1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BasicAliasAnalysis.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/CGSCCPassManager.h" 27 #include "llvm/Analysis/CallGraph.h" 28 #include "llvm/Analysis/CallGraphSCCPass.h" 29 #include "llvm/Analysis/CaptureTracking.h" 30 #include "llvm/Analysis/LazyCallGraph.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/InstIterator.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Use.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/IPO.h" 60 #include <cassert> 61 #include <iterator> 62 #include <map> 63 #include <vector> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "function-attrs" 68 69 STATISTIC(NumReadNone, "Number of functions marked readnone"); 70 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 71 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 72 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 73 STATISTIC(NumReturned, "Number of arguments marked returned"); 74 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 75 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 76 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 77 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 78 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 79 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 80 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 81 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 82 83 static cl::opt<bool> EnableNonnullArgPropagation( 84 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 85 cl::desc("Try to propagate nonnull argument attributes from callsites to " 86 "caller functions.")); 87 88 static cl::opt<bool> DisableNoUnwindInference( 89 "disable-nounwind-inference", cl::Hidden, 90 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 91 92 static cl::opt<bool> DisableNoFreeInference( 93 "disable-nofree-inference", cl::Hidden, 94 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 95 96 namespace { 97 98 using SCCNodeSet = SmallSetVector<Function *, 8>; 99 100 } // end anonymous namespace 101 102 /// Returns the memory access attribute for function F using AAR for AA results, 103 /// where SCCNodes is the current SCC. 104 /// 105 /// If ThisBody is true, this function may examine the function body and will 106 /// return a result pertaining to this copy of the function. If it is false, the 107 /// result will be based only on AA results for the function declaration; it 108 /// will be assumed that some other (perhaps less optimized) version of the 109 /// function may be selected at link time. 110 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 111 AAResults &AAR, 112 const SCCNodeSet &SCCNodes) { 113 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 114 if (MRB == FMRB_DoesNotAccessMemory) 115 // Already perfect! 116 return MAK_ReadNone; 117 118 if (!ThisBody) { 119 if (AliasAnalysis::onlyReadsMemory(MRB)) 120 return MAK_ReadOnly; 121 122 if (AliasAnalysis::doesNotReadMemory(MRB)) 123 return MAK_WriteOnly; 124 125 // Conservatively assume it reads and writes to memory. 126 return MAK_MayWrite; 127 } 128 129 // Scan the function body for instructions that may read or write memory. 130 bool ReadsMemory = false; 131 bool WritesMemory = false; 132 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 133 Instruction *I = &*II; 134 135 // Some instructions can be ignored even if they read or write memory. 136 // Detect these now, skipping to the next instruction if one is found. 137 if (auto *Call = dyn_cast<CallBase>(I)) { 138 // Ignore calls to functions in the same SCC, as long as the call sites 139 // don't have operand bundles. Calls with operand bundles are allowed to 140 // have memory effects not described by the memory effects of the call 141 // target. 142 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 143 SCCNodes.count(Call->getCalledFunction())) 144 continue; 145 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 146 ModRefInfo MRI = createModRefInfo(MRB); 147 148 // If the call doesn't access memory, we're done. 149 if (isNoModRef(MRI)) 150 continue; 151 152 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 153 // The call could access any memory. If that includes writes, note it. 154 if (isModSet(MRI)) 155 WritesMemory = true; 156 // If it reads, note it. 157 if (isRefSet(MRI)) 158 ReadsMemory = true; 159 continue; 160 } 161 162 // Check whether all pointer arguments point to local memory, and 163 // ignore calls that only access local memory. 164 for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) { 165 Value *Arg = *CI; 166 if (!Arg->getType()->isPtrOrPtrVectorTy()) 167 continue; 168 169 AAMDNodes AAInfo; 170 I->getAAMetadata(AAInfo); 171 MemoryLocation Loc = MemoryLocation::getBeforeOrAfter(Arg, AAInfo); 172 173 // Skip accesses to local or constant memory as they don't impact the 174 // externally visible mod/ref behavior. 175 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 176 continue; 177 178 if (isModSet(MRI)) 179 // Writes non-local memory. 180 WritesMemory = true; 181 if (isRefSet(MRI)) 182 // Ok, it reads non-local memory. 183 ReadsMemory = true; 184 } 185 continue; 186 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 187 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 188 if (!LI->isVolatile()) { 189 MemoryLocation Loc = MemoryLocation::get(LI); 190 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 191 continue; 192 } 193 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 194 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 195 if (!SI->isVolatile()) { 196 MemoryLocation Loc = MemoryLocation::get(SI); 197 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 198 continue; 199 } 200 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { 201 // Ignore vaargs on local memory. 202 MemoryLocation Loc = MemoryLocation::get(VI); 203 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 204 continue; 205 } 206 207 // Any remaining instructions need to be taken seriously! Check if they 208 // read or write memory. 209 // 210 // Writes memory, remember that. 211 WritesMemory |= I->mayWriteToMemory(); 212 213 // If this instruction may read memory, remember that. 214 ReadsMemory |= I->mayReadFromMemory(); 215 } 216 217 if (WritesMemory) { 218 if (!ReadsMemory) 219 return MAK_WriteOnly; 220 else 221 return MAK_MayWrite; 222 } 223 224 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 225 } 226 227 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 228 AAResults &AAR) { 229 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 230 } 231 232 /// Deduce readonly/readnone attributes for the SCC. 233 template <typename AARGetterT> 234 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) { 235 // Check if any of the functions in the SCC read or write memory. If they 236 // write memory then they can't be marked readnone or readonly. 237 bool ReadsMemory = false; 238 bool WritesMemory = false; 239 for (Function *F : SCCNodes) { 240 // Call the callable parameter to look up AA results for this function. 241 AAResults &AAR = AARGetter(*F); 242 243 // Non-exact function definitions may not be selected at link time, and an 244 // alternative version that writes to memory may be selected. See the 245 // comment on GlobalValue::isDefinitionExact for more details. 246 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 247 AAR, SCCNodes)) { 248 case MAK_MayWrite: 249 return false; 250 case MAK_ReadOnly: 251 ReadsMemory = true; 252 break; 253 case MAK_WriteOnly: 254 WritesMemory = true; 255 break; 256 case MAK_ReadNone: 257 // Nothing to do! 258 break; 259 } 260 } 261 262 // If the SCC contains both functions that read and functions that write, then 263 // we cannot add readonly attributes. 264 if (ReadsMemory && WritesMemory) 265 return false; 266 267 // Success! Functions in this SCC do not access memory, or only read memory. 268 // Give them the appropriate attribute. 269 bool MadeChange = false; 270 271 for (Function *F : SCCNodes) { 272 if (F->doesNotAccessMemory()) 273 // Already perfect! 274 continue; 275 276 if (F->onlyReadsMemory() && ReadsMemory) 277 // No change. 278 continue; 279 280 if (F->doesNotReadMemory() && WritesMemory) 281 continue; 282 283 MadeChange = true; 284 285 // Clear out any existing attributes. 286 AttrBuilder AttrsToRemove; 287 AttrsToRemove.addAttribute(Attribute::ReadOnly); 288 AttrsToRemove.addAttribute(Attribute::ReadNone); 289 AttrsToRemove.addAttribute(Attribute::WriteOnly); 290 291 if (!WritesMemory && !ReadsMemory) { 292 // Clear out any "access range attributes" if readnone was deduced. 293 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 294 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 295 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 296 } 297 F->removeAttributes(AttributeList::FunctionIndex, AttrsToRemove); 298 299 // Add in the new attribute. 300 if (WritesMemory && !ReadsMemory) 301 F->addFnAttr(Attribute::WriteOnly); 302 else 303 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 304 305 if (WritesMemory && !ReadsMemory) 306 ++NumWriteOnly; 307 else if (ReadsMemory) 308 ++NumReadOnly; 309 else 310 ++NumReadNone; 311 } 312 313 return MadeChange; 314 } 315 316 namespace { 317 318 /// For a given pointer Argument, this retains a list of Arguments of functions 319 /// in the same SCC that the pointer data flows into. We use this to build an 320 /// SCC of the arguments. 321 struct ArgumentGraphNode { 322 Argument *Definition; 323 SmallVector<ArgumentGraphNode *, 4> Uses; 324 }; 325 326 class ArgumentGraph { 327 // We store pointers to ArgumentGraphNode objects, so it's important that 328 // that they not move around upon insert. 329 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 330 331 ArgumentMapTy ArgumentMap; 332 333 // There is no root node for the argument graph, in fact: 334 // void f(int *x, int *y) { if (...) f(x, y); } 335 // is an example where the graph is disconnected. The SCCIterator requires a 336 // single entry point, so we maintain a fake ("synthetic") root node that 337 // uses every node. Because the graph is directed and nothing points into 338 // the root, it will not participate in any SCCs (except for its own). 339 ArgumentGraphNode SyntheticRoot; 340 341 public: 342 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 343 344 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 345 346 iterator begin() { return SyntheticRoot.Uses.begin(); } 347 iterator end() { return SyntheticRoot.Uses.end(); } 348 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 349 350 ArgumentGraphNode *operator[](Argument *A) { 351 ArgumentGraphNode &Node = ArgumentMap[A]; 352 Node.Definition = A; 353 SyntheticRoot.Uses.push_back(&Node); 354 return &Node; 355 } 356 }; 357 358 /// This tracker checks whether callees are in the SCC, and if so it does not 359 /// consider that a capture, instead adding it to the "Uses" list and 360 /// continuing with the analysis. 361 struct ArgumentUsesTracker : public CaptureTracker { 362 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 363 364 void tooManyUses() override { Captured = true; } 365 366 bool captured(const Use *U) override { 367 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 368 if (!CB) { 369 Captured = true; 370 return true; 371 } 372 373 Function *F = CB->getCalledFunction(); 374 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 375 Captured = true; 376 return true; 377 } 378 379 // Note: the callee and the two successor blocks *follow* the argument 380 // operands. This means there is no need to adjust UseIndex to account for 381 // these. 382 383 unsigned UseIndex = 384 std::distance(const_cast<const Use *>(CB->arg_begin()), U); 385 386 assert(UseIndex < CB->data_operands_size() && 387 "Indirect function calls should have been filtered above!"); 388 389 if (UseIndex >= CB->getNumArgOperands()) { 390 // Data operand, but not a argument operand -- must be a bundle operand 391 assert(CB->hasOperandBundles() && "Must be!"); 392 393 // CaptureTracking told us that we're being captured by an operand bundle 394 // use. In this case it does not matter if the callee is within our SCC 395 // or not -- we've been captured in some unknown way, and we have to be 396 // conservative. 397 Captured = true; 398 return true; 399 } 400 401 if (UseIndex >= F->arg_size()) { 402 assert(F->isVarArg() && "More params than args in non-varargs call"); 403 Captured = true; 404 return true; 405 } 406 407 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 408 return false; 409 } 410 411 // True only if certainly captured (used outside our SCC). 412 bool Captured = false; 413 414 // Uses within our SCC. 415 SmallVector<Argument *, 4> Uses; 416 417 const SCCNodeSet &SCCNodes; 418 }; 419 420 } // end anonymous namespace 421 422 namespace llvm { 423 424 template <> struct GraphTraits<ArgumentGraphNode *> { 425 using NodeRef = ArgumentGraphNode *; 426 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 427 428 static NodeRef getEntryNode(NodeRef A) { return A; } 429 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 430 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 431 }; 432 433 template <> 434 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 435 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 436 437 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 438 return AG->begin(); 439 } 440 441 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 442 }; 443 444 } // end namespace llvm 445 446 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 447 static Attribute::AttrKind 448 determinePointerReadAttrs(Argument *A, 449 const SmallPtrSet<Argument *, 8> &SCCNodes) { 450 SmallVector<Use *, 32> Worklist; 451 SmallPtrSet<Use *, 32> Visited; 452 453 // inalloca arguments are always clobbered by the call. 454 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 455 return Attribute::None; 456 457 bool IsRead = false; 458 // We don't need to track IsWritten. If A is written to, return immediately. 459 460 for (Use &U : A->uses()) { 461 Visited.insert(&U); 462 Worklist.push_back(&U); 463 } 464 465 while (!Worklist.empty()) { 466 Use *U = Worklist.pop_back_val(); 467 Instruction *I = cast<Instruction>(U->getUser()); 468 469 switch (I->getOpcode()) { 470 case Instruction::BitCast: 471 case Instruction::GetElementPtr: 472 case Instruction::PHI: 473 case Instruction::Select: 474 case Instruction::AddrSpaceCast: 475 // The original value is not read/written via this if the new value isn't. 476 for (Use &UU : I->uses()) 477 if (Visited.insert(&UU).second) 478 Worklist.push_back(&UU); 479 break; 480 481 case Instruction::Call: 482 case Instruction::Invoke: { 483 bool Captures = true; 484 485 if (I->getType()->isVoidTy()) 486 Captures = false; 487 488 auto AddUsersToWorklistIfCapturing = [&] { 489 if (Captures) 490 for (Use &UU : I->uses()) 491 if (Visited.insert(&UU).second) 492 Worklist.push_back(&UU); 493 }; 494 495 CallBase &CB = cast<CallBase>(*I); 496 if (CB.doesNotAccessMemory()) { 497 AddUsersToWorklistIfCapturing(); 498 continue; 499 } 500 501 Function *F = CB.getCalledFunction(); 502 if (!F) { 503 if (CB.onlyReadsMemory()) { 504 IsRead = true; 505 AddUsersToWorklistIfCapturing(); 506 continue; 507 } 508 return Attribute::None; 509 } 510 511 // Note: the callee and the two successor blocks *follow* the argument 512 // operands. This means there is no need to adjust UseIndex to account 513 // for these. 514 515 unsigned UseIndex = std::distance(CB.arg_begin(), U); 516 517 // U cannot be the callee operand use: since we're exploring the 518 // transitive uses of an Argument, having such a use be a callee would 519 // imply the call site is an indirect call or invoke; and we'd take the 520 // early exit above. 521 assert(UseIndex < CB.data_operands_size() && 522 "Data operand use expected!"); 523 524 bool IsOperandBundleUse = UseIndex >= CB.getNumArgOperands(); 525 526 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 527 assert(F->isVarArg() && "More params than args in non-varargs call"); 528 return Attribute::None; 529 } 530 531 Captures &= !CB.doesNotCapture(UseIndex); 532 533 // Since the optimizer (by design) cannot see the data flow corresponding 534 // to a operand bundle use, these cannot participate in the optimistic SCC 535 // analysis. Instead, we model the operand bundle uses as arguments in 536 // call to a function external to the SCC. 537 if (IsOperandBundleUse || 538 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 539 540 // The accessors used on call site here do the right thing for calls and 541 // invokes with operand bundles. 542 543 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 544 return Attribute::None; 545 if (!CB.doesNotAccessMemory(UseIndex)) 546 IsRead = true; 547 } 548 549 AddUsersToWorklistIfCapturing(); 550 break; 551 } 552 553 case Instruction::Load: 554 // A volatile load has side effects beyond what readonly can be relied 555 // upon. 556 if (cast<LoadInst>(I)->isVolatile()) 557 return Attribute::None; 558 559 IsRead = true; 560 break; 561 562 case Instruction::ICmp: 563 case Instruction::Ret: 564 break; 565 566 default: 567 return Attribute::None; 568 } 569 } 570 571 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; 572 } 573 574 /// Deduce returned attributes for the SCC. 575 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) { 576 bool Changed = false; 577 578 // Check each function in turn, determining if an argument is always returned. 579 for (Function *F : SCCNodes) { 580 // We can infer and propagate function attributes only when we know that the 581 // definition we'll get at link time is *exactly* the definition we see now. 582 // For more details, see GlobalValue::mayBeDerefined. 583 if (!F->hasExactDefinition()) 584 continue; 585 586 if (F->getReturnType()->isVoidTy()) 587 continue; 588 589 // There is nothing to do if an argument is already marked as 'returned'. 590 if (llvm::any_of(F->args(), 591 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 592 continue; 593 594 auto FindRetArg = [&]() -> Value * { 595 Value *RetArg = nullptr; 596 for (BasicBlock &BB : *F) 597 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 598 // Note that stripPointerCasts should look through functions with 599 // returned arguments. 600 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 601 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 602 return nullptr; 603 604 if (!RetArg) 605 RetArg = RetVal; 606 else if (RetArg != RetVal) 607 return nullptr; 608 } 609 610 return RetArg; 611 }; 612 613 if (Value *RetArg = FindRetArg()) { 614 auto *A = cast<Argument>(RetArg); 615 A->addAttr(Attribute::Returned); 616 ++NumReturned; 617 Changed = true; 618 } 619 } 620 621 return Changed; 622 } 623 624 /// If a callsite has arguments that are also arguments to the parent function, 625 /// try to propagate attributes from the callsite's arguments to the parent's 626 /// arguments. This may be important because inlining can cause information loss 627 /// when attribute knowledge disappears with the inlined call. 628 static bool addArgumentAttrsFromCallsites(Function &F) { 629 if (!EnableNonnullArgPropagation) 630 return false; 631 632 bool Changed = false; 633 634 // For an argument attribute to transfer from a callsite to the parent, the 635 // call must be guaranteed to execute every time the parent is called. 636 // Conservatively, just check for calls in the entry block that are guaranteed 637 // to execute. 638 // TODO: This could be enhanced by testing if the callsite post-dominates the 639 // entry block or by doing simple forward walks or backward walks to the 640 // callsite. 641 BasicBlock &Entry = F.getEntryBlock(); 642 for (Instruction &I : Entry) { 643 if (auto *CB = dyn_cast<CallBase>(&I)) { 644 if (auto *CalledFunc = CB->getCalledFunction()) { 645 for (auto &CSArg : CalledFunc->args()) { 646 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 647 continue; 648 649 // If the non-null callsite argument operand is an argument to 'F' 650 // (the caller) and the call is guaranteed to execute, then the value 651 // must be non-null throughout 'F'. 652 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 653 if (FArg && !FArg->hasNonNullAttr()) { 654 FArg->addAttr(Attribute::NonNull); 655 Changed = true; 656 } 657 } 658 } 659 } 660 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 661 break; 662 } 663 664 return Changed; 665 } 666 667 static bool addReadAttr(Argument *A, Attribute::AttrKind R) { 668 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone) 669 && "Must be a Read attribute."); 670 assert(A && "Argument must not be null."); 671 672 // If the argument already has the attribute, nothing needs to be done. 673 if (A->hasAttribute(R)) 674 return false; 675 676 // Otherwise, remove potentially conflicting attribute, add the new one, 677 // and update statistics. 678 A->removeAttr(Attribute::WriteOnly); 679 A->removeAttr(Attribute::ReadOnly); 680 A->removeAttr(Attribute::ReadNone); 681 A->addAttr(R); 682 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 683 return true; 684 } 685 686 /// Deduce nocapture attributes for the SCC. 687 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) { 688 bool Changed = false; 689 690 ArgumentGraph AG; 691 692 // Check each function in turn, determining which pointer arguments are not 693 // captured. 694 for (Function *F : SCCNodes) { 695 // We can infer and propagate function attributes only when we know that the 696 // definition we'll get at link time is *exactly* the definition we see now. 697 // For more details, see GlobalValue::mayBeDerefined. 698 if (!F->hasExactDefinition()) 699 continue; 700 701 Changed |= addArgumentAttrsFromCallsites(*F); 702 703 // Functions that are readonly (or readnone) and nounwind and don't return 704 // a value can't capture arguments. Don't analyze them. 705 if (F->onlyReadsMemory() && F->doesNotThrow() && 706 F->getReturnType()->isVoidTy()) { 707 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 708 ++A) { 709 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 710 A->addAttr(Attribute::NoCapture); 711 ++NumNoCapture; 712 Changed = true; 713 } 714 } 715 continue; 716 } 717 718 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 719 ++A) { 720 if (!A->getType()->isPointerTy()) 721 continue; 722 bool HasNonLocalUses = false; 723 if (!A->hasNoCaptureAttr()) { 724 ArgumentUsesTracker Tracker(SCCNodes); 725 PointerMayBeCaptured(&*A, &Tracker); 726 if (!Tracker.Captured) { 727 if (Tracker.Uses.empty()) { 728 // If it's trivially not captured, mark it nocapture now. 729 A->addAttr(Attribute::NoCapture); 730 ++NumNoCapture; 731 Changed = true; 732 } else { 733 // If it's not trivially captured and not trivially not captured, 734 // then it must be calling into another function in our SCC. Save 735 // its particulars for Argument-SCC analysis later. 736 ArgumentGraphNode *Node = AG[&*A]; 737 for (Argument *Use : Tracker.Uses) { 738 Node->Uses.push_back(AG[Use]); 739 if (Use != &*A) 740 HasNonLocalUses = true; 741 } 742 } 743 } 744 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 745 } 746 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 747 // Can we determine that it's readonly/readnone without doing an SCC? 748 // Note that we don't allow any calls at all here, or else our result 749 // will be dependent on the iteration order through the functions in the 750 // SCC. 751 SmallPtrSet<Argument *, 8> Self; 752 Self.insert(&*A); 753 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); 754 if (R != Attribute::None) 755 Changed = addReadAttr(A, R); 756 } 757 } 758 } 759 760 // The graph we've collected is partial because we stopped scanning for 761 // argument uses once we solved the argument trivially. These partial nodes 762 // show up as ArgumentGraphNode objects with an empty Uses list, and for 763 // these nodes the final decision about whether they capture has already been 764 // made. If the definition doesn't have a 'nocapture' attribute by now, it 765 // captures. 766 767 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 768 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 769 if (ArgumentSCC.size() == 1) { 770 if (!ArgumentSCC[0]->Definition) 771 continue; // synthetic root node 772 773 // eg. "void f(int* x) { if (...) f(x); }" 774 if (ArgumentSCC[0]->Uses.size() == 1 && 775 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 776 Argument *A = ArgumentSCC[0]->Definition; 777 A->addAttr(Attribute::NoCapture); 778 ++NumNoCapture; 779 Changed = true; 780 } 781 continue; 782 } 783 784 bool SCCCaptured = false; 785 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 786 I != E && !SCCCaptured; ++I) { 787 ArgumentGraphNode *Node = *I; 788 if (Node->Uses.empty()) { 789 if (!Node->Definition->hasNoCaptureAttr()) 790 SCCCaptured = true; 791 } 792 } 793 if (SCCCaptured) 794 continue; 795 796 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 797 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 798 // quickly looking up whether a given Argument is in this ArgumentSCC. 799 for (ArgumentGraphNode *I : ArgumentSCC) { 800 ArgumentSCCNodes.insert(I->Definition); 801 } 802 803 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 804 I != E && !SCCCaptured; ++I) { 805 ArgumentGraphNode *N = *I; 806 for (ArgumentGraphNode *Use : N->Uses) { 807 Argument *A = Use->Definition; 808 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 809 continue; 810 SCCCaptured = true; 811 break; 812 } 813 } 814 if (SCCCaptured) 815 continue; 816 817 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 818 Argument *A = ArgumentSCC[i]->Definition; 819 A->addAttr(Attribute::NoCapture); 820 ++NumNoCapture; 821 Changed = true; 822 } 823 824 // We also want to compute readonly/readnone. With a small number of false 825 // negatives, we can assume that any pointer which is captured isn't going 826 // to be provably readonly or readnone, since by definition we can't 827 // analyze all uses of a captured pointer. 828 // 829 // The false negatives happen when the pointer is captured by a function 830 // that promises readonly/readnone behaviour on the pointer, then the 831 // pointer's lifetime ends before anything that writes to arbitrary memory. 832 // Also, a readonly/readnone pointer may be returned, but returning a 833 // pointer is capturing it. 834 835 Attribute::AttrKind ReadAttr = Attribute::ReadNone; 836 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 837 Argument *A = ArgumentSCC[i]->Definition; 838 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); 839 if (K == Attribute::ReadNone) 840 continue; 841 if (K == Attribute::ReadOnly) { 842 ReadAttr = Attribute::ReadOnly; 843 continue; 844 } 845 ReadAttr = K; 846 break; 847 } 848 849 if (ReadAttr != Attribute::None) { 850 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 851 Argument *A = ArgumentSCC[i]->Definition; 852 Changed = addReadAttr(A, ReadAttr); 853 } 854 } 855 } 856 857 return Changed; 858 } 859 860 /// Tests whether a function is "malloc-like". 861 /// 862 /// A function is "malloc-like" if it returns either null or a pointer that 863 /// doesn't alias any other pointer visible to the caller. 864 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 865 SmallSetVector<Value *, 8> FlowsToReturn; 866 for (BasicBlock &BB : *F) 867 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 868 FlowsToReturn.insert(Ret->getReturnValue()); 869 870 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 871 Value *RetVal = FlowsToReturn[i]; 872 873 if (Constant *C = dyn_cast<Constant>(RetVal)) { 874 if (!C->isNullValue() && !isa<UndefValue>(C)) 875 return false; 876 877 continue; 878 } 879 880 if (isa<Argument>(RetVal)) 881 return false; 882 883 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 884 switch (RVI->getOpcode()) { 885 // Extend the analysis by looking upwards. 886 case Instruction::BitCast: 887 case Instruction::GetElementPtr: 888 case Instruction::AddrSpaceCast: 889 FlowsToReturn.insert(RVI->getOperand(0)); 890 continue; 891 case Instruction::Select: { 892 SelectInst *SI = cast<SelectInst>(RVI); 893 FlowsToReturn.insert(SI->getTrueValue()); 894 FlowsToReturn.insert(SI->getFalseValue()); 895 continue; 896 } 897 case Instruction::PHI: { 898 PHINode *PN = cast<PHINode>(RVI); 899 for (Value *IncValue : PN->incoming_values()) 900 FlowsToReturn.insert(IncValue); 901 continue; 902 } 903 904 // Check whether the pointer came from an allocation. 905 case Instruction::Alloca: 906 break; 907 case Instruction::Call: 908 case Instruction::Invoke: { 909 CallBase &CB = cast<CallBase>(*RVI); 910 if (CB.hasRetAttr(Attribute::NoAlias)) 911 break; 912 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 913 break; 914 LLVM_FALLTHROUGH; 915 } 916 default: 917 return false; // Did not come from an allocation. 918 } 919 920 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 921 return false; 922 } 923 924 return true; 925 } 926 927 /// Deduce noalias attributes for the SCC. 928 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) { 929 // Check each function in turn, determining which functions return noalias 930 // pointers. 931 for (Function *F : SCCNodes) { 932 // Already noalias. 933 if (F->returnDoesNotAlias()) 934 continue; 935 936 // We can infer and propagate function attributes only when we know that the 937 // definition we'll get at link time is *exactly* the definition we see now. 938 // For more details, see GlobalValue::mayBeDerefined. 939 if (!F->hasExactDefinition()) 940 return false; 941 942 // We annotate noalias return values, which are only applicable to 943 // pointer types. 944 if (!F->getReturnType()->isPointerTy()) 945 continue; 946 947 if (!isFunctionMallocLike(F, SCCNodes)) 948 return false; 949 } 950 951 bool MadeChange = false; 952 for (Function *F : SCCNodes) { 953 if (F->returnDoesNotAlias() || 954 !F->getReturnType()->isPointerTy()) 955 continue; 956 957 F->setReturnDoesNotAlias(); 958 ++NumNoAlias; 959 MadeChange = true; 960 } 961 962 return MadeChange; 963 } 964 965 /// Tests whether this function is known to not return null. 966 /// 967 /// Requires that the function returns a pointer. 968 /// 969 /// Returns true if it believes the function will not return a null, and sets 970 /// \p Speculative based on whether the returned conclusion is a speculative 971 /// conclusion due to SCC calls. 972 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 973 bool &Speculative) { 974 assert(F->getReturnType()->isPointerTy() && 975 "nonnull only meaningful on pointer types"); 976 Speculative = false; 977 978 SmallSetVector<Value *, 8> FlowsToReturn; 979 for (BasicBlock &BB : *F) 980 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 981 FlowsToReturn.insert(Ret->getReturnValue()); 982 983 auto &DL = F->getParent()->getDataLayout(); 984 985 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 986 Value *RetVal = FlowsToReturn[i]; 987 988 // If this value is locally known to be non-null, we're good 989 if (isKnownNonZero(RetVal, DL)) 990 continue; 991 992 // Otherwise, we need to look upwards since we can't make any local 993 // conclusions. 994 Instruction *RVI = dyn_cast<Instruction>(RetVal); 995 if (!RVI) 996 return false; 997 switch (RVI->getOpcode()) { 998 // Extend the analysis by looking upwards. 999 case Instruction::BitCast: 1000 case Instruction::GetElementPtr: 1001 case Instruction::AddrSpaceCast: 1002 FlowsToReturn.insert(RVI->getOperand(0)); 1003 continue; 1004 case Instruction::Select: { 1005 SelectInst *SI = cast<SelectInst>(RVI); 1006 FlowsToReturn.insert(SI->getTrueValue()); 1007 FlowsToReturn.insert(SI->getFalseValue()); 1008 continue; 1009 } 1010 case Instruction::PHI: { 1011 PHINode *PN = cast<PHINode>(RVI); 1012 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1013 FlowsToReturn.insert(PN->getIncomingValue(i)); 1014 continue; 1015 } 1016 case Instruction::Call: 1017 case Instruction::Invoke: { 1018 CallBase &CB = cast<CallBase>(*RVI); 1019 Function *Callee = CB.getCalledFunction(); 1020 // A call to a node within the SCC is assumed to return null until 1021 // proven otherwise 1022 if (Callee && SCCNodes.count(Callee)) { 1023 Speculative = true; 1024 continue; 1025 } 1026 return false; 1027 } 1028 default: 1029 return false; // Unknown source, may be null 1030 }; 1031 llvm_unreachable("should have either continued or returned"); 1032 } 1033 1034 return true; 1035 } 1036 1037 /// Deduce nonnull attributes for the SCC. 1038 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) { 1039 // Speculative that all functions in the SCC return only nonnull 1040 // pointers. We may refute this as we analyze functions. 1041 bool SCCReturnsNonNull = true; 1042 1043 bool MadeChange = false; 1044 1045 // Check each function in turn, determining which functions return nonnull 1046 // pointers. 1047 for (Function *F : SCCNodes) { 1048 // Already nonnull. 1049 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1050 Attribute::NonNull)) 1051 continue; 1052 1053 // We can infer and propagate function attributes only when we know that the 1054 // definition we'll get at link time is *exactly* the definition we see now. 1055 // For more details, see GlobalValue::mayBeDerefined. 1056 if (!F->hasExactDefinition()) 1057 return false; 1058 1059 // We annotate nonnull return values, which are only applicable to 1060 // pointer types. 1061 if (!F->getReturnType()->isPointerTy()) 1062 continue; 1063 1064 bool Speculative = false; 1065 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1066 if (!Speculative) { 1067 // Mark the function eagerly since we may discover a function 1068 // which prevents us from speculating about the entire SCC 1069 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1070 << " as nonnull\n"); 1071 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 1072 ++NumNonNullReturn; 1073 MadeChange = true; 1074 } 1075 continue; 1076 } 1077 // At least one function returns something which could be null, can't 1078 // speculate any more. 1079 SCCReturnsNonNull = false; 1080 } 1081 1082 if (SCCReturnsNonNull) { 1083 for (Function *F : SCCNodes) { 1084 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1085 Attribute::NonNull) || 1086 !F->getReturnType()->isPointerTy()) 1087 continue; 1088 1089 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1090 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 1091 ++NumNonNullReturn; 1092 MadeChange = true; 1093 } 1094 } 1095 1096 return MadeChange; 1097 } 1098 1099 namespace { 1100 1101 /// Collects a set of attribute inference requests and performs them all in one 1102 /// go on a single SCC Node. Inference involves scanning function bodies 1103 /// looking for instructions that violate attribute assumptions. 1104 /// As soon as all the bodies are fine we are free to set the attribute. 1105 /// Customization of inference for individual attributes is performed by 1106 /// providing a handful of predicates for each attribute. 1107 class AttributeInferer { 1108 public: 1109 /// Describes a request for inference of a single attribute. 1110 struct InferenceDescriptor { 1111 1112 /// Returns true if this function does not have to be handled. 1113 /// General intent for this predicate is to provide an optimization 1114 /// for functions that do not need this attribute inference at all 1115 /// (say, for functions that already have the attribute). 1116 std::function<bool(const Function &)> SkipFunction; 1117 1118 /// Returns true if this instruction violates attribute assumptions. 1119 std::function<bool(Instruction &)> InstrBreaksAttribute; 1120 1121 /// Sets the inferred attribute for this function. 1122 std::function<void(Function &)> SetAttribute; 1123 1124 /// Attribute we derive. 1125 Attribute::AttrKind AKind; 1126 1127 /// If true, only "exact" definitions can be used to infer this attribute. 1128 /// See GlobalValue::isDefinitionExact. 1129 bool RequiresExactDefinition; 1130 1131 InferenceDescriptor(Attribute::AttrKind AK, 1132 std::function<bool(const Function &)> SkipFunc, 1133 std::function<bool(Instruction &)> InstrScan, 1134 std::function<void(Function &)> SetAttr, 1135 bool ReqExactDef) 1136 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1137 SetAttribute(SetAttr), AKind(AK), 1138 RequiresExactDefinition(ReqExactDef) {} 1139 }; 1140 1141 private: 1142 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1143 1144 public: 1145 void registerAttrInference(InferenceDescriptor AttrInference) { 1146 InferenceDescriptors.push_back(AttrInference); 1147 } 1148 1149 bool run(const SCCNodeSet &SCCNodes); 1150 }; 1151 1152 /// Perform all the requested attribute inference actions according to the 1153 /// attribute predicates stored before. 1154 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) { 1155 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1156 // Go through all the functions in SCC and check corresponding attribute 1157 // assumptions for each of them. Attributes that are invalid for this SCC 1158 // will be removed from InferInSCC. 1159 for (Function *F : SCCNodes) { 1160 1161 // No attributes whose assumptions are still valid - done. 1162 if (InferInSCC.empty()) 1163 return false; 1164 1165 // Check if our attributes ever need scanning/can be scanned. 1166 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1167 if (ID.SkipFunction(*F)) 1168 return false; 1169 1170 // Remove from further inference (invalidate) when visiting a function 1171 // that has no instructions to scan/has an unsuitable definition. 1172 return F->isDeclaration() || 1173 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1174 }); 1175 1176 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1177 // set up the F instructions scan to verify assumptions of the attribute. 1178 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1179 llvm::copy_if( 1180 InferInSCC, std::back_inserter(InferInThisFunc), 1181 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1182 1183 if (InferInThisFunc.empty()) 1184 continue; 1185 1186 // Start instruction scan. 1187 for (Instruction &I : instructions(*F)) { 1188 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1189 if (!ID.InstrBreaksAttribute(I)) 1190 return false; 1191 // Remove attribute from further inference on any other functions 1192 // because attribute assumptions have just been violated. 1193 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1194 return D.AKind == ID.AKind; 1195 }); 1196 // Remove attribute from the rest of current instruction scan. 1197 return true; 1198 }); 1199 1200 if (InferInThisFunc.empty()) 1201 break; 1202 } 1203 } 1204 1205 if (InferInSCC.empty()) 1206 return false; 1207 1208 bool Changed = false; 1209 for (Function *F : SCCNodes) 1210 // At this point InferInSCC contains only functions that were either: 1211 // - explicitly skipped from scan/inference, or 1212 // - verified to have no instructions that break attribute assumptions. 1213 // Hence we just go and force the attribute for all non-skipped functions. 1214 for (auto &ID : InferInSCC) { 1215 if (ID.SkipFunction(*F)) 1216 continue; 1217 Changed = true; 1218 ID.SetAttribute(*F); 1219 } 1220 return Changed; 1221 } 1222 1223 struct SCCNodesResult { 1224 SCCNodeSet SCCNodes; 1225 bool HasUnknownCall; 1226 }; 1227 1228 } // end anonymous namespace 1229 1230 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1231 static bool InstrBreaksNonConvergent(Instruction &I, 1232 const SCCNodeSet &SCCNodes) { 1233 const CallBase *CB = dyn_cast<CallBase>(&I); 1234 // Breaks non-convergent assumption if CS is a convergent call to a function 1235 // not in the SCC. 1236 return CB && CB->isConvergent() && 1237 SCCNodes.count(CB->getCalledFunction()) == 0; 1238 } 1239 1240 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1241 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1242 if (!I.mayThrow()) 1243 return false; 1244 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1245 if (Function *Callee = CI->getCalledFunction()) { 1246 // I is a may-throw call to a function inside our SCC. This doesn't 1247 // invalidate our current working assumption that the SCC is no-throw; we 1248 // just have to scan that other function. 1249 if (SCCNodes.contains(Callee)) 1250 return false; 1251 } 1252 } 1253 return true; 1254 } 1255 1256 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1257 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1258 CallBase *CB = dyn_cast<CallBase>(&I); 1259 if (!CB) 1260 return false; 1261 1262 Function *Callee = CB->getCalledFunction(); 1263 if (!Callee) 1264 return true; 1265 1266 if (Callee->doesNotFreeMemory()) 1267 return false; 1268 1269 if (SCCNodes.contains(Callee)) 1270 return false; 1271 1272 return true; 1273 } 1274 1275 /// Attempt to remove convergent function attribute when possible. 1276 /// 1277 /// Returns true if any changes to function attributes were made. 1278 static bool inferConvergent(const SCCNodeSet &SCCNodes) { 1279 AttributeInferer AI; 1280 1281 // Request to remove the convergent attribute from all functions in the SCC 1282 // if every callsite within the SCC is not convergent (except for calls 1283 // to functions within the SCC). 1284 // Note: Removal of the attr from the callsites will happen in 1285 // InstCombineCalls separately. 1286 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1287 Attribute::Convergent, 1288 // Skip non-convergent functions. 1289 [](const Function &F) { return !F.isConvergent(); }, 1290 // Instructions that break non-convergent assumption. 1291 [SCCNodes](Instruction &I) { 1292 return InstrBreaksNonConvergent(I, SCCNodes); 1293 }, 1294 [](Function &F) { 1295 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1296 << "\n"); 1297 F.setNotConvergent(); 1298 }, 1299 /* RequiresExactDefinition= */ false}); 1300 // Perform all the requested attribute inference actions. 1301 return AI.run(SCCNodes); 1302 } 1303 1304 /// Infer attributes from all functions in the SCC by scanning every 1305 /// instruction for compliance to the attribute assumptions. Currently it 1306 /// does: 1307 /// - addition of NoUnwind attribute 1308 /// 1309 /// Returns true if any changes to function attributes were made. 1310 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) { 1311 AttributeInferer AI; 1312 1313 if (!DisableNoUnwindInference) 1314 // Request to infer nounwind attribute for all the functions in the SCC if 1315 // every callsite within the SCC is not throwing (except for calls to 1316 // functions within the SCC). Note that nounwind attribute suffers from 1317 // derefinement - results may change depending on how functions are 1318 // optimized. Thus it can be inferred only from exact definitions. 1319 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1320 Attribute::NoUnwind, 1321 // Skip non-throwing functions. 1322 [](const Function &F) { return F.doesNotThrow(); }, 1323 // Instructions that break non-throwing assumption. 1324 [&SCCNodes](Instruction &I) { 1325 return InstrBreaksNonThrowing(I, SCCNodes); 1326 }, 1327 [](Function &F) { 1328 LLVM_DEBUG(dbgs() 1329 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1330 F.setDoesNotThrow(); 1331 ++NumNoUnwind; 1332 }, 1333 /* RequiresExactDefinition= */ true}); 1334 1335 if (!DisableNoFreeInference) 1336 // Request to infer nofree attribute for all the functions in the SCC if 1337 // every callsite within the SCC does not directly or indirectly free 1338 // memory (except for calls to functions within the SCC). Note that nofree 1339 // attribute suffers from derefinement - results may change depending on 1340 // how functions are optimized. Thus it can be inferred only from exact 1341 // definitions. 1342 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1343 Attribute::NoFree, 1344 // Skip functions known not to free memory. 1345 [](const Function &F) { return F.doesNotFreeMemory(); }, 1346 // Instructions that break non-deallocating assumption. 1347 [&SCCNodes](Instruction &I) { 1348 return InstrBreaksNoFree(I, SCCNodes); 1349 }, 1350 [](Function &F) { 1351 LLVM_DEBUG(dbgs() 1352 << "Adding nofree attr to fn " << F.getName() << "\n"); 1353 F.setDoesNotFreeMemory(); 1354 ++NumNoFree; 1355 }, 1356 /* RequiresExactDefinition= */ true}); 1357 1358 // Perform all the requested attribute inference actions. 1359 return AI.run(SCCNodes); 1360 } 1361 1362 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) { 1363 // Try and identify functions that do not recurse. 1364 1365 // If the SCC contains multiple nodes we know for sure there is recursion. 1366 if (SCCNodes.size() != 1) 1367 return false; 1368 1369 Function *F = *SCCNodes.begin(); 1370 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1371 return false; 1372 1373 // If all of the calls in F are identifiable and are to norecurse functions, F 1374 // is norecurse. This check also detects self-recursion as F is not currently 1375 // marked norecurse, so any called from F to F will not be marked norecurse. 1376 for (auto &BB : *F) 1377 for (auto &I : BB.instructionsWithoutDebug()) 1378 if (auto *CB = dyn_cast<CallBase>(&I)) { 1379 Function *Callee = CB->getCalledFunction(); 1380 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1381 // Function calls a potentially recursive function. 1382 return false; 1383 } 1384 1385 // Every call was to a non-recursive function other than this function, and 1386 // we have no indirect recursion as the SCC size is one. This function cannot 1387 // recurse. 1388 F->setDoesNotRecurse(); 1389 ++NumNoRecurse; 1390 return true; 1391 } 1392 1393 static bool instructionDoesNotReturn(Instruction &I) { 1394 if (auto *CB = dyn_cast<CallBase>(&I)) { 1395 Function *Callee = CB->getCalledFunction(); 1396 return Callee && Callee->doesNotReturn(); 1397 } 1398 return false; 1399 } 1400 1401 // A basic block can only return if it terminates with a ReturnInst and does not 1402 // contain calls to noreturn functions. 1403 static bool basicBlockCanReturn(BasicBlock &BB) { 1404 if (!isa<ReturnInst>(BB.getTerminator())) 1405 return false; 1406 return none_of(BB, instructionDoesNotReturn); 1407 } 1408 1409 // Set the noreturn function attribute if possible. 1410 static bool addNoReturnAttrs(const SCCNodeSet &SCCNodes) { 1411 bool Changed = false; 1412 1413 for (Function *F : SCCNodes) { 1414 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1415 F->doesNotReturn()) 1416 continue; 1417 1418 // The function can return if any basic blocks can return. 1419 // FIXME: this doesn't handle recursion or unreachable blocks. 1420 if (none_of(*F, basicBlockCanReturn)) { 1421 F->setDoesNotReturn(); 1422 Changed = true; 1423 } 1424 } 1425 1426 return Changed; 1427 } 1428 1429 static bool functionWillReturn(const Function &F) { 1430 // Must-progress function without side-effects must return. 1431 if (F.mustProgress() && F.onlyReadsMemory()) 1432 return true; 1433 1434 // Can only analyze functions with a definition. 1435 if (F.isDeclaration()) 1436 return false; 1437 1438 // Functions with loops require more sophisticated analysis, as the loop 1439 // may be infinite. For now, don't try to handle them. 1440 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1441 FindFunctionBackedges(F, Backedges); 1442 if (!Backedges.empty()) 1443 return false; 1444 1445 // If there are no loops, then the function is willreturn if all calls in 1446 // it are willreturn. 1447 return all_of(instructions(F), [](const Instruction &I) { 1448 const auto *CB = dyn_cast<CallBase>(&I); 1449 return !CB || CB->hasFnAttr(Attribute::WillReturn); 1450 }); 1451 } 1452 1453 // Set the willreturn function attribute if possible. 1454 static bool addWillReturn(const SCCNodeSet &SCCNodes) { 1455 bool Changed = false; 1456 1457 for (Function *F : SCCNodes) { 1458 if (!F || F->willReturn() || !functionWillReturn(*F)) 1459 continue; 1460 1461 F->setWillReturn(); 1462 NumWillReturn++; 1463 Changed = true; 1464 } 1465 1466 return Changed; 1467 } 1468 1469 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1470 SCCNodesResult Res; 1471 Res.HasUnknownCall = false; 1472 for (Function *F : Functions) { 1473 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) { 1474 // Treat any function we're trying not to optimize as if it were an 1475 // indirect call and omit it from the node set used below. 1476 Res.HasUnknownCall = true; 1477 continue; 1478 } 1479 // Track whether any functions in this SCC have an unknown call edge. 1480 // Note: if this is ever a performance hit, we can common it with 1481 // subsequent routines which also do scans over the instructions of the 1482 // function. 1483 if (!Res.HasUnknownCall) { 1484 for (Instruction &I : instructions(*F)) { 1485 if (auto *CB = dyn_cast<CallBase>(&I)) { 1486 if (!CB->getCalledFunction()) { 1487 Res.HasUnknownCall = true; 1488 break; 1489 } 1490 } 1491 } 1492 } 1493 Res.SCCNodes.insert(F); 1494 } 1495 return Res; 1496 } 1497 1498 template <typename AARGetterT> 1499 static bool deriveAttrsInPostOrder(ArrayRef<Function *> Functions, 1500 AARGetterT &&AARGetter) { 1501 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1502 bool Changed = false; 1503 1504 // Bail if the SCC only contains optnone functions. 1505 if (Nodes.SCCNodes.empty()) 1506 return Changed; 1507 1508 Changed |= addArgumentReturnedAttrs(Nodes.SCCNodes); 1509 Changed |= addReadAttrs(Nodes.SCCNodes, AARGetter); 1510 Changed |= addArgumentAttrs(Nodes.SCCNodes); 1511 Changed |= inferConvergent(Nodes.SCCNodes); 1512 Changed |= addNoReturnAttrs(Nodes.SCCNodes); 1513 Changed |= addWillReturn(Nodes.SCCNodes); 1514 1515 // If we have no external nodes participating in the SCC, we can deduce some 1516 // more precise attributes as well. 1517 if (!Nodes.HasUnknownCall) { 1518 Changed |= addNoAliasAttrs(Nodes.SCCNodes); 1519 Changed |= addNonNullAttrs(Nodes.SCCNodes); 1520 Changed |= inferAttrsFromFunctionBodies(Nodes.SCCNodes); 1521 Changed |= addNoRecurseAttrs(Nodes.SCCNodes); 1522 } 1523 1524 return Changed; 1525 } 1526 1527 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1528 CGSCCAnalysisManager &AM, 1529 LazyCallGraph &CG, 1530 CGSCCUpdateResult &) { 1531 FunctionAnalysisManager &FAM = 1532 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1533 1534 // We pass a lambda into functions to wire them up to the analysis manager 1535 // for getting function analyses. 1536 auto AARGetter = [&](Function &F) -> AAResults & { 1537 return FAM.getResult<AAManager>(F); 1538 }; 1539 1540 SmallVector<Function *, 8> Functions; 1541 for (LazyCallGraph::Node &N : C) { 1542 Functions.push_back(&N.getFunction()); 1543 } 1544 1545 if (deriveAttrsInPostOrder(Functions, AARGetter)) 1546 return PreservedAnalyses::none(); 1547 1548 return PreservedAnalyses::all(); 1549 } 1550 1551 namespace { 1552 1553 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1554 // Pass identification, replacement for typeid 1555 static char ID; 1556 1557 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1558 initializePostOrderFunctionAttrsLegacyPassPass( 1559 *PassRegistry::getPassRegistry()); 1560 } 1561 1562 bool runOnSCC(CallGraphSCC &SCC) override; 1563 1564 void getAnalysisUsage(AnalysisUsage &AU) const override { 1565 AU.setPreservesCFG(); 1566 AU.addRequired<AssumptionCacheTracker>(); 1567 getAAResultsAnalysisUsage(AU); 1568 CallGraphSCCPass::getAnalysisUsage(AU); 1569 } 1570 }; 1571 1572 } // end anonymous namespace 1573 1574 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1575 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1576 "Deduce function attributes", false, false) 1577 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1578 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1579 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1580 "Deduce function attributes", false, false) 1581 1582 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1583 return new PostOrderFunctionAttrsLegacyPass(); 1584 } 1585 1586 template <typename AARGetterT> 1587 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1588 SmallVector<Function *, 8> Functions; 1589 for (CallGraphNode *I : SCC) { 1590 Functions.push_back(I->getFunction()); 1591 } 1592 1593 return deriveAttrsInPostOrder(Functions, AARGetter); 1594 } 1595 1596 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1597 if (skipSCC(SCC)) 1598 return false; 1599 return runImpl(SCC, LegacyAARGetter(*this)); 1600 } 1601 1602 namespace { 1603 1604 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1605 // Pass identification, replacement for typeid 1606 static char ID; 1607 1608 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1609 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1610 *PassRegistry::getPassRegistry()); 1611 } 1612 1613 bool runOnModule(Module &M) override; 1614 1615 void getAnalysisUsage(AnalysisUsage &AU) const override { 1616 AU.setPreservesCFG(); 1617 AU.addRequired<CallGraphWrapperPass>(); 1618 AU.addPreserved<CallGraphWrapperPass>(); 1619 } 1620 }; 1621 1622 } // end anonymous namespace 1623 1624 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1625 1626 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1627 "rpo-function-attrs", "Deduce function attributes in RPO", 1628 false, false) 1629 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1630 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1631 "rpo-function-attrs", "Deduce function attributes in RPO", 1632 false, false) 1633 1634 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1635 return new ReversePostOrderFunctionAttrsLegacyPass(); 1636 } 1637 1638 static bool addNoRecurseAttrsTopDown(Function &F) { 1639 // We check the preconditions for the function prior to calling this to avoid 1640 // the cost of building up a reversible post-order list. We assert them here 1641 // to make sure none of the invariants this relies on were violated. 1642 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1643 assert(!F.doesNotRecurse() && 1644 "This function has already been deduced as norecurs!"); 1645 assert(F.hasInternalLinkage() && 1646 "Can only do top-down deduction for internal linkage functions!"); 1647 1648 // If F is internal and all of its uses are calls from a non-recursive 1649 // functions, then none of its calls could in fact recurse without going 1650 // through a function marked norecurse, and so we can mark this function too 1651 // as norecurse. Note that the uses must actually be calls -- otherwise 1652 // a pointer to this function could be returned from a norecurse function but 1653 // this function could be recursively (indirectly) called. Note that this 1654 // also detects if F is directly recursive as F is not yet marked as 1655 // a norecurse function. 1656 for (auto *U : F.users()) { 1657 auto *I = dyn_cast<Instruction>(U); 1658 if (!I) 1659 return false; 1660 CallBase *CB = dyn_cast<CallBase>(I); 1661 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1662 return false; 1663 } 1664 F.setDoesNotRecurse(); 1665 ++NumNoRecurse; 1666 return true; 1667 } 1668 1669 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1670 // We only have a post-order SCC traversal (because SCCs are inherently 1671 // discovered in post-order), so we accumulate them in a vector and then walk 1672 // it in reverse. This is simpler than using the RPO iterator infrastructure 1673 // because we need to combine SCC detection and the PO walk of the call 1674 // graph. We can also cheat egregiously because we're primarily interested in 1675 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1676 // with multiple functions in them will clearly be recursive. 1677 SmallVector<Function *, 16> Worklist; 1678 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1679 if (I->size() != 1) 1680 continue; 1681 1682 Function *F = I->front()->getFunction(); 1683 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1684 F->hasInternalLinkage()) 1685 Worklist.push_back(F); 1686 } 1687 1688 bool Changed = false; 1689 for (auto *F : llvm::reverse(Worklist)) 1690 Changed |= addNoRecurseAttrsTopDown(*F); 1691 1692 return Changed; 1693 } 1694 1695 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 1696 if (skipModule(M)) 1697 return false; 1698 1699 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1700 1701 return deduceFunctionAttributeInRPO(M, CG); 1702 } 1703 1704 PreservedAnalyses 1705 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 1706 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1707 1708 if (!deduceFunctionAttributeInRPO(M, CG)) 1709 return PreservedAnalyses::all(); 1710 1711 PreservedAnalyses PA; 1712 PA.preserve<CallGraphAnalysis>(); 1713 return PA; 1714 } 1715