1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // OpenMP specific optimizations: 10 // 11 // - Deduplication of runtime calls, e.g., omp_get_thread_num. 12 // - Replacing globalized device memory with stack memory. 13 // - Replacing globalized device memory with shared memory. 14 // - Parallel region merging. 15 // - Transforming generic-mode device kernels to SPMD mode. 16 // - Specializing the state machine for generic-mode device kernels. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/OpenMPOpt.h" 21 22 #include "llvm/ADT/EnumeratedArray.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Frontend/OpenMP/OMPConstants.h" 33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/IntrinsicsAMDGPU.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/IPO/Attributor.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/CallGraphUpdater.h" 52 #include "llvm/Transforms/Utils/CodeExtractor.h" 53 54 #include <algorithm> 55 56 using namespace llvm; 57 using namespace omp; 58 59 #define DEBUG_TYPE "openmp-opt" 60 61 static cl::opt<bool> DisableOpenMPOptimizations( 62 "openmp-opt-disable", cl::ZeroOrMore, 63 cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, 64 cl::init(false)); 65 66 static cl::opt<bool> EnableParallelRegionMerging( 67 "openmp-opt-enable-merging", cl::ZeroOrMore, 68 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, 69 cl::init(false)); 70 71 static cl::opt<bool> 72 DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore, 73 cl::desc("Disable function internalization."), 74 cl::Hidden, cl::init(false)); 75 76 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false), 77 cl::Hidden); 78 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels", 79 cl::init(false), cl::Hidden); 80 81 static cl::opt<bool> HideMemoryTransferLatency( 82 "openmp-hide-memory-transfer-latency", 83 cl::desc("[WIP] Tries to hide the latency of host to device memory" 84 " transfers"), 85 cl::Hidden, cl::init(false)); 86 87 static cl::opt<bool> DisableOpenMPOptDeglobalization( 88 "openmp-opt-disable-deglobalization", cl::ZeroOrMore, 89 cl::desc("Disable OpenMP optimizations involving deglobalization."), 90 cl::Hidden, cl::init(false)); 91 92 static cl::opt<bool> DisableOpenMPOptSPMDization( 93 "openmp-opt-disable-spmdization", cl::ZeroOrMore, 94 cl::desc("Disable OpenMP optimizations involving SPMD-ization."), 95 cl::Hidden, cl::init(false)); 96 97 static cl::opt<bool> DisableOpenMPOptFolding( 98 "openmp-opt-disable-folding", cl::ZeroOrMore, 99 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden, 100 cl::init(false)); 101 102 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( 103 "openmp-opt-disable-state-machine-rewrite", cl::ZeroOrMore, 104 cl::desc("Disable OpenMP optimizations that replace the state machine."), 105 cl::Hidden, cl::init(false)); 106 107 static cl::opt<bool> DisableOpenMPOptBarrierElimination( 108 "openmp-opt-disable-barrier-elimination", cl::ZeroOrMore, 109 cl::desc("Disable OpenMP optimizations that eliminate barriers."), 110 cl::Hidden, cl::init(false)); 111 112 static cl::opt<bool> PrintModuleAfterOptimizations( 113 "openmp-opt-print-module", cl::ZeroOrMore, 114 cl::desc("Print the current module after OpenMP optimizations."), 115 cl::Hidden, cl::init(false)); 116 117 static cl::opt<bool> AlwaysInlineDeviceFunctions( 118 "openmp-opt-inline-device", cl::ZeroOrMore, 119 cl::desc("Inline all applicible functions on the device."), cl::Hidden, 120 cl::init(false)); 121 122 static cl::opt<bool> 123 EnableVerboseRemarks("openmp-opt-verbose-remarks", cl::ZeroOrMore, 124 cl::desc("Enables more verbose remarks."), cl::Hidden, 125 cl::init(false)); 126 127 static cl::opt<unsigned> 128 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden, 129 cl::desc("Maximal number of attributor iterations."), 130 cl::init(256)); 131 132 STATISTIC(NumOpenMPRuntimeCallsDeduplicated, 133 "Number of OpenMP runtime calls deduplicated"); 134 STATISTIC(NumOpenMPParallelRegionsDeleted, 135 "Number of OpenMP parallel regions deleted"); 136 STATISTIC(NumOpenMPRuntimeFunctionsIdentified, 137 "Number of OpenMP runtime functions identified"); 138 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, 139 "Number of OpenMP runtime function uses identified"); 140 STATISTIC(NumOpenMPTargetRegionKernels, 141 "Number of OpenMP target region entry points (=kernels) identified"); 142 STATISTIC(NumOpenMPTargetRegionKernelsSPMD, 143 "Number of OpenMP target region entry points (=kernels) executed in " 144 "SPMD-mode instead of generic-mode"); 145 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, 146 "Number of OpenMP target region entry points (=kernels) executed in " 147 "generic-mode without a state machines"); 148 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, 149 "Number of OpenMP target region entry points (=kernels) executed in " 150 "generic-mode with customized state machines with fallback"); 151 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, 152 "Number of OpenMP target region entry points (=kernels) executed in " 153 "generic-mode with customized state machines without fallback"); 154 STATISTIC( 155 NumOpenMPParallelRegionsReplacedInGPUStateMachine, 156 "Number of OpenMP parallel regions replaced with ID in GPU state machines"); 157 STATISTIC(NumOpenMPParallelRegionsMerged, 158 "Number of OpenMP parallel regions merged"); 159 STATISTIC(NumBytesMovedToSharedMemory, 160 "Amount of memory pushed to shared memory"); 161 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated"); 162 163 #if !defined(NDEBUG) 164 static constexpr auto TAG = "[" DEBUG_TYPE "]"; 165 #endif 166 167 namespace { 168 169 struct AAHeapToShared; 170 171 struct AAICVTracker; 172 173 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for 174 /// Attributor runs. 175 struct OMPInformationCache : public InformationCache { 176 OMPInformationCache(Module &M, AnalysisGetter &AG, 177 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC, 178 KernelSet &Kernels) 179 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), 180 Kernels(Kernels) { 181 182 OMPBuilder.initialize(); 183 initializeRuntimeFunctions(); 184 initializeInternalControlVars(); 185 } 186 187 /// Generic information that describes an internal control variable. 188 struct InternalControlVarInfo { 189 /// The kind, as described by InternalControlVar enum. 190 InternalControlVar Kind; 191 192 /// The name of the ICV. 193 StringRef Name; 194 195 /// Environment variable associated with this ICV. 196 StringRef EnvVarName; 197 198 /// Initial value kind. 199 ICVInitValue InitKind; 200 201 /// Initial value. 202 ConstantInt *InitValue; 203 204 /// Setter RTL function associated with this ICV. 205 RuntimeFunction Setter; 206 207 /// Getter RTL function associated with this ICV. 208 RuntimeFunction Getter; 209 210 /// RTL Function corresponding to the override clause of this ICV 211 RuntimeFunction Clause; 212 }; 213 214 /// Generic information that describes a runtime function 215 struct RuntimeFunctionInfo { 216 217 /// The kind, as described by the RuntimeFunction enum. 218 RuntimeFunction Kind; 219 220 /// The name of the function. 221 StringRef Name; 222 223 /// Flag to indicate a variadic function. 224 bool IsVarArg; 225 226 /// The return type of the function. 227 Type *ReturnType; 228 229 /// The argument types of the function. 230 SmallVector<Type *, 8> ArgumentTypes; 231 232 /// The declaration if available. 233 Function *Declaration = nullptr; 234 235 /// Uses of this runtime function per function containing the use. 236 using UseVector = SmallVector<Use *, 16>; 237 238 /// Clear UsesMap for runtime function. 239 void clearUsesMap() { UsesMap.clear(); } 240 241 /// Boolean conversion that is true if the runtime function was found. 242 operator bool() const { return Declaration; } 243 244 /// Return the vector of uses in function \p F. 245 UseVector &getOrCreateUseVector(Function *F) { 246 std::shared_ptr<UseVector> &UV = UsesMap[F]; 247 if (!UV) 248 UV = std::make_shared<UseVector>(); 249 return *UV; 250 } 251 252 /// Return the vector of uses in function \p F or `nullptr` if there are 253 /// none. 254 const UseVector *getUseVector(Function &F) const { 255 auto I = UsesMap.find(&F); 256 if (I != UsesMap.end()) 257 return I->second.get(); 258 return nullptr; 259 } 260 261 /// Return how many functions contain uses of this runtime function. 262 size_t getNumFunctionsWithUses() const { return UsesMap.size(); } 263 264 /// Return the number of arguments (or the minimal number for variadic 265 /// functions). 266 size_t getNumArgs() const { return ArgumentTypes.size(); } 267 268 /// Run the callback \p CB on each use and forget the use if the result is 269 /// true. The callback will be fed the function in which the use was 270 /// encountered as second argument. 271 void foreachUse(SmallVectorImpl<Function *> &SCC, 272 function_ref<bool(Use &, Function &)> CB) { 273 for (Function *F : SCC) 274 foreachUse(CB, F); 275 } 276 277 /// Run the callback \p CB on each use within the function \p F and forget 278 /// the use if the result is true. 279 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { 280 SmallVector<unsigned, 8> ToBeDeleted; 281 ToBeDeleted.clear(); 282 283 unsigned Idx = 0; 284 UseVector &UV = getOrCreateUseVector(F); 285 286 for (Use *U : UV) { 287 if (CB(*U, *F)) 288 ToBeDeleted.push_back(Idx); 289 ++Idx; 290 } 291 292 // Remove the to-be-deleted indices in reverse order as prior 293 // modifications will not modify the smaller indices. 294 while (!ToBeDeleted.empty()) { 295 unsigned Idx = ToBeDeleted.pop_back_val(); 296 UV[Idx] = UV.back(); 297 UV.pop_back(); 298 } 299 } 300 301 private: 302 /// Map from functions to all uses of this runtime function contained in 303 /// them. 304 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; 305 306 public: 307 /// Iterators for the uses of this runtime function. 308 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } 309 decltype(UsesMap)::iterator end() { return UsesMap.end(); } 310 }; 311 312 /// An OpenMP-IR-Builder instance 313 OpenMPIRBuilder OMPBuilder; 314 315 /// Map from runtime function kind to the runtime function description. 316 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, 317 RuntimeFunction::OMPRTL___last> 318 RFIs; 319 320 /// Map from function declarations/definitions to their runtime enum type. 321 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; 322 323 /// Map from ICV kind to the ICV description. 324 EnumeratedArray<InternalControlVarInfo, InternalControlVar, 325 InternalControlVar::ICV___last> 326 ICVs; 327 328 /// Helper to initialize all internal control variable information for those 329 /// defined in OMPKinds.def. 330 void initializeInternalControlVars() { 331 #define ICV_RT_SET(_Name, RTL) \ 332 { \ 333 auto &ICV = ICVs[_Name]; \ 334 ICV.Setter = RTL; \ 335 } 336 #define ICV_RT_GET(Name, RTL) \ 337 { \ 338 auto &ICV = ICVs[Name]; \ 339 ICV.Getter = RTL; \ 340 } 341 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ 342 { \ 343 auto &ICV = ICVs[Enum]; \ 344 ICV.Name = _Name; \ 345 ICV.Kind = Enum; \ 346 ICV.InitKind = Init; \ 347 ICV.EnvVarName = _EnvVarName; \ 348 switch (ICV.InitKind) { \ 349 case ICV_IMPLEMENTATION_DEFINED: \ 350 ICV.InitValue = nullptr; \ 351 break; \ 352 case ICV_ZERO: \ 353 ICV.InitValue = ConstantInt::get( \ 354 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ 355 break; \ 356 case ICV_FALSE: \ 357 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ 358 break; \ 359 case ICV_LAST: \ 360 break; \ 361 } \ 362 } 363 #include "llvm/Frontend/OpenMP/OMPKinds.def" 364 } 365 366 /// Returns true if the function declaration \p F matches the runtime 367 /// function types, that is, return type \p RTFRetType, and argument types 368 /// \p RTFArgTypes. 369 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, 370 SmallVector<Type *, 8> &RTFArgTypes) { 371 // TODO: We should output information to the user (under debug output 372 // and via remarks). 373 374 if (!F) 375 return false; 376 if (F->getReturnType() != RTFRetType) 377 return false; 378 if (F->arg_size() != RTFArgTypes.size()) 379 return false; 380 381 auto *RTFTyIt = RTFArgTypes.begin(); 382 for (Argument &Arg : F->args()) { 383 if (Arg.getType() != *RTFTyIt) 384 return false; 385 386 ++RTFTyIt; 387 } 388 389 return true; 390 } 391 392 // Helper to collect all uses of the declaration in the UsesMap. 393 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { 394 unsigned NumUses = 0; 395 if (!RFI.Declaration) 396 return NumUses; 397 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); 398 399 if (CollectStats) { 400 NumOpenMPRuntimeFunctionsIdentified += 1; 401 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); 402 } 403 404 // TODO: We directly convert uses into proper calls and unknown uses. 405 for (Use &U : RFI.Declaration->uses()) { 406 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) { 407 if (ModuleSlice.count(UserI->getFunction())) { 408 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); 409 ++NumUses; 410 } 411 } else { 412 RFI.getOrCreateUseVector(nullptr).push_back(&U); 413 ++NumUses; 414 } 415 } 416 return NumUses; 417 } 418 419 // Helper function to recollect uses of a runtime function. 420 void recollectUsesForFunction(RuntimeFunction RTF) { 421 auto &RFI = RFIs[RTF]; 422 RFI.clearUsesMap(); 423 collectUses(RFI, /*CollectStats*/ false); 424 } 425 426 // Helper function to recollect uses of all runtime functions. 427 void recollectUses() { 428 for (int Idx = 0; Idx < RFIs.size(); ++Idx) 429 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx)); 430 } 431 432 // Helper function to inherit the calling convention of the function callee. 433 void setCallingConvention(FunctionCallee Callee, CallInst *CI) { 434 if (Function *Fn = dyn_cast<Function>(Callee.getCallee())) 435 CI->setCallingConv(Fn->getCallingConv()); 436 } 437 438 /// Helper to initialize all runtime function information for those defined 439 /// in OpenMPKinds.def. 440 void initializeRuntimeFunctions() { 441 Module &M = *((*ModuleSlice.begin())->getParent()); 442 443 // Helper macros for handling __VA_ARGS__ in OMP_RTL 444 #define OMP_TYPE(VarName, ...) \ 445 Type *VarName = OMPBuilder.VarName; \ 446 (void)VarName; 447 448 #define OMP_ARRAY_TYPE(VarName, ...) \ 449 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ 450 (void)VarName##Ty; \ 451 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ 452 (void)VarName##PtrTy; 453 454 #define OMP_FUNCTION_TYPE(VarName, ...) \ 455 FunctionType *VarName = OMPBuilder.VarName; \ 456 (void)VarName; \ 457 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 458 (void)VarName##Ptr; 459 460 #define OMP_STRUCT_TYPE(VarName, ...) \ 461 StructType *VarName = OMPBuilder.VarName; \ 462 (void)VarName; \ 463 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ 464 (void)VarName##Ptr; 465 466 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ 467 { \ 468 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ 469 Function *F = M.getFunction(_Name); \ 470 RTLFunctions.insert(F); \ 471 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ 472 RuntimeFunctionIDMap[F] = _Enum; \ 473 auto &RFI = RFIs[_Enum]; \ 474 RFI.Kind = _Enum; \ 475 RFI.Name = _Name; \ 476 RFI.IsVarArg = _IsVarArg; \ 477 RFI.ReturnType = OMPBuilder._ReturnType; \ 478 RFI.ArgumentTypes = std::move(ArgsTypes); \ 479 RFI.Declaration = F; \ 480 unsigned NumUses = collectUses(RFI); \ 481 (void)NumUses; \ 482 LLVM_DEBUG({ \ 483 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ 484 << " found\n"; \ 485 if (RFI.Declaration) \ 486 dbgs() << TAG << "-> got " << NumUses << " uses in " \ 487 << RFI.getNumFunctionsWithUses() \ 488 << " different functions.\n"; \ 489 }); \ 490 } \ 491 } 492 #include "llvm/Frontend/OpenMP/OMPKinds.def" 493 494 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_` 495 // functions, except if `optnone` is present. 496 for (Function &F : M) { 497 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"}) 498 if (F.getName().startswith(Prefix) && 499 !F.hasFnAttribute(Attribute::OptimizeNone)) 500 F.removeFnAttr(Attribute::NoInline); 501 } 502 503 // TODO: We should attach the attributes defined in OMPKinds.def. 504 } 505 506 /// Collection of known kernels (\see Kernel) in the module. 507 KernelSet &Kernels; 508 509 /// Collection of known OpenMP runtime functions.. 510 DenseSet<const Function *> RTLFunctions; 511 }; 512 513 template <typename Ty, bool InsertInvalidates = true> 514 struct BooleanStateWithSetVector : public BooleanState { 515 bool contains(const Ty &Elem) const { return Set.contains(Elem); } 516 bool insert(const Ty &Elem) { 517 if (InsertInvalidates) 518 BooleanState::indicatePessimisticFixpoint(); 519 return Set.insert(Elem); 520 } 521 522 const Ty &operator[](int Idx) const { return Set[Idx]; } 523 bool operator==(const BooleanStateWithSetVector &RHS) const { 524 return BooleanState::operator==(RHS) && Set == RHS.Set; 525 } 526 bool operator!=(const BooleanStateWithSetVector &RHS) const { 527 return !(*this == RHS); 528 } 529 530 bool empty() const { return Set.empty(); } 531 size_t size() const { return Set.size(); } 532 533 /// "Clamp" this state with \p RHS. 534 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { 535 BooleanState::operator^=(RHS); 536 Set.insert(RHS.Set.begin(), RHS.Set.end()); 537 return *this; 538 } 539 540 private: 541 /// A set to keep track of elements. 542 SetVector<Ty> Set; 543 544 public: 545 typename decltype(Set)::iterator begin() { return Set.begin(); } 546 typename decltype(Set)::iterator end() { return Set.end(); } 547 typename decltype(Set)::const_iterator begin() const { return Set.begin(); } 548 typename decltype(Set)::const_iterator end() const { return Set.end(); } 549 }; 550 551 template <typename Ty, bool InsertInvalidates = true> 552 using BooleanStateWithPtrSetVector = 553 BooleanStateWithSetVector<Ty *, InsertInvalidates>; 554 555 struct KernelInfoState : AbstractState { 556 /// Flag to track if we reached a fixpoint. 557 bool IsAtFixpoint = false; 558 559 /// The parallel regions (identified by the outlined parallel functions) that 560 /// can be reached from the associated function. 561 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false> 562 ReachedKnownParallelRegions; 563 564 /// State to track what parallel region we might reach. 565 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; 566 567 /// State to track if we are in SPMD-mode, assumed or know, and why we decided 568 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be 569 /// false. 570 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; 571 572 /// The __kmpc_target_init call in this kernel, if any. If we find more than 573 /// one we abort as the kernel is malformed. 574 CallBase *KernelInitCB = nullptr; 575 576 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than 577 /// one we abort as the kernel is malformed. 578 CallBase *KernelDeinitCB = nullptr; 579 580 /// Flag to indicate if the associated function is a kernel entry. 581 bool IsKernelEntry = false; 582 583 /// State to track what kernel entries can reach the associated function. 584 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; 585 586 /// State to indicate if we can track parallel level of the associated 587 /// function. We will give up tracking if we encounter unknown caller or the 588 /// caller is __kmpc_parallel_51. 589 BooleanStateWithSetVector<uint8_t> ParallelLevels; 590 591 /// Abstract State interface 592 ///{ 593 594 KernelInfoState() {} 595 KernelInfoState(bool BestState) { 596 if (!BestState) 597 indicatePessimisticFixpoint(); 598 } 599 600 /// See AbstractState::isValidState(...) 601 bool isValidState() const override { return true; } 602 603 /// See AbstractState::isAtFixpoint(...) 604 bool isAtFixpoint() const override { return IsAtFixpoint; } 605 606 /// See AbstractState::indicatePessimisticFixpoint(...) 607 ChangeStatus indicatePessimisticFixpoint() override { 608 IsAtFixpoint = true; 609 ReachingKernelEntries.indicatePessimisticFixpoint(); 610 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 611 ReachedKnownParallelRegions.indicatePessimisticFixpoint(); 612 ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); 613 return ChangeStatus::CHANGED; 614 } 615 616 /// See AbstractState::indicateOptimisticFixpoint(...) 617 ChangeStatus indicateOptimisticFixpoint() override { 618 IsAtFixpoint = true; 619 ReachingKernelEntries.indicateOptimisticFixpoint(); 620 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 621 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 622 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 623 return ChangeStatus::UNCHANGED; 624 } 625 626 /// Return the assumed state 627 KernelInfoState &getAssumed() { return *this; } 628 const KernelInfoState &getAssumed() const { return *this; } 629 630 bool operator==(const KernelInfoState &RHS) const { 631 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) 632 return false; 633 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) 634 return false; 635 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) 636 return false; 637 if (ReachingKernelEntries != RHS.ReachingKernelEntries) 638 return false; 639 return true; 640 } 641 642 /// Returns true if this kernel contains any OpenMP parallel regions. 643 bool mayContainParallelRegion() { 644 return !ReachedKnownParallelRegions.empty() || 645 !ReachedUnknownParallelRegions.empty(); 646 } 647 648 /// Return empty set as the best state of potential values. 649 static KernelInfoState getBestState() { return KernelInfoState(true); } 650 651 static KernelInfoState getBestState(KernelInfoState &KIS) { 652 return getBestState(); 653 } 654 655 /// Return full set as the worst state of potential values. 656 static KernelInfoState getWorstState() { return KernelInfoState(false); } 657 658 /// "Clamp" this state with \p KIS. 659 KernelInfoState operator^=(const KernelInfoState &KIS) { 660 // Do not merge two different _init and _deinit call sites. 661 if (KIS.KernelInitCB) { 662 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) 663 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 664 "assumptions."); 665 KernelInitCB = KIS.KernelInitCB; 666 } 667 if (KIS.KernelDeinitCB) { 668 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) 669 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " 670 "assumptions."); 671 KernelDeinitCB = KIS.KernelDeinitCB; 672 } 673 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; 674 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; 675 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; 676 return *this; 677 } 678 679 KernelInfoState operator&=(const KernelInfoState &KIS) { 680 return (*this ^= KIS); 681 } 682 683 ///} 684 }; 685 686 /// Used to map the values physically (in the IR) stored in an offload 687 /// array, to a vector in memory. 688 struct OffloadArray { 689 /// Physical array (in the IR). 690 AllocaInst *Array = nullptr; 691 /// Mapped values. 692 SmallVector<Value *, 8> StoredValues; 693 /// Last stores made in the offload array. 694 SmallVector<StoreInst *, 8> LastAccesses; 695 696 OffloadArray() = default; 697 698 /// Initializes the OffloadArray with the values stored in \p Array before 699 /// instruction \p Before is reached. Returns false if the initialization 700 /// fails. 701 /// This MUST be used immediately after the construction of the object. 702 bool initialize(AllocaInst &Array, Instruction &Before) { 703 if (!Array.getAllocatedType()->isArrayTy()) 704 return false; 705 706 if (!getValues(Array, Before)) 707 return false; 708 709 this->Array = &Array; 710 return true; 711 } 712 713 static const unsigned DeviceIDArgNum = 1; 714 static const unsigned BasePtrsArgNum = 3; 715 static const unsigned PtrsArgNum = 4; 716 static const unsigned SizesArgNum = 5; 717 718 private: 719 /// Traverses the BasicBlock where \p Array is, collecting the stores made to 720 /// \p Array, leaving StoredValues with the values stored before the 721 /// instruction \p Before is reached. 722 bool getValues(AllocaInst &Array, Instruction &Before) { 723 // Initialize container. 724 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); 725 StoredValues.assign(NumValues, nullptr); 726 LastAccesses.assign(NumValues, nullptr); 727 728 // TODO: This assumes the instruction \p Before is in the same 729 // BasicBlock as Array. Make it general, for any control flow graph. 730 BasicBlock *BB = Array.getParent(); 731 if (BB != Before.getParent()) 732 return false; 733 734 const DataLayout &DL = Array.getModule()->getDataLayout(); 735 const unsigned int PointerSize = DL.getPointerSize(); 736 737 for (Instruction &I : *BB) { 738 if (&I == &Before) 739 break; 740 741 if (!isa<StoreInst>(&I)) 742 continue; 743 744 auto *S = cast<StoreInst>(&I); 745 int64_t Offset = -1; 746 auto *Dst = 747 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); 748 if (Dst == &Array) { 749 int64_t Idx = Offset / PointerSize; 750 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); 751 LastAccesses[Idx] = S; 752 } 753 } 754 755 return isFilled(); 756 } 757 758 /// Returns true if all values in StoredValues and 759 /// LastAccesses are not nullptrs. 760 bool isFilled() { 761 const unsigned NumValues = StoredValues.size(); 762 for (unsigned I = 0; I < NumValues; ++I) { 763 if (!StoredValues[I] || !LastAccesses[I]) 764 return false; 765 } 766 767 return true; 768 } 769 }; 770 771 struct OpenMPOpt { 772 773 using OptimizationRemarkGetter = 774 function_ref<OptimizationRemarkEmitter &(Function *)>; 775 776 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, 777 OptimizationRemarkGetter OREGetter, 778 OMPInformationCache &OMPInfoCache, Attributor &A) 779 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), 780 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} 781 782 /// Check if any remarks are enabled for openmp-opt 783 bool remarksEnabled() { 784 auto &Ctx = M.getContext(); 785 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); 786 } 787 788 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. 789 bool run(bool IsModulePass) { 790 if (SCC.empty()) 791 return false; 792 793 bool Changed = false; 794 795 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() 796 << " functions in a slice with " 797 << OMPInfoCache.ModuleSlice.size() << " functions\n"); 798 799 if (IsModulePass) { 800 Changed |= runAttributor(IsModulePass); 801 802 // Recollect uses, in case Attributor deleted any. 803 OMPInfoCache.recollectUses(); 804 805 // TODO: This should be folded into buildCustomStateMachine. 806 Changed |= rewriteDeviceCodeStateMachine(); 807 808 if (remarksEnabled()) 809 analysisGlobalization(); 810 811 Changed |= eliminateBarriers(); 812 } else { 813 if (PrintICVValues) 814 printICVs(); 815 if (PrintOpenMPKernels) 816 printKernels(); 817 818 Changed |= runAttributor(IsModulePass); 819 820 // Recollect uses, in case Attributor deleted any. 821 OMPInfoCache.recollectUses(); 822 823 Changed |= deleteParallelRegions(); 824 825 if (HideMemoryTransferLatency) 826 Changed |= hideMemTransfersLatency(); 827 Changed |= deduplicateRuntimeCalls(); 828 if (EnableParallelRegionMerging) { 829 if (mergeParallelRegions()) { 830 deduplicateRuntimeCalls(); 831 Changed = true; 832 } 833 } 834 835 Changed |= eliminateBarriers(); 836 } 837 838 return Changed; 839 } 840 841 /// Print initial ICV values for testing. 842 /// FIXME: This should be done from the Attributor once it is added. 843 void printICVs() const { 844 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, 845 ICV_proc_bind}; 846 847 for (Function *F : OMPInfoCache.ModuleSlice) { 848 for (auto ICV : ICVs) { 849 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 850 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 851 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) 852 << " Value: " 853 << (ICVInfo.InitValue 854 ? toString(ICVInfo.InitValue->getValue(), 10, true) 855 : "IMPLEMENTATION_DEFINED"); 856 }; 857 858 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark); 859 } 860 } 861 } 862 863 /// Print OpenMP GPU kernels for testing. 864 void printKernels() const { 865 for (Function *F : SCC) { 866 if (!OMPInfoCache.Kernels.count(F)) 867 continue; 868 869 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 870 return ORA << "OpenMP GPU kernel " 871 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; 872 }; 873 874 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark); 875 } 876 } 877 878 /// Return the call if \p U is a callee use in a regular call. If \p RFI is 879 /// given it has to be the callee or a nullptr is returned. 880 static CallInst *getCallIfRegularCall( 881 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 882 CallInst *CI = dyn_cast<CallInst>(U.getUser()); 883 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && 884 (!RFI || 885 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 886 return CI; 887 return nullptr; 888 } 889 890 /// Return the call if \p V is a regular call. If \p RFI is given it has to be 891 /// the callee or a nullptr is returned. 892 static CallInst *getCallIfRegularCall( 893 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { 894 CallInst *CI = dyn_cast<CallInst>(&V); 895 if (CI && !CI->hasOperandBundles() && 896 (!RFI || 897 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) 898 return CI; 899 return nullptr; 900 } 901 902 private: 903 /// Merge parallel regions when it is safe. 904 bool mergeParallelRegions() { 905 const unsigned CallbackCalleeOperand = 2; 906 const unsigned CallbackFirstArgOperand = 3; 907 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 908 909 // Check if there are any __kmpc_fork_call calls to merge. 910 OMPInformationCache::RuntimeFunctionInfo &RFI = 911 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 912 913 if (!RFI.Declaration) 914 return false; 915 916 // Unmergable calls that prevent merging a parallel region. 917 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { 918 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], 919 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], 920 }; 921 922 bool Changed = false; 923 LoopInfo *LI = nullptr; 924 DominatorTree *DT = nullptr; 925 926 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; 927 928 BasicBlock *StartBB = nullptr, *EndBB = nullptr; 929 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 930 BasicBlock &ContinuationIP) { 931 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 932 BasicBlock *CGEndBB = 933 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 934 assert(StartBB != nullptr && "StartBB should not be null"); 935 CGStartBB->getTerminator()->setSuccessor(0, StartBB); 936 assert(EndBB != nullptr && "EndBB should not be null"); 937 EndBB->getTerminator()->setSuccessor(0, CGEndBB); 938 }; 939 940 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, 941 Value &Inner, Value *&ReplacementValue) -> InsertPointTy { 942 ReplacementValue = &Inner; 943 return CodeGenIP; 944 }; 945 946 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 947 948 /// Create a sequential execution region within a merged parallel region, 949 /// encapsulated in a master construct with a barrier for synchronization. 950 auto CreateSequentialRegion = [&](Function *OuterFn, 951 BasicBlock *OuterPredBB, 952 Instruction *SeqStartI, 953 Instruction *SeqEndI) { 954 // Isolate the instructions of the sequential region to a separate 955 // block. 956 BasicBlock *ParentBB = SeqStartI->getParent(); 957 BasicBlock *SeqEndBB = 958 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); 959 BasicBlock *SeqAfterBB = 960 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); 961 BasicBlock *SeqStartBB = 962 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); 963 964 assert(ParentBB->getUniqueSuccessor() == SeqStartBB && 965 "Expected a different CFG"); 966 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 967 ParentBB->getTerminator()->eraseFromParent(); 968 969 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 970 BasicBlock &ContinuationIP) { 971 BasicBlock *CGStartBB = CodeGenIP.getBlock(); 972 BasicBlock *CGEndBB = 973 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); 974 assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); 975 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); 976 assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); 977 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); 978 }; 979 auto FiniCB = [&](InsertPointTy CodeGenIP) {}; 980 981 // Find outputs from the sequential region to outside users and 982 // broadcast their values to them. 983 for (Instruction &I : *SeqStartBB) { 984 SmallPtrSet<Instruction *, 4> OutsideUsers; 985 for (User *Usr : I.users()) { 986 Instruction &UsrI = *cast<Instruction>(Usr); 987 // Ignore outputs to LT intrinsics, code extraction for the merged 988 // parallel region will fix them. 989 if (UsrI.isLifetimeStartOrEnd()) 990 continue; 991 992 if (UsrI.getParent() != SeqStartBB) 993 OutsideUsers.insert(&UsrI); 994 } 995 996 if (OutsideUsers.empty()) 997 continue; 998 999 // Emit an alloca in the outer region to store the broadcasted 1000 // value. 1001 const DataLayout &DL = M.getDataLayout(); 1002 AllocaInst *AllocaI = new AllocaInst( 1003 I.getType(), DL.getAllocaAddrSpace(), nullptr, 1004 I.getName() + ".seq.output.alloc", &OuterFn->front().front()); 1005 1006 // Emit a store instruction in the sequential BB to update the 1007 // value. 1008 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); 1009 1010 // Emit a load instruction and replace the use of the output value 1011 // with it. 1012 for (Instruction *UsrI : OutsideUsers) { 1013 LoadInst *LoadI = new LoadInst( 1014 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); 1015 UsrI->replaceUsesOfWith(&I, LoadI); 1016 } 1017 } 1018 1019 OpenMPIRBuilder::LocationDescription Loc( 1020 InsertPointTy(ParentBB, ParentBB->end()), DL); 1021 InsertPointTy SeqAfterIP = 1022 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); 1023 1024 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); 1025 1026 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); 1027 1028 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn 1029 << "\n"); 1030 }; 1031 1032 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all 1033 // contained in BB and only separated by instructions that can be 1034 // redundantly executed in parallel. The block BB is split before the first 1035 // call (in MergableCIs) and after the last so the entire region we merge 1036 // into a single parallel region is contained in a single basic block 1037 // without any other instructions. We use the OpenMPIRBuilder to outline 1038 // that block and call the resulting function via __kmpc_fork_call. 1039 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, 1040 BasicBlock *BB) { 1041 // TODO: Change the interface to allow single CIs expanded, e.g, to 1042 // include an outer loop. 1043 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); 1044 1045 auto Remark = [&](OptimizationRemark OR) { 1046 OR << "Parallel region merged with parallel region" 1047 << (MergableCIs.size() > 2 ? "s" : "") << " at "; 1048 for (auto *CI : llvm::drop_begin(MergableCIs)) { 1049 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); 1050 if (CI != MergableCIs.back()) 1051 OR << ", "; 1052 } 1053 return OR << "."; 1054 }; 1055 1056 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark); 1057 1058 Function *OriginalFn = BB->getParent(); 1059 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() 1060 << " parallel regions in " << OriginalFn->getName() 1061 << "\n"); 1062 1063 // Isolate the calls to merge in a separate block. 1064 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); 1065 BasicBlock *AfterBB = 1066 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); 1067 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, 1068 "omp.par.merged"); 1069 1070 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); 1071 const DebugLoc DL = BB->getTerminator()->getDebugLoc(); 1072 BB->getTerminator()->eraseFromParent(); 1073 1074 // Create sequential regions for sequential instructions that are 1075 // in-between mergable parallel regions. 1076 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; 1077 It != End; ++It) { 1078 Instruction *ForkCI = *It; 1079 Instruction *NextForkCI = *(It + 1); 1080 1081 // Continue if there are not in-between instructions. 1082 if (ForkCI->getNextNode() == NextForkCI) 1083 continue; 1084 1085 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), 1086 NextForkCI->getPrevNode()); 1087 } 1088 1089 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), 1090 DL); 1091 IRBuilder<>::InsertPoint AllocaIP( 1092 &OriginalFn->getEntryBlock(), 1093 OriginalFn->getEntryBlock().getFirstInsertionPt()); 1094 // Create the merged parallel region with default proc binding, to 1095 // avoid overriding binding settings, and without explicit cancellation. 1096 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( 1097 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, 1098 OMP_PROC_BIND_default, /* IsCancellable */ false); 1099 BranchInst::Create(AfterBB, AfterIP.getBlock()); 1100 1101 // Perform the actual outlining. 1102 OMPInfoCache.OMPBuilder.finalize(OriginalFn); 1103 1104 Function *OutlinedFn = MergableCIs.front()->getCaller(); 1105 1106 // Replace the __kmpc_fork_call calls with direct calls to the outlined 1107 // callbacks. 1108 SmallVector<Value *, 8> Args; 1109 for (auto *CI : MergableCIs) { 1110 Value *Callee = 1111 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); 1112 FunctionType *FT = 1113 cast<FunctionType>(Callee->getType()->getPointerElementType()); 1114 Args.clear(); 1115 Args.push_back(OutlinedFn->getArg(0)); 1116 Args.push_back(OutlinedFn->getArg(1)); 1117 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1118 ++U) 1119 Args.push_back(CI->getArgOperand(U)); 1120 1121 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); 1122 if (CI->getDebugLoc()) 1123 NewCI->setDebugLoc(CI->getDebugLoc()); 1124 1125 // Forward parameter attributes from the callback to the callee. 1126 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; 1127 ++U) 1128 for (const Attribute &A : CI->getAttributes().getParamAttrs(U)) 1129 NewCI->addParamAttr( 1130 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); 1131 1132 // Emit an explicit barrier to replace the implicit fork-join barrier. 1133 if (CI != MergableCIs.back()) { 1134 // TODO: Remove barrier if the merged parallel region includes the 1135 // 'nowait' clause. 1136 OMPInfoCache.OMPBuilder.createBarrier( 1137 InsertPointTy(NewCI->getParent(), 1138 NewCI->getNextNode()->getIterator()), 1139 OMPD_parallel); 1140 } 1141 1142 CI->eraseFromParent(); 1143 } 1144 1145 assert(OutlinedFn != OriginalFn && "Outlining failed"); 1146 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); 1147 CGUpdater.reanalyzeFunction(*OriginalFn); 1148 1149 NumOpenMPParallelRegionsMerged += MergableCIs.size(); 1150 1151 return true; 1152 }; 1153 1154 // Helper function that identifes sequences of 1155 // __kmpc_fork_call uses in a basic block. 1156 auto DetectPRsCB = [&](Use &U, Function &F) { 1157 CallInst *CI = getCallIfRegularCall(U, &RFI); 1158 BB2PRMap[CI->getParent()].insert(CI); 1159 1160 return false; 1161 }; 1162 1163 BB2PRMap.clear(); 1164 RFI.foreachUse(SCC, DetectPRsCB); 1165 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; 1166 // Find mergable parallel regions within a basic block that are 1167 // safe to merge, that is any in-between instructions can safely 1168 // execute in parallel after merging. 1169 // TODO: support merging across basic-blocks. 1170 for (auto &It : BB2PRMap) { 1171 auto &CIs = It.getSecond(); 1172 if (CIs.size() < 2) 1173 continue; 1174 1175 BasicBlock *BB = It.getFirst(); 1176 SmallVector<CallInst *, 4> MergableCIs; 1177 1178 /// Returns true if the instruction is mergable, false otherwise. 1179 /// A terminator instruction is unmergable by definition since merging 1180 /// works within a BB. Instructions before the mergable region are 1181 /// mergable if they are not calls to OpenMP runtime functions that may 1182 /// set different execution parameters for subsequent parallel regions. 1183 /// Instructions in-between parallel regions are mergable if they are not 1184 /// calls to any non-intrinsic function since that may call a non-mergable 1185 /// OpenMP runtime function. 1186 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { 1187 // We do not merge across BBs, hence return false (unmergable) if the 1188 // instruction is a terminator. 1189 if (I.isTerminator()) 1190 return false; 1191 1192 if (!isa<CallInst>(&I)) 1193 return true; 1194 1195 CallInst *CI = cast<CallInst>(&I); 1196 if (IsBeforeMergableRegion) { 1197 Function *CalledFunction = CI->getCalledFunction(); 1198 if (!CalledFunction) 1199 return false; 1200 // Return false (unmergable) if the call before the parallel 1201 // region calls an explicit affinity (proc_bind) or number of 1202 // threads (num_threads) compiler-generated function. Those settings 1203 // may be incompatible with following parallel regions. 1204 // TODO: ICV tracking to detect compatibility. 1205 for (const auto &RFI : UnmergableCallsInfo) { 1206 if (CalledFunction == RFI.Declaration) 1207 return false; 1208 } 1209 } else { 1210 // Return false (unmergable) if there is a call instruction 1211 // in-between parallel regions when it is not an intrinsic. It 1212 // may call an unmergable OpenMP runtime function in its callpath. 1213 // TODO: Keep track of possible OpenMP calls in the callpath. 1214 if (!isa<IntrinsicInst>(CI)) 1215 return false; 1216 } 1217 1218 return true; 1219 }; 1220 // Find maximal number of parallel region CIs that are safe to merge. 1221 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1222 Instruction &I = *It; 1223 ++It; 1224 1225 if (CIs.count(&I)) { 1226 MergableCIs.push_back(cast<CallInst>(&I)); 1227 continue; 1228 } 1229 1230 // Continue expanding if the instruction is mergable. 1231 if (IsMergable(I, MergableCIs.empty())) 1232 continue; 1233 1234 // Forward the instruction iterator to skip the next parallel region 1235 // since there is an unmergable instruction which can affect it. 1236 for (; It != End; ++It) { 1237 Instruction &SkipI = *It; 1238 if (CIs.count(&SkipI)) { 1239 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI 1240 << " due to " << I << "\n"); 1241 ++It; 1242 break; 1243 } 1244 } 1245 1246 // Store mergable regions found. 1247 if (MergableCIs.size() > 1) { 1248 MergableCIsVector.push_back(MergableCIs); 1249 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() 1250 << " parallel regions in block " << BB->getName() 1251 << " of function " << BB->getParent()->getName() 1252 << "\n";); 1253 } 1254 1255 MergableCIs.clear(); 1256 } 1257 1258 if (!MergableCIsVector.empty()) { 1259 Changed = true; 1260 1261 for (auto &MergableCIs : MergableCIsVector) 1262 Merge(MergableCIs, BB); 1263 MergableCIsVector.clear(); 1264 } 1265 } 1266 1267 if (Changed) { 1268 /// Re-collect use for fork calls, emitted barrier calls, and 1269 /// any emitted master/end_master calls. 1270 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); 1271 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); 1272 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); 1273 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); 1274 } 1275 1276 return Changed; 1277 } 1278 1279 /// Try to delete parallel regions if possible. 1280 bool deleteParallelRegions() { 1281 const unsigned CallbackCalleeOperand = 2; 1282 1283 OMPInformationCache::RuntimeFunctionInfo &RFI = 1284 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; 1285 1286 if (!RFI.Declaration) 1287 return false; 1288 1289 bool Changed = false; 1290 auto DeleteCallCB = [&](Use &U, Function &) { 1291 CallInst *CI = getCallIfRegularCall(U); 1292 if (!CI) 1293 return false; 1294 auto *Fn = dyn_cast<Function>( 1295 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); 1296 if (!Fn) 1297 return false; 1298 if (!Fn->onlyReadsMemory()) 1299 return false; 1300 if (!Fn->hasFnAttribute(Attribute::WillReturn)) 1301 return false; 1302 1303 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " 1304 << CI->getCaller()->getName() << "\n"); 1305 1306 auto Remark = [&](OptimizationRemark OR) { 1307 return OR << "Removing parallel region with no side-effects."; 1308 }; 1309 emitRemark<OptimizationRemark>(CI, "OMP160", Remark); 1310 1311 CGUpdater.removeCallSite(*CI); 1312 CI->eraseFromParent(); 1313 Changed = true; 1314 ++NumOpenMPParallelRegionsDeleted; 1315 return true; 1316 }; 1317 1318 RFI.foreachUse(SCC, DeleteCallCB); 1319 1320 return Changed; 1321 } 1322 1323 /// Try to eliminate runtime calls by reusing existing ones. 1324 bool deduplicateRuntimeCalls() { 1325 bool Changed = false; 1326 1327 RuntimeFunction DeduplicableRuntimeCallIDs[] = { 1328 OMPRTL_omp_get_num_threads, 1329 OMPRTL_omp_in_parallel, 1330 OMPRTL_omp_get_cancellation, 1331 OMPRTL_omp_get_thread_limit, 1332 OMPRTL_omp_get_supported_active_levels, 1333 OMPRTL_omp_get_level, 1334 OMPRTL_omp_get_ancestor_thread_num, 1335 OMPRTL_omp_get_team_size, 1336 OMPRTL_omp_get_active_level, 1337 OMPRTL_omp_in_final, 1338 OMPRTL_omp_get_proc_bind, 1339 OMPRTL_omp_get_num_places, 1340 OMPRTL_omp_get_num_procs, 1341 OMPRTL_omp_get_place_num, 1342 OMPRTL_omp_get_partition_num_places, 1343 OMPRTL_omp_get_partition_place_nums}; 1344 1345 // Global-tid is handled separately. 1346 SmallSetVector<Value *, 16> GTIdArgs; 1347 collectGlobalThreadIdArguments(GTIdArgs); 1348 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() 1349 << " global thread ID arguments\n"); 1350 1351 for (Function *F : SCC) { 1352 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) 1353 Changed |= deduplicateRuntimeCalls( 1354 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); 1355 1356 // __kmpc_global_thread_num is special as we can replace it with an 1357 // argument in enough cases to make it worth trying. 1358 Value *GTIdArg = nullptr; 1359 for (Argument &Arg : F->args()) 1360 if (GTIdArgs.count(&Arg)) { 1361 GTIdArg = &Arg; 1362 break; 1363 } 1364 Changed |= deduplicateRuntimeCalls( 1365 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); 1366 } 1367 1368 return Changed; 1369 } 1370 1371 /// Tries to hide the latency of runtime calls that involve host to 1372 /// device memory transfers by splitting them into their "issue" and "wait" 1373 /// versions. The "issue" is moved upwards as much as possible. The "wait" is 1374 /// moved downards as much as possible. The "issue" issues the memory transfer 1375 /// asynchronously, returning a handle. The "wait" waits in the returned 1376 /// handle for the memory transfer to finish. 1377 bool hideMemTransfersLatency() { 1378 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; 1379 bool Changed = false; 1380 auto SplitMemTransfers = [&](Use &U, Function &Decl) { 1381 auto *RTCall = getCallIfRegularCall(U, &RFI); 1382 if (!RTCall) 1383 return false; 1384 1385 OffloadArray OffloadArrays[3]; 1386 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) 1387 return false; 1388 1389 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); 1390 1391 // TODO: Check if can be moved upwards. 1392 bool WasSplit = false; 1393 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); 1394 if (WaitMovementPoint) 1395 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); 1396 1397 Changed |= WasSplit; 1398 return WasSplit; 1399 }; 1400 RFI.foreachUse(SCC, SplitMemTransfers); 1401 1402 return Changed; 1403 } 1404 1405 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels. 1406 /// TODO: Make this an AA and expand it to work across blocks and functions. 1407 bool eliminateBarriers() { 1408 bool Changed = false; 1409 1410 if (DisableOpenMPOptBarrierElimination) 1411 return /*Changed=*/false; 1412 1413 if (OMPInfoCache.Kernels.empty()) 1414 return /*Changed=*/false; 1415 1416 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT }; 1417 1418 class BarrierInfo { 1419 Instruction *I; 1420 enum ImplicitBarrierType Type; 1421 1422 public: 1423 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {} 1424 BarrierInfo(Instruction &I) : I(&I) {} 1425 1426 bool isImplicit() { return !I; } 1427 1428 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; } 1429 1430 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; } 1431 1432 Instruction *getInstruction() { return I; } 1433 }; 1434 1435 for (Function *Kernel : OMPInfoCache.Kernels) { 1436 for (BasicBlock &BB : *Kernel) { 1437 SmallVector<BarrierInfo, 8> BarriersInBlock; 1438 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted; 1439 1440 // Add the kernel entry implicit barrier. 1441 if (&Kernel->getEntryBlock() == &BB) 1442 BarriersInBlock.push_back(IBT_ENTRY); 1443 1444 // Find implicit and explicit aligned barriers in the same basic block. 1445 for (Instruction &I : BB) { 1446 if (isa<ReturnInst>(I)) { 1447 // Add the implicit barrier when exiting the kernel. 1448 BarriersInBlock.push_back(IBT_EXIT); 1449 continue; 1450 } 1451 CallBase *CB = dyn_cast<CallBase>(&I); 1452 if (!CB) 1453 continue; 1454 1455 auto IsAlignBarrierCB = [&](CallBase &CB) { 1456 switch (CB.getIntrinsicID()) { 1457 case Intrinsic::nvvm_barrier0: 1458 case Intrinsic::nvvm_barrier0_and: 1459 case Intrinsic::nvvm_barrier0_or: 1460 case Intrinsic::nvvm_barrier0_popc: 1461 case Intrinsic::amdgcn_s_barrier: 1462 return true; 1463 default: 1464 break; 1465 } 1466 return hasAssumption(CB, 1467 KnownAssumptionString("ompx_aligned_barrier")); 1468 }; 1469 1470 if (IsAlignBarrierCB(*CB)) { 1471 // Add an explicit aligned barrier. 1472 BarriersInBlock.push_back(I); 1473 } 1474 } 1475 1476 if (BarriersInBlock.size() <= 1) 1477 continue; 1478 1479 // A barrier in a barrier pair is removeable if all instructions 1480 // between the barriers in the pair are side-effect free modulo the 1481 // barrier operation. 1482 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI, 1483 BarrierInfo *EndBI) { 1484 assert( 1485 !StartBI->isImplicitExit() && 1486 "Expected start barrier to be other than a kernel exit barrier"); 1487 assert( 1488 !EndBI->isImplicitEntry() && 1489 "Expected end barrier to be other than a kernel entry barrier"); 1490 // If StarBI instructions is null then this the implicit 1491 // kernel entry barrier, so iterate from the first instruction in the 1492 // entry block. 1493 Instruction *I = (StartBI->isImplicitEntry()) 1494 ? &Kernel->getEntryBlock().front() 1495 : StartBI->getInstruction()->getNextNode(); 1496 assert(I && "Expected non-null start instruction"); 1497 Instruction *E = (EndBI->isImplicitExit()) 1498 ? I->getParent()->getTerminator() 1499 : EndBI->getInstruction(); 1500 assert(E && "Expected non-null end instruction"); 1501 1502 for (; I != E; I = I->getNextNode()) { 1503 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory()) 1504 continue; 1505 1506 auto IsPotentiallyAffectedByBarrier = 1507 [](Optional<MemoryLocation> Loc) { 1508 const Value *Obj = (Loc && Loc->Ptr) 1509 ? getUnderlyingObject(Loc->Ptr) 1510 : nullptr; 1511 if (!Obj) { 1512 LLVM_DEBUG( 1513 dbgs() 1514 << "Access to unknown location requires barriers\n"); 1515 return true; 1516 } 1517 if (isa<UndefValue>(Obj)) 1518 return false; 1519 if (isa<AllocaInst>(Obj)) 1520 return false; 1521 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) { 1522 if (GV->isConstant()) 1523 return false; 1524 if (GV->isThreadLocal()) 1525 return false; 1526 if (GV->getAddressSpace() == (int)AddressSpace::Local) 1527 return false; 1528 if (GV->getAddressSpace() == (int)AddressSpace::Constant) 1529 return false; 1530 } 1531 LLVM_DEBUG(dbgs() << "Access to '" << *Obj 1532 << "' requires barriers\n"); 1533 return true; 1534 }; 1535 1536 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 1537 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI); 1538 if (IsPotentiallyAffectedByBarrier(Loc)) 1539 return false; 1540 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 1541 Optional<MemoryLocation> Loc = 1542 MemoryLocation::getForSource(MTI); 1543 if (IsPotentiallyAffectedByBarrier(Loc)) 1544 return false; 1545 } 1546 continue; 1547 } 1548 1549 if (auto *LI = dyn_cast<LoadInst>(I)) 1550 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1551 continue; 1552 1553 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I); 1554 if (IsPotentiallyAffectedByBarrier(Loc)) 1555 return false; 1556 } 1557 1558 return true; 1559 }; 1560 1561 // Iterate barrier pairs and remove an explicit barrier if analysis 1562 // deems it removeable. 1563 for (auto *It = BarriersInBlock.begin(), 1564 *End = BarriersInBlock.end() - 1; 1565 It != End; ++It) { 1566 1567 BarrierInfo *StartBI = It; 1568 BarrierInfo *EndBI = (It + 1); 1569 1570 // Cannot remove when both are implicit barriers, continue. 1571 if (StartBI->isImplicit() && EndBI->isImplicit()) 1572 continue; 1573 1574 if (!IsBarrierRemoveable(StartBI, EndBI)) 1575 continue; 1576 1577 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) && 1578 "Expected at least one explicit barrier to remove."); 1579 1580 // Remove an explicit barrier, check first, then second. 1581 if (!StartBI->isImplicit()) { 1582 LLVM_DEBUG(dbgs() << "Remove start barrier " 1583 << *StartBI->getInstruction() << "\n"); 1584 BarriersToBeDeleted.insert(StartBI->getInstruction()); 1585 } else { 1586 LLVM_DEBUG(dbgs() << "Remove end barrier " 1587 << *EndBI->getInstruction() << "\n"); 1588 BarriersToBeDeleted.insert(EndBI->getInstruction()); 1589 } 1590 } 1591 1592 if (BarriersToBeDeleted.empty()) 1593 continue; 1594 1595 Changed = true; 1596 for (Instruction *I : BarriersToBeDeleted) { 1597 ++NumBarriersEliminated; 1598 auto Remark = [&](OptimizationRemark OR) { 1599 return OR << "Redundant barrier eliminated."; 1600 }; 1601 1602 if (EnableVerboseRemarks) 1603 emitRemark<OptimizationRemark>(I, "OMP190", Remark); 1604 I->eraseFromParent(); 1605 } 1606 } 1607 } 1608 1609 return Changed; 1610 } 1611 1612 void analysisGlobalization() { 1613 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 1614 1615 auto CheckGlobalization = [&](Use &U, Function &Decl) { 1616 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { 1617 auto Remark = [&](OptimizationRemarkMissed ORM) { 1618 return ORM 1619 << "Found thread data sharing on the GPU. " 1620 << "Expect degraded performance due to data globalization."; 1621 }; 1622 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark); 1623 } 1624 1625 return false; 1626 }; 1627 1628 RFI.foreachUse(SCC, CheckGlobalization); 1629 } 1630 1631 /// Maps the values stored in the offload arrays passed as arguments to 1632 /// \p RuntimeCall into the offload arrays in \p OAs. 1633 bool getValuesInOffloadArrays(CallInst &RuntimeCall, 1634 MutableArrayRef<OffloadArray> OAs) { 1635 assert(OAs.size() == 3 && "Need space for three offload arrays!"); 1636 1637 // A runtime call that involves memory offloading looks something like: 1638 // call void @__tgt_target_data_begin_mapper(arg0, arg1, 1639 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, 1640 // ...) 1641 // So, the idea is to access the allocas that allocate space for these 1642 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. 1643 // Therefore: 1644 // i8** %offload_baseptrs. 1645 Value *BasePtrsArg = 1646 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); 1647 // i8** %offload_ptrs. 1648 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); 1649 // i8** %offload_sizes. 1650 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); 1651 1652 // Get values stored in **offload_baseptrs. 1653 auto *V = getUnderlyingObject(BasePtrsArg); 1654 if (!isa<AllocaInst>(V)) 1655 return false; 1656 auto *BasePtrsArray = cast<AllocaInst>(V); 1657 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) 1658 return false; 1659 1660 // Get values stored in **offload_baseptrs. 1661 V = getUnderlyingObject(PtrsArg); 1662 if (!isa<AllocaInst>(V)) 1663 return false; 1664 auto *PtrsArray = cast<AllocaInst>(V); 1665 if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) 1666 return false; 1667 1668 // Get values stored in **offload_sizes. 1669 V = getUnderlyingObject(SizesArg); 1670 // If it's a [constant] global array don't analyze it. 1671 if (isa<GlobalValue>(V)) 1672 return isa<Constant>(V); 1673 if (!isa<AllocaInst>(V)) 1674 return false; 1675 1676 auto *SizesArray = cast<AllocaInst>(V); 1677 if (!OAs[2].initialize(*SizesArray, RuntimeCall)) 1678 return false; 1679 1680 return true; 1681 } 1682 1683 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. 1684 /// For now this is a way to test that the function getValuesInOffloadArrays 1685 /// is working properly. 1686 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. 1687 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { 1688 assert(OAs.size() == 3 && "There are three offload arrays to debug!"); 1689 1690 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); 1691 std::string ValuesStr; 1692 raw_string_ostream Printer(ValuesStr); 1693 std::string Separator = " --- "; 1694 1695 for (auto *BP : OAs[0].StoredValues) { 1696 BP->print(Printer); 1697 Printer << Separator; 1698 } 1699 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); 1700 ValuesStr.clear(); 1701 1702 for (auto *P : OAs[1].StoredValues) { 1703 P->print(Printer); 1704 Printer << Separator; 1705 } 1706 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); 1707 ValuesStr.clear(); 1708 1709 for (auto *S : OAs[2].StoredValues) { 1710 S->print(Printer); 1711 Printer << Separator; 1712 } 1713 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); 1714 } 1715 1716 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be 1717 /// moved. Returns nullptr if the movement is not possible, or not worth it. 1718 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { 1719 // FIXME: This traverses only the BasicBlock where RuntimeCall is. 1720 // Make it traverse the CFG. 1721 1722 Instruction *CurrentI = &RuntimeCall; 1723 bool IsWorthIt = false; 1724 while ((CurrentI = CurrentI->getNextNode())) { 1725 1726 // TODO: Once we detect the regions to be offloaded we should use the 1727 // alias analysis manager to check if CurrentI may modify one of 1728 // the offloaded regions. 1729 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { 1730 if (IsWorthIt) 1731 return CurrentI; 1732 1733 return nullptr; 1734 } 1735 1736 // FIXME: For now if we move it over anything without side effect 1737 // is worth it. 1738 IsWorthIt = true; 1739 } 1740 1741 // Return end of BasicBlock. 1742 return RuntimeCall.getParent()->getTerminator(); 1743 } 1744 1745 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. 1746 bool splitTargetDataBeginRTC(CallInst &RuntimeCall, 1747 Instruction &WaitMovementPoint) { 1748 // Create stack allocated handle (__tgt_async_info) at the beginning of the 1749 // function. Used for storing information of the async transfer, allowing to 1750 // wait on it later. 1751 auto &IRBuilder = OMPInfoCache.OMPBuilder; 1752 auto *F = RuntimeCall.getCaller(); 1753 Instruction *FirstInst = &(F->getEntryBlock().front()); 1754 AllocaInst *Handle = new AllocaInst( 1755 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); 1756 1757 // Add "issue" runtime call declaration: 1758 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, 1759 // i8**, i8**, i64*, i64*) 1760 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( 1761 M, OMPRTL___tgt_target_data_begin_mapper_issue); 1762 1763 // Change RuntimeCall call site for its asynchronous version. 1764 SmallVector<Value *, 16> Args; 1765 for (auto &Arg : RuntimeCall.args()) 1766 Args.push_back(Arg.get()); 1767 Args.push_back(Handle); 1768 1769 CallInst *IssueCallsite = 1770 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); 1771 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite); 1772 RuntimeCall.eraseFromParent(); 1773 1774 // Add "wait" runtime call declaration: 1775 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) 1776 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( 1777 M, OMPRTL___tgt_target_data_begin_mapper_wait); 1778 1779 Value *WaitParams[2] = { 1780 IssueCallsite->getArgOperand( 1781 OffloadArray::DeviceIDArgNum), // device_id. 1782 Handle // handle to wait on. 1783 }; 1784 CallInst *WaitCallsite = CallInst::Create( 1785 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); 1786 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite); 1787 1788 return true; 1789 } 1790 1791 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, 1792 bool GlobalOnly, bool &SingleChoice) { 1793 if (CurrentIdent == NextIdent) 1794 return CurrentIdent; 1795 1796 // TODO: Figure out how to actually combine multiple debug locations. For 1797 // now we just keep an existing one if there is a single choice. 1798 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) { 1799 SingleChoice = !CurrentIdent; 1800 return NextIdent; 1801 } 1802 return nullptr; 1803 } 1804 1805 /// Return an `struct ident_t*` value that represents the ones used in the 1806 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not 1807 /// return a local `struct ident_t*`. For now, if we cannot find a suitable 1808 /// return value we create one from scratch. We also do not yet combine 1809 /// information, e.g., the source locations, see combinedIdentStruct. 1810 Value * 1811 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, 1812 Function &F, bool GlobalOnly) { 1813 bool SingleChoice = true; 1814 Value *Ident = nullptr; 1815 auto CombineIdentStruct = [&](Use &U, Function &Caller) { 1816 CallInst *CI = getCallIfRegularCall(U, &RFI); 1817 if (!CI || &F != &Caller) 1818 return false; 1819 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), 1820 /* GlobalOnly */ true, SingleChoice); 1821 return false; 1822 }; 1823 RFI.foreachUse(SCC, CombineIdentStruct); 1824 1825 if (!Ident || !SingleChoice) { 1826 // The IRBuilder uses the insertion block to get to the module, this is 1827 // unfortunate but we work around it for now. 1828 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) 1829 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( 1830 &F.getEntryBlock(), F.getEntryBlock().begin())); 1831 // Create a fallback location if non was found. 1832 // TODO: Use the debug locations of the calls instead. 1833 uint32_t SrcLocStrSize; 1834 Constant *Loc = 1835 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); 1836 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize); 1837 } 1838 return Ident; 1839 } 1840 1841 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or 1842 /// \p ReplVal if given. 1843 bool deduplicateRuntimeCalls(Function &F, 1844 OMPInformationCache::RuntimeFunctionInfo &RFI, 1845 Value *ReplVal = nullptr) { 1846 auto *UV = RFI.getUseVector(F); 1847 if (!UV || UV->size() + (ReplVal != nullptr) < 2) 1848 return false; 1849 1850 LLVM_DEBUG( 1851 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name 1852 << (ReplVal ? " with an existing value\n" : "\n") << "\n"); 1853 1854 assert((!ReplVal || (isa<Argument>(ReplVal) && 1855 cast<Argument>(ReplVal)->getParent() == &F)) && 1856 "Unexpected replacement value!"); 1857 1858 // TODO: Use dominance to find a good position instead. 1859 auto CanBeMoved = [this](CallBase &CB) { 1860 unsigned NumArgs = CB.arg_size(); 1861 if (NumArgs == 0) 1862 return true; 1863 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) 1864 return false; 1865 for (unsigned U = 1; U < NumArgs; ++U) 1866 if (isa<Instruction>(CB.getArgOperand(U))) 1867 return false; 1868 return true; 1869 }; 1870 1871 if (!ReplVal) { 1872 for (Use *U : *UV) 1873 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { 1874 if (!CanBeMoved(*CI)) 1875 continue; 1876 1877 // If the function is a kernel, dedup will move 1878 // the runtime call right after the kernel init callsite. Otherwise, 1879 // it will move it to the beginning of the caller function. 1880 if (isKernel(F)) { 1881 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 1882 auto *KernelInitUV = KernelInitRFI.getUseVector(F); 1883 1884 if (KernelInitUV->empty()) 1885 continue; 1886 1887 assert(KernelInitUV->size() == 1 && 1888 "Expected a single __kmpc_target_init in kernel\n"); 1889 1890 CallInst *KernelInitCI = 1891 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI); 1892 assert(KernelInitCI && 1893 "Expected a call to __kmpc_target_init in kernel\n"); 1894 1895 CI->moveAfter(KernelInitCI); 1896 } else 1897 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); 1898 ReplVal = CI; 1899 break; 1900 } 1901 if (!ReplVal) 1902 return false; 1903 } 1904 1905 // If we use a call as a replacement value we need to make sure the ident is 1906 // valid at the new location. For now we just pick a global one, either 1907 // existing and used by one of the calls, or created from scratch. 1908 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) { 1909 if (!CI->arg_empty() && 1910 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { 1911 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, 1912 /* GlobalOnly */ true); 1913 CI->setArgOperand(0, Ident); 1914 } 1915 } 1916 1917 bool Changed = false; 1918 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { 1919 CallInst *CI = getCallIfRegularCall(U, &RFI); 1920 if (!CI || CI == ReplVal || &F != &Caller) 1921 return false; 1922 assert(CI->getCaller() == &F && "Unexpected call!"); 1923 1924 auto Remark = [&](OptimizationRemark OR) { 1925 return OR << "OpenMP runtime call " 1926 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated."; 1927 }; 1928 if (CI->getDebugLoc()) 1929 emitRemark<OptimizationRemark>(CI, "OMP170", Remark); 1930 else 1931 emitRemark<OptimizationRemark>(&F, "OMP170", Remark); 1932 1933 CGUpdater.removeCallSite(*CI); 1934 CI->replaceAllUsesWith(ReplVal); 1935 CI->eraseFromParent(); 1936 ++NumOpenMPRuntimeCallsDeduplicated; 1937 Changed = true; 1938 return true; 1939 }; 1940 RFI.foreachUse(SCC, ReplaceAndDeleteCB); 1941 1942 return Changed; 1943 } 1944 1945 /// Collect arguments that represent the global thread id in \p GTIdArgs. 1946 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { 1947 // TODO: Below we basically perform a fixpoint iteration with a pessimistic 1948 // initialization. We could define an AbstractAttribute instead and 1949 // run the Attributor here once it can be run as an SCC pass. 1950 1951 // Helper to check the argument \p ArgNo at all call sites of \p F for 1952 // a GTId. 1953 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { 1954 if (!F.hasLocalLinkage()) 1955 return false; 1956 for (Use &U : F.uses()) { 1957 if (CallInst *CI = getCallIfRegularCall(U)) { 1958 Value *ArgOp = CI->getArgOperand(ArgNo); 1959 if (CI == &RefCI || GTIdArgs.count(ArgOp) || 1960 getCallIfRegularCall( 1961 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) 1962 continue; 1963 } 1964 return false; 1965 } 1966 return true; 1967 }; 1968 1969 // Helper to identify uses of a GTId as GTId arguments. 1970 auto AddUserArgs = [&](Value >Id) { 1971 for (Use &U : GTId.uses()) 1972 if (CallInst *CI = dyn_cast<CallInst>(U.getUser())) 1973 if (CI->isArgOperand(&U)) 1974 if (Function *Callee = CI->getCalledFunction()) 1975 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) 1976 GTIdArgs.insert(Callee->getArg(U.getOperandNo())); 1977 }; 1978 1979 // The argument users of __kmpc_global_thread_num calls are GTIds. 1980 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = 1981 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; 1982 1983 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { 1984 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) 1985 AddUserArgs(*CI); 1986 return false; 1987 }); 1988 1989 // Transitively search for more arguments by looking at the users of the 1990 // ones we know already. During the search the GTIdArgs vector is extended 1991 // so we cannot cache the size nor can we use a range based for. 1992 for (unsigned U = 0; U < GTIdArgs.size(); ++U) 1993 AddUserArgs(*GTIdArgs[U]); 1994 } 1995 1996 /// Kernel (=GPU) optimizations and utility functions 1997 /// 1998 ///{{ 1999 2000 /// Check if \p F is a kernel, hence entry point for target offloading. 2001 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } 2002 2003 /// Cache to remember the unique kernel for a function. 2004 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap; 2005 2006 /// Find the unique kernel that will execute \p F, if any. 2007 Kernel getUniqueKernelFor(Function &F); 2008 2009 /// Find the unique kernel that will execute \p I, if any. 2010 Kernel getUniqueKernelFor(Instruction &I) { 2011 return getUniqueKernelFor(*I.getFunction()); 2012 } 2013 2014 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in 2015 /// the cases we can avoid taking the address of a function. 2016 bool rewriteDeviceCodeStateMachine(); 2017 2018 /// 2019 ///}} 2020 2021 /// Emit a remark generically 2022 /// 2023 /// This template function can be used to generically emit a remark. The 2024 /// RemarkKind should be one of the following: 2025 /// - OptimizationRemark to indicate a successful optimization attempt 2026 /// - OptimizationRemarkMissed to report a failed optimization attempt 2027 /// - OptimizationRemarkAnalysis to provide additional information about an 2028 /// optimization attempt 2029 /// 2030 /// The remark is built using a callback function provided by the caller that 2031 /// takes a RemarkKind as input and returns a RemarkKind. 2032 template <typename RemarkKind, typename RemarkCallBack> 2033 void emitRemark(Instruction *I, StringRef RemarkName, 2034 RemarkCallBack &&RemarkCB) const { 2035 Function *F = I->getParent()->getParent(); 2036 auto &ORE = OREGetter(F); 2037 2038 if (RemarkName.startswith("OMP")) 2039 ORE.emit([&]() { 2040 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) 2041 << " [" << RemarkName << "]"; 2042 }); 2043 else 2044 ORE.emit( 2045 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); 2046 } 2047 2048 /// Emit a remark on a function. 2049 template <typename RemarkKind, typename RemarkCallBack> 2050 void emitRemark(Function *F, StringRef RemarkName, 2051 RemarkCallBack &&RemarkCB) const { 2052 auto &ORE = OREGetter(F); 2053 2054 if (RemarkName.startswith("OMP")) 2055 ORE.emit([&]() { 2056 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) 2057 << " [" << RemarkName << "]"; 2058 }); 2059 else 2060 ORE.emit( 2061 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); 2062 } 2063 2064 /// RAII struct to temporarily change an RTL function's linkage to external. 2065 /// This prevents it from being mistakenly removed by other optimizations. 2066 struct ExternalizationRAII { 2067 ExternalizationRAII(OMPInformationCache &OMPInfoCache, 2068 RuntimeFunction RFKind) 2069 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) { 2070 if (!Declaration) 2071 return; 2072 2073 LinkageType = Declaration->getLinkage(); 2074 Declaration->setLinkage(GlobalValue::ExternalLinkage); 2075 } 2076 2077 ~ExternalizationRAII() { 2078 if (!Declaration) 2079 return; 2080 2081 Declaration->setLinkage(LinkageType); 2082 } 2083 2084 Function *Declaration; 2085 GlobalValue::LinkageTypes LinkageType; 2086 }; 2087 2088 /// The underlying module. 2089 Module &M; 2090 2091 /// The SCC we are operating on. 2092 SmallVectorImpl<Function *> &SCC; 2093 2094 /// Callback to update the call graph, the first argument is a removed call, 2095 /// the second an optional replacement call. 2096 CallGraphUpdater &CGUpdater; 2097 2098 /// Callback to get an OptimizationRemarkEmitter from a Function * 2099 OptimizationRemarkGetter OREGetter; 2100 2101 /// OpenMP-specific information cache. Also Used for Attributor runs. 2102 OMPInformationCache &OMPInfoCache; 2103 2104 /// Attributor instance. 2105 Attributor &A; 2106 2107 /// Helper function to run Attributor on SCC. 2108 bool runAttributor(bool IsModulePass) { 2109 if (SCC.empty()) 2110 return false; 2111 2112 // Temporarily make these function have external linkage so the Attributor 2113 // doesn't remove them when we try to look them up later. 2114 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel); 2115 ExternalizationRAII EndParallel(OMPInfoCache, 2116 OMPRTL___kmpc_kernel_end_parallel); 2117 ExternalizationRAII BarrierSPMD(OMPInfoCache, 2118 OMPRTL___kmpc_barrier_simple_spmd); 2119 ExternalizationRAII BarrierGeneric(OMPInfoCache, 2120 OMPRTL___kmpc_barrier_simple_generic); 2121 ExternalizationRAII ThreadId(OMPInfoCache, 2122 OMPRTL___kmpc_get_hardware_thread_id_in_block); 2123 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size); 2124 2125 registerAAs(IsModulePass); 2126 2127 ChangeStatus Changed = A.run(); 2128 2129 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() 2130 << " functions, result: " << Changed << ".\n"); 2131 2132 return Changed == ChangeStatus::CHANGED; 2133 } 2134 2135 void registerFoldRuntimeCall(RuntimeFunction RF); 2136 2137 /// Populate the Attributor with abstract attribute opportunities in the 2138 /// function. 2139 void registerAAs(bool IsModulePass); 2140 }; 2141 2142 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { 2143 if (!OMPInfoCache.ModuleSlice.count(&F)) 2144 return nullptr; 2145 2146 // Use a scope to keep the lifetime of the CachedKernel short. 2147 { 2148 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; 2149 if (CachedKernel) 2150 return *CachedKernel; 2151 2152 // TODO: We should use an AA to create an (optimistic and callback 2153 // call-aware) call graph. For now we stick to simple patterns that 2154 // are less powerful, basically the worst fixpoint. 2155 if (isKernel(F)) { 2156 CachedKernel = Kernel(&F); 2157 return *CachedKernel; 2158 } 2159 2160 CachedKernel = nullptr; 2161 if (!F.hasLocalLinkage()) { 2162 2163 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html 2164 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2165 return ORA << "Potentially unknown OpenMP target region caller."; 2166 }; 2167 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark); 2168 2169 return nullptr; 2170 } 2171 } 2172 2173 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { 2174 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2175 // Allow use in equality comparisons. 2176 if (Cmp->isEquality()) 2177 return getUniqueKernelFor(*Cmp); 2178 return nullptr; 2179 } 2180 if (auto *CB = dyn_cast<CallBase>(U.getUser())) { 2181 // Allow direct calls. 2182 if (CB->isCallee(&U)) 2183 return getUniqueKernelFor(*CB); 2184 2185 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2186 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2187 // Allow the use in __kmpc_parallel_51 calls. 2188 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI)) 2189 return getUniqueKernelFor(*CB); 2190 return nullptr; 2191 } 2192 // Disallow every other use. 2193 return nullptr; 2194 }; 2195 2196 // TODO: In the future we want to track more than just a unique kernel. 2197 SmallPtrSet<Kernel, 2> PotentialKernels; 2198 OMPInformationCache::foreachUse(F, [&](const Use &U) { 2199 PotentialKernels.insert(GetUniqueKernelForUse(U)); 2200 }); 2201 2202 Kernel K = nullptr; 2203 if (PotentialKernels.size() == 1) 2204 K = *PotentialKernels.begin(); 2205 2206 // Cache the result. 2207 UniqueKernelMap[&F] = K; 2208 2209 return K; 2210 } 2211 2212 bool OpenMPOpt::rewriteDeviceCodeStateMachine() { 2213 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = 2214 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 2215 2216 bool Changed = false; 2217 if (!KernelParallelRFI) 2218 return Changed; 2219 2220 // If we have disabled state machine changes, exit 2221 if (DisableOpenMPOptStateMachineRewrite) 2222 return Changed; 2223 2224 for (Function *F : SCC) { 2225 2226 // Check if the function is a use in a __kmpc_parallel_51 call at 2227 // all. 2228 bool UnknownUse = false; 2229 bool KernelParallelUse = false; 2230 unsigned NumDirectCalls = 0; 2231 2232 SmallVector<Use *, 2> ToBeReplacedStateMachineUses; 2233 OMPInformationCache::foreachUse(*F, [&](Use &U) { 2234 if (auto *CB = dyn_cast<CallBase>(U.getUser())) 2235 if (CB->isCallee(&U)) { 2236 ++NumDirectCalls; 2237 return; 2238 } 2239 2240 if (isa<ICmpInst>(U.getUser())) { 2241 ToBeReplacedStateMachineUses.push_back(&U); 2242 return; 2243 } 2244 2245 // Find wrapper functions that represent parallel kernels. 2246 CallInst *CI = 2247 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI); 2248 const unsigned int WrapperFunctionArgNo = 6; 2249 if (!KernelParallelUse && CI && 2250 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) { 2251 KernelParallelUse = true; 2252 ToBeReplacedStateMachineUses.push_back(&U); 2253 return; 2254 } 2255 UnknownUse = true; 2256 }); 2257 2258 // Do not emit a remark if we haven't seen a __kmpc_parallel_51 2259 // use. 2260 if (!KernelParallelUse) 2261 continue; 2262 2263 // If this ever hits, we should investigate. 2264 // TODO: Checking the number of uses is not a necessary restriction and 2265 // should be lifted. 2266 if (UnknownUse || NumDirectCalls != 1 || 2267 ToBeReplacedStateMachineUses.size() > 2) { 2268 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2269 return ORA << "Parallel region is used in " 2270 << (UnknownUse ? "unknown" : "unexpected") 2271 << " ways. Will not attempt to rewrite the state machine."; 2272 }; 2273 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark); 2274 continue; 2275 } 2276 2277 // Even if we have __kmpc_parallel_51 calls, we (for now) give 2278 // up if the function is not called from a unique kernel. 2279 Kernel K = getUniqueKernelFor(*F); 2280 if (!K) { 2281 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 2282 return ORA << "Parallel region is not called from a unique kernel. " 2283 "Will not attempt to rewrite the state machine."; 2284 }; 2285 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark); 2286 continue; 2287 } 2288 2289 // We now know F is a parallel body function called only from the kernel K. 2290 // We also identified the state machine uses in which we replace the 2291 // function pointer by a new global symbol for identification purposes. This 2292 // ensures only direct calls to the function are left. 2293 2294 Module &M = *F->getParent(); 2295 Type *Int8Ty = Type::getInt8Ty(M.getContext()); 2296 2297 auto *ID = new GlobalVariable( 2298 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, 2299 UndefValue::get(Int8Ty), F->getName() + ".ID"); 2300 2301 for (Use *U : ToBeReplacedStateMachineUses) 2302 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2303 ID, U->get()->getType())); 2304 2305 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; 2306 2307 Changed = true; 2308 } 2309 2310 return Changed; 2311 } 2312 2313 /// Abstract Attribute for tracking ICV values. 2314 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { 2315 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2316 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2317 2318 void initialize(Attributor &A) override { 2319 Function *F = getAnchorScope(); 2320 if (!F || !A.isFunctionIPOAmendable(*F)) 2321 indicatePessimisticFixpoint(); 2322 } 2323 2324 /// Returns true if value is assumed to be tracked. 2325 bool isAssumedTracked() const { return getAssumed(); } 2326 2327 /// Returns true if value is known to be tracked. 2328 bool isKnownTracked() const { return getAssumed(); } 2329 2330 /// Create an abstract attribute biew for the position \p IRP. 2331 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); 2332 2333 /// Return the value with which \p I can be replaced for specific \p ICV. 2334 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV, 2335 const Instruction *I, 2336 Attributor &A) const { 2337 return None; 2338 } 2339 2340 /// Return an assumed unique ICV value if a single candidate is found. If 2341 /// there cannot be one, return a nullptr. If it is not clear yet, return the 2342 /// Optional::NoneType. 2343 virtual Optional<Value *> 2344 getUniqueReplacementValue(InternalControlVar ICV) const = 0; 2345 2346 // Currently only nthreads is being tracked. 2347 // this array will only grow with time. 2348 InternalControlVar TrackableICVs[1] = {ICV_nthreads}; 2349 2350 /// See AbstractAttribute::getName() 2351 const std::string getName() const override { return "AAICVTracker"; } 2352 2353 /// See AbstractAttribute::getIdAddr() 2354 const char *getIdAddr() const override { return &ID; } 2355 2356 /// This function should return true if the type of the \p AA is AAICVTracker 2357 static bool classof(const AbstractAttribute *AA) { 2358 return (AA->getIdAddr() == &ID); 2359 } 2360 2361 static const char ID; 2362 }; 2363 2364 struct AAICVTrackerFunction : public AAICVTracker { 2365 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) 2366 : AAICVTracker(IRP, A) {} 2367 2368 // FIXME: come up with better string. 2369 const std::string getAsStr() const override { return "ICVTrackerFunction"; } 2370 2371 // FIXME: come up with some stats. 2372 void trackStatistics() const override {} 2373 2374 /// We don't manifest anything for this AA. 2375 ChangeStatus manifest(Attributor &A) override { 2376 return ChangeStatus::UNCHANGED; 2377 } 2378 2379 // Map of ICV to their values at specific program point. 2380 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, 2381 InternalControlVar::ICV___last> 2382 ICVReplacementValuesMap; 2383 2384 ChangeStatus updateImpl(Attributor &A) override { 2385 ChangeStatus HasChanged = ChangeStatus::UNCHANGED; 2386 2387 Function *F = getAnchorScope(); 2388 2389 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2390 2391 for (InternalControlVar ICV : TrackableICVs) { 2392 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2393 2394 auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2395 auto TrackValues = [&](Use &U, Function &) { 2396 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); 2397 if (!CI) 2398 return false; 2399 2400 // FIXME: handle setters with more that 1 arguments. 2401 /// Track new value. 2402 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) 2403 HasChanged = ChangeStatus::CHANGED; 2404 2405 return false; 2406 }; 2407 2408 auto CallCheck = [&](Instruction &I) { 2409 Optional<Value *> ReplVal = getValueForCall(A, I, ICV); 2410 if (ReplVal.hasValue() && 2411 ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) 2412 HasChanged = ChangeStatus::CHANGED; 2413 2414 return true; 2415 }; 2416 2417 // Track all changes of an ICV. 2418 SetterRFI.foreachUse(TrackValues, F); 2419 2420 bool UsedAssumedInformation = false; 2421 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, 2422 UsedAssumedInformation, 2423 /* CheckBBLivenessOnly */ true); 2424 2425 /// TODO: Figure out a way to avoid adding entry in 2426 /// ICVReplacementValuesMap 2427 Instruction *Entry = &F->getEntryBlock().front(); 2428 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) 2429 ValuesMap.insert(std::make_pair(Entry, nullptr)); 2430 } 2431 2432 return HasChanged; 2433 } 2434 2435 /// Helper to check if \p I is a call and get the value for it if it is 2436 /// unique. 2437 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I, 2438 InternalControlVar &ICV) const { 2439 2440 const auto *CB = dyn_cast<CallBase>(&I); 2441 if (!CB || CB->hasFnAttr("no_openmp") || 2442 CB->hasFnAttr("no_openmp_routines")) 2443 return None; 2444 2445 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2446 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; 2447 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; 2448 Function *CalledFunction = CB->getCalledFunction(); 2449 2450 // Indirect call, assume ICV changes. 2451 if (CalledFunction == nullptr) 2452 return nullptr; 2453 if (CalledFunction == GetterRFI.Declaration) 2454 return None; 2455 if (CalledFunction == SetterRFI.Declaration) { 2456 if (ICVReplacementValuesMap[ICV].count(&I)) 2457 return ICVReplacementValuesMap[ICV].lookup(&I); 2458 2459 return nullptr; 2460 } 2461 2462 // Since we don't know, assume it changes the ICV. 2463 if (CalledFunction->isDeclaration()) 2464 return nullptr; 2465 2466 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2467 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED); 2468 2469 if (ICVTrackingAA.isAssumedTracked()) { 2470 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV); 2471 if (!URV || (*URV && AA::isValidAtPosition(**URV, I, OMPInfoCache))) 2472 return URV; 2473 } 2474 2475 // If we don't know, assume it changes. 2476 return nullptr; 2477 } 2478 2479 // We don't check unique value for a function, so return None. 2480 Optional<Value *> 2481 getUniqueReplacementValue(InternalControlVar ICV) const override { 2482 return None; 2483 } 2484 2485 /// Return the value with which \p I can be replaced for specific \p ICV. 2486 Optional<Value *> getReplacementValue(InternalControlVar ICV, 2487 const Instruction *I, 2488 Attributor &A) const override { 2489 const auto &ValuesMap = ICVReplacementValuesMap[ICV]; 2490 if (ValuesMap.count(I)) 2491 return ValuesMap.lookup(I); 2492 2493 SmallVector<const Instruction *, 16> Worklist; 2494 SmallPtrSet<const Instruction *, 16> Visited; 2495 Worklist.push_back(I); 2496 2497 Optional<Value *> ReplVal; 2498 2499 while (!Worklist.empty()) { 2500 const Instruction *CurrInst = Worklist.pop_back_val(); 2501 if (!Visited.insert(CurrInst).second) 2502 continue; 2503 2504 const BasicBlock *CurrBB = CurrInst->getParent(); 2505 2506 // Go up and look for all potential setters/calls that might change the 2507 // ICV. 2508 while ((CurrInst = CurrInst->getPrevNode())) { 2509 if (ValuesMap.count(CurrInst)) { 2510 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst); 2511 // Unknown value, track new. 2512 if (!ReplVal.hasValue()) { 2513 ReplVal = NewReplVal; 2514 break; 2515 } 2516 2517 // If we found a new value, we can't know the icv value anymore. 2518 if (NewReplVal.hasValue()) 2519 if (ReplVal != NewReplVal) 2520 return nullptr; 2521 2522 break; 2523 } 2524 2525 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV); 2526 if (!NewReplVal.hasValue()) 2527 continue; 2528 2529 // Unknown value, track new. 2530 if (!ReplVal.hasValue()) { 2531 ReplVal = NewReplVal; 2532 break; 2533 } 2534 2535 // if (NewReplVal.hasValue()) 2536 // We found a new value, we can't know the icv value anymore. 2537 if (ReplVal != NewReplVal) 2538 return nullptr; 2539 } 2540 2541 // If we are in the same BB and we have a value, we are done. 2542 if (CurrBB == I->getParent() && ReplVal.hasValue()) 2543 return ReplVal; 2544 2545 // Go through all predecessors and add terminators for analysis. 2546 for (const BasicBlock *Pred : predecessors(CurrBB)) 2547 if (const Instruction *Terminator = Pred->getTerminator()) 2548 Worklist.push_back(Terminator); 2549 } 2550 2551 return ReplVal; 2552 } 2553 }; 2554 2555 struct AAICVTrackerFunctionReturned : AAICVTracker { 2556 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) 2557 : AAICVTracker(IRP, A) {} 2558 2559 // FIXME: come up with better string. 2560 const std::string getAsStr() const override { 2561 return "ICVTrackerFunctionReturned"; 2562 } 2563 2564 // FIXME: come up with some stats. 2565 void trackStatistics() const override {} 2566 2567 /// We don't manifest anything for this AA. 2568 ChangeStatus manifest(Attributor &A) override { 2569 return ChangeStatus::UNCHANGED; 2570 } 2571 2572 // Map of ICV to their values at specific program point. 2573 EnumeratedArray<Optional<Value *>, InternalControlVar, 2574 InternalControlVar::ICV___last> 2575 ICVReplacementValuesMap; 2576 2577 /// Return the value with which \p I can be replaced for specific \p ICV. 2578 Optional<Value *> 2579 getUniqueReplacementValue(InternalControlVar ICV) const override { 2580 return ICVReplacementValuesMap[ICV]; 2581 } 2582 2583 ChangeStatus updateImpl(Attributor &A) override { 2584 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2585 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2586 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2587 2588 if (!ICVTrackingAA.isAssumedTracked()) 2589 return indicatePessimisticFixpoint(); 2590 2591 for (InternalControlVar ICV : TrackableICVs) { 2592 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2593 Optional<Value *> UniqueICVValue; 2594 2595 auto CheckReturnInst = [&](Instruction &I) { 2596 Optional<Value *> NewReplVal = 2597 ICVTrackingAA.getReplacementValue(ICV, &I, A); 2598 2599 // If we found a second ICV value there is no unique returned value. 2600 if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) 2601 return false; 2602 2603 UniqueICVValue = NewReplVal; 2604 2605 return true; 2606 }; 2607 2608 bool UsedAssumedInformation = false; 2609 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, 2610 UsedAssumedInformation, 2611 /* CheckBBLivenessOnly */ true)) 2612 UniqueICVValue = nullptr; 2613 2614 if (UniqueICVValue == ReplVal) 2615 continue; 2616 2617 ReplVal = UniqueICVValue; 2618 Changed = ChangeStatus::CHANGED; 2619 } 2620 2621 return Changed; 2622 } 2623 }; 2624 2625 struct AAICVTrackerCallSite : AAICVTracker { 2626 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) 2627 : AAICVTracker(IRP, A) {} 2628 2629 void initialize(Attributor &A) override { 2630 Function *F = getAnchorScope(); 2631 if (!F || !A.isFunctionIPOAmendable(*F)) 2632 indicatePessimisticFixpoint(); 2633 2634 // We only initialize this AA for getters, so we need to know which ICV it 2635 // gets. 2636 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2637 for (InternalControlVar ICV : TrackableICVs) { 2638 auto ICVInfo = OMPInfoCache.ICVs[ICV]; 2639 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; 2640 if (Getter.Declaration == getAssociatedFunction()) { 2641 AssociatedICV = ICVInfo.Kind; 2642 return; 2643 } 2644 } 2645 2646 /// Unknown ICV. 2647 indicatePessimisticFixpoint(); 2648 } 2649 2650 ChangeStatus manifest(Attributor &A) override { 2651 if (!ReplVal.hasValue() || !ReplVal.getValue()) 2652 return ChangeStatus::UNCHANGED; 2653 2654 A.changeValueAfterManifest(*getCtxI(), **ReplVal); 2655 A.deleteAfterManifest(*getCtxI()); 2656 2657 return ChangeStatus::CHANGED; 2658 } 2659 2660 // FIXME: come up with better string. 2661 const std::string getAsStr() const override { return "ICVTrackerCallSite"; } 2662 2663 // FIXME: come up with some stats. 2664 void trackStatistics() const override {} 2665 2666 InternalControlVar AssociatedICV; 2667 Optional<Value *> ReplVal; 2668 2669 ChangeStatus updateImpl(Attributor &A) override { 2670 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2671 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 2672 2673 // We don't have any information, so we assume it changes the ICV. 2674 if (!ICVTrackingAA.isAssumedTracked()) 2675 return indicatePessimisticFixpoint(); 2676 2677 Optional<Value *> NewReplVal = 2678 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); 2679 2680 if (ReplVal == NewReplVal) 2681 return ChangeStatus::UNCHANGED; 2682 2683 ReplVal = NewReplVal; 2684 return ChangeStatus::CHANGED; 2685 } 2686 2687 // Return the value with which associated value can be replaced for specific 2688 // \p ICV. 2689 Optional<Value *> 2690 getUniqueReplacementValue(InternalControlVar ICV) const override { 2691 return ReplVal; 2692 } 2693 }; 2694 2695 struct AAICVTrackerCallSiteReturned : AAICVTracker { 2696 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) 2697 : AAICVTracker(IRP, A) {} 2698 2699 // FIXME: come up with better string. 2700 const std::string getAsStr() const override { 2701 return "ICVTrackerCallSiteReturned"; 2702 } 2703 2704 // FIXME: come up with some stats. 2705 void trackStatistics() const override {} 2706 2707 /// We don't manifest anything for this AA. 2708 ChangeStatus manifest(Attributor &A) override { 2709 return ChangeStatus::UNCHANGED; 2710 } 2711 2712 // Map of ICV to their values at specific program point. 2713 EnumeratedArray<Optional<Value *>, InternalControlVar, 2714 InternalControlVar::ICV___last> 2715 ICVReplacementValuesMap; 2716 2717 /// Return the value with which associated value can be replaced for specific 2718 /// \p ICV. 2719 Optional<Value *> 2720 getUniqueReplacementValue(InternalControlVar ICV) const override { 2721 return ICVReplacementValuesMap[ICV]; 2722 } 2723 2724 ChangeStatus updateImpl(Attributor &A) override { 2725 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2726 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>( 2727 *this, IRPosition::returned(*getAssociatedFunction()), 2728 DepClassTy::REQUIRED); 2729 2730 // We don't have any information, so we assume it changes the ICV. 2731 if (!ICVTrackingAA.isAssumedTracked()) 2732 return indicatePessimisticFixpoint(); 2733 2734 for (InternalControlVar ICV : TrackableICVs) { 2735 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; 2736 Optional<Value *> NewReplVal = 2737 ICVTrackingAA.getUniqueReplacementValue(ICV); 2738 2739 if (ReplVal == NewReplVal) 2740 continue; 2741 2742 ReplVal = NewReplVal; 2743 Changed = ChangeStatus::CHANGED; 2744 } 2745 return Changed; 2746 } 2747 }; 2748 2749 struct AAExecutionDomainFunction : public AAExecutionDomain { 2750 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) 2751 : AAExecutionDomain(IRP, A) {} 2752 2753 const std::string getAsStr() const override { 2754 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) + 2755 "/" + std::to_string(NumBBs) + " BBs thread 0 only."; 2756 } 2757 2758 /// See AbstractAttribute::trackStatistics(). 2759 void trackStatistics() const override {} 2760 2761 void initialize(Attributor &A) override { 2762 Function *F = getAnchorScope(); 2763 for (const auto &BB : *F) 2764 SingleThreadedBBs.insert(&BB); 2765 NumBBs = SingleThreadedBBs.size(); 2766 } 2767 2768 ChangeStatus manifest(Attributor &A) override { 2769 LLVM_DEBUG({ 2770 for (const BasicBlock *BB : SingleThreadedBBs) 2771 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " 2772 << BB->getName() << " is executed by a single thread.\n"; 2773 }); 2774 return ChangeStatus::UNCHANGED; 2775 } 2776 2777 ChangeStatus updateImpl(Attributor &A) override; 2778 2779 /// Check if an instruction is executed by a single thread. 2780 bool isExecutedByInitialThreadOnly(const Instruction &I) const override { 2781 return isExecutedByInitialThreadOnly(*I.getParent()); 2782 } 2783 2784 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { 2785 return isValidState() && SingleThreadedBBs.contains(&BB); 2786 } 2787 2788 /// Set of basic blocks that are executed by a single thread. 2789 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs; 2790 2791 /// Total number of basic blocks in this function. 2792 long unsigned NumBBs; 2793 }; 2794 2795 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { 2796 Function *F = getAnchorScope(); 2797 ReversePostOrderTraversal<Function *> RPOT(F); 2798 auto NumSingleThreadedBBs = SingleThreadedBBs.size(); 2799 2800 bool AllCallSitesKnown; 2801 auto PredForCallSite = [&](AbstractCallSite ACS) { 2802 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 2803 *this, IRPosition::function(*ACS.getInstruction()->getFunction()), 2804 DepClassTy::REQUIRED); 2805 return ACS.isDirectCall() && 2806 ExecutionDomainAA.isExecutedByInitialThreadOnly( 2807 *ACS.getInstruction()); 2808 }; 2809 2810 if (!A.checkForAllCallSites(PredForCallSite, *this, 2811 /* RequiresAllCallSites */ true, 2812 AllCallSitesKnown)) 2813 SingleThreadedBBs.remove(&F->getEntryBlock()); 2814 2815 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2816 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 2817 2818 // Check if the edge into the successor block contains a condition that only 2819 // lets the main thread execute it. 2820 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) { 2821 if (!Edge || !Edge->isConditional()) 2822 return false; 2823 if (Edge->getSuccessor(0) != SuccessorBB) 2824 return false; 2825 2826 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition()); 2827 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) 2828 return false; 2829 2830 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 2831 if (!C) 2832 return false; 2833 2834 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) 2835 if (C->isAllOnesValue()) { 2836 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0)); 2837 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr; 2838 if (!CB) 2839 return false; 2840 const int InitModeArgNo = 1; 2841 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo)); 2842 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC); 2843 } 2844 2845 if (C->isZero()) { 2846 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() 2847 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2848 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) 2849 return true; 2850 2851 // Match: 0 == llvm.amdgcn.workitem.id.x() 2852 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0))) 2853 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) 2854 return true; 2855 } 2856 2857 return false; 2858 }; 2859 2860 // Merge all the predecessor states into the current basic block. A basic 2861 // block is executed by a single thread if all of its predecessors are. 2862 auto MergePredecessorStates = [&](BasicBlock *BB) { 2863 if (pred_empty(BB)) 2864 return SingleThreadedBBs.contains(BB); 2865 2866 bool IsInitialThread = true; 2867 for (BasicBlock *PredBB : predecessors(BB)) { 2868 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()), 2869 BB)) 2870 IsInitialThread &= SingleThreadedBBs.contains(PredBB); 2871 } 2872 2873 return IsInitialThread; 2874 }; 2875 2876 for (auto *BB : RPOT) { 2877 if (!MergePredecessorStates(BB)) 2878 SingleThreadedBBs.remove(BB); 2879 } 2880 2881 return (NumSingleThreadedBBs == SingleThreadedBBs.size()) 2882 ? ChangeStatus::UNCHANGED 2883 : ChangeStatus::CHANGED; 2884 } 2885 2886 /// Try to replace memory allocation calls called by a single thread with a 2887 /// static buffer of shared memory. 2888 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { 2889 using Base = StateWrapper<BooleanState, AbstractAttribute>; 2890 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 2891 2892 /// Create an abstract attribute view for the position \p IRP. 2893 static AAHeapToShared &createForPosition(const IRPosition &IRP, 2894 Attributor &A); 2895 2896 /// Returns true if HeapToShared conversion is assumed to be possible. 2897 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; 2898 2899 /// Returns true if HeapToShared conversion is assumed and the CB is a 2900 /// callsite to a free operation to be removed. 2901 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; 2902 2903 /// See AbstractAttribute::getName(). 2904 const std::string getName() const override { return "AAHeapToShared"; } 2905 2906 /// See AbstractAttribute::getIdAddr(). 2907 const char *getIdAddr() const override { return &ID; } 2908 2909 /// This function should return true if the type of the \p AA is 2910 /// AAHeapToShared. 2911 static bool classof(const AbstractAttribute *AA) { 2912 return (AA->getIdAddr() == &ID); 2913 } 2914 2915 /// Unique ID (due to the unique address) 2916 static const char ID; 2917 }; 2918 2919 struct AAHeapToSharedFunction : public AAHeapToShared { 2920 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) 2921 : AAHeapToShared(IRP, A) {} 2922 2923 const std::string getAsStr() const override { 2924 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) + 2925 " malloc calls eligible."; 2926 } 2927 2928 /// See AbstractAttribute::trackStatistics(). 2929 void trackStatistics() const override {} 2930 2931 /// This functions finds free calls that will be removed by the 2932 /// HeapToShared transformation. 2933 void findPotentialRemovedFreeCalls(Attributor &A) { 2934 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2935 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2936 2937 PotentialRemovedFreeCalls.clear(); 2938 // Update free call users of found malloc calls. 2939 for (CallBase *CB : MallocCalls) { 2940 SmallVector<CallBase *, 4> FreeCalls; 2941 for (auto *U : CB->users()) { 2942 CallBase *C = dyn_cast<CallBase>(U); 2943 if (C && C->getCalledFunction() == FreeRFI.Declaration) 2944 FreeCalls.push_back(C); 2945 } 2946 2947 if (FreeCalls.size() != 1) 2948 continue; 2949 2950 PotentialRemovedFreeCalls.insert(FreeCalls.front()); 2951 } 2952 } 2953 2954 void initialize(Attributor &A) override { 2955 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2956 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 2957 2958 for (User *U : RFI.Declaration->users()) 2959 if (CallBase *CB = dyn_cast<CallBase>(U)) 2960 MallocCalls.insert(CB); 2961 2962 findPotentialRemovedFreeCalls(A); 2963 } 2964 2965 bool isAssumedHeapToShared(CallBase &CB) const override { 2966 return isValidState() && MallocCalls.count(&CB); 2967 } 2968 2969 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { 2970 return isValidState() && PotentialRemovedFreeCalls.count(&CB); 2971 } 2972 2973 ChangeStatus manifest(Attributor &A) override { 2974 if (MallocCalls.empty()) 2975 return ChangeStatus::UNCHANGED; 2976 2977 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 2978 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; 2979 2980 Function *F = getAnchorScope(); 2981 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this, 2982 DepClassTy::OPTIONAL); 2983 2984 ChangeStatus Changed = ChangeStatus::UNCHANGED; 2985 for (CallBase *CB : MallocCalls) { 2986 // Skip replacing this if HeapToStack has already claimed it. 2987 if (HS && HS->isAssumedHeapToStack(*CB)) 2988 continue; 2989 2990 // Find the unique free call to remove it. 2991 SmallVector<CallBase *, 4> FreeCalls; 2992 for (auto *U : CB->users()) { 2993 CallBase *C = dyn_cast<CallBase>(U); 2994 if (C && C->getCalledFunction() == FreeCall.Declaration) 2995 FreeCalls.push_back(C); 2996 } 2997 if (FreeCalls.size() != 1) 2998 continue; 2999 3000 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0)); 3001 3002 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB 3003 << " with " << AllocSize->getZExtValue() 3004 << " bytes of shared memory\n"); 3005 3006 // Create a new shared memory buffer of the same size as the allocation 3007 // and replace all the uses of the original allocation with it. 3008 Module *M = CB->getModule(); 3009 Type *Int8Ty = Type::getInt8Ty(M->getContext()); 3010 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue()); 3011 auto *SharedMem = new GlobalVariable( 3012 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, 3013 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr, 3014 GlobalValue::NotThreadLocal, 3015 static_cast<unsigned>(AddressSpace::Shared)); 3016 auto *NewBuffer = 3017 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo()); 3018 3019 auto Remark = [&](OptimizationRemark OR) { 3020 return OR << "Replaced globalized variable with " 3021 << ore::NV("SharedMemory", AllocSize->getZExtValue()) 3022 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ") 3023 << "of shared memory."; 3024 }; 3025 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark); 3026 3027 MaybeAlign Alignment = CB->getRetAlign(); 3028 assert(Alignment && 3029 "HeapToShared on allocation without alignment attribute"); 3030 SharedMem->setAlignment(MaybeAlign(Alignment)); 3031 3032 A.changeValueAfterManifest(*CB, *NewBuffer); 3033 A.deleteAfterManifest(*CB); 3034 A.deleteAfterManifest(*FreeCalls.front()); 3035 3036 NumBytesMovedToSharedMemory += AllocSize->getZExtValue(); 3037 Changed = ChangeStatus::CHANGED; 3038 } 3039 3040 return Changed; 3041 } 3042 3043 ChangeStatus updateImpl(Attributor &A) override { 3044 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3045 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3046 Function *F = getAnchorScope(); 3047 3048 auto NumMallocCalls = MallocCalls.size(); 3049 3050 // Only consider malloc calls executed by a single thread with a constant. 3051 for (User *U : RFI.Declaration->users()) { 3052 const auto &ED = A.getAAFor<AAExecutionDomain>( 3053 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 3054 if (CallBase *CB = dyn_cast<CallBase>(U)) 3055 if (!isa<ConstantInt>(CB->getArgOperand(0)) || 3056 !ED.isExecutedByInitialThreadOnly(*CB)) 3057 MallocCalls.remove(CB); 3058 } 3059 3060 findPotentialRemovedFreeCalls(A); 3061 3062 if (NumMallocCalls != MallocCalls.size()) 3063 return ChangeStatus::CHANGED; 3064 3065 return ChangeStatus::UNCHANGED; 3066 } 3067 3068 /// Collection of all malloc calls in a function. 3069 SmallSetVector<CallBase *, 4> MallocCalls; 3070 /// Collection of potentially removed free calls in a function. 3071 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; 3072 }; 3073 3074 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { 3075 using Base = StateWrapper<KernelInfoState, AbstractAttribute>; 3076 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 3077 3078 /// Statistics are tracked as part of manifest for now. 3079 void trackStatistics() const override {} 3080 3081 /// See AbstractAttribute::getAsStr() 3082 const std::string getAsStr() const override { 3083 if (!isValidState()) 3084 return "<invalid>"; 3085 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" 3086 : "generic") + 3087 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" 3088 : "") + 3089 std::string(" #PRs: ") + 3090 (ReachedKnownParallelRegions.isValidState() 3091 ? std::to_string(ReachedKnownParallelRegions.size()) 3092 : "<invalid>") + 3093 ", #Unknown PRs: " + 3094 (ReachedUnknownParallelRegions.isValidState() 3095 ? std::to_string(ReachedUnknownParallelRegions.size()) 3096 : "<invalid>") + 3097 ", #Reaching Kernels: " + 3098 (ReachingKernelEntries.isValidState() 3099 ? std::to_string(ReachingKernelEntries.size()) 3100 : "<invalid>"); 3101 } 3102 3103 /// Create an abstract attribute biew for the position \p IRP. 3104 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); 3105 3106 /// See AbstractAttribute::getName() 3107 const std::string getName() const override { return "AAKernelInfo"; } 3108 3109 /// See AbstractAttribute::getIdAddr() 3110 const char *getIdAddr() const override { return &ID; } 3111 3112 /// This function should return true if the type of the \p AA is AAKernelInfo 3113 static bool classof(const AbstractAttribute *AA) { 3114 return (AA->getIdAddr() == &ID); 3115 } 3116 3117 static const char ID; 3118 }; 3119 3120 /// The function kernel info abstract attribute, basically, what can we say 3121 /// about a function with regards to the KernelInfoState. 3122 struct AAKernelInfoFunction : AAKernelInfo { 3123 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) 3124 : AAKernelInfo(IRP, A) {} 3125 3126 SmallPtrSet<Instruction *, 4> GuardedInstructions; 3127 3128 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { 3129 return GuardedInstructions; 3130 } 3131 3132 /// See AbstractAttribute::initialize(...). 3133 void initialize(Attributor &A) override { 3134 // This is a high-level transform that might change the constant arguments 3135 // of the init and dinit calls. We need to tell the Attributor about this 3136 // to avoid other parts using the current constant value for simpliication. 3137 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3138 3139 Function *Fn = getAnchorScope(); 3140 if (!OMPInfoCache.Kernels.count(Fn)) 3141 return; 3142 3143 // Add itself to the reaching kernel and set IsKernelEntry. 3144 ReachingKernelEntries.insert(Fn); 3145 IsKernelEntry = true; 3146 3147 OMPInformationCache::RuntimeFunctionInfo &InitRFI = 3148 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; 3149 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = 3150 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; 3151 3152 // For kernels we perform more initialization work, first we find the init 3153 // and deinit calls. 3154 auto StoreCallBase = [](Use &U, 3155 OMPInformationCache::RuntimeFunctionInfo &RFI, 3156 CallBase *&Storage) { 3157 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI); 3158 assert(CB && 3159 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!"); 3160 assert(!Storage && 3161 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!"); 3162 Storage = CB; 3163 return false; 3164 }; 3165 InitRFI.foreachUse( 3166 [&](Use &U, Function &) { 3167 StoreCallBase(U, InitRFI, KernelInitCB); 3168 return false; 3169 }, 3170 Fn); 3171 DeinitRFI.foreachUse( 3172 [&](Use &U, Function &) { 3173 StoreCallBase(U, DeinitRFI, KernelDeinitCB); 3174 return false; 3175 }, 3176 Fn); 3177 3178 // Ignore kernels without initializers such as global constructors. 3179 if (!KernelInitCB || !KernelDeinitCB) { 3180 indicateOptimisticFixpoint(); 3181 return; 3182 } 3183 3184 // For kernels we might need to initialize/finalize the IsSPMD state and 3185 // we need to register a simplification callback so that the Attributor 3186 // knows the constant arguments to __kmpc_target_init and 3187 // __kmpc_target_deinit might actually change. 3188 3189 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB = 3190 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3191 bool &UsedAssumedInformation) -> Optional<Value *> { 3192 // IRP represents the "use generic state machine" argument of an 3193 // __kmpc_target_init call. We will answer this one with the internal 3194 // state. As long as we are not in an invalid state, we will create a 3195 // custom state machine so the value should be a `i1 false`. If we are 3196 // in an invalid state, we won't change the value that is in the IR. 3197 if (!ReachedKnownParallelRegions.isValidState()) 3198 return nullptr; 3199 // If we have disabled state machine rewrites, don't make a custom one. 3200 if (DisableOpenMPOptStateMachineRewrite) 3201 return nullptr; 3202 if (AA) 3203 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3204 UsedAssumedInformation = !isAtFixpoint(); 3205 auto *FalseVal = 3206 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false); 3207 return FalseVal; 3208 }; 3209 3210 Attributor::SimplifictionCallbackTy ModeSimplifyCB = 3211 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3212 bool &UsedAssumedInformation) -> Optional<Value *> { 3213 // IRP represents the "SPMDCompatibilityTracker" argument of an 3214 // __kmpc_target_init or 3215 // __kmpc_target_deinit call. We will answer this one with the internal 3216 // state. 3217 if (!SPMDCompatibilityTracker.isValidState()) 3218 return nullptr; 3219 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3220 if (AA) 3221 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3222 UsedAssumedInformation = true; 3223 } else { 3224 UsedAssumedInformation = false; 3225 } 3226 auto *Val = ConstantInt::getSigned( 3227 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()), 3228 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD 3229 : OMP_TGT_EXEC_MODE_GENERIC); 3230 return Val; 3231 }; 3232 3233 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB = 3234 [&](const IRPosition &IRP, const AbstractAttribute *AA, 3235 bool &UsedAssumedInformation) -> Optional<Value *> { 3236 // IRP represents the "RequiresFullRuntime" argument of an 3237 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this 3238 // one with the internal state of the SPMDCompatibilityTracker, so if 3239 // generic then true, if SPMD then false. 3240 if (!SPMDCompatibilityTracker.isValidState()) 3241 return nullptr; 3242 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 3243 if (AA) 3244 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 3245 UsedAssumedInformation = true; 3246 } else { 3247 UsedAssumedInformation = false; 3248 } 3249 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(), 3250 !SPMDCompatibilityTracker.isAssumed()); 3251 return Val; 3252 }; 3253 3254 constexpr const int InitModeArgNo = 1; 3255 constexpr const int DeinitModeArgNo = 1; 3256 constexpr const int InitUseStateMachineArgNo = 2; 3257 constexpr const int InitRequiresFullRuntimeArgNo = 3; 3258 constexpr const int DeinitRequiresFullRuntimeArgNo = 2; 3259 A.registerSimplificationCallback( 3260 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo), 3261 StateMachineSimplifyCB); 3262 A.registerSimplificationCallback( 3263 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo), 3264 ModeSimplifyCB); 3265 A.registerSimplificationCallback( 3266 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo), 3267 ModeSimplifyCB); 3268 A.registerSimplificationCallback( 3269 IRPosition::callsite_argument(*KernelInitCB, 3270 InitRequiresFullRuntimeArgNo), 3271 IsGenericModeSimplifyCB); 3272 A.registerSimplificationCallback( 3273 IRPosition::callsite_argument(*KernelDeinitCB, 3274 DeinitRequiresFullRuntimeArgNo), 3275 IsGenericModeSimplifyCB); 3276 3277 // Check if we know we are in SPMD-mode already. 3278 ConstantInt *ModeArg = 3279 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3280 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3281 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 3282 // This is a generic region but SPMDization is disabled so stop tracking. 3283 else if (DisableOpenMPOptSPMDization) 3284 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3285 } 3286 3287 /// Sanitize the string \p S such that it is a suitable global symbol name. 3288 static std::string sanitizeForGlobalName(std::string S) { 3289 std::replace_if( 3290 S.begin(), S.end(), 3291 [](const char C) { 3292 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || 3293 (C >= '0' && C <= '9') || C == '_'); 3294 }, 3295 '.'); 3296 return S; 3297 } 3298 3299 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is 3300 /// finished now. 3301 ChangeStatus manifest(Attributor &A) override { 3302 // If we are not looking at a kernel with __kmpc_target_init and 3303 // __kmpc_target_deinit call we cannot actually manifest the information. 3304 if (!KernelInitCB || !KernelDeinitCB) 3305 return ChangeStatus::UNCHANGED; 3306 3307 // If we can we change the execution mode to SPMD-mode otherwise we build a 3308 // custom state machine. 3309 ChangeStatus Changed = ChangeStatus::UNCHANGED; 3310 if (!changeToSPMDMode(A, Changed)) 3311 return buildCustomStateMachine(A); 3312 3313 return Changed; 3314 } 3315 3316 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { 3317 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3318 3319 if (!SPMDCompatibilityTracker.isAssumed()) { 3320 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { 3321 if (!NonCompatibleI) 3322 continue; 3323 3324 // Skip diagnostics on calls to known OpenMP runtime functions for now. 3325 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI)) 3326 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction())) 3327 continue; 3328 3329 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3330 ORA << "Value has potential side effects preventing SPMD-mode " 3331 "execution"; 3332 if (isa<CallBase>(NonCompatibleI)) { 3333 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to " 3334 "the called function to override"; 3335 } 3336 return ORA << "."; 3337 }; 3338 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121", 3339 Remark); 3340 3341 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " 3342 << *NonCompatibleI << "\n"); 3343 } 3344 3345 return false; 3346 } 3347 3348 // Check if the kernel is already in SPMD mode, if so, return success. 3349 Function *Kernel = getAnchorScope(); 3350 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable( 3351 (Kernel->getName() + "_exec_mode").str()); 3352 assert(ExecMode && "Kernel without exec mode?"); 3353 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!"); 3354 3355 // Set the global exec mode flag to indicate SPMD-Generic mode. 3356 assert(isa<ConstantInt>(ExecMode->getInitializer()) && 3357 "ExecMode is not an integer!"); 3358 const int8_t ExecModeVal = 3359 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue(); 3360 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) 3361 return true; 3362 3363 // We will now unconditionally modify the IR, indicate a change. 3364 Changed = ChangeStatus::CHANGED; 3365 3366 auto CreateGuardedRegion = [&](Instruction *RegionStartI, 3367 Instruction *RegionEndI) { 3368 LoopInfo *LI = nullptr; 3369 DominatorTree *DT = nullptr; 3370 MemorySSAUpdater *MSU = nullptr; 3371 using InsertPointTy = OpenMPIRBuilder::InsertPointTy; 3372 3373 BasicBlock *ParentBB = RegionStartI->getParent(); 3374 Function *Fn = ParentBB->getParent(); 3375 Module &M = *Fn->getParent(); 3376 3377 // Create all the blocks and logic. 3378 // ParentBB: 3379 // goto RegionCheckTidBB 3380 // RegionCheckTidBB: 3381 // Tid = __kmpc_hardware_thread_id() 3382 // if (Tid != 0) 3383 // goto RegionBarrierBB 3384 // RegionStartBB: 3385 // <execute instructions guarded> 3386 // goto RegionEndBB 3387 // RegionEndBB: 3388 // <store escaping values to shared mem> 3389 // goto RegionBarrierBB 3390 // RegionBarrierBB: 3391 // __kmpc_simple_barrier_spmd() 3392 // // second barrier is omitted if lacking escaping values. 3393 // <load escaping values from shared mem> 3394 // __kmpc_simple_barrier_spmd() 3395 // goto RegionExitBB 3396 // RegionExitBB: 3397 // <execute rest of instructions> 3398 3399 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(), 3400 DT, LI, MSU, "region.guarded.end"); 3401 BasicBlock *RegionBarrierBB = 3402 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI, 3403 MSU, "region.barrier"); 3404 BasicBlock *RegionExitBB = 3405 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(), 3406 DT, LI, MSU, "region.exit"); 3407 BasicBlock *RegionStartBB = 3408 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded"); 3409 3410 assert(ParentBB->getUniqueSuccessor() == RegionStartBB && 3411 "Expected a different CFG"); 3412 3413 BasicBlock *RegionCheckTidBB = SplitBlock( 3414 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid"); 3415 3416 // Register basic blocks with the Attributor. 3417 A.registerManifestAddedBasicBlock(*RegionEndBB); 3418 A.registerManifestAddedBasicBlock(*RegionBarrierBB); 3419 A.registerManifestAddedBasicBlock(*RegionExitBB); 3420 A.registerManifestAddedBasicBlock(*RegionStartBB); 3421 A.registerManifestAddedBasicBlock(*RegionCheckTidBB); 3422 3423 bool HasBroadcastValues = false; 3424 // Find escaping outputs from the guarded region to outside users and 3425 // broadcast their values to them. 3426 for (Instruction &I : *RegionStartBB) { 3427 SmallPtrSet<Instruction *, 4> OutsideUsers; 3428 for (User *Usr : I.users()) { 3429 Instruction &UsrI = *cast<Instruction>(Usr); 3430 if (UsrI.getParent() != RegionStartBB) 3431 OutsideUsers.insert(&UsrI); 3432 } 3433 3434 if (OutsideUsers.empty()) 3435 continue; 3436 3437 HasBroadcastValues = true; 3438 3439 // Emit a global variable in shared memory to store the broadcasted 3440 // value. 3441 auto *SharedMem = new GlobalVariable( 3442 M, I.getType(), /* IsConstant */ false, 3443 GlobalValue::InternalLinkage, UndefValue::get(I.getType()), 3444 sanitizeForGlobalName( 3445 (I.getName() + ".guarded.output.alloc").str()), 3446 nullptr, GlobalValue::NotThreadLocal, 3447 static_cast<unsigned>(AddressSpace::Shared)); 3448 3449 // Emit a store instruction to update the value. 3450 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator()); 3451 3452 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem, 3453 I.getName() + ".guarded.output.load", 3454 RegionBarrierBB->getTerminator()); 3455 3456 // Emit a load instruction and replace uses of the output value. 3457 for (Instruction *UsrI : OutsideUsers) 3458 UsrI->replaceUsesOfWith(&I, LoadI); 3459 } 3460 3461 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3462 3463 // Go to tid check BB in ParentBB. 3464 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); 3465 ParentBB->getTerminator()->eraseFromParent(); 3466 OpenMPIRBuilder::LocationDescription Loc( 3467 InsertPointTy(ParentBB, ParentBB->end()), DL); 3468 OMPInfoCache.OMPBuilder.updateToLocation(Loc); 3469 uint32_t SrcLocStrSize; 3470 auto *SrcLocStr = 3471 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3472 Value *Ident = 3473 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3474 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL); 3475 3476 // Add check for Tid in RegionCheckTidBB 3477 RegionCheckTidBB->getTerminator()->eraseFromParent(); 3478 OpenMPIRBuilder::LocationDescription LocRegionCheckTid( 3479 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); 3480 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid); 3481 FunctionCallee HardwareTidFn = 3482 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3483 M, OMPRTL___kmpc_get_hardware_thread_id_in_block); 3484 CallInst *Tid = 3485 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {}); 3486 Tid->setDebugLoc(DL); 3487 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid); 3488 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid); 3489 OMPInfoCache.OMPBuilder.Builder 3490 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB) 3491 ->setDebugLoc(DL); 3492 3493 // First barrier for synchronization, ensures main thread has updated 3494 // values. 3495 FunctionCallee BarrierFn = 3496 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3497 M, OMPRTL___kmpc_barrier_simple_spmd); 3498 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy( 3499 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); 3500 CallInst *Barrier = 3501 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid}); 3502 Barrier->setDebugLoc(DL); 3503 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3504 3505 // Second barrier ensures workers have read broadcast values. 3506 if (HasBroadcastValues) { 3507 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "", 3508 RegionBarrierBB->getTerminator()); 3509 Barrier->setDebugLoc(DL); 3510 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3511 } 3512 }; 3513 3514 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 3515 SmallPtrSet<BasicBlock *, 8> Visited; 3516 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3517 BasicBlock *BB = GuardedI->getParent(); 3518 if (!Visited.insert(BB).second) 3519 continue; 3520 3521 SmallVector<std::pair<Instruction *, Instruction *>> Reorders; 3522 Instruction *LastEffect = nullptr; 3523 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); 3524 while (++IP != IPEnd) { 3525 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) 3526 continue; 3527 Instruction *I = &*IP; 3528 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI)) 3529 continue; 3530 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) { 3531 LastEffect = nullptr; 3532 continue; 3533 } 3534 if (LastEffect) 3535 Reorders.push_back({I, LastEffect}); 3536 LastEffect = &*IP; 3537 } 3538 for (auto &Reorder : Reorders) 3539 Reorder.first->moveBefore(Reorder.second); 3540 } 3541 3542 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; 3543 3544 for (Instruction *GuardedI : SPMDCompatibilityTracker) { 3545 BasicBlock *BB = GuardedI->getParent(); 3546 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( 3547 IRPosition::function(*GuardedI->getFunction()), nullptr, 3548 DepClassTy::NONE); 3549 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo"); 3550 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA); 3551 // Continue if instruction is already guarded. 3552 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI)) 3553 continue; 3554 3555 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; 3556 for (Instruction &I : *BB) { 3557 // If instruction I needs to be guarded update the guarded region 3558 // bounds. 3559 if (SPMDCompatibilityTracker.contains(&I)) { 3560 CalleeAAFunction.getGuardedInstructions().insert(&I); 3561 if (GuardedRegionStart) 3562 GuardedRegionEnd = &I; 3563 else 3564 GuardedRegionStart = GuardedRegionEnd = &I; 3565 3566 continue; 3567 } 3568 3569 // Instruction I does not need guarding, store 3570 // any region found and reset bounds. 3571 if (GuardedRegionStart) { 3572 GuardedRegions.push_back( 3573 std::make_pair(GuardedRegionStart, GuardedRegionEnd)); 3574 GuardedRegionStart = nullptr; 3575 GuardedRegionEnd = nullptr; 3576 } 3577 } 3578 } 3579 3580 for (auto &GR : GuardedRegions) 3581 CreateGuardedRegion(GR.first, GR.second); 3582 3583 // Adjust the global exec mode flag that tells the runtime what mode this 3584 // kernel is executed in. 3585 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && 3586 "Initially non-SPMD kernel has SPMD exec mode!"); 3587 ExecMode->setInitializer( 3588 ConstantInt::get(ExecMode->getInitializer()->getType(), 3589 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); 3590 3591 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now. 3592 const int InitModeArgNo = 1; 3593 const int DeinitModeArgNo = 1; 3594 const int InitUseStateMachineArgNo = 2; 3595 const int InitRequiresFullRuntimeArgNo = 3; 3596 const int DeinitRequiresFullRuntimeArgNo = 2; 3597 3598 auto &Ctx = getAnchorValue().getContext(); 3599 A.changeUseAfterManifest( 3600 KernelInitCB->getArgOperandUse(InitModeArgNo), 3601 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3602 OMP_TGT_EXEC_MODE_SPMD)); 3603 A.changeUseAfterManifest( 3604 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), 3605 *ConstantInt::getBool(Ctx, false)); 3606 A.changeUseAfterManifest( 3607 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo), 3608 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx), 3609 OMP_TGT_EXEC_MODE_SPMD)); 3610 A.changeUseAfterManifest( 3611 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo), 3612 *ConstantInt::getBool(Ctx, false)); 3613 A.changeUseAfterManifest( 3614 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo), 3615 *ConstantInt::getBool(Ctx, false)); 3616 3617 ++NumOpenMPTargetRegionKernelsSPMD; 3618 3619 auto Remark = [&](OptimizationRemark OR) { 3620 return OR << "Transformed generic-mode kernel to SPMD-mode."; 3621 }; 3622 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark); 3623 return true; 3624 }; 3625 3626 ChangeStatus buildCustomStateMachine(Attributor &A) { 3627 // If we have disabled state machine rewrites, don't make a custom one 3628 if (DisableOpenMPOptStateMachineRewrite) 3629 return ChangeStatus::UNCHANGED; 3630 3631 // Don't rewrite the state machine if we are not in a valid state. 3632 if (!ReachedKnownParallelRegions.isValidState()) 3633 return ChangeStatus::UNCHANGED; 3634 3635 const int InitModeArgNo = 1; 3636 const int InitUseStateMachineArgNo = 2; 3637 3638 // Check if the current configuration is non-SPMD and generic state machine. 3639 // If we already have SPMD mode or a custom state machine we do not need to 3640 // go any further. If it is anything but a constant something is weird and 3641 // we give up. 3642 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>( 3643 KernelInitCB->getArgOperand(InitUseStateMachineArgNo)); 3644 ConstantInt *Mode = 3645 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo)); 3646 3647 // If we are stuck with generic mode, try to create a custom device (=GPU) 3648 // state machine which is specialized for the parallel regions that are 3649 // reachable by the kernel. 3650 if (!UseStateMachine || UseStateMachine->isZero() || !Mode || 3651 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) 3652 return ChangeStatus::UNCHANGED; 3653 3654 // If not SPMD mode, indicate we use a custom state machine now. 3655 auto &Ctx = getAnchorValue().getContext(); 3656 auto *FalseVal = ConstantInt::getBool(Ctx, false); 3657 A.changeUseAfterManifest( 3658 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal); 3659 3660 // If we don't actually need a state machine we are done here. This can 3661 // happen if there simply are no parallel regions. In the resulting kernel 3662 // all worker threads will simply exit right away, leaving the main thread 3663 // to do the work alone. 3664 if (!mayContainParallelRegion()) { 3665 ++NumOpenMPTargetRegionKernelsWithoutStateMachine; 3666 3667 auto Remark = [&](OptimizationRemark OR) { 3668 return OR << "Removing unused state machine from generic-mode kernel."; 3669 }; 3670 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark); 3671 3672 return ChangeStatus::CHANGED; 3673 } 3674 3675 // Keep track in the statistics of our new shiny custom state machine. 3676 if (ReachedUnknownParallelRegions.empty()) { 3677 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; 3678 3679 auto Remark = [&](OptimizationRemark OR) { 3680 return OR << "Rewriting generic-mode kernel with a customized state " 3681 "machine."; 3682 }; 3683 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark); 3684 } else { 3685 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; 3686 3687 auto Remark = [&](OptimizationRemarkAnalysis OR) { 3688 return OR << "Generic-mode kernel is executed with a customized state " 3689 "machine that requires a fallback."; 3690 }; 3691 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark); 3692 3693 // Tell the user why we ended up with a fallback. 3694 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { 3695 if (!UnknownParallelRegionCB) 3696 continue; 3697 auto Remark = [&](OptimizationRemarkAnalysis ORA) { 3698 return ORA << "Call may contain unknown parallel regions. Use " 3699 << "`__attribute__((assume(\"omp_no_parallelism\")))` to " 3700 "override."; 3701 }; 3702 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB, 3703 "OMP133", Remark); 3704 } 3705 } 3706 3707 // Create all the blocks: 3708 // 3709 // InitCB = __kmpc_target_init(...) 3710 // BlockHwSize = 3711 // __kmpc_get_hardware_num_threads_in_block(); 3712 // WarpSize = __kmpc_get_warp_size(); 3713 // BlockSize = BlockHwSize - WarpSize; 3714 // if (InitCB >= BlockSize) return; 3715 // IsWorkerCheckBB: bool IsWorker = InitCB >= 0; 3716 // if (IsWorker) { 3717 // SMBeginBB: __kmpc_barrier_simple_generic(...); 3718 // void *WorkFn; 3719 // bool Active = __kmpc_kernel_parallel(&WorkFn); 3720 // if (!WorkFn) return; 3721 // SMIsActiveCheckBB: if (Active) { 3722 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) 3723 // ParFn0(...); 3724 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) 3725 // ParFn1(...); 3726 // ... 3727 // SMIfCascadeCurrentBB: else 3728 // ((WorkFnTy*)WorkFn)(...); 3729 // SMEndParallelBB: __kmpc_kernel_end_parallel(...); 3730 // } 3731 // SMDoneBB: __kmpc_barrier_simple_generic(...); 3732 // goto SMBeginBB; 3733 // } 3734 // UserCodeEntryBB: // user code 3735 // __kmpc_target_deinit(...) 3736 // 3737 Function *Kernel = getAssociatedFunction(); 3738 assert(Kernel && "Expected an associated function!"); 3739 3740 BasicBlock *InitBB = KernelInitCB->getParent(); 3741 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( 3742 KernelInitCB->getNextNode(), "thread.user_code.check"); 3743 BasicBlock *IsWorkerCheckBB = 3744 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB); 3745 BasicBlock *StateMachineBeginBB = BasicBlock::Create( 3746 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB); 3747 BasicBlock *StateMachineFinishedBB = BasicBlock::Create( 3748 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB); 3749 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( 3750 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB); 3751 BasicBlock *StateMachineIfCascadeCurrentBB = 3752 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3753 Kernel, UserCodeEntryBB); 3754 BasicBlock *StateMachineEndParallelBB = 3755 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end", 3756 Kernel, UserCodeEntryBB); 3757 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( 3758 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB); 3759 A.registerManifestAddedBasicBlock(*InitBB); 3760 A.registerManifestAddedBasicBlock(*UserCodeEntryBB); 3761 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB); 3762 A.registerManifestAddedBasicBlock(*StateMachineBeginBB); 3763 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB); 3764 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB); 3765 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB); 3766 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB); 3767 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB); 3768 3769 const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); 3770 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc); 3771 InitBB->getTerminator()->eraseFromParent(); 3772 3773 Module &M = *Kernel->getParent(); 3774 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 3775 FunctionCallee BlockHwSizeFn = 3776 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3777 M, OMPRTL___kmpc_get_hardware_num_threads_in_block); 3778 FunctionCallee WarpSizeFn = 3779 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3780 M, OMPRTL___kmpc_get_warp_size); 3781 CallInst *BlockHwSize = 3782 CallInst::Create(BlockHwSizeFn, "block.hw_size", InitBB); 3783 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize); 3784 BlockHwSize->setDebugLoc(DLoc); 3785 CallInst *WarpSize = CallInst::Create(WarpSizeFn, "warp.size", InitBB); 3786 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize); 3787 WarpSize->setDebugLoc(DLoc); 3788 Instruction *BlockSize = 3789 BinaryOperator::CreateSub(BlockHwSize, WarpSize, "block.size", InitBB); 3790 BlockSize->setDebugLoc(DLoc); 3791 Instruction *IsMainOrWorker = 3792 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, 3793 BlockSize, "thread.is_main_or_worker", InitBB); 3794 IsMainOrWorker->setDebugLoc(DLoc); 3795 BranchInst::Create(IsWorkerCheckBB, StateMachineFinishedBB, IsMainOrWorker, 3796 InitBB); 3797 3798 Instruction *IsWorker = 3799 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB, 3800 ConstantInt::get(KernelInitCB->getType(), -1), 3801 "thread.is_worker", IsWorkerCheckBB); 3802 IsWorker->setDebugLoc(DLoc); 3803 BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, 3804 IsWorkerCheckBB); 3805 3806 // Create local storage for the work function pointer. 3807 const DataLayout &DL = M.getDataLayout(); 3808 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx); 3809 Instruction *WorkFnAI = 3810 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, 3811 "worker.work_fn.addr", &Kernel->getEntryBlock().front()); 3812 WorkFnAI->setDebugLoc(DLoc); 3813 3814 OMPInfoCache.OMPBuilder.updateToLocation( 3815 OpenMPIRBuilder::LocationDescription( 3816 IRBuilder<>::InsertPoint(StateMachineBeginBB, 3817 StateMachineBeginBB->end()), 3818 DLoc)); 3819 3820 Value *Ident = KernelInitCB->getArgOperand(0); 3821 Value *GTid = KernelInitCB; 3822 3823 FunctionCallee BarrierFn = 3824 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3825 M, OMPRTL___kmpc_barrier_simple_generic); 3826 CallInst *Barrier = 3827 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB); 3828 OMPInfoCache.setCallingConvention(BarrierFn, Barrier); 3829 Barrier->setDebugLoc(DLoc); 3830 3831 if (WorkFnAI->getType()->getPointerAddressSpace() != 3832 (unsigned int)AddressSpace::Generic) { 3833 WorkFnAI = new AddrSpaceCastInst( 3834 WorkFnAI, 3835 PointerType::getWithSamePointeeType( 3836 cast<PointerType>(WorkFnAI->getType()), 3837 (unsigned int)AddressSpace::Generic), 3838 WorkFnAI->getName() + ".generic", StateMachineBeginBB); 3839 WorkFnAI->setDebugLoc(DLoc); 3840 } 3841 3842 FunctionCallee KernelParallelFn = 3843 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3844 M, OMPRTL___kmpc_kernel_parallel); 3845 CallInst *IsActiveWorker = CallInst::Create( 3846 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB); 3847 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker); 3848 IsActiveWorker->setDebugLoc(DLoc); 3849 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn", 3850 StateMachineBeginBB); 3851 WorkFn->setDebugLoc(DLoc); 3852 3853 FunctionType *ParallelRegionFnTy = FunctionType::get( 3854 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)}, 3855 false); 3856 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 3857 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast", 3858 StateMachineBeginBB); 3859 3860 Instruction *IsDone = 3861 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, 3862 Constant::getNullValue(VoidPtrTy), "worker.is_done", 3863 StateMachineBeginBB); 3864 IsDone->setDebugLoc(DLoc); 3865 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB, 3866 IsDone, StateMachineBeginBB) 3867 ->setDebugLoc(DLoc); 3868 3869 BranchInst::Create(StateMachineIfCascadeCurrentBB, 3870 StateMachineDoneBarrierBB, IsActiveWorker, 3871 StateMachineIsActiveCheckBB) 3872 ->setDebugLoc(DLoc); 3873 3874 Value *ZeroArg = 3875 Constant::getNullValue(ParallelRegionFnTy->getParamType(0)); 3876 3877 // Now that we have most of the CFG skeleton it is time for the if-cascade 3878 // that checks the function pointer we got from the runtime against the 3879 // parallel regions we expect, if there are any. 3880 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { 3881 auto *ParallelRegion = ReachedKnownParallelRegions[I]; 3882 BasicBlock *PRExecuteBB = BasicBlock::Create( 3883 Ctx, "worker_state_machine.parallel_region.execute", Kernel, 3884 StateMachineEndParallelBB); 3885 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB) 3886 ->setDebugLoc(DLoc); 3887 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB) 3888 ->setDebugLoc(DLoc); 3889 3890 BasicBlock *PRNextBB = 3891 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check", 3892 Kernel, StateMachineEndParallelBB); 3893 3894 // Check if we need to compare the pointer at all or if we can just 3895 // call the parallel region function. 3896 Value *IsPR; 3897 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { 3898 Instruction *CmpI = ICmpInst::Create( 3899 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion, 3900 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB); 3901 CmpI->setDebugLoc(DLoc); 3902 IsPR = CmpI; 3903 } else { 3904 IsPR = ConstantInt::getTrue(Ctx); 3905 } 3906 3907 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR, 3908 StateMachineIfCascadeCurrentBB) 3909 ->setDebugLoc(DLoc); 3910 StateMachineIfCascadeCurrentBB = PRNextBB; 3911 } 3912 3913 // At the end of the if-cascade we place the indirect function pointer call 3914 // in case we might need it, that is if there can be parallel regions we 3915 // have not handled in the if-cascade above. 3916 if (!ReachedUnknownParallelRegions.empty()) { 3917 StateMachineIfCascadeCurrentBB->setName( 3918 "worker_state_machine.parallel_region.fallback.execute"); 3919 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "", 3920 StateMachineIfCascadeCurrentBB) 3921 ->setDebugLoc(DLoc); 3922 } 3923 BranchInst::Create(StateMachineEndParallelBB, 3924 StateMachineIfCascadeCurrentBB) 3925 ->setDebugLoc(DLoc); 3926 3927 FunctionCallee EndParallelFn = 3928 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( 3929 M, OMPRTL___kmpc_kernel_end_parallel); 3930 CallInst *EndParallel = 3931 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB); 3932 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel); 3933 EndParallel->setDebugLoc(DLoc); 3934 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB) 3935 ->setDebugLoc(DLoc); 3936 3937 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB) 3938 ->setDebugLoc(DLoc); 3939 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB) 3940 ->setDebugLoc(DLoc); 3941 3942 return ChangeStatus::CHANGED; 3943 } 3944 3945 /// Fixpoint iteration update function. Will be called every time a dependence 3946 /// changed its state (and in the beginning). 3947 ChangeStatus updateImpl(Attributor &A) override { 3948 KernelInfoState StateBefore = getState(); 3949 3950 // Callback to check a read/write instruction. 3951 auto CheckRWInst = [&](Instruction &I) { 3952 // We handle calls later. 3953 if (isa<CallBase>(I)) 3954 return true; 3955 // We only care about write effects. 3956 if (!I.mayWriteToMemory()) 3957 return true; 3958 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3959 SmallVector<const Value *> Objects; 3960 getUnderlyingObjects(SI->getPointerOperand(), Objects); 3961 if (llvm::all_of(Objects, 3962 [](const Value *Obj) { return isa<AllocaInst>(Obj); })) 3963 return true; 3964 // Check for AAHeapToStack moved objects which must not be guarded. 3965 auto &HS = A.getAAFor<AAHeapToStack>( 3966 *this, IRPosition::function(*I.getFunction()), 3967 DepClassTy::OPTIONAL); 3968 if (llvm::all_of(Objects, [&HS](const Value *Obj) { 3969 auto *CB = dyn_cast<CallBase>(Obj); 3970 if (!CB) 3971 return false; 3972 return HS.isAssumedHeapToStack(*CB); 3973 })) { 3974 return true; 3975 } 3976 } 3977 3978 // Insert instruction that needs guarding. 3979 SPMDCompatibilityTracker.insert(&I); 3980 return true; 3981 }; 3982 3983 bool UsedAssumedInformationInCheckRWInst = false; 3984 if (!SPMDCompatibilityTracker.isAtFixpoint()) 3985 if (!A.checkForAllReadWriteInstructions( 3986 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst)) 3987 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3988 3989 bool UsedAssumedInformationFromReachingKernels = false; 3990 if (!IsKernelEntry) { 3991 updateParallelLevels(A); 3992 3993 bool AllReachingKernelsKnown = true; 3994 updateReachingKernelEntries(A, AllReachingKernelsKnown); 3995 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; 3996 3997 if (!ParallelLevels.isValidState()) 3998 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 3999 else if (!ReachingKernelEntries.isValidState()) 4000 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4001 else if (!SPMDCompatibilityTracker.empty()) { 4002 // Check if all reaching kernels agree on the mode as we can otherwise 4003 // not guard instructions. We might not be sure about the mode so we 4004 // we cannot fix the internal spmd-zation state either. 4005 int SPMD = 0, Generic = 0; 4006 for (auto *Kernel : ReachingKernelEntries) { 4007 auto &CBAA = A.getAAFor<AAKernelInfo>( 4008 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL); 4009 if (CBAA.SPMDCompatibilityTracker.isValidState() && 4010 CBAA.SPMDCompatibilityTracker.isAssumed()) 4011 ++SPMD; 4012 else 4013 ++Generic; 4014 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint()) 4015 UsedAssumedInformationFromReachingKernels = true; 4016 } 4017 if (SPMD != 0 && Generic != 0) 4018 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4019 } 4020 } 4021 4022 // Callback to check a call instruction. 4023 bool AllParallelRegionStatesWereFixed = true; 4024 bool AllSPMDStatesWereFixed = true; 4025 auto CheckCallInst = [&](Instruction &I) { 4026 auto &CB = cast<CallBase>(I); 4027 auto &CBAA = A.getAAFor<AAKernelInfo>( 4028 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4029 getState() ^= CBAA.getState(); 4030 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint(); 4031 AllParallelRegionStatesWereFixed &= 4032 CBAA.ReachedKnownParallelRegions.isAtFixpoint(); 4033 AllParallelRegionStatesWereFixed &= 4034 CBAA.ReachedUnknownParallelRegions.isAtFixpoint(); 4035 return true; 4036 }; 4037 4038 bool UsedAssumedInformationInCheckCallInst = false; 4039 if (!A.checkForAllCallLikeInstructions( 4040 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) { 4041 LLVM_DEBUG(dbgs() << TAG 4042 << "Failed to visit all call-like instructions!\n";); 4043 return indicatePessimisticFixpoint(); 4044 } 4045 4046 // If we haven't used any assumed information for the reached parallel 4047 // region states we can fix it. 4048 if (!UsedAssumedInformationInCheckCallInst && 4049 AllParallelRegionStatesWereFixed) { 4050 ReachedKnownParallelRegions.indicateOptimisticFixpoint(); 4051 ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); 4052 } 4053 4054 // If we are sure there are no parallel regions in the kernel we do not 4055 // want SPMD mode. 4056 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() && 4057 ReachedKnownParallelRegions.isAtFixpoint() && 4058 ReachedUnknownParallelRegions.isValidState() && 4059 ReachedKnownParallelRegions.isValidState() && 4060 !mayContainParallelRegion()) 4061 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4062 4063 // If we haven't used any assumed information for the SPMD state we can fix 4064 // it. 4065 if (!UsedAssumedInformationInCheckRWInst && 4066 !UsedAssumedInformationInCheckCallInst && 4067 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) 4068 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4069 4070 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4071 : ChangeStatus::CHANGED; 4072 } 4073 4074 private: 4075 /// Update info regarding reaching kernels. 4076 void updateReachingKernelEntries(Attributor &A, 4077 bool &AllReachingKernelsKnown) { 4078 auto PredCallSite = [&](AbstractCallSite ACS) { 4079 Function *Caller = ACS.getInstruction()->getFunction(); 4080 4081 assert(Caller && "Caller is nullptr"); 4082 4083 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>( 4084 IRPosition::function(*Caller), this, DepClassTy::REQUIRED); 4085 if (CAA.ReachingKernelEntries.isValidState()) { 4086 ReachingKernelEntries ^= CAA.ReachingKernelEntries; 4087 return true; 4088 } 4089 4090 // We lost track of the caller of the associated function, any kernel 4091 // could reach now. 4092 ReachingKernelEntries.indicatePessimisticFixpoint(); 4093 4094 return true; 4095 }; 4096 4097 if (!A.checkForAllCallSites(PredCallSite, *this, 4098 true /* RequireAllCallSites */, 4099 AllReachingKernelsKnown)) 4100 ReachingKernelEntries.indicatePessimisticFixpoint(); 4101 } 4102 4103 /// Update info regarding parallel levels. 4104 void updateParallelLevels(Attributor &A) { 4105 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4106 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = 4107 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; 4108 4109 auto PredCallSite = [&](AbstractCallSite ACS) { 4110 Function *Caller = ACS.getInstruction()->getFunction(); 4111 4112 assert(Caller && "Caller is nullptr"); 4113 4114 auto &CAA = 4115 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller)); 4116 if (CAA.ParallelLevels.isValidState()) { 4117 // Any function that is called by `__kmpc_parallel_51` will not be 4118 // folded as the parallel level in the function is updated. In order to 4119 // get it right, all the analysis would depend on the implentation. That 4120 // said, if in the future any change to the implementation, the analysis 4121 // could be wrong. As a consequence, we are just conservative here. 4122 if (Caller == Parallel51RFI.Declaration) { 4123 ParallelLevels.indicatePessimisticFixpoint(); 4124 return true; 4125 } 4126 4127 ParallelLevels ^= CAA.ParallelLevels; 4128 4129 return true; 4130 } 4131 4132 // We lost track of the caller of the associated function, any kernel 4133 // could reach now. 4134 ParallelLevels.indicatePessimisticFixpoint(); 4135 4136 return true; 4137 }; 4138 4139 bool AllCallSitesKnown = true; 4140 if (!A.checkForAllCallSites(PredCallSite, *this, 4141 true /* RequireAllCallSites */, 4142 AllCallSitesKnown)) 4143 ParallelLevels.indicatePessimisticFixpoint(); 4144 } 4145 }; 4146 4147 /// The call site kernel info abstract attribute, basically, what can we say 4148 /// about a call site with regards to the KernelInfoState. For now this simply 4149 /// forwards the information from the callee. 4150 struct AAKernelInfoCallSite : AAKernelInfo { 4151 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) 4152 : AAKernelInfo(IRP, A) {} 4153 4154 /// See AbstractAttribute::initialize(...). 4155 void initialize(Attributor &A) override { 4156 AAKernelInfo::initialize(A); 4157 4158 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4159 Function *Callee = getAssociatedFunction(); 4160 4161 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>( 4162 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL); 4163 4164 // Check for SPMD-mode assumptions. 4165 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) { 4166 SPMDCompatibilityTracker.indicateOptimisticFixpoint(); 4167 indicateOptimisticFixpoint(); 4168 } 4169 4170 // First weed out calls we do not care about, that is readonly/readnone 4171 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a 4172 // parallel region or anything else we are looking for. 4173 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) { 4174 indicateOptimisticFixpoint(); 4175 return; 4176 } 4177 4178 // Next we check if we know the callee. If it is a known OpenMP function 4179 // we will handle them explicitly in the switch below. If it is not, we 4180 // will use an AAKernelInfo object on the callee to gather information and 4181 // merge that into the current state. The latter happens in the updateImpl. 4182 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4183 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4184 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4185 // Unknown caller or declarations are not analyzable, we give up. 4186 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) { 4187 4188 // Unknown callees might contain parallel regions, except if they have 4189 // an appropriate assumption attached. 4190 if (!(AssumptionAA.hasAssumption("omp_no_openmp") || 4191 AssumptionAA.hasAssumption("omp_no_parallelism"))) 4192 ReachedUnknownParallelRegions.insert(&CB); 4193 4194 // If SPMDCompatibilityTracker is not fixed, we need to give up on the 4195 // idea we can run something unknown in SPMD-mode. 4196 if (!SPMDCompatibilityTracker.isAtFixpoint()) { 4197 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4198 SPMDCompatibilityTracker.insert(&CB); 4199 } 4200 4201 // We have updated the state for this unknown call properly, there won't 4202 // be any change so we indicate a fixpoint. 4203 indicateOptimisticFixpoint(); 4204 } 4205 // If the callee is known and can be used in IPO, we will update the state 4206 // based on the callee state in updateImpl. 4207 return; 4208 } 4209 4210 const unsigned int WrapperFunctionArgNo = 6; 4211 RuntimeFunction RF = It->getSecond(); 4212 switch (RF) { 4213 // All the functions we know are compatible with SPMD mode. 4214 case OMPRTL___kmpc_is_spmd_exec_mode: 4215 case OMPRTL___kmpc_distribute_static_fini: 4216 case OMPRTL___kmpc_for_static_fini: 4217 case OMPRTL___kmpc_global_thread_num: 4218 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4219 case OMPRTL___kmpc_get_hardware_num_blocks: 4220 case OMPRTL___kmpc_single: 4221 case OMPRTL___kmpc_end_single: 4222 case OMPRTL___kmpc_master: 4223 case OMPRTL___kmpc_end_master: 4224 case OMPRTL___kmpc_barrier: 4225 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: 4226 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: 4227 case OMPRTL___kmpc_nvptx_end_reduce_nowait: 4228 break; 4229 case OMPRTL___kmpc_distribute_static_init_4: 4230 case OMPRTL___kmpc_distribute_static_init_4u: 4231 case OMPRTL___kmpc_distribute_static_init_8: 4232 case OMPRTL___kmpc_distribute_static_init_8u: 4233 case OMPRTL___kmpc_for_static_init_4: 4234 case OMPRTL___kmpc_for_static_init_4u: 4235 case OMPRTL___kmpc_for_static_init_8: 4236 case OMPRTL___kmpc_for_static_init_8u: { 4237 // Check the schedule and allow static schedule in SPMD mode. 4238 unsigned ScheduleArgOpNo = 2; 4239 auto *ScheduleTypeCI = 4240 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo)); 4241 unsigned ScheduleTypeVal = 4242 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; 4243 switch (OMPScheduleType(ScheduleTypeVal)) { 4244 case OMPScheduleType::Static: 4245 case OMPScheduleType::StaticChunked: 4246 case OMPScheduleType::Distribute: 4247 case OMPScheduleType::DistributeChunked: 4248 break; 4249 default: 4250 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4251 SPMDCompatibilityTracker.insert(&CB); 4252 break; 4253 }; 4254 } break; 4255 case OMPRTL___kmpc_target_init: 4256 KernelInitCB = &CB; 4257 break; 4258 case OMPRTL___kmpc_target_deinit: 4259 KernelDeinitCB = &CB; 4260 break; 4261 case OMPRTL___kmpc_parallel_51: 4262 if (auto *ParallelRegion = dyn_cast<Function>( 4263 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) { 4264 ReachedKnownParallelRegions.insert(ParallelRegion); 4265 break; 4266 } 4267 // The condition above should usually get the parallel region function 4268 // pointer and record it. In the off chance it doesn't we assume the 4269 // worst. 4270 ReachedUnknownParallelRegions.insert(&CB); 4271 break; 4272 case OMPRTL___kmpc_omp_task: 4273 // We do not look into tasks right now, just give up. 4274 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4275 SPMDCompatibilityTracker.insert(&CB); 4276 ReachedUnknownParallelRegions.insert(&CB); 4277 break; 4278 case OMPRTL___kmpc_alloc_shared: 4279 case OMPRTL___kmpc_free_shared: 4280 // Return without setting a fixpoint, to be resolved in updateImpl. 4281 return; 4282 default: 4283 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, 4284 // generally. However, they do not hide parallel regions. 4285 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4286 SPMDCompatibilityTracker.insert(&CB); 4287 break; 4288 } 4289 // All other OpenMP runtime calls will not reach parallel regions so they 4290 // can be safely ignored for now. Since it is a known OpenMP runtime call we 4291 // have now modeled all effects and there is no need for any update. 4292 indicateOptimisticFixpoint(); 4293 } 4294 4295 ChangeStatus updateImpl(Attributor &A) override { 4296 // TODO: Once we have call site specific value information we can provide 4297 // call site specific liveness information and then it makes 4298 // sense to specialize attributes for call sites arguments instead of 4299 // redirecting requests to the callee argument. 4300 Function *F = getAssociatedFunction(); 4301 4302 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4303 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F); 4304 4305 // If F is not a runtime function, propagate the AAKernelInfo of the callee. 4306 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { 4307 const IRPosition &FnPos = IRPosition::function(*F); 4308 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED); 4309 if (getState() == FnAA.getState()) 4310 return ChangeStatus::UNCHANGED; 4311 getState() = FnAA.getState(); 4312 return ChangeStatus::CHANGED; 4313 } 4314 4315 // F is a runtime function that allocates or frees memory, check 4316 // AAHeapToStack and AAHeapToShared. 4317 KernelInfoState StateBefore = getState(); 4318 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared || 4319 It->getSecond() == OMPRTL___kmpc_free_shared) && 4320 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call"); 4321 4322 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4323 4324 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>( 4325 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4326 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>( 4327 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL); 4328 4329 RuntimeFunction RF = It->getSecond(); 4330 4331 switch (RF) { 4332 // If neither HeapToStack nor HeapToShared assume the call is removed, 4333 // assume SPMD incompatibility. 4334 case OMPRTL___kmpc_alloc_shared: 4335 if (!HeapToStackAA.isAssumedHeapToStack(CB) && 4336 !HeapToSharedAA.isAssumedHeapToShared(CB)) 4337 SPMDCompatibilityTracker.insert(&CB); 4338 break; 4339 case OMPRTL___kmpc_free_shared: 4340 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) && 4341 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB)) 4342 SPMDCompatibilityTracker.insert(&CB); 4343 break; 4344 default: 4345 SPMDCompatibilityTracker.indicatePessimisticFixpoint(); 4346 SPMDCompatibilityTracker.insert(&CB); 4347 } 4348 4349 return StateBefore == getState() ? ChangeStatus::UNCHANGED 4350 : ChangeStatus::CHANGED; 4351 } 4352 }; 4353 4354 struct AAFoldRuntimeCall 4355 : public StateWrapper<BooleanState, AbstractAttribute> { 4356 using Base = StateWrapper<BooleanState, AbstractAttribute>; 4357 4358 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} 4359 4360 /// Statistics are tracked as part of manifest for now. 4361 void trackStatistics() const override {} 4362 4363 /// Create an abstract attribute biew for the position \p IRP. 4364 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, 4365 Attributor &A); 4366 4367 /// See AbstractAttribute::getName() 4368 const std::string getName() const override { return "AAFoldRuntimeCall"; } 4369 4370 /// See AbstractAttribute::getIdAddr() 4371 const char *getIdAddr() const override { return &ID; } 4372 4373 /// This function should return true if the type of the \p AA is 4374 /// AAFoldRuntimeCall 4375 static bool classof(const AbstractAttribute *AA) { 4376 return (AA->getIdAddr() == &ID); 4377 } 4378 4379 static const char ID; 4380 }; 4381 4382 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { 4383 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) 4384 : AAFoldRuntimeCall(IRP, A) {} 4385 4386 /// See AbstractAttribute::getAsStr() 4387 const std::string getAsStr() const override { 4388 if (!isValidState()) 4389 return "<invalid>"; 4390 4391 std::string Str("simplified value: "); 4392 4393 if (!SimplifiedValue.hasValue()) 4394 return Str + std::string("none"); 4395 4396 if (!SimplifiedValue.getValue()) 4397 return Str + std::string("nullptr"); 4398 4399 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue())) 4400 return Str + std::to_string(CI->getSExtValue()); 4401 4402 return Str + std::string("unknown"); 4403 } 4404 4405 void initialize(Attributor &A) override { 4406 if (DisableOpenMPOptFolding) 4407 indicatePessimisticFixpoint(); 4408 4409 Function *Callee = getAssociatedFunction(); 4410 4411 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); 4412 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee); 4413 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && 4414 "Expected a known OpenMP runtime function"); 4415 4416 RFKind = It->getSecond(); 4417 4418 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4419 A.registerSimplificationCallback( 4420 IRPosition::callsite_returned(CB), 4421 [&](const IRPosition &IRP, const AbstractAttribute *AA, 4422 bool &UsedAssumedInformation) -> Optional<Value *> { 4423 assert((isValidState() || (SimplifiedValue.hasValue() && 4424 SimplifiedValue.getValue() == nullptr)) && 4425 "Unexpected invalid state!"); 4426 4427 if (!isAtFixpoint()) { 4428 UsedAssumedInformation = true; 4429 if (AA) 4430 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL); 4431 } 4432 return SimplifiedValue; 4433 }); 4434 } 4435 4436 ChangeStatus updateImpl(Attributor &A) override { 4437 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4438 switch (RFKind) { 4439 case OMPRTL___kmpc_is_spmd_exec_mode: 4440 Changed |= foldIsSPMDExecMode(A); 4441 break; 4442 case OMPRTL___kmpc_is_generic_main_thread_id: 4443 Changed |= foldIsGenericMainThread(A); 4444 break; 4445 case OMPRTL___kmpc_parallel_level: 4446 Changed |= foldParallelLevel(A); 4447 break; 4448 case OMPRTL___kmpc_get_hardware_num_threads_in_block: 4449 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit"); 4450 break; 4451 case OMPRTL___kmpc_get_hardware_num_blocks: 4452 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams"); 4453 break; 4454 default: 4455 llvm_unreachable("Unhandled OpenMP runtime function!"); 4456 } 4457 4458 return Changed; 4459 } 4460 4461 ChangeStatus manifest(Attributor &A) override { 4462 ChangeStatus Changed = ChangeStatus::UNCHANGED; 4463 4464 if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) { 4465 Instruction &I = *getCtxI(); 4466 A.changeValueAfterManifest(I, **SimplifiedValue); 4467 A.deleteAfterManifest(I); 4468 4469 CallBase *CB = dyn_cast<CallBase>(&I); 4470 auto Remark = [&](OptimizationRemark OR) { 4471 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue)) 4472 return OR << "Replacing OpenMP runtime call " 4473 << CB->getCalledFunction()->getName() << " with " 4474 << ore::NV("FoldedValue", C->getZExtValue()) << "."; 4475 return OR << "Replacing OpenMP runtime call " 4476 << CB->getCalledFunction()->getName() << "."; 4477 }; 4478 4479 if (CB && EnableVerboseRemarks) 4480 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark); 4481 4482 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " 4483 << **SimplifiedValue << "\n"); 4484 4485 Changed = ChangeStatus::CHANGED; 4486 } 4487 4488 return Changed; 4489 } 4490 4491 ChangeStatus indicatePessimisticFixpoint() override { 4492 SimplifiedValue = nullptr; 4493 return AAFoldRuntimeCall::indicatePessimisticFixpoint(); 4494 } 4495 4496 private: 4497 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. 4498 ChangeStatus foldIsSPMDExecMode(Attributor &A) { 4499 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4500 4501 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4502 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4503 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4504 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4505 4506 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4507 return indicatePessimisticFixpoint(); 4508 4509 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4510 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4511 DepClassTy::REQUIRED); 4512 4513 if (!AA.isValidState()) { 4514 SimplifiedValue = nullptr; 4515 return indicatePessimisticFixpoint(); 4516 } 4517 4518 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4519 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4520 ++KnownSPMDCount; 4521 else 4522 ++AssumedSPMDCount; 4523 } else { 4524 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4525 ++KnownNonSPMDCount; 4526 else 4527 ++AssumedNonSPMDCount; 4528 } 4529 } 4530 4531 if ((AssumedSPMDCount + KnownSPMDCount) && 4532 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4533 return indicatePessimisticFixpoint(); 4534 4535 auto &Ctx = getAnchorValue().getContext(); 4536 if (KnownSPMDCount || AssumedSPMDCount) { 4537 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4538 "Expected only SPMD kernels!"); 4539 // All reaching kernels are in SPMD mode. Update all function calls to 4540 // __kmpc_is_spmd_exec_mode to 1. 4541 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4542 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { 4543 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4544 "Expected only non-SPMD kernels!"); 4545 // All reaching kernels are in non-SPMD mode. Update all function 4546 // calls to __kmpc_is_spmd_exec_mode to 0. 4547 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false); 4548 } else { 4549 // We have empty reaching kernels, therefore we cannot tell if the 4550 // associated call site can be folded. At this moment, SimplifiedValue 4551 // must be none. 4552 assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none"); 4553 } 4554 4555 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4556 : ChangeStatus::CHANGED; 4557 } 4558 4559 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible. 4560 ChangeStatus foldIsGenericMainThread(Attributor &A) { 4561 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4562 4563 CallBase &CB = cast<CallBase>(getAssociatedValue()); 4564 Function *F = CB.getFunction(); 4565 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>( 4566 *this, IRPosition::function(*F), DepClassTy::REQUIRED); 4567 4568 if (!ExecutionDomainAA.isValidState()) 4569 return indicatePessimisticFixpoint(); 4570 4571 auto &Ctx = getAnchorValue().getContext(); 4572 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB)) 4573 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true); 4574 else 4575 return indicatePessimisticFixpoint(); 4576 4577 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4578 : ChangeStatus::CHANGED; 4579 } 4580 4581 /// Fold __kmpc_parallel_level into a constant if possible. 4582 ChangeStatus foldParallelLevel(Attributor &A) { 4583 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4584 4585 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4586 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4587 4588 if (!CallerKernelInfoAA.ParallelLevels.isValidState()) 4589 return indicatePessimisticFixpoint(); 4590 4591 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4592 return indicatePessimisticFixpoint(); 4593 4594 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) { 4595 assert(!SimplifiedValue.hasValue() && 4596 "SimplifiedValue should keep none at this point"); 4597 return ChangeStatus::UNCHANGED; 4598 } 4599 4600 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; 4601 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; 4602 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4603 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K), 4604 DepClassTy::REQUIRED); 4605 if (!AA.SPMDCompatibilityTracker.isValidState()) 4606 return indicatePessimisticFixpoint(); 4607 4608 if (AA.SPMDCompatibilityTracker.isAssumed()) { 4609 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4610 ++KnownSPMDCount; 4611 else 4612 ++AssumedSPMDCount; 4613 } else { 4614 if (AA.SPMDCompatibilityTracker.isAtFixpoint()) 4615 ++KnownNonSPMDCount; 4616 else 4617 ++AssumedNonSPMDCount; 4618 } 4619 } 4620 4621 if ((AssumedSPMDCount + KnownSPMDCount) && 4622 (AssumedNonSPMDCount + KnownNonSPMDCount)) 4623 return indicatePessimisticFixpoint(); 4624 4625 auto &Ctx = getAnchorValue().getContext(); 4626 // If the caller can only be reached by SPMD kernel entries, the parallel 4627 // level is 1. Similarly, if the caller can only be reached by non-SPMD 4628 // kernel entries, it is 0. 4629 if (AssumedSPMDCount || KnownSPMDCount) { 4630 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && 4631 "Expected only SPMD kernels!"); 4632 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); 4633 } else { 4634 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && 4635 "Expected only non-SPMD kernels!"); 4636 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0); 4637 } 4638 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4639 : ChangeStatus::CHANGED; 4640 } 4641 4642 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { 4643 // Specialize only if all the calls agree with the attribute constant value 4644 int32_t CurrentAttrValue = -1; 4645 Optional<Value *> SimplifiedValueBefore = SimplifiedValue; 4646 4647 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( 4648 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED); 4649 4650 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState()) 4651 return indicatePessimisticFixpoint(); 4652 4653 // Iterate over the kernels that reach this function 4654 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) { 4655 int32_t NextAttrVal = -1; 4656 if (K->hasFnAttribute(Attr)) 4657 NextAttrVal = 4658 std::stoi(K->getFnAttribute(Attr).getValueAsString().str()); 4659 4660 if (NextAttrVal == -1 || 4661 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) 4662 return indicatePessimisticFixpoint(); 4663 CurrentAttrValue = NextAttrVal; 4664 } 4665 4666 if (CurrentAttrValue != -1) { 4667 auto &Ctx = getAnchorValue().getContext(); 4668 SimplifiedValue = 4669 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue); 4670 } 4671 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED 4672 : ChangeStatus::CHANGED; 4673 } 4674 4675 /// An optional value the associated value is assumed to fold to. That is, we 4676 /// assume the associated value (which is a call) can be replaced by this 4677 /// simplified value. 4678 Optional<Value *> SimplifiedValue; 4679 4680 /// The runtime function kind of the callee of the associated call site. 4681 RuntimeFunction RFKind; 4682 }; 4683 4684 } // namespace 4685 4686 /// Register folding callsite 4687 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { 4688 auto &RFI = OMPInfoCache.RFIs[RF]; 4689 RFI.foreachUse(SCC, [&](Use &U, Function &F) { 4690 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI); 4691 if (!CI) 4692 return false; 4693 A.getOrCreateAAFor<AAFoldRuntimeCall>( 4694 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr, 4695 DepClassTy::NONE, /* ForceUpdate */ false, 4696 /* UpdateAfterInit */ false); 4697 return false; 4698 }); 4699 } 4700 4701 void OpenMPOpt::registerAAs(bool IsModulePass) { 4702 if (SCC.empty()) 4703 4704 return; 4705 if (IsModulePass) { 4706 // Ensure we create the AAKernelInfo AAs first and without triggering an 4707 // update. This will make sure we register all value simplification 4708 // callbacks before any other AA has the chance to create an AAValueSimplify 4709 // or similar. 4710 for (Function *Kernel : OMPInfoCache.Kernels) 4711 A.getOrCreateAAFor<AAKernelInfo>( 4712 IRPosition::function(*Kernel), /* QueryingAA */ nullptr, 4713 DepClassTy::NONE, /* ForceUpdate */ false, 4714 /* UpdateAfterInit */ false); 4715 4716 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id); 4717 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode); 4718 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level); 4719 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block); 4720 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks); 4721 } 4722 4723 // Create CallSite AA for all Getters. 4724 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { 4725 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; 4726 4727 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; 4728 4729 auto CreateAA = [&](Use &U, Function &Caller) { 4730 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); 4731 if (!CI) 4732 return false; 4733 4734 auto &CB = cast<CallBase>(*CI); 4735 4736 IRPosition CBPos = IRPosition::callsite_function(CB); 4737 A.getOrCreateAAFor<AAICVTracker>(CBPos); 4738 return false; 4739 }; 4740 4741 GetterRFI.foreachUse(SCC, CreateAA); 4742 } 4743 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; 4744 auto CreateAA = [&](Use &U, Function &F) { 4745 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F)); 4746 return false; 4747 }; 4748 if (!DisableOpenMPOptDeglobalization) 4749 GlobalizationRFI.foreachUse(SCC, CreateAA); 4750 4751 // Create an ExecutionDomain AA for every function and a HeapToStack AA for 4752 // every function if there is a device kernel. 4753 if (!isOpenMPDevice(M)) 4754 return; 4755 4756 for (auto *F : SCC) { 4757 if (F->isDeclaration()) 4758 continue; 4759 4760 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F)); 4761 if (!DisableOpenMPOptDeglobalization) 4762 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F)); 4763 4764 for (auto &I : instructions(*F)) { 4765 if (auto *LI = dyn_cast<LoadInst>(&I)) { 4766 bool UsedAssumedInformation = false; 4767 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr, 4768 UsedAssumedInformation); 4769 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 4770 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI)); 4771 } 4772 } 4773 } 4774 } 4775 4776 const char AAICVTracker::ID = 0; 4777 const char AAKernelInfo::ID = 0; 4778 const char AAExecutionDomain::ID = 0; 4779 const char AAHeapToShared::ID = 0; 4780 const char AAFoldRuntimeCall::ID = 0; 4781 4782 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, 4783 Attributor &A) { 4784 AAICVTracker *AA = nullptr; 4785 switch (IRP.getPositionKind()) { 4786 case IRPosition::IRP_INVALID: 4787 case IRPosition::IRP_FLOAT: 4788 case IRPosition::IRP_ARGUMENT: 4789 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4790 llvm_unreachable("ICVTracker can only be created for function position!"); 4791 case IRPosition::IRP_RETURNED: 4792 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); 4793 break; 4794 case IRPosition::IRP_CALL_SITE_RETURNED: 4795 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); 4796 break; 4797 case IRPosition::IRP_CALL_SITE: 4798 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); 4799 break; 4800 case IRPosition::IRP_FUNCTION: 4801 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); 4802 break; 4803 } 4804 4805 return *AA; 4806 } 4807 4808 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, 4809 Attributor &A) { 4810 AAExecutionDomainFunction *AA = nullptr; 4811 switch (IRP.getPositionKind()) { 4812 case IRPosition::IRP_INVALID: 4813 case IRPosition::IRP_FLOAT: 4814 case IRPosition::IRP_ARGUMENT: 4815 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4816 case IRPosition::IRP_RETURNED: 4817 case IRPosition::IRP_CALL_SITE_RETURNED: 4818 case IRPosition::IRP_CALL_SITE: 4819 llvm_unreachable( 4820 "AAExecutionDomain can only be created for function position!"); 4821 case IRPosition::IRP_FUNCTION: 4822 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); 4823 break; 4824 } 4825 4826 return *AA; 4827 } 4828 4829 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, 4830 Attributor &A) { 4831 AAHeapToSharedFunction *AA = nullptr; 4832 switch (IRP.getPositionKind()) { 4833 case IRPosition::IRP_INVALID: 4834 case IRPosition::IRP_FLOAT: 4835 case IRPosition::IRP_ARGUMENT: 4836 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4837 case IRPosition::IRP_RETURNED: 4838 case IRPosition::IRP_CALL_SITE_RETURNED: 4839 case IRPosition::IRP_CALL_SITE: 4840 llvm_unreachable( 4841 "AAHeapToShared can only be created for function position!"); 4842 case IRPosition::IRP_FUNCTION: 4843 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); 4844 break; 4845 } 4846 4847 return *AA; 4848 } 4849 4850 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, 4851 Attributor &A) { 4852 AAKernelInfo *AA = nullptr; 4853 switch (IRP.getPositionKind()) { 4854 case IRPosition::IRP_INVALID: 4855 case IRPosition::IRP_FLOAT: 4856 case IRPosition::IRP_ARGUMENT: 4857 case IRPosition::IRP_RETURNED: 4858 case IRPosition::IRP_CALL_SITE_RETURNED: 4859 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4860 llvm_unreachable("KernelInfo can only be created for function position!"); 4861 case IRPosition::IRP_CALL_SITE: 4862 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); 4863 break; 4864 case IRPosition::IRP_FUNCTION: 4865 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); 4866 break; 4867 } 4868 4869 return *AA; 4870 } 4871 4872 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, 4873 Attributor &A) { 4874 AAFoldRuntimeCall *AA = nullptr; 4875 switch (IRP.getPositionKind()) { 4876 case IRPosition::IRP_INVALID: 4877 case IRPosition::IRP_FLOAT: 4878 case IRPosition::IRP_ARGUMENT: 4879 case IRPosition::IRP_RETURNED: 4880 case IRPosition::IRP_FUNCTION: 4881 case IRPosition::IRP_CALL_SITE: 4882 case IRPosition::IRP_CALL_SITE_ARGUMENT: 4883 llvm_unreachable("KernelInfo can only be created for call site position!"); 4884 case IRPosition::IRP_CALL_SITE_RETURNED: 4885 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); 4886 break; 4887 } 4888 4889 return *AA; 4890 } 4891 4892 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { 4893 if (!containsOpenMP(M)) 4894 return PreservedAnalyses::all(); 4895 if (DisableOpenMPOptimizations) 4896 return PreservedAnalyses::all(); 4897 4898 FunctionAnalysisManager &FAM = 4899 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 4900 KernelSet Kernels = getDeviceKernels(M); 4901 4902 auto IsCalled = [&](Function &F) { 4903 if (Kernels.contains(&F)) 4904 return true; 4905 for (const User *U : F.users()) 4906 if (!isa<BlockAddress>(U)) 4907 return true; 4908 return false; 4909 }; 4910 4911 auto EmitRemark = [&](Function &F) { 4912 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4913 ORE.emit([&]() { 4914 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F); 4915 return ORA << "Could not internalize function. " 4916 << "Some optimizations may not be possible. [OMP140]"; 4917 }); 4918 }; 4919 4920 // Create internal copies of each function if this is a kernel Module. This 4921 // allows iterprocedural passes to see every call edge. 4922 DenseMap<Function *, Function *> InternalizedMap; 4923 if (isOpenMPDevice(M)) { 4924 SmallPtrSet<Function *, 16> InternalizeFns; 4925 for (Function &F : M) 4926 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) && 4927 !DisableInternalization) { 4928 if (Attributor::isInternalizable(F)) { 4929 InternalizeFns.insert(&F); 4930 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) { 4931 EmitRemark(F); 4932 } 4933 } 4934 4935 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap); 4936 } 4937 4938 // Look at every function in the Module unless it was internalized. 4939 SmallVector<Function *, 16> SCC; 4940 for (Function &F : M) 4941 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) 4942 SCC.push_back(&F); 4943 4944 if (SCC.empty()) 4945 return PreservedAnalyses::all(); 4946 4947 AnalysisGetter AG(FAM); 4948 4949 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 4950 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 4951 }; 4952 4953 BumpPtrAllocator Allocator; 4954 CallGraphUpdater CGUpdater; 4955 4956 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 4957 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels); 4958 4959 unsigned MaxFixpointIterations = 4960 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 4961 Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false, 4962 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 4963 4964 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 4965 bool Changed = OMPOpt.run(true); 4966 4967 // Optionally inline device functions for potentially better performance. 4968 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) 4969 for (Function &F : M) 4970 if (!F.isDeclaration() && !Kernels.contains(&F) && 4971 !F.hasFnAttribute(Attribute::NoInline)) 4972 F.addFnAttr(Attribute::AlwaysInline); 4973 4974 if (PrintModuleAfterOptimizations) 4975 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); 4976 4977 if (Changed) 4978 return PreservedAnalyses::none(); 4979 4980 return PreservedAnalyses::all(); 4981 } 4982 4983 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, 4984 CGSCCAnalysisManager &AM, 4985 LazyCallGraph &CG, 4986 CGSCCUpdateResult &UR) { 4987 if (!containsOpenMP(*C.begin()->getFunction().getParent())) 4988 return PreservedAnalyses::all(); 4989 if (DisableOpenMPOptimizations) 4990 return PreservedAnalyses::all(); 4991 4992 SmallVector<Function *, 16> SCC; 4993 // If there are kernels in the module, we have to run on all SCC's. 4994 for (LazyCallGraph::Node &N : C) { 4995 Function *Fn = &N.getFunction(); 4996 SCC.push_back(Fn); 4997 } 4998 4999 if (SCC.empty()) 5000 return PreservedAnalyses::all(); 5001 5002 Module &M = *C.begin()->getFunction().getParent(); 5003 5004 KernelSet Kernels = getDeviceKernels(M); 5005 5006 FunctionAnalysisManager &FAM = 5007 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 5008 5009 AnalysisGetter AG(FAM); 5010 5011 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { 5012 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 5013 }; 5014 5015 BumpPtrAllocator Allocator; 5016 CallGraphUpdater CGUpdater; 5017 CGUpdater.initialize(CG, C, AM, UR); 5018 5019 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5020 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, 5021 /*CGSCC*/ Functions, Kernels); 5022 5023 unsigned MaxFixpointIterations = 5024 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5025 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5026 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5027 5028 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5029 bool Changed = OMPOpt.run(false); 5030 5031 if (PrintModuleAfterOptimizations) 5032 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5033 5034 if (Changed) 5035 return PreservedAnalyses::none(); 5036 5037 return PreservedAnalyses::all(); 5038 } 5039 5040 namespace { 5041 5042 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass { 5043 CallGraphUpdater CGUpdater; 5044 static char ID; 5045 5046 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) { 5047 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); 5048 } 5049 5050 void getAnalysisUsage(AnalysisUsage &AU) const override { 5051 CallGraphSCCPass::getAnalysisUsage(AU); 5052 } 5053 5054 bool runOnSCC(CallGraphSCC &CGSCC) override { 5055 if (!containsOpenMP(CGSCC.getCallGraph().getModule())) 5056 return false; 5057 if (DisableOpenMPOptimizations || skipSCC(CGSCC)) 5058 return false; 5059 5060 SmallVector<Function *, 16> SCC; 5061 // If there are kernels in the module, we have to run on all SCC's. 5062 for (CallGraphNode *CGN : CGSCC) { 5063 Function *Fn = CGN->getFunction(); 5064 if (!Fn || Fn->isDeclaration()) 5065 continue; 5066 SCC.push_back(Fn); 5067 } 5068 5069 if (SCC.empty()) 5070 return false; 5071 5072 Module &M = CGSCC.getCallGraph().getModule(); 5073 KernelSet Kernels = getDeviceKernels(M); 5074 5075 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 5076 CGUpdater.initialize(CG, CGSCC); 5077 5078 // Maintain a map of functions to avoid rebuilding the ORE 5079 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap; 5080 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { 5081 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F]; 5082 if (!ORE) 5083 ORE = std::make_unique<OptimizationRemarkEmitter>(F); 5084 return *ORE; 5085 }; 5086 5087 AnalysisGetter AG; 5088 SetVector<Function *> Functions(SCC.begin(), SCC.end()); 5089 BumpPtrAllocator Allocator; 5090 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, 5091 Allocator, 5092 /*CGSCC*/ Functions, Kernels); 5093 5094 unsigned MaxFixpointIterations = 5095 (isOpenMPDevice(M)) ? SetFixpointIterations : 32; 5096 Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true, 5097 MaxFixpointIterations, OREGetter, DEBUG_TYPE); 5098 5099 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); 5100 bool Result = OMPOpt.run(false); 5101 5102 if (PrintModuleAfterOptimizations) 5103 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); 5104 5105 return Result; 5106 } 5107 5108 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } 5109 }; 5110 5111 } // end anonymous namespace 5112 5113 KernelSet llvm::omp::getDeviceKernels(Module &M) { 5114 // TODO: Create a more cross-platform way of determining device kernels. 5115 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5116 KernelSet Kernels; 5117 5118 if (!MD) 5119 return Kernels; 5120 5121 for (auto *Op : MD->operands()) { 5122 if (Op->getNumOperands() < 2) 5123 continue; 5124 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1)); 5125 if (!KindID || KindID->getString() != "kernel") 5126 continue; 5127 5128 Function *KernelFn = 5129 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0)); 5130 if (!KernelFn) 5131 continue; 5132 5133 ++NumOpenMPTargetRegionKernels; 5134 5135 Kernels.insert(KernelFn); 5136 } 5137 5138 return Kernels; 5139 } 5140 5141 bool llvm::omp::containsOpenMP(Module &M) { 5142 Metadata *MD = M.getModuleFlag("openmp"); 5143 if (!MD) 5144 return false; 5145 5146 return true; 5147 } 5148 5149 bool llvm::omp::isOpenMPDevice(Module &M) { 5150 Metadata *MD = M.getModuleFlag("openmp-device"); 5151 if (!MD) 5152 return false; 5153 5154 return true; 5155 } 5156 5157 char OpenMPOptCGSCCLegacyPass::ID = 0; 5158 5159 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5160 "OpenMP specific optimizations", false, false) 5161 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 5162 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc", 5163 "OpenMP specific optimizations", false, false) 5164 5165 Pass *llvm::createOpenMPOptCGSCCLegacyPass() { 5166 return new OpenMPOptCGSCCLegacyPass(); 5167 } 5168