xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/Inliner.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/InlineOrder.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ReplayInlineAdvisor.h"
39 #include "llvm/Analysis/TargetLibraryInfo.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
64 #include "llvm/Transforms/Utils/Cloning.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/ModuleUtils.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <functional>
70 #include <sstream>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "inline"
78 
79 STATISTIC(NumInlined, "Number of functions inlined");
80 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
81 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
82 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
83 
84 /// Flag to disable manual alloca merging.
85 ///
86 /// Merging of allocas was originally done as a stack-size saving technique
87 /// prior to LLVM's code generator having support for stack coloring based on
88 /// lifetime markers. It is now in the process of being removed. To experiment
89 /// with disabling it and relying fully on lifetime marker based stack
90 /// coloring, you can pass this flag to LLVM.
91 static cl::opt<bool>
92     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
93                                 cl::init(false), cl::Hidden);
94 
95 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
96 
97 static cl::opt<std::string> CGSCCInlineReplayFile(
98     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
99     cl::desc(
100         "Optimization remarks file containing inline remarks to be replayed "
101         "by cgscc inlining."),
102     cl::Hidden);
103 
104 static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
105     "cgscc-inline-replay-scope",
106     cl::init(ReplayInlinerSettings::Scope::Function),
107     cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
108                           "Replay on functions that have remarks associated "
109                           "with them (default)"),
110                clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
111                           "Replay on the entire module")),
112     cl::desc("Whether inline replay should be applied to the entire "
113              "Module or just the Functions (default) that are present as "
114              "callers in remarks during cgscc inlining."),
115     cl::Hidden);
116 
117 static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
118     "cgscc-inline-replay-fallback",
119     cl::init(ReplayInlinerSettings::Fallback::Original),
120     cl::values(
121         clEnumValN(
122             ReplayInlinerSettings::Fallback::Original, "Original",
123             "All decisions not in replay send to original advisor (default)"),
124         clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
125                    "AlwaysInline", "All decisions not in replay are inlined"),
126         clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
127                    "All decisions not in replay are not inlined")),
128     cl::desc(
129         "How cgscc inline replay treats sites that don't come from the replay. "
130         "Original: defers to original advisor, AlwaysInline: inline all sites "
131         "not in replay, NeverInline: inline no sites not in replay"),
132     cl::Hidden);
133 
134 static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
135     "cgscc-inline-replay-format",
136     cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
137     cl::values(
138         clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
139         clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
140                    "<Line Number>:<Column Number>"),
141         clEnumValN(CallSiteFormat::Format::LineDiscriminator,
142                    "LineDiscriminator", "<Line Number>.<Discriminator>"),
143         clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
144                    "LineColumnDiscriminator",
145                    "<Line Number>:<Column Number>.<Discriminator> (default)")),
146     cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
147 
148 static cl::opt<bool> InlineEnablePriorityOrder(
149     "inline-enable-priority-order", cl::Hidden, cl::init(false),
150     cl::desc("Enable the priority inline order for the inliner"));
151 
152 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
153 
154 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
155     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
156 
157 /// For this class, we declare that we require and preserve the call graph.
158 /// If the derived class implements this method, it should
159 /// always explicitly call the implementation here.
160 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
161   AU.addRequired<AssumptionCacheTracker>();
162   AU.addRequired<ProfileSummaryInfoWrapperPass>();
163   AU.addRequired<TargetLibraryInfoWrapperPass>();
164   getAAResultsAnalysisUsage(AU);
165   CallGraphSCCPass::getAnalysisUsage(AU);
166 }
167 
168 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
169 
170 /// Look at all of the allocas that we inlined through this call site.  If we
171 /// have already inlined other allocas through other calls into this function,
172 /// then we know that they have disjoint lifetimes and that we can merge them.
173 ///
174 /// There are many heuristics possible for merging these allocas, and the
175 /// different options have different tradeoffs.  One thing that we *really*
176 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
177 /// longer address taken and so they can be promoted.
178 ///
179 /// Our "solution" for that is to only merge allocas whose outermost type is an
180 /// array type.  These are usually not promoted because someone is using a
181 /// variable index into them.  These are also often the most important ones to
182 /// merge.
183 ///
184 /// A better solution would be to have real memory lifetime markers in the IR
185 /// and not have the inliner do any merging of allocas at all.  This would
186 /// allow the backend to do proper stack slot coloring of all allocas that
187 /// *actually make it to the backend*, which is really what we want.
188 ///
189 /// Because we don't have this information, we do this simple and useful hack.
190 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
191                                      InlinedArrayAllocasTy &InlinedArrayAllocas,
192                                      int InlineHistory) {
193   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
194 
195   // When processing our SCC, check to see if the call site was inlined from
196   // some other call site.  For example, if we're processing "A" in this code:
197   //   A() { B() }
198   //   B() { x = alloca ... C() }
199   //   C() { y = alloca ... }
200   // Assume that C was not inlined into B initially, and so we're processing A
201   // and decide to inline B into A.  Doing this makes an alloca available for
202   // reuse and makes a callsite (C) available for inlining.  When we process
203   // the C call site we don't want to do any alloca merging between X and Y
204   // because their scopes are not disjoint.  We could make this smarter by
205   // keeping track of the inline history for each alloca in the
206   // InlinedArrayAllocas but this isn't likely to be a significant win.
207   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
208     return;
209 
210   // Loop over all the allocas we have so far and see if they can be merged with
211   // a previously inlined alloca.  If not, remember that we had it.
212   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
213        ++AllocaNo) {
214     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
215 
216     // Don't bother trying to merge array allocations (they will usually be
217     // canonicalized to be an allocation *of* an array), or allocations whose
218     // type is not itself an array (because we're afraid of pessimizing SRoA).
219     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
220     if (!ATy || AI->isArrayAllocation())
221       continue;
222 
223     // Get the list of all available allocas for this array type.
224     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
225 
226     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
227     // that we have to be careful not to reuse the same "available" alloca for
228     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
229     // set to keep track of which "available" allocas are being used by this
230     // function.  Also, AllocasForType can be empty of course!
231     bool MergedAwayAlloca = false;
232     for (AllocaInst *AvailableAlloca : AllocasForType) {
233       Align Align1 = AI->getAlign();
234       Align Align2 = AvailableAlloca->getAlign();
235 
236       // The available alloca has to be in the right function, not in some other
237       // function in this SCC.
238       if (AvailableAlloca->getParent() != AI->getParent())
239         continue;
240 
241       // If the inlined function already uses this alloca then we can't reuse
242       // it.
243       if (!UsedAllocas.insert(AvailableAlloca).second)
244         continue;
245 
246       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
247       // success!
248       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
249                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
250 
251       // Move affected dbg.declare calls immediately after the new alloca to
252       // avoid the situation when a dbg.declare precedes its alloca.
253       if (auto *L = LocalAsMetadata::getIfExists(AI))
254         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
255           for (User *U : MDV->users())
256             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
257               DDI->moveBefore(AvailableAlloca->getNextNode());
258 
259       AI->replaceAllUsesWith(AvailableAlloca);
260 
261       if (Align1 > Align2)
262         AvailableAlloca->setAlignment(AI->getAlign());
263 
264       AI->eraseFromParent();
265       MergedAwayAlloca = true;
266       ++NumMergedAllocas;
267       IFI.StaticAllocas[AllocaNo] = nullptr;
268       break;
269     }
270 
271     // If we already nuked the alloca, we're done with it.
272     if (MergedAwayAlloca)
273       continue;
274 
275     // If we were unable to merge away the alloca either because there are no
276     // allocas of the right type available or because we reused them all
277     // already, remember that this alloca came from an inlined function and mark
278     // it used so we don't reuse it for other allocas from this inline
279     // operation.
280     AllocasForType.push_back(AI);
281     UsedAllocas.insert(AI);
282   }
283 }
284 
285 /// If it is possible to inline the specified call site,
286 /// do so and update the CallGraph for this operation.
287 ///
288 /// This function also does some basic book-keeping to update the IR.  The
289 /// InlinedArrayAllocas map keeps track of any allocas that are already
290 /// available from other functions inlined into the caller.  If we are able to
291 /// inline this call site we attempt to reuse already available allocas or add
292 /// any new allocas to the set if not possible.
293 static InlineResult inlineCallIfPossible(
294     CallBase &CB, InlineFunctionInfo &IFI,
295     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
296     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
297     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
298   Function *Callee = CB.getCalledFunction();
299   Function *Caller = CB.getCaller();
300 
301   AAResults &AAR = AARGetter(*Callee);
302 
303   // Try to inline the function.  Get the list of static allocas that were
304   // inlined.
305   InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
306   if (!IR.isSuccess())
307     return IR;
308 
309   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
310     ImportedFunctionsStats.recordInline(*Caller, *Callee);
311 
312   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
313 
314   if (!DisableInlinedAllocaMerging)
315     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
316 
317   return IR; // success
318 }
319 
320 /// Return true if the specified inline history ID
321 /// indicates an inline history that includes the specified function.
322 static bool inlineHistoryIncludes(
323     Function *F, int InlineHistoryID,
324     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
325   while (InlineHistoryID != -1) {
326     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
327            "Invalid inline history ID");
328     if (InlineHistory[InlineHistoryID].first == F)
329       return true;
330     InlineHistoryID = InlineHistory[InlineHistoryID].second;
331   }
332   return false;
333 }
334 
335 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
336   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
337     ImportedFunctionsStats.setModuleInfo(CG.getModule());
338   return false; // No changes to CallGraph.
339 }
340 
341 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
342   if (skipSCC(SCC))
343     return false;
344   return inlineCalls(SCC);
345 }
346 
347 static bool
348 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
349                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
350                 ProfileSummaryInfo *PSI,
351                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
352                 bool InsertLifetime,
353                 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
354                 function_ref<AAResults &(Function &)> AARGetter,
355                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
356   SmallPtrSet<Function *, 8> SCCFunctions;
357   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
358   for (CallGraphNode *Node : SCC) {
359     Function *F = Node->getFunction();
360     if (F)
361       SCCFunctions.insert(F);
362     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
363   }
364 
365   // Scan through and identify all call sites ahead of time so that we only
366   // inline call sites in the original functions, not call sites that result
367   // from inlining other functions.
368   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
369 
370   // When inlining a callee produces new call sites, we want to keep track of
371   // the fact that they were inlined from the callee.  This allows us to avoid
372   // infinite inlining in some obscure cases.  To represent this, we use an
373   // index into the InlineHistory vector.
374   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
375 
376   for (CallGraphNode *Node : SCC) {
377     Function *F = Node->getFunction();
378     if (!F || F->isDeclaration())
379       continue;
380 
381     OptimizationRemarkEmitter ORE(F);
382     for (BasicBlock &BB : *F)
383       for (Instruction &I : BB) {
384         auto *CB = dyn_cast<CallBase>(&I);
385         // If this isn't a call, or it is a call to an intrinsic, it can
386         // never be inlined.
387         if (!CB || isa<IntrinsicInst>(I))
388           continue;
389 
390         // If this is a direct call to an external function, we can never inline
391         // it.  If it is an indirect call, inlining may resolve it to be a
392         // direct call, so we keep it.
393         if (Function *Callee = CB->getCalledFunction())
394           if (Callee->isDeclaration()) {
395             using namespace ore;
396 
397             setInlineRemark(*CB, "unavailable definition");
398             ORE.emit([&]() {
399               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
400                      << NV("Callee", Callee) << " will not be inlined into "
401                      << NV("Caller", CB->getCaller())
402                      << " because its definition is unavailable"
403                      << setIsVerbose();
404             });
405             continue;
406           }
407 
408         CallSites.push_back(std::make_pair(CB, -1));
409       }
410   }
411 
412   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
413 
414   // If there are no calls in this function, exit early.
415   if (CallSites.empty())
416     return false;
417 
418   // Now that we have all of the call sites, move the ones to functions in the
419   // current SCC to the end of the list.
420   unsigned FirstCallInSCC = CallSites.size();
421   for (unsigned I = 0; I < FirstCallInSCC; ++I)
422     if (Function *F = CallSites[I].first->getCalledFunction())
423       if (SCCFunctions.count(F))
424         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
425 
426   InlinedArrayAllocasTy InlinedArrayAllocas;
427   InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
428 
429   // Now that we have all of the call sites, loop over them and inline them if
430   // it looks profitable to do so.
431   bool Changed = false;
432   bool LocalChange;
433   do {
434     LocalChange = false;
435     // Iterate over the outer loop because inlining functions can cause indirect
436     // calls to become direct calls.
437     // CallSites may be modified inside so ranged for loop can not be used.
438     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
439       auto &P = CallSites[CSi];
440       CallBase &CB = *P.first;
441       const int InlineHistoryID = P.second;
442 
443       Function *Caller = CB.getCaller();
444       Function *Callee = CB.getCalledFunction();
445 
446       // We can only inline direct calls to non-declarations.
447       if (!Callee || Callee->isDeclaration())
448         continue;
449 
450       bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
451 
452       if (!IsTriviallyDead) {
453         // If this call site was obtained by inlining another function, verify
454         // that the include path for the function did not include the callee
455         // itself.  If so, we'd be recursively inlining the same function,
456         // which would provide the same callsites, which would cause us to
457         // infinitely inline.
458         if (InlineHistoryID != -1 &&
459             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
460           setInlineRemark(CB, "recursive");
461           continue;
462         }
463       }
464 
465       // FIXME for new PM: because of the old PM we currently generate ORE and
466       // in turn BFI on demand.  With the new PM, the ORE dependency should
467       // just become a regular analysis dependency.
468       OptimizationRemarkEmitter ORE(Caller);
469 
470       auto OIC = shouldInline(CB, GetInlineCost, ORE);
471       // If the policy determines that we should inline this function,
472       // delete the call instead.
473       if (!OIC)
474         continue;
475 
476       // If this call site is dead and it is to a readonly function, we should
477       // just delete the call instead of trying to inline it, regardless of
478       // size.  This happens because IPSCCP propagates the result out of the
479       // call and then we're left with the dead call.
480       if (IsTriviallyDead) {
481         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CB << "\n");
482         // Update the call graph by deleting the edge from Callee to Caller.
483         setInlineRemark(CB, "trivially dead");
484         CG[Caller]->removeCallEdgeFor(CB);
485         CB.eraseFromParent();
486         ++NumCallsDeleted;
487       } else {
488         // Get DebugLoc to report. CB will be invalid after Inliner.
489         DebugLoc DLoc = CB.getDebugLoc();
490         BasicBlock *Block = CB.getParent();
491 
492         // Attempt to inline the function.
493         using namespace ore;
494 
495         InlineResult IR = inlineCallIfPossible(
496             CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
497             InsertLifetime, AARGetter, ImportedFunctionsStats);
498         if (!IR.isSuccess()) {
499           setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
500                                   inlineCostStr(*OIC));
501           ORE.emit([&]() {
502             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
503                                             Block)
504                    << NV("Callee", Callee) << " will not be inlined into "
505                    << NV("Caller", Caller) << ": "
506                    << NV("Reason", IR.getFailureReason());
507           });
508           continue;
509         }
510         ++NumInlined;
511 
512         emitInlinedIntoBasedOnCost(ORE, DLoc, Block, *Callee, *Caller, *OIC);
513 
514         // If inlining this function gave us any new call sites, throw them
515         // onto our worklist to process.  They are useful inline candidates.
516         if (!InlineInfo.InlinedCalls.empty()) {
517           // Create a new inline history entry for this, so that we remember
518           // that these new callsites came about due to inlining Callee.
519           int NewHistoryID = InlineHistory.size();
520           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
521 
522 #ifndef NDEBUG
523           // Make sure no dupplicates in the inline candidates. This could
524           // happen when a callsite is simpilfied to reusing the return value
525           // of another callsite during function cloning, thus the other
526           // callsite will be reconsidered here.
527           DenseSet<CallBase *> DbgCallSites;
528           for (auto &II : CallSites)
529             DbgCallSites.insert(II.first);
530 #endif
531 
532           for (Value *Ptr : InlineInfo.InlinedCalls) {
533 #ifndef NDEBUG
534             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
535 #endif
536             CallSites.push_back(
537                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
538           }
539         }
540       }
541 
542       // If we inlined or deleted the last possible call site to the function,
543       // delete the function body now.
544       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
545           // TODO: Can remove if in SCC now.
546           !SCCFunctions.count(Callee) &&
547           // The function may be apparently dead, but if there are indirect
548           // callgraph references to the node, we cannot delete it yet, this
549           // could invalidate the CGSCC iterator.
550           CG[Callee]->getNumReferences() == 0) {
551         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
552                           << Callee->getName() << "\n");
553         CallGraphNode *CalleeNode = CG[Callee];
554 
555         // Remove any call graph edges from the callee to its callees.
556         CalleeNode->removeAllCalledFunctions();
557 
558         // Removing the node for callee from the call graph and delete it.
559         delete CG.removeFunctionFromModule(CalleeNode);
560         ++NumDeleted;
561       }
562 
563       // Remove this call site from the list.  If possible, use
564       // swap/pop_back for efficiency, but do not use it if doing so would
565       // move a call site to a function in this SCC before the
566       // 'FirstCallInSCC' barrier.
567       if (SCC.isSingular()) {
568         CallSites[CSi] = CallSites.back();
569         CallSites.pop_back();
570       } else {
571         CallSites.erase(CallSites.begin() + CSi);
572       }
573       --CSi;
574 
575       Changed = true;
576       LocalChange = true;
577     }
578   } while (LocalChange);
579 
580   return Changed;
581 }
582 
583 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
584   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
585   ACT = &getAnalysis<AssumptionCacheTracker>();
586   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
587   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
588     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
589   };
590   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
591     return ACT->getAssumptionCache(F);
592   };
593   return inlineCallsImpl(
594       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
595       [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
596       ImportedFunctionsStats);
597 }
598 
599 /// Remove now-dead linkonce functions at the end of
600 /// processing to avoid breaking the SCC traversal.
601 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
602   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
603     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
604                                 InlinerFunctionImportStatsOpts::Verbose);
605   return removeDeadFunctions(CG);
606 }
607 
608 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
609 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
610                                             bool AlwaysInlineOnly) {
611   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
612   SmallVector<Function *, 16> DeadFunctionsInComdats;
613 
614   auto RemoveCGN = [&](CallGraphNode *CGN) {
615     // Remove any call graph edges from the function to its callees.
616     CGN->removeAllCalledFunctions();
617 
618     // Remove any edges from the external node to the function's call graph
619     // node.  These edges might have been made irrelegant due to
620     // optimization of the program.
621     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
622 
623     // Removing the node for callee from the call graph and delete it.
624     FunctionsToRemove.push_back(CGN);
625   };
626 
627   // Scan for all of the functions, looking for ones that should now be removed
628   // from the program.  Insert the dead ones in the FunctionsToRemove set.
629   for (const auto &I : CG) {
630     CallGraphNode *CGN = I.second.get();
631     Function *F = CGN->getFunction();
632     if (!F || F->isDeclaration())
633       continue;
634 
635     // Handle the case when this function is called and we only want to care
636     // about always-inline functions. This is a bit of a hack to share code
637     // between here and the InlineAlways pass.
638     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
639       continue;
640 
641     // If the only remaining users of the function are dead constants, remove
642     // them.
643     F->removeDeadConstantUsers();
644 
645     if (!F->isDefTriviallyDead())
646       continue;
647 
648     // It is unsafe to drop a function with discardable linkage from a COMDAT
649     // without also dropping the other members of the COMDAT.
650     // The inliner doesn't visit non-function entities which are in COMDAT
651     // groups so it is unsafe to do so *unless* the linkage is local.
652     if (!F->hasLocalLinkage()) {
653       if (F->hasComdat()) {
654         DeadFunctionsInComdats.push_back(F);
655         continue;
656       }
657     }
658 
659     RemoveCGN(CGN);
660   }
661   if (!DeadFunctionsInComdats.empty()) {
662     // Filter out the functions whose comdats remain alive.
663     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
664     // Remove the rest.
665     for (Function *F : DeadFunctionsInComdats)
666       RemoveCGN(CG[F]);
667   }
668 
669   if (FunctionsToRemove.empty())
670     return false;
671 
672   // Now that we know which functions to delete, do so.  We didn't want to do
673   // this inline, because that would invalidate our CallGraph::iterator
674   // objects. :(
675   //
676   // Note that it doesn't matter that we are iterating over a non-stable order
677   // here to do this, it doesn't matter which order the functions are deleted
678   // in.
679   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
680   FunctionsToRemove.erase(
681       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
682       FunctionsToRemove.end());
683   for (CallGraphNode *CGN : FunctionsToRemove) {
684     delete CG.removeFunctionFromModule(CGN);
685     ++NumDeleted;
686   }
687   return true;
688 }
689 
690 InlineAdvisor &
691 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
692                         FunctionAnalysisManager &FAM, Module &M) {
693   if (OwnedAdvisor)
694     return *OwnedAdvisor;
695 
696   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
697   if (!IAA) {
698     // It should still be possible to run the inliner as a stand-alone SCC pass,
699     // for test scenarios. In that case, we default to the
700     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
701     // runs. It also uses just the default InlineParams.
702     // In this case, we need to use the provided FAM, which is valid for the
703     // duration of the inliner pass, and thus the lifetime of the owned advisor.
704     // The one we would get from the MAM can be invalidated as a result of the
705     // inliner's activity.
706     OwnedAdvisor =
707         std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams());
708 
709     if (!CGSCCInlineReplayFile.empty())
710       OwnedAdvisor = getReplayInlineAdvisor(
711           M, FAM, M.getContext(), std::move(OwnedAdvisor),
712           ReplayInlinerSettings{CGSCCInlineReplayFile,
713                                 CGSCCInlineReplayScope,
714                                 CGSCCInlineReplayFallback,
715                                 {CGSCCInlineReplayFormat}},
716           /*EmitRemarks=*/true);
717 
718     return *OwnedAdvisor;
719   }
720   assert(IAA->getAdvisor() &&
721          "Expected a present InlineAdvisorAnalysis also have an "
722          "InlineAdvisor initialized");
723   return *IAA->getAdvisor();
724 }
725 
726 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
727                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
728                                    CGSCCUpdateResult &UR) {
729   const auto &MAMProxy =
730       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
731   bool Changed = false;
732 
733   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
734   Module &M = *InitialC.begin()->getFunction().getParent();
735   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
736 
737   FunctionAnalysisManager &FAM =
738       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
739           .getManager();
740 
741   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
742   Advisor.onPassEntry();
743 
744   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
745 
746   // We use a single common worklist for calls across the entire SCC. We
747   // process these in-order and append new calls introduced during inlining to
748   // the end. The PriorityInlineOrder is optional here, in which the smaller
749   // callee would have a higher priority to inline.
750   //
751   // Note that this particular order of processing is actually critical to
752   // avoid very bad behaviors. Consider *highly connected* call graphs where
753   // each function contains a small amount of code and a couple of calls to
754   // other functions. Because the LLVM inliner is fundamentally a bottom-up
755   // inliner, it can handle gracefully the fact that these all appear to be
756   // reasonable inlining candidates as it will flatten things until they become
757   // too big to inline, and then move on and flatten another batch.
758   //
759   // However, when processing call edges *within* an SCC we cannot rely on this
760   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
761   // functions we can end up incrementally inlining N calls into each of
762   // N functions because each incremental inlining decision looks good and we
763   // don't have a topological ordering to prevent explosions.
764   //
765   // To compensate for this, we don't process transitive edges made immediate
766   // by inlining until we've done one pass of inlining across the entire SCC.
767   // Large, highly connected SCCs still lead to some amount of code bloat in
768   // this model, but it is uniformly spread across all the functions in the SCC
769   // and eventually they all become too large to inline, rather than
770   // incrementally maknig a single function grow in a super linear fashion.
771   std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls;
772   if (InlineEnablePriorityOrder)
773     Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>();
774   else
775     Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>();
776   assert(Calls != nullptr && "Expected an initialized InlineOrder");
777 
778   // Populate the initial list of calls in this SCC.
779   for (auto &N : InitialC) {
780     auto &ORE =
781         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
782     // We want to generally process call sites top-down in order for
783     // simplifications stemming from replacing the call with the returned value
784     // after inlining to be visible to subsequent inlining decisions.
785     // FIXME: Using instructions sequence is a really bad way to do this.
786     // Instead we should do an actual RPO walk of the function body.
787     for (Instruction &I : instructions(N.getFunction()))
788       if (auto *CB = dyn_cast<CallBase>(&I))
789         if (Function *Callee = CB->getCalledFunction()) {
790           if (!Callee->isDeclaration())
791             Calls->push({CB, -1});
792           else if (!isa<IntrinsicInst>(I)) {
793             using namespace ore;
794             setInlineRemark(*CB, "unavailable definition");
795             ORE.emit([&]() {
796               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
797                      << NV("Callee", Callee) << " will not be inlined into "
798                      << NV("Caller", CB->getCaller())
799                      << " because its definition is unavailable"
800                      << setIsVerbose();
801             });
802           }
803         }
804   }
805   if (Calls->empty())
806     return PreservedAnalyses::all();
807 
808   // Capture updatable variable for the current SCC.
809   auto *C = &InitialC;
810 
811   // When inlining a callee produces new call sites, we want to keep track of
812   // the fact that they were inlined from the callee.  This allows us to avoid
813   // infinite inlining in some obscure cases.  To represent this, we use an
814   // index into the InlineHistory vector.
815   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
816 
817   // Track a set vector of inlined callees so that we can augment the caller
818   // with all of their edges in the call graph before pruning out the ones that
819   // got simplified away.
820   SmallSetVector<Function *, 4> InlinedCallees;
821 
822   // Track the dead functions to delete once finished with inlining calls. We
823   // defer deleting these to make it easier to handle the call graph updates.
824   SmallVector<Function *, 4> DeadFunctions;
825 
826   // Loop forward over all of the calls.
827   while (!Calls->empty()) {
828     // We expect the calls to typically be batched with sequences of calls that
829     // have the same caller, so we first set up some shared infrastructure for
830     // this caller. We also do any pruning we can at this layer on the caller
831     // alone.
832     Function &F = *Calls->front().first->getCaller();
833     LazyCallGraph::Node &N = *CG.lookup(F);
834     if (CG.lookupSCC(N) != C) {
835       Calls->pop();
836       continue;
837     }
838 
839     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
840                       << "    Function size: " << F.getInstructionCount()
841                       << "\n");
842 
843     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
844       return FAM.getResult<AssumptionAnalysis>(F);
845     };
846 
847     // Now process as many calls as we have within this caller in the sequence.
848     // We bail out as soon as the caller has to change so we can update the
849     // call graph and prepare the context of that new caller.
850     bool DidInline = false;
851     while (!Calls->empty() && Calls->front().first->getCaller() == &F) {
852       auto P = Calls->pop();
853       CallBase *CB = P.first;
854       const int InlineHistoryID = P.second;
855       Function &Callee = *CB->getCalledFunction();
856 
857       if (InlineHistoryID != -1 &&
858           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
859         LLVM_DEBUG(dbgs() << "Skipping inlining due to history: "
860                           << F.getName() << " -> " << Callee.getName() << "\n");
861         setInlineRemark(*CB, "recursive");
862         continue;
863       }
864 
865       // Check if this inlining may repeat breaking an SCC apart that has
866       // already been split once before. In that case, inlining here may
867       // trigger infinite inlining, much like is prevented within the inliner
868       // itself by the InlineHistory above, but spread across CGSCC iterations
869       // and thus hidden from the full inline history.
870       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
871           UR.InlinedInternalEdges.count({&N, C})) {
872         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
873                              "previously split out of this SCC by inlining: "
874                           << F.getName() << " -> " << Callee.getName() << "\n");
875         setInlineRemark(*CB, "recursive SCC split");
876         continue;
877       }
878 
879       std::unique_ptr<InlineAdvice> Advice =
880           Advisor.getAdvice(*CB, OnlyMandatory);
881 
882       // Check whether we want to inline this callsite.
883       if (!Advice)
884         continue;
885 
886       if (!Advice->isInliningRecommended()) {
887         Advice->recordUnattemptedInlining();
888         continue;
889       }
890 
891       // Setup the data structure used to plumb customization into the
892       // `InlineFunction` routine.
893       InlineFunctionInfo IFI(
894           /*cg=*/nullptr, GetAssumptionCache, PSI,
895           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
896           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
897 
898       InlineResult IR =
899           InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
900       if (!IR.isSuccess()) {
901         Advice->recordUnsuccessfulInlining(IR);
902         continue;
903       }
904 
905       DidInline = true;
906       InlinedCallees.insert(&Callee);
907       ++NumInlined;
908 
909       LLVM_DEBUG(dbgs() << "    Size after inlining: "
910                         << F.getInstructionCount() << "\n");
911 
912       // Add any new callsites to defined functions to the worklist.
913       if (!IFI.InlinedCallSites.empty()) {
914         int NewHistoryID = InlineHistory.size();
915         InlineHistory.push_back({&Callee, InlineHistoryID});
916 
917         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
918           Function *NewCallee = ICB->getCalledFunction();
919           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
920                  "Intrinsic calls should not be tracked.");
921           if (!NewCallee) {
922             // Try to promote an indirect (virtual) call without waiting for
923             // the post-inline cleanup and the next DevirtSCCRepeatedPass
924             // iteration because the next iteration may not happen and we may
925             // miss inlining it.
926             if (tryPromoteCall(*ICB))
927               NewCallee = ICB->getCalledFunction();
928           }
929           if (NewCallee)
930             if (!NewCallee->isDeclaration())
931               Calls->push({ICB, NewHistoryID});
932         }
933       }
934 
935       // Merge the attributes based on the inlining.
936       AttributeFuncs::mergeAttributesForInlining(F, Callee);
937 
938       // For local functions, check whether this makes the callee trivially
939       // dead. In that case, we can drop the body of the function eagerly
940       // which may reduce the number of callers of other functions to one,
941       // changing inline cost thresholds.
942       bool CalleeWasDeleted = false;
943       if (Callee.hasLocalLinkage()) {
944         // To check this we also need to nuke any dead constant uses (perhaps
945         // made dead by this operation on other functions).
946         Callee.removeDeadConstantUsers();
947         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
948           Calls->erase_if([&](const std::pair<CallBase *, int> &Call) {
949             return Call.first->getCaller() == &Callee;
950           });
951           // Clear the body and queue the function itself for deletion when we
952           // finish inlining and call graph updates.
953           // Note that after this point, it is an error to do anything other
954           // than use the callee's address or delete it.
955           Callee.dropAllReferences();
956           assert(!is_contained(DeadFunctions, &Callee) &&
957                  "Cannot put cause a function to become dead twice!");
958           DeadFunctions.push_back(&Callee);
959           CalleeWasDeleted = true;
960         }
961       }
962       if (CalleeWasDeleted)
963         Advice->recordInliningWithCalleeDeleted();
964       else
965         Advice->recordInlining();
966     }
967 
968     if (!DidInline)
969       continue;
970     Changed = true;
971 
972     // At this point, since we have made changes we have at least removed
973     // a call instruction. However, in the process we do some incremental
974     // simplification of the surrounding code. This simplification can
975     // essentially do all of the same things as a function pass and we can
976     // re-use the exact same logic for updating the call graph to reflect the
977     // change.
978 
979     // Inside the update, we also update the FunctionAnalysisManager in the
980     // proxy for this particular SCC. We do this as the SCC may have changed and
981     // as we're going to mutate this particular function we want to make sure
982     // the proxy is in place to forward any invalidation events.
983     LazyCallGraph::SCC *OldC = C;
984     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
985     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
986 
987     // If this causes an SCC to split apart into multiple smaller SCCs, there
988     // is a subtle risk we need to prepare for. Other transformations may
989     // expose an "infinite inlining" opportunity later, and because of the SCC
990     // mutation, we will revisit this function and potentially re-inline. If we
991     // do, and that re-inlining also has the potentially to mutate the SCC
992     // structure, the infinite inlining problem can manifest through infinite
993     // SCC splits and merges. To avoid this, we capture the originating caller
994     // node and the SCC containing the call edge. This is a slight over
995     // approximation of the possible inlining decisions that must be avoided,
996     // but is relatively efficient to store. We use C != OldC to know when
997     // a new SCC is generated and the original SCC may be generated via merge
998     // in later iterations.
999     //
1000     // It is also possible that even if no new SCC is generated
1001     // (i.e., C == OldC), the original SCC could be split and then merged
1002     // into the same one as itself. and the original SCC will be added into
1003     // UR.CWorklist again, we want to catch such cases too.
1004     //
1005     // FIXME: This seems like a very heavyweight way of retaining the inline
1006     // history, we should look for a more efficient way of tracking it.
1007     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1008         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1009           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1010         })) {
1011       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1012                            "retaining this to avoid infinite inlining.\n");
1013       UR.InlinedInternalEdges.insert({&N, OldC});
1014     }
1015     InlinedCallees.clear();
1016 
1017     // Invalidate analyses for this function now so that we don't have to
1018     // invalidate analyses for all functions in this SCC later.
1019     FAM.invalidate(F, PreservedAnalyses::none());
1020   }
1021 
1022   // Now that we've finished inlining all of the calls across this SCC, delete
1023   // all of the trivially dead functions, updating the call graph and the CGSCC
1024   // pass manager in the process.
1025   //
1026   // Note that this walks a pointer set which has non-deterministic order but
1027   // that is OK as all we do is delete things and add pointers to unordered
1028   // sets.
1029   for (Function *DeadF : DeadFunctions) {
1030     // Get the necessary information out of the call graph and nuke the
1031     // function there. Also, clear out any cached analyses.
1032     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1033     FAM.clear(*DeadF, DeadF->getName());
1034     AM.clear(DeadC, DeadC.getName());
1035     auto &DeadRC = DeadC.getOuterRefSCC();
1036     CG.removeDeadFunction(*DeadF);
1037 
1038     // Mark the relevant parts of the call graph as invalid so we don't visit
1039     // them.
1040     UR.InvalidatedSCCs.insert(&DeadC);
1041     UR.InvalidatedRefSCCs.insert(&DeadRC);
1042 
1043     // If the updated SCC was the one containing the deleted function, clear it.
1044     if (&DeadC == UR.UpdatedC)
1045       UR.UpdatedC = nullptr;
1046 
1047     // And delete the actual function from the module.
1048     // The Advisor may use Function pointers to efficiently index various
1049     // internal maps, e.g. for memoization. Function cleanup passes like
1050     // argument promotion create new functions. It is possible for a new
1051     // function to be allocated at the address of a deleted function. We could
1052     // index using names, but that's inefficient. Alternatively, we let the
1053     // Advisor free the functions when it sees fit.
1054     DeadF->getBasicBlockList().clear();
1055     M.getFunctionList().remove(DeadF);
1056 
1057     ++NumDeleted;
1058   }
1059 
1060   if (!Changed)
1061     return PreservedAnalyses::all();
1062 
1063   PreservedAnalyses PA;
1064   // Even if we change the IR, we update the core CGSCC data structures and so
1065   // can preserve the proxy to the function analysis manager.
1066   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1067   // We have already invalidated all analyses on modified functions.
1068   PA.preserveSet<AllAnalysesOn<Function>>();
1069   return PA;
1070 }
1071 
1072 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1073                                                    bool MandatoryFirst,
1074                                                    InliningAdvisorMode Mode,
1075                                                    unsigned MaxDevirtIterations)
1076     : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
1077       PM(), MPM() {
1078   // Run the inliner first. The theory is that we are walking bottom-up and so
1079   // the callees have already been fully optimized, and we want to inline them
1080   // into the callers so that our optimizations can reflect that.
1081   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1082   // because it makes profile annotation in the backend inaccurate.
1083   if (MandatoryFirst)
1084     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1085   PM.addPass(InlinerPass());
1086 }
1087 
1088 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1089                                                 ModuleAnalysisManager &MAM) {
1090   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1091   if (!IAA.tryCreate(Params, Mode,
1092                      {CGSCCInlineReplayFile,
1093                       CGSCCInlineReplayScope,
1094                       CGSCCInlineReplayFallback,
1095                       {CGSCCInlineReplayFormat}})) {
1096     M.getContext().emitError(
1097         "Could not setup Inlining Advisor for the requested "
1098         "mode and/or options");
1099     return PreservedAnalyses::all();
1100   }
1101 
1102   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1103   // to detect when we devirtualize indirect calls and iterate the SCC passes
1104   // in that case to try and catch knock-on inlining or function attrs
1105   // opportunities. Then we add it to the module pipeline by walking the SCCs
1106   // in postorder (or bottom-up).
1107   // If MaxDevirtIterations is 0, we just don't use the devirtualization
1108   // wrapper.
1109   if (MaxDevirtIterations == 0)
1110     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1111   else
1112     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1113         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1114 
1115   MPM.addPass(std::move(AfterCGMPM));
1116   MPM.run(M, MAM);
1117 
1118   // Discard the InlineAdvisor, a subsequent inlining session should construct
1119   // its own.
1120   auto PA = PreservedAnalyses::all();
1121   PA.abandon<InlineAdvisorAnalysis>();
1122   return PA;
1123 }
1124 
1125 void InlinerPass::printPipeline(
1126     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1127   static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
1128       OS, MapClassName2PassName);
1129   if (OnlyMandatory)
1130     OS << "<only-mandatory>";
1131 }
1132 
1133 void ModuleInlinerWrapperPass::printPipeline(
1134     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1135   // Print some info about passes added to the wrapper. This is however
1136   // incomplete as InlineAdvisorAnalysis part isn't included (which also depends
1137   // on Params and Mode).
1138   if (!MPM.isEmpty()) {
1139     MPM.printPipeline(OS, MapClassName2PassName);
1140     OS << ",";
1141   }
1142   OS << "cgscc(";
1143   if (MaxDevirtIterations != 0)
1144     OS << "devirt<" << MaxDevirtIterations << ">(";
1145   PM.printPipeline(OS, MapClassName2PassName);
1146   if (MaxDevirtIterations != 0)
1147     OS << ")";
1148   OS << ")";
1149 }
1150