBUG( 1857 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1858 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1859 1860 assert((!ReplVal || (isa<Argument>(ReplVal) && 1861 cast<Argument>(ReplVal)->getParent() == &F)) && 1862 "Unexpected replacement value!"); 1863 1864 // TODO: Use dominance to find a good position instead. 1865 auto CanBeMoved = [this](CallBase &CB) { 1866 unsigned NumArgs = CB.arg_size(); 1867 if (NumArgs == 0) 1868 return true; 1869 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1870 return false; 1871 for (unsigned U = 1; U < NumArgs; ++U) 1872 if (isa<Instruction>(CB.getArgOperand(U))) 1873 return false; 1874 return true; 1875 }; 1876 1877 if (!ReplVal) { 1878 for (Use *U : *UV) 1879 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1880 if (!CanBeMoved(*CI)) 1881 continue; 1882 1883 // If the function is a kernel, dedup will move 1884 // the runtime call right after the kernel init callsite. Otherwise, 1885 // it will move it to the beginning of the caller function. 1886 if (isKernel(F)) { 1887 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1888 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1889 1890 if (KernelInitUV->empty()) 1891 continue; 1892 1893 assert(KernelInitUV->size() == 1 && 1894 "Expected a single __kmpc_target_init in kernel\n"); 1895 1896 CallInst *KernelInitCI = 1897 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1898 assert(KernelInitCI && 1899 "Expected a call to __kmpc_target_init in kernel\n"); 1900 1901 CI->moveAfter(KernelInitCI); 1902 } else 1903 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1904 ReplVal = CI; 1905 break; 1906 } 1907 if (!ReplVal) 1908 return false; 1909 } 1910 1911 // If we use a call as a replacement value we need to make sure the ident is 1912 // valid at the new location. For now we just pick a global one, either 1913 // existing and used by one of the calls, or created from scratch. 1914 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1915 if (!CI->arg_empty() && 1916 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1917 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1918 /* GlobalOnly */ true); 1919 CI->setArgOperand(0, Ident); 1920 } 1921 } 1922 1923 bool Changed = false; 1924 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1925 CallInst *CI = getCallIfRegularCall(U, &RFI); 1926 if (!CI || CI == ReplVal || &F != &Caller) 1927 return false; 1928 assert(CI->getCaller() == &F && "Unexpected call!"); 1929 1930 auto Remark = [&](OptimizationRemark OR) { 1931 return OR << "OpenMP runtime call " 1932 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1933 }; 1934 if (CI->getDebugLoc()) 1935 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1936 else 1937 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1938 1939 CGUpdater.removeCallSite(*CI); 1940 CI->replaceAllUsesWith(ReplVal); 1941 CI->eraseFromParent(); 1942 ++NumOpenMPRuntimeCallsDeduplicated; 1943 Changed = true; 1944 return true; 1945 }; 1946 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1947 1948 return Changed; 1949 } 1950 1951 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1952 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1953 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1954 // initialization. We could define an AbstractAttribute instead and 1955 // run the Attributor here once it can be run as an SCC pass. 1956 1957 // Helper to check the argument \p ArgNo at all call sites of \p F for 1958 // a GTId. 1959 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1960 if (!F.hasLocalLinkage()) 1961 return false; 1962 for (Use &U : F.uses()) { 1963 if (CallInst *CI = getCallIfRegularCall(U)) { 1964 Value *ArgOp = CI->getArgOperand(ArgNo); 1965 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1966 getCallIfRegularCall( 1967 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1968 continue; 1969 } 1970 return false; 1971 } 1972 return true; 1973 }; 1974 1975 // Helper to identify uses of a GTId as GTId arguments. 1976 auto AddUserArgs = [&](Value >Id) { 1977 for (Use &U : GTId.uses()) 1978 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1979 if (CI->isArgOperand(&U)) 1980 if (Function *Callee = CI->getCalledFunction()) 1981 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1982 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1983 }; 1984 1985 // The argument users of __kmpc_global_thread_num calls are GTIds. 1986 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1987 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1988 1989 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1990 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1991 AddUserArgs(*CI); 1992 return false; 1993 }); 1994 1995 // Transitively search for more arguments by looking at the users of the 1996 // ones we know already. During the search the GTIdArgs vector is extended 1997 // so we cannot cache the size nor can we use a range based for. 1998 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1999 AddUserArgs(*GTIdArgs[U]); 2000 } 2001 2002 /// Kernel (=GPU) optimizations and utility functions 2003 /// 2004 ///{{ 2005 2006 /// Check if \p F is a kernel, hence entry point for target offloading. 2007 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2008 2009 /// Cache to remember the unique kernel for a function. 2010 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2011 2012 /// Find the unique kernel that will execute \p F, if any. 2013 Kernel getUniqueKernelFor(Function &F); 2014 2015 /// Find the unique kernel that will execute \p I, if any. 2016 Kernel getUniqueKernelFor(Instruction &I) { 2017 return getUniqueKernelFor(*I.getFunction()); 2018 } 2019 2020 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2021 /// the cases we can avoid taking the address of a function. 2022 bool rewriteDeviceCodeStateMachine(); 2023 2024 /// 2025 ///}} 2026 2027 /// Emit a remark generically 2028 /// 2029 /// This template function can be used to generically emit a remark. The 2030 /// RemarkKind should be one of the following: 2031 /// - OptimizationRemark to indicate a successful optimization attempt 2032 /// - OptimizationRemarkMissed to report a failed optimization attempt 2033 /// - OptimizationRemarkAnalysis to provide additional information about an 2034 /// optimization attempt 2035 /// 2036 /// The remark is built using a callback function provided by the caller that 2037 /// takes a RemarkKind as input and returns a RemarkKind. 2038 template <typename RemarkKind, typename RemarkCallBack> 2039 void emitRemark(Instruction *I, StringRef RemarkName, 2040 RemarkCallBack &&RemarkCB) const { 2041 Function *F = I->getParent()->getParent(); 2042 auto &ORE = OREGetter(F); 2043 2044 if (RemarkName.startswith("OMP")) 2045 ORE.emit([&]() { 2046 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2047 << " [" << RemarkName << "]"; 2048 }); 2049 else 2050 ORE.emit( 2051 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2052 } 2053 2054 /// Emit a remark on a function. 2055 template <typename RemarkKind, typename RemarkCallBack> 2056 void emitRemark(Function *F, StringRef RemarkName, 2057 RemarkCallBack &&RemarkCB) const { 2058 auto &ORE = OREGetter(F); 2059 2060 if (RemarkName.startswith("OMP")) 2061 ORE.emit([&]() { 2062 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2063 << " [" << RemarkName << "]"; 2064 }); 2065 else 2066 ORE.emit( 2067 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2068 } 2069 2070 /// RAII struct to temporarily change an RTL function's linkage to external. 2071 /// This prevents it from being mistakenly removed by other optimizations. 2072 struct ExternalizationRAII { 2073 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2074 RuntimeFunction RFKind) 2075 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2076 if (!Declaration) 2077 return; 2078 2079 LinkageType = Declaration->getLinkage(); 2080 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2081 } 2082 2083 ~ExternalizationRAII() { 2084 if (!Declaration) 2085 return; 2086 2087 Declaration->setLinkage(LinkageType); 2088 } 2089 2090 Function *Declaration; 2091 GlobalValue::LinkageTypes LinkageType; 2092 }; 2093 2094 /// The underlying module. 2095 Module &M; 2096 2097 /// The SCC we are operating on. 2098 SmallVectorImpl<Function *> &SCC; 2099 2100 /// Callback to update the call graph, the first argument is a removed call, 2101 /// the second an optional replacement call. 2102 CallGraphUpdater &CGUpdater; 2103 2104 /// Callback to get an OptimizationRemarkEmitter from a Function * 2105 OptimizationRemarkGetter OREGetter; 2106 2107 /// OpenMP-specific information cache. Also Used for Attributor runs. 2108 OMPInformationCache &OMPInfoCache; 2109 2110 /// Attributor instance. 2111 Attributor &A; 2112 2113 /// Helper function to run Attributor on SCC. 2114 bool runAttributor(bool IsModulePass) { 2115 if (SCC.empty()) 2116 return false; 2117 2118 // Temporarily make these function have external linkage so the Attributor 2119 // doesn't remove them when we try to look them up later. 2120 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2121 ExternalizationRAII EndParallel(OMPInfoCache, 2122 OMPRTL___kmpc_kernel_end_parallel); 2123 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2124 OMPRTL___kmpc_barrier_simple_spmd); 2125 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2126 OMPRTL___kmpc_barrier_simple_generic); 2127 ExternalizationRAII ThreadId(OMPInfoCache, 2128 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2129 ExternalizationRAII NumThreads( 2130 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block); 2131 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2132 2133 registerAAs(IsModulePass); 2134 2135 ChangeStatus Changed = A.run(); 2136 2137 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2138 << " functions, result: " << Changed << ".\n"); 2139 2140 return Changed == ChangeStatus::CHANGED; 2141 } 2142 2143 void registerFoldRuntimeCall(RuntimeFunction RF); 2144 2145 /// Populate the Attributor with abstract attribute opportunities in the 2146 /// function. 2147 void registerAAs(bool IsModulePass); 2148 }; 2149 2150 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2151 if (!OMPInfoCache.ModuleSlice.count(&F)) 2152 return nullptr; 2153 2154 // Use a scope to keep the lifetime of the CachedKernel short. 2155 { 2156 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2157 if (CachedKernel) 2158 return *CachedKernel; 2159 2160 // TODO: We should use an AA to create an (optimistic and callback 2161 // call-aware) call graph. For now we stick to simple patterns that 2162 // are less powerful, basically the worst fixpoint. 2163 if (isKernel(F)) { 2164 CachedKernel = Kernel(&F); 2165 return *CachedKernel; 2166 } 2167 2168 CachedKernel = nullptr; 2169 if (!F.hasLocalLinkage()) { 2170 2171 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2172 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2173 return ORA << "Potentially unknown OpenMP target region caller."; 2174 }; 2175 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2176 2177 return nullptr; 2178 } 2179 } 2180 2181 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2182 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2183 // Allow use in equality comparisons. 2184 if (Cmp->isEquality()) 2185 return getUniqueKernelFor(*Cmp); 2186 return nullptr; 2187 } 2188 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2189 // Allow direct calls. 2190 if (CB->isCallee(&U)) 2191 return getUniqueKernelFor(*CB); 2192 2193 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2194 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2195 // Allow the use in __kmpc_parallel_51 calls. 2196 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2197 return getUniqueKernelFor(*CB); 2198 return nullptr; 2199 } 2200 // Disallow every other use. 2201 return nullptr; 2202 }; 2203 2204 // TODO: In the future we want to track more than just a unique kernel. 2205 SmallPtrSet<Kernel, 2> PotentialKernels; 2206 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2207 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2208 }); 2209 2210 Kernel K = nullptr; 2211 if (PotentialKernels.size() == 1) 2212 K = *PotentialKernels.begin(); 2213 2214 // Cache the result. 2215 UniqueKernelMap[&F] = K; 2216 2217 return K; 2218 } 2219 2220 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2221 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2222 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2223 2224 bool Changed = false; 2225 if (!KernelParallelRFI) 2226 return Changed; 2227 2228 // If we have disabled state machine changes, exit 2229 if (DisableOpenMPOptStateMachineRewrite) 2230 return Changed; 2231 2232 for (Function *F : SCC) { 2233 2234 // Check if the function is a use in a __kmpc_parallel_51 call at 2235 // all. 2236 bool UnknownUse = false; 2237 bool KernelParallelUse = false; 2238 unsigned NumDirectCalls = 0; 2239 2240 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2241 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2242 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2243 if (CB->isCallee(&U)) { 2244 ++NumDirectCalls; 2245 return; 2246 } 2247 2248 if (isa<ICmpInst>(U.getUser())) { 2249 ToBeReplacedStateMachineUses.push_back(&U); 2250 return; 2251 } 2252 2253 // Find wrapper functions that represent parallel kernels. 2254 CallInst *CI = 2255 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2256 const unsigned int WrapperFunctionArgNo = 6; 2257 if (!KernelParallelUse && CI && 2258 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2259 KernelParallelUse = true; 2260 ToBeReplacedStateMachineUses.push_back(&U); 2261 return; 2262 } 2263 UnknownUse = true; 2264 }); 2265 2266 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2267 // use. 2268 if (!KernelParallelUse) 2269 continue; 2270 2271 // If this ever hits, we should investigate. 2272 // TODO: Checking the number of uses is not a necessary restriction and 2273 // should be lifted. 2274 if (UnknownUse || NumDirectCalls != 1 || 2275 ToBeReplacedStateMachineUses.size() > 2) { 2276 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2277 return ORA << "Parallel region is used in " 2278 << (UnknownUse ? "unknown" : "unexpected") 2279 << " ways. Will not attempt to rewrite the state machine."; 2280 }; 2281 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2282 continue; 2283 } 2284 2285 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2286 // up if the function is not called from a unique kernel. 2287 Kernel K = getUniqueKernelFor(*F); 2288 if (!K) { 2289 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2290 return ORA << "Parallel region is not called from a unique kernel. " 2291 "Will not attempt to rewrite the state machine."; 2292 }; 2293 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2294 continue; 2295 } 2296 2297 // We now know F is a parallel body function called only from the kernel K. 2298 // We also identified the state machine uses in which we replace the 2299 // function pointer by a new global symbol for identification purposes. This 2300 // ensures only direct calls to the function are left. 2301 2302 Module &M = *F->getParent(); 2303 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2304 2305 auto *ID = new GlobalVariable( 2306 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2307 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2308 2309 for (Use *U : ToBeReplacedStateMachineUses) 2310 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2311 ID, U->get()->getType())); 2312 2313 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2314 2315 Changed = true; 2316 } 2317 2318 return Changed; 2319 } 2320 2321 /// Abstract Attribute for tracking ICV values. 2322 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2323 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2324 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2325 2326 void initialize(Attributor &A) override { 2327 Function *F = getAnchorScope(); 2328 if (!F || !A.isFunctionIPOAmendable(*F)) 2329 indicatePessimisticFixpoint(); 2330 } 2331 2332 /// Returns true if value is assumed to be tracked. 2333 bool isAssumedTracked() const { return getAssumed(); } 2334 2335 /// Returns true if value is known to be tracked. 2336 bool isKnownTracked() const { return getAssumed(); } 2337 2338 /// Create an abstract attribute biew for the position \p IRP. 2339 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2340 2341 /// Return the value with which \p I can be replaced for specific \p ICV. 2342 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2343 const Instruction *I, 2344 Attributor &A) const { 2345 return None; 2346 } 2347 2348 /// Return an assumed unique ICV value if a single candidate is found. If 2349 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2350 /// Optional::NoneType. 2351 virtual Optional<Value *> 2352 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2353 2354 // Currently only nthreads is being tracked. 2355 // this array will only grow with time. 2356 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2357 2358 /// See AbstractAttribute::getName() 2359 const std::string getName() const override { return "AAICVTracker"; } 2360 2361 /// See AbstractAttribute::getIdAddr() 2362 const char *getIdAddr() const override { return &ID; } 2363 2364 /// This function should return true if the type of the \p AA is AAICVTracker 2365 static bool classof(const AbstractAttribute *AA) { 2366 return (AA->getIdAddr() == &ID); 2367 } 2368 2369 static const char ID; 2370 }; 2371 2372 struct AAICVTrackerFunction : public AAICVTracker { 2373 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2374 : AAICVTracker(IRP, A) {} 2375 2376 // FIXME: come up with better string. 2377 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2378 2379 // FIXME: come up with some stats. 2380 void trackStatistics() const override {} 2381 2382 /// We don't manifest anything for this AA. 2383 ChangeStatus manifest(Attributor &A) override { 2384 return ChangeStatus::UNCHANGED; 2385 } 2386 2387 // Map of ICV to their values at specific program point. 2388 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2389 InternalControlVar::ICV___last> 2390 ICVReplacementValuesMap; 2391 2392 ChangeStatus updateImpl(Attributor &A) override { 2393 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2394 2395 Function *F = getAnchorScope(); 2396 2397 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2398 2399 for (InternalControlVar ICV : TrackableICVs) { 2400 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2401 2402 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2403 auto TrackValues = [&](Use &U, Function &) { 2404 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2405 if (!CI) 2406 return false; 2407 2408 // FIXME: handle setters with more that 1 arguments. 2409 /// Track new value. 2410 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2411 HasChanged = ChangeStatus::CHANGED; 2412 2413 return false; 2414 }; 2415 2416 auto CallCheck = [&](Instruction &I) { 2417 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2418 if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2419 HasChanged = ChangeStatus::CHANGED; 2420 2421 return true; 2422 }; 2423 2424 // Track all changes of an ICV. 2425 SetterRFI.foreachUse(TrackValues, F); 2426 2427 bool UsedAssumedInformation = false; 2428 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2429 UsedAssumedInformation, 2430 /* CheckBBLivenessOnly */ true); 2431 2432 /// TODO: Figure out a way to avoid adding entry in 2433 /// ICVReplacementValuesMap 2434 Instruction *Entry = &F->getEntryBlock().front(); 2435 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2436 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2437 } 2438 2439 return HasChanged; 2440 } 2441 2442 /// Helper to check if \p I is a call and get the value for it if it is 2443 /// unique. 2444 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2445 InternalControlVar &ICV) const { 2446 2447 const auto *CB = dyn_cast<CallBase>(&I); 2448 if (!CB || CB->hasFnAttr("no_openmp") || 2449 CB->hasFnAttr("no_openmp_routines")) 2450 return None; 2451 2452 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2453 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2454 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2455 Function *CalledFunction = CB->getCalledFunction(); 2456 2457 // Indirect call, assume ICV changes. 2458 if (CalledFunction == nullptr) 2459 return nullptr; 2460 if (CalledFunction == GetterRFI.Declaration) 2461 return None; 2462 if (CalledFunction == SetterRFI.Declaration) { 2463 if (ICVReplacementValuesMap[ICV].count(&I)) 2464 return ICVReplacementValuesMap[ICV].lookup(&I); 2465 2466 return nullptr; 2467 } 2468 2469 // Since we don't know, assume it changes the ICV. 2470 if (CalledFunction->isDeclaration()) 2471 return nullptr; 2472 2473 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2474 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2475 2476 if (ICVTrackingAA.isAssumedTracked()) { 2477 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2478 if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I), 2479 OMPInfoCache))) 2480 return URV; 2481 } 2482 2483 // If we don't know, assume it changes. 2484 return nullptr; 2485 } 2486 2487 // We don't check unique value for a function, so return None. 2488 Optional<Value *> 2489 getUniqueReplacementValue(InternalControlVar ICV) const override { 2490 return None; 2491 } 2492 2493 /// Return the value with which \p I can be replaced for specific \p ICV. 2494 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2495 const Instruction *I, 2496 Attributor &A) const override { 2497 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2498 if (ValuesMap.count(I)) 2499 return ValuesMap.lookup(I); 2500 2501 SmallVector<const Instruction *, 16> Worklist; 2502 SmallPtrSet<const Instruction *, 16> Visited; 2503 Worklist.push_back(I); 2504 2505 Optional<Value *> ReplVal; 2506 2507 while (!Worklist.empty()) { 2508 const Instruction *CurrInst = Worklist.pop_back_val(); 2509 if (!Visited.insert(CurrInst).second) 2510 continue; 2511 2512 const BasicBlock *CurrBB = CurrInst->getParent(); 2513 2514 // Go up and look for all potential setters/calls that might change the 2515 // ICV. 2516 while ((CurrInst = CurrInst->getPrevNode())) { 2517 if (ValuesMap.count(CurrInst)) { 2518 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2519 // Unknown value, track new. 2520 if (!ReplVal) { 2521 ReplVal = NewReplVal; 2522 break; 2523 } 2524 2525 // If we found a new value, we can't know the icv value anymore. 2526 if (NewReplVal) 2527 if (ReplVal != NewReplVal) 2528 return nullptr; 2529 2530 break; 2531 } 2532 2533 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2534 if (!NewReplVal) 2535 continue; 2536 2537 // Unknown value, track new. 2538 if (!ReplVal) { 2539 ReplVal = NewReplVal; 2540 break; 2541 } 2542 2543 // if (NewReplVal.hasValue()) 2544 // We found a new value, we can't know the icv value anymore. 2545 if (ReplVal != NewReplVal) 2546 return nullptr; 2547 } 2548 2549 // If we are in the same BB and we have a value, we are done. 2550 if (CurrBB == I->getParent() && ReplVal) 2551 return ReplVal; 2552 2553 // Go through all predecessors and add terminators for analysis. 2554 for (const BasicBlock *Pred : predecessors(CurrBB)) 2555 if (const Instruction *Terminator = Pred->getTerminator()) 2556 Worklist.push_back(Terminator); 2557 } 2558 2559 return ReplVal; 2560 } 2561 }; 2562 2563 struct AAICVTrackerFunctionReturned : AAICVTracker { 2564 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2565 : AAICVTracker(IRP, A) {} 2566 2567 // FIXME: come up with better string. 2568 const std::string getAsStr() const override { 2569 return "ICVTrackerFunctionReturned"; 2570 } 2571 2572 // FIXME: come up with some stats. 2573 void trackStatistics() const override {} 2574 2575 /// We don't manifest anything for this AA. 2576 ChangeStatus manifest(Attributor &A) override { 2577 return ChangeStatus::UNCHANGED; 2578 } 2579 2580 // Map of ICV to their values at specific program point. 2581 EnumeratedArray<Optional<Value *>, InternalControlVar, 2582 InternalControlVar::ICV___last> 2583 ICVReplacementValuesMap; 2584 2585 /// Return the value with which \p I can be replaced for specific \p ICV. 2586 Optional<Value *> 2587 getUniqueReplacementValue(InternalControlVar ICV) const override { 2588 return ICVReplacementValuesMap[ICV]; 2589 } 2590 2591 ChangeStatus updateImpl(Attributor &A) override { 2592 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2593 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2594 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2595 2596 if (!ICVTrackingAA.isAssumedTracked()) 2597 return indicatePessimisticFixpoint(); 2598 2599 for (InternalControlVar ICV : TrackableICVs) { 2600 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2601 Optional<Value *> UniqueICVValue; 2602 2603 auto CheckReturnInst = [&](Instruction &I) { 2604 Optional<Value *> NewReplVal = 2605 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2606 2607 // If we found a second ICV value there is no unique returned value. 2608 if (UniqueICVValue && UniqueICVValue != NewReplVal) 2609 return false; 2610 2611 UniqueICVValue = NewReplVal; 2612 2613 return true; 2614 }; 2615 2616 bool UsedAssumedInformation = false; 2617 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2618 UsedAssumedInformation, 2619 /* CheckBBLivenessOnly */ true)) 2620 UniqueICVValue = nullptr; 2621 2622 if (UniqueICVValue == ReplVal) 2623 continue; 2624 2625 ReplVal = UniqueICVValue; 2626 Changed = ChangeStatus::CHANGED; 2627 } 2628 2629 return Changed; 2630 } 2631 }; 2632 2633 struct AAICVTrackerCallSite : AAICVTracker { 2634 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2635 : AAICVTracker(IRP, A) {} 2636 2637 void initialize(Attributor &A) override { 2638 Function *F = getAnchorScope(); 2639 if (!F || !A.isFunctionIPOAmendable(*F)) 2640 indicatePessimisticFixpoint(); 2641 2642 // We only initialize this AA for getters, so we need to know which ICV it 2643 // gets. 2644 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2645 for (InternalControlVar ICV : TrackableICVs) { 2646 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2647 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2648 if (Getter.Declaration == getAssociatedFunction()) { 2649 AssociatedICV = ICVInfo.Kind; 2650 return; 2651 } 2652 } 2653 2654 /// Unknown ICV. 2655 indicatePessimisticFixpoint(); 2656 } 2657 2658 ChangeStatus manifest(Attributor &A) override { 2659 if (!ReplVal || !*ReplVal) 2660 return ChangeStatus::UNCHANGED; 2661 2662 A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal); 2663 A.deleteAfterManifest(*getCtxI()); 2664 2665 return ChangeStatus::CHANGED; 2666 } 2667 2668 // FIXME: come up with better string. 2669 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2670 2671 // FIXME: come up with some stats. 2672 void trackStatistics() const override {} 2673 2674 InternalControlVar AssociatedICV; 2675 Optional<Value *> ReplVal; 2676 2677 ChangeStatus updateImpl(Attributor &A) override { 2678 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2679 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2680 2681 // We don't have any information, so we assume it changes the ICV. 2682 if (!ICVTrackingAA.isAssumedTracked()) 2683 return indicatePessimisticFixpoint(); 2684 2685 Optional<Value *> NewReplVal = 2686 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2687 2688 if (ReplVal == NewReplVal) 2689 return ChangeStatus::UNCHANGED; 2690 2691 ReplVal = NewReplVal; 2692 return ChangeStatus::CHANGED; 2693 } 2694 2695 // Return the value with which associated value can be replaced for specific 2696 // \p ICV. 2697 Optional<Value *> 2698 getUniqueReplacementValue(InternalControlVar ICV) const override { 2699 return ReplVal; 2700 } 2701 }; 2702 2703 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2704 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2705 : AAICVTracker(IRP, A) {} 2706 2707 // FIXME: come up with better string. 2708 const std::string getAsStr() const override { 2709 return "ICVTrackerCallSiteReturned"; 2710 } 2711 2712 // FIXME: come up with some stats. 2713 void trackStatistics() const override {} 2714 2715 /// We don't manifest anything for this AA. 2716 ChangeStatus manifest(Attributor &A) override { 2717 return ChangeStatus::UNCHANGED; 2718 } 2719 2720 // Map of ICV to their values at specific program point. 2721 EnumeratedArray<Optional<Value *>, InternalControlVar, 2722 InternalControlVar::ICV___last> 2723 ICVReplacementValuesMap; 2724 2725 /// Return the value with which associated value can be replaced for specific 2726 /// \p ICV. 2727 Optional<Value *> 2728 getUniqueReplacementValue(InternalControlVar ICV) const override { 2729 return ICVReplacementValuesMap[ICV]; 2730 } 2731 2732 ChangeStatus updateImpl(Attributor &A) override { 2733 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2734 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2735 *this, IRPosition::returned(*getAssociatedFunction()), 2736 DepClassTy::REQUIRED); 2737 2738 // We don't have any information, so we assume it changes the ICV. 2739 if (!ICVTrackingAA.isAssumedTracked()) 2740 return indicatePessimisticFixpoint(); 2741 2742 for (InternalControlVar ICV : TrackableICVs) { 2743 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2744 Optional<Value *> NewReplVal = 2745 ICVTrackingAA.getUniqueReplacementValue(ICV); 2746 2747 if (ReplVal == NewReplVal) 2748 continue; 2749 2750 ReplVal = NewReplVal; 2751 Changed = ChangeStatus::CHANGED; 2752 } 2753 return Changed; 2754 } 2755 }; 2756 2757 struct AAExecutionDomainFunction : public AAExecutionDomain { 2758 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2759 : AAExecutionDomain(IRP, A) {} 2760 2761 const std::string getAsStr() const override { 2762 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2763 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2764 } 2765 2766 /// See AbstractAttribute::trackStatistics(). 2767 void trackStatistics() const override {} 2768 2769 void initialize(Attributor &A) override { 2770 Function *F = getAnchorScope(); 2771 for (const auto &BB : *F) 2772 SingleThreadedBBs.insert(&BB); 2773 NumBBs = SingleThreadedBBs.size(); 2774 } 2775 2776 ChangeStatus manifest(Attributor &A) override { 2777 LLVM_DEBUG({ 2778 for (const BasicBlock *BB : SingleThreadedBBs) 2779 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2780 << BB->getName() << " is executed by a single thread.\n"; 2781 }); 2782 return ChangeStatus::UNCHANGED; 2783 } 2784 2785 ChangeStatus updateImpl(Attributor &A) override; 2786 2787 /// Check if an instruction is executed by a single thread. 2788 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2789 return isExecutedByInitialThreadOnly(*I.getParent()); 2790 } 2791 2792 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2793 return isValidState() && SingleThreadedBBs.contains(&BB); 2794 } 2795 2796 /// Set of basic blocks that are executed by a single thread. 2797 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2798 2799 /// Total number of basic blocks in this function. 2800 long unsigned NumBBs = 0; 2801 }; 2802 2803 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2804 Function *F = getAnchorScope(); 2805 ReversePostOrderTraversal<Function *> RPOT(F); 2806 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2807 2808 bool AllCallSitesKnown; 2809 auto PredForCallSite = [&](AbstractCallSite ACS) { 2810 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2811 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2812 DepClassTy::REQUIRED); 2813 return ACS.isDirectCall() && 2814 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2815 *ACS.getInstruction()); 2816 }; 2817 2818 if (!A.checkForAllCallSites(PredForCallSite, *this, 2819 /* RequiresAllCallSites */ true, 2820 AllCallSitesKnown)) 2821 SingleThreadedBBs.remove(&F->getEntryBlock()); 2822 2823 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2824 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2825 2826 // Check if the edge into the successor block contains a condition that only 2827 // lets the main thread execute it. 2828 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2829 if (!Edge || !Edge->isConditional()) 2830 return false; 2831 if (Edge->getSuccessor(0) != SuccessorBB) 2832 return false; 2833 2834 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2835 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2836 return false; 2837 2838 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2839 if (!C) 2840 return false; 2841 2842 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2843 if (C->isAllOnesValue()) { 2844 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2845 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2846 if (!CB) 2847 return false; 2848 const int InitModeArgNo = 1; 2849 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2850 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2851 } 2852 2853 if (C->isZero()) { 2854 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2855 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2856 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2857 return true; 2858 2859 // Match: 0 == llvm.amdgcn.workitem.id.x() 2860 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2861 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2862 return true; 2863 } 2864 2865 return false; 2866 }; 2867 2868 // Merge all the predecessor states into the current basic block. A basic 2869 // block is executed by a single thread if all of its predecessors are. 2870 auto MergePredecessorStates = [&](BasicBlock *BB) { 2871 if (pred_empty(BB)) 2872 return SingleThreadedBBs.contains(BB); 2873 2874 bool IsInitialThread = true; 2875 for (BasicBlock *PredBB : predecessors(BB)) { 2876 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2877 BB)) 2878 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2879 } 2880 2881 return IsInitialThread; 2882 }; 2883 2884 for (auto *BB : RPOT) { 2885 if (!MergePredecessorStates(BB)) 2886 SingleThreadedBBs.remove(BB); 2887 } 2888 2889 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2890 ? ChangeStatus::UNCHANGED 2891 : ChangeStatus::CHANGED; 2892 } 2893 2894 /// Try to replace memory allocation calls called by a single thread with a 2895 /// static buffer of shared memory. 2896 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2897 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2898 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2899 2900 /// Create an abstract attribute view for the position \p IRP. 2901 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2902 Attributor &A); 2903 2904 /// Returns true if HeapToShared conversion is assumed to be possible. 2905 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2906 2907 /// Returns true if HeapToShared conversion is assumed and the CB is a 2908 /// callsite to a free operation to be removed. 2909 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2910 2911 /// See AbstractAttribute::getName(). 2912 const std::string getName() const override { return "AAHeapToShared"; } 2913 2914 /// See AbstractAttribute::getIdAddr(). 2915 const char *getIdAddr() const override { return &ID; } 2916 2917 /// This function should return true if the type of the \p AA is 2918 /// AAHeapToShared. 2919 static bool classof(const AbstractAttribute *AA) { 2920 return (AA->getIdAddr() == &ID); 2921 } 2922 2923 /// Unique ID (due to the unique address) 2924 static const char ID; 2925 }; 2926 2927 struct AAHeapToSharedFunction : public AAHeapToShared { 2928 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2929 : AAHeapToShared(IRP, A) {} 2930 2931 const std::string getAsStr() const override { 2932 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2933 " malloc calls eligible."; 2934 } 2935 2936 /// See AbstractAttribute::trackStatistics(). 2937 void trackStatistics() const override {} 2938 2939 /// This functions finds free calls that will be removed by the 2940 /// HeapToShared transformation. 2941 void findPotentialRemovedFreeCalls(Attributor &A) { 2942 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2943 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2944 2945 PotentialRemovedFreeCalls.clear(); 2946 // Update free call users of found malloc calls. 2947 for (CallBase *CB : MallocCalls) { 2948 SmallVector<CallBase *, 4> FreeCalls; 2949 for (auto *U : CB->users()) { 2950 CallBase *C = dyn_cast<CallBase>(U); 2951 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2952 FreeCalls.push_back(C); 2953 } 2954 2955 if (FreeCalls.size() != 1) 2956 continue; 2957 2958 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2959 } 2960 } 2961 2962 void initialize(Attributor &A) override { 2963 if (DisableOpenMPOptDeglobalization) { 2964 indicatePessimisticFixpoint(); 2965 return; 2966 } 2967 2968 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2969 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2970 2971 Attributor::SimplifictionCallbackTy SCB = 2972 [](const IRPosition &, const AbstractAttribute *, 2973 bool &) -> Optional<Value *> { return nullptr; }; 2974 for (User *U : RFI.Declaration->users()) 2975 if (CallBase *CB = dyn_cast<CallBase>(U)) { 2976 MallocCalls.insert(CB); 2977 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB), 2978 SCB); 2979 } 2980 2981 findPotentialRemovedFreeCalls(A); 2982 } 2983 2984 bool isAssumedHeapToShared(CallBase &CB) const override { 2985 return isValidState() && MallocCalls.count(&CB); 2986 } 2987 2988 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2989 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2990 } 2991 2992 ChangeStatus manifest(Attributor &A) override { 2993 if (MallocCalls.empty()) 2994 return ChangeStatus::UNCHANGED; 2995 2996 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2997 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2998 2999 Function *F = getAnchorScope(); 3000 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 3001 DepClassTy::OPTIONAL); 3002 3003 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3004 for (CallBase *CB : MallocCalls) { 3005 // Skip replacing this if HeapToStack has already claimed it. 3006 if (HS && HS->isAssumedHeapToStack(*CB)) 3007 continue; 3008 3009 // Find the unique free call to remove it. 3010 SmallVector<CallBase *, 4> FreeCalls; 3011 for (auto *U : CB->users()) { 3012 CallBase *C = dyn_cast<CallBase>(U); 3013 if (C && C->getCalledFunction() == FreeCall.Declaration) 3014 FreeCalls.push_back(C); 3015 } 3016 if (FreeCalls.size() != 1) 3017 continue; 3018 3019 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3020 3021 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { 3022 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB 3023 << " with shared memory." 3024 << " Shared memory usage is limited to " 3025 << SharedMemoryLimit << " bytes\n"); 3026 continue; 3027 } 3028 3029 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3030 << " with " << AllocSize->getZExtValue() 3031 << " bytes of shared memory\n"); 3032 3033 // Create a new shared memory buffer of the same size as the allocation 3034 // and replace all the uses of the original allocation with it. 3035 Module *M = CB->getModule(); 3036 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3037 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3038 auto *SharedMem = new GlobalVariable( 3039 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3040 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3041 GlobalValue::NotThreadLocal, 3042 static_cast<unsigned>(AddressSpace::Shared)); 3043 auto *NewBuffer = 3044 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3045 3046 auto Remark = [&](OptimizationRemark OR) { 3047 return OR << "Replaced globalized variable with " 3048 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3049 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3050 << "of shared memory."; 3051 }; 3052 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3053 3054 MaybeAlign Alignment = CB->getRetAlign(); 3055 assert(Alignment && 3056 "HeapToShared on allocation without alignment attribute"); 3057 SharedMem->setAlignment(MaybeAlign(Alignment)); 3058 3059 A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer); 3060 A.deleteAfterManifest(*CB); 3061 A.deleteAfterManifest(*FreeCalls.front()); 3062 3063 SharedMemoryUsed += AllocSize->getZExtValue(); 3064 NumBytesMovedToSharedMemory = SharedMemoryUsed; 3065 Changed = ChangeStatus::CHANGED; 3066 } 3067 3068 return Changed; 3069 } 3070 3071 ChangeStatus updateImpl(Attributor &A) override { 3072 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3073 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3074 Function *F = getAnchorScope(); 3075 3076 auto NumMallocCalls = MallocCalls.size(); 3077 3078 // Only consider malloc calls executed by a single thread with a constant. 3079 for (User *U : RFI.Declaration->users()) { 3080 const auto &ED = A.getAAFor<AAExecutionDomain>( 3081 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3082 if (CallBase *CB = dyn_cast<CallBase>(U)) 3083 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3084 !ED.isExecutedByInitialThreadOnly(*CB)) 3085 MallocCalls.remove(CB); 3086 } 3087 3088 findPotentialRemovedFreeCalls(A); 3089 3090 if (NumMallocCalls != MallocCalls.size()) 3091 return ChangeStatus::CHANGED; 3092 3093 return ChangeStatus::UNCHANGED; 3094 } 3095 3096 /// Collection of all malloc calls in a function. 3097 SmallSetVector<CallBase *, 4> MallocCalls; 3098 /// Collection of potentially removed free calls in a function. 3099 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3100 /// The total amount of shared memory that has been used for HeapToShared. 3101 unsigned SharedMemoryUsed = 0; 3102 }; 3103 3104 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3105 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3106 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3107 3108 /// Statistics are tracked as part of manifest for now. 3109 void trackStatistics() const override {} 3110 3111 /// See AbstractAttribute::getAsStr() 3112 const std::string getAsStr() const override { 3113 if (!isValidState()) 3114 return "<invalid>"; 3115 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3116 : "generic") + 3117 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3118 : "") + 3119 std::string(" #PRs: ") + 3120 (ReachedKnownParallelRegions.isValidState() 3121 ? std::to_string(ReachedKnownParallelRegions.size()) 3122 : "<invalid>") + 3123 ", #Unknown PRs: " + 3124 (ReachedUnknownParallelRegions.isValidState() 3125 ? std::to_string(ReachedUnknownParallelRegions.size()) 3126 : "<invalid>") + 3127 ", #Reaching Kernels: " + 3128 (ReachingKernelEntries.isValidState() 3129 ? std::to_string(ReachingKernelEntries.size()) 3130 : "<invalid>"); 3131 } 3132 3133 /// Create an abstract attribute biew for the position \p IRP. 3134 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3135 3136 /// See AbstractAttribute::getName() 3137 const std::string getName() const override { return "AAKernelInfo"; } 3138 3139 /// See AbstractAttribute::getIdAddr() 3140 const char *getIdAddr() const override { return &ID; } 3141 3142 /// This function should return true if the type of the \p AA is AAKernelInfo 3143 static bool classof(const AbstractAttribute *AA) { 3144 return (AA->getIdAddr() == &ID); 3145 } 3146 3147 static const char ID; 3148 }; 3149 3150 /// The function kernel info abstract attribute, basically, what can we say 3151 /// about a function with regards to the KernelInfoState. 3152 struct AAKernelInfoFunction : AAKernelInfo { 3153 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3154 : AAKernelInfo(IRP, A) {} 3155 3156 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3157 3158 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3159 return GuardedInstructions; 3160 } 3161 3162 /// See AbstractAttribute::initialize(...). 3163 void initialize(Attributor &A) override { 3164 // This is a high-level transform that might change the constant arguments 3165 // of the init and dinit calls. We need to tell the Attributor about this 3166 // to avoid other parts using the current constant value for simpliication. 3167 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3168 3169 Function *Fn = getAnchorScope(); 3170 3171 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3172 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3173 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3174 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3175 3176 // For kernels we perform more initialization work, first we find the init 3177 // and deinit calls. 3178 auto StoreCallBase = [](Use &U, 3179 OMPInformationCache::RuntimeFunctionInfo &RFI, 3180 CallBase *&Storage) { 3181 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3182 assert(CB && 3183 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3184 assert(!Storage && 3185 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3186 Storage = CB; 3187 return false; 3188 }; 3189 InitRFI.foreachUse( 3190 [&](Use &U, Function &) { 3191 StoreCallBase(U, InitRFI, KernelInitCB); 3192 return false; 3193 }, 3194 Fn); 3195 DeinitRFI.foreachUse( 3196 [&](Use &U, Function &) { 3197 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3198 return false; 3199 }, 3200 Fn); 3201 3202 // Ignore kernels without initializers such as global constructors. 3203 if (!KernelInitCB || !KernelDeinitCB) 3204 return; 3205 3206 // Add itself to the reaching kernel and set IsKernelEntry. 3207 ReachingKernelEntries.insert(Fn); 3208 IsKernelEntry = true; 3209 3210 // For kernels we might need to initialize/finalize the IsSPMD state and 3211 // we need to register a simplification callback so that the Attributor 3212 // knows the constant arguments to __kmpc_target_init and 3213 // __kmpc_target_deinit might actually change. 3214 3215 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3216 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3217 bool &UsedAssumedInformation) -> Optional<Value *> { 3218 // IRP represents the "use generic state machine" argument of an 3219 // __kmpc_target_init call. We will answer this one with the internal 3220 // state. As long as we are not in an invalid state, we will create a 3221 // custom state machine so the value should be a `i1 false`. If we are 3222 // in an invalid state, we won't change the value that is in the IR. 3223 if (!ReachedKnownParallelRegions.isValidState()) 3224 return nullptr; 3225 // If we have disabled state machine rewrites, don't make a custom one. 3226 if (DisableOpenMPOptStateMachineRewrite) 3227 return nullptr; 3228 if (AA) 3229 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3230 UsedAssumedInformation = !isAtFixpoint(); 3231 auto *FalseVal = 3232 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3233 return FalseVal; 3234 }; 3235 3236 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3237 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3238 bool &UsedAssumedInformation) -> Optional<Value *> { 3239 // IRP represents the "SPMDCompatibilityTracker" argument of an 3240 // __kmpc_target_init or 3241 // __kmpc_target_deinit call. We will answer this one with the internal 3242 // state. 3243 if (!SPMDCompatibilityTracker.isValidState()) 3244 return nullptr; 3245 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3246 if (AA) 3247 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3248 UsedAssumedInformation = true; 3249 } else { 3250 UsedAssumedInformation = false; 3251 } 3252 auto *Val = ConstantInt::getSigned( 3253 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3254 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3255 : OMP_TGT_EXEC_MODE_GENERIC); 3256 return Val; 3257 }; 3258 3259 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3260 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3261 bool &UsedAssumedInformation) -> Optional<Value *> { 3262 // IRP represents the "RequiresFullRuntime" argument of an 3263 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3264 // one with the internal state of the SPMDCompatibilityTracker, so if 3265 // generic then true, if SPMD then false. 3266 if (!SPMDCompatibilityTracker.isValidState()) 3267 return nullptr; 3268 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3269 if (AA) 3270 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3271 UsedAssumedInformation = true; 3272 } else { 3273 UsedAssumedInformation = false; 3274 } 3275 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3276 !SPMDCompatibilityTracker.isAssumed()); 3277 return Val; 3278 }; 3279 3280 constexpr const int InitModeArgNo = 1; 3281 constexpr const int DeinitModeArgNo = 1; 3282 constexpr const int InitUseStateMachineArgNo = 2; 3283 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3284 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3285 A.registerSimplificationCallback( 3286 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3287 StateMachineSimplifyCB); 3288 A.registerSimplificationCallback( 3289 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3290 ModeSimplifyCB); 3291 A.registerSimplificationCallback( 3292 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3293 ModeSimplifyCB); 3294 A.registerSimplificationCallback( 3295 IRPosition::callsite_argument(*KernelInitCB, 3296 InitRequiresFullRuntimeArgNo), 3297 IsGenericModeSimplifyCB); 3298 A.registerSimplificationCallback( 3299 IRPosition::callsite_argument(*KernelDeinitCB, 3300 DeinitRequiresFullRuntimeArgNo), 3301 IsGenericModeSimplifyCB); 3302 3303 // Check if we know we are in SPMD-mode already. 3304 ConstantInt *ModeArg = 3305 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3306 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3307 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3308 // This is a generic region but SPMDization is disabled so stop tracking. 3309 else if (DisableOpenMPOptSPMDization) 3310 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3311 } 3312 3313 /// Sanitize the string \p S such that it is a suitable global symbol name. 3314 static std::string sanitizeForGlobalName(std::string S) { 3315 std::replace_if( 3316 S.begin(), S.end(), 3317 [](const char C) { 3318 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3319 (C >= '0' && C <= '9') || C == '_'); 3320 }, 3321 '.'); 3322 return S; 3323 } 3324 3325 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3326 /// finished now. 3327 ChangeStatus manifest(Attributor &A) override { 3328 // If we are not looking at a kernel with __kmpc_target_init and 3329 // __kmpc_target_deinit call we cannot actually manifest the information. 3330 if (!KernelInitCB || !KernelDeinitCB) 3331 return ChangeStatus::UNCHANGED; 3332 3333 // If we can we change the execution mode to SPMD-mode otherwise we build a 3334 // custom state machine. 3335 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3336 if (!changeToSPMDMode(A, Changed)) 3337 return buildCustomStateMachine(A); 3338 3339 return Changed; 3340 } 3341 3342 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3343 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3344 3345 if (!SPMDCompatibilityTracker.isAssumed()) { 3346 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3347 if (!NonCompatibleI) 3348 continue; 3349 3350 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3351 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3352 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3353 continue; 3354 3355 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3356 ORA << "Value has potential side effects preventing SPMD-mode " 3357 "execution"; 3358 if (isa<CallBase>(NonCompatibleI)) { 3359 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3360 "the called function to override"; 3361 } 3362 return ORA << "."; 3363 }; 3364 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3365 Remark); 3366 3367 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3368 << *NonCompatibleI << "\n"); 3369 } 3370 3371 return false; 3372 } 3373 3374 // Get the actual kernel, could be the caller of the anchor scope if we have 3375 // a debug wrapper. 3376 Function *Kernel = getAnchorScope(); 3377 if (Kernel->hasLocalLinkage()) { 3378 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper."); 3379 auto *CB = cast<CallBase>(Kernel->user_back()); 3380 Kernel = CB->getCaller(); 3381 } 3382 assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!"); 3383 3384 // Check if the kernel is already in SPMD mode, if so, return success. 3385 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3386 (Kernel->getName() + "_exec_mode").str()); 3387 assert(ExecMode && "Kernel without exec mode?"); 3388 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3389 3390 // Set the global exec mode flag to indicate SPMD-Generic mode. 3391 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3392 "ExecMode is not an integer!"); 3393 const int8_t ExecModeVal = 3394 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3395 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3396 return true; 3397 3398 // We will now unconditionally modify the IR, indicate a change. 3399 Changed = ChangeStatus::CHANGED; 3400 3401 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3402 Instruction *RegionEndI) { 3403 LoopInfo *LI = nullptr; 3404 DominatorTree *DT = nullptr; 3405 MemorySSAUpdater *MSU = nullptr; 3406 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3407 3408 BasicBlock *ParentBB = RegionStartI->getParent(); 3409 Function *Fn = ParentBB->getParent(); 3410 Module &M = *Fn->getParent(); 3411 3412 // Create all the blocks and logic. 3413 // ParentBB: 3414 // goto RegionCheckTidBB 3415 // RegionCheckTidBB: 3416 // Tid = __kmpc_hardware_thread_id() 3417 // if (Tid != 0) 3418 // goto RegionBarrierBB 3419 // RegionStartBB: 3420 // <execute instructions guarded> 3421 // goto RegionEndBB 3422 // RegionEndBB: 3423 // <store escaping values to shared mem> 3424 // goto RegionBarrierBB 3425 // RegionBarrierBB: 3426 // __kmpc_simple_barrier_spmd() 3427 // // second barrier is omitted if lacking escaping values. 3428 // <load escaping values from shared mem> 3429 // __kmpc_simple_barrier_spmd() 3430 // goto RegionExitBB 3431 // RegionExitBB: 3432 // <execute rest of instructions> 3433 3434 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3435 DT, LI, MSU, "region.guarded.end"); 3436 BasicBlock *RegionBarrierBB = 3437 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3438 MSU, "region.barrier"); 3439 BasicBlock *RegionExitBB = 3440 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3441 DT, LI, MSU, "region.exit"); 3442 BasicBlock *RegionStartBB = 3443 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3444 3445 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3446 "Expected a different CFG"); 3447 3448 BasicBlock *RegionCheckTidBB = SplitBlock( 3449 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3450 3451 // Register basic blocks with the Attributor. 3452 A.registerManifestAddedBasicBlock(*RegionEndBB); 3453 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3454 A.registerManifestAddedBasicBlock(*RegionExitBB); 3455 A.registerManifestAddedBasicBlock(*RegionStartBB); 3456 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3457 3458 bool HasBroadcastValues = false; 3459 // Find escaping outputs from the guarded region to outside users and 3460 // broadcast their values to them. 3461 for (Instruction &I : *RegionStartBB) { 3462 SmallPtrSet<Instruction *, 4> OutsideUsers; 3463 for (User *Usr : I.users()) { 3464 Instruction &UsrI = *cast<Instruction>(Usr); 3465 if (UsrI.getParent() != RegionStartBB) 3466 OutsideUsers.insert(&UsrI); 3467 } 3468 3469 if (OutsideUsers.empty()) 3470 continue; 3471 3472 HasBroadcastValues = true; 3473 3474 // Emit a global variable in shared memory to store the broadcasted 3475 // value. 3476 auto *SharedMem = new GlobalVariable( 3477 M, I.getType(), /* IsConstant */ false, 3478 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3479 sanitizeForGlobalName( 3480 (I.getName() + ".guarded.output.alloc").str()), 3481 nullptr, GlobalValue::NotThreadLocal, 3482 static_cast<unsigned>(AddressSpace::Shared)); 3483 3484 // Emit a store instruction to update the value. 3485 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3486 3487 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3488 I.getName() + ".guarded.output.load", 3489 RegionBarrierBB->getTerminator()); 3490 3491 // Emit a load instruction and replace uses of the output value. 3492 for (Instruction *UsrI : OutsideUsers) 3493 UsrI->replaceUsesOfWith(&I, LoadI); 3494 } 3495 3496 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3497 3498 // Go to tid check BB in ParentBB. 3499 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3500 ParentBB->getTerminator()->eraseFromParent(); 3501 OpenMPIRBuilder::LocationDescription Loc( 3502 InsertPointTy(ParentBB, ParentBB->end()), DL); 3503 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3504 uint32_t SrcLocStrSize; 3505 auto *SrcLocStr = 3506 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3507 Value *Ident = 3508 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3509 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3510 3511 // Add check for Tid in RegionCheckTidBB 3512 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3513 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3514 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3515 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3516 FunctionCallee HardwareTidFn = 3517 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3518 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3519 CallInst *Tid = 3520 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3521 Tid->setDebugLoc(DL); 3522 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3523 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3524 OMPInfoCache.OMPBuilder.Builder 3525 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3526 ->setDebugLoc(DL); 3527 3528 // First barrier for synchronization, ensures main thread has updated 3529 // values. 3530 FunctionCallee BarrierFn = 3531 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3532 M, OMPRTL___kmpc_barrier_simple_spmd); 3533 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3534 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3535 CallInst *Barrier = 3536 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3537 Barrier->setDebugLoc(DL); 3538 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3539 3540 // Second barrier ensures workers have read broadcast values. 3541 if (HasBroadcastValues) { 3542 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3543 RegionBarrierBB->getTerminator()); 3544 Barrier->setDebugLoc(DL); 3545 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3546 } 3547 }; 3548 3549 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3550 SmallPtrSet<BasicBlock *, 8> Visited; 3551 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3552 BasicBlock *BB = GuardedI->getParent(); 3553 if (!Visited.insert(BB).second) 3554 continue; 3555 3556 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3557 Instruction *LastEffect = nullptr; 3558 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3559 while (++IP != IPEnd) { 3560 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3561 continue; 3562 Instruction *I = &*IP; 3563 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3564 continue; 3565 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3566 LastEffect = nullptr; 3567 continue; 3568 } 3569 if (LastEffect) 3570 Reorders.push_back({I, LastEffect}); 3571 LastEffect = &*IP; 3572 } 3573 for (auto &Reorder : Reorders) 3574 Reorder.first->moveBefore(Reorder.second); 3575 } 3576 3577 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3578 3579 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3580 BasicBlock *BB = GuardedI->getParent(); 3581 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3582 IRPosition::function(*GuardedI->getFunction()), nullptr, 3583 DepClassTy::NONE); 3584 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3585 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3586 // Continue if instruction is already guarded. 3587 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3588 continue; 3589 3590 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3591 for (Instruction &I : *BB) { 3592 // If instruction I needs to be guarded update the guarded region 3593 // bounds. 3594 if (SPMDCompatibilityTracker.contains(&I)) { 3595 CalleeAAFunction.getGuardedInstructions().insert(&I); 3596 if (GuardedRegionStart) 3597 GuardedRegionEnd = &I; 3598 else 3599 GuardedRegionStart = GuardedRegionEnd = &I; 3600 3601 continue; 3602 } 3603 3604 // Instruction I does not need guarding, store 3605 // any region found and reset bounds. 3606 if (GuardedRegionStart) { 3607 GuardedRegions.push_back( 3608 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3609 GuardedRegionStart = nullptr; 3610 GuardedRegionEnd = nullptr; 3611 } 3612 } 3613 } 3614 3615 for (auto &GR : GuardedRegions) 3616 CreateGuardedRegion(GR.first, GR.second); 3617 3618 // Adjust the global exec mode flag that tells the runtime what mode this 3619 // kernel is executed in. 3620 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3621 "Initially non-SPMD kernel has SPMD exec mode!"); 3622 ExecMode->setInitializer( 3623 ConstantInt::get(ExecMode->getInitializer()->getType(), 3624 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3625 3626 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3627 const int InitModeArgNo = 1; 3628 const int DeinitModeArgNo = 1; 3629 const int InitUseStateMachineArgNo = 2; 3630 const int InitRequiresFullRuntimeArgNo = 3; 3631 const int DeinitRequiresFullRuntimeArgNo = 2; 3632 3633 auto &Ctx = getAnchorValue().getContext(); 3634 A.changeUseAfterManifest( 3635 KernelInitCB->getArgOperandUse(InitModeArgNo), 3636 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3637 OMP_TGT_EXEC_MODE_SPMD)); 3638 A.changeUseAfterManifest( 3639 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3640 *ConstantInt::getBool(Ctx, false)); 3641 A.changeUseAfterManifest( 3642 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3643 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3644 OMP_TGT_EXEC_MODE_SPMD)); 3645 A.changeUseAfterManifest( 3646 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3647 *ConstantInt::getBool(Ctx, false)); 3648 A.changeUseAfterManifest( 3649 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3650 *ConstantInt::getBool(Ctx, false)); 3651 3652 ++NumOpenMPTargetRegionKernelsSPMD; 3653 3654 auto Remark = [&](OptimizationRemark OR) { 3655 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3656 }; 3657 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3658 return true; 3659 }; 3660 3661 ChangeStatus buildCustomStateMachine(Attributor &A) { 3662 // If we have disabled state machine rewrites, don't make a custom one 3663 if (DisableOpenMPOptStateMachineRewrite) 3664 return ChangeStatus::UNCHANGED; 3665 3666 // Don't rewrite the state machine if we are not in a valid state. 3667 if (!ReachedKnownParallelRegions.isValidState()) 3668 return ChangeStatus::UNCHANGED; 3669 3670 const int InitModeArgNo = 1; 3671 const int InitUseStateMachineArgNo = 2; 3672 3673 // Check if the current configuration is non-SPMD and generic state machine. 3674 // If we already have SPMD mode or a custom state machine we do not need to 3675 // go any further. If it is anything but a constant something is weird and 3676 // we give up. 3677 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3678 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3679 ConstantInt *Mode = 3680 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3681 3682 // If we are stuck with generic mode, try to create a custom device (=GPU) 3683 // state machine which is specialized for the parallel regions that are 3684 // reachable by the kernel. 3685 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3686 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3687 return ChangeStatus::UNCHANGED; 3688 3689 // If not SPMD mode, indicate we use a custom state machine now. 3690 auto &Ctx = getAnchorValue().getContext(); 3691 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3692 A.changeUseAfterManifest( 3693 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3694 3695 // If we don't actually need a state machine we are done here. This can 3696 // happen if there simply are no parallel regions. In the resulting kernel 3697 // all worker threads will simply exit right away, leaving the main thread 3698 // to do the work alone. 3699 if (!mayContainParallelRegion()) { 3700 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3701 3702 auto Remark = [&](OptimizationRemark OR) { 3703 return OR << "Removing unused state machine from generic-mode kernel."; 3704 }; 3705 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3706 3707 return ChangeStatus::CHANGED; 3708 } 3709 3710 // Keep track in the statistics of our new shiny custom state machine. 3711 if (ReachedUnknownParallelRegions.empty()) { 3712 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3713 3714 auto Remark = [&](OptimizationRemark OR) { 3715 return OR << "Rewriting generic-mode kernel with a customized state " 3716 "machine."; 3717 }; 3718 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3719 } else { 3720 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3721 3722 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3723 return OR << "Generic-mode kernel is executed with a customized state " 3724 "machine that requires a fallback."; 3725 }; 3726 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3727 3728 // Tell the user why we ended up with a fallback. 3729 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3730 if (!UnknownParallelRegionCB) 3731 continue; 3732 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3733 return ORA << "Call may contain unknown parallel regions. Use " 3734 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3735 "override."; 3736 }; 3737 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3738 "OMP133", Remark); 3739 } 3740 } 3741 3742 // Create all the blocks: 3743 // 3744 // InitCB = __kmpc_target_init(...) 3745 // BlockHwSize = 3746 // __kmpc_get_hardware_num_threads_in_block(); 3747 // WarpSize = __kmpc_get_warp_size(); 3748 // BlockSize = BlockHwSize - WarpSize; 3749 // IsWorkerCheckBB: bool IsWorker = InitCB != -1; 3750 // if (IsWorker) { 3751 // if (InitCB >= BlockSize) return; 3752 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3753 // void *WorkFn; 3754 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3755 // if (!WorkFn) return; 3756 // SMIsActiveCheckBB: if (Active) { 3757 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3758 // ParFn0(...); 3759 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3760 // ParFn1(...); 3761 // ... 3762 // SMIfCascadeCurrentBB: else 3763 // ((WorkFnTy*)WorkFn)(...); 3764 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3765 // } 3766 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3767 // goto SMBeginBB; 3768 // } 3769 // UserCodeEntryBB: // user code 3770 // __kmpc_target_deinit(...) 3771 // 3772 Function *Kernel = getAssociatedFunction(); 3773 assert(Kernel && "Expected an associated function!"); 3774 3775 BasicBlock *InitBB = KernelInitCB->getParent(); 3776 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3777 KernelInitCB->getNextNode(), "thread.user_code.check"); 3778 BasicBlock *IsWorkerCheckBB = 3779 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3780 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3781 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3782 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3783 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3784 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3785 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3786 BasicBlock *StateMachineIfCascadeCurrentBB = 3787 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3788 Kernel, UserCodeEntryBB); 3789 BasicBlock *StateMachineEndParallelBB = 3790 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3791 Kernel, UserCodeEntryBB); 3792 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3793 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3794 A.registerManifestAddedBasicBlock(*InitBB); 3795 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3796 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3797 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3798 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3799 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3800 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3801 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3802 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3803 3804 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3805 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3806 InitBB->getTerminator()->eraseFromParent(); 3807 3808 Instruction *IsWorker = 3809 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3810 ConstantInt::get(KernelInitCB->getType(), -1), 3811 "thread.is_worker", InitBB); 3812 IsWorker->setDebugLoc(DLoc); 3813 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB); 3814 3815 Module &M = *Kernel->getParent(); 3816 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3817 FunctionCallee BlockHwSizeFn = 3818 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3819 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3820 FunctionCallee WarpSizeFn = 3821 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3822 M, OMPRTL___kmpc_get_warp_size); 3823 CallInst *BlockHwSize = 3824 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB); 3825 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3826 BlockHwSize->setDebugLoc(DLoc); 3827 CallInst *WarpSize = 3828 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB); 3829 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3830 WarpSize->setDebugLoc(DLoc); 3831 Instruction *BlockSize = BinaryOperator::CreateSub( 3832 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB); 3833 BlockSize->setDebugLoc(DLoc); 3834 Instruction *IsMainOrWorker = ICmpInst::Create( 3835 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize, 3836 "thread.is_main_or_worker", IsWorkerCheckBB); 3837 IsMainOrWorker->setDebugLoc(DLoc); 3838 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB, 3839 IsMainOrWorker, IsWorkerCheckBB); 3840 3841 // Create local storage for the work function pointer. 3842 const DataLayout &DL = M.getDataLayout(); 3843 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3844 Instruction *WorkFnAI = 3845 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3846 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3847 WorkFnAI->setDebugLoc(DLoc); 3848 3849 OMPInfoCache.OMPBuilder.updateToLocation( 3850 OpenMPIRBuilder::LocationDescription( 3851 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3852 StateMachineBeginBB->end()), 3853 DLoc)); 3854 3855 Value *Ident = KernelInitCB->getArgOperand(0); 3856 Value *GTid = KernelInitCB; 3857 3858 FunctionCallee BarrierFn = 3859 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3860 M, OMPRTL___kmpc_barrier_simple_generic); 3861 CallInst *Barrier = 3862 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3863 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3864 Barrier->setDebugLoc(DLoc); 3865 3866 if (WorkFnAI->getType()->getPointerAddressSpace() != 3867 (unsigned int)AddressSpace::Generic) { 3868 WorkFnAI = new AddrSpaceCastInst( 3869 WorkFnAI, 3870 PointerType::getWithSamePointeeType( 3871 cast<PointerType>(WorkFnAI->getType()), 3872 (unsigned int)AddressSpace::Generic), 3873 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3874 WorkFnAI->setDebugLoc(DLoc); 3875 } 3876 3877 FunctionCallee KernelParallelFn = 3878 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3879 M, OMPRTL___kmpc_kernel_parallel); 3880 CallInst *IsActiveWorker = CallInst::Create( 3881 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3882 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3883 IsActiveWorker->setDebugLoc(DLoc); 3884 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3885 StateMachineBeginBB); 3886 WorkFn->setDebugLoc(DLoc); 3887 3888 FunctionType *ParallelRegionFnTy = FunctionType::get( 3889 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3890 false); 3891 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3892 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3893 StateMachineBeginBB); 3894 3895 Instruction *IsDone = 3896 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3897 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3898 StateMachineBeginBB); 3899 IsDone->setDebugLoc(DLoc); 3900 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3901 IsDone, StateMachineBeginBB) 3902 ->setDebugLoc(DLoc); 3903 3904 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3905 StateMachineDoneBarrierBB, IsActiveWorker, 3906 StateMachineIsActiveCheckBB) 3907 ->setDebugLoc(DLoc); 3908 3909 Value *ZeroArg = 3910 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3911 3912 // Now that we have most of the CFG skeleton it is time for the if-cascade 3913 // that checks the function pointer we got from the runtime against the 3914 // parallel regions we expect, if there are any. 3915 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3916 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3917 BasicBlock *PRExecuteBB = BasicBlock::Create( 3918 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3919 StateMachineEndParallelBB); 3920 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3921 ->setDebugLoc(DLoc); 3922 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3923 ->setDebugLoc(DLoc); 3924 3925 BasicBlock *PRNextBB = 3926 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3927 Kernel, StateMachineEndParallelBB); 3928 3929 // Check if we need to compare the pointer at all or if we can just 3930 // call the parallel region function. 3931 Value *IsPR; 3932 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3933 Instruction *CmpI = ICmpInst::Create( 3934 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3935 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3936 CmpI->setDebugLoc(DLoc); 3937 IsPR = CmpI; 3938 } else { 3939 IsPR = ConstantInt::getTrue(Ctx); 3940 } 3941 3942 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3943 StateMachineIfCascadeCurrentBB) 3944 ->setDebugLoc(DLoc); 3945 StateMachineIfCascadeCurrentBB = PRNextBB; 3946 } 3947 3948 // At the end of the if-cascade we place the indirect function pointer call 3949 // in case we might need it, that is if there can be parallel regions we 3950 // have not handled in the if-cascade above. 3951 if (!ReachedUnknownParallelRegions.empty()) { 3952 StateMachineIfCascadeCurrentBB->setName( 3953 "worker_state_machine.parallel_region.fallback.execute"); 3954 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3955 StateMachineIfCascadeCurrentBB) 3956 ->setDebugLoc(DLoc); 3957 } 3958 BranchInst::Create(StateMachineEndParallelBB, 3959 StateMachineIfCascadeCurrentBB) 3960 ->setDebugLoc(DLoc); 3961 3962 FunctionCallee EndParallelFn = 3963 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3964 M, OMPRTL___kmpc_kernel_end_parallel); 3965 CallInst *EndParallel = 3966 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3967 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3968 EndParallel->setDebugLoc(DLoc); 3969 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3970 ->setDebugLoc(DLoc); 3971 3972 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3973 ->setDebugLoc(DLoc); 3974 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3975 ->setDebugLoc(DLoc); 3976 3977 return ChangeStatus::CHANGED; 3978 } 3979 3980 /// Fixpoint iteration update function. Will be called every time a dependence 3981 /// changed its state (and in the beginning). 3982 ChangeStatus updateImpl(Attributor &A) override { 3983 KernelInfoState StateBefore = getState(); 3984 3985 // Callback to check a read/write instruction. 3986 auto CheckRWInst = [&](Instruction &I) { 3987 // We handle calls later. 3988 if (isa<CallBase>(I)) 3989 return true; 3990 // We only care about write effects. 3991 if (!I.mayWriteToMemory()) 3992 return true; 3993 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3994 SmallVector<const Value *> Objects; 3995 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3996 if (llvm::all_of(Objects, 3997 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3998 return true; 3999 // Check for AAHeapToStack moved objects which must not be guarded. 4000 auto &HS = A.getAAFor<AAHeapToStack>( 4001 *this, IRPosition::function(*I.getFunction()), 4002 DepClassTy::OPTIONAL); 4003 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 4004 auto *CB = dyn_cast<CallBase>(Obj); 4005 if (!CB) 4006 return false; 4007 return HS.isAssumedHeapToStack(*CB); 4008 })) { 4009 return true; 4010 } 4011 } 4012 4013 // Insert instruction that needs guarding. 4014 SPMDCompatibilityTracker.insert(&I); 4015 return true; 4016 }; 4017 4018 bool UsedAssumedInformationInCheckRWInst = false; 4019 if (!SPMDCompatibilityTracker.isAtFixpoint()) 4020 if (!A.checkForAllReadWriteInstructions( 4021 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 4022 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4023 4024 bool UsedAssumedInformationFromReachingKernels = false; 4025 if (!IsKernelEntry) { 4026 updateParallelLevels(A); 4027 4028 bool AllReachingKernelsKnown = true; 4029 updateReachingKernelEntries(A, AllReachingKernelsKnown); 4030 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 4031 4032 if (!ParallelLevels.isValidState()) 4033 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4034 else if (!ReachingKernelEntries.isValidState()) 4035 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4036 else if (!SPMDCompatibilityTracker.empty()) { 4037 // Check if all reaching kernels agree on the mode as we can otherwise 4038 // not guard instructions. We might not be sure about the mode so we 4039 // we cannot fix the internal spmd-zation state either. 4040 int SPMD = 0, Generic = 0; 4041 for (auto *Kernel : ReachingKernelEntries) { 4042 auto &CBAA = A.getAAFor<AAKernelInfo>( 4043 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4044 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4045 CBAA.SPMDCompatibilityTracker.isAssumed()) 4046 ++SPMD; 4047 else 4048 ++Generic; 4049 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4050 UsedAssumedInformationFromReachingKernels = true; 4051 } 4052 if (SPMD != 0 && Generic != 0) 4053 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4054 } 4055 } 4056 4057 // Callback to check a call instruction. 4058 bool AllParallelRegionStatesWereFixed = true; 4059 bool AllSPMDStatesWereFixed = true; 4060 auto CheckCallInst = [&](Instruction &I) { 4061 auto &CB = cast<CallBase>(I); 4062 auto &CBAA = A.getAAFor<AAKernelInfo>( 4063 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4064 getState() ^= CBAA.getState(); 4065 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4066 AllParallelRegionStatesWereFixed &= 4067 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4068 AllParallelRegionStatesWereFixed &= 4069 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4070 return true; 4071 }; 4072 4073 bool UsedAssumedInformationInCheckCallInst = false; 4074 if (!A.checkForAllCallLikeInstructions( 4075 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4076 LLVM_DEBUG(dbgs() << TAG 4077 << "Failed to visit all call-like instructions!\n";); 4078 return indicatePessimisticFixpoint(); 4079 } 4080 4081 // If we haven't used any assumed information for the reached parallel 4082 // region states we can fix it. 4083 if (!UsedAssumedInformationInCheckCallInst && 4084 AllParallelRegionStatesWereFixed) { 4085 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4086 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4087 } 4088 4089 // If we are sure there are no parallel regions in the kernel we do not 4090 // want SPMD mode. 4091 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4092 ReachedKnownParallelRegions.isAtFixpoint() && 4093 ReachedUnknownParallelRegions.isValidState() && 4094 ReachedKnownParallelRegions.isValidState() && 4095 !mayContainParallelRegion()) 4096 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4097 4098 // If we haven't used any assumed information for the SPMD state we can fix 4099 // it. 4100 if (!UsedAssumedInformationInCheckRWInst && 4101 !UsedAssumedInformationInCheckCallInst && 4102 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4103 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4104 4105 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4106 : ChangeStatus::CHANGED; 4107 } 4108 4109 private: 4110 /// Update info regarding reaching kernels. 4111 void updateReachingKernelEntries(Attributor &A, 4112 bool &AllReachingKernelsKnown) { 4113 auto PredCallSite = [&](AbstractCallSite ACS) { 4114 Function *Caller = ACS.getInstruction()->getFunction(); 4115 4116 assert(Caller && "Caller is nullptr"); 4117 4118 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4119 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4120 if (CAA.ReachingKernelEntries.isValidState()) { 4121 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4122 return true; 4123 } 4124 4125 // We lost track of the caller of the associated function, any kernel 4126 // could reach now. 4127 ReachingKernelEntries.indicatePessimisticFixpoint(); 4128 4129 return true; 4130 }; 4131 4132 if (!A.checkForAllCallSites(PredCallSite, *this, 4133 true /* RequireAllCallSites */, 4134 AllReachingKernelsKnown)) 4135 ReachingKernelEntries.indicatePessimisticFixpoint(); 4136 } 4137 4138 /// Update info regarding parallel levels. 4139 void updateParallelLevels(Attributor &A) { 4140 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4141 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4142 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4143 4144 auto PredCallSite = [&](AbstractCallSite ACS) { 4145 Function *Caller = ACS.getInstruction()->getFunction(); 4146 4147 assert(Caller && "Caller is nullptr"); 4148 4149 auto &CAA = 4150 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4151 if (CAA.ParallelLevels.isValidState()) { 4152 // Any function that is called by `__kmpc_parallel_51` will not be 4153 // folded as the parallel level in the function is updated. In order to 4154 // get it right, all the analysis would depend on the implentation. That 4155 // said, if in the future any change to the implementation, the analysis 4156 // could be wrong. As a consequence, we are just conservative here. 4157 if (Caller == Parallel51RFI.Declaration) { 4158 ParallelLevels.indicatePessimisticFixpoint(); 4159 return true; 4160 } 4161 4162 ParallelLevels ^= CAA.ParallelLevels; 4163 4164 return true; 4165 } 4166 4167 // We lost track of the caller of the associated function, any kernel 4168 // could reach now. 4169 ParallelLevels.indicatePessimisticFixpoint(); 4170 4171 return true; 4172 }; 4173 4174 bool AllCallSitesKnown = true; 4175 if (!A.checkForAllCallSites(PredCallSite, *this, 4176 true /* RequireAllCallSites */, 4177 AllCallSitesKnown)) 4178 ParallelLevels.indicatePessimisticFixpoint(); 4179 } 4180 }; 4181 4182 /// The call site kernel info abstract attribute, basically, what can we say 4183 /// about a call site with regards to the KernelInfoState. For now this simply 4184 /// forwards the information from the callee. 4185 struct AAKernelInfoCallSite : AAKernelInfo { 4186 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4187 : AAKernelInfo(IRP, A) {} 4188 4189 /// See AbstractAttribute::initialize(...). 4190 void initialize(Attributor &A) override { 4191 AAKernelInfo::initialize(A); 4192 4193 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4194 Function *Callee = getAssociatedFunction(); 4195 4196 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4197 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4198 4199 // Check for SPMD-mode assumptions. 4200 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4201 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4202 indicateOptimisticFixpoint(); 4203 } 4204 4205 // First weed out calls we do not care about, that is readonly/readnone 4206 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4207 // parallel region or anything else we are looking for. 4208 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4209 indicateOptimisticFixpoint(); 4210 return; 4211 } 4212 4213 // Next we check if we know the callee. If it is a known OpenMP function 4214 // we will handle them explicitly in the switch below. If it is not, we 4215 // will use an AAKernelInfo object on the callee to gather information and 4216 // merge that into the current state. The latter happens in the updateImpl. 4217 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4218 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4219 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4220 // Unknown caller or declarations are not analyzable, we give up. 4221 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4222 4223 // Unknown callees might contain parallel regions, except if they have 4224 // an appropriate assumption attached. 4225 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4226 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4227 ReachedUnknownParallelRegions.insert(&CB); 4228 4229 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4230 // idea we can run something unknown in SPMD-mode. 4231 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4232 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4233 SPMDCompatibilityTracker.insert(&CB); 4234 } 4235 4236 // We have updated the state for this unknown call properly, there won't 4237 // be any change so we indicate a fixpoint. 4238 indicateOptimisticFixpoint(); 4239 } 4240 // If the callee is known and can be used in IPO, we will update the state 4241 // based on the callee state in updateImpl. 4242 return; 4243 } 4244 4245 const unsigned int WrapperFunctionArgNo = 6; 4246 RuntimeFunction RF = It->getSecond(); 4247 switch (RF) { 4248 // All the functions we know are compatible with SPMD mode. 4249 case OMPRTL___kmpc_is_spmd_exec_mode: 4250 case OMPRTL___kmpc_distribute_static_fini: 4251 case OMPRTL___kmpc_for_static_fini: 4252 case OMPRTL___kmpc_global_thread_num: 4253 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4254 case OMPRTL___kmpc_get_hardware_num_blocks: 4255 case OMPRTL___kmpc_single: 4256 case OMPRTL___kmpc_end_single: 4257 case OMPRTL___kmpc_master: 4258 case OMPRTL___kmpc_end_master: 4259 case OMPRTL___kmpc_barrier: 4260 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4261 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4262 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4263 break; 4264 case OMPRTL___kmpc_distribute_static_init_4: 4265 case OMPRTL___kmpc_distribute_static_init_4u: 4266 case OMPRTL___kmpc_distribute_static_init_8: 4267 case OMPRTL___kmpc_distribute_static_init_8u: 4268 case OMPRTL___kmpc_for_static_init_4: 4269 case OMPRTL___kmpc_for_static_init_4u: 4270 case OMPRTL___kmpc_for_static_init_8: 4271 case OMPRTL___kmpc_for_static_init_8u: { 4272 // Check the schedule and allow static schedule in SPMD mode. 4273 unsigned ScheduleArgOpNo = 2; 4274 auto *ScheduleTypeCI = 4275 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4276 unsigned ScheduleTypeVal = 4277 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4278 switch (OMPScheduleType(ScheduleTypeVal)) { 4279 case OMPScheduleType::UnorderedStatic: 4280 case OMPScheduleType::UnorderedStaticChunked: 4281 case OMPScheduleType::OrderedDistribute: 4282 case OMPScheduleType::OrderedDistributeChunked: 4283 break; 4284 default: 4285 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4286 SPMDCompatibilityTracker.insert(&CB); 4287 break; 4288 }; 4289 } break; 4290 case OMPRTL___kmpc_target_init: 4291 KernelInitCB = &CB; 4292 break; 4293 case OMPRTL___kmpc_target_deinit: 4294 KernelDeinitCB = &CB; 4295 break; 4296 case OMPRTL___kmpc_parallel_51: 4297 if (auto *ParallelRegion = dyn_cast<Function>( 4298 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4299 ReachedKnownParallelRegions.insert(ParallelRegion); 4300 break; 4301 } 4302 // The condition above should usually get the parallel region function 4303 // pointer and record it. In the off chance it doesn't we assume the 4304 // worst. 4305 ReachedUnknownParallelRegions.insert(&CB); 4306 break; 4307 case OMPRTL___kmpc_omp_task: 4308 // We do not look into tasks right now, just give up. 4309 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4310 SPMDCompatibilityTracker.insert(&CB); 4311 ReachedUnknownParallelRegions.insert(&CB); 4312 break; 4313 case OMPRTL___kmpc_alloc_shared: 4314 case OMPRTL___kmpc_free_shared: 4315 // Return without setting a fixpoint, to be resolved in updateImpl. 4316 return; 4317 default: 4318 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4319 // generally. However, they do not hide parallel regions. 4320 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4321 SPMDCompatibilityTracker.insert(&CB); 4322 break; 4323 } 4324 // All other OpenMP runtime calls will not reach parallel regions so they 4325 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4326 // have now modeled all effects and there is no need for any update. 4327 indicateOptimisticFixpoint(); 4328 } 4329 4330 ChangeStatus updateImpl(Attributor &A) override { 4331 // TODO: Once we have call site specific value information we can provide 4332 // call site specific liveness information and then it makes 4333 // sense to specialize attributes for call sites arguments instead of 4334 // redirecting requests to the callee argument. 4335 Function *F = getAssociatedFunction(); 4336 4337 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4338 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4339 4340 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4341 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4342 const IRPosition &FnPos = IRPosition::function(*F); 4343 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4344 if (getState() == FnAA.getState()) 4345 return ChangeStatus::UNCHANGED; 4346 getState() = FnAA.getState(); 4347 return ChangeStatus::CHANGED; 4348 } 4349 4350 // F is a runtime function that allocates or frees memory, check 4351 // AAHeapToStack and AAHeapToShared. 4352 KernelInfoState StateBefore = getState(); 4353 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4354 It->getSecond() == OMPRTL___kmpc_free_shared) && 4355 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4356 4357 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4358 4359 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4360 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4361 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4362 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4363 4364 RuntimeFunction RF = It->getSecond(); 4365 4366 switch (RF) { 4367 // If neither HeapToStack nor HeapToShared assume the call is removed, 4368 // assume SPMD incompatibility. 4369 case OMPRTL___kmpc_alloc_shared: 4370 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4371 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4372 SPMDCompatibilityTracker.insert(&CB); 4373 break; 4374 case OMPRTL___kmpc_free_shared: 4375 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4376 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4377 SPMDCompatibilityTracker.insert(&CB); 4378 break; 4379 default: 4380 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4381 SPMDCompatibilityTracker.insert(&CB); 4382 } 4383 4384 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4385 : ChangeStatus::CHANGED; 4386 } 4387 }; 4388 4389 struct AAFoldRuntimeCall 4390 : public StateWrapper<BooleanState, AbstractAttribute> { 4391 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4392 4393 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4394 4395 /// Statistics are tracked as part of manifest for now. 4396 void trackStatistics() const override {} 4397 4398 /// Create an abstract attribute biew for the position \p IRP. 4399 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4400 Attributor &A); 4401 4402 /// See AbstractAttribute::getName() 4403 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4404 4405 /// See AbstractAttribute::getIdAddr() 4406 const char *getIdAddr() const override { return &ID; } 4407 4408 /// This function should return true if the type of the \p AA is 4409 /// AAFoldRuntimeCall 4410 static bool classof(const AbstractAttribute *AA) { 4411 return (AA->getIdAddr() == &ID); 4412 } 4413 4414 static const char ID; 4415 }; 4416 4417 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4418 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4419 : AAFoldRuntimeCall(IRP, A) {} 4420 4421 /// See AbstractAttribute::getAsStr() 4422 const std::string getAsStr() const override { 4423 if (!isValidState()) 4424 return "<invalid>"; 4425 4426 std::string Str("simplified value: "); 4427 4428 if (!SimplifiedValue) 4429 return Str + std::string("none"); 4430 4431 if (!SimplifiedValue.getValue()) 4432 return Str + std::string("nullptr"); 4433 4434 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4435 return Str + std::to_string(CI->getSExtValue()); 4436 4437 return Str + std::string("unknown"); 4438 } 4439 4440 void initialize(Attributor &A) override { 4441 if (DisableOpenMPOptFolding) 4442 indicatePessimisticFixpoint(); 4443 4444 Function *Callee = getAssociatedFunction(); 4445 4446 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4447 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4448 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4449 "Expected a known OpenMP runtime function"); 4450 4451 RFKind = It->getSecond(); 4452 4453 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4454 A.registerSimplificationCallback( 4455 IRPosition::callsite_returned(CB), 4456 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4457 bool &UsedAssumedInformation) -> Optional<Value *> { 4458 assert((isValidState() || 4459 (SimplifiedValue && SimplifiedValue.getValue() == nullptr)) && 4460 "Unexpected invalid state!"); 4461 4462 if (!isAtFixpoint()) { 4463 UsedAssumedInformation = true; 4464 if (AA) 4465 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4466 } 4467 return SimplifiedValue; 4468 }); 4469 } 4470 4471 ChangeStatus updateImpl(Attributor &A) override { 4472 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4473 switch (RFKind) { 4474 case OMPRTL___kmpc_is_spmd_exec_mode: 4475 Changed |= foldIsSPMDExecMode(A); 4476 break; 4477 case OMPRTL___kmpc_is_generic_main_thread_id: 4478 Changed |= foldIsGenericMainThread(A); 4479 break; 4480 case OMPRTL___kmpc_parallel_level: 4481 Changed |= foldParallelLevel(A); 4482 break; 4483 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4484 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4485 break; 4486 case OMPRTL___kmpc_get_hardware_num_blocks: 4487 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4488 break; 4489 default: 4490 llvm_unreachable("Unhandled OpenMP runtime function!"); 4491 } 4492 4493 return Changed; 4494 } 4495 4496 ChangeStatus manifest(Attributor &A) override { 4497 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4498 4499 if (SimplifiedValue && *SimplifiedValue) { 4500 Instruction &I = *getCtxI(); 4501 A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue); 4502 A.deleteAfterManifest(I); 4503 4504 CallBase *CB = dyn_cast<CallBase>(&I); 4505 auto Remark = [&](OptimizationRemark OR) { 4506 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4507 return OR << "Replacing OpenMP runtime call " 4508 << CB->getCalledFunction()->getName() << " with " 4509 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4510 return OR << "Replacing OpenMP runtime call " 4511 << CB->getCalledFunction()->getName() << "."; 4512 }; 4513 4514 if (CB && EnableVerboseRemarks) 4515 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4516 4517 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4518 << **SimplifiedValue << "\n"); 4519 4520 Changed = ChangeStatus::CHANGED; 4521 } 4522 4523 return Changed; 4524 } 4525 4526 ChangeStatus indicatePessimisticFixpoint() override { 4527 SimplifiedValue = nullptr; 4528 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4529 } 4530 4531 private: 4532 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4533 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4534 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4535 4536 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4537 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4538 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4539 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4540 4541 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4542 return indicatePessimisticFixpoint(); 4543 4544 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4545 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4546 DepClassTy::REQUIRED); 4547 4548 if (!AA.isValidState()) { 4549 SimplifiedValue = nullptr; 4550 return indicatePessimisticFixpoint(); 4551 } 4552 4553 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4554 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4555 ++KnownSPMDCount; 4556 else 4557 ++AssumedSPMDCount; 4558 } else { 4559 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4560 ++KnownNonSPMDCount; 4561 else 4562 ++AssumedNonSPMDCount; 4563 } 4564 } 4565 4566 if ((AssumedSPMDCount + KnownSPMDCount) && 4567 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4568 return indicatePessimisticFixpoint(); 4569 4570 auto &Ctx = getAnchorValue().getContext(); 4571 if (KnownSPMDCount || AssumedSPMDCount) { 4572 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4573 "Expected only SPMD kernels!"); 4574 // All reaching kernels are in SPMD mode. Update all function calls to 4575 // __kmpc_is_spmd_exec_mode to 1. 4576 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4577 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4578 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4579 "Expected only non-SPMD kernels!"); 4580 // All reaching kernels are in non-SPMD mode. Update all function 4581 // calls to __kmpc_is_spmd_exec_mode to 0. 4582 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4583 } else { 4584 // We have empty reaching kernels, therefore we cannot tell if the 4585 // associated call site can be folded. At this moment, SimplifiedValue 4586 // must be none. 4587 assert(!SimplifiedValue && "SimplifiedValue should be none"); 4588 } 4589 4590 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4591 : ChangeStatus::CHANGED; 4592 } 4593 4594 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4595 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4596 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4597 4598 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4599 Function *F = CB.getFunction(); 4600 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4601 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4602 4603 if (!ExecutionDomainAA.isValidState()) 4604 return indicatePessimisticFixpoint(); 4605 4606 auto &Ctx = getAnchorValue().getContext(); 4607 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4608 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4609 else 4610 return indicatePessimisticFixpoint(); 4611 4612 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4613 : ChangeStatus::CHANGED; 4614 } 4615 4616 /// Fold __kmpc_parallel_level into a constant if possible. 4617 ChangeStatus foldParallelLevel(Attributor &A) { 4618 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4619 4620 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4621 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4622 4623 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4624 return indicatePessimisticFixpoint(); 4625 4626 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4627 return indicatePessimisticFixpoint(); 4628 4629 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4630 assert(!SimplifiedValue && 4631 "SimplifiedValue should keep none at this point"); 4632 return ChangeStatus::UNCHANGED; 4633 } 4634 4635 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4636 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4637 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4638 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4639 DepClassTy::REQUIRED); 4640 if (!AA.SPMDCompatibilityTracker.isValidState()) 4641 return indicatePessimisticFixpoint(); 4642 4643 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4644 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4645 ++KnownSPMDCount; 4646 else 4647 ++AssumedSPMDCount; 4648 } else { 4649 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4650 ++KnownNonSPMDCount; 4651 else 4652 ++AssumedNonSPMDCount; 4653 } 4654 } 4655 4656 if ((AssumedSPMDCount + KnownSPMDCount) && 4657 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4658 return indicatePessimisticFixpoint(); 4659 4660 auto &Ctx = getAnchorValue().getContext(); 4661 // If the caller can only be reached by SPMD kernel entries, the parallel 4662 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4663 // kernel entries, it is 0. 4664 if (AssumedSPMDCount || KnownSPMDCount) { 4665 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4666 "Expected only SPMD kernels!"); 4667 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4668 } else { 4669 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4670 "Expected only non-SPMD kernels!"); 4671 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4672 } 4673 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4674 : ChangeStatus::CHANGED; 4675 } 4676 4677 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4678 // Specialize only if all the calls agree with the attribute constant value 4679 int32_t CurrentAttrValue = -1; 4680 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4681 4682 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4683 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4684 4685 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4686 return indicatePessimisticFixpoint(); 4687 4688 // Iterate over the kernels that reach this function 4689 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4690 int32_t NextAttrVal = -1; 4691 if (K->hasFnAttribute(Attr)) 4692 NextAttrVal = 4693 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4694 4695 if (NextAttrVal == -1 || 4696 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4697 return indicatePessimisticFixpoint(); 4698 CurrentAttrValue = NextAttrVal; 4699 } 4700 4701 if (CurrentAttrValue != -1) { 4702 auto &Ctx = getAnchorValue().getContext(); 4703 SimplifiedValue = 4704 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4705 } 4706 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4707 : ChangeStatus::CHANGED; 4708 } 4709 4710 /// An optional value the associated value is assumed to fold to. That is, we 4711 /// assume the associated value (which is a call) can be replaced by this 4712 /// simplified value. 4713 Optional<Value *> SimplifiedValue; 4714 4715 /// The runtime function kind of the callee of the associated call site. 4716 RuntimeFunction RFKind; 4717 }; 4718 4719 } // namespace 4720 4721 /// Register folding callsite 4722 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4723 auto &RFI = OMPInfoCache.RFIs[RF]; 4724 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4725 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4726 if (!CI) 4727 return false; 4728 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4729 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4730 DepClassTy::NONE, /* ForceUpdate */ false, 4731 /* UpdateAfterInit */ false); 4732 return false; 4733 }); 4734 } 4735 4736 void OpenMPOpt::registerAAs(bool IsModulePass) { 4737 if (SCC.empty()) 4738 return; 4739 4740 if (IsModulePass) { 4741 // Ensure we create the AAKernelInfo AAs first and without triggering an 4742 // update. This will make sure we register all value simplification 4743 // callbacks before any other AA has the chance to create an AAValueSimplify 4744 // or similar. 4745 auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { 4746 A.getOrCreateAAFor<AAKernelInfo>( 4747 IRPosition::function(Kernel), /* QueryingAA */ nullptr, 4748 DepClassTy::NONE, /* ForceUpdate */ false, 4749 /* UpdateAfterInit */ false); 4750 return false; 4751 }; 4752 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 4753 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 4754 InitRFI.foreachUse(SCC, CreateKernelInfoCB); 4755 4756 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4757 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4758 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4759 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4760 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4761 } 4762 4763 // Create CallSite AA for all Getters. 4764 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4765 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4766 4767 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4768 4769 auto CreateAA = [&](Use &U, Function &Caller) { 4770 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4771 if (!CI) 4772 return false; 4773 4774 auto &CB = cast<CallBase>(*CI); 4775 4776 IRPosition CBPos = IRPosition::callsite_function(CB); 4777 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4778 return false; 4779 }; 4780 4781 GetterRFI.foreachUse(SCC, CreateAA); 4782 } 4783 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4784 auto CreateAA = [&](Use &U, Function &F) { 4785 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4786 return false; 4787 }; 4788 if (!DisableOpenMPOptDeglobalization) 4789 GlobalizationRFI.foreachUse(SCC, CreateAA); 4790 4791 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4792 // every function if there is a device kernel. 4793 if (!isOpenMPDevice(M)) 4794 return; 4795 4796 for (auto *F : SCC) { 4797 if (F->isDeclaration()) 4798 continue; 4799 4800 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4801 if (!DisableOpenMPOptDeglobalization) 4802 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4803 4804 for (auto &I : instructions(*F)) { 4805 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4806 bool UsedAssumedInformation = false; 4807 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4808 UsedAssumedInformation); 4809 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4810 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4811 } 4812 } 4813 } 4814 } 4815 4816 const char AAICVTracker::ID = 0; 4817 const char AAKernelInfo::ID = 0; 4818 const char AAExecutionDomain::ID = 0; 4819 const char AAHeapToShared::ID = 0; 4820 const char AAFoldRuntimeCall::ID = 0; 4821 4822 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4823 Attributor &A) { 4824 AAICVTracker *AA = nullptr; 4825 switch (IRP.getPositionKind()) { 4826 case IRPosition::IRP_INVALID: 4827 case IRPosition::IRP_FLOAT: 4828 case IRPosition::IRP_ARGUMENT: 4829 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4830 llvm_unreachable("ICVTracker can only be created for function position!"); 4831 case IRPosition::IRP_RETURNED: 4832 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4833 break; 4834 case IRPosition::IRP_CALL_SITE_RETURNED: 4835 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4836 break; 4837 case IRPosition::IRP_CALL_SITE: 4838 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4839 break; 4840 case IRPosition::IRP_FUNCTION: 4841 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4842 break; 4843 } 4844 4845 return *AA; 4846 } 4847 4848 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4849 Attributor &A) { 4850 AAExecutionDomainFunction *AA = nullptr; 4851 switch (IRP.getPositionKind()) { 4852 case IRPosition::IRP_INVALID: 4853 case IRPosition::IRP_FLOAT: 4854 case IRPosition::IRP_ARGUMENT: 4855 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4856 case IRPosition::IRP_RETURNED: 4857 case IRPosition::IRP_CALL_SITE_RETURNED: 4858 case IRPosition::IRP_CALL_SITE: 4859 llvm_unreachable( 4860 "AAExecutionDomain can only be created for function position!"); 4861 case IRPosition::IRP_FUNCTION: 4862 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4863 break; 4864 } 4865 4866 return *AA; 4867 } 4868 4869 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4870 Attributor &A) { 4871 AAHeapToSharedFunction *AA = nullptr; 4872 switch (IRP.getPositionKind()) { 4873 case IRPosition::IRP_INVALID: 4874 case IRPosition::IRP_FLOAT: 4875 case IRPosition::IRP_ARGUMENT: 4876 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4877 case IRPosition::IRP_RETURNED: 4878 case IRPosition::IRP_CALL_SITE_RETURNED: 4879 case IRPosition::IRP_CALL_SITE: 4880 llvm_unreachable( 4881 "AAHeapToShared can only be created for function position!"); 4882 case IRPosition::IRP_FUNCTION: 4883 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4884 break; 4885 } 4886 4887 return *AA; 4888 } 4889 4890 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4891 Attributor &A) { 4892 AAKernelInfo *AA = nullptr; 4893 switch (IRP.getPositionKind()) { 4894 case IRPosition::IRP_INVALID: 4895 case IRPosition::IRP_FLOAT: 4896 case IRPosition::IRP_ARGUMENT: 4897 case IRPosition::IRP_RETURNED: 4898 case IRPosition::IRP_CALL_SITE_RETURNED: 4899 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4900 llvm_unreachable("KernelInfo can only be created for function position!"); 4901 case IRPosition::IRP_CALL_SITE: 4902 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4903 break; 4904 case IRPosition::IRP_FUNCTION: 4905 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4906 break; 4907 } 4908 4909 return *AA; 4910 } 4911 4912 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4913 Attributor &A) { 4914 AAFoldRuntimeCall *AA = nullptr; 4915 switch (IRP.getPositionKind()) { 4916 case IRPosition::IRP_INVALID: 4917 case IRPosition::IRP_FLOAT: 4918 case IRPosition::IRP_ARGUMENT: 4919 case IRPosition::IRP_RETURNED: 4920 case IRPosition::IRP_FUNCTION: 4921 case IRPosition::IRP_CALL_SITE: 4922 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4923 llvm_unreachable("KernelInfo can only be created for call site position!"); 4924 case IRPosition::IRP_CALL_SITE_RETURNED: 4925 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4926 break; 4927 } 4928 4929 return *AA; 4930 } 4931 4932 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4933 if (!containsOpenMP(M)) 4934 return PreservedAnalyses::all(); 4935 if (DisableOpenMPOptimizations) 4936 return PreservedAnalyses::all(); 4937 4938 FunctionAnalysisManager &FAM = 4939 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4940 KernelSet Kernels = getDeviceKernels(M); 4941 4942 if (PrintModuleBeforeOptimizations) 4943 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); 4944 4945 auto IsCalled = [&](Function &F) { 4946 if (Kernels.contains(&F)) 4947 return true; 4948 for (const User *U : F.users()) 4949 if (!isa<BlockAddress>(U)) 4950 return true; 4951 return false; 4952 }; 4953 4954 auto EmitRemark = [&](Function &F) { 4955 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4956 ORE.emit([&]() { 4957 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4958 return ORA << "Could not internalize function. " 4959 << "Some optimizations may not be possible. [OMP140]"; 4960 }); 4961 }; 4962 4963 // Create internal copies of each function if this is a kernel Module. This 4964 // allows iterprocedural passes to see every call edge. 4965 DenseMap<Function *, Function *> InternalizedMap; 4966 if (isOpenMPDevice(M)) { 4967 SmallPtrSet<Function *, 16> InternalizeFns; 4968 for (Function &F : M) 4969 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4970 !DisableInternalization) { 4971 if (Attributor::isInternalizable(F)) { 4972 InternalizeFns.insert(&F); 4973 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4974 EmitRemark(F); 4975 } 4976 } 4977 4978 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4979 } 4980 4981 // Look at every function in the Module unless it was internalized. 4982 SmallVector<Function *, 16> SCC; 4983 for (Function &F : M) 4984 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4985 SCC.push_back(&F); 4986 4987 if (SCC.empty()) 4988 return PreservedAnalyses::all(); 4989 4990 AnalysisGetter AG(FAM); 4991 4992 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4993 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4994 }; 4995 4996 BumpPtrAllocator Allocator; 4997 CallGraphUpdater CGUpdater; 4998 4999 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5000 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 5001 5002 unsigned MaxFixpointIterations = 5003 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5004 5005 AttributorConfig AC(CGUpdater); 5006 AC.DefaultInitializeLiveInternals = false; 5007 AC.RewriteSignatures = false; 5008 AC.MaxFixpointIterations = MaxFixpointIterations; 5009 AC.OREGetter = OREGetter; 5010 AC.PassName = DEBUG_TYPE; 5011 5012 Attributor A(Functions, InfoCache, AC); 5013 5014 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5015 bool Changed = OMPOpt.run(true); 5016 5017 // Optionally inline device functions for potentially better performance. 5018 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 5019 for (Function &F : M) 5020 if (!F.isDeclaration() && !Kernels.contains(&F) && 5021 !F.hasFnAttribute(Attribute::NoInline)) 5022 F.addFnAttr(Attribute::AlwaysInline); 5023 5024 if (PrintModuleAfterOptimizations) 5025 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 5026 5027 if (Changed) 5028 return PreservedAnalyses::none(); 5029 5030 return PreservedAnalyses::all(); 5031 } 5032 5033 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 5034 CGSCCAnalysisManager &AM, 5035 LazyCallGraph &CG, 5036 CGSCCUpdateResult &UR) { 5037 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 5038 return PreservedAnalyses::all(); 5039 if (DisableOpenMPOptimizations) 5040 return PreservedAnalyses::all(); 5041 5042 SmallVector<Function *, 16> SCC; 5043 // If there are kernels in the module, we have to run on all SCC's. 5044 for (LazyCallGraph::Node &N : C) { 5045 Function *Fn = &N.getFunction(); 5046 SCC.push_back(Fn); 5047 } 5048 5049 if (SCC.empty()) 5050 return PreservedAnalyses::all(); 5051 5052 Module &M = *C.begin()->getFunction().getParent(); 5053 5054 if (PrintModuleBeforeOptimizations) 5055 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); 5056 5057 KernelSet Kernels = getDeviceKernels(M); 5058 5059 FunctionAnalysisManager &FAM = 5060 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5061 5062 AnalysisGetter AG(FAM); 5063 5064 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5065 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5066 }; 5067 5068 BumpPtrAllocator Allocator; 5069 CallGraphUpdater CGUpdater; 5070 CGUpdater.initialize(CG, C, AM, UR); 5071 5072 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5073 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5074 /*CGSCC*/ Functions, Kernels); 5075 5076 unsigned MaxFixpointIterations = 5077 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5078 5079 AttributorConfig AC(CGUpdater); 5080 AC.DefaultInitializeLiveInternals = false; 5081 AC.IsModulePass = false; 5082 AC.RewriteSignatures = false; 5083 AC.MaxFixpointIterations = MaxFixpointIterations; 5084 AC.OREGetter = OREGetter; 5085 AC.PassName = DEBUG_TYPE; 5086 5087 Attributor A(Functions, InfoCache, AC); 5088 5089 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5090 bool Changed = OMPOpt.run(false); 5091 5092 if (PrintModuleAfterOptimizations) 5093 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5094 5095 if (Changed) 5096 return PreservedAnalyses::none(); 5097 5098 return PreservedAnalyses::all(); 5099 } 5100 5101 namespace { 5102 5103 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5104 CallGraphUpdater CGUpdater; 5105 static char ID; 5106 5107 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5108 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5109 } 5110 5111 void getAnalysisUsage(AnalysisUsage &AU) const override { 5112 CallGraphSCCPass::getAnalysisUsage(AU); 5113 } 5114 5115 bool runOnSCC(CallGraphSCC &CGSCC) override { 5116 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5117 return false; 5118 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5119 return false; 5120 5121 SmallVector<Function *, 16> SCC; 5122 // If there are kernels in the module, we have to run on all SCC's. 5123 for (CallGraphNode *CGN : CGSCC) { 5124 Function *Fn = CGN->getFunction(); 5125 if (!Fn || Fn->isDeclaration()) 5126 continue; 5127 SCC.push_back(Fn); 5128 } 5129 5130 if (SCC.empty()) 5131 return false; 5132 5133 Module &M = CGSCC.getCallGraph().getModule(); 5134 KernelSet Kernels = getDeviceKernels(M); 5135 5136 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5137 CGUpdater.initialize(CG, CGSCC); 5138 5139 // Maintain a map of functions to avoid rebuilding the ORE 5140 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5141 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5142 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5143 if (!ORE) 5144 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5145 return *ORE; 5146 }; 5147 5148 AnalysisGetter AG; 5149 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5150 BumpPtrAllocator Allocator; 5151 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5152 Allocator, 5153 /*CGSCC*/ Functions, Kernels); 5154 5155 unsigned MaxFixpointIterations = 5156 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5157 5158 AttributorConfig AC(CGUpdater); 5159 AC.DefaultInitializeLiveInternals = false; 5160 AC.IsModulePass = false; 5161 AC.RewriteSignatures = false; 5162 AC.MaxFixpointIterations = MaxFixpointIterations; 5163 AC.OREGetter = OREGetter; 5164 AC.PassName = DEBUG_TYPE; 5165 5166 Attributor A(Functions, InfoCache, AC); 5167 5168 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5169 bool Result = OMPOpt.run(false); 5170 5171 if (PrintModuleAfterOptimizations) 5172 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5173 5174 return Result; 5175 } 5176 5177 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5178 }; 5179 5180 } // end anonymous namespace 5181 5182 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5183 // TODO: Create a more cross-platform way of determining device kernels. 5184 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5185 KernelSet Kernels; 5186 5187 if (!MD) 5188 return Kernels; 5189 5190 for (auto *Op : MD->operands()) { 5191 if (Op->getNumOperands() < 2) 5192 continue; 5193 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5194 if (!KindID || KindID->getString() != "kernel") 5195 continue; 5196 5197 Function *KernelFn = 5198 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5199 if (!KernelFn) 5200 continue; 5201 5202 ++NumOpenMPTargetRegionKernels; 5203 5204 Kernels.insert(KernelFn); 5205 } 5206 5207 return Kernels; 5208 } 5209 5210 bool llvm::omp::containsOpenMP(Module &M) { 5211 Metadata *MD = M.getModuleFlag("openmp"); 5212 if (!MD) 5213 return false; 5214 5215 return true; 5216 } 5217 5218 bool llvm::omp::isOpenMPDevice(Module &M) { 5219 Metadata *MD = M.getModuleFlag("openmp-device"); 5220 if (!MD) 5221 return false; 5222 5223 return true; 5224 } 5225 5226 char OpenMPOptCGSCCLegacyPass::ID = 0; 5227 5228 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5229 "OpenMP specific optimizations", false, false) 5230 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5231 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5232 "OpenMP specific optimizations", false, false) 5233 5234 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5235 return new OpenMPOptCGSCCLegacyPass(); 5236 } 5237