1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/BlockFrequencyInfo.h" 33 #include "llvm/Analysis/BranchProbabilityInfo.h" 34 #include "llvm/Analysis/CFG.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/PostDominators.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/IPO/HotColdSplitting.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/CodeExtractor.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 72 #define DEBUG_TYPE "hotcoldsplit" 73 74 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 76 77 using namespace llvm; 78 79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<int> 83 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 84 cl::desc("Base penalty for splitting cold code (as a " 85 "multiple of TCC_Basic)")); 86 87 namespace { 88 89 /// A sequence of basic blocks. 90 /// 91 /// A 0-sized SmallVector is slightly cheaper to move than a std::vector. 92 using BlockSequence = SmallVector<BasicBlock *, 0>; 93 94 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 95 // this function unless you modify the MBB version as well. 96 // 97 /// A no successor, non-return block probably ends in unreachable and is cold. 98 /// Also consider a block that ends in an indirect branch to be a return block, 99 /// since many targets use plain indirect branches to return. 100 bool blockEndsInUnreachable(const BasicBlock &BB) { 101 if (!succ_empty(&BB)) 102 return false; 103 if (BB.empty()) 104 return true; 105 const Instruction *I = BB.getTerminator(); 106 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 107 } 108 109 bool unlikelyExecuted(BasicBlock &BB) { 110 // Exception handling blocks are unlikely executed. 111 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 112 return true; 113 114 // The block is cold if it calls/invokes a cold function. However, do not 115 // mark sanitizer traps as cold. 116 for (Instruction &I : BB) 117 if (auto CS = CallSite(&I)) 118 if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize")) 119 return true; 120 121 // The block is cold if it has an unreachable terminator, unless it's 122 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 123 if (blockEndsInUnreachable(BB)) { 124 if (auto *CI = 125 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 126 if (CI->hasFnAttr(Attribute::NoReturn)) 127 return false; 128 return true; 129 } 130 131 return false; 132 } 133 134 /// Check whether it's safe to outline \p BB. 135 static bool mayExtractBlock(const BasicBlock &BB) { 136 // EH pads are unsafe to outline because doing so breaks EH type tables. It 137 // follows that invoke instructions cannot be extracted, because CodeExtractor 138 // requires unwind destinations to be within the extraction region. 139 // 140 // Resumes that are not reachable from a cleanup landing pad are considered to 141 // be unreachable. It’s not safe to split them out either. 142 auto Term = BB.getTerminator(); 143 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 144 !isa<ResumeInst>(Term); 145 } 146 147 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 148 /// If \p UpdateEntryCount is true (set when this is a new split function and 149 /// module has profile data), set entry count to 0 to ensure treated as cold. 150 /// Return true if the function is changed. 151 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 152 assert(!F.hasOptNone() && "Can't mark this cold"); 153 bool Changed = false; 154 if (!F.hasFnAttribute(Attribute::Cold)) { 155 F.addFnAttr(Attribute::Cold); 156 Changed = true; 157 } 158 if (!F.hasFnAttribute(Attribute::MinSize)) { 159 F.addFnAttr(Attribute::MinSize); 160 Changed = true; 161 } 162 if (UpdateEntryCount) { 163 // Set the entry count to 0 to ensure it is placed in the unlikely text 164 // section when function sections are enabled. 165 F.setEntryCount(0); 166 Changed = true; 167 } 168 169 return Changed; 170 } 171 172 class HotColdSplitting { 173 public: 174 HotColdSplitting(ProfileSummaryInfo *ProfSI, 175 function_ref<BlockFrequencyInfo *(Function &)> GBFI, 176 function_ref<TargetTransformInfo &(Function &)> GTTI, 177 std::function<OptimizationRemarkEmitter &(Function &)> *GORE, 178 function_ref<AssumptionCache *(Function &)> LAC) 179 : PSI(ProfSI), GetBFI(GBFI), GetTTI(GTTI), GetORE(GORE), LookupAC(LAC) {} 180 bool run(Module &M); 181 182 private: 183 bool isFunctionCold(const Function &F) const; 184 bool shouldOutlineFrom(const Function &F) const; 185 bool outlineColdRegions(Function &F, bool HasProfileSummary); 186 Function *extractColdRegion(const BlockSequence &Region, DominatorTree &DT, 187 BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 188 OptimizationRemarkEmitter &ORE, 189 AssumptionCache *AC, unsigned Count); 190 ProfileSummaryInfo *PSI; 191 function_ref<BlockFrequencyInfo *(Function &)> GetBFI; 192 function_ref<TargetTransformInfo &(Function &)> GetTTI; 193 std::function<OptimizationRemarkEmitter &(Function &)> *GetORE; 194 function_ref<AssumptionCache *(Function &)> LookupAC; 195 }; 196 197 class HotColdSplittingLegacyPass : public ModulePass { 198 public: 199 static char ID; 200 HotColdSplittingLegacyPass() : ModulePass(ID) { 201 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 202 } 203 204 void getAnalysisUsage(AnalysisUsage &AU) const override { 205 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 206 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 207 AU.addRequired<TargetTransformInfoWrapperPass>(); 208 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 209 } 210 211 bool runOnModule(Module &M) override; 212 }; 213 214 } // end anonymous namespace 215 216 /// Check whether \p F is inherently cold. 217 bool HotColdSplitting::isFunctionCold(const Function &F) const { 218 if (F.hasFnAttribute(Attribute::Cold)) 219 return true; 220 221 if (F.getCallingConv() == CallingConv::Cold) 222 return true; 223 224 if (PSI->isFunctionEntryCold(&F)) 225 return true; 226 227 return false; 228 } 229 230 // Returns false if the function should not be considered for hot-cold split 231 // optimization. 232 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 233 if (F.hasFnAttribute(Attribute::AlwaysInline)) 234 return false; 235 236 if (F.hasFnAttribute(Attribute::NoInline)) 237 return false; 238 239 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 240 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 241 F.hasFnAttribute(Attribute::SanitizeThread) || 242 F.hasFnAttribute(Attribute::SanitizeMemory)) 243 return false; 244 245 return true; 246 } 247 248 /// Get the benefit score of outlining \p Region. 249 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 250 TargetTransformInfo &TTI) { 251 // Sum up the code size costs of non-terminator instructions. Tight coupling 252 // with \ref getOutliningPenalty is needed to model the costs of terminators. 253 int Benefit = 0; 254 for (BasicBlock *BB : Region) 255 for (Instruction &I : BB->instructionsWithoutDebug()) 256 if (&I != BB->getTerminator()) 257 Benefit += 258 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 259 260 return Benefit; 261 } 262 263 /// Get the penalty score for outlining \p Region. 264 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 265 unsigned NumInputs, unsigned NumOutputs) { 266 int Penalty = SplittingThreshold; 267 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 268 269 // If the splitting threshold is set at or below zero, skip the usual 270 // profitability check. 271 if (SplittingThreshold <= 0) 272 return Penalty; 273 274 // The typical code size cost for materializing an argument for the outlined 275 // call. 276 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 277 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 278 Penalty += CostForArgMaterialization * NumInputs; 279 280 // The typical code size cost for an output alloca, its associated store, and 281 // its associated reload. 282 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 283 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 284 Penalty += CostForRegionOutput * NumOutputs; 285 286 // Find the number of distinct exit blocks for the region. Use a conservative 287 // check to determine whether control returns from the region. 288 bool NoBlocksReturn = true; 289 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 290 for (BasicBlock *BB : Region) { 291 // If a block has no successors, only assume it does not return if it's 292 // unreachable. 293 if (succ_empty(BB)) { 294 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 295 continue; 296 } 297 298 for (BasicBlock *SuccBB : successors(BB)) { 299 if (find(Region, SuccBB) == Region.end()) { 300 NoBlocksReturn = false; 301 SuccsOutsideRegion.insert(SuccBB); 302 } 303 } 304 } 305 306 // Apply a `noreturn` bonus. 307 if (NoBlocksReturn) { 308 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 309 << " non-returning terminators\n"); 310 Penalty -= Region.size(); 311 } 312 313 // Apply a penalty for having more than one successor outside of the region. 314 // This penalty accounts for the switch needed in the caller. 315 if (!SuccsOutsideRegion.empty()) { 316 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 317 << " non-region successors\n"); 318 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 319 } 320 321 return Penalty; 322 } 323 324 Function *HotColdSplitting::extractColdRegion(const BlockSequence &Region, 325 DominatorTree &DT, 326 BlockFrequencyInfo *BFI, 327 TargetTransformInfo &TTI, 328 OptimizationRemarkEmitter &ORE, 329 AssumptionCache *AC, 330 unsigned Count) { 331 assert(!Region.empty()); 332 333 // TODO: Pass BFI and BPI to update profile information. 334 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 335 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 336 /* AllowAlloca */ false, 337 /* Suffix */ "cold." + std::to_string(Count)); 338 339 // Perform a simple cost/benefit analysis to decide whether or not to permit 340 // splitting. 341 SetVector<Value *> Inputs, Outputs, Sinks; 342 CE.findInputsOutputs(Inputs, Outputs, Sinks); 343 int OutliningBenefit = getOutliningBenefit(Region, TTI); 344 int OutliningPenalty = 345 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 346 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 347 << ", penalty = " << OutliningPenalty << "\n"); 348 if (OutliningBenefit <= OutliningPenalty) 349 return nullptr; 350 351 Function *OrigF = Region[0]->getParent(); 352 if (Function *OutF = CE.extractCodeRegion()) { 353 User *U = *OutF->user_begin(); 354 CallInst *CI = cast<CallInst>(U); 355 CallSite CS(CI); 356 NumColdRegionsOutlined++; 357 if (TTI.useColdCCForColdCall(*OutF)) { 358 OutF->setCallingConv(CallingConv::Cold); 359 CS.setCallingConv(CallingConv::Cold); 360 } 361 CI->setIsNoInline(); 362 363 markFunctionCold(*OutF, BFI != nullptr); 364 365 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 366 ORE.emit([&]() { 367 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 368 &*Region[0]->begin()) 369 << ore::NV("Original", OrigF) << " split cold code into " 370 << ore::NV("Split", OutF); 371 }); 372 return OutF; 373 } 374 375 ORE.emit([&]() { 376 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 377 &*Region[0]->begin()) 378 << "Failed to extract region at block " 379 << ore::NV("Block", Region.front()); 380 }); 381 return nullptr; 382 } 383 384 /// A pair of (basic block, score). 385 using BlockTy = std::pair<BasicBlock *, unsigned>; 386 387 namespace { 388 /// A maximal outlining region. This contains all blocks post-dominated by a 389 /// sink block, the sink block itself, and all blocks dominated by the sink. 390 /// If sink-predecessors and sink-successors cannot be extracted in one region, 391 /// the static constructor returns a list of suitable extraction regions. 392 class OutliningRegion { 393 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 394 /// viable sub-region entry point. Blocks with higher scores are better entry 395 /// points (i.e. they are more distant ancestors of the sink block). 396 SmallVector<BlockTy, 0> Blocks = {}; 397 398 /// The suggested entry point into the region. If the region has multiple 399 /// entry points, all blocks within the region may not be reachable from this 400 /// entry point. 401 BasicBlock *SuggestedEntryPoint = nullptr; 402 403 /// Whether the entire function is cold. 404 bool EntireFunctionCold = false; 405 406 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 407 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 408 return mayExtractBlock(BB) ? Score : 0; 409 } 410 411 /// These scores should be lower than the score for predecessor blocks, 412 /// because regions starting at predecessor blocks are typically larger. 413 static constexpr unsigned ScoreForSuccBlock = 1; 414 static constexpr unsigned ScoreForSinkBlock = 1; 415 416 OutliningRegion(const OutliningRegion &) = delete; 417 OutliningRegion &operator=(const OutliningRegion &) = delete; 418 419 public: 420 OutliningRegion() = default; 421 OutliningRegion(OutliningRegion &&) = default; 422 OutliningRegion &operator=(OutliningRegion &&) = default; 423 424 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 425 const DominatorTree &DT, 426 const PostDominatorTree &PDT) { 427 std::vector<OutliningRegion> Regions; 428 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 429 430 Regions.emplace_back(); 431 OutliningRegion *ColdRegion = &Regions.back(); 432 433 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 434 RegionBlocks.insert(BB); 435 ColdRegion->Blocks.emplace_back(BB, Score); 436 }; 437 438 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 439 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 440 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 441 unsigned BestScore = SinkScore; 442 443 // Visit SinkBB's ancestors using inverse DFS. 444 auto PredIt = ++idf_begin(&SinkBB); 445 auto PredEnd = idf_end(&SinkBB); 446 while (PredIt != PredEnd) { 447 BasicBlock &PredBB = **PredIt; 448 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 449 450 // If the predecessor is cold and has no predecessors, the entire 451 // function must be cold. 452 if (SinkPostDom && pred_empty(&PredBB)) { 453 ColdRegion->EntireFunctionCold = true; 454 return Regions; 455 } 456 457 // If SinkBB does not post-dominate a predecessor, do not mark the 458 // predecessor (or any of its predecessors) cold. 459 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 460 PredIt.skipChildren(); 461 continue; 462 } 463 464 // Keep track of the post-dominated ancestor farthest away from the sink. 465 // The path length is always >= 2, ensuring that predecessor blocks are 466 // considered as entry points before the sink block. 467 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 468 if (PredScore > BestScore) { 469 ColdRegion->SuggestedEntryPoint = &PredBB; 470 BestScore = PredScore; 471 } 472 473 addBlockToRegion(&PredBB, PredScore); 474 ++PredIt; 475 } 476 477 // If the sink can be added to the cold region, do so. It's considered as 478 // an entry point before any sink-successor blocks. 479 // 480 // Otherwise, split cold sink-successor blocks using a separate region. 481 // This satisfies the requirement that all extraction blocks other than the 482 // first have predecessors within the extraction region. 483 if (mayExtractBlock(SinkBB)) { 484 addBlockToRegion(&SinkBB, SinkScore); 485 } else { 486 Regions.emplace_back(); 487 ColdRegion = &Regions.back(); 488 BestScore = 0; 489 } 490 491 // Find all successors of SinkBB dominated by SinkBB using DFS. 492 auto SuccIt = ++df_begin(&SinkBB); 493 auto SuccEnd = df_end(&SinkBB); 494 while (SuccIt != SuccEnd) { 495 BasicBlock &SuccBB = **SuccIt; 496 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 497 498 // Don't allow the backwards & forwards DFSes to mark the same block. 499 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 500 501 // If SinkBB does not dominate a successor, do not mark the successor (or 502 // any of its successors) cold. 503 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 504 SuccIt.skipChildren(); 505 continue; 506 } 507 508 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 509 if (SuccScore > BestScore) { 510 ColdRegion->SuggestedEntryPoint = &SuccBB; 511 BestScore = SuccScore; 512 } 513 514 addBlockToRegion(&SuccBB, SuccScore); 515 ++SuccIt; 516 } 517 518 return Regions; 519 } 520 521 /// Whether this region has nothing to extract. 522 bool empty() const { return !SuggestedEntryPoint; } 523 524 /// The blocks in this region. 525 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 526 527 /// Whether the entire function containing this region is cold. 528 bool isEntireFunctionCold() const { return EntireFunctionCold; } 529 530 /// Remove a sub-region from this region and return it as a block sequence. 531 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 532 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 533 534 // Remove blocks dominated by the suggested entry point from this region. 535 // During the removal, identify the next best entry point into the region. 536 // Ensure that the first extracted block is the suggested entry point. 537 BlockSequence SubRegion = {SuggestedEntryPoint}; 538 BasicBlock *NextEntryPoint = nullptr; 539 unsigned NextScore = 0; 540 auto RegionEndIt = Blocks.end(); 541 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 542 BasicBlock *BB = Block.first; 543 unsigned Score = Block.second; 544 bool InSubRegion = 545 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 546 if (!InSubRegion && Score > NextScore) { 547 NextEntryPoint = BB; 548 NextScore = Score; 549 } 550 if (InSubRegion && BB != SuggestedEntryPoint) 551 SubRegion.push_back(BB); 552 return InSubRegion; 553 }); 554 Blocks.erase(RegionStartIt, RegionEndIt); 555 556 // Update the suggested entry point. 557 SuggestedEntryPoint = NextEntryPoint; 558 559 return SubRegion; 560 } 561 }; 562 } // namespace 563 564 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 565 bool Changed = false; 566 567 // The set of cold blocks. 568 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 569 570 // The worklist of non-intersecting regions left to outline. 571 SmallVector<OutliningRegion, 2> OutliningWorklist; 572 573 // Set up an RPO traversal. Experimentally, this performs better (outlines 574 // more) than a PO traversal, because we prevent region overlap by keeping 575 // the first region to contain a block. 576 ReversePostOrderTraversal<Function *> RPOT(&F); 577 578 // Calculate domtrees lazily. This reduces compile-time significantly. 579 std::unique_ptr<DominatorTree> DT; 580 std::unique_ptr<PostDominatorTree> PDT; 581 582 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 583 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 584 // be able to salvage its domtrees instead of recomputing them. 585 BlockFrequencyInfo *BFI = nullptr; 586 if (HasProfileSummary) 587 BFI = GetBFI(F); 588 589 TargetTransformInfo &TTI = GetTTI(F); 590 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 591 AssumptionCache *AC = LookupAC(F); 592 593 // Find all cold regions. 594 for (BasicBlock *BB : RPOT) { 595 // This block is already part of some outlining region. 596 if (ColdBlocks.count(BB)) 597 continue; 598 599 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 600 (EnableStaticAnalyis && unlikelyExecuted(*BB)); 601 if (!Cold) 602 continue; 603 604 LLVM_DEBUG({ 605 dbgs() << "Found a cold block:\n"; 606 BB->dump(); 607 }); 608 609 if (!DT) 610 DT = make_unique<DominatorTree>(F); 611 if (!PDT) 612 PDT = make_unique<PostDominatorTree>(F); 613 614 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 615 for (OutliningRegion &Region : Regions) { 616 if (Region.empty()) 617 continue; 618 619 if (Region.isEntireFunctionCold()) { 620 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 621 return markFunctionCold(F); 622 } 623 624 // If this outlining region intersects with another, drop the new region. 625 // 626 // TODO: It's theoretically possible to outline more by only keeping the 627 // largest region which contains a block, but the extra bookkeeping to do 628 // this is tricky/expensive. 629 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 630 return !ColdBlocks.insert(Block.first).second; 631 }); 632 if (RegionsOverlap) 633 continue; 634 635 OutliningWorklist.emplace_back(std::move(Region)); 636 ++NumColdRegionsFound; 637 } 638 } 639 640 // Outline single-entry cold regions, splitting up larger regions as needed. 641 unsigned OutlinedFunctionID = 1; 642 while (!OutliningWorklist.empty()) { 643 OutliningRegion Region = OutliningWorklist.pop_back_val(); 644 assert(!Region.empty() && "Empty outlining region in worklist"); 645 do { 646 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 647 LLVM_DEBUG({ 648 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 649 for (BasicBlock *BB : SubRegion) 650 BB->dump(); 651 }); 652 653 Function *Outlined = extractColdRegion(SubRegion, *DT, BFI, TTI, ORE, AC, 654 OutlinedFunctionID); 655 if (Outlined) { 656 ++OutlinedFunctionID; 657 Changed = true; 658 } 659 } while (!Region.empty()); 660 } 661 662 return Changed; 663 } 664 665 bool HotColdSplitting::run(Module &M) { 666 bool Changed = false; 667 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 668 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 669 Function &F = *It; 670 671 // Do not touch declarations. 672 if (F.isDeclaration()) 673 continue; 674 675 // Do not modify `optnone` functions. 676 if (F.hasOptNone()) 677 continue; 678 679 // Detect inherently cold functions and mark them as such. 680 if (isFunctionCold(F)) { 681 Changed |= markFunctionCold(F); 682 continue; 683 } 684 685 if (!shouldOutlineFrom(F)) { 686 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 687 continue; 688 } 689 690 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 691 Changed |= outlineColdRegions(F, HasProfileSummary); 692 } 693 return Changed; 694 } 695 696 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 697 if (skipModule(M)) 698 return false; 699 ProfileSummaryInfo *PSI = 700 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 701 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 702 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 703 }; 704 auto GBFI = [this](Function &F) { 705 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 706 }; 707 std::unique_ptr<OptimizationRemarkEmitter> ORE; 708 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 709 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 710 ORE.reset(new OptimizationRemarkEmitter(&F)); 711 return *ORE.get(); 712 }; 713 auto LookupAC = [this](Function &F) -> AssumptionCache * { 714 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 715 return ACT->lookupAssumptionCache(F); 716 return nullptr; 717 }; 718 719 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 720 } 721 722 PreservedAnalyses 723 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 724 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 725 726 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 727 return FAM.getCachedResult<AssumptionAnalysis>(F); 728 }; 729 730 auto GBFI = [&FAM](Function &F) { 731 return &FAM.getResult<BlockFrequencyAnalysis>(F); 732 }; 733 734 std::function<TargetTransformInfo &(Function &)> GTTI = 735 [&FAM](Function &F) -> TargetTransformInfo & { 736 return FAM.getResult<TargetIRAnalysis>(F); 737 }; 738 739 std::unique_ptr<OptimizationRemarkEmitter> ORE; 740 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 741 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 742 ORE.reset(new OptimizationRemarkEmitter(&F)); 743 return *ORE.get(); 744 }; 745 746 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 747 748 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 749 return PreservedAnalyses::none(); 750 return PreservedAnalyses::all(); 751 } 752 753 char HotColdSplittingLegacyPass::ID = 0; 754 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 755 "Hot Cold Splitting", false, false) 756 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 757 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 758 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 759 "Hot Cold Splitting", false, false) 760 761 ModulePass *llvm::createHotColdSplittingPass() { 762 return new HotColdSplittingLegacyPass(); 763 } 764