1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/BlockFrequencyInfo.h" 33 #include "llvm/Analysis/BranchProbabilityInfo.h" 34 #include "llvm/Analysis/CFG.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/PostDominators.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/IPO/HotColdSplitting.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/CodeExtractor.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 72 #define DEBUG_TYPE "hotcoldsplit" 73 74 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 76 77 using namespace llvm; 78 79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<int> 83 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 84 cl::desc("Base penalty for splitting cold code (as a " 85 "multiple of TCC_Basic)")); 86 87 namespace { 88 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 89 // this function unless you modify the MBB version as well. 90 // 91 /// A no successor, non-return block probably ends in unreachable and is cold. 92 /// Also consider a block that ends in an indirect branch to be a return block, 93 /// since many targets use plain indirect branches to return. 94 bool blockEndsInUnreachable(const BasicBlock &BB) { 95 if (!succ_empty(&BB)) 96 return false; 97 if (BB.empty()) 98 return true; 99 const Instruction *I = BB.getTerminator(); 100 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 101 } 102 103 bool unlikelyExecuted(BasicBlock &BB) { 104 // Exception handling blocks are unlikely executed. 105 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 106 return true; 107 108 // The block is cold if it calls/invokes a cold function. However, do not 109 // mark sanitizer traps as cold. 110 for (Instruction &I : BB) 111 if (auto CS = CallSite(&I)) 112 if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize")) 113 return true; 114 115 // The block is cold if it has an unreachable terminator, unless it's 116 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 117 if (blockEndsInUnreachable(BB)) { 118 if (auto *CI = 119 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 120 if (CI->hasFnAttr(Attribute::NoReturn)) 121 return false; 122 return true; 123 } 124 125 return false; 126 } 127 128 /// Check whether it's safe to outline \p BB. 129 static bool mayExtractBlock(const BasicBlock &BB) { 130 // EH pads are unsafe to outline because doing so breaks EH type tables. It 131 // follows that invoke instructions cannot be extracted, because CodeExtractor 132 // requires unwind destinations to be within the extraction region. 133 // 134 // Resumes that are not reachable from a cleanup landing pad are considered to 135 // be unreachable. It’s not safe to split them out either. 136 auto Term = BB.getTerminator(); 137 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 138 !isa<ResumeInst>(Term); 139 } 140 141 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 142 /// If \p UpdateEntryCount is true (set when this is a new split function and 143 /// module has profile data), set entry count to 0 to ensure treated as cold. 144 /// Return true if the function is changed. 145 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 146 assert(!F.hasOptNone() && "Can't mark this cold"); 147 bool Changed = false; 148 if (!F.hasFnAttribute(Attribute::Cold)) { 149 F.addFnAttr(Attribute::Cold); 150 Changed = true; 151 } 152 if (!F.hasFnAttribute(Attribute::MinSize)) { 153 F.addFnAttr(Attribute::MinSize); 154 Changed = true; 155 } 156 if (UpdateEntryCount) { 157 // Set the entry count to 0 to ensure it is placed in the unlikely text 158 // section when function sections are enabled. 159 F.setEntryCount(0); 160 Changed = true; 161 } 162 163 return Changed; 164 } 165 166 class HotColdSplittingLegacyPass : public ModulePass { 167 public: 168 static char ID; 169 HotColdSplittingLegacyPass() : ModulePass(ID) { 170 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 171 } 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 175 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 176 AU.addRequired<TargetTransformInfoWrapperPass>(); 177 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 178 } 179 180 bool runOnModule(Module &M) override; 181 }; 182 183 } // end anonymous namespace 184 185 /// Check whether \p F is inherently cold. 186 bool HotColdSplitting::isFunctionCold(const Function &F) const { 187 if (F.hasFnAttribute(Attribute::Cold)) 188 return true; 189 190 if (F.getCallingConv() == CallingConv::Cold) 191 return true; 192 193 if (PSI->isFunctionEntryCold(&F)) 194 return true; 195 196 return false; 197 } 198 199 // Returns false if the function should not be considered for hot-cold split 200 // optimization. 201 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 202 if (F.hasFnAttribute(Attribute::AlwaysInline)) 203 return false; 204 205 if (F.hasFnAttribute(Attribute::NoInline)) 206 return false; 207 208 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 209 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 210 F.hasFnAttribute(Attribute::SanitizeThread) || 211 F.hasFnAttribute(Attribute::SanitizeMemory)) 212 return false; 213 214 return true; 215 } 216 217 /// Get the benefit score of outlining \p Region. 218 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 219 TargetTransformInfo &TTI) { 220 // Sum up the code size costs of non-terminator instructions. Tight coupling 221 // with \ref getOutliningPenalty is needed to model the costs of terminators. 222 int Benefit = 0; 223 for (BasicBlock *BB : Region) 224 for (Instruction &I : BB->instructionsWithoutDebug()) 225 if (&I != BB->getTerminator()) 226 Benefit += 227 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 228 229 return Benefit; 230 } 231 232 /// Get the penalty score for outlining \p Region. 233 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 234 unsigned NumInputs, unsigned NumOutputs) { 235 int Penalty = SplittingThreshold; 236 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 237 238 // If the splitting threshold is set at or below zero, skip the usual 239 // profitability check. 240 if (SplittingThreshold <= 0) 241 return Penalty; 242 243 // The typical code size cost for materializing an argument for the outlined 244 // call. 245 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 246 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 247 Penalty += CostForArgMaterialization * NumInputs; 248 249 // The typical code size cost for an output alloca, its associated store, and 250 // its associated reload. 251 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 252 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 253 Penalty += CostForRegionOutput * NumOutputs; 254 255 // Find the number of distinct exit blocks for the region. Use a conservative 256 // check to determine whether control returns from the region. 257 bool NoBlocksReturn = true; 258 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 259 for (BasicBlock *BB : Region) { 260 // If a block has no successors, only assume it does not return if it's 261 // unreachable. 262 if (succ_empty(BB)) { 263 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 264 continue; 265 } 266 267 for (BasicBlock *SuccBB : successors(BB)) { 268 if (find(Region, SuccBB) == Region.end()) { 269 NoBlocksReturn = false; 270 SuccsOutsideRegion.insert(SuccBB); 271 } 272 } 273 } 274 275 // Apply a `noreturn` bonus. 276 if (NoBlocksReturn) { 277 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 278 << " non-returning terminators\n"); 279 Penalty -= Region.size(); 280 } 281 282 // Apply a penalty for having more than one successor outside of the region. 283 // This penalty accounts for the switch needed in the caller. 284 if (!SuccsOutsideRegion.empty()) { 285 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 286 << " non-region successors\n"); 287 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 288 } 289 290 return Penalty; 291 } 292 293 Function *HotColdSplitting::extractColdRegion( 294 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 295 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 296 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 297 assert(!Region.empty()); 298 299 // TODO: Pass BFI and BPI to update profile information. 300 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 301 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 302 /* AllowAlloca */ false, 303 /* Suffix */ "cold." + std::to_string(Count)); 304 305 // Perform a simple cost/benefit analysis to decide whether or not to permit 306 // splitting. 307 SetVector<Value *> Inputs, Outputs, Sinks; 308 CE.findInputsOutputs(Inputs, Outputs, Sinks); 309 int OutliningBenefit = getOutliningBenefit(Region, TTI); 310 int OutliningPenalty = 311 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 312 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 313 << ", penalty = " << OutliningPenalty << "\n"); 314 if (OutliningBenefit <= OutliningPenalty) 315 return nullptr; 316 317 Function *OrigF = Region[0]->getParent(); 318 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 319 User *U = *OutF->user_begin(); 320 CallInst *CI = cast<CallInst>(U); 321 CallSite CS(CI); 322 NumColdRegionsOutlined++; 323 if (TTI.useColdCCForColdCall(*OutF)) { 324 OutF->setCallingConv(CallingConv::Cold); 325 CS.setCallingConv(CallingConv::Cold); 326 } 327 CI->setIsNoInline(); 328 329 markFunctionCold(*OutF, BFI != nullptr); 330 331 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 332 ORE.emit([&]() { 333 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 334 &*Region[0]->begin()) 335 << ore::NV("Original", OrigF) << " split cold code into " 336 << ore::NV("Split", OutF); 337 }); 338 return OutF; 339 } 340 341 ORE.emit([&]() { 342 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 343 &*Region[0]->begin()) 344 << "Failed to extract region at block " 345 << ore::NV("Block", Region.front()); 346 }); 347 return nullptr; 348 } 349 350 /// A pair of (basic block, score). 351 using BlockTy = std::pair<BasicBlock *, unsigned>; 352 353 namespace { 354 /// A maximal outlining region. This contains all blocks post-dominated by a 355 /// sink block, the sink block itself, and all blocks dominated by the sink. 356 /// If sink-predecessors and sink-successors cannot be extracted in one region, 357 /// the static constructor returns a list of suitable extraction regions. 358 class OutliningRegion { 359 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 360 /// viable sub-region entry point. Blocks with higher scores are better entry 361 /// points (i.e. they are more distant ancestors of the sink block). 362 SmallVector<BlockTy, 0> Blocks = {}; 363 364 /// The suggested entry point into the region. If the region has multiple 365 /// entry points, all blocks within the region may not be reachable from this 366 /// entry point. 367 BasicBlock *SuggestedEntryPoint = nullptr; 368 369 /// Whether the entire function is cold. 370 bool EntireFunctionCold = false; 371 372 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 373 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 374 return mayExtractBlock(BB) ? Score : 0; 375 } 376 377 /// These scores should be lower than the score for predecessor blocks, 378 /// because regions starting at predecessor blocks are typically larger. 379 static constexpr unsigned ScoreForSuccBlock = 1; 380 static constexpr unsigned ScoreForSinkBlock = 1; 381 382 OutliningRegion(const OutliningRegion &) = delete; 383 OutliningRegion &operator=(const OutliningRegion &) = delete; 384 385 public: 386 OutliningRegion() = default; 387 OutliningRegion(OutliningRegion &&) = default; 388 OutliningRegion &operator=(OutliningRegion &&) = default; 389 390 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 391 const DominatorTree &DT, 392 const PostDominatorTree &PDT) { 393 std::vector<OutliningRegion> Regions; 394 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 395 396 Regions.emplace_back(); 397 OutliningRegion *ColdRegion = &Regions.back(); 398 399 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 400 RegionBlocks.insert(BB); 401 ColdRegion->Blocks.emplace_back(BB, Score); 402 }; 403 404 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 405 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 406 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 407 unsigned BestScore = SinkScore; 408 409 // Visit SinkBB's ancestors using inverse DFS. 410 auto PredIt = ++idf_begin(&SinkBB); 411 auto PredEnd = idf_end(&SinkBB); 412 while (PredIt != PredEnd) { 413 BasicBlock &PredBB = **PredIt; 414 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 415 416 // If the predecessor is cold and has no predecessors, the entire 417 // function must be cold. 418 if (SinkPostDom && pred_empty(&PredBB)) { 419 ColdRegion->EntireFunctionCold = true; 420 return Regions; 421 } 422 423 // If SinkBB does not post-dominate a predecessor, do not mark the 424 // predecessor (or any of its predecessors) cold. 425 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 426 PredIt.skipChildren(); 427 continue; 428 } 429 430 // Keep track of the post-dominated ancestor farthest away from the sink. 431 // The path length is always >= 2, ensuring that predecessor blocks are 432 // considered as entry points before the sink block. 433 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 434 if (PredScore > BestScore) { 435 ColdRegion->SuggestedEntryPoint = &PredBB; 436 BestScore = PredScore; 437 } 438 439 addBlockToRegion(&PredBB, PredScore); 440 ++PredIt; 441 } 442 443 // If the sink can be added to the cold region, do so. It's considered as 444 // an entry point before any sink-successor blocks. 445 // 446 // Otherwise, split cold sink-successor blocks using a separate region. 447 // This satisfies the requirement that all extraction blocks other than the 448 // first have predecessors within the extraction region. 449 if (mayExtractBlock(SinkBB)) { 450 addBlockToRegion(&SinkBB, SinkScore); 451 } else { 452 Regions.emplace_back(); 453 ColdRegion = &Regions.back(); 454 BestScore = 0; 455 } 456 457 // Find all successors of SinkBB dominated by SinkBB using DFS. 458 auto SuccIt = ++df_begin(&SinkBB); 459 auto SuccEnd = df_end(&SinkBB); 460 while (SuccIt != SuccEnd) { 461 BasicBlock &SuccBB = **SuccIt; 462 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 463 464 // Don't allow the backwards & forwards DFSes to mark the same block. 465 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 466 467 // If SinkBB does not dominate a successor, do not mark the successor (or 468 // any of its successors) cold. 469 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 470 SuccIt.skipChildren(); 471 continue; 472 } 473 474 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 475 if (SuccScore > BestScore) { 476 ColdRegion->SuggestedEntryPoint = &SuccBB; 477 BestScore = SuccScore; 478 } 479 480 addBlockToRegion(&SuccBB, SuccScore); 481 ++SuccIt; 482 } 483 484 return Regions; 485 } 486 487 /// Whether this region has nothing to extract. 488 bool empty() const { return !SuggestedEntryPoint; } 489 490 /// The blocks in this region. 491 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 492 493 /// Whether the entire function containing this region is cold. 494 bool isEntireFunctionCold() const { return EntireFunctionCold; } 495 496 /// Remove a sub-region from this region and return it as a block sequence. 497 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 498 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 499 500 // Remove blocks dominated by the suggested entry point from this region. 501 // During the removal, identify the next best entry point into the region. 502 // Ensure that the first extracted block is the suggested entry point. 503 BlockSequence SubRegion = {SuggestedEntryPoint}; 504 BasicBlock *NextEntryPoint = nullptr; 505 unsigned NextScore = 0; 506 auto RegionEndIt = Blocks.end(); 507 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 508 BasicBlock *BB = Block.first; 509 unsigned Score = Block.second; 510 bool InSubRegion = 511 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 512 if (!InSubRegion && Score > NextScore) { 513 NextEntryPoint = BB; 514 NextScore = Score; 515 } 516 if (InSubRegion && BB != SuggestedEntryPoint) 517 SubRegion.push_back(BB); 518 return InSubRegion; 519 }); 520 Blocks.erase(RegionStartIt, RegionEndIt); 521 522 // Update the suggested entry point. 523 SuggestedEntryPoint = NextEntryPoint; 524 525 return SubRegion; 526 } 527 }; 528 } // namespace 529 530 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 531 bool Changed = false; 532 533 // The set of cold blocks. 534 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 535 536 // The worklist of non-intersecting regions left to outline. 537 SmallVector<OutliningRegion, 2> OutliningWorklist; 538 539 // Set up an RPO traversal. Experimentally, this performs better (outlines 540 // more) than a PO traversal, because we prevent region overlap by keeping 541 // the first region to contain a block. 542 ReversePostOrderTraversal<Function *> RPOT(&F); 543 544 // Calculate domtrees lazily. This reduces compile-time significantly. 545 std::unique_ptr<DominatorTree> DT; 546 std::unique_ptr<PostDominatorTree> PDT; 547 548 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 549 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 550 // be able to salvage its domtrees instead of recomputing them. 551 BlockFrequencyInfo *BFI = nullptr; 552 if (HasProfileSummary) 553 BFI = GetBFI(F); 554 555 TargetTransformInfo &TTI = GetTTI(F); 556 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 557 AssumptionCache *AC = LookupAC(F); 558 559 // Find all cold regions. 560 for (BasicBlock *BB : RPOT) { 561 // This block is already part of some outlining region. 562 if (ColdBlocks.count(BB)) 563 continue; 564 565 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 566 (EnableStaticAnalyis && unlikelyExecuted(*BB)); 567 if (!Cold) 568 continue; 569 570 LLVM_DEBUG({ 571 dbgs() << "Found a cold block:\n"; 572 BB->dump(); 573 }); 574 575 if (!DT) 576 DT = std::make_unique<DominatorTree>(F); 577 if (!PDT) 578 PDT = std::make_unique<PostDominatorTree>(F); 579 580 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 581 for (OutliningRegion &Region : Regions) { 582 if (Region.empty()) 583 continue; 584 585 if (Region.isEntireFunctionCold()) { 586 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 587 return markFunctionCold(F); 588 } 589 590 // If this outlining region intersects with another, drop the new region. 591 // 592 // TODO: It's theoretically possible to outline more by only keeping the 593 // largest region which contains a block, but the extra bookkeeping to do 594 // this is tricky/expensive. 595 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 596 return !ColdBlocks.insert(Block.first).second; 597 }); 598 if (RegionsOverlap) 599 continue; 600 601 OutliningWorklist.emplace_back(std::move(Region)); 602 ++NumColdRegionsFound; 603 } 604 } 605 606 if (OutliningWorklist.empty()) 607 return Changed; 608 609 // Outline single-entry cold regions, splitting up larger regions as needed. 610 unsigned OutlinedFunctionID = 1; 611 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 612 CodeExtractorAnalysisCache CEAC(F); 613 do { 614 OutliningRegion Region = OutliningWorklist.pop_back_val(); 615 assert(!Region.empty() && "Empty outlining region in worklist"); 616 do { 617 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 618 LLVM_DEBUG({ 619 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 620 for (BasicBlock *BB : SubRegion) 621 BB->dump(); 622 }); 623 624 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 625 ORE, AC, OutlinedFunctionID); 626 if (Outlined) { 627 ++OutlinedFunctionID; 628 Changed = true; 629 } 630 } while (!Region.empty()); 631 } while (!OutliningWorklist.empty()); 632 633 return Changed; 634 } 635 636 bool HotColdSplitting::run(Module &M) { 637 bool Changed = false; 638 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 639 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 640 Function &F = *It; 641 642 // Do not touch declarations. 643 if (F.isDeclaration()) 644 continue; 645 646 // Do not modify `optnone` functions. 647 if (F.hasOptNone()) 648 continue; 649 650 // Detect inherently cold functions and mark them as such. 651 if (isFunctionCold(F)) { 652 Changed |= markFunctionCold(F); 653 continue; 654 } 655 656 if (!shouldOutlineFrom(F)) { 657 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 658 continue; 659 } 660 661 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 662 Changed |= outlineColdRegions(F, HasProfileSummary); 663 } 664 return Changed; 665 } 666 667 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 668 if (skipModule(M)) 669 return false; 670 ProfileSummaryInfo *PSI = 671 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 672 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 673 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 674 }; 675 auto GBFI = [this](Function &F) { 676 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 677 }; 678 std::unique_ptr<OptimizationRemarkEmitter> ORE; 679 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 680 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 681 ORE.reset(new OptimizationRemarkEmitter(&F)); 682 return *ORE.get(); 683 }; 684 auto LookupAC = [this](Function &F) -> AssumptionCache * { 685 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 686 return ACT->lookupAssumptionCache(F); 687 return nullptr; 688 }; 689 690 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 691 } 692 693 PreservedAnalyses 694 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 695 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 696 697 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 698 return FAM.getCachedResult<AssumptionAnalysis>(F); 699 }; 700 701 auto GBFI = [&FAM](Function &F) { 702 return &FAM.getResult<BlockFrequencyAnalysis>(F); 703 }; 704 705 std::function<TargetTransformInfo &(Function &)> GTTI = 706 [&FAM](Function &F) -> TargetTransformInfo & { 707 return FAM.getResult<TargetIRAnalysis>(F); 708 }; 709 710 std::unique_ptr<OptimizationRemarkEmitter> ORE; 711 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 712 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 713 ORE.reset(new OptimizationRemarkEmitter(&F)); 714 return *ORE.get(); 715 }; 716 717 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 718 719 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 720 return PreservedAnalyses::none(); 721 return PreservedAnalyses::all(); 722 } 723 724 char HotColdSplittingLegacyPass::ID = 0; 725 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 726 "Hot Cold Splitting", false, false) 727 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 728 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 729 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 730 "Hot Cold Splitting", false, false) 731 732 ModulePass *llvm::createHotColdSplittingPass() { 733 return new HotColdSplittingLegacyPass(); 734 } 735