xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/GlobalDCE.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transform is designed to eliminate unreachable internal globals from the
10 // program.  It uses an aggressive algorithm, searching out globals that are
11 // known to be alive.  After it finds all of the globals which are needed, it
12 // deletes whatever is left over.  This allows it to delete recursive chunks of
13 // the program which are unreachable.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/IPO/GlobalDCE.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/TypeMetadataUtils.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Transforms/Utils/CtorUtils.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "globaldce"
33 
34 static cl::opt<bool>
35     ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
36                 cl::desc("Enable virtual function elimination"));
37 
38 STATISTIC(NumAliases  , "Number of global aliases removed");
39 STATISTIC(NumFunctions, "Number of functions removed");
40 STATISTIC(NumIFuncs,    "Number of indirect functions removed");
41 STATISTIC(NumVariables, "Number of global variables removed");
42 STATISTIC(NumVFuncs,    "Number of virtual functions removed");
43 
44 namespace {
45   class GlobalDCELegacyPass : public ModulePass {
46   public:
47     static char ID; // Pass identification, replacement for typeid
48     GlobalDCELegacyPass() : ModulePass(ID) {
49       initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
50     }
51 
52     // run - Do the GlobalDCE pass on the specified module, optionally updating
53     // the specified callgraph to reflect the changes.
54     //
55     bool runOnModule(Module &M) override {
56       if (skipModule(M))
57         return false;
58 
59       // We need a minimally functional dummy module analysis manager. It needs
60       // to at least know about the possibility of proxying a function analysis
61       // manager.
62       FunctionAnalysisManager DummyFAM;
63       ModuleAnalysisManager DummyMAM;
64       DummyMAM.registerPass(
65           [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
66 
67       auto PA = Impl.run(M, DummyMAM);
68       return !PA.areAllPreserved();
69     }
70 
71   private:
72     GlobalDCEPass Impl;
73   };
74 }
75 
76 char GlobalDCELegacyPass::ID = 0;
77 INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
78                 "Dead Global Elimination", false, false)
79 
80 // Public interface to the GlobalDCEPass.
81 ModulePass *llvm::createGlobalDCEPass() {
82   return new GlobalDCELegacyPass();
83 }
84 
85 /// Returns true if F is effectively empty.
86 static bool isEmptyFunction(Function *F) {
87   BasicBlock &Entry = F->getEntryBlock();
88   for (auto &I : Entry) {
89     if (isa<DbgInfoIntrinsic>(I))
90       continue;
91     if (auto *RI = dyn_cast<ReturnInst>(&I))
92       return !RI->getReturnValue();
93     break;
94   }
95   return false;
96 }
97 
98 /// Compute the set of GlobalValue that depends from V.
99 /// The recursion stops as soon as a GlobalValue is met.
100 void GlobalDCEPass::ComputeDependencies(Value *V,
101                                         SmallPtrSetImpl<GlobalValue *> &Deps) {
102   if (auto *I = dyn_cast<Instruction>(V)) {
103     Function *Parent = I->getParent()->getParent();
104     Deps.insert(Parent);
105   } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
106     Deps.insert(GV);
107   } else if (auto *CE = dyn_cast<Constant>(V)) {
108     // Avoid walking the whole tree of a big ConstantExprs multiple times.
109     auto Where = ConstantDependenciesCache.find(CE);
110     if (Where != ConstantDependenciesCache.end()) {
111       auto const &K = Where->second;
112       Deps.insert(K.begin(), K.end());
113     } else {
114       SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
115       for (User *CEUser : CE->users())
116         ComputeDependencies(CEUser, LocalDeps);
117       Deps.insert(LocalDeps.begin(), LocalDeps.end());
118     }
119   }
120 }
121 
122 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
123   SmallPtrSet<GlobalValue *, 8> Deps;
124   for (User *User : GV.users())
125     ComputeDependencies(User, Deps);
126   Deps.erase(&GV); // Remove self-reference.
127   for (GlobalValue *GVU : Deps) {
128     // If this is a dep from a vtable to a virtual function, and we have
129     // complete information about all virtual call sites which could call
130     // though this vtable, then skip it, because the call site information will
131     // be more precise.
132     if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
133       LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
134                         << GV.getName() << "\n");
135       continue;
136     }
137     GVDependencies[GVU].insert(&GV);
138   }
139 }
140 
141 /// Mark Global value as Live
142 void GlobalDCEPass::MarkLive(GlobalValue &GV,
143                              SmallVectorImpl<GlobalValue *> *Updates) {
144   auto const Ret = AliveGlobals.insert(&GV);
145   if (!Ret.second)
146     return;
147 
148   if (Updates)
149     Updates->push_back(&GV);
150   if (Comdat *C = GV.getComdat()) {
151     for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
152       MarkLive(*CM.second, Updates); // Recursion depth is only two because only
153                                      // globals in the same comdat are visited.
154     }
155   }
156 }
157 
158 void GlobalDCEPass::ScanVTables(Module &M) {
159   SmallVector<MDNode *, 2> Types;
160   LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
161 
162   auto *LTOPostLinkMD =
163       cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
164   bool LTOPostLink =
165       LTOPostLinkMD &&
166       (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
167 
168   for (GlobalVariable &GV : M.globals()) {
169     Types.clear();
170     GV.getMetadata(LLVMContext::MD_type, Types);
171     if (GV.isDeclaration() || Types.empty())
172       continue;
173 
174     // Use the typeid metadata on the vtable to build a mapping from typeids to
175     // the list of (GV, offset) pairs which are the possible vtables for that
176     // typeid.
177     for (MDNode *Type : Types) {
178       Metadata *TypeID = Type->getOperand(1).get();
179 
180       uint64_t Offset =
181           cast<ConstantInt>(
182               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
183               ->getZExtValue();
184 
185       TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
186     }
187 
188     // If the type corresponding to the vtable is private to this translation
189     // unit, we know that we can see all virtual functions which might use it,
190     // so VFE is safe.
191     if (auto GO = dyn_cast<GlobalObject>(&GV)) {
192       GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
193       if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
194           (LTOPostLink &&
195            TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
196         LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
197         VFESafeVTables.insert(&GV);
198       }
199     }
200   }
201 }
202 
203 void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
204                                    uint64_t CallOffset) {
205   for (auto &VTableInfo : TypeIdMap[TypeId]) {
206     GlobalVariable *VTable = VTableInfo.first;
207     uint64_t VTableOffset = VTableInfo.second;
208 
209     Constant *Ptr =
210         getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
211                            *Caller->getParent());
212     if (!Ptr) {
213       LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
214       VFESafeVTables.erase(VTable);
215       return;
216     }
217 
218     auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
219     if (!Callee) {
220       LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
221       VFESafeVTables.erase(VTable);
222       return;
223     }
224 
225     LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
226                       << Callee->getName() << "\n");
227     GVDependencies[Caller].insert(Callee);
228   }
229 }
230 
231 void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
232   LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
233   Function *TypeCheckedLoadFunc =
234       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
235 
236   if (!TypeCheckedLoadFunc)
237     return;
238 
239   for (auto U : TypeCheckedLoadFunc->users()) {
240     auto CI = dyn_cast<CallInst>(U);
241     if (!CI)
242       continue;
243 
244     auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
245     Value *TypeIdValue = CI->getArgOperand(2);
246     auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
247 
248     if (Offset) {
249       ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
250     } else {
251       // type.checked.load with a non-constant offset, so assume every entry in
252       // every matching vtable is used.
253       for (auto &VTableInfo : TypeIdMap[TypeId]) {
254         VFESafeVTables.erase(VTableInfo.first);
255       }
256     }
257   }
258 }
259 
260 void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
261   if (!ClEnableVFE)
262     return;
263 
264   ScanVTables(M);
265 
266   if (VFESafeVTables.empty())
267     return;
268 
269   ScanTypeCheckedLoadIntrinsics(M);
270 
271   LLVM_DEBUG(
272     dbgs() << "VFE safe vtables:\n";
273     for (auto *VTable : VFESafeVTables)
274       dbgs() << "  " << VTable->getName() << "\n";
275   );
276 }
277 
278 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
279   bool Changed = false;
280 
281   // The algorithm first computes the set L of global variables that are
282   // trivially live.  Then it walks the initialization of these variables to
283   // compute the globals used to initialize them, which effectively builds a
284   // directed graph where nodes are global variables, and an edge from A to B
285   // means B is used to initialize A.  Finally, it propagates the liveness
286   // information through the graph starting from the nodes in L. Nodes note
287   // marked as alive are discarded.
288 
289   // Remove empty functions from the global ctors list.
290   Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
291 
292   // Collect the set of members for each comdat.
293   for (Function &F : M)
294     if (Comdat *C = F.getComdat())
295       ComdatMembers.insert(std::make_pair(C, &F));
296   for (GlobalVariable &GV : M.globals())
297     if (Comdat *C = GV.getComdat())
298       ComdatMembers.insert(std::make_pair(C, &GV));
299   for (GlobalAlias &GA : M.aliases())
300     if (Comdat *C = GA.getComdat())
301       ComdatMembers.insert(std::make_pair(C, &GA));
302 
303   // Add dependencies between virtual call sites and the virtual functions they
304   // might call, if we have that information.
305   AddVirtualFunctionDependencies(M);
306 
307   // Loop over the module, adding globals which are obviously necessary.
308   for (GlobalObject &GO : M.global_objects()) {
309     Changed |= RemoveUnusedGlobalValue(GO);
310     // Functions with external linkage are needed if they have a body.
311     // Externally visible & appending globals are needed, if they have an
312     // initializer.
313     if (!GO.isDeclaration())
314       if (!GO.isDiscardableIfUnused())
315         MarkLive(GO);
316 
317     UpdateGVDependencies(GO);
318   }
319 
320   // Compute direct dependencies of aliases.
321   for (GlobalAlias &GA : M.aliases()) {
322     Changed |= RemoveUnusedGlobalValue(GA);
323     // Externally visible aliases are needed.
324     if (!GA.isDiscardableIfUnused())
325       MarkLive(GA);
326 
327     UpdateGVDependencies(GA);
328   }
329 
330   // Compute direct dependencies of ifuncs.
331   for (GlobalIFunc &GIF : M.ifuncs()) {
332     Changed |= RemoveUnusedGlobalValue(GIF);
333     // Externally visible ifuncs are needed.
334     if (!GIF.isDiscardableIfUnused())
335       MarkLive(GIF);
336 
337     UpdateGVDependencies(GIF);
338   }
339 
340   // Propagate liveness from collected Global Values through the computed
341   // dependencies.
342   SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
343                                            AliveGlobals.end()};
344   while (!NewLiveGVs.empty()) {
345     GlobalValue *LGV = NewLiveGVs.pop_back_val();
346     for (auto *GVD : GVDependencies[LGV])
347       MarkLive(*GVD, &NewLiveGVs);
348   }
349 
350   // Now that all globals which are needed are in the AliveGlobals set, we loop
351   // through the program, deleting those which are not alive.
352   //
353 
354   // The first pass is to drop initializers of global variables which are dead.
355   std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
356   for (GlobalVariable &GV : M.globals())
357     if (!AliveGlobals.count(&GV)) {
358       DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
359       if (GV.hasInitializer()) {
360         Constant *Init = GV.getInitializer();
361         GV.setInitializer(nullptr);
362         if (isSafeToDestroyConstant(Init))
363           Init->destroyConstant();
364       }
365     }
366 
367   // The second pass drops the bodies of functions which are dead...
368   std::vector<Function *> DeadFunctions;
369   for (Function &F : M)
370     if (!AliveGlobals.count(&F)) {
371       DeadFunctions.push_back(&F);         // Keep track of dead globals
372       if (!F.isDeclaration())
373         F.deleteBody();
374     }
375 
376   // The third pass drops targets of aliases which are dead...
377   std::vector<GlobalAlias*> DeadAliases;
378   for (GlobalAlias &GA : M.aliases())
379     if (!AliveGlobals.count(&GA)) {
380       DeadAliases.push_back(&GA);
381       GA.setAliasee(nullptr);
382     }
383 
384   // The fourth pass drops targets of ifuncs which are dead...
385   std::vector<GlobalIFunc*> DeadIFuncs;
386   for (GlobalIFunc &GIF : M.ifuncs())
387     if (!AliveGlobals.count(&GIF)) {
388       DeadIFuncs.push_back(&GIF);
389       GIF.setResolver(nullptr);
390     }
391 
392   // Now that all interferences have been dropped, delete the actual objects
393   // themselves.
394   auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
395     RemoveUnusedGlobalValue(*GV);
396     GV->eraseFromParent();
397     Changed = true;
398   };
399 
400   NumFunctions += DeadFunctions.size();
401   for (Function *F : DeadFunctions) {
402     if (!F->use_empty()) {
403       // Virtual functions might still be referenced by one or more vtables,
404       // but if we've proven them to be unused then it's safe to replace the
405       // virtual function pointers with null, allowing us to remove the
406       // function itself.
407       ++NumVFuncs;
408       F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
409     }
410     EraseUnusedGlobalValue(F);
411   }
412 
413   NumVariables += DeadGlobalVars.size();
414   for (GlobalVariable *GV : DeadGlobalVars)
415     EraseUnusedGlobalValue(GV);
416 
417   NumAliases += DeadAliases.size();
418   for (GlobalAlias *GA : DeadAliases)
419     EraseUnusedGlobalValue(GA);
420 
421   NumIFuncs += DeadIFuncs.size();
422   for (GlobalIFunc *GIF : DeadIFuncs)
423     EraseUnusedGlobalValue(GIF);
424 
425   // Make sure that all memory is released
426   AliveGlobals.clear();
427   ConstantDependenciesCache.clear();
428   GVDependencies.clear();
429   ComdatMembers.clear();
430   TypeIdMap.clear();
431   VFESafeVTables.clear();
432 
433   if (Changed)
434     return PreservedAnalyses::none();
435   return PreservedAnalyses::all();
436 }
437 
438 // RemoveUnusedGlobalValue - Loop over all of the uses of the specified
439 // GlobalValue, looking for the constant pointer ref that may be pointing to it.
440 // If found, check to see if the constant pointer ref is safe to destroy, and if
441 // so, nuke it.  This will reduce the reference count on the global value, which
442 // might make it deader.
443 //
444 bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
445   if (GV.use_empty())
446     return false;
447   GV.removeDeadConstantUsers();
448   return GV.use_empty();
449 }
450