1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 // Implementation for the IROutliner which is used by the IROutliner Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/IROutliner.h" 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DIBuilder.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/IPO.h" 28 #include <map> 29 #include <set> 30 #include <vector> 31 32 #define DEBUG_TYPE "iroutliner" 33 34 using namespace llvm; 35 using namespace IRSimilarity; 36 37 // A command flag to be used for debugging to exclude branches from similarity 38 // matching and outlining. 39 extern cl::opt<bool> DisableBranches; 40 41 // Set to true if the user wants the ir outliner to run on linkonceodr linkage 42 // functions. This is false by default because the linker can dedupe linkonceodr 43 // functions. Since the outliner is confined to a single module (modulo LTO), 44 // this is off by default. It should, however, be the default behavior in 45 // LTO. 46 static cl::opt<bool> EnableLinkOnceODRIROutlining( 47 "enable-linkonceodr-ir-outlining", cl::Hidden, 48 cl::desc("Enable the IR outliner on linkonceodr functions"), 49 cl::init(false)); 50 51 // This is a debug option to test small pieces of code to ensure that outlining 52 // works correctly. 53 static cl::opt<bool> NoCostModel( 54 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, 55 cl::desc("Debug option to outline greedily, without restriction that " 56 "calculated benefit outweighs cost")); 57 58 /// The OutlinableGroup holds all the overarching information for outlining 59 /// a set of regions that are structurally similar to one another, such as the 60 /// types of the overall function, the output blocks, the sets of stores needed 61 /// and a list of the different regions. This information is used in the 62 /// deduplication of extracted regions with the same structure. 63 struct OutlinableGroup { 64 /// The sections that could be outlined 65 std::vector<OutlinableRegion *> Regions; 66 67 /// The argument types for the function created as the overall function to 68 /// replace the extracted function for each region. 69 std::vector<Type *> ArgumentTypes; 70 /// The FunctionType for the overall function. 71 FunctionType *OutlinedFunctionType = nullptr; 72 /// The Function for the collective overall function. 73 Function *OutlinedFunction = nullptr; 74 75 /// Flag for whether we should not consider this group of OutlinableRegions 76 /// for extraction. 77 bool IgnoreGroup = false; 78 79 /// The return blocks for the overall function. 80 DenseMap<Value *, BasicBlock *> EndBBs; 81 82 /// The PHIBlocks with their corresponding return block based on the return 83 /// value as the key. 84 DenseMap<Value *, BasicBlock *> PHIBlocks; 85 86 /// A set containing the different GVN store sets needed. Each array contains 87 /// a sorted list of the different values that need to be stored into output 88 /// registers. 89 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations; 90 91 /// Flag for whether the \ref ArgumentTypes have been defined after the 92 /// extraction of the first region. 93 bool InputTypesSet = false; 94 95 /// The number of input values in \ref ArgumentTypes. Anything after this 96 /// index in ArgumentTypes is an output argument. 97 unsigned NumAggregateInputs = 0; 98 99 /// The mapping of the canonical numbering of the values in outlined sections 100 /// to specific arguments. 101 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg; 102 103 /// The number of branches in the region target a basic block that is outside 104 /// of the region. 105 unsigned BranchesToOutside = 0; 106 107 /// The number of instructions that will be outlined by extracting \ref 108 /// Regions. 109 InstructionCost Benefit = 0; 110 /// The number of added instructions needed for the outlining of the \ref 111 /// Regions. 112 InstructionCost Cost = 0; 113 114 /// The argument that needs to be marked with the swifterr attribute. If not 115 /// needed, there is no value. 116 Optional<unsigned> SwiftErrorArgument; 117 118 /// For the \ref Regions, we look at every Value. If it is a constant, 119 /// we check whether it is the same in Region. 120 /// 121 /// \param [in,out] NotSame contains the global value numbers where the 122 /// constant is not always the same, and must be passed in as an argument. 123 void findSameConstants(DenseSet<unsigned> &NotSame); 124 125 /// For the regions, look at each set of GVN stores needed and account for 126 /// each combination. Add an argument to the argument types if there is 127 /// more than one combination. 128 /// 129 /// \param [in] M - The module we are outlining from. 130 void collectGVNStoreSets(Module &M); 131 }; 132 133 /// Move the contents of \p SourceBB to before the last instruction of \p 134 /// TargetBB. 135 /// \param SourceBB - the BasicBlock to pull Instructions from. 136 /// \param TargetBB - the BasicBlock to put Instruction into. 137 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { 138 for (Instruction &I : llvm::make_early_inc_range(SourceBB)) 139 I.moveBefore(TargetBB, TargetBB.end()); 140 } 141 142 /// A function to sort the keys of \p Map, which must be a mapping of constant 143 /// values to basic blocks and return it in \p SortedKeys 144 /// 145 /// \param SortedKeys - The vector the keys will be return in and sorted. 146 /// \param Map - The DenseMap containing keys to sort. 147 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys, 148 DenseMap<Value *, BasicBlock *> &Map) { 149 for (auto &VtoBB : Map) 150 SortedKeys.push_back(VtoBB.first); 151 152 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) { 153 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS); 154 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 155 assert(RHSC && "Not a constant integer in return value?"); 156 assert(LHSC && "Not a constant integer in return value?"); 157 158 return LHSC->getLimitedValue() < RHSC->getLimitedValue(); 159 }); 160 } 161 162 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other, 163 Value *V) { 164 Optional<unsigned> GVN = Candidate->getGVN(V); 165 assert(GVN.hasValue() && "No GVN for incoming value"); 166 Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN); 167 Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum); 168 Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN); 169 return FoundValueOpt.getValueOr(nullptr); 170 } 171 172 void OutlinableRegion::splitCandidate() { 173 assert(!CandidateSplit && "Candidate already split!"); 174 175 Instruction *BackInst = Candidate->backInstruction(); 176 177 Instruction *EndInst = nullptr; 178 // Check whether the last instruction is a terminator, if it is, we do 179 // not split on the following instruction. We leave the block as it is. We 180 // also check that this is not the last instruction in the Module, otherwise 181 // the check for whether the current following instruction matches the 182 // previously recorded instruction will be incorrect. 183 if (!BackInst->isTerminator() || 184 BackInst->getParent() != &BackInst->getFunction()->back()) { 185 EndInst = Candidate->end()->Inst; 186 assert(EndInst && "Expected an end instruction?"); 187 } 188 189 // We check if the current instruction following the last instruction in the 190 // region is the same as the recorded instruction following the last 191 // instruction. If they do not match, there could be problems in rewriting 192 // the program after outlining, so we ignore it. 193 if (!BackInst->isTerminator() && 194 EndInst != BackInst->getNextNonDebugInstruction()) 195 return; 196 197 Instruction *StartInst = (*Candidate->begin()).Inst; 198 assert(StartInst && "Expected a start instruction?"); 199 StartBB = StartInst->getParent(); 200 PrevBB = StartBB; 201 202 // The basic block gets split like so: 203 // block: block: 204 // inst1 inst1 205 // inst2 inst2 206 // region1 br block_to_outline 207 // region2 block_to_outline: 208 // region3 -> region1 209 // region4 region2 210 // inst3 region3 211 // inst4 region4 212 // br block_after_outline 213 // block_after_outline: 214 // inst3 215 // inst4 216 217 std::string OriginalName = PrevBB->getName().str(); 218 219 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); 220 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB); 221 222 CandidateSplit = true; 223 if (!BackInst->isTerminator()) { 224 EndBB = EndInst->getParent(); 225 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); 226 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB); 227 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB); 228 return; 229 } 230 231 EndBB = BackInst->getParent(); 232 EndsInBranch = true; 233 FollowBB = nullptr; 234 } 235 236 void OutlinableRegion::reattachCandidate() { 237 assert(CandidateSplit && "Candidate is not split!"); 238 239 // The basic block gets reattached like so: 240 // block: block: 241 // inst1 inst1 242 // inst2 inst2 243 // br block_to_outline region1 244 // block_to_outline: -> region2 245 // region1 region3 246 // region2 region4 247 // region3 inst3 248 // region4 inst4 249 // br block_after_outline 250 // block_after_outline: 251 // inst3 252 // inst4 253 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); 254 255 // StartBB should only have one predecessor since we put an unconditional 256 // branch at the end of PrevBB when we split the BasicBlock. 257 PrevBB = StartBB->getSinglePredecessor(); 258 assert(PrevBB != nullptr && 259 "No Predecessor for the region start basic block!"); 260 261 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); 262 PrevBB->getTerminator()->eraseFromParent(); 263 264 moveBBContents(*StartBB, *PrevBB); 265 266 BasicBlock *PlacementBB = PrevBB; 267 if (StartBB != EndBB) 268 PlacementBB = EndBB; 269 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) { 270 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!"); 271 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!"); 272 PlacementBB->getTerminator()->eraseFromParent(); 273 moveBBContents(*FollowBB, *PlacementBB); 274 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); 275 FollowBB->eraseFromParent(); 276 } 277 278 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); 279 StartBB->eraseFromParent(); 280 281 // Make sure to save changes back to the StartBB. 282 StartBB = PrevBB; 283 EndBB = nullptr; 284 PrevBB = nullptr; 285 FollowBB = nullptr; 286 287 CandidateSplit = false; 288 } 289 290 /// Find whether \p V matches the Constants previously found for the \p GVN. 291 /// 292 /// \param V - The value to check for consistency. 293 /// \param GVN - The global value number assigned to \p V. 294 /// \param GVNToConstant - The mapping of global value number to Constants. 295 /// \returns true if the Value matches the Constant mapped to by V and false if 296 /// it \p V is a Constant but does not match. 297 /// \returns None if \p V is not a Constant. 298 static Optional<bool> 299 constantMatches(Value *V, unsigned GVN, 300 DenseMap<unsigned, Constant *> &GVNToConstant) { 301 // See if we have a constants 302 Constant *CST = dyn_cast<Constant>(V); 303 if (!CST) 304 return None; 305 306 // Holds a mapping from a global value number to a Constant. 307 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt; 308 bool Inserted; 309 310 311 // If we have a constant, try to make a new entry in the GVNToConstant. 312 std::tie(GVNToConstantIt, Inserted) = 313 GVNToConstant.insert(std::make_pair(GVN, CST)); 314 // If it was found and is not equal, it is not the same. We do not 315 // handle this case yet, and exit early. 316 if (Inserted || (GVNToConstantIt->second == CST)) 317 return true; 318 319 return false; 320 } 321 322 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { 323 InstructionCost Benefit = 0; 324 325 // Estimate the benefit of outlining a specific sections of the program. We 326 // delegate mostly this task to the TargetTransformInfo so that if the target 327 // has specific changes, we can have a more accurate estimate. 328 329 // However, getInstructionCost delegates the code size calculation for 330 // arithmetic instructions to getArithmeticInstrCost in 331 // include/Analysis/TargetTransformImpl.h, where it always estimates that the 332 // code size for a division and remainder instruction to be equal to 4, and 333 // everything else to 1. This is not an accurate representation of the 334 // division instruction for targets that have a native division instruction. 335 // To be overly conservative, we only add 1 to the number of instructions for 336 // each division instruction. 337 for (IRInstructionData &ID : *Candidate) { 338 Instruction *I = ID.Inst; 339 switch (I->getOpcode()) { 340 case Instruction::FDiv: 341 case Instruction::FRem: 342 case Instruction::SDiv: 343 case Instruction::SRem: 344 case Instruction::UDiv: 345 case Instruction::URem: 346 Benefit += 1; 347 break; 348 default: 349 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize); 350 break; 351 } 352 } 353 354 return Benefit; 355 } 356 357 /// Find whether \p Region matches the global value numbering to Constant 358 /// mapping found so far. 359 /// 360 /// \param Region - The OutlinableRegion we are checking for constants 361 /// \param GVNToConstant - The mapping of global value number to Constants. 362 /// \param NotSame - The set of global value numbers that do not have the same 363 /// constant in each region. 364 /// \returns true if all Constants are the same in every use of a Constant in \p 365 /// Region and false if not 366 static bool 367 collectRegionsConstants(OutlinableRegion &Region, 368 DenseMap<unsigned, Constant *> &GVNToConstant, 369 DenseSet<unsigned> &NotSame) { 370 bool ConstantsTheSame = true; 371 372 IRSimilarityCandidate &C = *Region.Candidate; 373 for (IRInstructionData &ID : C) { 374 375 // Iterate over the operands in an instruction. If the global value number, 376 // assigned by the IRSimilarityCandidate, has been seen before, we check if 377 // the the number has been found to be not the same value in each instance. 378 for (Value *V : ID.OperVals) { 379 Optional<unsigned> GVNOpt = C.getGVN(V); 380 assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); 381 unsigned GVN = GVNOpt.getValue(); 382 383 // Check if this global value has been found to not be the same already. 384 if (NotSame.contains(GVN)) { 385 if (isa<Constant>(V)) 386 ConstantsTheSame = false; 387 continue; 388 } 389 390 // If it has been the same so far, we check the value for if the 391 // associated Constant value match the previous instances of the same 392 // global value number. If the global value does not map to a Constant, 393 // it is considered to not be the same value. 394 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant); 395 if (ConstantMatches.hasValue()) { 396 if (ConstantMatches.getValue()) 397 continue; 398 else 399 ConstantsTheSame = false; 400 } 401 402 // While this value is a register, it might not have been previously, 403 // make sure we don't already have a constant mapped to this global value 404 // number. 405 if (GVNToConstant.find(GVN) != GVNToConstant.end()) 406 ConstantsTheSame = false; 407 408 NotSame.insert(GVN); 409 } 410 } 411 412 return ConstantsTheSame; 413 } 414 415 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) { 416 DenseMap<unsigned, Constant *> GVNToConstant; 417 418 for (OutlinableRegion *Region : Regions) 419 collectRegionsConstants(*Region, GVNToConstant, NotSame); 420 } 421 422 void OutlinableGroup::collectGVNStoreSets(Module &M) { 423 for (OutlinableRegion *OS : Regions) 424 OutputGVNCombinations.insert(OS->GVNStores); 425 426 // We are adding an extracted argument to decide between which output path 427 // to use in the basic block. It is used in a switch statement and only 428 // needs to be an integer. 429 if (OutputGVNCombinations.size() > 1) 430 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); 431 } 432 433 /// Get the subprogram if it exists for one of the outlined regions. 434 /// 435 /// \param [in] Group - The set of regions to find a subprogram for. 436 /// \returns the subprogram if it exists, or nullptr. 437 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { 438 for (OutlinableRegion *OS : Group.Regions) 439 if (Function *F = OS->Call->getFunction()) 440 if (DISubprogram *SP = F->getSubprogram()) 441 return SP; 442 443 return nullptr; 444 } 445 446 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, 447 unsigned FunctionNameSuffix) { 448 assert(!Group.OutlinedFunction && "Function is already defined!"); 449 450 Type *RetTy = Type::getVoidTy(M.getContext()); 451 // All extracted functions _should_ have the same return type at this point 452 // since the similarity identifier ensures that all branches outside of the 453 // region occur in the same place. 454 455 // NOTE: Should we ever move to the model that uses a switch at every point 456 // needed, meaning that we could branch within the region or out, it is 457 // possible that we will need to switch to using the most general case all of 458 // the time. 459 for (OutlinableRegion *R : Group.Regions) { 460 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType(); 461 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) || 462 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16))) 463 RetTy = ExtractedFuncType; 464 } 465 466 Group.OutlinedFunctionType = FunctionType::get( 467 RetTy, Group.ArgumentTypes, false); 468 469 // These functions will only be called from within the same module, so 470 // we can set an internal linkage. 471 Group.OutlinedFunction = Function::Create( 472 Group.OutlinedFunctionType, GlobalValue::InternalLinkage, 473 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); 474 475 // Transfer the swifterr attribute to the correct function parameter. 476 if (Group.SwiftErrorArgument.hasValue()) 477 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), 478 Attribute::SwiftError); 479 480 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); 481 Group.OutlinedFunction->addFnAttr(Attribute::MinSize); 482 483 // If there's a DISubprogram associated with this outlined function, then 484 // emit debug info for the outlined function. 485 if (DISubprogram *SP = getSubprogramOrNull(Group)) { 486 Function *F = Group.OutlinedFunction; 487 // We have a DISubprogram. Get its DICompileUnit. 488 DICompileUnit *CU = SP->getUnit(); 489 DIBuilder DB(M, true, CU); 490 DIFile *Unit = SP->getFile(); 491 Mangler Mg; 492 // Get the mangled name of the function for the linkage name. 493 std::string Dummy; 494 llvm::raw_string_ostream MangledNameStream(Dummy); 495 Mg.getNameWithPrefix(MangledNameStream, F, false); 496 497 DISubprogram *OutlinedSP = DB.createFunction( 498 Unit /* Context */, F->getName(), MangledNameStream.str(), 499 Unit /* File */, 500 0 /* Line 0 is reserved for compiler-generated code. */, 501 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 502 0, /* Line 0 is reserved for compiler-generated code. */ 503 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 504 /* Outlined code is optimized code by definition. */ 505 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 506 507 // Don't add any new variables to the subprogram. 508 DB.finalizeSubprogram(OutlinedSP); 509 510 // Attach subprogram to the function. 511 F->setSubprogram(OutlinedSP); 512 // We're done with the DIBuilder. 513 DB.finalize(); 514 } 515 516 return Group.OutlinedFunction; 517 } 518 519 /// Move each BasicBlock in \p Old to \p New. 520 /// 521 /// \param [in] Old - The function to move the basic blocks from. 522 /// \param [in] New - The function to move the basic blocks to. 523 /// \param [out] NewEnds - The return blocks of the new overall function. 524 static void moveFunctionData(Function &Old, Function &New, 525 DenseMap<Value *, BasicBlock *> &NewEnds) { 526 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) { 527 CurrBB.removeFromParent(); 528 CurrBB.insertInto(&New); 529 Instruction *I = CurrBB.getTerminator(); 530 531 // For each block we find a return instruction is, it is a potential exit 532 // path for the function. We keep track of each block based on the return 533 // value here. 534 if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) 535 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB)); 536 537 std::vector<Instruction *> DebugInsts; 538 539 for (Instruction &Val : CurrBB) { 540 // We must handle the scoping of called functions differently than 541 // other outlined instructions. 542 if (!isa<CallInst>(&Val)) { 543 // Remove the debug information for outlined functions. 544 Val.setDebugLoc(DebugLoc()); 545 continue; 546 } 547 548 // From this point we are only handling call instructions. 549 CallInst *CI = cast<CallInst>(&Val); 550 551 // We add any debug statements here, to be removed after. Since the 552 // instructions originate from many different locations in the program, 553 // it will cause incorrect reporting from a debugger if we keep the 554 // same debug instructions. 555 if (isa<DbgInfoIntrinsic>(CI)) { 556 DebugInsts.push_back(&Val); 557 continue; 558 } 559 560 // Edit the scope of called functions inside of outlined functions. 561 if (DISubprogram *SP = New.getSubprogram()) { 562 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); 563 Val.setDebugLoc(DI); 564 } 565 } 566 567 for (Instruction *I : DebugInsts) 568 I->eraseFromParent(); 569 } 570 571 assert(NewEnds.size() > 0 && "No return instruction for new function?"); 572 } 573 574 /// Find the the constants that will need to be lifted into arguments 575 /// as they are not the same in each instance of the region. 576 /// 577 /// \param [in] C - The IRSimilarityCandidate containing the region we are 578 /// analyzing. 579 /// \param [in] NotSame - The set of global value numbers that do not have a 580 /// single Constant across all OutlinableRegions similar to \p C. 581 /// \param [out] Inputs - The list containing the global value numbers of the 582 /// arguments needed for the region of code. 583 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame, 584 std::vector<unsigned> &Inputs) { 585 DenseSet<unsigned> Seen; 586 // Iterate over the instructions, and find what constants will need to be 587 // extracted into arguments. 588 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); 589 IDIt != EndIDIt; IDIt++) { 590 for (Value *V : (*IDIt).OperVals) { 591 // Since these are stored before any outlining, they will be in the 592 // global value numbering. 593 unsigned GVN = C.getGVN(V).getValue(); 594 if (isa<Constant>(V)) 595 if (NotSame.contains(GVN) && !Seen.contains(GVN)) { 596 Inputs.push_back(GVN); 597 Seen.insert(GVN); 598 } 599 } 600 } 601 } 602 603 /// Find the GVN for the inputs that have been found by the CodeExtractor. 604 /// 605 /// \param [in] C - The IRSimilarityCandidate containing the region we are 606 /// analyzing. 607 /// \param [in] CurrentInputs - The set of inputs found by the 608 /// CodeExtractor. 609 /// \param [in] OutputMappings - The mapping of values that have been replaced 610 /// by a new output value. 611 /// \param [out] EndInputNumbers - The global value numbers for the extracted 612 /// arguments. 613 static void mapInputsToGVNs(IRSimilarityCandidate &C, 614 SetVector<Value *> &CurrentInputs, 615 const DenseMap<Value *, Value *> &OutputMappings, 616 std::vector<unsigned> &EndInputNumbers) { 617 // Get the Global Value Number for each input. We check if the Value has been 618 // replaced by a different value at output, and use the original value before 619 // replacement. 620 for (Value *Input : CurrentInputs) { 621 assert(Input && "Have a nullptr as an input"); 622 if (OutputMappings.find(Input) != OutputMappings.end()) 623 Input = OutputMappings.find(Input)->second; 624 assert(C.getGVN(Input).hasValue() && 625 "Could not find a numbering for the given input"); 626 EndInputNumbers.push_back(C.getGVN(Input).getValue()); 627 } 628 } 629 630 /// Find the original value for the \p ArgInput values if any one of them was 631 /// replaced during a previous extraction. 632 /// 633 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. 634 /// \param [in] OutputMappings - The mapping of values that have been replaced 635 /// by a new output value. 636 /// \param [out] RemappedArgInputs - The remapped values according to 637 /// \p OutputMappings that will be extracted. 638 static void 639 remapExtractedInputs(const ArrayRef<Value *> ArgInputs, 640 const DenseMap<Value *, Value *> &OutputMappings, 641 SetVector<Value *> &RemappedArgInputs) { 642 // Get the global value number for each input that will be extracted as an 643 // argument by the code extractor, remapping if needed for reloaded values. 644 for (Value *Input : ArgInputs) { 645 if (OutputMappings.find(Input) != OutputMappings.end()) 646 Input = OutputMappings.find(Input)->second; 647 RemappedArgInputs.insert(Input); 648 } 649 } 650 651 /// Find the input GVNs and the output values for a region of Instructions. 652 /// Using the code extractor, we collect the inputs to the extracted function. 653 /// 654 /// The \p Region can be identified as needing to be ignored in this function. 655 /// It should be checked whether it should be ignored after a call to this 656 /// function. 657 /// 658 /// \param [in,out] Region - The region of code to be analyzed. 659 /// \param [out] InputGVNs - The global value numbers for the extracted 660 /// arguments. 661 /// \param [in] NotSame - The global value numbers in the region that do not 662 /// have the same constant value in the regions structurally similar to 663 /// \p Region. 664 /// \param [in] OutputMappings - The mapping of values that have been replaced 665 /// by a new output value after extraction. 666 /// \param [out] ArgInputs - The values of the inputs to the extracted function. 667 /// \param [out] Outputs - The set of values extracted by the CodeExtractor 668 /// as outputs. 669 static void getCodeExtractorArguments( 670 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs, 671 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings, 672 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) { 673 IRSimilarityCandidate &C = *Region.Candidate; 674 675 // OverallInputs are the inputs to the region found by the CodeExtractor, 676 // SinkCands and HoistCands are used by the CodeExtractor to find sunken 677 // allocas of values whose lifetimes are contained completely within the 678 // outlined region. PremappedInputs are the arguments found by the 679 // CodeExtractor, removing conditions such as sunken allocas, but that 680 // may need to be remapped due to the extracted output values replacing 681 // the original values. We use DummyOutputs for this first run of finding 682 // inputs and outputs since the outputs could change during findAllocas, 683 // the correct set of extracted outputs will be in the final Outputs ValueSet. 684 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands, 685 DummyOutputs; 686 687 // Use the code extractor to get the inputs and outputs, without sunken 688 // allocas or removing llvm.assumes. 689 CodeExtractor *CE = Region.CE; 690 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); 691 assert(Region.StartBB && "Region must have a start BasicBlock!"); 692 Function *OrigF = Region.StartBB->getParent(); 693 CodeExtractorAnalysisCache CEAC(*OrigF); 694 BasicBlock *Dummy = nullptr; 695 696 // The region may be ineligible due to VarArgs in the parent function. In this 697 // case we ignore the region. 698 if (!CE->isEligible()) { 699 Region.IgnoreRegion = true; 700 return; 701 } 702 703 // Find if any values are going to be sunk into the function when extracted 704 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); 705 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); 706 707 // TODO: Support regions with sunken allocas: values whose lifetimes are 708 // contained completely within the outlined region. These are not guaranteed 709 // to be the same in every region, so we must elevate them all to arguments 710 // when they appear. If these values are not equal, it means there is some 711 // Input in OverallInputs that was removed for ArgInputs. 712 if (OverallInputs.size() != PremappedInputs.size()) { 713 Region.IgnoreRegion = true; 714 return; 715 } 716 717 findConstants(C, NotSame, InputGVNs); 718 719 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); 720 721 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, 722 ArgInputs); 723 724 // Sort the GVNs, since we now have constants included in the \ref InputGVNs 725 // we need to make sure they are in a deterministic order. 726 stable_sort(InputGVNs); 727 } 728 729 /// Look over the inputs and map each input argument to an argument in the 730 /// overall function for the OutlinableRegions. This creates a way to replace 731 /// the arguments of the extracted function with the arguments of the new 732 /// overall function. 733 /// 734 /// \param [in,out] Region - The region of code to be analyzed. 735 /// \param [in] InputGVNs - The global value numbering of the input values 736 /// collected. 737 /// \param [in] ArgInputs - The values of the arguments to the extracted 738 /// function. 739 static void 740 findExtractedInputToOverallInputMapping(OutlinableRegion &Region, 741 std::vector<unsigned> &InputGVNs, 742 SetVector<Value *> &ArgInputs) { 743 744 IRSimilarityCandidate &C = *Region.Candidate; 745 OutlinableGroup &Group = *Region.Parent; 746 747 // This counts the argument number in the overall function. 748 unsigned TypeIndex = 0; 749 750 // This counts the argument number in the extracted function. 751 unsigned OriginalIndex = 0; 752 753 // Find the mapping of the extracted arguments to the arguments for the 754 // overall function. Since there may be extra arguments in the overall 755 // function to account for the extracted constants, we have two different 756 // counters as we find extracted arguments, and as we come across overall 757 // arguments. 758 759 // Additionally, in our first pass, for the first extracted function, 760 // we find argument locations for the canonical value numbering. This 761 // numbering overrides any discovered location for the extracted code. 762 for (unsigned InputVal : InputGVNs) { 763 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal); 764 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?"); 765 unsigned CanonicalNumber = CanonicalNumberOpt.getValue(); 766 767 Optional<Value *> InputOpt = C.fromGVN(InputVal); 768 assert(InputOpt.hasValue() && "Global value number not found?"); 769 Value *Input = InputOpt.getValue(); 770 771 DenseMap<unsigned, unsigned>::iterator AggArgIt = 772 Group.CanonicalNumberToAggArg.find(CanonicalNumber); 773 774 if (!Group.InputTypesSet) { 775 Group.ArgumentTypes.push_back(Input->getType()); 776 // If the input value has a swifterr attribute, make sure to mark the 777 // argument in the overall function. 778 if (Input->isSwiftError()) { 779 assert( 780 !Group.SwiftErrorArgument.hasValue() && 781 "Argument already marked with swifterr for this OutlinableGroup!"); 782 Group.SwiftErrorArgument = TypeIndex; 783 } 784 } 785 786 // Check if we have a constant. If we do add it to the overall argument 787 // number to Constant map for the region, and continue to the next input. 788 if (Constant *CST = dyn_cast<Constant>(Input)) { 789 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) 790 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST)); 791 else { 792 Group.CanonicalNumberToAggArg.insert( 793 std::make_pair(CanonicalNumber, TypeIndex)); 794 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); 795 } 796 TypeIndex++; 797 continue; 798 } 799 800 // It is not a constant, we create the mapping from extracted argument list 801 // to the overall argument list, using the canonical location, if it exists. 802 assert(ArgInputs.count(Input) && "Input cannot be found!"); 803 804 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) { 805 if (OriginalIndex != AggArgIt->second) 806 Region.ChangedArgOrder = true; 807 Region.ExtractedArgToAgg.insert( 808 std::make_pair(OriginalIndex, AggArgIt->second)); 809 Region.AggArgToExtracted.insert( 810 std::make_pair(AggArgIt->second, OriginalIndex)); 811 } else { 812 Group.CanonicalNumberToAggArg.insert( 813 std::make_pair(CanonicalNumber, TypeIndex)); 814 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); 815 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); 816 } 817 OriginalIndex++; 818 TypeIndex++; 819 } 820 821 // If the function type definitions for the OutlinableGroup holding the region 822 // have not been set, set the length of the inputs here. We should have the 823 // same inputs for all of the different regions contained in the 824 // OutlinableGroup since they are all structurally similar to one another. 825 if (!Group.InputTypesSet) { 826 Group.NumAggregateInputs = TypeIndex; 827 Group.InputTypesSet = true; 828 } 829 830 Region.NumExtractedInputs = OriginalIndex; 831 } 832 833 /// Create a mapping of the output arguments for the \p Region to the output 834 /// arguments of the overall outlined function. 835 /// 836 /// \param [in,out] Region - The region of code to be analyzed. 837 /// \param [in] Outputs - The values found by the code extractor. 838 static void 839 findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, 840 SetVector<Value *> &Outputs) { 841 OutlinableGroup &Group = *Region.Parent; 842 IRSimilarityCandidate &C = *Region.Candidate; 843 844 SmallVector<BasicBlock *> BE; 845 DenseSet<BasicBlock *> BBSet; 846 C.getBasicBlocks(BBSet, BE); 847 848 // Find the exits to the region. 849 SmallPtrSet<BasicBlock *, 1> Exits; 850 for (BasicBlock *Block : BE) 851 for (BasicBlock *Succ : successors(Block)) 852 if (!BBSet.contains(Succ)) 853 Exits.insert(Succ); 854 855 // After determining which blocks exit to PHINodes, we add these PHINodes to 856 // the set of outputs to be processed. We also check the incoming values of 857 // the PHINodes for whether they should no longer be considered outputs. 858 for (BasicBlock *ExitBB : Exits) { 859 for (PHINode &PN : ExitBB->phis()) { 860 // Find all incoming values from the outlining region. 861 SmallVector<unsigned, 2> IncomingVals; 862 for (unsigned Idx = 0; Idx < PN.getNumIncomingValues(); ++Idx) 863 if (BBSet.contains(PN.getIncomingBlock(Idx))) 864 IncomingVals.push_back(Idx); 865 866 // Do not process PHI if there is one (or fewer) predecessor from region. 867 if (IncomingVals.size() <= 1) 868 continue; 869 870 Region.IgnoreRegion = true; 871 return; 872 } 873 } 874 875 // This counts the argument number in the extracted function. 876 unsigned OriginalIndex = Region.NumExtractedInputs; 877 878 // This counts the argument number in the overall function. 879 unsigned TypeIndex = Group.NumAggregateInputs; 880 bool TypeFound; 881 DenseSet<unsigned> AggArgsUsed; 882 883 // Iterate over the output types and identify if there is an aggregate pointer 884 // type whose base type matches the current output type. If there is, we mark 885 // that we will use this output register for this value. If not we add another 886 // type to the overall argument type list. We also store the GVNs used for 887 // stores to identify which values will need to be moved into an special 888 // block that holds the stores to the output registers. 889 for (Value *Output : Outputs) { 890 TypeFound = false; 891 // We can do this since it is a result value, and will have a number 892 // that is necessarily the same. BUT if in the future, the instructions 893 // do not have to be in same order, but are functionally the same, we will 894 // have to use a different scheme, as one-to-one correspondence is not 895 // guaranteed. 896 unsigned GlobalValue = C.getGVN(Output).getValue(); 897 unsigned ArgumentSize = Group.ArgumentTypes.size(); 898 899 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { 900 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) 901 continue; 902 903 if (AggArgsUsed.contains(Jdx)) 904 continue; 905 906 TypeFound = true; 907 AggArgsUsed.insert(Jdx); 908 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); 909 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); 910 Region.GVNStores.push_back(GlobalValue); 911 break; 912 } 913 914 // We were unable to find an unused type in the output type set that matches 915 // the output, so we add a pointer type to the argument types of the overall 916 // function to handle this output and create a mapping to it. 917 if (!TypeFound) { 918 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); 919 AggArgsUsed.insert(Group.ArgumentTypes.size() - 1); 920 Region.ExtractedArgToAgg.insert( 921 std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1)); 922 Region.AggArgToExtracted.insert( 923 std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex)); 924 Region.GVNStores.push_back(GlobalValue); 925 } 926 927 stable_sort(Region.GVNStores); 928 OriginalIndex++; 929 TypeIndex++; 930 } 931 } 932 933 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, 934 DenseSet<unsigned> &NotSame) { 935 std::vector<unsigned> Inputs; 936 SetVector<Value *> ArgInputs, Outputs; 937 938 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, 939 Outputs); 940 941 if (Region.IgnoreRegion) 942 return; 943 944 // Map the inputs found by the CodeExtractor to the arguments found for 945 // the overall function. 946 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); 947 948 // Map the outputs found by the CodeExtractor to the arguments found for 949 // the overall function. 950 findExtractedOutputToOverallOutputMapping(Region, Outputs); 951 } 952 953 /// Replace the extracted function in the Region with a call to the overall 954 /// function constructed from the deduplicated similar regions, replacing and 955 /// remapping the values passed to the extracted function as arguments to the 956 /// new arguments of the overall function. 957 /// 958 /// \param [in] M - The module to outline from. 959 /// \param [in] Region - The regions of extracted code to be replaced with a new 960 /// function. 961 /// \returns a call instruction with the replaced function. 962 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { 963 std::vector<Value *> NewCallArgs; 964 DenseMap<unsigned, unsigned>::iterator ArgPair; 965 966 OutlinableGroup &Group = *Region.Parent; 967 CallInst *Call = Region.Call; 968 assert(Call && "Call to replace is nullptr?"); 969 Function *AggFunc = Group.OutlinedFunction; 970 assert(AggFunc && "Function to replace with is nullptr?"); 971 972 // If the arguments are the same size, there are not values that need to be 973 // made into an argument, the argument ordering has not been change, or 974 // different output registers to handle. We can simply replace the called 975 // function in this case. 976 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) { 977 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 978 << *AggFunc << " with same number of arguments\n"); 979 Call->setCalledFunction(AggFunc); 980 return Call; 981 } 982 983 // We have a different number of arguments than the new function, so 984 // we need to use our previously mappings off extracted argument to overall 985 // function argument, and constants to overall function argument to create the 986 // new argument list. 987 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { 988 989 if (AggArgIdx == AggFunc->arg_size() - 1 && 990 Group.OutputGVNCombinations.size() > 1) { 991 // If we are on the last argument, and we need to differentiate between 992 // output blocks, add an integer to the argument list to determine 993 // what block to take 994 LLVM_DEBUG(dbgs() << "Set switch block argument to " 995 << Region.OutputBlockNum << "\n"); 996 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), 997 Region.OutputBlockNum)); 998 continue; 999 } 1000 1001 ArgPair = Region.AggArgToExtracted.find(AggArgIdx); 1002 if (ArgPair != Region.AggArgToExtracted.end()) { 1003 Value *ArgumentValue = Call->getArgOperand(ArgPair->second); 1004 // If we found the mapping from the extracted function to the overall 1005 // function, we simply add it to the argument list. We use the same 1006 // value, it just needs to honor the new order of arguments. 1007 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1008 << *ArgumentValue << "\n"); 1009 NewCallArgs.push_back(ArgumentValue); 1010 continue; 1011 } 1012 1013 // If it is a constant, we simply add it to the argument list as a value. 1014 if (Region.AggArgToConstant.find(AggArgIdx) != 1015 Region.AggArgToConstant.end()) { 1016 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; 1017 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " 1018 << *CST << "\n"); 1019 NewCallArgs.push_back(CST); 1020 continue; 1021 } 1022 1023 // Add a nullptr value if the argument is not found in the extracted 1024 // function. If we cannot find a value, it means it is not in use 1025 // for the region, so we should not pass anything to it. 1026 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); 1027 NewCallArgs.push_back(ConstantPointerNull::get( 1028 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType()))); 1029 } 1030 1031 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " 1032 << *AggFunc << " with new set of arguments\n"); 1033 // Create the new call instruction and erase the old one. 1034 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", 1035 Call); 1036 1037 // It is possible that the call to the outlined function is either the first 1038 // instruction is in the new block, the last instruction, or both. If either 1039 // of these is the case, we need to make sure that we replace the instruction 1040 // in the IRInstructionData struct with the new call. 1041 CallInst *OldCall = Region.Call; 1042 if (Region.NewFront->Inst == OldCall) 1043 Region.NewFront->Inst = Call; 1044 if (Region.NewBack->Inst == OldCall) 1045 Region.NewBack->Inst = Call; 1046 1047 // Transfer any debug information. 1048 Call->setDebugLoc(Region.Call->getDebugLoc()); 1049 // Since our output may determine which branch we go to, we make sure to 1050 // propogate this new call value through the module. 1051 OldCall->replaceAllUsesWith(Call); 1052 1053 // Remove the old instruction. 1054 OldCall->eraseFromParent(); 1055 Region.Call = Call; 1056 1057 // Make sure that the argument in the new function has the SwiftError 1058 // argument. 1059 if (Group.SwiftErrorArgument.hasValue()) 1060 Call->addParamAttr(Group.SwiftErrorArgument.getValue(), 1061 Attribute::SwiftError); 1062 1063 return Call; 1064 } 1065 1066 // Within an extracted function, replace the argument uses of the extracted 1067 // region with the arguments of the function for an OutlinableGroup. 1068 // 1069 /// \param [in] Region - The region of extracted code to be changed. 1070 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this 1071 /// region. 1072 /// \param [in] FirstFunction - A flag to indicate whether we are using this 1073 /// function to define the overall outlined function for all the regions, or 1074 /// if we are operating on one of the following regions. 1075 static void 1076 replaceArgumentUses(OutlinableRegion &Region, 1077 DenseMap<Value *, BasicBlock *> &OutputBBs, 1078 bool FirstFunction = false) { 1079 OutlinableGroup &Group = *Region.Parent; 1080 assert(Region.ExtractedFunction && "Region has no extracted function?"); 1081 1082 Function *DominatingFunction = Region.ExtractedFunction; 1083 if (FirstFunction) 1084 DominatingFunction = Group.OutlinedFunction; 1085 DominatorTree DT(*DominatingFunction); 1086 1087 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); 1088 ArgIdx++) { 1089 assert(Region.ExtractedArgToAgg.find(ArgIdx) != 1090 Region.ExtractedArgToAgg.end() && 1091 "No mapping from extracted to outlined?"); 1092 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; 1093 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); 1094 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); 1095 // The argument is an input, so we can simply replace it with the overall 1096 // argument value 1097 if (ArgIdx < Region.NumExtractedInputs) { 1098 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " 1099 << *Region.ExtractedFunction << " with " << *AggArg 1100 << " in function " << *Group.OutlinedFunction << "\n"); 1101 Arg->replaceAllUsesWith(AggArg); 1102 continue; 1103 } 1104 1105 // If we are replacing an output, we place the store value in its own 1106 // block inside the overall function before replacing the use of the output 1107 // in the function. 1108 assert(Arg->hasOneUse() && "Output argument can only have one use"); 1109 User *InstAsUser = Arg->user_back(); 1110 assert(InstAsUser && "User is nullptr!"); 1111 1112 Instruction *I = cast<Instruction>(InstAsUser); 1113 BasicBlock *BB = I->getParent(); 1114 SmallVector<BasicBlock *, 4> Descendants; 1115 DT.getDescendants(BB, Descendants); 1116 bool EdgeAdded = false; 1117 if (Descendants.size() == 0) { 1118 EdgeAdded = true; 1119 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB); 1120 DT.getDescendants(BB, Descendants); 1121 } 1122 1123 // Iterate over the following blocks, looking for return instructions, 1124 // if we find one, find the corresponding output block for the return value 1125 // and move our store instruction there. 1126 for (BasicBlock *DescendBB : Descendants) { 1127 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator()); 1128 if (!RI) 1129 continue; 1130 Value *RetVal = RI->getReturnValue(); 1131 auto VBBIt = OutputBBs.find(RetVal); 1132 assert(VBBIt != OutputBBs.end() && "Could not find output value!"); 1133 1134 // If this is storing a PHINode, we must make sure it is included in the 1135 // overall function. 1136 StoreInst *SI = cast<StoreInst>(I); 1137 1138 Value *ValueOperand = SI->getValueOperand(); 1139 1140 StoreInst *NewI = cast<StoreInst>(I->clone()); 1141 NewI->setDebugLoc(DebugLoc()); 1142 BasicBlock *OutputBB = VBBIt->second; 1143 OutputBB->getInstList().push_back(NewI); 1144 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " 1145 << *OutputBB << "\n"); 1146 1147 if (FirstFunction) 1148 continue; 1149 Value *CorrVal = 1150 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand); 1151 assert(CorrVal && "Value is nullptr?"); 1152 NewI->setOperand(0, CorrVal); 1153 } 1154 1155 // If we added an edge for basic blocks without a predecessor, we remove it 1156 // here. 1157 if (EdgeAdded) 1158 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB); 1159 I->eraseFromParent(); 1160 1161 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " 1162 << *Region.ExtractedFunction << " with " << *AggArg 1163 << " in function " << *Group.OutlinedFunction << "\n"); 1164 Arg->replaceAllUsesWith(AggArg); 1165 } 1166 } 1167 1168 /// Within an extracted function, replace the constants that need to be lifted 1169 /// into arguments with the actual argument. 1170 /// 1171 /// \param Region [in] - The region of extracted code to be changed. 1172 void replaceConstants(OutlinableRegion &Region) { 1173 OutlinableGroup &Group = *Region.Parent; 1174 // Iterate over the constants that need to be elevated into arguments 1175 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) { 1176 unsigned AggArgIdx = Const.first; 1177 Function *OutlinedFunction = Group.OutlinedFunction; 1178 assert(OutlinedFunction && "Overall Function is not defined?"); 1179 Constant *CST = Const.second; 1180 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); 1181 // Identify the argument it will be elevated to, and replace instances of 1182 // that constant in the function. 1183 1184 // TODO: If in the future constants do not have one global value number, 1185 // i.e. a constant 1 could be mapped to several values, this check will 1186 // have to be more strict. It cannot be using only replaceUsesWithIf. 1187 1188 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST 1189 << " in function " << *OutlinedFunction << " with " 1190 << *Arg << "\n"); 1191 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { 1192 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1193 return I->getFunction() == OutlinedFunction; 1194 return false; 1195 }); 1196 } 1197 } 1198 1199 /// It is possible that there is a basic block that already performs the same 1200 /// stores. This returns a duplicate block, if it exists 1201 /// 1202 /// \param OutputBBs [in] the blocks we are looking for a duplicate of. 1203 /// \param OutputStoreBBs [in] The existing output blocks. 1204 /// \returns an optional value with the number output block if there is a match. 1205 Optional<unsigned> findDuplicateOutputBlock( 1206 DenseMap<Value *, BasicBlock *> &OutputBBs, 1207 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1208 1209 bool Mismatch = false; 1210 unsigned MatchingNum = 0; 1211 // We compare the new set output blocks to the other sets of output blocks. 1212 // If they are the same number, and have identical instructions, they are 1213 // considered to be the same. 1214 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) { 1215 Mismatch = false; 1216 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) { 1217 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt = 1218 OutputBBs.find(VToB.first); 1219 if (OutputBBIt == OutputBBs.end()) { 1220 Mismatch = true; 1221 break; 1222 } 1223 1224 BasicBlock *CompBB = VToB.second; 1225 BasicBlock *OutputBB = OutputBBIt->second; 1226 if (CompBB->size() - 1 != OutputBB->size()) { 1227 Mismatch = true; 1228 break; 1229 } 1230 1231 BasicBlock::iterator NIt = OutputBB->begin(); 1232 for (Instruction &I : *CompBB) { 1233 if (isa<BranchInst>(&I)) 1234 continue; 1235 1236 if (!I.isIdenticalTo(&(*NIt))) { 1237 Mismatch = true; 1238 break; 1239 } 1240 1241 NIt++; 1242 } 1243 } 1244 1245 if (!Mismatch) 1246 return MatchingNum; 1247 1248 MatchingNum++; 1249 } 1250 1251 return None; 1252 } 1253 1254 /// Remove empty output blocks from the outlined region. 1255 /// 1256 /// \param BlocksToPrune - Mapping of return values output blocks for the \p 1257 /// Region. 1258 /// \param Region - The OutlinableRegion we are analyzing. 1259 static bool 1260 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune, 1261 OutlinableRegion &Region) { 1262 bool AllRemoved = true; 1263 Value *RetValueForBB; 1264 BasicBlock *NewBB; 1265 SmallVector<Value *, 4> ToRemove; 1266 // Iterate over the output blocks created in the outlined section. 1267 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) { 1268 RetValueForBB = VtoBB.first; 1269 NewBB = VtoBB.second; 1270 1271 // If there are no instructions, we remove it from the module, and also 1272 // mark the value for removal from the return value to output block mapping. 1273 if (NewBB->size() == 0) { 1274 NewBB->eraseFromParent(); 1275 ToRemove.push_back(RetValueForBB); 1276 continue; 1277 } 1278 1279 // Mark that we could not remove all the blocks since they were not all 1280 // empty. 1281 AllRemoved = false; 1282 } 1283 1284 // Remove the return value from the mapping. 1285 for (Value *V : ToRemove) 1286 BlocksToPrune.erase(V); 1287 1288 // Mark the region as having the no output scheme. 1289 if (AllRemoved) 1290 Region.OutputBlockNum = -1; 1291 1292 return AllRemoved; 1293 } 1294 1295 /// For the outlined section, move needed the StoreInsts for the output 1296 /// registers into their own block. Then, determine if there is a duplicate 1297 /// output block already created. 1298 /// 1299 /// \param [in] OG - The OutlinableGroup of regions to be outlined. 1300 /// \param [in] Region - The OutlinableRegion that is being analyzed. 1301 /// \param [in,out] OutputBBs - the blocks that stores for this region will be 1302 /// placed in. 1303 /// \param [in] EndBBs - the final blocks of the extracted function. 1304 /// \param [in] OutputMappings - OutputMappings the mapping of values that have 1305 /// been replaced by a new output value. 1306 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1307 static void alignOutputBlockWithAggFunc( 1308 OutlinableGroup &OG, OutlinableRegion &Region, 1309 DenseMap<Value *, BasicBlock *> &OutputBBs, 1310 DenseMap<Value *, BasicBlock *> &EndBBs, 1311 const DenseMap<Value *, Value *> &OutputMappings, 1312 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1313 // If none of the output blocks have any instructions, this means that we do 1314 // not have to determine if it matches any of the other output schemes, and we 1315 // don't have to do anything else. 1316 if (analyzeAndPruneOutputBlocks(OutputBBs, Region)) 1317 return; 1318 1319 // Determine is there is a duplicate set of blocks. 1320 Optional<unsigned> MatchingBB = 1321 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs); 1322 1323 // If there is, we remove the new output blocks. If it does not, 1324 // we add it to our list of sets of output blocks. 1325 if (MatchingBB.hasValue()) { 1326 LLVM_DEBUG(dbgs() << "Set output block for region in function" 1327 << Region.ExtractedFunction << " to " 1328 << MatchingBB.getValue()); 1329 1330 Region.OutputBlockNum = MatchingBB.getValue(); 1331 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) 1332 VtoBB.second->eraseFromParent(); 1333 return; 1334 } 1335 1336 Region.OutputBlockNum = OutputStoreBBs.size(); 1337 1338 Value *RetValueForBB; 1339 BasicBlock *NewBB; 1340 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 1341 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) { 1342 RetValueForBB = VtoBB.first; 1343 NewBB = VtoBB.second; 1344 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 1345 EndBBs.find(RetValueForBB); 1346 LLVM_DEBUG(dbgs() << "Create output block for region in" 1347 << Region.ExtractedFunction << " to " 1348 << *NewBB); 1349 BranchInst::Create(VBBIt->second, NewBB); 1350 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB)); 1351 } 1352 } 1353 1354 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys, 1355 /// before creating a basic block for each \p NewMap, and inserting into the new 1356 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>". 1357 /// 1358 /// \param OldMap [in] - The mapping to base the new mapping off of. 1359 /// \param NewMap [out] - The output mapping using the keys of \p OldMap. 1360 /// \param ParentFunc [in] - The function to put the new basic block in. 1361 /// \param BaseName [in] - The start of the BasicBlock names to be appended to 1362 /// by an index value. 1363 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap, 1364 DenseMap<Value *, BasicBlock *> &NewMap, 1365 Function *ParentFunc, Twine BaseName) { 1366 unsigned Idx = 0; 1367 std::vector<Value *> SortedKeys; 1368 1369 getSortedConstantKeys(SortedKeys, OldMap); 1370 1371 for (Value *RetVal : SortedKeys) { 1372 BasicBlock *NewBB = BasicBlock::Create( 1373 ParentFunc->getContext(), 1374 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)), 1375 ParentFunc); 1376 NewMap.insert(std::make_pair(RetVal, NewBB)); 1377 } 1378 } 1379 1380 /// Create the switch statement for outlined function to differentiate between 1381 /// all the output blocks. 1382 /// 1383 /// For the outlined section, determine if an outlined block already exists that 1384 /// matches the needed stores for the extracted section. 1385 /// \param [in] M - The module we are outlining from. 1386 /// \param [in] OG - The group of regions to be outlined. 1387 /// \param [in] EndBBs - The final blocks of the extracted function. 1388 /// \param [in,out] OutputStoreBBs - The existing output blocks. 1389 void createSwitchStatement( 1390 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs, 1391 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) { 1392 // We only need the switch statement if there is more than one store 1393 // combination. 1394 if (OG.OutputGVNCombinations.size() > 1) { 1395 Function *AggFunc = OG.OutlinedFunction; 1396 // Create a final block for each different return block. 1397 DenseMap<Value *, BasicBlock *> ReturnBBs; 1398 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block"); 1399 1400 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) { 1401 std::pair<Value *, BasicBlock *> &OutputBlock = 1402 *OG.EndBBs.find(RetBlockPair.first); 1403 BasicBlock *ReturnBlock = RetBlockPair.second; 1404 BasicBlock *EndBB = OutputBlock.second; 1405 Instruction *Term = EndBB->getTerminator(); 1406 // Move the return value to the final block instead of the original exit 1407 // stub. 1408 Term->moveBefore(*ReturnBlock, ReturnBlock->end()); 1409 // Put the switch statement in the old end basic block for the function 1410 // with a fall through to the new return block. 1411 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " 1412 << OutputStoreBBs.size() << "\n"); 1413 SwitchInst *SwitchI = 1414 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), 1415 ReturnBlock, OutputStoreBBs.size(), EndBB); 1416 1417 unsigned Idx = 0; 1418 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) { 1419 DenseMap<Value *, BasicBlock *>::iterator OSBBIt = 1420 OutputStoreBB.find(OutputBlock.first); 1421 1422 if (OSBBIt == OutputStoreBB.end()) 1423 continue; 1424 1425 BasicBlock *BB = OSBBIt->second; 1426 SwitchI->addCase( 1427 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); 1428 Term = BB->getTerminator(); 1429 Term->setSuccessor(0, ReturnBlock); 1430 Idx++; 1431 } 1432 } 1433 return; 1434 } 1435 1436 // If there needs to be stores, move them from the output blocks to their 1437 // corresponding ending block. 1438 if (OutputStoreBBs.size() == 1) { 1439 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " 1440 << *OG.OutlinedFunction << "\n"); 1441 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0]; 1442 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) { 1443 DenseMap<Value *, BasicBlock *>::iterator EndBBIt = 1444 EndBBs.find(VBPair.first); 1445 assert(EndBBIt != EndBBs.end() && "Could not find end block"); 1446 BasicBlock *EndBB = EndBBIt->second; 1447 BasicBlock *OutputBB = VBPair.second; 1448 Instruction *Term = OutputBB->getTerminator(); 1449 Term->eraseFromParent(); 1450 Term = EndBB->getTerminator(); 1451 moveBBContents(*OutputBB, *EndBB); 1452 Term->moveBefore(*EndBB, EndBB->end()); 1453 OutputBB->eraseFromParent(); 1454 } 1455 } 1456 } 1457 1458 /// Fill the new function that will serve as the replacement function for all of 1459 /// the extracted regions of a certain structure from the first region in the 1460 /// list of regions. Replace this first region's extracted function with the 1461 /// new overall function. 1462 /// 1463 /// \param [in] M - The module we are outlining from. 1464 /// \param [in] CurrentGroup - The group of regions to be outlined. 1465 /// \param [in,out] OutputStoreBBs - The output blocks for each different 1466 /// set of stores needed for the different functions. 1467 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module 1468 /// once outlining is complete. 1469 static void fillOverallFunction( 1470 Module &M, OutlinableGroup &CurrentGroup, 1471 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs, 1472 std::vector<Function *> &FuncsToRemove) { 1473 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; 1474 1475 // Move first extracted function's instructions into new function. 1476 LLVM_DEBUG(dbgs() << "Move instructions from " 1477 << *CurrentOS->ExtractedFunction << " to instruction " 1478 << *CurrentGroup.OutlinedFunction << "\n"); 1479 moveFunctionData(*CurrentOS->ExtractedFunction, 1480 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs); 1481 1482 // Transfer the attributes from the function to the new function. 1483 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs()) 1484 CurrentGroup.OutlinedFunction->addFnAttr(A); 1485 1486 // Create a new set of output blocks for the first extracted function. 1487 DenseMap<Value *, BasicBlock *> NewBBs; 1488 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs, 1489 CurrentGroup.OutlinedFunction, "output_block_0"); 1490 CurrentOS->OutputBlockNum = 0; 1491 1492 replaceArgumentUses(*CurrentOS, NewBBs, true); 1493 replaceConstants(*CurrentOS); 1494 1495 // We first identify if any output blocks are empty, if they are we remove 1496 // them. We then create a branch instruction to the basic block to the return 1497 // block for the function for each non empty output block. 1498 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) { 1499 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>()); 1500 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) { 1501 DenseMap<Value *, BasicBlock *>::iterator VBBIt = 1502 CurrentGroup.EndBBs.find(VToBB.first); 1503 BasicBlock *EndBB = VBBIt->second; 1504 BranchInst::Create(EndBB, VToBB.second); 1505 OutputStoreBBs.back().insert(VToBB); 1506 } 1507 } 1508 1509 // Replace the call to the extracted function with the outlined function. 1510 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1511 1512 // We only delete the extracted functions at the end since we may need to 1513 // reference instructions contained in them for mapping purposes. 1514 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1515 } 1516 1517 void IROutliner::deduplicateExtractedSections( 1518 Module &M, OutlinableGroup &CurrentGroup, 1519 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) { 1520 createFunction(M, CurrentGroup, OutlinedFunctionNum); 1521 1522 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs; 1523 1524 OutlinableRegion *CurrentOS; 1525 1526 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove); 1527 1528 std::vector<Value *> SortedKeys; 1529 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { 1530 CurrentOS = CurrentGroup.Regions[Idx]; 1531 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, 1532 *CurrentOS->ExtractedFunction); 1533 1534 // Create a set of BasicBlocks, one for each return block, to hold the 1535 // needed store instructions. 1536 DenseMap<Value *, BasicBlock *> NewBBs; 1537 createAndInsertBasicBlocks( 1538 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction, 1539 "output_block_" + Twine(static_cast<unsigned>(Idx))); 1540 1541 replaceArgumentUses(*CurrentOS, NewBBs); 1542 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs, 1543 CurrentGroup.EndBBs, OutputMappings, 1544 OutputStoreBBs); 1545 1546 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); 1547 FuncsToRemove.push_back(CurrentOS->ExtractedFunction); 1548 } 1549 1550 // Create a switch statement to handle the different output schemes. 1551 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs); 1552 1553 OutlinedFunctionNum++; 1554 } 1555 1556 /// Checks that the next instruction in the InstructionDataList matches the 1557 /// next instruction in the module. If they do not, there could be the 1558 /// possibility that extra code has been inserted, and we must ignore it. 1559 /// 1560 /// \param ID - The IRInstructionData to check the next instruction of. 1561 /// \returns true if the InstructionDataList and actual instruction match. 1562 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) { 1563 // We check if there is a discrepancy between the InstructionDataList 1564 // and the actual next instruction in the module. If there is, it means 1565 // that an extra instruction was added, likely by the CodeExtractor. 1566 1567 // Since we do not have any similarity data about this particular 1568 // instruction, we cannot confidently outline it, and must discard this 1569 // candidate. 1570 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator()); 1571 Instruction *NextIDLInst = NextIDIt->Inst; 1572 Instruction *NextModuleInst = nullptr; 1573 if (!ID.Inst->isTerminator()) 1574 NextModuleInst = ID.Inst->getNextNonDebugInstruction(); 1575 else if (NextIDLInst != nullptr) 1576 NextModuleInst = 1577 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin(); 1578 1579 if (NextIDLInst && NextIDLInst != NextModuleInst) 1580 return false; 1581 1582 return true; 1583 } 1584 1585 bool IROutliner::isCompatibleWithAlreadyOutlinedCode( 1586 const OutlinableRegion &Region) { 1587 IRSimilarityCandidate *IRSC = Region.Candidate; 1588 unsigned StartIdx = IRSC->getStartIdx(); 1589 unsigned EndIdx = IRSC->getEndIdx(); 1590 1591 // A check to make sure that we are not about to attempt to outline something 1592 // that has already been outlined. 1593 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1594 if (Outlined.contains(Idx)) 1595 return false; 1596 1597 // We check if the recorded instruction matches the actual next instruction, 1598 // if it does not, we fix it in the InstructionDataList. 1599 if (!Region.Candidate->backInstruction()->isTerminator()) { 1600 Instruction *NewEndInst = 1601 Region.Candidate->backInstruction()->getNextNonDebugInstruction(); 1602 assert(NewEndInst && "Next instruction is a nullptr?"); 1603 if (Region.Candidate->end()->Inst != NewEndInst) { 1604 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1605 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate()) 1606 IRInstructionData(*NewEndInst, 1607 InstructionClassifier.visit(*NewEndInst), *IDL); 1608 1609 // Insert the first IRInstructionData of the new region after the 1610 // last IRInstructionData of the IRSimilarityCandidate. 1611 IDL->insert(Region.Candidate->end(), *NewEndIRID); 1612 } 1613 } 1614 1615 return none_of(*IRSC, [this](IRInstructionData &ID) { 1616 if (!nextIRInstructionDataMatchesNextInst(ID)) 1617 return true; 1618 1619 return !this->InstructionClassifier.visit(ID.Inst); 1620 }); 1621 } 1622 1623 void IROutliner::pruneIncompatibleRegions( 1624 std::vector<IRSimilarityCandidate> &CandidateVec, 1625 OutlinableGroup &CurrentGroup) { 1626 bool PreviouslyOutlined; 1627 1628 // Sort from beginning to end, so the IRSimilarityCandidates are in order. 1629 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, 1630 const IRSimilarityCandidate &RHS) { 1631 return LHS.getStartIdx() < RHS.getStartIdx(); 1632 }); 1633 1634 IRSimilarityCandidate &FirstCandidate = CandidateVec[0]; 1635 // Since outlining a call and a branch instruction will be the same as only 1636 // outlinining a call instruction, we ignore it as a space saving. 1637 if (FirstCandidate.getLength() == 2) { 1638 if (isa<CallInst>(FirstCandidate.front()->Inst) && 1639 isa<BranchInst>(FirstCandidate.back()->Inst)) 1640 return; 1641 } 1642 1643 unsigned CurrentEndIdx = 0; 1644 for (IRSimilarityCandidate &IRSC : CandidateVec) { 1645 PreviouslyOutlined = false; 1646 unsigned StartIdx = IRSC.getStartIdx(); 1647 unsigned EndIdx = IRSC.getEndIdx(); 1648 1649 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 1650 if (Outlined.contains(Idx)) { 1651 PreviouslyOutlined = true; 1652 break; 1653 } 1654 1655 if (PreviouslyOutlined) 1656 continue; 1657 1658 // Check over the instructions, and if the basic block has its address 1659 // taken for use somewhere else, we do not outline that block. 1660 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){ 1661 return ID.Inst->getParent()->hasAddressTaken(); 1662 }); 1663 1664 if (BBHasAddressTaken) 1665 continue; 1666 1667 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && 1668 !OutlineFromLinkODRs) 1669 continue; 1670 1671 // Greedily prune out any regions that will overlap with already chosen 1672 // regions. 1673 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) 1674 continue; 1675 1676 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { 1677 if (!nextIRInstructionDataMatchesNextInst(ID)) 1678 return true; 1679 1680 return !this->InstructionClassifier.visit(ID.Inst); 1681 }); 1682 1683 if (BadInst) 1684 continue; 1685 1686 OutlinableRegion *OS = new (RegionAllocator.Allocate()) 1687 OutlinableRegion(IRSC, CurrentGroup); 1688 CurrentGroup.Regions.push_back(OS); 1689 1690 CurrentEndIdx = EndIdx; 1691 } 1692 } 1693 1694 InstructionCost 1695 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { 1696 InstructionCost RegionBenefit = 0; 1697 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1698 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1699 // We add the number of instructions in the region to the benefit as an 1700 // estimate as to how much will be removed. 1701 RegionBenefit += Region->getBenefit(TTI); 1702 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit 1703 << " saved instructions to overfall benefit.\n"); 1704 } 1705 1706 return RegionBenefit; 1707 } 1708 1709 InstructionCost 1710 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { 1711 InstructionCost OverallCost = 0; 1712 for (OutlinableRegion *Region : CurrentGroup.Regions) { 1713 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); 1714 1715 // Each output incurs a load after the call, so we add that to the cost. 1716 for (unsigned OutputGVN : Region->GVNStores) { 1717 Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN); 1718 assert(OV.hasValue() && "Could not find value for GVN?"); 1719 Value *V = OV.getValue(); 1720 InstructionCost LoadCost = 1721 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1722 TargetTransformInfo::TCK_CodeSize); 1723 1724 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost 1725 << " instructions to cost for output of type " 1726 << *V->getType() << "\n"); 1727 OverallCost += LoadCost; 1728 } 1729 } 1730 1731 return OverallCost; 1732 } 1733 1734 /// Find the extra instructions needed to handle any output values for the 1735 /// region. 1736 /// 1737 /// \param [in] M - The Module to outline from. 1738 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. 1739 /// \param [in] TTI - The TargetTransformInfo used to collect information for 1740 /// new instruction costs. 1741 /// \returns the additional cost to handle the outputs. 1742 static InstructionCost findCostForOutputBlocks(Module &M, 1743 OutlinableGroup &CurrentGroup, 1744 TargetTransformInfo &TTI) { 1745 InstructionCost OutputCost = 0; 1746 unsigned NumOutputBranches = 0; 1747 1748 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; 1749 DenseSet<BasicBlock *> CandidateBlocks; 1750 Candidate.getBasicBlocks(CandidateBlocks); 1751 1752 // Count the number of different output branches that point to blocks outside 1753 // of the region. 1754 DenseSet<BasicBlock *> FoundBlocks; 1755 for (IRInstructionData &ID : Candidate) { 1756 if (!isa<BranchInst>(ID.Inst)) 1757 continue; 1758 1759 for (Value *V : ID.OperVals) { 1760 BasicBlock *BB = static_cast<BasicBlock *>(V); 1761 DenseSet<BasicBlock *>::iterator CBIt = CandidateBlocks.find(BB); 1762 if (CBIt != CandidateBlocks.end() || FoundBlocks.contains(BB)) 1763 continue; 1764 FoundBlocks.insert(BB); 1765 NumOutputBranches++; 1766 } 1767 } 1768 1769 CurrentGroup.BranchesToOutside = NumOutputBranches; 1770 1771 for (const ArrayRef<unsigned> &OutputUse : 1772 CurrentGroup.OutputGVNCombinations) { 1773 for (unsigned GVN : OutputUse) { 1774 Optional<Value *> OV = Candidate.fromGVN(GVN); 1775 assert(OV.hasValue() && "Could not find value for GVN?"); 1776 Value *V = OV.getValue(); 1777 InstructionCost StoreCost = 1778 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, 1779 TargetTransformInfo::TCK_CodeSize); 1780 1781 // An instruction cost is added for each store set that needs to occur for 1782 // various output combinations inside the function, plus a branch to 1783 // return to the exit block. 1784 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost 1785 << " instructions to cost for output of type " 1786 << *V->getType() << "\n"); 1787 OutputCost += StoreCost * NumOutputBranches; 1788 } 1789 1790 InstructionCost BranchCost = 1791 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1792 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" 1793 << " a branch instruction\n"); 1794 OutputCost += BranchCost * NumOutputBranches; 1795 } 1796 1797 // If there is more than one output scheme, we must have a comparison and 1798 // branch for each different item in the switch statement. 1799 if (CurrentGroup.OutputGVNCombinations.size() > 1) { 1800 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( 1801 Instruction::ICmp, Type::getInt32Ty(M.getContext()), 1802 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, 1803 TargetTransformInfo::TCK_CodeSize); 1804 InstructionCost BranchCost = 1805 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); 1806 1807 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); 1808 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; 1809 1810 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost 1811 << " instructions for each switch case for each different" 1812 << " output path in a function\n"); 1813 OutputCost += TotalCost * NumOutputBranches; 1814 } 1815 1816 return OutputCost; 1817 } 1818 1819 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { 1820 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); 1821 CurrentGroup.Benefit += RegionBenefit; 1822 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); 1823 1824 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); 1825 CurrentGroup.Cost += OutputReloadCost; 1826 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1827 1828 InstructionCost AverageRegionBenefit = 1829 RegionBenefit / CurrentGroup.Regions.size(); 1830 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); 1831 unsigned NumRegions = CurrentGroup.Regions.size(); 1832 TargetTransformInfo &TTI = 1833 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); 1834 1835 // We add one region to the cost once, to account for the instructions added 1836 // inside of the newly created function. 1837 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit 1838 << " instructions to cost for body of new function.\n"); 1839 CurrentGroup.Cost += AverageRegionBenefit; 1840 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1841 1842 // For each argument, we must add an instruction for loading the argument 1843 // out of the register and into a value inside of the newly outlined function. 1844 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1845 << " instructions to cost for each argument in the new" 1846 << " function.\n"); 1847 CurrentGroup.Cost += 1848 OverallArgumentNum * TargetTransformInfo::TCC_Basic; 1849 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1850 1851 // Each argument needs to either be loaded into a register or onto the stack. 1852 // Some arguments will only be loaded into the stack once the argument 1853 // registers are filled. 1854 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum 1855 << " instructions to cost for each argument in the new" 1856 << " function " << NumRegions << " times for the " 1857 << "needed argument handling at the call site.\n"); 1858 CurrentGroup.Cost += 1859 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; 1860 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1861 1862 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); 1863 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); 1864 } 1865 1866 void IROutliner::updateOutputMapping(OutlinableRegion &Region, 1867 ArrayRef<Value *> Outputs, 1868 LoadInst *LI) { 1869 // For and load instructions following the call 1870 Value *Operand = LI->getPointerOperand(); 1871 Optional<unsigned> OutputIdx = None; 1872 // Find if the operand it is an output register. 1873 for (unsigned ArgIdx = Region.NumExtractedInputs; 1874 ArgIdx < Region.Call->arg_size(); ArgIdx++) { 1875 if (Operand == Region.Call->getArgOperand(ArgIdx)) { 1876 OutputIdx = ArgIdx - Region.NumExtractedInputs; 1877 break; 1878 } 1879 } 1880 1881 // If we found an output register, place a mapping of the new value 1882 // to the original in the mapping. 1883 if (!OutputIdx.hasValue()) 1884 return; 1885 1886 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == 1887 OutputMappings.end()) { 1888 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " 1889 << *Outputs[OutputIdx.getValue()] << "\n"); 1890 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); 1891 } else { 1892 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; 1893 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " 1894 << *Outputs[OutputIdx.getValue()] << "\n"); 1895 OutputMappings.insert(std::make_pair(LI, Orig)); 1896 } 1897 } 1898 1899 bool IROutliner::extractSection(OutlinableRegion &Region) { 1900 SetVector<Value *> ArgInputs, Outputs, SinkCands; 1901 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); 1902 BasicBlock *InitialStart = Region.StartBB; 1903 Function *OrigF = Region.StartBB->getParent(); 1904 CodeExtractorAnalysisCache CEAC(*OrigF); 1905 Region.ExtractedFunction = 1906 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs); 1907 1908 // If the extraction was successful, find the BasicBlock, and reassign the 1909 // OutlinableRegion blocks 1910 if (!Region.ExtractedFunction) { 1911 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB 1912 << "\n"); 1913 Region.reattachCandidate(); 1914 return false; 1915 } 1916 1917 // Get the block containing the called branch, and reassign the blocks as 1918 // necessary. If the original block still exists, it is because we ended on 1919 // a branch instruction, and so we move the contents into the block before 1920 // and assign the previous block correctly. 1921 User *InstAsUser = Region.ExtractedFunction->user_back(); 1922 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent(); 1923 Region.PrevBB = RewrittenBB->getSinglePredecessor(); 1924 assert(Region.PrevBB && "PrevBB is nullptr?"); 1925 if (Region.PrevBB == InitialStart) { 1926 BasicBlock *NewPrev = InitialStart->getSinglePredecessor(); 1927 Instruction *BI = NewPrev->getTerminator(); 1928 BI->eraseFromParent(); 1929 moveBBContents(*InitialStart, *NewPrev); 1930 Region.PrevBB = NewPrev; 1931 InitialStart->eraseFromParent(); 1932 } 1933 1934 Region.StartBB = RewrittenBB; 1935 Region.EndBB = RewrittenBB; 1936 1937 // The sequences of outlinable regions has now changed. We must fix the 1938 // IRInstructionDataList for consistency. Although they may not be illegal 1939 // instructions, they should not be compared with anything else as they 1940 // should not be outlined in this round. So marking these as illegal is 1941 // allowed. 1942 IRInstructionDataList *IDL = Region.Candidate->front()->IDL; 1943 Instruction *BeginRewritten = &*RewrittenBB->begin(); 1944 Instruction *EndRewritten = &*RewrittenBB->begin(); 1945 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( 1946 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); 1947 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( 1948 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); 1949 1950 // Insert the first IRInstructionData of the new region in front of the 1951 // first IRInstructionData of the IRSimilarityCandidate. 1952 IDL->insert(Region.Candidate->begin(), *Region.NewFront); 1953 // Insert the first IRInstructionData of the new region after the 1954 // last IRInstructionData of the IRSimilarityCandidate. 1955 IDL->insert(Region.Candidate->end(), *Region.NewBack); 1956 // Remove the IRInstructionData from the IRSimilarityCandidate. 1957 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); 1958 1959 assert(RewrittenBB != nullptr && 1960 "Could not find a predecessor after extraction!"); 1961 1962 // Iterate over the new set of instructions to find the new call 1963 // instruction. 1964 for (Instruction &I : *RewrittenBB) 1965 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1966 if (Region.ExtractedFunction == CI->getCalledFunction()) 1967 Region.Call = CI; 1968 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) 1969 updateOutputMapping(Region, Outputs.getArrayRef(), LI); 1970 Region.reattachCandidate(); 1971 return true; 1972 } 1973 1974 unsigned IROutliner::doOutline(Module &M) { 1975 // Find the possible similarity sections. 1976 InstructionClassifier.EnableBranches = !DisableBranches; 1977 IRSimilarityIdentifier &Identifier = getIRSI(M); 1978 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); 1979 1980 // Sort them by size of extracted sections 1981 unsigned OutlinedFunctionNum = 0; 1982 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have 1983 // to sort them by the potential number of instructions to be outlined 1984 if (SimilarityCandidates.size() > 1) 1985 llvm::stable_sort(SimilarityCandidates, 1986 [](const std::vector<IRSimilarityCandidate> &LHS, 1987 const std::vector<IRSimilarityCandidate> &RHS) { 1988 return LHS[0].getLength() * LHS.size() > 1989 RHS[0].getLength() * RHS.size(); 1990 }); 1991 // Creating OutlinableGroups for each SimilarityCandidate to be used in 1992 // each of the following for loops to avoid making an allocator. 1993 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size()); 1994 1995 DenseSet<unsigned> NotSame; 1996 std::vector<OutlinableGroup *> NegativeCostGroups; 1997 std::vector<OutlinableRegion *> OutlinedRegions; 1998 // Iterate over the possible sets of similarity. 1999 unsigned PotentialGroupIdx = 0; 2000 for (SimilarityGroup &CandidateVec : SimilarityCandidates) { 2001 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++]; 2002 2003 // Remove entries that were previously outlined 2004 pruneIncompatibleRegions(CandidateVec, CurrentGroup); 2005 2006 // We pruned the number of regions to 0 to 1, meaning that it's not worth 2007 // trying to outlined since there is no compatible similar instance of this 2008 // code. 2009 if (CurrentGroup.Regions.size() < 2) 2010 continue; 2011 2012 // Determine if there are any values that are the same constant throughout 2013 // each section in the set. 2014 NotSame.clear(); 2015 CurrentGroup.findSameConstants(NotSame); 2016 2017 if (CurrentGroup.IgnoreGroup) 2018 continue; 2019 2020 // Create a CodeExtractor for each outlinable region. Identify inputs and 2021 // outputs for each section using the code extractor and create the argument 2022 // types for the Aggregate Outlining Function. 2023 OutlinedRegions.clear(); 2024 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2025 // Break the outlinable region out of its parent BasicBlock into its own 2026 // BasicBlocks (see function implementation). 2027 OS->splitCandidate(); 2028 2029 // There's a chance that when the region is split, extra instructions are 2030 // added to the region. This makes the region no longer viable 2031 // to be split, so we ignore it for outlining. 2032 if (!OS->CandidateSplit) 2033 continue; 2034 2035 SmallVector<BasicBlock *> BE; 2036 DenseSet<BasicBlock *> BBSet; 2037 OS->Candidate->getBasicBlocks(BBSet, BE); 2038 OS->CE = new (ExtractorAllocator.Allocate()) 2039 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2040 false, "outlined"); 2041 findAddInputsOutputs(M, *OS, NotSame); 2042 if (!OS->IgnoreRegion) 2043 OutlinedRegions.push_back(OS); 2044 2045 // We recombine the blocks together now that we have gathered all the 2046 // needed information. 2047 OS->reattachCandidate(); 2048 } 2049 2050 CurrentGroup.Regions = std::move(OutlinedRegions); 2051 2052 if (CurrentGroup.Regions.empty()) 2053 continue; 2054 2055 CurrentGroup.collectGVNStoreSets(M); 2056 2057 if (CostModel) 2058 findCostBenefit(M, CurrentGroup); 2059 2060 // If we are adhering to the cost model, skip those groups where the cost 2061 // outweighs the benefits. 2062 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { 2063 OptimizationRemarkEmitter &ORE = 2064 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction()); 2065 ORE.emit([&]() { 2066 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2067 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", 2068 C->frontInstruction()); 2069 R << "did not outline " 2070 << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2071 << " regions due to estimated increase of " 2072 << ore::NV("InstructionIncrease", 2073 CurrentGroup.Cost - CurrentGroup.Benefit) 2074 << " instructions at locations "; 2075 interleave( 2076 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2077 [&R](OutlinableRegion *Region) { 2078 R << ore::NV( 2079 "DebugLoc", 2080 Region->Candidate->frontInstruction()->getDebugLoc()); 2081 }, 2082 [&R]() { R << " "; }); 2083 return R; 2084 }); 2085 continue; 2086 } 2087 2088 NegativeCostGroups.push_back(&CurrentGroup); 2089 } 2090 2091 ExtractorAllocator.DestroyAll(); 2092 2093 if (NegativeCostGroups.size() > 1) 2094 stable_sort(NegativeCostGroups, 2095 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) { 2096 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost; 2097 }); 2098 2099 std::vector<Function *> FuncsToRemove; 2100 for (OutlinableGroup *CG : NegativeCostGroups) { 2101 OutlinableGroup &CurrentGroup = *CG; 2102 2103 OutlinedRegions.clear(); 2104 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2105 // We check whether our region is compatible with what has already been 2106 // outlined, and whether we need to ignore this item. 2107 if (!isCompatibleWithAlreadyOutlinedCode(*Region)) 2108 continue; 2109 OutlinedRegions.push_back(Region); 2110 } 2111 2112 if (OutlinedRegions.size() < 2) 2113 continue; 2114 2115 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if 2116 // we are still outlining enough regions to make up for the added cost. 2117 CurrentGroup.Regions = std::move(OutlinedRegions); 2118 if (CostModel) { 2119 CurrentGroup.Benefit = 0; 2120 CurrentGroup.Cost = 0; 2121 findCostBenefit(M, CurrentGroup); 2122 if (CurrentGroup.Cost >= CurrentGroup.Benefit) 2123 continue; 2124 } 2125 OutlinedRegions.clear(); 2126 for (OutlinableRegion *Region : CurrentGroup.Regions) { 2127 Region->splitCandidate(); 2128 if (!Region->CandidateSplit) 2129 continue; 2130 OutlinedRegions.push_back(Region); 2131 } 2132 2133 CurrentGroup.Regions = std::move(OutlinedRegions); 2134 if (CurrentGroup.Regions.size() < 2) { 2135 for (OutlinableRegion *R : CurrentGroup.Regions) 2136 R->reattachCandidate(); 2137 continue; 2138 } 2139 2140 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost 2141 << " and benefit " << CurrentGroup.Benefit << "\n"); 2142 2143 // Create functions out of all the sections, and mark them as outlined. 2144 OutlinedRegions.clear(); 2145 for (OutlinableRegion *OS : CurrentGroup.Regions) { 2146 SmallVector<BasicBlock *> BE; 2147 DenseSet<BasicBlock *> BBSet; 2148 OS->Candidate->getBasicBlocks(BBSet, BE); 2149 OS->CE = new (ExtractorAllocator.Allocate()) 2150 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, 2151 false, "outlined"); 2152 bool FunctionOutlined = extractSection(*OS); 2153 if (FunctionOutlined) { 2154 unsigned StartIdx = OS->Candidate->getStartIdx(); 2155 unsigned EndIdx = OS->Candidate->getEndIdx(); 2156 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) 2157 Outlined.insert(Idx); 2158 2159 OutlinedRegions.push_back(OS); 2160 } 2161 } 2162 2163 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() 2164 << " with benefit " << CurrentGroup.Benefit 2165 << " and cost " << CurrentGroup.Cost << "\n"); 2166 2167 CurrentGroup.Regions = std::move(OutlinedRegions); 2168 2169 if (CurrentGroup.Regions.empty()) 2170 continue; 2171 2172 OptimizationRemarkEmitter &ORE = 2173 getORE(*CurrentGroup.Regions[0]->Call->getFunction()); 2174 ORE.emit([&]() { 2175 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; 2176 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); 2177 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) 2178 << " regions with decrease of " 2179 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) 2180 << " instructions at locations "; 2181 interleave( 2182 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), 2183 [&R](OutlinableRegion *Region) { 2184 R << ore::NV("DebugLoc", 2185 Region->Candidate->frontInstruction()->getDebugLoc()); 2186 }, 2187 [&R]() { R << " "; }); 2188 return R; 2189 }); 2190 2191 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, 2192 OutlinedFunctionNum); 2193 } 2194 2195 for (Function *F : FuncsToRemove) 2196 F->eraseFromParent(); 2197 2198 return OutlinedFunctionNum; 2199 } 2200 2201 bool IROutliner::run(Module &M) { 2202 CostModel = !NoCostModel; 2203 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; 2204 2205 return doOutline(M) > 0; 2206 } 2207 2208 // Pass Manager Boilerplate 2209 namespace { 2210 class IROutlinerLegacyPass : public ModulePass { 2211 public: 2212 static char ID; 2213 IROutlinerLegacyPass() : ModulePass(ID) { 2214 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); 2215 } 2216 2217 void getAnalysisUsage(AnalysisUsage &AU) const override { 2218 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2219 AU.addRequired<TargetTransformInfoWrapperPass>(); 2220 AU.addRequired<IRSimilarityIdentifierWrapperPass>(); 2221 } 2222 2223 bool runOnModule(Module &M) override; 2224 }; 2225 } // namespace 2226 2227 bool IROutlinerLegacyPass::runOnModule(Module &M) { 2228 if (skipModule(M)) 2229 return false; 2230 2231 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2232 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2233 ORE.reset(new OptimizationRemarkEmitter(&F)); 2234 return *ORE.get(); 2235 }; 2236 2237 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 2238 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2239 }; 2240 2241 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { 2242 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI(); 2243 }; 2244 2245 return IROutliner(GTTI, GIRSI, GORE).run(M); 2246 } 2247 2248 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { 2249 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2250 2251 std::function<TargetTransformInfo &(Function &)> GTTI = 2252 [&FAM](Function &F) -> TargetTransformInfo & { 2253 return FAM.getResult<TargetIRAnalysis>(F); 2254 }; 2255 2256 std::function<IRSimilarityIdentifier &(Module &)> GIRSI = 2257 [&AM](Module &M) -> IRSimilarityIdentifier & { 2258 return AM.getResult<IRSimilarityAnalysis>(M); 2259 }; 2260 2261 std::unique_ptr<OptimizationRemarkEmitter> ORE; 2262 std::function<OptimizationRemarkEmitter &(Function &)> GORE = 2263 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 2264 ORE.reset(new OptimizationRemarkEmitter(&F)); 2265 return *ORE.get(); 2266 }; 2267 2268 if (IROutliner(GTTI, GIRSI, GORE).run(M)) 2269 return PreservedAnalyses::none(); 2270 return PreservedAnalyses::all(); 2271 } 2272 2273 char IROutlinerLegacyPass::ID = 0; 2274 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2275 false) 2276 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) 2277 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2278 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2279 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, 2280 false) 2281 2282 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); } 2283