1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/Dwarf.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/IPO.h" 66 #include "llvm/Transforms/Utils/CtorUtils.h" 67 #include "llvm/Transforms/Utils/Evaluator.h" 68 #include "llvm/Transforms/Utils/GlobalStatus.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include <cassert> 71 #include <cstdint> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "globalopt" 78 79 STATISTIC(NumMarked , "Number of globals marked constant"); 80 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 81 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 83 STATISTIC(NumDeleted , "Number of globals deleted"); 84 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 85 STATISTIC(NumLocalized , "Number of globals localized"); 86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 89 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 93 STATISTIC(NumInternalFunc, "Number of internal functions"); 94 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 95 96 static cl::opt<bool> 97 EnableColdCCStressTest("enable-coldcc-stress-test", 98 cl::desc("Enable stress test of coldcc by adding " 99 "calling conv to all internal functions."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<int> ColdCCRelFreq( 103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 104 cl::desc( 105 "Maximum block frequency, expressed as a percentage of caller's " 106 "entry frequency, for a call site to be considered cold for enabling" 107 "coldcc")); 108 109 /// Is this global variable possibly used by a leak checker as a root? If so, 110 /// we might not really want to eliminate the stores to it. 111 static bool isLeakCheckerRoot(GlobalVariable *GV) { 112 // A global variable is a root if it is a pointer, or could plausibly contain 113 // a pointer. There are two challenges; one is that we could have a struct 114 // the has an inner member which is a pointer. We recurse through the type to 115 // detect these (up to a point). The other is that we may actually be a union 116 // of a pointer and another type, and so our LLVM type is an integer which 117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 118 // potentially contained here. 119 120 if (GV->hasPrivateLinkage()) 121 return false; 122 123 SmallVector<Type *, 4> Types; 124 Types.push_back(GV->getValueType()); 125 126 unsigned Limit = 20; 127 do { 128 Type *Ty = Types.pop_back_val(); 129 switch (Ty->getTypeID()) { 130 default: break; 131 case Type::PointerTyID: 132 return true; 133 case Type::FixedVectorTyID: 134 case Type::ScalableVectorTyID: 135 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 136 return true; 137 break; 138 case Type::ArrayTyID: 139 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 140 break; 141 case Type::StructTyID: { 142 StructType *STy = cast<StructType>(Ty); 143 if (STy->isOpaque()) return true; 144 for (StructType::element_iterator I = STy->element_begin(), 145 E = STy->element_end(); I != E; ++I) { 146 Type *InnerTy = *I; 147 if (isa<PointerType>(InnerTy)) return true; 148 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 149 isa<VectorType>(InnerTy)) 150 Types.push_back(InnerTy); 151 } 152 break; 153 } 154 } 155 if (--Limit == 0) return true; 156 } while (!Types.empty()); 157 return false; 158 } 159 160 /// Given a value that is stored to a global but never read, determine whether 161 /// it's safe to remove the store and the chain of computation that feeds the 162 /// store. 163 static bool IsSafeComputationToRemove( 164 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 165 do { 166 if (isa<Constant>(V)) 167 return true; 168 if (!V->hasOneUse()) 169 return false; 170 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 171 isa<GlobalValue>(V)) 172 return false; 173 if (isAllocationFn(V, GetTLI)) 174 return true; 175 176 Instruction *I = cast<Instruction>(V); 177 if (I->mayHaveSideEffects()) 178 return false; 179 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 180 if (!GEP->hasAllConstantIndices()) 181 return false; 182 } else if (I->getNumOperands() != 1) { 183 return false; 184 } 185 186 V = I->getOperand(0); 187 } while (true); 188 } 189 190 /// This GV is a pointer root. Loop over all users of the global and clean up 191 /// any that obviously don't assign the global a value that isn't dynamically 192 /// allocated. 193 static bool 194 CleanupPointerRootUsers(GlobalVariable *GV, 195 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 196 // A brief explanation of leak checkers. The goal is to find bugs where 197 // pointers are forgotten, causing an accumulating growth in memory 198 // usage over time. The common strategy for leak checkers is to explicitly 199 // allow the memory pointed to by globals at exit. This is popular because it 200 // also solves another problem where the main thread of a C++ program may shut 201 // down before other threads that are still expecting to use those globals. To 202 // handle that case, we expect the program may create a singleton and never 203 // destroy it. 204 205 bool Changed = false; 206 207 // If Dead[n].first is the only use of a malloc result, we can delete its 208 // chain of computation and the store to the global in Dead[n].second. 209 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 210 211 // Constants can't be pointers to dynamically allocated memory. 212 for (User *U : llvm::make_early_inc_range(GV->users())) { 213 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 214 Value *V = SI->getValueOperand(); 215 if (isa<Constant>(V)) { 216 Changed = true; 217 SI->eraseFromParent(); 218 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 219 if (I->hasOneUse()) 220 Dead.push_back(std::make_pair(I, SI)); 221 } 222 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 223 if (isa<Constant>(MSI->getValue())) { 224 Changed = true; 225 MSI->eraseFromParent(); 226 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 227 if (I->hasOneUse()) 228 Dead.push_back(std::make_pair(I, MSI)); 229 } 230 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 231 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 232 if (MemSrc && MemSrc->isConstant()) { 233 Changed = true; 234 MTI->eraseFromParent(); 235 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 236 if (I->hasOneUse()) 237 Dead.push_back(std::make_pair(I, MTI)); 238 } 239 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 240 if (CE->use_empty()) { 241 CE->destroyConstant(); 242 Changed = true; 243 } 244 } else if (Constant *C = dyn_cast<Constant>(U)) { 245 if (isSafeToDestroyConstant(C)) { 246 C->destroyConstant(); 247 // This could have invalidated UI, start over from scratch. 248 Dead.clear(); 249 CleanupPointerRootUsers(GV, GetTLI); 250 return true; 251 } 252 } 253 } 254 255 for (int i = 0, e = Dead.size(); i != e; ++i) { 256 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 257 Dead[i].second->eraseFromParent(); 258 Instruction *I = Dead[i].first; 259 do { 260 if (isAllocationFn(I, GetTLI)) 261 break; 262 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 263 if (!J) 264 break; 265 I->eraseFromParent(); 266 I = J; 267 } while (true); 268 I->eraseFromParent(); 269 Changed = true; 270 } 271 } 272 273 return Changed; 274 } 275 276 /// We just marked GV constant. Loop over all users of the global, cleaning up 277 /// the obvious ones. This is largely just a quick scan over the use list to 278 /// clean up the easy and obvious cruft. This returns true if it made a change. 279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV, 280 const DataLayout &DL) { 281 Constant *Init = GV->getInitializer(); 282 SmallVector<User *, 8> WorkList(GV->users()); 283 SmallPtrSet<User *, 8> Visited; 284 bool Changed = false; 285 286 SmallVector<WeakTrackingVH> MaybeDeadInsts; 287 auto EraseFromParent = [&](Instruction *I) { 288 for (Value *Op : I->operands()) 289 if (auto *OpI = dyn_cast<Instruction>(Op)) 290 MaybeDeadInsts.push_back(OpI); 291 I->eraseFromParent(); 292 Changed = true; 293 }; 294 while (!WorkList.empty()) { 295 User *U = WorkList.pop_back_val(); 296 if (!Visited.insert(U).second) 297 continue; 298 299 if (auto *BO = dyn_cast<BitCastOperator>(U)) 300 append_range(WorkList, BO->users()); 301 if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U)) 302 append_range(WorkList, ASC->users()); 303 else if (auto *GEP = dyn_cast<GEPOperator>(U)) 304 append_range(WorkList, GEP->users()); 305 else if (auto *LI = dyn_cast<LoadInst>(U)) { 306 // A load from zeroinitializer is always zeroinitializer, regardless of 307 // any applied offset. 308 Type *Ty = LI->getType(); 309 if (Init->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) { 310 LI->replaceAllUsesWith(Constant::getNullValue(Ty)); 311 EraseFromParent(LI); 312 continue; 313 } 314 315 Value *PtrOp = LI->getPointerOperand(); 316 APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 317 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 318 DL, Offset, /* AllowNonInbounds */ true); 319 if (PtrOp == GV) { 320 if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { 321 LI->replaceAllUsesWith(Value); 322 EraseFromParent(LI); 323 } 324 } 325 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 326 // Store must be unreachable or storing Init into the global. 327 EraseFromParent(SI); 328 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 329 if (getUnderlyingObject(MI->getRawDest()) == GV) 330 EraseFromParent(MI); 331 } 332 } 333 334 Changed |= 335 RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); 336 GV->removeDeadConstantUsers(); 337 return Changed; 338 } 339 340 static bool isSafeSROAElementUse(Value *V); 341 342 /// Return true if the specified GEP is a safe user of a derived 343 /// expression from a global that we want to SROA. 344 static bool isSafeSROAGEP(User *U) { 345 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 346 // don't like < 3 operand CE's, and we don't like non-constant integer 347 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 348 // value of C. 349 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 350 !cast<Constant>(U->getOperand(1))->isNullValue()) 351 return false; 352 353 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 354 ++GEPI; // Skip over the pointer index. 355 356 // For all other level we require that the indices are constant and inrange. 357 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 358 // invalid things like allowing i to index an out-of-range subscript that 359 // accesses A[1]. This can also happen between different members of a struct 360 // in llvm IR. 361 for (; GEPI != E; ++GEPI) { 362 if (GEPI.isStruct()) 363 continue; 364 365 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 366 if (!IdxVal || (GEPI.isBoundedSequential() && 367 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 368 return false; 369 } 370 371 return llvm::all_of(U->users(), isSafeSROAElementUse); 372 } 373 374 /// Return true if the specified instruction is a safe user of a derived 375 /// expression from a global that we want to SROA. 376 static bool isSafeSROAElementUse(Value *V) { 377 // We might have a dead and dangling constant hanging off of here. 378 if (Constant *C = dyn_cast<Constant>(V)) 379 return isSafeToDestroyConstant(C); 380 381 Instruction *I = dyn_cast<Instruction>(V); 382 if (!I) return false; 383 384 // Loads are ok. 385 if (isa<LoadInst>(I)) return true; 386 387 // Stores *to* the pointer are ok. 388 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 389 return SI->getOperand(0) != V; 390 391 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 392 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 393 } 394 395 /// Look at all uses of the global and decide whether it is safe for us to 396 /// perform this transformation. 397 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 398 for (User *U : GV->users()) { 399 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 400 if (!isa<GetElementPtrInst>(U) && 401 (!isa<ConstantExpr>(U) || 402 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 403 return false; 404 405 // Check the gep and it's users are safe to SRA 406 if (!isSafeSROAGEP(U)) 407 return false; 408 } 409 410 return true; 411 } 412 413 static bool IsSRASequential(Type *T) { 414 return isa<ArrayType>(T) || isa<VectorType>(T); 415 } 416 static uint64_t GetSRASequentialNumElements(Type *T) { 417 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 418 return AT->getNumElements(); 419 return cast<FixedVectorType>(T)->getNumElements(); 420 } 421 static Type *GetSRASequentialElementType(Type *T) { 422 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 423 return AT->getElementType(); 424 return cast<VectorType>(T)->getElementType(); 425 } 426 static bool CanDoGlobalSRA(GlobalVariable *GV) { 427 Constant *Init = GV->getInitializer(); 428 429 if (isa<StructType>(Init->getType())) { 430 // nothing to check 431 } else if (IsSRASequential(Init->getType())) { 432 if (GetSRASequentialNumElements(Init->getType()) > 16 && 433 GV->hasNUsesOrMore(16)) 434 return false; // It's not worth it. 435 } else 436 return false; 437 438 return GlobalUsersSafeToSRA(GV); 439 } 440 441 /// Copy over the debug info for a variable to its SRA replacements. 442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 443 uint64_t FragmentOffsetInBits, 444 uint64_t FragmentSizeInBits, 445 uint64_t VarSize) { 446 SmallVector<DIGlobalVariableExpression *, 1> GVs; 447 GV->getDebugInfo(GVs); 448 for (auto *GVE : GVs) { 449 DIVariable *Var = GVE->getVariable(); 450 DIExpression *Expr = GVE->getExpression(); 451 // If the FragmentSize is smaller than the variable, 452 // emit a fragment expression. 453 if (FragmentSizeInBits < VarSize) { 454 if (auto E = DIExpression::createFragmentExpression( 455 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 456 Expr = *E; 457 else 458 return; 459 } 460 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 461 NGV->addDebugInfo(NGVE); 462 } 463 } 464 465 /// Perform scalar replacement of aggregates on the specified global variable. 466 /// This opens the door for other optimizations by exposing the behavior of the 467 /// program in a more fine-grained way. We have determined that this 468 /// transformation is safe already. We return the first global variable we 469 /// insert so that the caller can reprocess it. 470 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 471 // Make sure this global only has simple uses that we can SRA. 472 if (!CanDoGlobalSRA(GV)) 473 return nullptr; 474 475 assert(GV->hasLocalLinkage()); 476 Constant *Init = GV->getInitializer(); 477 Type *Ty = Init->getType(); 478 uint64_t VarSize = DL.getTypeSizeInBits(Ty); 479 480 std::map<unsigned, GlobalVariable *> NewGlobals; 481 482 // Get the alignment of the global, either explicit or target-specific. 483 Align StartAlignment = 484 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 485 486 // Loop over all users and create replacement variables for used aggregate 487 // elements. 488 for (User *GEP : GV->users()) { 489 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 490 Instruction::GetElementPtr) || 491 isa<GetElementPtrInst>(GEP)) && 492 "NonGEP CE's are not SRAable!"); 493 494 // Ignore the 1th operand, which has to be zero or else the program is quite 495 // broken (undefined). Get the 2nd operand, which is the structure or array 496 // index. 497 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 498 if (NewGlobals.count(ElementIdx) == 1) 499 continue; // we`ve already created replacement variable 500 assert(NewGlobals.count(ElementIdx) == 0); 501 502 Type *ElTy = nullptr; 503 if (StructType *STy = dyn_cast<StructType>(Ty)) 504 ElTy = STy->getElementType(ElementIdx); 505 else 506 ElTy = GetSRASequentialElementType(Ty); 507 assert(ElTy); 508 509 Constant *In = Init->getAggregateElement(ElementIdx); 510 assert(In && "Couldn't get element of initializer?"); 511 512 GlobalVariable *NGV = new GlobalVariable( 513 ElTy, false, GlobalVariable::InternalLinkage, In, 514 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 515 GV->getType()->getAddressSpace()); 516 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 517 NGV->copyAttributesFrom(GV); 518 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 519 520 if (StructType *STy = dyn_cast<StructType>(Ty)) { 521 const StructLayout &Layout = *DL.getStructLayout(STy); 522 523 // Calculate the known alignment of the field. If the original aggregate 524 // had 256 byte alignment for example, something might depend on that: 525 // propagate info to each field. 526 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 527 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 528 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 529 NGV->setAlignment(NewAlign); 530 531 // Copy over the debug info for the variable. 532 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 533 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 534 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize); 535 } else { 536 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 537 Align EltAlign = DL.getABITypeAlign(ElTy); 538 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 539 540 // Calculate the known alignment of the field. If the original aggregate 541 // had 256 byte alignment for example, something might depend on that: 542 // propagate info to each field. 543 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 544 if (NewAlign > EltAlign) 545 NGV->setAlignment(NewAlign); 546 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 547 FragmentSizeInBits, VarSize); 548 } 549 } 550 551 if (NewGlobals.empty()) 552 return nullptr; 553 554 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 555 for (auto NewGlobalVar : NewGlobals) 556 Globals.push_back(NewGlobalVar.second); 557 558 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 559 560 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 561 562 // Loop over all of the uses of the global, replacing the constantexpr geps, 563 // with smaller constantexpr geps or direct references. 564 while (!GV->use_empty()) { 565 User *GEP = GV->user_back(); 566 assert(((isa<ConstantExpr>(GEP) && 567 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 568 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 569 570 // Ignore the 1th operand, which has to be zero or else the program is quite 571 // broken (undefined). Get the 2nd operand, which is the structure or array 572 // index. 573 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 574 assert(NewGlobals.count(ElementIdx) == 1); 575 576 Value *NewPtr = NewGlobals[ElementIdx]; 577 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 578 579 // Form a shorter GEP if needed. 580 if (GEP->getNumOperands() > 3) { 581 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 582 SmallVector<Constant*, 8> Idxs; 583 Idxs.push_back(NullInt); 584 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 585 Idxs.push_back(CE->getOperand(i)); 586 NewPtr = 587 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 588 } else { 589 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 590 SmallVector<Value*, 8> Idxs; 591 Idxs.push_back(NullInt); 592 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 593 Idxs.push_back(GEPI->getOperand(i)); 594 NewPtr = GetElementPtrInst::Create( 595 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 596 GEPI); 597 } 598 } 599 GEP->replaceAllUsesWith(NewPtr); 600 601 // We changed the pointer of any memory access user. Recalculate alignments. 602 for (User *U : NewPtr->users()) { 603 if (auto *Load = dyn_cast<LoadInst>(U)) { 604 Align PrefAlign = DL.getPrefTypeAlign(Load->getType()); 605 Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(), 606 PrefAlign, DL, Load); 607 Load->setAlignment(NewAlign); 608 } 609 if (auto *Store = dyn_cast<StoreInst>(U)) { 610 Align PrefAlign = 611 DL.getPrefTypeAlign(Store->getValueOperand()->getType()); 612 Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(), 613 PrefAlign, DL, Store); 614 Store->setAlignment(NewAlign); 615 } 616 } 617 618 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 619 GEPI->eraseFromParent(); 620 else 621 cast<ConstantExpr>(GEP)->destroyConstant(); 622 } 623 624 // Delete the old global, now that it is dead. 625 Globals.erase(GV); 626 ++NumSRA; 627 628 assert(NewGlobals.size() > 0); 629 return NewGlobals.begin()->second; 630 } 631 632 /// Return true if all users of the specified value will trap if the value is 633 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 634 /// reprocessing them. 635 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 636 SmallPtrSetImpl<const PHINode*> &PHIs) { 637 for (const User *U : V->users()) { 638 if (const Instruction *I = dyn_cast<Instruction>(U)) { 639 // If null pointer is considered valid, then all uses are non-trapping. 640 // Non address-space 0 globals have already been pruned by the caller. 641 if (NullPointerIsDefined(I->getFunction())) 642 return false; 643 } 644 if (isa<LoadInst>(U)) { 645 // Will trap. 646 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 647 if (SI->getOperand(0) == V) { 648 //cerr << "NONTRAPPING USE: " << *U; 649 return false; // Storing the value. 650 } 651 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 652 if (CI->getCalledOperand() != V) { 653 //cerr << "NONTRAPPING USE: " << *U; 654 return false; // Not calling the ptr 655 } 656 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 657 if (II->getCalledOperand() != V) { 658 //cerr << "NONTRAPPING USE: " << *U; 659 return false; // Not calling the ptr 660 } 661 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 662 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 663 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 664 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 665 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 666 // If we've already seen this phi node, ignore it, it has already been 667 // checked. 668 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 669 return false; 670 } else if (isa<ICmpInst>(U) && 671 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 672 isa<LoadInst>(U->getOperand(0)) && 673 isa<ConstantPointerNull>(U->getOperand(1))) { 674 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 675 ->getPointerOperand() 676 ->stripPointerCasts()) && 677 "Should be GlobalVariable"); 678 // This and only this kind of non-signed ICmpInst is to be replaced with 679 // the comparing of the value of the created global init bool later in 680 // optimizeGlobalAddressOfMalloc for the global variable. 681 } else { 682 //cerr << "NONTRAPPING USE: " << *U; 683 return false; 684 } 685 } 686 return true; 687 } 688 689 /// Return true if all uses of any loads from GV will trap if the loaded value 690 /// is null. Note that this also permits comparisons of the loaded value 691 /// against null, as a special case. 692 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 693 SmallVector<const Value *, 4> Worklist; 694 Worklist.push_back(GV); 695 while (!Worklist.empty()) { 696 const Value *P = Worklist.pop_back_val(); 697 for (auto *U : P->users()) { 698 if (auto *LI = dyn_cast<LoadInst>(U)) { 699 SmallPtrSet<const PHINode *, 8> PHIs; 700 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 701 return false; 702 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 703 // Ignore stores to the global. 704 if (SI->getPointerOperand() != P) 705 return false; 706 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 707 if (CE->stripPointerCasts() != GV) 708 return false; 709 // Check further the ConstantExpr. 710 Worklist.push_back(CE); 711 } else { 712 // We don't know or understand this user, bail out. 713 return false; 714 } 715 } 716 } 717 718 return true; 719 } 720 721 /// Get all the loads/store uses for global variable \p GV. 722 static void allUsesOfLoadAndStores(GlobalVariable *GV, 723 SmallVector<Value *, 4> &Uses) { 724 SmallVector<Value *, 4> Worklist; 725 Worklist.push_back(GV); 726 while (!Worklist.empty()) { 727 auto *P = Worklist.pop_back_val(); 728 for (auto *U : P->users()) { 729 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 730 Worklist.push_back(CE); 731 continue; 732 } 733 734 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 735 "Expect only load or store instructions"); 736 Uses.push_back(U); 737 } 738 } 739 } 740 741 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 742 bool Changed = false; 743 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 744 Instruction *I = cast<Instruction>(*UI++); 745 // Uses are non-trapping if null pointer is considered valid. 746 // Non address-space 0 globals are already pruned by the caller. 747 if (NullPointerIsDefined(I->getFunction())) 748 return false; 749 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 750 LI->setOperand(0, NewV); 751 Changed = true; 752 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 753 if (SI->getOperand(1) == V) { 754 SI->setOperand(1, NewV); 755 Changed = true; 756 } 757 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 758 CallBase *CB = cast<CallBase>(I); 759 if (CB->getCalledOperand() == V) { 760 // Calling through the pointer! Turn into a direct call, but be careful 761 // that the pointer is not also being passed as an argument. 762 CB->setCalledOperand(NewV); 763 Changed = true; 764 bool PassedAsArg = false; 765 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 766 if (CB->getArgOperand(i) == V) { 767 PassedAsArg = true; 768 CB->setArgOperand(i, NewV); 769 } 770 771 if (PassedAsArg) { 772 // Being passed as an argument also. Be careful to not invalidate UI! 773 UI = V->user_begin(); 774 } 775 } 776 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 777 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 778 ConstantExpr::getCast(CI->getOpcode(), 779 NewV, CI->getType())); 780 if (CI->use_empty()) { 781 Changed = true; 782 CI->eraseFromParent(); 783 } 784 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 785 // Should handle GEP here. 786 SmallVector<Constant*, 8> Idxs; 787 Idxs.reserve(GEPI->getNumOperands()-1); 788 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 789 i != e; ++i) 790 if (Constant *C = dyn_cast<Constant>(*i)) 791 Idxs.push_back(C); 792 else 793 break; 794 if (Idxs.size() == GEPI->getNumOperands()-1) 795 Changed |= OptimizeAwayTrappingUsesOfValue( 796 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 797 NewV, Idxs)); 798 if (GEPI->use_empty()) { 799 Changed = true; 800 GEPI->eraseFromParent(); 801 } 802 } 803 } 804 805 return Changed; 806 } 807 808 /// The specified global has only one non-null value stored into it. If there 809 /// are uses of the loaded value that would trap if the loaded value is 810 /// dynamically null, then we know that they cannot be reachable with a null 811 /// optimize away the load. 812 static bool OptimizeAwayTrappingUsesOfLoads( 813 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 814 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 815 bool Changed = false; 816 817 // Keep track of whether we are able to remove all the uses of the global 818 // other than the store that defines it. 819 bool AllNonStoreUsesGone = true; 820 821 // Replace all uses of loads with uses of uses of the stored value. 822 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 823 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 824 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 825 // If we were able to delete all uses of the loads 826 if (LI->use_empty()) { 827 LI->eraseFromParent(); 828 Changed = true; 829 } else { 830 AllNonStoreUsesGone = false; 831 } 832 } else if (isa<StoreInst>(GlobalUser)) { 833 // Ignore the store that stores "LV" to the global. 834 assert(GlobalUser->getOperand(1) == GV && 835 "Must be storing *to* the global"); 836 } else { 837 AllNonStoreUsesGone = false; 838 839 // If we get here we could have other crazy uses that are transitively 840 // loaded. 841 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 842 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 843 isa<BitCastInst>(GlobalUser) || 844 isa<GetElementPtrInst>(GlobalUser)) && 845 "Only expect load and stores!"); 846 } 847 } 848 849 if (Changed) { 850 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 851 << "\n"); 852 ++NumGlobUses; 853 } 854 855 // If we nuked all of the loads, then none of the stores are needed either, 856 // nor is the global. 857 if (AllNonStoreUsesGone) { 858 if (isLeakCheckerRoot(GV)) { 859 Changed |= CleanupPointerRootUsers(GV, GetTLI); 860 } else { 861 Changed = true; 862 CleanupConstantGlobalUsers(GV, DL); 863 } 864 if (GV->use_empty()) { 865 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 866 Changed = true; 867 GV->eraseFromParent(); 868 ++NumDeleted; 869 } 870 } 871 return Changed; 872 } 873 874 /// Walk the use list of V, constant folding all of the instructions that are 875 /// foldable. 876 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 877 TargetLibraryInfo *TLI) { 878 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 879 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 880 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 881 I->replaceAllUsesWith(NewC); 882 883 // Advance UI to the next non-I use to avoid invalidating it! 884 // Instructions could multiply use V. 885 while (UI != E && *UI == I) 886 ++UI; 887 if (isInstructionTriviallyDead(I, TLI)) 888 I->eraseFromParent(); 889 } 890 } 891 892 /// This function takes the specified global variable, and transforms the 893 /// program as if it always contained the result of the specified malloc. 894 /// Because it is always the result of the specified malloc, there is no reason 895 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 896 /// loads of GV as uses of the new global. 897 static GlobalVariable * 898 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 899 ConstantInt *NElements, const DataLayout &DL, 900 TargetLibraryInfo *TLI) { 901 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 902 << '\n'); 903 904 Type *GlobalType; 905 if (NElements->getZExtValue() == 1) 906 GlobalType = AllocTy; 907 else 908 // If we have an array allocation, the global variable is of an array. 909 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 910 911 // Create the new global variable. The contents of the malloc'd memory is 912 // undefined, so initialize with an undef value. 913 GlobalVariable *NewGV = new GlobalVariable( 914 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 915 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 916 GV->getThreadLocalMode()); 917 918 // If there are bitcast users of the malloc (which is typical, usually we have 919 // a malloc + bitcast) then replace them with uses of the new global. Update 920 // other users to use the global as well. 921 BitCastInst *TheBC = nullptr; 922 while (!CI->use_empty()) { 923 Instruction *User = cast<Instruction>(CI->user_back()); 924 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 925 if (BCI->getType() == NewGV->getType()) { 926 BCI->replaceAllUsesWith(NewGV); 927 BCI->eraseFromParent(); 928 } else { 929 BCI->setOperand(0, NewGV); 930 } 931 } else { 932 if (!TheBC) 933 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 934 User->replaceUsesOfWith(CI, TheBC); 935 } 936 } 937 938 SmallPtrSet<Constant *, 1> RepValues; 939 RepValues.insert(NewGV); 940 941 // If there is a comparison against null, we will insert a global bool to 942 // keep track of whether the global was initialized yet or not. 943 GlobalVariable *InitBool = 944 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 945 GlobalValue::InternalLinkage, 946 ConstantInt::getFalse(GV->getContext()), 947 GV->getName()+".init", GV->getThreadLocalMode()); 948 bool InitBoolUsed = false; 949 950 // Loop over all instruction uses of GV, processing them in turn. 951 SmallVector<Value *, 4> Guses; 952 allUsesOfLoadAndStores(GV, Guses); 953 for (auto *U : Guses) { 954 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 955 // The global is initialized when the store to it occurs. If the stored 956 // value is null value, the global bool is set to false, otherwise true. 957 new StoreInst(ConstantInt::getBool( 958 GV->getContext(), 959 !isa<ConstantPointerNull>(SI->getValueOperand())), 960 InitBool, false, Align(1), SI->getOrdering(), 961 SI->getSyncScopeID(), SI); 962 SI->eraseFromParent(); 963 continue; 964 } 965 966 LoadInst *LI = cast<LoadInst>(U); 967 while (!LI->use_empty()) { 968 Use &LoadUse = *LI->use_begin(); 969 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 970 if (!ICI) { 971 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); 972 RepValues.insert(CE); 973 LoadUse.set(CE); 974 continue; 975 } 976 977 // Replace the cmp X, 0 with a use of the bool value. 978 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 979 InitBool->getName() + ".val", false, Align(1), 980 LI->getOrdering(), LI->getSyncScopeID(), LI); 981 InitBoolUsed = true; 982 switch (ICI->getPredicate()) { 983 default: llvm_unreachable("Unknown ICmp Predicate!"); 984 case ICmpInst::ICMP_ULT: // X < null -> always false 985 LV = ConstantInt::getFalse(GV->getContext()); 986 break; 987 case ICmpInst::ICMP_UGE: // X >= null -> always true 988 LV = ConstantInt::getTrue(GV->getContext()); 989 break; 990 case ICmpInst::ICMP_ULE: 991 case ICmpInst::ICMP_EQ: 992 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 993 break; 994 case ICmpInst::ICMP_NE: 995 case ICmpInst::ICMP_UGT: 996 break; // no change. 997 } 998 ICI->replaceAllUsesWith(LV); 999 ICI->eraseFromParent(); 1000 } 1001 LI->eraseFromParent(); 1002 } 1003 1004 // If the initialization boolean was used, insert it, otherwise delete it. 1005 if (!InitBoolUsed) { 1006 while (!InitBool->use_empty()) // Delete initializations 1007 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 1008 delete InitBool; 1009 } else 1010 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 1011 1012 // Now the GV is dead, nuke it and the malloc.. 1013 GV->eraseFromParent(); 1014 CI->eraseFromParent(); 1015 1016 // To further other optimizations, loop over all users of NewGV and try to 1017 // constant prop them. This will promote GEP instructions with constant 1018 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1019 for (auto *CE : RepValues) 1020 ConstantPropUsersOf(CE, DL, TLI); 1021 1022 return NewGV; 1023 } 1024 1025 /// Scan the use-list of GV checking to make sure that there are no complex uses 1026 /// of GV. We permit simple things like dereferencing the pointer, but not 1027 /// storing through the address, unless it is to the specified global. 1028 static bool 1029 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1030 const GlobalVariable *GV) { 1031 SmallPtrSet<const Value *, 4> Visited; 1032 SmallVector<const Value *, 4> Worklist; 1033 Worklist.push_back(CI); 1034 1035 while (!Worklist.empty()) { 1036 const Value *V = Worklist.pop_back_val(); 1037 if (!Visited.insert(V).second) 1038 continue; 1039 1040 for (const Use &VUse : V->uses()) { 1041 const User *U = VUse.getUser(); 1042 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1043 continue; // Fine, ignore. 1044 1045 if (auto *SI = dyn_cast<StoreInst>(U)) { 1046 if (SI->getValueOperand() == V && 1047 SI->getPointerOperand()->stripPointerCasts() != GV) 1048 return false; // Storing the pointer not into GV... bad. 1049 continue; // Otherwise, storing through it, or storing into GV... fine. 1050 } 1051 1052 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1053 Worklist.push_back(BCI); 1054 continue; 1055 } 1056 1057 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1058 Worklist.push_back(GEPI); 1059 continue; 1060 } 1061 1062 return false; 1063 } 1064 } 1065 1066 return true; 1067 } 1068 1069 /// This function is called when we see a pointer global variable with a single 1070 /// value stored it that is a malloc or cast of malloc. 1071 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1072 Type *AllocTy, 1073 AtomicOrdering Ordering, 1074 const DataLayout &DL, 1075 TargetLibraryInfo *TLI) { 1076 // If this is a malloc of an abstract type, don't touch it. 1077 if (!AllocTy->isSized()) 1078 return false; 1079 1080 // We can't optimize this global unless all uses of it are *known* to be 1081 // of the malloc value, not of the null initializer value (consider a use 1082 // that compares the global's value against zero to see if the malloc has 1083 // been reached). To do this, we check to see if all uses of the global 1084 // would trap if the global were null: this proves that they must all 1085 // happen after the malloc. 1086 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1087 return false; 1088 1089 // We can't optimize this if the malloc itself is used in a complex way, 1090 // for example, being stored into multiple globals. This allows the 1091 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1092 // These are all things we could transform to using the global for. 1093 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1094 return false; 1095 1096 // If we have a global that is only initialized with a fixed size malloc, 1097 // transform the program to use global memory instead of malloc'd memory. 1098 // This eliminates dynamic allocation, avoids an indirection accessing the 1099 // data, and exposes the resultant global to further GlobalOpt. 1100 // We cannot optimize the malloc if we cannot determine malloc array size. 1101 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1102 if (!NElems) 1103 return false; 1104 1105 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1106 // Restrict this transformation to only working on small allocations 1107 // (2048 bytes currently), as we don't want to introduce a 16M global or 1108 // something. 1109 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1110 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1111 return true; 1112 } 1113 1114 return false; 1115 } 1116 1117 // Try to optimize globals based on the knowledge that only one value (besides 1118 // its initializer) is ever stored to the global. 1119 static bool 1120 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1121 AtomicOrdering Ordering, const DataLayout &DL, 1122 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1123 // Ignore no-op GEPs and bitcasts. 1124 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1125 1126 // If we are dealing with a pointer global that is initialized to null and 1127 // only has one (non-null) value stored into it, then we can optimize any 1128 // users of the loaded value (often calls and loads) that would trap if the 1129 // value was null. 1130 if (GV->getInitializer()->getType()->isPointerTy() && 1131 GV->getInitializer()->isNullValue() && 1132 StoredOnceVal->getType()->isPointerTy() && 1133 !NullPointerIsDefined( 1134 nullptr /* F */, 1135 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1136 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1137 if (GV->getInitializer()->getType() != SOVC->getType()) 1138 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1139 1140 // Optimize away any trapping uses of the loaded value. 1141 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1142 return true; 1143 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1144 auto *TLI = &GetTLI(*CI->getFunction()); 1145 Type *MallocType = getMallocAllocatedType(CI, TLI); 1146 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1147 Ordering, DL, TLI)) 1148 return true; 1149 } 1150 } 1151 1152 return false; 1153 } 1154 1155 /// At this point, we have learned that the only two values ever stored into GV 1156 /// are its initializer and OtherVal. See if we can shrink the global into a 1157 /// boolean and select between the two values whenever it is used. This exposes 1158 /// the values to other scalar optimizations. 1159 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1160 Type *GVElType = GV->getValueType(); 1161 1162 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1163 // an FP value, pointer or vector, don't do this optimization because a select 1164 // between them is very expensive and unlikely to lead to later 1165 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1166 // where v1 and v2 both require constant pool loads, a big loss. 1167 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1168 GVElType->isFloatingPointTy() || 1169 GVElType->isPointerTy() || GVElType->isVectorTy()) 1170 return false; 1171 1172 // Walk the use list of the global seeing if all the uses are load or store. 1173 // If there is anything else, bail out. 1174 for (User *U : GV->users()) 1175 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1176 return false; 1177 1178 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1179 1180 // Create the new global, initializing it to false. 1181 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1182 false, 1183 GlobalValue::InternalLinkage, 1184 ConstantInt::getFalse(GV->getContext()), 1185 GV->getName()+".b", 1186 GV->getThreadLocalMode(), 1187 GV->getType()->getAddressSpace()); 1188 NewGV->copyAttributesFrom(GV); 1189 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1190 1191 Constant *InitVal = GV->getInitializer(); 1192 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1193 "No reason to shrink to bool!"); 1194 1195 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1196 GV->getDebugInfo(GVs); 1197 1198 // If initialized to zero and storing one into the global, we can use a cast 1199 // instead of a select to synthesize the desired value. 1200 bool IsOneZero = false; 1201 bool EmitOneOrZero = true; 1202 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1203 if (CI && CI->getValue().getActiveBits() <= 64) { 1204 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1205 1206 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1207 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1208 uint64_t ValInit = CIInit->getZExtValue(); 1209 uint64_t ValOther = CI->getZExtValue(); 1210 uint64_t ValMinus = ValOther - ValInit; 1211 1212 for(auto *GVe : GVs){ 1213 DIGlobalVariable *DGV = GVe->getVariable(); 1214 DIExpression *E = GVe->getExpression(); 1215 const DataLayout &DL = GV->getParent()->getDataLayout(); 1216 unsigned SizeInOctets = 1217 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1218 1219 // It is expected that the address of global optimized variable is on 1220 // top of the stack. After optimization, value of that variable will 1221 // be ether 0 for initial value or 1 for other value. The following 1222 // expression should return constant integer value depending on the 1223 // value at global object address: 1224 // val * (ValOther - ValInit) + ValInit: 1225 // DW_OP_deref DW_OP_constu <ValMinus> 1226 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1227 SmallVector<uint64_t, 12> Ops = { 1228 dwarf::DW_OP_deref_size, SizeInOctets, 1229 dwarf::DW_OP_constu, ValMinus, 1230 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1231 dwarf::DW_OP_plus}; 1232 bool WithStackValue = true; 1233 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1234 DIGlobalVariableExpression *DGVE = 1235 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1236 NewGV->addDebugInfo(DGVE); 1237 } 1238 EmitOneOrZero = false; 1239 } 1240 } 1241 1242 if (EmitOneOrZero) { 1243 // FIXME: This will only emit address for debugger on which will 1244 // be written only 0 or 1. 1245 for(auto *GV : GVs) 1246 NewGV->addDebugInfo(GV); 1247 } 1248 1249 while (!GV->use_empty()) { 1250 Instruction *UI = cast<Instruction>(GV->user_back()); 1251 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1252 // Change the store into a boolean store. 1253 bool StoringOther = SI->getOperand(0) == OtherVal; 1254 // Only do this if we weren't storing a loaded value. 1255 Value *StoreVal; 1256 if (StoringOther || SI->getOperand(0) == InitVal) { 1257 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1258 StoringOther); 1259 } else { 1260 // Otherwise, we are storing a previously loaded copy. To do this, 1261 // change the copy from copying the original value to just copying the 1262 // bool. 1263 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1264 1265 // If we've already replaced the input, StoredVal will be a cast or 1266 // select instruction. If not, it will be a load of the original 1267 // global. 1268 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1269 assert(LI->getOperand(0) == GV && "Not a copy!"); 1270 // Insert a new load, to preserve the saved value. 1271 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1272 LI->getName() + ".b", false, Align(1), 1273 LI->getOrdering(), LI->getSyncScopeID(), LI); 1274 } else { 1275 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1276 "This is not a form that we understand!"); 1277 StoreVal = StoredVal->getOperand(0); 1278 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1279 } 1280 } 1281 StoreInst *NSI = 1282 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1283 SI->getSyncScopeID(), SI); 1284 NSI->setDebugLoc(SI->getDebugLoc()); 1285 } else { 1286 // Change the load into a load of bool then a select. 1287 LoadInst *LI = cast<LoadInst>(UI); 1288 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1289 LI->getName() + ".b", false, Align(1), 1290 LI->getOrdering(), LI->getSyncScopeID(), LI); 1291 Instruction *NSI; 1292 if (IsOneZero) 1293 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1294 else 1295 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1296 NSI->takeName(LI); 1297 // Since LI is split into two instructions, NLI and NSI both inherit the 1298 // same DebugLoc 1299 NLI->setDebugLoc(LI->getDebugLoc()); 1300 NSI->setDebugLoc(LI->getDebugLoc()); 1301 LI->replaceAllUsesWith(NSI); 1302 } 1303 UI->eraseFromParent(); 1304 } 1305 1306 // Retain the name of the old global variable. People who are debugging their 1307 // programs may expect these variables to be named the same. 1308 NewGV->takeName(GV); 1309 GV->eraseFromParent(); 1310 return true; 1311 } 1312 1313 static bool deleteIfDead( 1314 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1315 GV.removeDeadConstantUsers(); 1316 1317 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1318 return false; 1319 1320 if (const Comdat *C = GV.getComdat()) 1321 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1322 return false; 1323 1324 bool Dead; 1325 if (auto *F = dyn_cast<Function>(&GV)) 1326 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1327 else 1328 Dead = GV.use_empty(); 1329 if (!Dead) 1330 return false; 1331 1332 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1333 GV.eraseFromParent(); 1334 ++NumDeleted; 1335 return true; 1336 } 1337 1338 static bool isPointerValueDeadOnEntryToFunction( 1339 const Function *F, GlobalValue *GV, 1340 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1341 // Find all uses of GV. We expect them all to be in F, and if we can't 1342 // identify any of the uses we bail out. 1343 // 1344 // On each of these uses, identify if the memory that GV points to is 1345 // used/required/live at the start of the function. If it is not, for example 1346 // if the first thing the function does is store to the GV, the GV can 1347 // possibly be demoted. 1348 // 1349 // We don't do an exhaustive search for memory operations - simply look 1350 // through bitcasts as they're quite common and benign. 1351 const DataLayout &DL = GV->getParent()->getDataLayout(); 1352 SmallVector<LoadInst *, 4> Loads; 1353 SmallVector<StoreInst *, 4> Stores; 1354 for (auto *U : GV->users()) { 1355 if (Operator::getOpcode(U) == Instruction::BitCast) { 1356 for (auto *UU : U->users()) { 1357 if (auto *LI = dyn_cast<LoadInst>(UU)) 1358 Loads.push_back(LI); 1359 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1360 Stores.push_back(SI); 1361 else 1362 return false; 1363 } 1364 continue; 1365 } 1366 1367 Instruction *I = dyn_cast<Instruction>(U); 1368 if (!I) 1369 return false; 1370 assert(I->getParent()->getParent() == F); 1371 1372 if (auto *LI = dyn_cast<LoadInst>(I)) 1373 Loads.push_back(LI); 1374 else if (auto *SI = dyn_cast<StoreInst>(I)) 1375 Stores.push_back(SI); 1376 else 1377 return false; 1378 } 1379 1380 // We have identified all uses of GV into loads and stores. Now check if all 1381 // of them are known not to depend on the value of the global at the function 1382 // entry point. We do this by ensuring that every load is dominated by at 1383 // least one store. 1384 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1385 1386 // The below check is quadratic. Check we're not going to do too many tests. 1387 // FIXME: Even though this will always have worst-case quadratic time, we 1388 // could put effort into minimizing the average time by putting stores that 1389 // have been shown to dominate at least one load at the beginning of the 1390 // Stores array, making subsequent dominance checks more likely to succeed 1391 // early. 1392 // 1393 // The threshold here is fairly large because global->local demotion is a 1394 // very powerful optimization should it fire. 1395 const unsigned Threshold = 100; 1396 if (Loads.size() * Stores.size() > Threshold) 1397 return false; 1398 1399 for (auto *L : Loads) { 1400 auto *LTy = L->getType(); 1401 if (none_of(Stores, [&](const StoreInst *S) { 1402 auto *STy = S->getValueOperand()->getType(); 1403 // The load is only dominated by the store if DomTree says so 1404 // and the number of bits loaded in L is less than or equal to 1405 // the number of bits stored in S. 1406 return DT.dominates(S, L) && 1407 DL.getTypeStoreSize(LTy).getFixedSize() <= 1408 DL.getTypeStoreSize(STy).getFixedSize(); 1409 })) 1410 return false; 1411 } 1412 // All loads have known dependences inside F, so the global can be localized. 1413 return true; 1414 } 1415 1416 /// C may have non-instruction users. Can all of those users be turned into 1417 /// instructions? 1418 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1419 // We don't do this exhaustively. The most common pattern that we really need 1420 // to care about is a constant GEP or constant bitcast - so just looking 1421 // through one single ConstantExpr. 1422 // 1423 // The set of constants that this function returns true for must be able to be 1424 // handled by makeAllConstantUsesInstructions. 1425 for (auto *U : C->users()) { 1426 if (isa<Instruction>(U)) 1427 continue; 1428 if (!isa<ConstantExpr>(U)) 1429 // Non instruction, non-constantexpr user; cannot convert this. 1430 return false; 1431 for (auto *UU : U->users()) 1432 if (!isa<Instruction>(UU)) 1433 // A constantexpr used by another constant. We don't try and recurse any 1434 // further but just bail out at this point. 1435 return false; 1436 } 1437 1438 return true; 1439 } 1440 1441 /// C may have non-instruction users, and 1442 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1443 /// non-instruction users to instructions. 1444 static void makeAllConstantUsesInstructions(Constant *C) { 1445 SmallVector<ConstantExpr*,4> Users; 1446 for (auto *U : C->users()) { 1447 if (isa<ConstantExpr>(U)) 1448 Users.push_back(cast<ConstantExpr>(U)); 1449 else 1450 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1451 // should not have returned true for C. 1452 assert( 1453 isa<Instruction>(U) && 1454 "Can't transform non-constantexpr non-instruction to instruction!"); 1455 } 1456 1457 SmallVector<Value*,4> UUsers; 1458 for (auto *U : Users) { 1459 UUsers.clear(); 1460 append_range(UUsers, U->users()); 1461 for (auto *UU : UUsers) { 1462 Instruction *UI = cast<Instruction>(UU); 1463 Instruction *NewU = U->getAsInstruction(UI); 1464 UI->replaceUsesOfWith(U, NewU); 1465 } 1466 // We've replaced all the uses, so destroy the constant. (destroyConstant 1467 // will update value handles and metadata.) 1468 U->destroyConstant(); 1469 } 1470 } 1471 1472 /// Analyze the specified global variable and optimize 1473 /// it if possible. If we make a change, return true. 1474 static bool 1475 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1476 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1477 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1478 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1479 auto &DL = GV->getParent()->getDataLayout(); 1480 // If this is a first class global and has only one accessing function and 1481 // this function is non-recursive, we replace the global with a local alloca 1482 // in this function. 1483 // 1484 // NOTE: It doesn't make sense to promote non-single-value types since we 1485 // are just replacing static memory to stack memory. 1486 // 1487 // If the global is in different address space, don't bring it to stack. 1488 if (!GS.HasMultipleAccessingFunctions && 1489 GS.AccessingFunction && 1490 GV->getValueType()->isSingleValueType() && 1491 GV->getType()->getAddressSpace() == 0 && 1492 !GV->isExternallyInitialized() && 1493 allNonInstructionUsersCanBeMadeInstructions(GV) && 1494 GS.AccessingFunction->doesNotRecurse() && 1495 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1496 LookupDomTree)) { 1497 const DataLayout &DL = GV->getParent()->getDataLayout(); 1498 1499 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1500 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1501 ->getEntryBlock().begin()); 1502 Type *ElemTy = GV->getValueType(); 1503 // FIXME: Pass Global's alignment when globals have alignment 1504 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1505 GV->getName(), &FirstI); 1506 if (!isa<UndefValue>(GV->getInitializer())) 1507 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1508 1509 makeAllConstantUsesInstructions(GV); 1510 1511 GV->replaceAllUsesWith(Alloca); 1512 GV->eraseFromParent(); 1513 ++NumLocalized; 1514 return true; 1515 } 1516 1517 bool Changed = false; 1518 1519 // If the global is never loaded (but may be stored to), it is dead. 1520 // Delete it now. 1521 if (!GS.IsLoaded) { 1522 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1523 1524 if (isLeakCheckerRoot(GV)) { 1525 // Delete any constant stores to the global. 1526 Changed = CleanupPointerRootUsers(GV, GetTLI); 1527 } else { 1528 // Delete any stores we can find to the global. We may not be able to 1529 // make it completely dead though. 1530 Changed = CleanupConstantGlobalUsers(GV, DL); 1531 } 1532 1533 // If the global is dead now, delete it. 1534 if (GV->use_empty()) { 1535 GV->eraseFromParent(); 1536 ++NumDeleted; 1537 Changed = true; 1538 } 1539 return Changed; 1540 1541 } 1542 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1543 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1544 1545 // Don't actually mark a global constant if it's atomic because atomic loads 1546 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1547 // requires write access to the variable even if it's not actually changed. 1548 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1549 assert(!GV->isConstant() && "Expected a non-constant global"); 1550 GV->setConstant(true); 1551 Changed = true; 1552 } 1553 1554 // Clean up any obviously simplifiable users now. 1555 Changed |= CleanupConstantGlobalUsers(GV, DL); 1556 1557 // If the global is dead now, just nuke it. 1558 if (GV->use_empty()) { 1559 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1560 << "all users and delete global!\n"); 1561 GV->eraseFromParent(); 1562 ++NumDeleted; 1563 return true; 1564 } 1565 1566 // Fall through to the next check; see if we can optimize further. 1567 ++NumMarked; 1568 } 1569 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1570 const DataLayout &DL = GV->getParent()->getDataLayout(); 1571 if (SRAGlobal(GV, DL)) 1572 return true; 1573 } 1574 Value *StoredOnceValue = GS.getStoredOnceValue(); 1575 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1576 // Avoid speculating constant expressions that might trap (div/rem). 1577 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1578 if (SOVConstant && SOVConstant->canTrap()) 1579 return Changed; 1580 1581 Function &StoreFn = 1582 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1583 bool CanHaveNonUndefGlobalInitializer = 1584 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1585 GV->getType()->getAddressSpace()); 1586 // If the initial value for the global was an undef value, and if only 1587 // one other value was stored into it, we can just change the 1588 // initializer to be the stored value, then delete all stores to the 1589 // global. This allows us to mark it constant. 1590 // This is restricted to address spaces that allow globals to have 1591 // initializers. NVPTX, for example, does not support initializers for 1592 // shared memory (AS 3). 1593 if (SOVConstant && SOVConstant->getType() == GV->getValueType() && 1594 isa<UndefValue>(GV->getInitializer()) && 1595 CanHaveNonUndefGlobalInitializer) { 1596 // Change the initial value here. 1597 GV->setInitializer(SOVConstant); 1598 1599 // Clean up any obviously simplifiable users now. 1600 CleanupConstantGlobalUsers(GV, DL); 1601 1602 if (GV->use_empty()) { 1603 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1604 << "simplify all users and delete global!\n"); 1605 GV->eraseFromParent(); 1606 ++NumDeleted; 1607 } 1608 ++NumSubstitute; 1609 return true; 1610 } 1611 1612 // Try to optimize globals based on the knowledge that only one value 1613 // (besides its initializer) is ever stored to the global. 1614 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI)) 1615 return true; 1616 1617 // Otherwise, if the global was not a boolean, we can shrink it to be a 1618 // boolean. Skip this optimization for AS that doesn't allow an initializer. 1619 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && 1620 (!isa<UndefValue>(GV->getInitializer()) || 1621 CanHaveNonUndefGlobalInitializer)) { 1622 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1623 ++NumShrunkToBool; 1624 return true; 1625 } 1626 } 1627 } 1628 1629 return Changed; 1630 } 1631 1632 /// Analyze the specified global variable and optimize it if possible. If we 1633 /// make a change, return true. 1634 static bool 1635 processGlobal(GlobalValue &GV, 1636 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1637 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1638 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1639 if (GV.getName().startswith("llvm.")) 1640 return false; 1641 1642 GlobalStatus GS; 1643 1644 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1645 return false; 1646 1647 bool Changed = false; 1648 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1649 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1650 : GlobalValue::UnnamedAddr::Local; 1651 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1652 GV.setUnnamedAddr(NewUnnamedAddr); 1653 NumUnnamed++; 1654 Changed = true; 1655 } 1656 } 1657 1658 // Do more involved optimizations if the global is internal. 1659 if (!GV.hasLocalLinkage()) 1660 return Changed; 1661 1662 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1663 if (!GVar) 1664 return Changed; 1665 1666 if (GVar->isConstant() || !GVar->hasInitializer()) 1667 return Changed; 1668 1669 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1670 Changed; 1671 } 1672 1673 /// Walk all of the direct calls of the specified function, changing them to 1674 /// FastCC. 1675 static void ChangeCalleesToFastCall(Function *F) { 1676 for (User *U : F->users()) { 1677 if (isa<BlockAddress>(U)) 1678 continue; 1679 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1680 } 1681 } 1682 1683 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1684 Attribute::AttrKind A) { 1685 unsigned AttrIndex; 1686 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1687 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1688 return Attrs; 1689 } 1690 1691 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1692 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1693 for (User *U : F->users()) { 1694 if (isa<BlockAddress>(U)) 1695 continue; 1696 CallBase *CB = cast<CallBase>(U); 1697 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1698 } 1699 } 1700 1701 /// Return true if this is a calling convention that we'd like to change. The 1702 /// idea here is that we don't want to mess with the convention if the user 1703 /// explicitly requested something with performance implications like coldcc, 1704 /// GHC, or anyregcc. 1705 static bool hasChangeableCC(Function *F) { 1706 CallingConv::ID CC = F->getCallingConv(); 1707 1708 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1709 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1710 return false; 1711 1712 // FIXME: Change CC for the whole chain of musttail calls when possible. 1713 // 1714 // Can't change CC of the function that either has musttail calls, or is a 1715 // musttail callee itself 1716 for (User *U : F->users()) { 1717 if (isa<BlockAddress>(U)) 1718 continue; 1719 CallInst* CI = dyn_cast<CallInst>(U); 1720 if (!CI) 1721 continue; 1722 1723 if (CI->isMustTailCall()) 1724 return false; 1725 } 1726 1727 for (BasicBlock &BB : *F) 1728 if (BB.getTerminatingMustTailCall()) 1729 return false; 1730 1731 return true; 1732 } 1733 1734 /// Return true if the block containing the call site has a BlockFrequency of 1735 /// less than ColdCCRelFreq% of the entry block. 1736 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1737 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1738 auto *CallSiteBB = CB.getParent(); 1739 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1740 auto CallerEntryFreq = 1741 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1742 return CallSiteFreq < CallerEntryFreq * ColdProb; 1743 } 1744 1745 // This function checks if the input function F is cold at all call sites. It 1746 // also looks each call site's containing function, returning false if the 1747 // caller function contains other non cold calls. The input vector AllCallsCold 1748 // contains a list of functions that only have call sites in cold blocks. 1749 static bool 1750 isValidCandidateForColdCC(Function &F, 1751 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1752 const std::vector<Function *> &AllCallsCold) { 1753 1754 if (F.user_empty()) 1755 return false; 1756 1757 for (User *U : F.users()) { 1758 if (isa<BlockAddress>(U)) 1759 continue; 1760 1761 CallBase &CB = cast<CallBase>(*U); 1762 Function *CallerFunc = CB.getParent()->getParent(); 1763 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1764 if (!isColdCallSite(CB, CallerBFI)) 1765 return false; 1766 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1767 return false; 1768 } 1769 return true; 1770 } 1771 1772 static void changeCallSitesToColdCC(Function *F) { 1773 for (User *U : F->users()) { 1774 if (isa<BlockAddress>(U)) 1775 continue; 1776 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1777 } 1778 } 1779 1780 // This function iterates over all the call instructions in the input Function 1781 // and checks that all call sites are in cold blocks and are allowed to use the 1782 // coldcc calling convention. 1783 static bool 1784 hasOnlyColdCalls(Function &F, 1785 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1786 for (BasicBlock &BB : F) { 1787 for (Instruction &I : BB) { 1788 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1789 // Skip over isline asm instructions since they aren't function calls. 1790 if (CI->isInlineAsm()) 1791 continue; 1792 Function *CalledFn = CI->getCalledFunction(); 1793 if (!CalledFn) 1794 return false; 1795 if (!CalledFn->hasLocalLinkage()) 1796 return false; 1797 // Skip over instrinsics since they won't remain as function calls. 1798 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1799 continue; 1800 // Check if it's valid to use coldcc calling convention. 1801 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1802 CalledFn->hasAddressTaken()) 1803 return false; 1804 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1805 if (!isColdCallSite(*CI, CallerBFI)) 1806 return false; 1807 } 1808 } 1809 } 1810 return true; 1811 } 1812 1813 static bool hasMustTailCallers(Function *F) { 1814 for (User *U : F->users()) { 1815 CallBase *CB = dyn_cast<CallBase>(U); 1816 if (!CB) { 1817 assert(isa<BlockAddress>(U) && 1818 "Expected either CallBase or BlockAddress"); 1819 continue; 1820 } 1821 if (CB->isMustTailCall()) 1822 return true; 1823 } 1824 return false; 1825 } 1826 1827 static bool hasInvokeCallers(Function *F) { 1828 for (User *U : F->users()) 1829 if (isa<InvokeInst>(U)) 1830 return true; 1831 return false; 1832 } 1833 1834 static void RemovePreallocated(Function *F) { 1835 RemoveAttribute(F, Attribute::Preallocated); 1836 1837 auto *M = F->getParent(); 1838 1839 IRBuilder<> Builder(M->getContext()); 1840 1841 // Cannot modify users() while iterating over it, so make a copy. 1842 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1843 for (User *U : PreallocatedCalls) { 1844 CallBase *CB = dyn_cast<CallBase>(U); 1845 if (!CB) 1846 continue; 1847 1848 assert( 1849 !CB->isMustTailCall() && 1850 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1851 // Create copy of call without "preallocated" operand bundle. 1852 SmallVector<OperandBundleDef, 1> OpBundles; 1853 CB->getOperandBundlesAsDefs(OpBundles); 1854 CallBase *PreallocatedSetup = nullptr; 1855 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1856 if (It->getTag() == "preallocated") { 1857 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1858 OpBundles.erase(It); 1859 break; 1860 } 1861 } 1862 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1863 uint64_t ArgCount = 1864 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1865 1866 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1867 "Unknown indirect call type"); 1868 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1869 CB->replaceAllUsesWith(NewCB); 1870 NewCB->takeName(CB); 1871 CB->eraseFromParent(); 1872 1873 Builder.SetInsertPoint(PreallocatedSetup); 1874 auto *StackSave = 1875 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1876 1877 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1878 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1879 StackSave); 1880 1881 // Replace @llvm.call.preallocated.arg() with alloca. 1882 // Cannot modify users() while iterating over it, so make a copy. 1883 // @llvm.call.preallocated.arg() can be called with the same index multiple 1884 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1885 // already created a Value* for the index, and if not, create an alloca and 1886 // bitcast right after the @llvm.call.preallocated.setup() so that it 1887 // dominates all uses. 1888 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1889 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1890 for (auto *User : PreallocatedArgs) { 1891 auto *UseCall = cast<CallBase>(User); 1892 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1893 Intrinsic::call_preallocated_arg && 1894 "preallocated token use was not a llvm.call.preallocated.arg"); 1895 uint64_t AllocArgIndex = 1896 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1897 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1898 if (!AllocaReplacement) { 1899 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1900 auto *ArgType = 1901 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 1902 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1903 Builder.SetInsertPoint(InsertBefore); 1904 auto *Alloca = 1905 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1906 auto *BitCast = Builder.CreateBitCast( 1907 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1908 ArgAllocas[AllocArgIndex] = BitCast; 1909 AllocaReplacement = BitCast; 1910 } 1911 1912 UseCall->replaceAllUsesWith(AllocaReplacement); 1913 UseCall->eraseFromParent(); 1914 } 1915 // Remove @llvm.call.preallocated.setup(). 1916 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1917 } 1918 } 1919 1920 static bool 1921 OptimizeFunctions(Module &M, 1922 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1923 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1924 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1925 function_ref<DominatorTree &(Function &)> LookupDomTree, 1926 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1927 1928 bool Changed = false; 1929 1930 std::vector<Function *> AllCallsCold; 1931 for (Function &F : llvm::make_early_inc_range(M)) 1932 if (hasOnlyColdCalls(F, GetBFI)) 1933 AllCallsCold.push_back(&F); 1934 1935 // Optimize functions. 1936 for (Function &F : llvm::make_early_inc_range(M)) { 1937 // Don't perform global opt pass on naked functions; we don't want fast 1938 // calling conventions for naked functions. 1939 if (F.hasFnAttribute(Attribute::Naked)) 1940 continue; 1941 1942 // Functions without names cannot be referenced outside this module. 1943 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 1944 F.setLinkage(GlobalValue::InternalLinkage); 1945 1946 if (deleteIfDead(F, NotDiscardableComdats)) { 1947 Changed = true; 1948 continue; 1949 } 1950 1951 // LLVM's definition of dominance allows instructions that are cyclic 1952 // in unreachable blocks, e.g.: 1953 // %pat = select i1 %condition, @global, i16* %pat 1954 // because any instruction dominates an instruction in a block that's 1955 // not reachable from entry. 1956 // So, remove unreachable blocks from the function, because a) there's 1957 // no point in analyzing them and b) GlobalOpt should otherwise grow 1958 // some more complicated logic to break these cycles. 1959 // Removing unreachable blocks might invalidate the dominator so we 1960 // recalculate it. 1961 if (!F.isDeclaration()) { 1962 if (removeUnreachableBlocks(F)) { 1963 auto &DT = LookupDomTree(F); 1964 DT.recalculate(F); 1965 Changed = true; 1966 } 1967 } 1968 1969 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 1970 1971 if (!F.hasLocalLinkage()) 1972 continue; 1973 1974 // If we have an inalloca parameter that we can safely remove the 1975 // inalloca attribute from, do so. This unlocks optimizations that 1976 // wouldn't be safe in the presence of inalloca. 1977 // FIXME: We should also hoist alloca affected by this to the entry 1978 // block if possible. 1979 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 1980 !F.hasAddressTaken() && !hasMustTailCallers(&F)) { 1981 RemoveAttribute(&F, Attribute::InAlloca); 1982 Changed = true; 1983 } 1984 1985 // FIXME: handle invokes 1986 // FIXME: handle musttail 1987 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 1988 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 1989 !hasInvokeCallers(&F)) { 1990 RemovePreallocated(&F); 1991 Changed = true; 1992 } 1993 continue; 1994 } 1995 1996 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 1997 NumInternalFunc++; 1998 TargetTransformInfo &TTI = GetTTI(F); 1999 // Change the calling convention to coldcc if either stress testing is 2000 // enabled or the target would like to use coldcc on functions which are 2001 // cold at all call sites and the callers contain no other non coldcc 2002 // calls. 2003 if (EnableColdCCStressTest || 2004 (TTI.useColdCCForColdCall(F) && 2005 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 2006 F.setCallingConv(CallingConv::Cold); 2007 changeCallSitesToColdCC(&F); 2008 Changed = true; 2009 NumColdCC++; 2010 } 2011 } 2012 2013 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2014 // If this function has a calling convention worth changing, is not a 2015 // varargs function, and is only called directly, promote it to use the 2016 // Fast calling convention. 2017 F.setCallingConv(CallingConv::Fast); 2018 ChangeCalleesToFastCall(&F); 2019 ++NumFastCallFns; 2020 Changed = true; 2021 } 2022 2023 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2024 !F.hasAddressTaken()) { 2025 // The function is not used by a trampoline intrinsic, so it is safe 2026 // to remove the 'nest' attribute. 2027 RemoveAttribute(&F, Attribute::Nest); 2028 ++NumNestRemoved; 2029 Changed = true; 2030 } 2031 } 2032 return Changed; 2033 } 2034 2035 static bool 2036 OptimizeGlobalVars(Module &M, 2037 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2038 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2039 function_ref<DominatorTree &(Function &)> LookupDomTree, 2040 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2041 bool Changed = false; 2042 2043 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2044 // Global variables without names cannot be referenced outside this module. 2045 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2046 GV.setLinkage(GlobalValue::InternalLinkage); 2047 // Simplify the initializer. 2048 if (GV.hasInitializer()) 2049 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2050 auto &DL = M.getDataLayout(); 2051 // TLI is not used in the case of a Constant, so use default nullptr 2052 // for that optional parameter, since we don't have a Function to 2053 // provide GetTLI anyway. 2054 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2055 if (New != C) 2056 GV.setInitializer(New); 2057 } 2058 2059 if (deleteIfDead(GV, NotDiscardableComdats)) { 2060 Changed = true; 2061 continue; 2062 } 2063 2064 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2065 } 2066 return Changed; 2067 } 2068 2069 /// Evaluate a piece of a constantexpr store into a global initializer. This 2070 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2071 /// GEP operands of Addr [0, OpNo) have been stepped into. 2072 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2073 ConstantExpr *Addr, unsigned OpNo) { 2074 // Base case of the recursion. 2075 if (OpNo == Addr->getNumOperands()) { 2076 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2077 return Val; 2078 } 2079 2080 SmallVector<Constant*, 32> Elts; 2081 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2082 // Break up the constant into its elements. 2083 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2084 Elts.push_back(Init->getAggregateElement(i)); 2085 2086 // Replace the element that we are supposed to. 2087 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2088 unsigned Idx = CU->getZExtValue(); 2089 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2090 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2091 2092 // Return the modified struct. 2093 return ConstantStruct::get(STy, Elts); 2094 } 2095 2096 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2097 uint64_t NumElts; 2098 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) 2099 NumElts = ATy->getNumElements(); 2100 else 2101 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements(); 2102 2103 // Break up the array into elements. 2104 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2105 Elts.push_back(Init->getAggregateElement(i)); 2106 2107 assert(CI->getZExtValue() < NumElts); 2108 Elts[CI->getZExtValue()] = 2109 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2110 2111 if (Init->getType()->isArrayTy()) 2112 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts); 2113 return ConstantVector::get(Elts); 2114 } 2115 2116 /// We have decided that Addr (which satisfies the predicate 2117 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2118 static void CommitValueTo(Constant *Val, Constant *Addr) { 2119 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2120 assert(GV->hasInitializer()); 2121 GV->setInitializer(Val); 2122 return; 2123 } 2124 2125 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2126 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2127 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2128 } 2129 2130 /// Given a map of address -> value, where addresses are expected to be some form 2131 /// of either a global or a constant GEP, set the initializer for the address to 2132 /// be the value. This performs mostly the same function as CommitValueTo() 2133 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2134 /// case where the set of addresses are GEPs sharing the same underlying global, 2135 /// processing the GEPs in batches rather than individually. 2136 /// 2137 /// To give an example, consider the following C++ code adapted from the clang 2138 /// regression tests: 2139 /// struct S { 2140 /// int n = 10; 2141 /// int m = 2 * n; 2142 /// S(int a) : n(a) {} 2143 /// }; 2144 /// 2145 /// template<typename T> 2146 /// struct U { 2147 /// T *r = &q; 2148 /// T q = 42; 2149 /// U *p = this; 2150 /// }; 2151 /// 2152 /// U<S> e; 2153 /// 2154 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2155 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2156 /// members. This batch algorithm will simply use general CommitValueTo() method 2157 /// to handle the complex nested S struct initialization of 'q', before 2158 /// processing the outermost members in a single batch. Using CommitValueTo() to 2159 /// handle member in the outer struct is inefficient when the struct/array is 2160 /// very large as we end up creating and destroy constant arrays for each 2161 /// initialization. 2162 /// For the above case, we expect the following IR to be generated: 2163 /// 2164 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2165 /// %struct.S = type { i32, i32 } 2166 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2167 /// i64 0, i32 1), 2168 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2169 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2170 /// constant expression, while the other two elements of @e are "simple". 2171 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2172 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2173 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2174 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2175 SimpleCEs.reserve(Mem.size()); 2176 2177 for (const auto &I : Mem) { 2178 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2179 GVs.push_back(std::make_pair(GV, I.second)); 2180 } else { 2181 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2182 // We don't handle the deeply recursive case using the batch method. 2183 if (GEP->getNumOperands() > 3) 2184 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2185 else 2186 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2187 } 2188 } 2189 2190 // The algorithm below doesn't handle cases like nested structs, so use the 2191 // slower fully general method if we have to. 2192 for (auto ComplexCE : ComplexCEs) 2193 CommitValueTo(ComplexCE.second, ComplexCE.first); 2194 2195 for (auto GVPair : GVs) { 2196 assert(GVPair.first->hasInitializer()); 2197 GVPair.first->setInitializer(GVPair.second); 2198 } 2199 2200 if (SimpleCEs.empty()) 2201 return; 2202 2203 // We cache a single global's initializer elements in the case where the 2204 // subsequent address/val pair uses the same one. This avoids throwing away and 2205 // rebuilding the constant struct/vector/array just because one element is 2206 // modified at a time. 2207 SmallVector<Constant *, 32> Elts; 2208 Elts.reserve(SimpleCEs.size()); 2209 GlobalVariable *CurrentGV = nullptr; 2210 2211 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2212 Constant *Init = GV->getInitializer(); 2213 Type *Ty = Init->getType(); 2214 if (Update) { 2215 if (CurrentGV) { 2216 assert(CurrentGV && "Expected a GV to commit to!"); 2217 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2218 // We have a valid cache that needs to be committed. 2219 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2220 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2221 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2222 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2223 else 2224 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2225 } 2226 if (CurrentGV == GV) 2227 return; 2228 // Need to clear and set up cache for new initializer. 2229 CurrentGV = GV; 2230 Elts.clear(); 2231 unsigned NumElts; 2232 if (auto *STy = dyn_cast<StructType>(Ty)) 2233 NumElts = STy->getNumElements(); 2234 else if (auto *ATy = dyn_cast<ArrayType>(Ty)) 2235 NumElts = ATy->getNumElements(); 2236 else 2237 NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 2238 for (unsigned i = 0, e = NumElts; i != e; ++i) 2239 Elts.push_back(Init->getAggregateElement(i)); 2240 } 2241 }; 2242 2243 for (auto CEPair : SimpleCEs) { 2244 ConstantExpr *GEP = CEPair.first; 2245 Constant *Val = CEPair.second; 2246 2247 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2248 commitAndSetupCache(GV, GV != CurrentGV); 2249 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2250 Elts[CI->getZExtValue()] = Val; 2251 } 2252 // The last initializer in the list needs to be committed, others 2253 // will be committed on a new initializer being processed. 2254 commitAndSetupCache(CurrentGV, true); 2255 } 2256 2257 /// Evaluate static constructors in the function, if we can. Return true if we 2258 /// can, false otherwise. 2259 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2260 TargetLibraryInfo *TLI) { 2261 // Call the function. 2262 Evaluator Eval(DL, TLI); 2263 Constant *RetValDummy; 2264 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2265 SmallVector<Constant*, 0>()); 2266 2267 if (EvalSuccess) { 2268 ++NumCtorsEvaluated; 2269 2270 // We succeeded at evaluation: commit the result. 2271 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2272 << F->getName() << "' to " 2273 << Eval.getMutatedMemory().size() << " stores.\n"); 2274 BatchCommitValueTo(Eval.getMutatedMemory()); 2275 for (GlobalVariable *GV : Eval.getInvariants()) 2276 GV->setConstant(true); 2277 } 2278 2279 return EvalSuccess; 2280 } 2281 2282 static int compareNames(Constant *const *A, Constant *const *B) { 2283 Value *AStripped = (*A)->stripPointerCasts(); 2284 Value *BStripped = (*B)->stripPointerCasts(); 2285 return AStripped->getName().compare(BStripped->getName()); 2286 } 2287 2288 static void setUsedInitializer(GlobalVariable &V, 2289 const SmallPtrSetImpl<GlobalValue *> &Init) { 2290 if (Init.empty()) { 2291 V.eraseFromParent(); 2292 return; 2293 } 2294 2295 // Type of pointer to the array of pointers. 2296 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2297 2298 SmallVector<Constant *, 8> UsedArray; 2299 for (GlobalValue *GV : Init) { 2300 Constant *Cast 2301 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2302 UsedArray.push_back(Cast); 2303 } 2304 // Sort to get deterministic order. 2305 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2306 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2307 2308 Module *M = V.getParent(); 2309 V.removeFromParent(); 2310 GlobalVariable *NV = 2311 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2312 ConstantArray::get(ATy, UsedArray), ""); 2313 NV->takeName(&V); 2314 NV->setSection("llvm.metadata"); 2315 delete &V; 2316 } 2317 2318 namespace { 2319 2320 /// An easy to access representation of llvm.used and llvm.compiler.used. 2321 class LLVMUsed { 2322 SmallPtrSet<GlobalValue *, 4> Used; 2323 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2324 GlobalVariable *UsedV; 2325 GlobalVariable *CompilerUsedV; 2326 2327 public: 2328 LLVMUsed(Module &M) { 2329 SmallVector<GlobalValue *, 4> Vec; 2330 UsedV = collectUsedGlobalVariables(M, Vec, false); 2331 Used = {Vec.begin(), Vec.end()}; 2332 Vec.clear(); 2333 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2334 CompilerUsed = {Vec.begin(), Vec.end()}; 2335 } 2336 2337 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2338 using used_iterator_range = iterator_range<iterator>; 2339 2340 iterator usedBegin() { return Used.begin(); } 2341 iterator usedEnd() { return Used.end(); } 2342 2343 used_iterator_range used() { 2344 return used_iterator_range(usedBegin(), usedEnd()); 2345 } 2346 2347 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2348 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2349 2350 used_iterator_range compilerUsed() { 2351 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2352 } 2353 2354 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2355 2356 bool compilerUsedCount(GlobalValue *GV) const { 2357 return CompilerUsed.count(GV); 2358 } 2359 2360 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2361 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2362 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2363 2364 bool compilerUsedInsert(GlobalValue *GV) { 2365 return CompilerUsed.insert(GV).second; 2366 } 2367 2368 void syncVariablesAndSets() { 2369 if (UsedV) 2370 setUsedInitializer(*UsedV, Used); 2371 if (CompilerUsedV) 2372 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2373 } 2374 }; 2375 2376 } // end anonymous namespace 2377 2378 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2379 if (GA.use_empty()) // No use at all. 2380 return false; 2381 2382 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2383 "We should have removed the duplicated " 2384 "element from llvm.compiler.used"); 2385 if (!GA.hasOneUse()) 2386 // Strictly more than one use. So at least one is not in llvm.used and 2387 // llvm.compiler.used. 2388 return true; 2389 2390 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2391 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2392 } 2393 2394 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2395 const LLVMUsed &U) { 2396 unsigned N = 2; 2397 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2398 "We should have removed the duplicated " 2399 "element from llvm.compiler.used"); 2400 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2401 ++N; 2402 return V.hasNUsesOrMore(N); 2403 } 2404 2405 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2406 if (!GA.hasLocalLinkage()) 2407 return true; 2408 2409 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2410 } 2411 2412 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2413 bool &RenameTarget) { 2414 RenameTarget = false; 2415 bool Ret = false; 2416 if (hasUseOtherThanLLVMUsed(GA, U)) 2417 Ret = true; 2418 2419 // If the alias is externally visible, we may still be able to simplify it. 2420 if (!mayHaveOtherReferences(GA, U)) 2421 return Ret; 2422 2423 // If the aliasee has internal linkage, give it the name and linkage 2424 // of the alias, and delete the alias. This turns: 2425 // define internal ... @f(...) 2426 // @a = alias ... @f 2427 // into: 2428 // define ... @a(...) 2429 Constant *Aliasee = GA.getAliasee(); 2430 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2431 if (!Target->hasLocalLinkage()) 2432 return Ret; 2433 2434 // Do not perform the transform if multiple aliases potentially target the 2435 // aliasee. This check also ensures that it is safe to replace the section 2436 // and other attributes of the aliasee with those of the alias. 2437 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2438 return Ret; 2439 2440 RenameTarget = true; 2441 return true; 2442 } 2443 2444 static bool 2445 OptimizeGlobalAliases(Module &M, 2446 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2447 bool Changed = false; 2448 LLVMUsed Used(M); 2449 2450 for (GlobalValue *GV : Used.used()) 2451 Used.compilerUsedErase(GV); 2452 2453 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2454 // Aliases without names cannot be referenced outside this module. 2455 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2456 J.setLinkage(GlobalValue::InternalLinkage); 2457 2458 if (deleteIfDead(J, NotDiscardableComdats)) { 2459 Changed = true; 2460 continue; 2461 } 2462 2463 // If the alias can change at link time, nothing can be done - bail out. 2464 if (J.isInterposable()) 2465 continue; 2466 2467 Constant *Aliasee = J.getAliasee(); 2468 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2469 // We can't trivially replace the alias with the aliasee if the aliasee is 2470 // non-trivial in some way. We also can't replace the alias with the aliasee 2471 // if the aliasee is interposable because aliases point to the local 2472 // definition. 2473 // TODO: Try to handle non-zero GEPs of local aliasees. 2474 if (!Target || Target->isInterposable()) 2475 continue; 2476 Target->removeDeadConstantUsers(); 2477 2478 // Make all users of the alias use the aliasee instead. 2479 bool RenameTarget; 2480 if (!hasUsesToReplace(J, Used, RenameTarget)) 2481 continue; 2482 2483 J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); 2484 ++NumAliasesResolved; 2485 Changed = true; 2486 2487 if (RenameTarget) { 2488 // Give the aliasee the name, linkage and other attributes of the alias. 2489 Target->takeName(&J); 2490 Target->setLinkage(J.getLinkage()); 2491 Target->setDSOLocal(J.isDSOLocal()); 2492 Target->setVisibility(J.getVisibility()); 2493 Target->setDLLStorageClass(J.getDLLStorageClass()); 2494 2495 if (Used.usedErase(&J)) 2496 Used.usedInsert(Target); 2497 2498 if (Used.compilerUsedErase(&J)) 2499 Used.compilerUsedInsert(Target); 2500 } else if (mayHaveOtherReferences(J, Used)) 2501 continue; 2502 2503 // Delete the alias. 2504 M.getAliasList().erase(&J); 2505 ++NumAliasesRemoved; 2506 Changed = true; 2507 } 2508 2509 Used.syncVariablesAndSets(); 2510 2511 return Changed; 2512 } 2513 2514 static Function * 2515 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2516 // Hack to get a default TLI before we have actual Function. 2517 auto FuncIter = M.begin(); 2518 if (FuncIter == M.end()) 2519 return nullptr; 2520 auto *TLI = &GetTLI(*FuncIter); 2521 2522 LibFunc F = LibFunc_cxa_atexit; 2523 if (!TLI->has(F)) 2524 return nullptr; 2525 2526 Function *Fn = M.getFunction(TLI->getName(F)); 2527 if (!Fn) 2528 return nullptr; 2529 2530 // Now get the actual TLI for Fn. 2531 TLI = &GetTLI(*Fn); 2532 2533 // Make sure that the function has the correct prototype. 2534 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2535 return nullptr; 2536 2537 return Fn; 2538 } 2539 2540 /// Returns whether the given function is an empty C++ destructor and can 2541 /// therefore be eliminated. 2542 /// Note that we assume that other optimization passes have already simplified 2543 /// the code so we simply check for 'ret'. 2544 static bool cxxDtorIsEmpty(const Function &Fn) { 2545 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2546 // nounwind, but that doesn't seem worth doing. 2547 if (Fn.isDeclaration()) 2548 return false; 2549 2550 for (auto &I : Fn.getEntryBlock()) { 2551 if (I.isDebugOrPseudoInst()) 2552 continue; 2553 if (isa<ReturnInst>(I)) 2554 return true; 2555 break; 2556 } 2557 return false; 2558 } 2559 2560 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2561 /// Itanium C++ ABI p3.3.5: 2562 /// 2563 /// After constructing a global (or local static) object, that will require 2564 /// destruction on exit, a termination function is registered as follows: 2565 /// 2566 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2567 /// 2568 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2569 /// call f(p) when DSO d is unloaded, before all such termination calls 2570 /// registered before this one. It returns zero if registration is 2571 /// successful, nonzero on failure. 2572 2573 // This pass will look for calls to __cxa_atexit where the function is trivial 2574 // and remove them. 2575 bool Changed = false; 2576 2577 for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { 2578 // We're only interested in calls. Theoretically, we could handle invoke 2579 // instructions as well, but neither llvm-gcc nor clang generate invokes 2580 // to __cxa_atexit. 2581 CallInst *CI = dyn_cast<CallInst>(U); 2582 if (!CI) 2583 continue; 2584 2585 Function *DtorFn = 2586 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2587 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2588 continue; 2589 2590 // Just remove the call. 2591 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2592 CI->eraseFromParent(); 2593 2594 ++NumCXXDtorsRemoved; 2595 2596 Changed |= true; 2597 } 2598 2599 return Changed; 2600 } 2601 2602 static bool optimizeGlobalsInModule( 2603 Module &M, const DataLayout &DL, 2604 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2605 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2606 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2607 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2608 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2609 bool Changed = false; 2610 bool LocalChange = true; 2611 while (LocalChange) { 2612 LocalChange = false; 2613 2614 NotDiscardableComdats.clear(); 2615 for (const GlobalVariable &GV : M.globals()) 2616 if (const Comdat *C = GV.getComdat()) 2617 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2618 NotDiscardableComdats.insert(C); 2619 for (Function &F : M) 2620 if (const Comdat *C = F.getComdat()) 2621 if (!F.isDefTriviallyDead()) 2622 NotDiscardableComdats.insert(C); 2623 for (GlobalAlias &GA : M.aliases()) 2624 if (const Comdat *C = GA.getComdat()) 2625 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2626 NotDiscardableComdats.insert(C); 2627 2628 // Delete functions that are trivially dead, ccc -> fastcc 2629 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2630 NotDiscardableComdats); 2631 2632 // Optimize global_ctors list. 2633 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2634 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2635 }); 2636 2637 // Optimize non-address-taken globals. 2638 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2639 NotDiscardableComdats); 2640 2641 // Resolve aliases, when possible. 2642 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2643 2644 // Try to remove trivial global destructors if they are not removed 2645 // already. 2646 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2647 if (CXAAtExitFn) 2648 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2649 2650 Changed |= LocalChange; 2651 } 2652 2653 // TODO: Move all global ctors functions to the end of the module for code 2654 // layout. 2655 2656 return Changed; 2657 } 2658 2659 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2660 auto &DL = M.getDataLayout(); 2661 auto &FAM = 2662 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2663 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2664 return FAM.getResult<DominatorTreeAnalysis>(F); 2665 }; 2666 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2667 return FAM.getResult<TargetLibraryAnalysis>(F); 2668 }; 2669 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2670 return FAM.getResult<TargetIRAnalysis>(F); 2671 }; 2672 2673 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2674 return FAM.getResult<BlockFrequencyAnalysis>(F); 2675 }; 2676 2677 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2678 return PreservedAnalyses::all(); 2679 return PreservedAnalyses::none(); 2680 } 2681 2682 namespace { 2683 2684 struct GlobalOptLegacyPass : public ModulePass { 2685 static char ID; // Pass identification, replacement for typeid 2686 2687 GlobalOptLegacyPass() : ModulePass(ID) { 2688 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2689 } 2690 2691 bool runOnModule(Module &M) override { 2692 if (skipModule(M)) 2693 return false; 2694 2695 auto &DL = M.getDataLayout(); 2696 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2697 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2698 }; 2699 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2700 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2701 }; 2702 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2703 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2704 }; 2705 2706 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2707 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2708 }; 2709 2710 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2711 LookupDomTree); 2712 } 2713 2714 void getAnalysisUsage(AnalysisUsage &AU) const override { 2715 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2716 AU.addRequired<TargetTransformInfoWrapperPass>(); 2717 AU.addRequired<DominatorTreeWrapperPass>(); 2718 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2719 } 2720 }; 2721 2722 } // end anonymous namespace 2723 2724 char GlobalOptLegacyPass::ID = 0; 2725 2726 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2727 "Global Variable Optimizer", false, false) 2728 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2729 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2730 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2731 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2732 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2733 "Global Variable Optimizer", false, false) 2734 2735 ModulePass *llvm::createGlobalOptimizerPass() { 2736 return new GlobalOptLegacyPass(); 2737 } 2738