xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/HotColdSplitting.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/BlockFrequencyInfo.h"
33 #include "llvm/Analysis/BranchProbabilityInfo.h"
34 #include "llvm/Analysis/CFG.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/PostDominators.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/IPO.h"
62 #include "llvm/Transforms/IPO/HotColdSplitting.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/CodeExtractor.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
71 
72 #define DEBUG_TYPE "hotcoldsplit"
73 
74 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
76 
77 using namespace llvm;
78 
79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
80                               cl::init(true), cl::Hidden);
81 
82 static cl::opt<int>
83     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
84                        cl::desc("Base penalty for splitting cold code (as a "
85                                 "multiple of TCC_Basic)"));
86 
87 namespace {
88 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
89 // this function unless you modify the MBB version as well.
90 //
91 /// A no successor, non-return block probably ends in unreachable and is cold.
92 /// Also consider a block that ends in an indirect branch to be a return block,
93 /// since many targets use plain indirect branches to return.
94 bool blockEndsInUnreachable(const BasicBlock &BB) {
95   if (!succ_empty(&BB))
96     return false;
97   if (BB.empty())
98     return true;
99   const Instruction *I = BB.getTerminator();
100   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
101 }
102 
103 bool unlikelyExecuted(BasicBlock &BB) {
104   // Exception handling blocks are unlikely executed.
105   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
106     return true;
107 
108   // The block is cold if it calls/invokes a cold function. However, do not
109   // mark sanitizer traps as cold.
110   for (Instruction &I : BB)
111     if (auto CS = CallSite(&I))
112       if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
113         return true;
114 
115   // The block is cold if it has an unreachable terminator, unless it's
116   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
117   if (blockEndsInUnreachable(BB)) {
118     if (auto *CI =
119             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
120       if (CI->hasFnAttr(Attribute::NoReturn))
121         return false;
122     return true;
123   }
124 
125   return false;
126 }
127 
128 /// Check whether it's safe to outline \p BB.
129 static bool mayExtractBlock(const BasicBlock &BB) {
130   // EH pads are unsafe to outline because doing so breaks EH type tables. It
131   // follows that invoke instructions cannot be extracted, because CodeExtractor
132   // requires unwind destinations to be within the extraction region.
133   //
134   // Resumes that are not reachable from a cleanup landing pad are considered to
135   // be unreachable. It’s not safe to split them out either.
136   auto Term = BB.getTerminator();
137   return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
138          !isa<ResumeInst>(Term);
139 }
140 
141 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
142 /// If \p UpdateEntryCount is true (set when this is a new split function and
143 /// module has profile data), set entry count to 0 to ensure treated as cold.
144 /// Return true if the function is changed.
145 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
146   assert(!F.hasOptNone() && "Can't mark this cold");
147   bool Changed = false;
148   if (!F.hasFnAttribute(Attribute::Cold)) {
149     F.addFnAttr(Attribute::Cold);
150     Changed = true;
151   }
152   if (!F.hasFnAttribute(Attribute::MinSize)) {
153     F.addFnAttr(Attribute::MinSize);
154     Changed = true;
155   }
156   if (UpdateEntryCount) {
157     // Set the entry count to 0 to ensure it is placed in the unlikely text
158     // section when function sections are enabled.
159     F.setEntryCount(0);
160     Changed = true;
161   }
162 
163   return Changed;
164 }
165 
166 class HotColdSplittingLegacyPass : public ModulePass {
167 public:
168   static char ID;
169   HotColdSplittingLegacyPass() : ModulePass(ID) {
170     initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
171   }
172 
173   void getAnalysisUsage(AnalysisUsage &AU) const override {
174     AU.addRequired<BlockFrequencyInfoWrapperPass>();
175     AU.addRequired<ProfileSummaryInfoWrapperPass>();
176     AU.addRequired<TargetTransformInfoWrapperPass>();
177     AU.addUsedIfAvailable<AssumptionCacheTracker>();
178   }
179 
180   bool runOnModule(Module &M) override;
181 };
182 
183 } // end anonymous namespace
184 
185 /// Check whether \p F is inherently cold.
186 bool HotColdSplitting::isFunctionCold(const Function &F) const {
187   if (F.hasFnAttribute(Attribute::Cold))
188     return true;
189 
190   if (F.getCallingConv() == CallingConv::Cold)
191     return true;
192 
193   if (PSI->isFunctionEntryCold(&F))
194     return true;
195 
196   return false;
197 }
198 
199 // Returns false if the function should not be considered for hot-cold split
200 // optimization.
201 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
202   if (F.hasFnAttribute(Attribute::AlwaysInline))
203     return false;
204 
205   if (F.hasFnAttribute(Attribute::NoInline))
206     return false;
207 
208   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
209       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
210       F.hasFnAttribute(Attribute::SanitizeThread) ||
211       F.hasFnAttribute(Attribute::SanitizeMemory))
212     return false;
213 
214   return true;
215 }
216 
217 /// Get the benefit score of outlining \p Region.
218 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
219                                TargetTransformInfo &TTI) {
220   // Sum up the code size costs of non-terminator instructions. Tight coupling
221   // with \ref getOutliningPenalty is needed to model the costs of terminators.
222   int Benefit = 0;
223   for (BasicBlock *BB : Region)
224     for (Instruction &I : BB->instructionsWithoutDebug())
225       if (&I != BB->getTerminator())
226         Benefit +=
227             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
228 
229   return Benefit;
230 }
231 
232 /// Get the penalty score for outlining \p Region.
233 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
234                                unsigned NumInputs, unsigned NumOutputs) {
235   int Penalty = SplittingThreshold;
236   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
237 
238   // If the splitting threshold is set at or below zero, skip the usual
239   // profitability check.
240   if (SplittingThreshold <= 0)
241     return Penalty;
242 
243   // The typical code size cost for materializing an argument for the outlined
244   // call.
245   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
246   const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
247   Penalty += CostForArgMaterialization * NumInputs;
248 
249   // The typical code size cost for an output alloca, its associated store, and
250   // its associated reload.
251   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
252   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
253   Penalty += CostForRegionOutput * NumOutputs;
254 
255   // Find the number of distinct exit blocks for the region. Use a conservative
256   // check to determine whether control returns from the region.
257   bool NoBlocksReturn = true;
258   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
259   for (BasicBlock *BB : Region) {
260     // If a block has no successors, only assume it does not return if it's
261     // unreachable.
262     if (succ_empty(BB)) {
263       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
264       continue;
265     }
266 
267     for (BasicBlock *SuccBB : successors(BB)) {
268       if (find(Region, SuccBB) == Region.end()) {
269         NoBlocksReturn = false;
270         SuccsOutsideRegion.insert(SuccBB);
271       }
272     }
273   }
274 
275   // Apply a `noreturn` bonus.
276   if (NoBlocksReturn) {
277     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
278                       << " non-returning terminators\n");
279     Penalty -= Region.size();
280   }
281 
282   // Apply a penalty for having more than one successor outside of the region.
283   // This penalty accounts for the switch needed in the caller.
284   if (!SuccsOutsideRegion.empty()) {
285     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
286                       << " non-region successors\n");
287     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
288   }
289 
290   return Penalty;
291 }
292 
293 Function *HotColdSplitting::extractColdRegion(
294     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
295     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
296     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
297   assert(!Region.empty());
298 
299   // TODO: Pass BFI and BPI to update profile information.
300   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
301                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
302                    /* AllowAlloca */ false,
303                    /* Suffix */ "cold." + std::to_string(Count));
304 
305   // Perform a simple cost/benefit analysis to decide whether or not to permit
306   // splitting.
307   SetVector<Value *> Inputs, Outputs, Sinks;
308   CE.findInputsOutputs(Inputs, Outputs, Sinks);
309   int OutliningBenefit = getOutliningBenefit(Region, TTI);
310   int OutliningPenalty =
311       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
312   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
313                     << ", penalty = " << OutliningPenalty << "\n");
314   if (OutliningBenefit <= OutliningPenalty)
315     return nullptr;
316 
317   Function *OrigF = Region[0]->getParent();
318   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
319     User *U = *OutF->user_begin();
320     CallInst *CI = cast<CallInst>(U);
321     CallSite CS(CI);
322     NumColdRegionsOutlined++;
323     if (TTI.useColdCCForColdCall(*OutF)) {
324       OutF->setCallingConv(CallingConv::Cold);
325       CS.setCallingConv(CallingConv::Cold);
326     }
327     CI->setIsNoInline();
328 
329     markFunctionCold(*OutF, BFI != nullptr);
330 
331     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
332     ORE.emit([&]() {
333       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
334                                 &*Region[0]->begin())
335              << ore::NV("Original", OrigF) << " split cold code into "
336              << ore::NV("Split", OutF);
337     });
338     return OutF;
339   }
340 
341   ORE.emit([&]() {
342     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
343                                     &*Region[0]->begin())
344            << "Failed to extract region at block "
345            << ore::NV("Block", Region.front());
346   });
347   return nullptr;
348 }
349 
350 /// A pair of (basic block, score).
351 using BlockTy = std::pair<BasicBlock *, unsigned>;
352 
353 namespace {
354 /// A maximal outlining region. This contains all blocks post-dominated by a
355 /// sink block, the sink block itself, and all blocks dominated by the sink.
356 /// If sink-predecessors and sink-successors cannot be extracted in one region,
357 /// the static constructor returns a list of suitable extraction regions.
358 class OutliningRegion {
359   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
360   /// viable sub-region entry point. Blocks with higher scores are better entry
361   /// points (i.e. they are more distant ancestors of the sink block).
362   SmallVector<BlockTy, 0> Blocks = {};
363 
364   /// The suggested entry point into the region. If the region has multiple
365   /// entry points, all blocks within the region may not be reachable from this
366   /// entry point.
367   BasicBlock *SuggestedEntryPoint = nullptr;
368 
369   /// Whether the entire function is cold.
370   bool EntireFunctionCold = false;
371 
372   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
373   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
374     return mayExtractBlock(BB) ? Score : 0;
375   }
376 
377   /// These scores should be lower than the score for predecessor blocks,
378   /// because regions starting at predecessor blocks are typically larger.
379   static constexpr unsigned ScoreForSuccBlock = 1;
380   static constexpr unsigned ScoreForSinkBlock = 1;
381 
382   OutliningRegion(const OutliningRegion &) = delete;
383   OutliningRegion &operator=(const OutliningRegion &) = delete;
384 
385 public:
386   OutliningRegion() = default;
387   OutliningRegion(OutliningRegion &&) = default;
388   OutliningRegion &operator=(OutliningRegion &&) = default;
389 
390   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
391                                              const DominatorTree &DT,
392                                              const PostDominatorTree &PDT) {
393     std::vector<OutliningRegion> Regions;
394     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
395 
396     Regions.emplace_back();
397     OutliningRegion *ColdRegion = &Regions.back();
398 
399     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
400       RegionBlocks.insert(BB);
401       ColdRegion->Blocks.emplace_back(BB, Score);
402     };
403 
404     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
405     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
406     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
407     unsigned BestScore = SinkScore;
408 
409     // Visit SinkBB's ancestors using inverse DFS.
410     auto PredIt = ++idf_begin(&SinkBB);
411     auto PredEnd = idf_end(&SinkBB);
412     while (PredIt != PredEnd) {
413       BasicBlock &PredBB = **PredIt;
414       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
415 
416       // If the predecessor is cold and has no predecessors, the entire
417       // function must be cold.
418       if (SinkPostDom && pred_empty(&PredBB)) {
419         ColdRegion->EntireFunctionCold = true;
420         return Regions;
421       }
422 
423       // If SinkBB does not post-dominate a predecessor, do not mark the
424       // predecessor (or any of its predecessors) cold.
425       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
426         PredIt.skipChildren();
427         continue;
428       }
429 
430       // Keep track of the post-dominated ancestor farthest away from the sink.
431       // The path length is always >= 2, ensuring that predecessor blocks are
432       // considered as entry points before the sink block.
433       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
434       if (PredScore > BestScore) {
435         ColdRegion->SuggestedEntryPoint = &PredBB;
436         BestScore = PredScore;
437       }
438 
439       addBlockToRegion(&PredBB, PredScore);
440       ++PredIt;
441     }
442 
443     // If the sink can be added to the cold region, do so. It's considered as
444     // an entry point before any sink-successor blocks.
445     //
446     // Otherwise, split cold sink-successor blocks using a separate region.
447     // This satisfies the requirement that all extraction blocks other than the
448     // first have predecessors within the extraction region.
449     if (mayExtractBlock(SinkBB)) {
450       addBlockToRegion(&SinkBB, SinkScore);
451     } else {
452       Regions.emplace_back();
453       ColdRegion = &Regions.back();
454       BestScore = 0;
455     }
456 
457     // Find all successors of SinkBB dominated by SinkBB using DFS.
458     auto SuccIt = ++df_begin(&SinkBB);
459     auto SuccEnd = df_end(&SinkBB);
460     while (SuccIt != SuccEnd) {
461       BasicBlock &SuccBB = **SuccIt;
462       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
463 
464       // Don't allow the backwards & forwards DFSes to mark the same block.
465       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
466 
467       // If SinkBB does not dominate a successor, do not mark the successor (or
468       // any of its successors) cold.
469       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
470         SuccIt.skipChildren();
471         continue;
472       }
473 
474       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
475       if (SuccScore > BestScore) {
476         ColdRegion->SuggestedEntryPoint = &SuccBB;
477         BestScore = SuccScore;
478       }
479 
480       addBlockToRegion(&SuccBB, SuccScore);
481       ++SuccIt;
482     }
483 
484     return Regions;
485   }
486 
487   /// Whether this region has nothing to extract.
488   bool empty() const { return !SuggestedEntryPoint; }
489 
490   /// The blocks in this region.
491   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
492 
493   /// Whether the entire function containing this region is cold.
494   bool isEntireFunctionCold() const { return EntireFunctionCold; }
495 
496   /// Remove a sub-region from this region and return it as a block sequence.
497   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
498     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
499 
500     // Remove blocks dominated by the suggested entry point from this region.
501     // During the removal, identify the next best entry point into the region.
502     // Ensure that the first extracted block is the suggested entry point.
503     BlockSequence SubRegion = {SuggestedEntryPoint};
504     BasicBlock *NextEntryPoint = nullptr;
505     unsigned NextScore = 0;
506     auto RegionEndIt = Blocks.end();
507     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
508       BasicBlock *BB = Block.first;
509       unsigned Score = Block.second;
510       bool InSubRegion =
511           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
512       if (!InSubRegion && Score > NextScore) {
513         NextEntryPoint = BB;
514         NextScore = Score;
515       }
516       if (InSubRegion && BB != SuggestedEntryPoint)
517         SubRegion.push_back(BB);
518       return InSubRegion;
519     });
520     Blocks.erase(RegionStartIt, RegionEndIt);
521 
522     // Update the suggested entry point.
523     SuggestedEntryPoint = NextEntryPoint;
524 
525     return SubRegion;
526   }
527 };
528 } // namespace
529 
530 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
531   bool Changed = false;
532 
533   // The set of cold blocks.
534   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
535 
536   // The worklist of non-intersecting regions left to outline.
537   SmallVector<OutliningRegion, 2> OutliningWorklist;
538 
539   // Set up an RPO traversal. Experimentally, this performs better (outlines
540   // more) than a PO traversal, because we prevent region overlap by keeping
541   // the first region to contain a block.
542   ReversePostOrderTraversal<Function *> RPOT(&F);
543 
544   // Calculate domtrees lazily. This reduces compile-time significantly.
545   std::unique_ptr<DominatorTree> DT;
546   std::unique_ptr<PostDominatorTree> PDT;
547 
548   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
549   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
550   // be able to salvage its domtrees instead of recomputing them.
551   BlockFrequencyInfo *BFI = nullptr;
552   if (HasProfileSummary)
553     BFI = GetBFI(F);
554 
555   TargetTransformInfo &TTI = GetTTI(F);
556   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
557   AssumptionCache *AC = LookupAC(F);
558 
559   // Find all cold regions.
560   for (BasicBlock *BB : RPOT) {
561     // This block is already part of some outlining region.
562     if (ColdBlocks.count(BB))
563       continue;
564 
565     bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
566                 (EnableStaticAnalyis && unlikelyExecuted(*BB));
567     if (!Cold)
568       continue;
569 
570     LLVM_DEBUG({
571       dbgs() << "Found a cold block:\n";
572       BB->dump();
573     });
574 
575     if (!DT)
576       DT = std::make_unique<DominatorTree>(F);
577     if (!PDT)
578       PDT = std::make_unique<PostDominatorTree>(F);
579 
580     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
581     for (OutliningRegion &Region : Regions) {
582       if (Region.empty())
583         continue;
584 
585       if (Region.isEntireFunctionCold()) {
586         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
587         return markFunctionCold(F);
588       }
589 
590       // If this outlining region intersects with another, drop the new region.
591       //
592       // TODO: It's theoretically possible to outline more by only keeping the
593       // largest region which contains a block, but the extra bookkeeping to do
594       // this is tricky/expensive.
595       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
596         return !ColdBlocks.insert(Block.first).second;
597       });
598       if (RegionsOverlap)
599         continue;
600 
601       OutliningWorklist.emplace_back(std::move(Region));
602       ++NumColdRegionsFound;
603     }
604   }
605 
606   if (OutliningWorklist.empty())
607     return Changed;
608 
609   // Outline single-entry cold regions, splitting up larger regions as needed.
610   unsigned OutlinedFunctionID = 1;
611   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
612   CodeExtractorAnalysisCache CEAC(F);
613   do {
614     OutliningRegion Region = OutliningWorklist.pop_back_val();
615     assert(!Region.empty() && "Empty outlining region in worklist");
616     do {
617       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
618       LLVM_DEBUG({
619         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
620         for (BasicBlock *BB : SubRegion)
621           BB->dump();
622       });
623 
624       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
625                                              ORE, AC, OutlinedFunctionID);
626       if (Outlined) {
627         ++OutlinedFunctionID;
628         Changed = true;
629       }
630     } while (!Region.empty());
631   } while (!OutliningWorklist.empty());
632 
633   return Changed;
634 }
635 
636 bool HotColdSplitting::run(Module &M) {
637   bool Changed = false;
638   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
639   for (auto It = M.begin(), End = M.end(); It != End; ++It) {
640     Function &F = *It;
641 
642     // Do not touch declarations.
643     if (F.isDeclaration())
644       continue;
645 
646     // Do not modify `optnone` functions.
647     if (F.hasOptNone())
648       continue;
649 
650     // Detect inherently cold functions and mark them as such.
651     if (isFunctionCold(F)) {
652       Changed |= markFunctionCold(F);
653       continue;
654     }
655 
656     if (!shouldOutlineFrom(F)) {
657       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
658       continue;
659     }
660 
661     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
662     Changed |= outlineColdRegions(F, HasProfileSummary);
663   }
664   return Changed;
665 }
666 
667 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
668   if (skipModule(M))
669     return false;
670   ProfileSummaryInfo *PSI =
671       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
672   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
673     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
674   };
675   auto GBFI = [this](Function &F) {
676     return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
677   };
678   std::unique_ptr<OptimizationRemarkEmitter> ORE;
679   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
680       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
681     ORE.reset(new OptimizationRemarkEmitter(&F));
682     return *ORE.get();
683   };
684   auto LookupAC = [this](Function &F) -> AssumptionCache * {
685     if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
686       return ACT->lookupAssumptionCache(F);
687     return nullptr;
688   };
689 
690   return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
691 }
692 
693 PreservedAnalyses
694 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
695   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
696 
697   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
698     return FAM.getCachedResult<AssumptionAnalysis>(F);
699   };
700 
701   auto GBFI = [&FAM](Function &F) {
702     return &FAM.getResult<BlockFrequencyAnalysis>(F);
703   };
704 
705   std::function<TargetTransformInfo &(Function &)> GTTI =
706       [&FAM](Function &F) -> TargetTransformInfo & {
707     return FAM.getResult<TargetIRAnalysis>(F);
708   };
709 
710   std::unique_ptr<OptimizationRemarkEmitter> ORE;
711   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
712       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
713     ORE.reset(new OptimizationRemarkEmitter(&F));
714     return *ORE.get();
715   };
716 
717   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
718 
719   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
720     return PreservedAnalyses::none();
721   return PreservedAnalyses::all();
722 }
723 
724 char HotColdSplittingLegacyPass::ID = 0;
725 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
726                       "Hot Cold Splitting", false, false)
727 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
728 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
729 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
730                     "Hot Cold Splitting", false, false)
731 
732 ModulePass *llvm::createHotColdSplittingPass() {
733   return new HotColdSplittingLegacyPass();
734 }
735