xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalOpt.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/IPO.h"
66 #include "llvm/Transforms/Utils/CtorUtils.h"
67 #include "llvm/Transforms/Utils/Evaluator.h"
68 #include "llvm/Transforms/Utils/GlobalStatus.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <cstdint>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (User *U : llvm::make_early_inc_range(GV->users())) {
213     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
214       Value *V = SI->getValueOperand();
215       if (isa<Constant>(V)) {
216         Changed = true;
217         SI->eraseFromParent();
218       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
219         if (I->hasOneUse())
220           Dead.push_back(std::make_pair(I, SI));
221       }
222     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
223       if (isa<Constant>(MSI->getValue())) {
224         Changed = true;
225         MSI->eraseFromParent();
226       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
227         if (I->hasOneUse())
228           Dead.push_back(std::make_pair(I, MSI));
229       }
230     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
231       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
232       if (MemSrc && MemSrc->isConstant()) {
233         Changed = true;
234         MTI->eraseFromParent();
235       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
236         if (I->hasOneUse())
237           Dead.push_back(std::make_pair(I, MTI));
238       }
239     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
240       if (CE->use_empty()) {
241         CE->destroyConstant();
242         Changed = true;
243       }
244     } else if (Constant *C = dyn_cast<Constant>(U)) {
245       if (isSafeToDestroyConstant(C)) {
246         C->destroyConstant();
247         // This could have invalidated UI, start over from scratch.
248         Dead.clear();
249         CleanupPointerRootUsers(GV, GetTLI);
250         return true;
251       }
252     }
253   }
254 
255   for (int i = 0, e = Dead.size(); i != e; ++i) {
256     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
257       Dead[i].second->eraseFromParent();
258       Instruction *I = Dead[i].first;
259       do {
260         if (isAllocationFn(I, GetTLI))
261           break;
262         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
263         if (!J)
264           break;
265         I->eraseFromParent();
266         I = J;
267       } while (true);
268       I->eraseFromParent();
269       Changed = true;
270     }
271   }
272 
273   return Changed;
274 }
275 
276 /// We just marked GV constant.  Loop over all users of the global, cleaning up
277 /// the obvious ones.  This is largely just a quick scan over the use list to
278 /// clean up the easy and obvious cruft.  This returns true if it made a change.
279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
280                                        const DataLayout &DL) {
281   Constant *Init = GV->getInitializer();
282   SmallVector<User *, 8> WorkList(GV->users());
283   SmallPtrSet<User *, 8> Visited;
284   bool Changed = false;
285 
286   SmallVector<WeakTrackingVH> MaybeDeadInsts;
287   auto EraseFromParent = [&](Instruction *I) {
288     for (Value *Op : I->operands())
289       if (auto *OpI = dyn_cast<Instruction>(Op))
290         MaybeDeadInsts.push_back(OpI);
291     I->eraseFromParent();
292     Changed = true;
293   };
294   while (!WorkList.empty()) {
295     User *U = WorkList.pop_back_val();
296     if (!Visited.insert(U).second)
297       continue;
298 
299     if (auto *BO = dyn_cast<BitCastOperator>(U))
300       append_range(WorkList, BO->users());
301     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
302       append_range(WorkList, ASC->users());
303     else if (auto *GEP = dyn_cast<GEPOperator>(U))
304       append_range(WorkList, GEP->users());
305     else if (auto *LI = dyn_cast<LoadInst>(U)) {
306       // A load from zeroinitializer is always zeroinitializer, regardless of
307       // any applied offset.
308       Type *Ty = LI->getType();
309       if (Init->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) {
310         LI->replaceAllUsesWith(Constant::getNullValue(Ty));
311         EraseFromParent(LI);
312         continue;
313       }
314 
315       Value *PtrOp = LI->getPointerOperand();
316       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
317       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
318           DL, Offset, /* AllowNonInbounds */ true);
319       if (PtrOp == GV) {
320         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
321           LI->replaceAllUsesWith(Value);
322           EraseFromParent(LI);
323         }
324       }
325     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
326       // Store must be unreachable or storing Init into the global.
327       EraseFromParent(SI);
328     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
329       if (getUnderlyingObject(MI->getRawDest()) == GV)
330         EraseFromParent(MI);
331     }
332   }
333 
334   Changed |=
335       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
336   GV->removeDeadConstantUsers();
337   return Changed;
338 }
339 
340 static bool isSafeSROAElementUse(Value *V);
341 
342 /// Return true if the specified GEP is a safe user of a derived
343 /// expression from a global that we want to SROA.
344 static bool isSafeSROAGEP(User *U) {
345   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
346   // don't like < 3 operand CE's, and we don't like non-constant integer
347   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
348   // value of C.
349   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
350       !cast<Constant>(U->getOperand(1))->isNullValue())
351     return false;
352 
353   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
354   ++GEPI; // Skip over the pointer index.
355 
356   // For all other level we require that the indices are constant and inrange.
357   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
358   // invalid things like allowing i to index an out-of-range subscript that
359   // accesses A[1]. This can also happen between different members of a struct
360   // in llvm IR.
361   for (; GEPI != E; ++GEPI) {
362     if (GEPI.isStruct())
363       continue;
364 
365     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
366     if (!IdxVal || (GEPI.isBoundedSequential() &&
367                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
368       return false;
369   }
370 
371   return llvm::all_of(U->users(), isSafeSROAElementUse);
372 }
373 
374 /// Return true if the specified instruction is a safe user of a derived
375 /// expression from a global that we want to SROA.
376 static bool isSafeSROAElementUse(Value *V) {
377   // We might have a dead and dangling constant hanging off of here.
378   if (Constant *C = dyn_cast<Constant>(V))
379     return isSafeToDestroyConstant(C);
380 
381   Instruction *I = dyn_cast<Instruction>(V);
382   if (!I) return false;
383 
384   // Loads are ok.
385   if (isa<LoadInst>(I)) return true;
386 
387   // Stores *to* the pointer are ok.
388   if (StoreInst *SI = dyn_cast<StoreInst>(I))
389     return SI->getOperand(0) != V;
390 
391   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
392   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
393 }
394 
395 /// Look at all uses of the global and decide whether it is safe for us to
396 /// perform this transformation.
397 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
398   for (User *U : GV->users()) {
399     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
400     if (!isa<GetElementPtrInst>(U) &&
401         (!isa<ConstantExpr>(U) ||
402         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
403       return false;
404 
405     // Check the gep and it's users are safe to SRA
406     if (!isSafeSROAGEP(U))
407       return false;
408   }
409 
410   return true;
411 }
412 
413 static bool IsSRASequential(Type *T) {
414   return isa<ArrayType>(T) || isa<VectorType>(T);
415 }
416 static uint64_t GetSRASequentialNumElements(Type *T) {
417   if (ArrayType *AT = dyn_cast<ArrayType>(T))
418     return AT->getNumElements();
419   return cast<FixedVectorType>(T)->getNumElements();
420 }
421 static Type *GetSRASequentialElementType(Type *T) {
422   if (ArrayType *AT = dyn_cast<ArrayType>(T))
423     return AT->getElementType();
424   return cast<VectorType>(T)->getElementType();
425 }
426 static bool CanDoGlobalSRA(GlobalVariable *GV) {
427   Constant *Init = GV->getInitializer();
428 
429   if (isa<StructType>(Init->getType())) {
430     // nothing to check
431   } else if (IsSRASequential(Init->getType())) {
432     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
433         GV->hasNUsesOrMore(16))
434       return false; // It's not worth it.
435   } else
436     return false;
437 
438   return GlobalUsersSafeToSRA(GV);
439 }
440 
441 /// Copy over the debug info for a variable to its SRA replacements.
442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
443                                  uint64_t FragmentOffsetInBits,
444                                  uint64_t FragmentSizeInBits,
445                                  uint64_t VarSize) {
446   SmallVector<DIGlobalVariableExpression *, 1> GVs;
447   GV->getDebugInfo(GVs);
448   for (auto *GVE : GVs) {
449     DIVariable *Var = GVE->getVariable();
450     DIExpression *Expr = GVE->getExpression();
451     // If the FragmentSize is smaller than the variable,
452     // emit a fragment expression.
453     if (FragmentSizeInBits < VarSize) {
454       if (auto E = DIExpression::createFragmentExpression(
455               Expr, FragmentOffsetInBits, FragmentSizeInBits))
456         Expr = *E;
457       else
458         return;
459     }
460     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
461     NGV->addDebugInfo(NGVE);
462   }
463 }
464 
465 /// Perform scalar replacement of aggregates on the specified global variable.
466 /// This opens the door for other optimizations by exposing the behavior of the
467 /// program in a more fine-grained way.  We have determined that this
468 /// transformation is safe already.  We return the first global variable we
469 /// insert so that the caller can reprocess it.
470 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
471   // Make sure this global only has simple uses that we can SRA.
472   if (!CanDoGlobalSRA(GV))
473     return nullptr;
474 
475   assert(GV->hasLocalLinkage());
476   Constant *Init = GV->getInitializer();
477   Type *Ty = Init->getType();
478   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
479 
480   std::map<unsigned, GlobalVariable *> NewGlobals;
481 
482   // Get the alignment of the global, either explicit or target-specific.
483   Align StartAlignment =
484       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
485 
486   // Loop over all users and create replacement variables for used aggregate
487   // elements.
488   for (User *GEP : GV->users()) {
489     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
490                                            Instruction::GetElementPtr) ||
491             isa<GetElementPtrInst>(GEP)) &&
492            "NonGEP CE's are not SRAable!");
493 
494     // Ignore the 1th operand, which has to be zero or else the program is quite
495     // broken (undefined).  Get the 2nd operand, which is the structure or array
496     // index.
497     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
498     if (NewGlobals.count(ElementIdx) == 1)
499       continue; // we`ve already created replacement variable
500     assert(NewGlobals.count(ElementIdx) == 0);
501 
502     Type *ElTy = nullptr;
503     if (StructType *STy = dyn_cast<StructType>(Ty))
504       ElTy = STy->getElementType(ElementIdx);
505     else
506       ElTy = GetSRASequentialElementType(Ty);
507     assert(ElTy);
508 
509     Constant *In = Init->getAggregateElement(ElementIdx);
510     assert(In && "Couldn't get element of initializer?");
511 
512     GlobalVariable *NGV = new GlobalVariable(
513         ElTy, false, GlobalVariable::InternalLinkage, In,
514         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
515         GV->getType()->getAddressSpace());
516     NGV->setExternallyInitialized(GV->isExternallyInitialized());
517     NGV->copyAttributesFrom(GV);
518     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
519 
520     if (StructType *STy = dyn_cast<StructType>(Ty)) {
521       const StructLayout &Layout = *DL.getStructLayout(STy);
522 
523       // Calculate the known alignment of the field.  If the original aggregate
524       // had 256 byte alignment for example, something might depend on that:
525       // propagate info to each field.
526       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
527       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
528       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
529         NGV->setAlignment(NewAlign);
530 
531       // Copy over the debug info for the variable.
532       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
533       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
534       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
535     } else {
536       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
537       Align EltAlign = DL.getABITypeAlign(ElTy);
538       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
539 
540       // Calculate the known alignment of the field.  If the original aggregate
541       // had 256 byte alignment for example, something might depend on that:
542       // propagate info to each field.
543       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
544       if (NewAlign > EltAlign)
545         NGV->setAlignment(NewAlign);
546       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
547                            FragmentSizeInBits, VarSize);
548     }
549   }
550 
551   if (NewGlobals.empty())
552     return nullptr;
553 
554   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
555   for (auto NewGlobalVar : NewGlobals)
556     Globals.push_back(NewGlobalVar.second);
557 
558   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
559 
560   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
561 
562   // Loop over all of the uses of the global, replacing the constantexpr geps,
563   // with smaller constantexpr geps or direct references.
564   while (!GV->use_empty()) {
565     User *GEP = GV->user_back();
566     assert(((isa<ConstantExpr>(GEP) &&
567              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
568             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
569 
570     // Ignore the 1th operand, which has to be zero or else the program is quite
571     // broken (undefined).  Get the 2nd operand, which is the structure or array
572     // index.
573     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
574     assert(NewGlobals.count(ElementIdx) == 1);
575 
576     Value *NewPtr = NewGlobals[ElementIdx];
577     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
578 
579     // Form a shorter GEP if needed.
580     if (GEP->getNumOperands() > 3) {
581       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
582         SmallVector<Constant*, 8> Idxs;
583         Idxs.push_back(NullInt);
584         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
585           Idxs.push_back(CE->getOperand(i));
586         NewPtr =
587             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
588       } else {
589         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
590         SmallVector<Value*, 8> Idxs;
591         Idxs.push_back(NullInt);
592         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
593           Idxs.push_back(GEPI->getOperand(i));
594         NewPtr = GetElementPtrInst::Create(
595             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
596             GEPI);
597       }
598     }
599     GEP->replaceAllUsesWith(NewPtr);
600 
601     // We changed the pointer of any memory access user. Recalculate alignments.
602     for (User *U : NewPtr->users()) {
603       if (auto *Load = dyn_cast<LoadInst>(U)) {
604         Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
605         Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
606                                                     PrefAlign, DL, Load);
607         Load->setAlignment(NewAlign);
608       }
609       if (auto *Store = dyn_cast<StoreInst>(U)) {
610         Align PrefAlign =
611             DL.getPrefTypeAlign(Store->getValueOperand()->getType());
612         Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
613                                                     PrefAlign, DL, Store);
614         Store->setAlignment(NewAlign);
615       }
616     }
617 
618     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
619       GEPI->eraseFromParent();
620     else
621       cast<ConstantExpr>(GEP)->destroyConstant();
622   }
623 
624   // Delete the old global, now that it is dead.
625   Globals.erase(GV);
626   ++NumSRA;
627 
628   assert(NewGlobals.size() > 0);
629   return NewGlobals.begin()->second;
630 }
631 
632 /// Return true if all users of the specified value will trap if the value is
633 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
634 /// reprocessing them.
635 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
636                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
637   for (const User *U : V->users()) {
638     if (const Instruction *I = dyn_cast<Instruction>(U)) {
639       // If null pointer is considered valid, then all uses are non-trapping.
640       // Non address-space 0 globals have already been pruned by the caller.
641       if (NullPointerIsDefined(I->getFunction()))
642         return false;
643     }
644     if (isa<LoadInst>(U)) {
645       // Will trap.
646     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
647       if (SI->getOperand(0) == V) {
648         //cerr << "NONTRAPPING USE: " << *U;
649         return false;  // Storing the value.
650       }
651     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
652       if (CI->getCalledOperand() != V) {
653         //cerr << "NONTRAPPING USE: " << *U;
654         return false;  // Not calling the ptr
655       }
656     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
657       if (II->getCalledOperand() != V) {
658         //cerr << "NONTRAPPING USE: " << *U;
659         return false;  // Not calling the ptr
660       }
661     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
662       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
663     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
664       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
665     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
666       // If we've already seen this phi node, ignore it, it has already been
667       // checked.
668       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
669         return false;
670     } else if (isa<ICmpInst>(U) &&
671                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
672                isa<LoadInst>(U->getOperand(0)) &&
673                isa<ConstantPointerNull>(U->getOperand(1))) {
674       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
675                                   ->getPointerOperand()
676                                   ->stripPointerCasts()) &&
677              "Should be GlobalVariable");
678       // This and only this kind of non-signed ICmpInst is to be replaced with
679       // the comparing of the value of the created global init bool later in
680       // optimizeGlobalAddressOfMalloc for the global variable.
681     } else {
682       //cerr << "NONTRAPPING USE: " << *U;
683       return false;
684     }
685   }
686   return true;
687 }
688 
689 /// Return true if all uses of any loads from GV will trap if the loaded value
690 /// is null.  Note that this also permits comparisons of the loaded value
691 /// against null, as a special case.
692 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
693   SmallVector<const Value *, 4> Worklist;
694   Worklist.push_back(GV);
695   while (!Worklist.empty()) {
696     const Value *P = Worklist.pop_back_val();
697     for (auto *U : P->users()) {
698       if (auto *LI = dyn_cast<LoadInst>(U)) {
699         SmallPtrSet<const PHINode *, 8> PHIs;
700         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
701           return false;
702       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
703         // Ignore stores to the global.
704         if (SI->getPointerOperand() != P)
705           return false;
706       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
707         if (CE->stripPointerCasts() != GV)
708           return false;
709         // Check further the ConstantExpr.
710         Worklist.push_back(CE);
711       } else {
712         // We don't know or understand this user, bail out.
713         return false;
714       }
715     }
716   }
717 
718   return true;
719 }
720 
721 /// Get all the loads/store uses for global variable \p GV.
722 static void allUsesOfLoadAndStores(GlobalVariable *GV,
723                                    SmallVector<Value *, 4> &Uses) {
724   SmallVector<Value *, 4> Worklist;
725   Worklist.push_back(GV);
726   while (!Worklist.empty()) {
727     auto *P = Worklist.pop_back_val();
728     for (auto *U : P->users()) {
729       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
730         Worklist.push_back(CE);
731         continue;
732       }
733 
734       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
735              "Expect only load or store instructions");
736       Uses.push_back(U);
737     }
738   }
739 }
740 
741 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
742   bool Changed = false;
743   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
744     Instruction *I = cast<Instruction>(*UI++);
745     // Uses are non-trapping if null pointer is considered valid.
746     // Non address-space 0 globals are already pruned by the caller.
747     if (NullPointerIsDefined(I->getFunction()))
748       return false;
749     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
750       LI->setOperand(0, NewV);
751       Changed = true;
752     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
753       if (SI->getOperand(1) == V) {
754         SI->setOperand(1, NewV);
755         Changed = true;
756       }
757     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
758       CallBase *CB = cast<CallBase>(I);
759       if (CB->getCalledOperand() == V) {
760         // Calling through the pointer!  Turn into a direct call, but be careful
761         // that the pointer is not also being passed as an argument.
762         CB->setCalledOperand(NewV);
763         Changed = true;
764         bool PassedAsArg = false;
765         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
766           if (CB->getArgOperand(i) == V) {
767             PassedAsArg = true;
768             CB->setArgOperand(i, NewV);
769           }
770 
771         if (PassedAsArg) {
772           // Being passed as an argument also.  Be careful to not invalidate UI!
773           UI = V->user_begin();
774         }
775       }
776     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
777       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
778                                 ConstantExpr::getCast(CI->getOpcode(),
779                                                       NewV, CI->getType()));
780       if (CI->use_empty()) {
781         Changed = true;
782         CI->eraseFromParent();
783       }
784     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
785       // Should handle GEP here.
786       SmallVector<Constant*, 8> Idxs;
787       Idxs.reserve(GEPI->getNumOperands()-1);
788       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
789            i != e; ++i)
790         if (Constant *C = dyn_cast<Constant>(*i))
791           Idxs.push_back(C);
792         else
793           break;
794       if (Idxs.size() == GEPI->getNumOperands()-1)
795         Changed |= OptimizeAwayTrappingUsesOfValue(
796             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
797                                                  NewV, Idxs));
798       if (GEPI->use_empty()) {
799         Changed = true;
800         GEPI->eraseFromParent();
801       }
802     }
803   }
804 
805   return Changed;
806 }
807 
808 /// The specified global has only one non-null value stored into it.  If there
809 /// are uses of the loaded value that would trap if the loaded value is
810 /// dynamically null, then we know that they cannot be reachable with a null
811 /// optimize away the load.
812 static bool OptimizeAwayTrappingUsesOfLoads(
813     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
814     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
815   bool Changed = false;
816 
817   // Keep track of whether we are able to remove all the uses of the global
818   // other than the store that defines it.
819   bool AllNonStoreUsesGone = true;
820 
821   // Replace all uses of loads with uses of uses of the stored value.
822   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
823     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
824       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
825       // If we were able to delete all uses of the loads
826       if (LI->use_empty()) {
827         LI->eraseFromParent();
828         Changed = true;
829       } else {
830         AllNonStoreUsesGone = false;
831       }
832     } else if (isa<StoreInst>(GlobalUser)) {
833       // Ignore the store that stores "LV" to the global.
834       assert(GlobalUser->getOperand(1) == GV &&
835              "Must be storing *to* the global");
836     } else {
837       AllNonStoreUsesGone = false;
838 
839       // If we get here we could have other crazy uses that are transitively
840       // loaded.
841       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
842               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
843               isa<BitCastInst>(GlobalUser) ||
844               isa<GetElementPtrInst>(GlobalUser)) &&
845              "Only expect load and stores!");
846     }
847   }
848 
849   if (Changed) {
850     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
851                       << "\n");
852     ++NumGlobUses;
853   }
854 
855   // If we nuked all of the loads, then none of the stores are needed either,
856   // nor is the global.
857   if (AllNonStoreUsesGone) {
858     if (isLeakCheckerRoot(GV)) {
859       Changed |= CleanupPointerRootUsers(GV, GetTLI);
860     } else {
861       Changed = true;
862       CleanupConstantGlobalUsers(GV, DL);
863     }
864     if (GV->use_empty()) {
865       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
866       Changed = true;
867       GV->eraseFromParent();
868       ++NumDeleted;
869     }
870   }
871   return Changed;
872 }
873 
874 /// Walk the use list of V, constant folding all of the instructions that are
875 /// foldable.
876 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
877                                 TargetLibraryInfo *TLI) {
878   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
879     if (Instruction *I = dyn_cast<Instruction>(*UI++))
880       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
881         I->replaceAllUsesWith(NewC);
882 
883         // Advance UI to the next non-I use to avoid invalidating it!
884         // Instructions could multiply use V.
885         while (UI != E && *UI == I)
886           ++UI;
887         if (isInstructionTriviallyDead(I, TLI))
888           I->eraseFromParent();
889       }
890 }
891 
892 /// This function takes the specified global variable, and transforms the
893 /// program as if it always contained the result of the specified malloc.
894 /// Because it is always the result of the specified malloc, there is no reason
895 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
896 /// loads of GV as uses of the new global.
897 static GlobalVariable *
898 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
899                               ConstantInt *NElements, const DataLayout &DL,
900                               TargetLibraryInfo *TLI) {
901   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
902                     << '\n');
903 
904   Type *GlobalType;
905   if (NElements->getZExtValue() == 1)
906     GlobalType = AllocTy;
907   else
908     // If we have an array allocation, the global variable is of an array.
909     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
910 
911   // Create the new global variable.  The contents of the malloc'd memory is
912   // undefined, so initialize with an undef value.
913   GlobalVariable *NewGV = new GlobalVariable(
914       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
915       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
916       GV->getThreadLocalMode());
917 
918   // If there are bitcast users of the malloc (which is typical, usually we have
919   // a malloc + bitcast) then replace them with uses of the new global.  Update
920   // other users to use the global as well.
921   BitCastInst *TheBC = nullptr;
922   while (!CI->use_empty()) {
923     Instruction *User = cast<Instruction>(CI->user_back());
924     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
925       if (BCI->getType() == NewGV->getType()) {
926         BCI->replaceAllUsesWith(NewGV);
927         BCI->eraseFromParent();
928       } else {
929         BCI->setOperand(0, NewGV);
930       }
931     } else {
932       if (!TheBC)
933         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
934       User->replaceUsesOfWith(CI, TheBC);
935     }
936   }
937 
938   SmallPtrSet<Constant *, 1> RepValues;
939   RepValues.insert(NewGV);
940 
941   // If there is a comparison against null, we will insert a global bool to
942   // keep track of whether the global was initialized yet or not.
943   GlobalVariable *InitBool =
944     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
945                        GlobalValue::InternalLinkage,
946                        ConstantInt::getFalse(GV->getContext()),
947                        GV->getName()+".init", GV->getThreadLocalMode());
948   bool InitBoolUsed = false;
949 
950   // Loop over all instruction uses of GV, processing them in turn.
951   SmallVector<Value *, 4> Guses;
952   allUsesOfLoadAndStores(GV, Guses);
953   for (auto *U : Guses) {
954     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
955       // The global is initialized when the store to it occurs. If the stored
956       // value is null value, the global bool is set to false, otherwise true.
957       new StoreInst(ConstantInt::getBool(
958                         GV->getContext(),
959                         !isa<ConstantPointerNull>(SI->getValueOperand())),
960                     InitBool, false, Align(1), SI->getOrdering(),
961                     SI->getSyncScopeID(), SI);
962       SI->eraseFromParent();
963       continue;
964     }
965 
966     LoadInst *LI = cast<LoadInst>(U);
967     while (!LI->use_empty()) {
968       Use &LoadUse = *LI->use_begin();
969       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
970       if (!ICI) {
971         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
972         RepValues.insert(CE);
973         LoadUse.set(CE);
974         continue;
975       }
976 
977       // Replace the cmp X, 0 with a use of the bool value.
978       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
979                                InitBool->getName() + ".val", false, Align(1),
980                                LI->getOrdering(), LI->getSyncScopeID(), LI);
981       InitBoolUsed = true;
982       switch (ICI->getPredicate()) {
983       default: llvm_unreachable("Unknown ICmp Predicate!");
984       case ICmpInst::ICMP_ULT: // X < null -> always false
985         LV = ConstantInt::getFalse(GV->getContext());
986         break;
987       case ICmpInst::ICMP_UGE: // X >= null -> always true
988         LV = ConstantInt::getTrue(GV->getContext());
989         break;
990       case ICmpInst::ICMP_ULE:
991       case ICmpInst::ICMP_EQ:
992         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
993         break;
994       case ICmpInst::ICMP_NE:
995       case ICmpInst::ICMP_UGT:
996         break;  // no change.
997       }
998       ICI->replaceAllUsesWith(LV);
999       ICI->eraseFromParent();
1000     }
1001     LI->eraseFromParent();
1002   }
1003 
1004   // If the initialization boolean was used, insert it, otherwise delete it.
1005   if (!InitBoolUsed) {
1006     while (!InitBool->use_empty())  // Delete initializations
1007       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
1008     delete InitBool;
1009   } else
1010     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
1011 
1012   // Now the GV is dead, nuke it and the malloc..
1013   GV->eraseFromParent();
1014   CI->eraseFromParent();
1015 
1016   // To further other optimizations, loop over all users of NewGV and try to
1017   // constant prop them.  This will promote GEP instructions with constant
1018   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1019   for (auto *CE : RepValues)
1020     ConstantPropUsersOf(CE, DL, TLI);
1021 
1022   return NewGV;
1023 }
1024 
1025 /// Scan the use-list of GV checking to make sure that there are no complex uses
1026 /// of GV.  We permit simple things like dereferencing the pointer, but not
1027 /// storing through the address, unless it is to the specified global.
1028 static bool
1029 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
1030                                           const GlobalVariable *GV) {
1031   SmallPtrSet<const Value *, 4> Visited;
1032   SmallVector<const Value *, 4> Worklist;
1033   Worklist.push_back(CI);
1034 
1035   while (!Worklist.empty()) {
1036     const Value *V = Worklist.pop_back_val();
1037     if (!Visited.insert(V).second)
1038       continue;
1039 
1040     for (const Use &VUse : V->uses()) {
1041       const User *U = VUse.getUser();
1042       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1043         continue; // Fine, ignore.
1044 
1045       if (auto *SI = dyn_cast<StoreInst>(U)) {
1046         if (SI->getValueOperand() == V &&
1047             SI->getPointerOperand()->stripPointerCasts() != GV)
1048           return false; // Storing the pointer not into GV... bad.
1049         continue; // Otherwise, storing through it, or storing into GV... fine.
1050       }
1051 
1052       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1053         Worklist.push_back(BCI);
1054         continue;
1055       }
1056 
1057       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1058         Worklist.push_back(GEPI);
1059         continue;
1060       }
1061 
1062       return false;
1063     }
1064   }
1065 
1066   return true;
1067 }
1068 
1069 /// This function is called when we see a pointer global variable with a single
1070 /// value stored it that is a malloc or cast of malloc.
1071 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1072                                                Type *AllocTy,
1073                                                AtomicOrdering Ordering,
1074                                                const DataLayout &DL,
1075                                                TargetLibraryInfo *TLI) {
1076   // If this is a malloc of an abstract type, don't touch it.
1077   if (!AllocTy->isSized())
1078     return false;
1079 
1080   // We can't optimize this global unless all uses of it are *known* to be
1081   // of the malloc value, not of the null initializer value (consider a use
1082   // that compares the global's value against zero to see if the malloc has
1083   // been reached).  To do this, we check to see if all uses of the global
1084   // would trap if the global were null: this proves that they must all
1085   // happen after the malloc.
1086   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1087     return false;
1088 
1089   // We can't optimize this if the malloc itself is used in a complex way,
1090   // for example, being stored into multiple globals.  This allows the
1091   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1092   // These are all things we could transform to using the global for.
1093   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1094     return false;
1095 
1096   // If we have a global that is only initialized with a fixed size malloc,
1097   // transform the program to use global memory instead of malloc'd memory.
1098   // This eliminates dynamic allocation, avoids an indirection accessing the
1099   // data, and exposes the resultant global to further GlobalOpt.
1100   // We cannot optimize the malloc if we cannot determine malloc array size.
1101   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1102   if (!NElems)
1103     return false;
1104 
1105   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1106     // Restrict this transformation to only working on small allocations
1107     // (2048 bytes currently), as we don't want to introduce a 16M global or
1108     // something.
1109     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1110       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1111       return true;
1112     }
1113 
1114   return false;
1115 }
1116 
1117 // Try to optimize globals based on the knowledge that only one value (besides
1118 // its initializer) is ever stored to the global.
1119 static bool
1120 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1121                          AtomicOrdering Ordering, const DataLayout &DL,
1122                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1123   // Ignore no-op GEPs and bitcasts.
1124   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1125 
1126   // If we are dealing with a pointer global that is initialized to null and
1127   // only has one (non-null) value stored into it, then we can optimize any
1128   // users of the loaded value (often calls and loads) that would trap if the
1129   // value was null.
1130   if (GV->getInitializer()->getType()->isPointerTy() &&
1131       GV->getInitializer()->isNullValue() &&
1132       StoredOnceVal->getType()->isPointerTy() &&
1133       !NullPointerIsDefined(
1134           nullptr /* F */,
1135           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1136     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1137       if (GV->getInitializer()->getType() != SOVC->getType())
1138         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1139 
1140       // Optimize away any trapping uses of the loaded value.
1141       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1142         return true;
1143     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1144       auto *TLI = &GetTLI(*CI->getFunction());
1145       Type *MallocType = getMallocAllocatedType(CI, TLI);
1146       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1147                                                            Ordering, DL, TLI))
1148         return true;
1149     }
1150   }
1151 
1152   return false;
1153 }
1154 
1155 /// At this point, we have learned that the only two values ever stored into GV
1156 /// are its initializer and OtherVal.  See if we can shrink the global into a
1157 /// boolean and select between the two values whenever it is used.  This exposes
1158 /// the values to other scalar optimizations.
1159 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1160   Type *GVElType = GV->getValueType();
1161 
1162   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1163   // an FP value, pointer or vector, don't do this optimization because a select
1164   // between them is very expensive and unlikely to lead to later
1165   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1166   // where v1 and v2 both require constant pool loads, a big loss.
1167   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1168       GVElType->isFloatingPointTy() ||
1169       GVElType->isPointerTy() || GVElType->isVectorTy())
1170     return false;
1171 
1172   // Walk the use list of the global seeing if all the uses are load or store.
1173   // If there is anything else, bail out.
1174   for (User *U : GV->users())
1175     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1176       return false;
1177 
1178   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1179 
1180   // Create the new global, initializing it to false.
1181   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1182                                              false,
1183                                              GlobalValue::InternalLinkage,
1184                                         ConstantInt::getFalse(GV->getContext()),
1185                                              GV->getName()+".b",
1186                                              GV->getThreadLocalMode(),
1187                                              GV->getType()->getAddressSpace());
1188   NewGV->copyAttributesFrom(GV);
1189   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1190 
1191   Constant *InitVal = GV->getInitializer();
1192   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1193          "No reason to shrink to bool!");
1194 
1195   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1196   GV->getDebugInfo(GVs);
1197 
1198   // If initialized to zero and storing one into the global, we can use a cast
1199   // instead of a select to synthesize the desired value.
1200   bool IsOneZero = false;
1201   bool EmitOneOrZero = true;
1202   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1203   if (CI && CI->getValue().getActiveBits() <= 64) {
1204     IsOneZero = InitVal->isNullValue() && CI->isOne();
1205 
1206     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1207     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1208       uint64_t ValInit = CIInit->getZExtValue();
1209       uint64_t ValOther = CI->getZExtValue();
1210       uint64_t ValMinus = ValOther - ValInit;
1211 
1212       for(auto *GVe : GVs){
1213         DIGlobalVariable *DGV = GVe->getVariable();
1214         DIExpression *E = GVe->getExpression();
1215         const DataLayout &DL = GV->getParent()->getDataLayout();
1216         unsigned SizeInOctets =
1217             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1218 
1219         // It is expected that the address of global optimized variable is on
1220         // top of the stack. After optimization, value of that variable will
1221         // be ether 0 for initial value or 1 for other value. The following
1222         // expression should return constant integer value depending on the
1223         // value at global object address:
1224         // val * (ValOther - ValInit) + ValInit:
1225         // DW_OP_deref DW_OP_constu <ValMinus>
1226         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1227         SmallVector<uint64_t, 12> Ops = {
1228             dwarf::DW_OP_deref_size, SizeInOctets,
1229             dwarf::DW_OP_constu, ValMinus,
1230             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1231             dwarf::DW_OP_plus};
1232         bool WithStackValue = true;
1233         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1234         DIGlobalVariableExpression *DGVE =
1235           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1236         NewGV->addDebugInfo(DGVE);
1237      }
1238      EmitOneOrZero = false;
1239     }
1240   }
1241 
1242   if (EmitOneOrZero) {
1243      // FIXME: This will only emit address for debugger on which will
1244      // be written only 0 or 1.
1245      for(auto *GV : GVs)
1246        NewGV->addDebugInfo(GV);
1247    }
1248 
1249   while (!GV->use_empty()) {
1250     Instruction *UI = cast<Instruction>(GV->user_back());
1251     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1252       // Change the store into a boolean store.
1253       bool StoringOther = SI->getOperand(0) == OtherVal;
1254       // Only do this if we weren't storing a loaded value.
1255       Value *StoreVal;
1256       if (StoringOther || SI->getOperand(0) == InitVal) {
1257         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1258                                     StoringOther);
1259       } else {
1260         // Otherwise, we are storing a previously loaded copy.  To do this,
1261         // change the copy from copying the original value to just copying the
1262         // bool.
1263         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1264 
1265         // If we've already replaced the input, StoredVal will be a cast or
1266         // select instruction.  If not, it will be a load of the original
1267         // global.
1268         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1269           assert(LI->getOperand(0) == GV && "Not a copy!");
1270           // Insert a new load, to preserve the saved value.
1271           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1272                                   LI->getName() + ".b", false, Align(1),
1273                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1274         } else {
1275           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1276                  "This is not a form that we understand!");
1277           StoreVal = StoredVal->getOperand(0);
1278           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1279         }
1280       }
1281       StoreInst *NSI =
1282           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1283                         SI->getSyncScopeID(), SI);
1284       NSI->setDebugLoc(SI->getDebugLoc());
1285     } else {
1286       // Change the load into a load of bool then a select.
1287       LoadInst *LI = cast<LoadInst>(UI);
1288       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1289                                    LI->getName() + ".b", false, Align(1),
1290                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1291       Instruction *NSI;
1292       if (IsOneZero)
1293         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1294       else
1295         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1296       NSI->takeName(LI);
1297       // Since LI is split into two instructions, NLI and NSI both inherit the
1298       // same DebugLoc
1299       NLI->setDebugLoc(LI->getDebugLoc());
1300       NSI->setDebugLoc(LI->getDebugLoc());
1301       LI->replaceAllUsesWith(NSI);
1302     }
1303     UI->eraseFromParent();
1304   }
1305 
1306   // Retain the name of the old global variable. People who are debugging their
1307   // programs may expect these variables to be named the same.
1308   NewGV->takeName(GV);
1309   GV->eraseFromParent();
1310   return true;
1311 }
1312 
1313 static bool deleteIfDead(
1314     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1315   GV.removeDeadConstantUsers();
1316 
1317   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1318     return false;
1319 
1320   if (const Comdat *C = GV.getComdat())
1321     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1322       return false;
1323 
1324   bool Dead;
1325   if (auto *F = dyn_cast<Function>(&GV))
1326     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1327   else
1328     Dead = GV.use_empty();
1329   if (!Dead)
1330     return false;
1331 
1332   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1333   GV.eraseFromParent();
1334   ++NumDeleted;
1335   return true;
1336 }
1337 
1338 static bool isPointerValueDeadOnEntryToFunction(
1339     const Function *F, GlobalValue *GV,
1340     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1341   // Find all uses of GV. We expect them all to be in F, and if we can't
1342   // identify any of the uses we bail out.
1343   //
1344   // On each of these uses, identify if the memory that GV points to is
1345   // used/required/live at the start of the function. If it is not, for example
1346   // if the first thing the function does is store to the GV, the GV can
1347   // possibly be demoted.
1348   //
1349   // We don't do an exhaustive search for memory operations - simply look
1350   // through bitcasts as they're quite common and benign.
1351   const DataLayout &DL = GV->getParent()->getDataLayout();
1352   SmallVector<LoadInst *, 4> Loads;
1353   SmallVector<StoreInst *, 4> Stores;
1354   for (auto *U : GV->users()) {
1355     if (Operator::getOpcode(U) == Instruction::BitCast) {
1356       for (auto *UU : U->users()) {
1357         if (auto *LI = dyn_cast<LoadInst>(UU))
1358           Loads.push_back(LI);
1359         else if (auto *SI = dyn_cast<StoreInst>(UU))
1360           Stores.push_back(SI);
1361         else
1362           return false;
1363       }
1364       continue;
1365     }
1366 
1367     Instruction *I = dyn_cast<Instruction>(U);
1368     if (!I)
1369       return false;
1370     assert(I->getParent()->getParent() == F);
1371 
1372     if (auto *LI = dyn_cast<LoadInst>(I))
1373       Loads.push_back(LI);
1374     else if (auto *SI = dyn_cast<StoreInst>(I))
1375       Stores.push_back(SI);
1376     else
1377       return false;
1378   }
1379 
1380   // We have identified all uses of GV into loads and stores. Now check if all
1381   // of them are known not to depend on the value of the global at the function
1382   // entry point. We do this by ensuring that every load is dominated by at
1383   // least one store.
1384   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1385 
1386   // The below check is quadratic. Check we're not going to do too many tests.
1387   // FIXME: Even though this will always have worst-case quadratic time, we
1388   // could put effort into minimizing the average time by putting stores that
1389   // have been shown to dominate at least one load at the beginning of the
1390   // Stores array, making subsequent dominance checks more likely to succeed
1391   // early.
1392   //
1393   // The threshold here is fairly large because global->local demotion is a
1394   // very powerful optimization should it fire.
1395   const unsigned Threshold = 100;
1396   if (Loads.size() * Stores.size() > Threshold)
1397     return false;
1398 
1399   for (auto *L : Loads) {
1400     auto *LTy = L->getType();
1401     if (none_of(Stores, [&](const StoreInst *S) {
1402           auto *STy = S->getValueOperand()->getType();
1403           // The load is only dominated by the store if DomTree says so
1404           // and the number of bits loaded in L is less than or equal to
1405           // the number of bits stored in S.
1406           return DT.dominates(S, L) &&
1407                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1408                      DL.getTypeStoreSize(STy).getFixedSize();
1409         }))
1410       return false;
1411   }
1412   // All loads have known dependences inside F, so the global can be localized.
1413   return true;
1414 }
1415 
1416 /// C may have non-instruction users. Can all of those users be turned into
1417 /// instructions?
1418 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1419   // We don't do this exhaustively. The most common pattern that we really need
1420   // to care about is a constant GEP or constant bitcast - so just looking
1421   // through one single ConstantExpr.
1422   //
1423   // The set of constants that this function returns true for must be able to be
1424   // handled by makeAllConstantUsesInstructions.
1425   for (auto *U : C->users()) {
1426     if (isa<Instruction>(U))
1427       continue;
1428     if (!isa<ConstantExpr>(U))
1429       // Non instruction, non-constantexpr user; cannot convert this.
1430       return false;
1431     for (auto *UU : U->users())
1432       if (!isa<Instruction>(UU))
1433         // A constantexpr used by another constant. We don't try and recurse any
1434         // further but just bail out at this point.
1435         return false;
1436   }
1437 
1438   return true;
1439 }
1440 
1441 /// C may have non-instruction users, and
1442 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1443 /// non-instruction users to instructions.
1444 static void makeAllConstantUsesInstructions(Constant *C) {
1445   SmallVector<ConstantExpr*,4> Users;
1446   for (auto *U : C->users()) {
1447     if (isa<ConstantExpr>(U))
1448       Users.push_back(cast<ConstantExpr>(U));
1449     else
1450       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1451       // should not have returned true for C.
1452       assert(
1453           isa<Instruction>(U) &&
1454           "Can't transform non-constantexpr non-instruction to instruction!");
1455   }
1456 
1457   SmallVector<Value*,4> UUsers;
1458   for (auto *U : Users) {
1459     UUsers.clear();
1460     append_range(UUsers, U->users());
1461     for (auto *UU : UUsers) {
1462       Instruction *UI = cast<Instruction>(UU);
1463       Instruction *NewU = U->getAsInstruction(UI);
1464       UI->replaceUsesOfWith(U, NewU);
1465     }
1466     // We've replaced all the uses, so destroy the constant. (destroyConstant
1467     // will update value handles and metadata.)
1468     U->destroyConstant();
1469   }
1470 }
1471 
1472 /// Analyze the specified global variable and optimize
1473 /// it if possible.  If we make a change, return true.
1474 static bool
1475 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1476                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1477                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1478                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1479   auto &DL = GV->getParent()->getDataLayout();
1480   // If this is a first class global and has only one accessing function and
1481   // this function is non-recursive, we replace the global with a local alloca
1482   // in this function.
1483   //
1484   // NOTE: It doesn't make sense to promote non-single-value types since we
1485   // are just replacing static memory to stack memory.
1486   //
1487   // If the global is in different address space, don't bring it to stack.
1488   if (!GS.HasMultipleAccessingFunctions &&
1489       GS.AccessingFunction &&
1490       GV->getValueType()->isSingleValueType() &&
1491       GV->getType()->getAddressSpace() == 0 &&
1492       !GV->isExternallyInitialized() &&
1493       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1494       GS.AccessingFunction->doesNotRecurse() &&
1495       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1496                                           LookupDomTree)) {
1497     const DataLayout &DL = GV->getParent()->getDataLayout();
1498 
1499     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1500     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1501                                                    ->getEntryBlock().begin());
1502     Type *ElemTy = GV->getValueType();
1503     // FIXME: Pass Global's alignment when globals have alignment
1504     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1505                                         GV->getName(), &FirstI);
1506     if (!isa<UndefValue>(GV->getInitializer()))
1507       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1508 
1509     makeAllConstantUsesInstructions(GV);
1510 
1511     GV->replaceAllUsesWith(Alloca);
1512     GV->eraseFromParent();
1513     ++NumLocalized;
1514     return true;
1515   }
1516 
1517   bool Changed = false;
1518 
1519   // If the global is never loaded (but may be stored to), it is dead.
1520   // Delete it now.
1521   if (!GS.IsLoaded) {
1522     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1523 
1524     if (isLeakCheckerRoot(GV)) {
1525       // Delete any constant stores to the global.
1526       Changed = CleanupPointerRootUsers(GV, GetTLI);
1527     } else {
1528       // Delete any stores we can find to the global.  We may not be able to
1529       // make it completely dead though.
1530       Changed = CleanupConstantGlobalUsers(GV, DL);
1531     }
1532 
1533     // If the global is dead now, delete it.
1534     if (GV->use_empty()) {
1535       GV->eraseFromParent();
1536       ++NumDeleted;
1537       Changed = true;
1538     }
1539     return Changed;
1540 
1541   }
1542   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1543     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1544 
1545     // Don't actually mark a global constant if it's atomic because atomic loads
1546     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1547     // requires write access to the variable even if it's not actually changed.
1548     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1549       assert(!GV->isConstant() && "Expected a non-constant global");
1550       GV->setConstant(true);
1551       Changed = true;
1552     }
1553 
1554     // Clean up any obviously simplifiable users now.
1555     Changed |= CleanupConstantGlobalUsers(GV, DL);
1556 
1557     // If the global is dead now, just nuke it.
1558     if (GV->use_empty()) {
1559       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1560                         << "all users and delete global!\n");
1561       GV->eraseFromParent();
1562       ++NumDeleted;
1563       return true;
1564     }
1565 
1566     // Fall through to the next check; see if we can optimize further.
1567     ++NumMarked;
1568   }
1569   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1570     const DataLayout &DL = GV->getParent()->getDataLayout();
1571     if (SRAGlobal(GV, DL))
1572       return true;
1573   }
1574   Value *StoredOnceValue = GS.getStoredOnceValue();
1575   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1576     // Avoid speculating constant expressions that might trap (div/rem).
1577     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1578     if (SOVConstant && SOVConstant->canTrap())
1579       return Changed;
1580 
1581     Function &StoreFn =
1582         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1583     bool CanHaveNonUndefGlobalInitializer =
1584         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1585             GV->getType()->getAddressSpace());
1586     // If the initial value for the global was an undef value, and if only
1587     // one other value was stored into it, we can just change the
1588     // initializer to be the stored value, then delete all stores to the
1589     // global.  This allows us to mark it constant.
1590     // This is restricted to address spaces that allow globals to have
1591     // initializers. NVPTX, for example, does not support initializers for
1592     // shared memory (AS 3).
1593     if (SOVConstant && SOVConstant->getType() == GV->getValueType() &&
1594         isa<UndefValue>(GV->getInitializer()) &&
1595         CanHaveNonUndefGlobalInitializer) {
1596       // Change the initial value here.
1597       GV->setInitializer(SOVConstant);
1598 
1599       // Clean up any obviously simplifiable users now.
1600       CleanupConstantGlobalUsers(GV, DL);
1601 
1602       if (GV->use_empty()) {
1603         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1604                           << "simplify all users and delete global!\n");
1605         GV->eraseFromParent();
1606         ++NumDeleted;
1607       }
1608       ++NumSubstitute;
1609       return true;
1610     }
1611 
1612     // Try to optimize globals based on the knowledge that only one value
1613     // (besides its initializer) is ever stored to the global.
1614     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI))
1615       return true;
1616 
1617     // Otherwise, if the global was not a boolean, we can shrink it to be a
1618     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1619     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1620         (!isa<UndefValue>(GV->getInitializer()) ||
1621          CanHaveNonUndefGlobalInitializer)) {
1622       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1623         ++NumShrunkToBool;
1624         return true;
1625       }
1626     }
1627   }
1628 
1629   return Changed;
1630 }
1631 
1632 /// Analyze the specified global variable and optimize it if possible.  If we
1633 /// make a change, return true.
1634 static bool
1635 processGlobal(GlobalValue &GV,
1636               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1637               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1638               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1639   if (GV.getName().startswith("llvm."))
1640     return false;
1641 
1642   GlobalStatus GS;
1643 
1644   if (GlobalStatus::analyzeGlobal(&GV, GS))
1645     return false;
1646 
1647   bool Changed = false;
1648   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1649     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1650                                                : GlobalValue::UnnamedAddr::Local;
1651     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1652       GV.setUnnamedAddr(NewUnnamedAddr);
1653       NumUnnamed++;
1654       Changed = true;
1655     }
1656   }
1657 
1658   // Do more involved optimizations if the global is internal.
1659   if (!GV.hasLocalLinkage())
1660     return Changed;
1661 
1662   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1663   if (!GVar)
1664     return Changed;
1665 
1666   if (GVar->isConstant() || !GVar->hasInitializer())
1667     return Changed;
1668 
1669   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1670          Changed;
1671 }
1672 
1673 /// Walk all of the direct calls of the specified function, changing them to
1674 /// FastCC.
1675 static void ChangeCalleesToFastCall(Function *F) {
1676   for (User *U : F->users()) {
1677     if (isa<BlockAddress>(U))
1678       continue;
1679     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1680   }
1681 }
1682 
1683 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1684                                Attribute::AttrKind A) {
1685   unsigned AttrIndex;
1686   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1687     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1688   return Attrs;
1689 }
1690 
1691 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1692   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1693   for (User *U : F->users()) {
1694     if (isa<BlockAddress>(U))
1695       continue;
1696     CallBase *CB = cast<CallBase>(U);
1697     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1698   }
1699 }
1700 
1701 /// Return true if this is a calling convention that we'd like to change.  The
1702 /// idea here is that we don't want to mess with the convention if the user
1703 /// explicitly requested something with performance implications like coldcc,
1704 /// GHC, or anyregcc.
1705 static bool hasChangeableCC(Function *F) {
1706   CallingConv::ID CC = F->getCallingConv();
1707 
1708   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1709   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1710     return false;
1711 
1712   // FIXME: Change CC for the whole chain of musttail calls when possible.
1713   //
1714   // Can't change CC of the function that either has musttail calls, or is a
1715   // musttail callee itself
1716   for (User *U : F->users()) {
1717     if (isa<BlockAddress>(U))
1718       continue;
1719     CallInst* CI = dyn_cast<CallInst>(U);
1720     if (!CI)
1721       continue;
1722 
1723     if (CI->isMustTailCall())
1724       return false;
1725   }
1726 
1727   for (BasicBlock &BB : *F)
1728     if (BB.getTerminatingMustTailCall())
1729       return false;
1730 
1731   return true;
1732 }
1733 
1734 /// Return true if the block containing the call site has a BlockFrequency of
1735 /// less than ColdCCRelFreq% of the entry block.
1736 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1737   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1738   auto *CallSiteBB = CB.getParent();
1739   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1740   auto CallerEntryFreq =
1741       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1742   return CallSiteFreq < CallerEntryFreq * ColdProb;
1743 }
1744 
1745 // This function checks if the input function F is cold at all call sites. It
1746 // also looks each call site's containing function, returning false if the
1747 // caller function contains other non cold calls. The input vector AllCallsCold
1748 // contains a list of functions that only have call sites in cold blocks.
1749 static bool
1750 isValidCandidateForColdCC(Function &F,
1751                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1752                           const std::vector<Function *> &AllCallsCold) {
1753 
1754   if (F.user_empty())
1755     return false;
1756 
1757   for (User *U : F.users()) {
1758     if (isa<BlockAddress>(U))
1759       continue;
1760 
1761     CallBase &CB = cast<CallBase>(*U);
1762     Function *CallerFunc = CB.getParent()->getParent();
1763     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1764     if (!isColdCallSite(CB, CallerBFI))
1765       return false;
1766     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1767       return false;
1768   }
1769   return true;
1770 }
1771 
1772 static void changeCallSitesToColdCC(Function *F) {
1773   for (User *U : F->users()) {
1774     if (isa<BlockAddress>(U))
1775       continue;
1776     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1777   }
1778 }
1779 
1780 // This function iterates over all the call instructions in the input Function
1781 // and checks that all call sites are in cold blocks and are allowed to use the
1782 // coldcc calling convention.
1783 static bool
1784 hasOnlyColdCalls(Function &F,
1785                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1786   for (BasicBlock &BB : F) {
1787     for (Instruction &I : BB) {
1788       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1789         // Skip over isline asm instructions since they aren't function calls.
1790         if (CI->isInlineAsm())
1791           continue;
1792         Function *CalledFn = CI->getCalledFunction();
1793         if (!CalledFn)
1794           return false;
1795         if (!CalledFn->hasLocalLinkage())
1796           return false;
1797         // Skip over instrinsics since they won't remain as function calls.
1798         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1799           continue;
1800         // Check if it's valid to use coldcc calling convention.
1801         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1802             CalledFn->hasAddressTaken())
1803           return false;
1804         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1805         if (!isColdCallSite(*CI, CallerBFI))
1806           return false;
1807       }
1808     }
1809   }
1810   return true;
1811 }
1812 
1813 static bool hasMustTailCallers(Function *F) {
1814   for (User *U : F->users()) {
1815     CallBase *CB = dyn_cast<CallBase>(U);
1816     if (!CB) {
1817       assert(isa<BlockAddress>(U) &&
1818              "Expected either CallBase or BlockAddress");
1819       continue;
1820     }
1821     if (CB->isMustTailCall())
1822       return true;
1823   }
1824   return false;
1825 }
1826 
1827 static bool hasInvokeCallers(Function *F) {
1828   for (User *U : F->users())
1829     if (isa<InvokeInst>(U))
1830       return true;
1831   return false;
1832 }
1833 
1834 static void RemovePreallocated(Function *F) {
1835   RemoveAttribute(F, Attribute::Preallocated);
1836 
1837   auto *M = F->getParent();
1838 
1839   IRBuilder<> Builder(M->getContext());
1840 
1841   // Cannot modify users() while iterating over it, so make a copy.
1842   SmallVector<User *, 4> PreallocatedCalls(F->users());
1843   for (User *U : PreallocatedCalls) {
1844     CallBase *CB = dyn_cast<CallBase>(U);
1845     if (!CB)
1846       continue;
1847 
1848     assert(
1849         !CB->isMustTailCall() &&
1850         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1851     // Create copy of call without "preallocated" operand bundle.
1852     SmallVector<OperandBundleDef, 1> OpBundles;
1853     CB->getOperandBundlesAsDefs(OpBundles);
1854     CallBase *PreallocatedSetup = nullptr;
1855     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1856       if (It->getTag() == "preallocated") {
1857         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1858         OpBundles.erase(It);
1859         break;
1860       }
1861     }
1862     assert(PreallocatedSetup && "Did not find preallocated bundle");
1863     uint64_t ArgCount =
1864         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1865 
1866     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1867            "Unknown indirect call type");
1868     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1869     CB->replaceAllUsesWith(NewCB);
1870     NewCB->takeName(CB);
1871     CB->eraseFromParent();
1872 
1873     Builder.SetInsertPoint(PreallocatedSetup);
1874     auto *StackSave =
1875         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1876 
1877     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1878     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1879                        StackSave);
1880 
1881     // Replace @llvm.call.preallocated.arg() with alloca.
1882     // Cannot modify users() while iterating over it, so make a copy.
1883     // @llvm.call.preallocated.arg() can be called with the same index multiple
1884     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1885     // already created a Value* for the index, and if not, create an alloca and
1886     // bitcast right after the @llvm.call.preallocated.setup() so that it
1887     // dominates all uses.
1888     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1889     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1890     for (auto *User : PreallocatedArgs) {
1891       auto *UseCall = cast<CallBase>(User);
1892       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1893                  Intrinsic::call_preallocated_arg &&
1894              "preallocated token use was not a llvm.call.preallocated.arg");
1895       uint64_t AllocArgIndex =
1896           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1897       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1898       if (!AllocaReplacement) {
1899         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1900         auto *ArgType =
1901             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1902         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1903         Builder.SetInsertPoint(InsertBefore);
1904         auto *Alloca =
1905             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1906         auto *BitCast = Builder.CreateBitCast(
1907             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1908         ArgAllocas[AllocArgIndex] = BitCast;
1909         AllocaReplacement = BitCast;
1910       }
1911 
1912       UseCall->replaceAllUsesWith(AllocaReplacement);
1913       UseCall->eraseFromParent();
1914     }
1915     // Remove @llvm.call.preallocated.setup().
1916     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1917   }
1918 }
1919 
1920 static bool
1921 OptimizeFunctions(Module &M,
1922                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1923                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1924                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1925                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1926                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1927 
1928   bool Changed = false;
1929 
1930   std::vector<Function *> AllCallsCold;
1931   for (Function &F : llvm::make_early_inc_range(M))
1932     if (hasOnlyColdCalls(F, GetBFI))
1933       AllCallsCold.push_back(&F);
1934 
1935   // Optimize functions.
1936   for (Function &F : llvm::make_early_inc_range(M)) {
1937     // Don't perform global opt pass on naked functions; we don't want fast
1938     // calling conventions for naked functions.
1939     if (F.hasFnAttribute(Attribute::Naked))
1940       continue;
1941 
1942     // Functions without names cannot be referenced outside this module.
1943     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1944       F.setLinkage(GlobalValue::InternalLinkage);
1945 
1946     if (deleteIfDead(F, NotDiscardableComdats)) {
1947       Changed = true;
1948       continue;
1949     }
1950 
1951     // LLVM's definition of dominance allows instructions that are cyclic
1952     // in unreachable blocks, e.g.:
1953     // %pat = select i1 %condition, @global, i16* %pat
1954     // because any instruction dominates an instruction in a block that's
1955     // not reachable from entry.
1956     // So, remove unreachable blocks from the function, because a) there's
1957     // no point in analyzing them and b) GlobalOpt should otherwise grow
1958     // some more complicated logic to break these cycles.
1959     // Removing unreachable blocks might invalidate the dominator so we
1960     // recalculate it.
1961     if (!F.isDeclaration()) {
1962       if (removeUnreachableBlocks(F)) {
1963         auto &DT = LookupDomTree(F);
1964         DT.recalculate(F);
1965         Changed = true;
1966       }
1967     }
1968 
1969     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1970 
1971     if (!F.hasLocalLinkage())
1972       continue;
1973 
1974     // If we have an inalloca parameter that we can safely remove the
1975     // inalloca attribute from, do so. This unlocks optimizations that
1976     // wouldn't be safe in the presence of inalloca.
1977     // FIXME: We should also hoist alloca affected by this to the entry
1978     // block if possible.
1979     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1980         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
1981       RemoveAttribute(&F, Attribute::InAlloca);
1982       Changed = true;
1983     }
1984 
1985     // FIXME: handle invokes
1986     // FIXME: handle musttail
1987     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1988       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
1989           !hasInvokeCallers(&F)) {
1990         RemovePreallocated(&F);
1991         Changed = true;
1992       }
1993       continue;
1994     }
1995 
1996     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1997       NumInternalFunc++;
1998       TargetTransformInfo &TTI = GetTTI(F);
1999       // Change the calling convention to coldcc if either stress testing is
2000       // enabled or the target would like to use coldcc on functions which are
2001       // cold at all call sites and the callers contain no other non coldcc
2002       // calls.
2003       if (EnableColdCCStressTest ||
2004           (TTI.useColdCCForColdCall(F) &&
2005            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
2006         F.setCallingConv(CallingConv::Cold);
2007         changeCallSitesToColdCC(&F);
2008         Changed = true;
2009         NumColdCC++;
2010       }
2011     }
2012 
2013     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2014       // If this function has a calling convention worth changing, is not a
2015       // varargs function, and is only called directly, promote it to use the
2016       // Fast calling convention.
2017       F.setCallingConv(CallingConv::Fast);
2018       ChangeCalleesToFastCall(&F);
2019       ++NumFastCallFns;
2020       Changed = true;
2021     }
2022 
2023     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2024         !F.hasAddressTaken()) {
2025       // The function is not used by a trampoline intrinsic, so it is safe
2026       // to remove the 'nest' attribute.
2027       RemoveAttribute(&F, Attribute::Nest);
2028       ++NumNestRemoved;
2029       Changed = true;
2030     }
2031   }
2032   return Changed;
2033 }
2034 
2035 static bool
2036 OptimizeGlobalVars(Module &M,
2037                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2038                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2039                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2040                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2041   bool Changed = false;
2042 
2043   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2044     // Global variables without names cannot be referenced outside this module.
2045     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2046       GV.setLinkage(GlobalValue::InternalLinkage);
2047     // Simplify the initializer.
2048     if (GV.hasInitializer())
2049       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2050         auto &DL = M.getDataLayout();
2051         // TLI is not used in the case of a Constant, so use default nullptr
2052         // for that optional parameter, since we don't have a Function to
2053         // provide GetTLI anyway.
2054         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2055         if (New != C)
2056           GV.setInitializer(New);
2057       }
2058 
2059     if (deleteIfDead(GV, NotDiscardableComdats)) {
2060       Changed = true;
2061       continue;
2062     }
2063 
2064     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2065   }
2066   return Changed;
2067 }
2068 
2069 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2070 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2071 /// GEP operands of Addr [0, OpNo) have been stepped into.
2072 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2073                                    ConstantExpr *Addr, unsigned OpNo) {
2074   // Base case of the recursion.
2075   if (OpNo == Addr->getNumOperands()) {
2076     assert(Val->getType() == Init->getType() && "Type mismatch!");
2077     return Val;
2078   }
2079 
2080   SmallVector<Constant*, 32> Elts;
2081   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2082     // Break up the constant into its elements.
2083     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2084       Elts.push_back(Init->getAggregateElement(i));
2085 
2086     // Replace the element that we are supposed to.
2087     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2088     unsigned Idx = CU->getZExtValue();
2089     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2090     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2091 
2092     // Return the modified struct.
2093     return ConstantStruct::get(STy, Elts);
2094   }
2095 
2096   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2097   uint64_t NumElts;
2098   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2099     NumElts = ATy->getNumElements();
2100   else
2101     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2102 
2103   // Break up the array into elements.
2104   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2105     Elts.push_back(Init->getAggregateElement(i));
2106 
2107   assert(CI->getZExtValue() < NumElts);
2108   Elts[CI->getZExtValue()] =
2109     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2110 
2111   if (Init->getType()->isArrayTy())
2112     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2113   return ConstantVector::get(Elts);
2114 }
2115 
2116 /// We have decided that Addr (which satisfies the predicate
2117 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2118 static void CommitValueTo(Constant *Val, Constant *Addr) {
2119   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2120     assert(GV->hasInitializer());
2121     GV->setInitializer(Val);
2122     return;
2123   }
2124 
2125   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2126   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2127   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2128 }
2129 
2130 /// Given a map of address -> value, where addresses are expected to be some form
2131 /// of either a global or a constant GEP, set the initializer for the address to
2132 /// be the value. This performs mostly the same function as CommitValueTo()
2133 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2134 /// case where the set of addresses are GEPs sharing the same underlying global,
2135 /// processing the GEPs in batches rather than individually.
2136 ///
2137 /// To give an example, consider the following C++ code adapted from the clang
2138 /// regression tests:
2139 /// struct S {
2140 ///  int n = 10;
2141 ///  int m = 2 * n;
2142 ///  S(int a) : n(a) {}
2143 /// };
2144 ///
2145 /// template<typename T>
2146 /// struct U {
2147 ///  T *r = &q;
2148 ///  T q = 42;
2149 ///  U *p = this;
2150 /// };
2151 ///
2152 /// U<S> e;
2153 ///
2154 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2155 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2156 /// members. This batch algorithm will simply use general CommitValueTo() method
2157 /// to handle the complex nested S struct initialization of 'q', before
2158 /// processing the outermost members in a single batch. Using CommitValueTo() to
2159 /// handle member in the outer struct is inefficient when the struct/array is
2160 /// very large as we end up creating and destroy constant arrays for each
2161 /// initialization.
2162 /// For the above case, we expect the following IR to be generated:
2163 ///
2164 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2165 /// %struct.S = type { i32, i32 }
2166 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2167 ///                                                  i64 0, i32 1),
2168 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2169 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2170 /// constant expression, while the other two elements of @e are "simple".
2171 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2172   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2173   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2174   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2175   SimpleCEs.reserve(Mem.size());
2176 
2177   for (const auto &I : Mem) {
2178     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2179       GVs.push_back(std::make_pair(GV, I.second));
2180     } else {
2181       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2182       // We don't handle the deeply recursive case using the batch method.
2183       if (GEP->getNumOperands() > 3)
2184         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2185       else
2186         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2187     }
2188   }
2189 
2190   // The algorithm below doesn't handle cases like nested structs, so use the
2191   // slower fully general method if we have to.
2192   for (auto ComplexCE : ComplexCEs)
2193     CommitValueTo(ComplexCE.second, ComplexCE.first);
2194 
2195   for (auto GVPair : GVs) {
2196     assert(GVPair.first->hasInitializer());
2197     GVPair.first->setInitializer(GVPair.second);
2198   }
2199 
2200   if (SimpleCEs.empty())
2201     return;
2202 
2203   // We cache a single global's initializer elements in the case where the
2204   // subsequent address/val pair uses the same one. This avoids throwing away and
2205   // rebuilding the constant struct/vector/array just because one element is
2206   // modified at a time.
2207   SmallVector<Constant *, 32> Elts;
2208   Elts.reserve(SimpleCEs.size());
2209   GlobalVariable *CurrentGV = nullptr;
2210 
2211   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2212     Constant *Init = GV->getInitializer();
2213     Type *Ty = Init->getType();
2214     if (Update) {
2215       if (CurrentGV) {
2216         assert(CurrentGV && "Expected a GV to commit to!");
2217         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2218         // We have a valid cache that needs to be committed.
2219         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2220           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2221         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2222           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2223         else
2224           CurrentGV->setInitializer(ConstantVector::get(Elts));
2225       }
2226       if (CurrentGV == GV)
2227         return;
2228       // Need to clear and set up cache for new initializer.
2229       CurrentGV = GV;
2230       Elts.clear();
2231       unsigned NumElts;
2232       if (auto *STy = dyn_cast<StructType>(Ty))
2233         NumElts = STy->getNumElements();
2234       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2235         NumElts = ATy->getNumElements();
2236       else
2237         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2238       for (unsigned i = 0, e = NumElts; i != e; ++i)
2239         Elts.push_back(Init->getAggregateElement(i));
2240     }
2241   };
2242 
2243   for (auto CEPair : SimpleCEs) {
2244     ConstantExpr *GEP = CEPair.first;
2245     Constant *Val = CEPair.second;
2246 
2247     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2248     commitAndSetupCache(GV, GV != CurrentGV);
2249     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2250     Elts[CI->getZExtValue()] = Val;
2251   }
2252   // The last initializer in the list needs to be committed, others
2253   // will be committed on a new initializer being processed.
2254   commitAndSetupCache(CurrentGV, true);
2255 }
2256 
2257 /// Evaluate static constructors in the function, if we can.  Return true if we
2258 /// can, false otherwise.
2259 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2260                                       TargetLibraryInfo *TLI) {
2261   // Call the function.
2262   Evaluator Eval(DL, TLI);
2263   Constant *RetValDummy;
2264   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2265                                            SmallVector<Constant*, 0>());
2266 
2267   if (EvalSuccess) {
2268     ++NumCtorsEvaluated;
2269 
2270     // We succeeded at evaluation: commit the result.
2271     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2272                       << F->getName() << "' to "
2273                       << Eval.getMutatedMemory().size() << " stores.\n");
2274     BatchCommitValueTo(Eval.getMutatedMemory());
2275     for (GlobalVariable *GV : Eval.getInvariants())
2276       GV->setConstant(true);
2277   }
2278 
2279   return EvalSuccess;
2280 }
2281 
2282 static int compareNames(Constant *const *A, Constant *const *B) {
2283   Value *AStripped = (*A)->stripPointerCasts();
2284   Value *BStripped = (*B)->stripPointerCasts();
2285   return AStripped->getName().compare(BStripped->getName());
2286 }
2287 
2288 static void setUsedInitializer(GlobalVariable &V,
2289                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2290   if (Init.empty()) {
2291     V.eraseFromParent();
2292     return;
2293   }
2294 
2295   // Type of pointer to the array of pointers.
2296   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2297 
2298   SmallVector<Constant *, 8> UsedArray;
2299   for (GlobalValue *GV : Init) {
2300     Constant *Cast
2301       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2302     UsedArray.push_back(Cast);
2303   }
2304   // Sort to get deterministic order.
2305   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2306   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2307 
2308   Module *M = V.getParent();
2309   V.removeFromParent();
2310   GlobalVariable *NV =
2311       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2312                          ConstantArray::get(ATy, UsedArray), "");
2313   NV->takeName(&V);
2314   NV->setSection("llvm.metadata");
2315   delete &V;
2316 }
2317 
2318 namespace {
2319 
2320 /// An easy to access representation of llvm.used and llvm.compiler.used.
2321 class LLVMUsed {
2322   SmallPtrSet<GlobalValue *, 4> Used;
2323   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2324   GlobalVariable *UsedV;
2325   GlobalVariable *CompilerUsedV;
2326 
2327 public:
2328   LLVMUsed(Module &M) {
2329     SmallVector<GlobalValue *, 4> Vec;
2330     UsedV = collectUsedGlobalVariables(M, Vec, false);
2331     Used = {Vec.begin(), Vec.end()};
2332     Vec.clear();
2333     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2334     CompilerUsed = {Vec.begin(), Vec.end()};
2335   }
2336 
2337   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2338   using used_iterator_range = iterator_range<iterator>;
2339 
2340   iterator usedBegin() { return Used.begin(); }
2341   iterator usedEnd() { return Used.end(); }
2342 
2343   used_iterator_range used() {
2344     return used_iterator_range(usedBegin(), usedEnd());
2345   }
2346 
2347   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2348   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2349 
2350   used_iterator_range compilerUsed() {
2351     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2352   }
2353 
2354   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2355 
2356   bool compilerUsedCount(GlobalValue *GV) const {
2357     return CompilerUsed.count(GV);
2358   }
2359 
2360   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2361   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2362   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2363 
2364   bool compilerUsedInsert(GlobalValue *GV) {
2365     return CompilerUsed.insert(GV).second;
2366   }
2367 
2368   void syncVariablesAndSets() {
2369     if (UsedV)
2370       setUsedInitializer(*UsedV, Used);
2371     if (CompilerUsedV)
2372       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2373   }
2374 };
2375 
2376 } // end anonymous namespace
2377 
2378 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2379   if (GA.use_empty()) // No use at all.
2380     return false;
2381 
2382   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2383          "We should have removed the duplicated "
2384          "element from llvm.compiler.used");
2385   if (!GA.hasOneUse())
2386     // Strictly more than one use. So at least one is not in llvm.used and
2387     // llvm.compiler.used.
2388     return true;
2389 
2390   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2391   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2392 }
2393 
2394 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2395                                                const LLVMUsed &U) {
2396   unsigned N = 2;
2397   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2398          "We should have removed the duplicated "
2399          "element from llvm.compiler.used");
2400   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2401     ++N;
2402   return V.hasNUsesOrMore(N);
2403 }
2404 
2405 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2406   if (!GA.hasLocalLinkage())
2407     return true;
2408 
2409   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2410 }
2411 
2412 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2413                              bool &RenameTarget) {
2414   RenameTarget = false;
2415   bool Ret = false;
2416   if (hasUseOtherThanLLVMUsed(GA, U))
2417     Ret = true;
2418 
2419   // If the alias is externally visible, we may still be able to simplify it.
2420   if (!mayHaveOtherReferences(GA, U))
2421     return Ret;
2422 
2423   // If the aliasee has internal linkage, give it the name and linkage
2424   // of the alias, and delete the alias.  This turns:
2425   //   define internal ... @f(...)
2426   //   @a = alias ... @f
2427   // into:
2428   //   define ... @a(...)
2429   Constant *Aliasee = GA.getAliasee();
2430   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2431   if (!Target->hasLocalLinkage())
2432     return Ret;
2433 
2434   // Do not perform the transform if multiple aliases potentially target the
2435   // aliasee. This check also ensures that it is safe to replace the section
2436   // and other attributes of the aliasee with those of the alias.
2437   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2438     return Ret;
2439 
2440   RenameTarget = true;
2441   return true;
2442 }
2443 
2444 static bool
2445 OptimizeGlobalAliases(Module &M,
2446                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2447   bool Changed = false;
2448   LLVMUsed Used(M);
2449 
2450   for (GlobalValue *GV : Used.used())
2451     Used.compilerUsedErase(GV);
2452 
2453   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2454     // Aliases without names cannot be referenced outside this module.
2455     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2456       J.setLinkage(GlobalValue::InternalLinkage);
2457 
2458     if (deleteIfDead(J, NotDiscardableComdats)) {
2459       Changed = true;
2460       continue;
2461     }
2462 
2463     // If the alias can change at link time, nothing can be done - bail out.
2464     if (J.isInterposable())
2465       continue;
2466 
2467     Constant *Aliasee = J.getAliasee();
2468     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2469     // We can't trivially replace the alias with the aliasee if the aliasee is
2470     // non-trivial in some way. We also can't replace the alias with the aliasee
2471     // if the aliasee is interposable because aliases point to the local
2472     // definition.
2473     // TODO: Try to handle non-zero GEPs of local aliasees.
2474     if (!Target || Target->isInterposable())
2475       continue;
2476     Target->removeDeadConstantUsers();
2477 
2478     // Make all users of the alias use the aliasee instead.
2479     bool RenameTarget;
2480     if (!hasUsesToReplace(J, Used, RenameTarget))
2481       continue;
2482 
2483     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2484     ++NumAliasesResolved;
2485     Changed = true;
2486 
2487     if (RenameTarget) {
2488       // Give the aliasee the name, linkage and other attributes of the alias.
2489       Target->takeName(&J);
2490       Target->setLinkage(J.getLinkage());
2491       Target->setDSOLocal(J.isDSOLocal());
2492       Target->setVisibility(J.getVisibility());
2493       Target->setDLLStorageClass(J.getDLLStorageClass());
2494 
2495       if (Used.usedErase(&J))
2496         Used.usedInsert(Target);
2497 
2498       if (Used.compilerUsedErase(&J))
2499         Used.compilerUsedInsert(Target);
2500     } else if (mayHaveOtherReferences(J, Used))
2501       continue;
2502 
2503     // Delete the alias.
2504     M.getAliasList().erase(&J);
2505     ++NumAliasesRemoved;
2506     Changed = true;
2507   }
2508 
2509   Used.syncVariablesAndSets();
2510 
2511   return Changed;
2512 }
2513 
2514 static Function *
2515 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2516   // Hack to get a default TLI before we have actual Function.
2517   auto FuncIter = M.begin();
2518   if (FuncIter == M.end())
2519     return nullptr;
2520   auto *TLI = &GetTLI(*FuncIter);
2521 
2522   LibFunc F = LibFunc_cxa_atexit;
2523   if (!TLI->has(F))
2524     return nullptr;
2525 
2526   Function *Fn = M.getFunction(TLI->getName(F));
2527   if (!Fn)
2528     return nullptr;
2529 
2530   // Now get the actual TLI for Fn.
2531   TLI = &GetTLI(*Fn);
2532 
2533   // Make sure that the function has the correct prototype.
2534   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2535     return nullptr;
2536 
2537   return Fn;
2538 }
2539 
2540 /// Returns whether the given function is an empty C++ destructor and can
2541 /// therefore be eliminated.
2542 /// Note that we assume that other optimization passes have already simplified
2543 /// the code so we simply check for 'ret'.
2544 static bool cxxDtorIsEmpty(const Function &Fn) {
2545   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2546   // nounwind, but that doesn't seem worth doing.
2547   if (Fn.isDeclaration())
2548     return false;
2549 
2550   for (auto &I : Fn.getEntryBlock()) {
2551     if (I.isDebugOrPseudoInst())
2552       continue;
2553     if (isa<ReturnInst>(I))
2554       return true;
2555     break;
2556   }
2557   return false;
2558 }
2559 
2560 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2561   /// Itanium C++ ABI p3.3.5:
2562   ///
2563   ///   After constructing a global (or local static) object, that will require
2564   ///   destruction on exit, a termination function is registered as follows:
2565   ///
2566   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2567   ///
2568   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2569   ///   call f(p) when DSO d is unloaded, before all such termination calls
2570   ///   registered before this one. It returns zero if registration is
2571   ///   successful, nonzero on failure.
2572 
2573   // This pass will look for calls to __cxa_atexit where the function is trivial
2574   // and remove them.
2575   bool Changed = false;
2576 
2577   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2578     // We're only interested in calls. Theoretically, we could handle invoke
2579     // instructions as well, but neither llvm-gcc nor clang generate invokes
2580     // to __cxa_atexit.
2581     CallInst *CI = dyn_cast<CallInst>(U);
2582     if (!CI)
2583       continue;
2584 
2585     Function *DtorFn =
2586       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2587     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2588       continue;
2589 
2590     // Just remove the call.
2591     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2592     CI->eraseFromParent();
2593 
2594     ++NumCXXDtorsRemoved;
2595 
2596     Changed |= true;
2597   }
2598 
2599   return Changed;
2600 }
2601 
2602 static bool optimizeGlobalsInModule(
2603     Module &M, const DataLayout &DL,
2604     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2605     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2606     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2607     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2608   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2609   bool Changed = false;
2610   bool LocalChange = true;
2611   while (LocalChange) {
2612     LocalChange = false;
2613 
2614     NotDiscardableComdats.clear();
2615     for (const GlobalVariable &GV : M.globals())
2616       if (const Comdat *C = GV.getComdat())
2617         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2618           NotDiscardableComdats.insert(C);
2619     for (Function &F : M)
2620       if (const Comdat *C = F.getComdat())
2621         if (!F.isDefTriviallyDead())
2622           NotDiscardableComdats.insert(C);
2623     for (GlobalAlias &GA : M.aliases())
2624       if (const Comdat *C = GA.getComdat())
2625         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2626           NotDiscardableComdats.insert(C);
2627 
2628     // Delete functions that are trivially dead, ccc -> fastcc
2629     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2630                                      NotDiscardableComdats);
2631 
2632     // Optimize global_ctors list.
2633     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2634       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2635     });
2636 
2637     // Optimize non-address-taken globals.
2638     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2639                                       NotDiscardableComdats);
2640 
2641     // Resolve aliases, when possible.
2642     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2643 
2644     // Try to remove trivial global destructors if they are not removed
2645     // already.
2646     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2647     if (CXAAtExitFn)
2648       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2649 
2650     Changed |= LocalChange;
2651   }
2652 
2653   // TODO: Move all global ctors functions to the end of the module for code
2654   // layout.
2655 
2656   return Changed;
2657 }
2658 
2659 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2660     auto &DL = M.getDataLayout();
2661     auto &FAM =
2662         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2663     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2664       return FAM.getResult<DominatorTreeAnalysis>(F);
2665     };
2666     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2667       return FAM.getResult<TargetLibraryAnalysis>(F);
2668     };
2669     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2670       return FAM.getResult<TargetIRAnalysis>(F);
2671     };
2672 
2673     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2674       return FAM.getResult<BlockFrequencyAnalysis>(F);
2675     };
2676 
2677     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2678       return PreservedAnalyses::all();
2679     return PreservedAnalyses::none();
2680 }
2681 
2682 namespace {
2683 
2684 struct GlobalOptLegacyPass : public ModulePass {
2685   static char ID; // Pass identification, replacement for typeid
2686 
2687   GlobalOptLegacyPass() : ModulePass(ID) {
2688     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2689   }
2690 
2691   bool runOnModule(Module &M) override {
2692     if (skipModule(M))
2693       return false;
2694 
2695     auto &DL = M.getDataLayout();
2696     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2697       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2698     };
2699     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2700       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2701     };
2702     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2703       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2704     };
2705 
2706     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2707       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2708     };
2709 
2710     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2711                                    LookupDomTree);
2712   }
2713 
2714   void getAnalysisUsage(AnalysisUsage &AU) const override {
2715     AU.addRequired<TargetLibraryInfoWrapperPass>();
2716     AU.addRequired<TargetTransformInfoWrapperPass>();
2717     AU.addRequired<DominatorTreeWrapperPass>();
2718     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2719   }
2720 };
2721 
2722 } // end anonymous namespace
2723 
2724 char GlobalOptLegacyPass::ID = 0;
2725 
2726 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2727                       "Global Variable Optimizer", false, false)
2728 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2729 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2730 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2731 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2732 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2733                     "Global Variable Optimizer", false, false)
2734 
2735 ModulePass *llvm::createGlobalOptimizerPass() {
2736   return new GlobalOptLegacyPass();
2737 }
2738