1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/ModuleSummaryIndex.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumArgMemOnly, "Number of functions marked argmemonly"); 73 STATISTIC(NumReadNone, "Number of functions marked readnone"); 74 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 75 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 76 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 77 STATISTIC(NumReturned, "Number of arguments marked returned"); 78 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 79 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 80 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 81 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 82 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 83 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 84 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 85 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 86 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 87 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 88 89 STATISTIC(NumThinLinkNoRecurse, 90 "Number of functions marked as norecurse during thinlink"); 91 STATISTIC(NumThinLinkNoUnwind, 92 "Number of functions marked as nounwind during thinlink"); 93 94 static cl::opt<bool> EnableNonnullArgPropagation( 95 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 96 cl::desc("Try to propagate nonnull argument attributes from callsites to " 97 "caller functions.")); 98 99 static cl::opt<bool> DisableNoUnwindInference( 100 "disable-nounwind-inference", cl::Hidden, 101 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 102 103 static cl::opt<bool> DisableNoFreeInference( 104 "disable-nofree-inference", cl::Hidden, 105 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 106 107 static cl::opt<bool> DisableThinLTOPropagation( 108 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 109 cl::desc("Don't propagate function-attrs in thinLTO")); 110 111 namespace { 112 113 using SCCNodeSet = SmallSetVector<Function *, 8>; 114 115 } // end anonymous namespace 116 117 /// Returns the memory access attribute for function F using AAR for AA results, 118 /// where SCCNodes is the current SCC. 119 /// 120 /// If ThisBody is true, this function may examine the function body and will 121 /// return a result pertaining to this copy of the function. If it is false, the 122 /// result will be based only on AA results for the function declaration; it 123 /// will be assumed that some other (perhaps less optimized) version of the 124 /// function may be selected at link time. 125 static FunctionModRefBehavior 126 checkFunctionMemoryAccess(Function &F, bool ThisBody, AAResults &AAR, 127 const SCCNodeSet &SCCNodes) { 128 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 129 if (MRB == FMRB_DoesNotAccessMemory) 130 // Already perfect! 131 return MRB; 132 133 if (!ThisBody) 134 return MRB; 135 136 // Scan the function body for instructions that may read or write memory. 137 bool ReadsMemory = false; 138 bool WritesMemory = false; 139 // Track if the function accesses memory not based on pointer arguments or 140 // allocas. 141 bool AccessesNonArgsOrAlloca = false; 142 // Returns true if Ptr is not based on a function argument. 143 auto IsArgumentOrAlloca = [](const Value *Ptr) { 144 const Value *UO = getUnderlyingObject(Ptr); 145 return isa<Argument>(UO) || isa<AllocaInst>(UO); 146 }; 147 for (Instruction &I : instructions(F)) { 148 // Some instructions can be ignored even if they read or write memory. 149 // Detect these now, skipping to the next instruction if one is found. 150 if (auto *Call = dyn_cast<CallBase>(&I)) { 151 // Ignore calls to functions in the same SCC, as long as the call sites 152 // don't have operand bundles. Calls with operand bundles are allowed to 153 // have memory effects not described by the memory effects of the call 154 // target. 155 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 156 SCCNodes.count(Call->getCalledFunction())) 157 continue; 158 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 159 ModRefInfo MRI = createModRefInfo(MRB); 160 161 // If the call doesn't access memory, we're done. 162 if (isNoModRef(MRI)) 163 continue; 164 165 // A pseudo probe call shouldn't change any function attribute since it 166 // doesn't translate to a real instruction. It comes with a memory access 167 // tag to prevent itself being removed by optimizations and not block 168 // other instructions being optimized. 169 if (isa<PseudoProbeInst>(I)) 170 continue; 171 172 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 173 // The call could access any memory. If that includes writes, note it. 174 if (isModSet(MRI)) 175 WritesMemory = true; 176 // If it reads, note it. 177 if (isRefSet(MRI)) 178 ReadsMemory = true; 179 AccessesNonArgsOrAlloca = true; 180 continue; 181 } 182 183 // Check whether all pointer arguments point to local memory, and 184 // ignore calls that only access local memory. 185 for (const Use &U : Call->args()) { 186 const Value *Arg = U; 187 if (!Arg->getType()->isPtrOrPtrVectorTy()) 188 continue; 189 190 MemoryLocation Loc = 191 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 192 // Skip accesses to local or constant memory as they don't impact the 193 // externally visible mod/ref behavior. 194 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 195 continue; 196 197 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 198 199 if (isModSet(MRI)) 200 // Writes non-local memory. 201 WritesMemory = true; 202 if (isRefSet(MRI)) 203 // Ok, it reads non-local memory. 204 ReadsMemory = true; 205 } 206 continue; 207 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 208 MemoryLocation Loc = MemoryLocation::get(LI); 209 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 210 if (!LI->isVolatile() && 211 AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 212 continue; 213 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 214 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 215 MemoryLocation Loc = MemoryLocation::get(SI); 216 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 217 if (!SI->isVolatile() && 218 AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 219 continue; 220 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 221 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 222 // Ignore vaargs on local memory. 223 MemoryLocation Loc = MemoryLocation::get(VI); 224 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 225 continue; 226 AccessesNonArgsOrAlloca |= !IsArgumentOrAlloca(Loc.Ptr); 227 } else { 228 // If AccessesNonArgsOrAlloca has not been updated above, set it 229 // conservatively. 230 AccessesNonArgsOrAlloca |= I.mayReadOrWriteMemory(); 231 } 232 233 // Any remaining instructions need to be taken seriously! Check if they 234 // read or write memory. 235 // 236 // Writes memory, remember that. 237 WritesMemory |= I.mayWriteToMemory(); 238 239 // If this instruction may read memory, remember that. 240 ReadsMemory |= I.mayReadFromMemory(); 241 } 242 243 if (!WritesMemory && !ReadsMemory) 244 return FMRB_DoesNotAccessMemory; 245 246 FunctionModRefBehavior Result = FunctionModRefBehavior(FMRL_Anywhere); 247 if (!AccessesNonArgsOrAlloca) 248 Result = FunctionModRefBehavior(FMRL_ArgumentPointees); 249 if (WritesMemory) 250 Result = FunctionModRefBehavior(Result | static_cast<int>(ModRefInfo::Mod)); 251 if (ReadsMemory) 252 Result = FunctionModRefBehavior(Result | static_cast<int>(ModRefInfo::Ref)); 253 return Result; 254 } 255 256 FunctionModRefBehavior llvm::computeFunctionBodyMemoryAccess(Function &F, 257 AAResults &AAR) { 258 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 259 } 260 261 /// Deduce readonly/readnone/writeonly attributes for the SCC. 262 template <typename AARGetterT> 263 static void addMemoryAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 264 SmallSet<Function *, 8> &Changed) { 265 // Check if any of the functions in the SCC read or write memory. If they 266 // write memory then they can't be marked readnone or readonly. 267 bool ReadsMemory = false; 268 bool WritesMemory = false; 269 // Check if all functions only access memory through their arguments. 270 bool ArgMemOnly = true; 271 for (Function *F : SCCNodes) { 272 // Call the callable parameter to look up AA results for this function. 273 AAResults &AAR = AARGetter(*F); 274 // Non-exact function definitions may not be selected at link time, and an 275 // alternative version that writes to memory may be selected. See the 276 // comment on GlobalValue::isDefinitionExact for more details. 277 FunctionModRefBehavior FMRB = 278 checkFunctionMemoryAccess(*F, F->hasExactDefinition(), AAR, SCCNodes); 279 if (FMRB == FMRB_DoesNotAccessMemory) 280 continue; 281 ModRefInfo MR = createModRefInfo(FMRB); 282 ReadsMemory |= isRefSet(MR); 283 WritesMemory |= isModSet(MR); 284 ArgMemOnly &= AliasAnalysis::onlyAccessesArgPointees(FMRB); 285 // Reached neither readnone, readonly, writeonly nor argmemonly can be 286 // inferred. Exit. 287 if (ReadsMemory && WritesMemory && !ArgMemOnly) 288 return; 289 } 290 291 assert((!ReadsMemory || !WritesMemory || ArgMemOnly) && 292 "no memory attributes can be added for this SCC, should have exited " 293 "earlier"); 294 // Success! Functions in this SCC do not access memory, only read memory, 295 // only write memory, or only access memory through its arguments. Give them 296 // the appropriate attribute. 297 298 for (Function *F : SCCNodes) { 299 // If possible add argmemonly attribute to F, if it accesses memory. 300 if (ArgMemOnly && !F->onlyAccessesArgMemory() && 301 (ReadsMemory || WritesMemory)) { 302 NumArgMemOnly++; 303 F->addFnAttr(Attribute::ArgMemOnly); 304 Changed.insert(F); 305 } 306 307 // The SCC contains functions both writing and reading from memory. We 308 // cannot add readonly or writeonline attributes. 309 if (ReadsMemory && WritesMemory) 310 continue; 311 if (F->doesNotAccessMemory()) 312 // Already perfect! 313 continue; 314 315 if (F->onlyReadsMemory() && ReadsMemory) 316 // No change. 317 continue; 318 319 if (F->onlyWritesMemory() && WritesMemory) 320 continue; 321 322 Changed.insert(F); 323 324 // Clear out any existing attributes. 325 AttributeMask AttrsToRemove; 326 AttrsToRemove.addAttribute(Attribute::ReadOnly); 327 AttrsToRemove.addAttribute(Attribute::ReadNone); 328 AttrsToRemove.addAttribute(Attribute::WriteOnly); 329 330 if (!WritesMemory && !ReadsMemory) { 331 // Clear out any "access range attributes" if readnone was deduced. 332 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 333 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 334 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 335 } 336 F->removeFnAttrs(AttrsToRemove); 337 338 // Add in the new attribute. 339 if (WritesMemory && !ReadsMemory) 340 F->addFnAttr(Attribute::WriteOnly); 341 else 342 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 343 344 if (WritesMemory && !ReadsMemory) 345 ++NumWriteOnly; 346 else if (ReadsMemory) 347 ++NumReadOnly; 348 else 349 ++NumReadNone; 350 } 351 } 352 353 // Compute definitive function attributes for a function taking into account 354 // prevailing definitions and linkage types 355 static FunctionSummary *calculatePrevailingSummary( 356 ValueInfo VI, 357 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 358 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 359 IsPrevailing) { 360 361 if (CachedPrevailingSummary.count(VI)) 362 return CachedPrevailingSummary[VI]; 363 364 /// At this point, prevailing symbols have been resolved. The following leads 365 /// to returning a conservative result: 366 /// - Multiple instances with local linkage. Normally local linkage would be 367 /// unique per module 368 /// as the GUID includes the module path. We could have a guid alias if 369 /// there wasn't any distinguishing path when each file was compiled, but 370 /// that should be rare so we'll punt on those. 371 372 /// These next 2 cases should not happen and will assert: 373 /// - Multiple instances with external linkage. This should be caught in 374 /// symbol resolution 375 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 376 /// knowledge meaning we have to go conservative. 377 378 /// Otherwise, we calculate attributes for a function as: 379 /// 1. If we have a local linkage, take its attributes. If there's somehow 380 /// multiple, bail and go conservative. 381 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 382 /// prevailing, take its attributes. 383 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 384 /// differences. However, if the prevailing copy is known it will be used 385 /// so take its attributes. If the prevailing copy is in a native file 386 /// all IR copies will be dead and propagation will go conservative. 387 /// 4. AvailableExternally summaries without a prevailing copy are known to 388 /// occur in a couple of circumstances: 389 /// a. An internal function gets imported due to its caller getting 390 /// imported, it becomes AvailableExternally but no prevailing 391 /// definition exists. Because it has to get imported along with its 392 /// caller the attributes will be captured by propagating on its 393 /// caller. 394 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 395 /// definitions of explicitly instanced template declarations 396 /// for inlining which are ultimately dropped from the TU. Since this 397 /// is localized to the TU the attributes will have already made it to 398 /// the callers. 399 /// These are edge cases and already captured by their callers so we 400 /// ignore these for now. If they become relevant to optimize in the 401 /// future this can be revisited. 402 /// 5. Otherwise, go conservative. 403 404 CachedPrevailingSummary[VI] = nullptr; 405 FunctionSummary *Local = nullptr; 406 FunctionSummary *Prevailing = nullptr; 407 408 for (const auto &GVS : VI.getSummaryList()) { 409 if (!GVS->isLive()) 410 continue; 411 412 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 413 // Virtual and Unknown (e.g. indirect) calls require going conservative 414 if (!FS || FS->fflags().HasUnknownCall) 415 return nullptr; 416 417 const auto &Linkage = GVS->linkage(); 418 if (GlobalValue::isLocalLinkage(Linkage)) { 419 if (Local) { 420 LLVM_DEBUG( 421 dbgs() 422 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 423 "function " 424 << VI.name() << " from " << FS->modulePath() << ". Previous module " 425 << Local->modulePath() << "\n"); 426 return nullptr; 427 } 428 Local = FS; 429 } else if (GlobalValue::isExternalLinkage(Linkage)) { 430 assert(IsPrevailing(VI.getGUID(), GVS.get())); 431 Prevailing = FS; 432 break; 433 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 434 GlobalValue::isLinkOnceODRLinkage(Linkage) || 435 GlobalValue::isWeakAnyLinkage(Linkage) || 436 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 437 if (IsPrevailing(VI.getGUID(), GVS.get())) { 438 Prevailing = FS; 439 break; 440 } 441 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 442 // TODO: Handle these cases if they become meaningful 443 continue; 444 } 445 } 446 447 if (Local) { 448 assert(!Prevailing); 449 CachedPrevailingSummary[VI] = Local; 450 } else if (Prevailing) { 451 assert(!Local); 452 CachedPrevailingSummary[VI] = Prevailing; 453 } 454 455 return CachedPrevailingSummary[VI]; 456 } 457 458 bool llvm::thinLTOPropagateFunctionAttrs( 459 ModuleSummaryIndex &Index, 460 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 461 IsPrevailing) { 462 // TODO: implement addNoAliasAttrs once 463 // there's more information about the return type in the summary 464 if (DisableThinLTOPropagation) 465 return false; 466 467 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 468 bool Changed = false; 469 470 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 471 // Assume we can propagate unless we discover otherwise 472 FunctionSummary::FFlags InferredFlags; 473 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 474 InferredFlags.NoUnwind = true; 475 476 for (auto &V : SCCNodes) { 477 FunctionSummary *CallerSummary = 478 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 479 480 // Function summaries can fail to contain information such as declarations 481 if (!CallerSummary) 482 return; 483 484 if (CallerSummary->fflags().MayThrow) 485 InferredFlags.NoUnwind = false; 486 487 for (const auto &Callee : CallerSummary->calls()) { 488 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 489 Callee.first, CachedPrevailingSummary, IsPrevailing); 490 491 if (!CalleeSummary) 492 return; 493 494 if (!CalleeSummary->fflags().NoRecurse) 495 InferredFlags.NoRecurse = false; 496 497 if (!CalleeSummary->fflags().NoUnwind) 498 InferredFlags.NoUnwind = false; 499 500 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 501 break; 502 } 503 } 504 505 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 506 Changed = true; 507 for (auto &V : SCCNodes) { 508 if (InferredFlags.NoRecurse) { 509 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 510 << V.name() << "\n"); 511 ++NumThinLinkNoRecurse; 512 } 513 514 if (InferredFlags.NoUnwind) { 515 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 516 << V.name() << "\n"); 517 ++NumThinLinkNoUnwind; 518 } 519 520 for (auto &S : V.getSummaryList()) { 521 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 522 if (InferredFlags.NoRecurse) 523 FS->setNoRecurse(); 524 525 if (InferredFlags.NoUnwind) 526 FS->setNoUnwind(); 527 } 528 } 529 } 530 } 531 }; 532 533 // Call propagation functions on each SCC in the Index 534 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 535 ++I) { 536 std::vector<ValueInfo> Nodes(*I); 537 PropagateAttributes(Nodes); 538 } 539 return Changed; 540 } 541 542 namespace { 543 544 /// For a given pointer Argument, this retains a list of Arguments of functions 545 /// in the same SCC that the pointer data flows into. We use this to build an 546 /// SCC of the arguments. 547 struct ArgumentGraphNode { 548 Argument *Definition; 549 SmallVector<ArgumentGraphNode *, 4> Uses; 550 }; 551 552 class ArgumentGraph { 553 // We store pointers to ArgumentGraphNode objects, so it's important that 554 // that they not move around upon insert. 555 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 556 557 ArgumentMapTy ArgumentMap; 558 559 // There is no root node for the argument graph, in fact: 560 // void f(int *x, int *y) { if (...) f(x, y); } 561 // is an example where the graph is disconnected. The SCCIterator requires a 562 // single entry point, so we maintain a fake ("synthetic") root node that 563 // uses every node. Because the graph is directed and nothing points into 564 // the root, it will not participate in any SCCs (except for its own). 565 ArgumentGraphNode SyntheticRoot; 566 567 public: 568 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 569 570 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 571 572 iterator begin() { return SyntheticRoot.Uses.begin(); } 573 iterator end() { return SyntheticRoot.Uses.end(); } 574 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 575 576 ArgumentGraphNode *operator[](Argument *A) { 577 ArgumentGraphNode &Node = ArgumentMap[A]; 578 Node.Definition = A; 579 SyntheticRoot.Uses.push_back(&Node); 580 return &Node; 581 } 582 }; 583 584 /// This tracker checks whether callees are in the SCC, and if so it does not 585 /// consider that a capture, instead adding it to the "Uses" list and 586 /// continuing with the analysis. 587 struct ArgumentUsesTracker : public CaptureTracker { 588 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 589 590 void tooManyUses() override { Captured = true; } 591 592 bool captured(const Use *U) override { 593 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 594 if (!CB) { 595 Captured = true; 596 return true; 597 } 598 599 Function *F = CB->getCalledFunction(); 600 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 601 Captured = true; 602 return true; 603 } 604 605 assert(!CB->isCallee(U) && "callee operand reported captured?"); 606 const unsigned UseIndex = CB->getDataOperandNo(U); 607 if (UseIndex >= CB->arg_size()) { 608 // Data operand, but not a argument operand -- must be a bundle operand 609 assert(CB->hasOperandBundles() && "Must be!"); 610 611 // CaptureTracking told us that we're being captured by an operand bundle 612 // use. In this case it does not matter if the callee is within our SCC 613 // or not -- we've been captured in some unknown way, and we have to be 614 // conservative. 615 Captured = true; 616 return true; 617 } 618 619 if (UseIndex >= F->arg_size()) { 620 assert(F->isVarArg() && "More params than args in non-varargs call"); 621 Captured = true; 622 return true; 623 } 624 625 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 626 return false; 627 } 628 629 // True only if certainly captured (used outside our SCC). 630 bool Captured = false; 631 632 // Uses within our SCC. 633 SmallVector<Argument *, 4> Uses; 634 635 const SCCNodeSet &SCCNodes; 636 }; 637 638 } // end anonymous namespace 639 640 namespace llvm { 641 642 template <> struct GraphTraits<ArgumentGraphNode *> { 643 using NodeRef = ArgumentGraphNode *; 644 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 645 646 static NodeRef getEntryNode(NodeRef A) { return A; } 647 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 648 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 649 }; 650 651 template <> 652 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 653 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 654 655 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 656 return AG->begin(); 657 } 658 659 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 660 }; 661 662 } // end namespace llvm 663 664 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 665 static Attribute::AttrKind 666 determinePointerAccessAttrs(Argument *A, 667 const SmallPtrSet<Argument *, 8> &SCCNodes) { 668 SmallVector<Use *, 32> Worklist; 669 SmallPtrSet<Use *, 32> Visited; 670 671 // inalloca arguments are always clobbered by the call. 672 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 673 return Attribute::None; 674 675 bool IsRead = false; 676 bool IsWrite = false; 677 678 for (Use &U : A->uses()) { 679 Visited.insert(&U); 680 Worklist.push_back(&U); 681 } 682 683 while (!Worklist.empty()) { 684 if (IsWrite && IsRead) 685 // No point in searching further.. 686 return Attribute::None; 687 688 Use *U = Worklist.pop_back_val(); 689 Instruction *I = cast<Instruction>(U->getUser()); 690 691 switch (I->getOpcode()) { 692 case Instruction::BitCast: 693 case Instruction::GetElementPtr: 694 case Instruction::PHI: 695 case Instruction::Select: 696 case Instruction::AddrSpaceCast: 697 // The original value is not read/written via this if the new value isn't. 698 for (Use &UU : I->uses()) 699 if (Visited.insert(&UU).second) 700 Worklist.push_back(&UU); 701 break; 702 703 case Instruction::Call: 704 case Instruction::Invoke: { 705 CallBase &CB = cast<CallBase>(*I); 706 if (CB.isCallee(U)) { 707 IsRead = true; 708 // Note that indirect calls do not capture, see comment in 709 // CaptureTracking for context 710 continue; 711 } 712 713 // Given we've explictily handled the callee operand above, what's left 714 // must be a data operand (e.g. argument or operand bundle) 715 const unsigned UseIndex = CB.getDataOperandNo(U); 716 717 if (!CB.doesNotCapture(UseIndex)) { 718 if (!CB.onlyReadsMemory()) 719 // If the callee can save a copy into other memory, then simply 720 // scanning uses of the call is insufficient. We have no way 721 // of tracking copies of the pointer through memory to see 722 // if a reloaded copy is written to, thus we must give up. 723 return Attribute::None; 724 // Push users for processing once we finish this one 725 if (!I->getType()->isVoidTy()) 726 for (Use &UU : I->uses()) 727 if (Visited.insert(&UU).second) 728 Worklist.push_back(&UU); 729 } 730 731 if (CB.doesNotAccessMemory()) 732 continue; 733 734 if (Function *F = CB.getCalledFunction()) 735 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 736 SCCNodes.count(F->getArg(UseIndex))) 737 // This is an argument which is part of the speculative SCC. Note 738 // that only operands corresponding to formal arguments of the callee 739 // can participate in the speculation. 740 break; 741 742 // The accessors used on call site here do the right thing for calls and 743 // invokes with operand bundles. 744 if (CB.doesNotAccessMemory(UseIndex)) { 745 /* nop */ 746 } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) { 747 IsRead = true; 748 } else if (CB.hasFnAttr(Attribute::WriteOnly) || 749 CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) { 750 IsWrite = true; 751 } else { 752 return Attribute::None; 753 } 754 break; 755 } 756 757 case Instruction::Load: 758 // A volatile load has side effects beyond what readonly can be relied 759 // upon. 760 if (cast<LoadInst>(I)->isVolatile()) 761 return Attribute::None; 762 763 IsRead = true; 764 break; 765 766 case Instruction::Store: 767 if (cast<StoreInst>(I)->getValueOperand() == *U) 768 // untrackable capture 769 return Attribute::None; 770 771 // A volatile store has side effects beyond what writeonly can be relied 772 // upon. 773 if (cast<StoreInst>(I)->isVolatile()) 774 return Attribute::None; 775 776 IsWrite = true; 777 break; 778 779 case Instruction::ICmp: 780 case Instruction::Ret: 781 break; 782 783 default: 784 return Attribute::None; 785 } 786 } 787 788 if (IsWrite && IsRead) 789 return Attribute::None; 790 else if (IsRead) 791 return Attribute::ReadOnly; 792 else if (IsWrite) 793 return Attribute::WriteOnly; 794 else 795 return Attribute::ReadNone; 796 } 797 798 /// Deduce returned attributes for the SCC. 799 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 800 SmallSet<Function *, 8> &Changed) { 801 // Check each function in turn, determining if an argument is always returned. 802 for (Function *F : SCCNodes) { 803 // We can infer and propagate function attributes only when we know that the 804 // definition we'll get at link time is *exactly* the definition we see now. 805 // For more details, see GlobalValue::mayBeDerefined. 806 if (!F->hasExactDefinition()) 807 continue; 808 809 if (F->getReturnType()->isVoidTy()) 810 continue; 811 812 // There is nothing to do if an argument is already marked as 'returned'. 813 if (llvm::any_of(F->args(), 814 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 815 continue; 816 817 auto FindRetArg = [&]() -> Value * { 818 Value *RetArg = nullptr; 819 for (BasicBlock &BB : *F) 820 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 821 // Note that stripPointerCasts should look through functions with 822 // returned arguments. 823 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 824 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 825 return nullptr; 826 827 if (!RetArg) 828 RetArg = RetVal; 829 else if (RetArg != RetVal) 830 return nullptr; 831 } 832 833 return RetArg; 834 }; 835 836 if (Value *RetArg = FindRetArg()) { 837 auto *A = cast<Argument>(RetArg); 838 A->addAttr(Attribute::Returned); 839 ++NumReturned; 840 Changed.insert(F); 841 } 842 } 843 } 844 845 /// If a callsite has arguments that are also arguments to the parent function, 846 /// try to propagate attributes from the callsite's arguments to the parent's 847 /// arguments. This may be important because inlining can cause information loss 848 /// when attribute knowledge disappears with the inlined call. 849 static bool addArgumentAttrsFromCallsites(Function &F) { 850 if (!EnableNonnullArgPropagation) 851 return false; 852 853 bool Changed = false; 854 855 // For an argument attribute to transfer from a callsite to the parent, the 856 // call must be guaranteed to execute every time the parent is called. 857 // Conservatively, just check for calls in the entry block that are guaranteed 858 // to execute. 859 // TODO: This could be enhanced by testing if the callsite post-dominates the 860 // entry block or by doing simple forward walks or backward walks to the 861 // callsite. 862 BasicBlock &Entry = F.getEntryBlock(); 863 for (Instruction &I : Entry) { 864 if (auto *CB = dyn_cast<CallBase>(&I)) { 865 if (auto *CalledFunc = CB->getCalledFunction()) { 866 for (auto &CSArg : CalledFunc->args()) { 867 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 868 continue; 869 870 // If the non-null callsite argument operand is an argument to 'F' 871 // (the caller) and the call is guaranteed to execute, then the value 872 // must be non-null throughout 'F'. 873 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 874 if (FArg && !FArg->hasNonNullAttr()) { 875 FArg->addAttr(Attribute::NonNull); 876 Changed = true; 877 } 878 } 879 } 880 } 881 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 882 break; 883 } 884 885 return Changed; 886 } 887 888 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 889 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 890 R == Attribute::WriteOnly) 891 && "Must be an access attribute."); 892 assert(A && "Argument must not be null."); 893 894 // If the argument already has the attribute, nothing needs to be done. 895 if (A->hasAttribute(R)) 896 return false; 897 898 // Otherwise, remove potentially conflicting attribute, add the new one, 899 // and update statistics. 900 A->removeAttr(Attribute::WriteOnly); 901 A->removeAttr(Attribute::ReadOnly); 902 A->removeAttr(Attribute::ReadNone); 903 A->addAttr(R); 904 if (R == Attribute::ReadOnly) 905 ++NumReadOnlyArg; 906 else if (R == Attribute::WriteOnly) 907 ++NumWriteOnlyArg; 908 else 909 ++NumReadNoneArg; 910 return true; 911 } 912 913 /// Deduce nocapture attributes for the SCC. 914 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 915 SmallSet<Function *, 8> &Changed) { 916 ArgumentGraph AG; 917 918 // Check each function in turn, determining which pointer arguments are not 919 // captured. 920 for (Function *F : SCCNodes) { 921 // We can infer and propagate function attributes only when we know that the 922 // definition we'll get at link time is *exactly* the definition we see now. 923 // For more details, see GlobalValue::mayBeDerefined. 924 if (!F->hasExactDefinition()) 925 continue; 926 927 if (addArgumentAttrsFromCallsites(*F)) 928 Changed.insert(F); 929 930 // Functions that are readonly (or readnone) and nounwind and don't return 931 // a value can't capture arguments. Don't analyze them. 932 if (F->onlyReadsMemory() && F->doesNotThrow() && 933 F->getReturnType()->isVoidTy()) { 934 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 935 ++A) { 936 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 937 A->addAttr(Attribute::NoCapture); 938 ++NumNoCapture; 939 Changed.insert(F); 940 } 941 } 942 continue; 943 } 944 945 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 946 ++A) { 947 if (!A->getType()->isPointerTy()) 948 continue; 949 bool HasNonLocalUses = false; 950 if (!A->hasNoCaptureAttr()) { 951 ArgumentUsesTracker Tracker(SCCNodes); 952 PointerMayBeCaptured(&*A, &Tracker); 953 if (!Tracker.Captured) { 954 if (Tracker.Uses.empty()) { 955 // If it's trivially not captured, mark it nocapture now. 956 A->addAttr(Attribute::NoCapture); 957 ++NumNoCapture; 958 Changed.insert(F); 959 } else { 960 // If it's not trivially captured and not trivially not captured, 961 // then it must be calling into another function in our SCC. Save 962 // its particulars for Argument-SCC analysis later. 963 ArgumentGraphNode *Node = AG[&*A]; 964 for (Argument *Use : Tracker.Uses) { 965 Node->Uses.push_back(AG[Use]); 966 if (Use != &*A) 967 HasNonLocalUses = true; 968 } 969 } 970 } 971 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 972 } 973 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 974 // Can we determine that it's readonly/readnone/writeonly without doing 975 // an SCC? Note that we don't allow any calls at all here, or else our 976 // result will be dependent on the iteration order through the 977 // functions in the SCC. 978 SmallPtrSet<Argument *, 8> Self; 979 Self.insert(&*A); 980 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 981 if (R != Attribute::None) 982 if (addAccessAttr(A, R)) 983 Changed.insert(F); 984 } 985 } 986 } 987 988 // The graph we've collected is partial because we stopped scanning for 989 // argument uses once we solved the argument trivially. These partial nodes 990 // show up as ArgumentGraphNode objects with an empty Uses list, and for 991 // these nodes the final decision about whether they capture has already been 992 // made. If the definition doesn't have a 'nocapture' attribute by now, it 993 // captures. 994 995 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 996 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 997 if (ArgumentSCC.size() == 1) { 998 if (!ArgumentSCC[0]->Definition) 999 continue; // synthetic root node 1000 1001 // eg. "void f(int* x) { if (...) f(x); }" 1002 if (ArgumentSCC[0]->Uses.size() == 1 && 1003 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 1004 Argument *A = ArgumentSCC[0]->Definition; 1005 A->addAttr(Attribute::NoCapture); 1006 ++NumNoCapture; 1007 Changed.insert(A->getParent()); 1008 1009 // Infer the access attributes given the new nocapture one 1010 SmallPtrSet<Argument *, 8> Self; 1011 Self.insert(&*A); 1012 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 1013 if (R != Attribute::None) 1014 addAccessAttr(A, R); 1015 } 1016 continue; 1017 } 1018 1019 bool SCCCaptured = false; 1020 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1021 I != E && !SCCCaptured; ++I) { 1022 ArgumentGraphNode *Node = *I; 1023 if (Node->Uses.empty()) { 1024 if (!Node->Definition->hasNoCaptureAttr()) 1025 SCCCaptured = true; 1026 } 1027 } 1028 if (SCCCaptured) 1029 continue; 1030 1031 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1032 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1033 // quickly looking up whether a given Argument is in this ArgumentSCC. 1034 for (ArgumentGraphNode *I : ArgumentSCC) { 1035 ArgumentSCCNodes.insert(I->Definition); 1036 } 1037 1038 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1039 I != E && !SCCCaptured; ++I) { 1040 ArgumentGraphNode *N = *I; 1041 for (ArgumentGraphNode *Use : N->Uses) { 1042 Argument *A = Use->Definition; 1043 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1044 continue; 1045 SCCCaptured = true; 1046 break; 1047 } 1048 } 1049 if (SCCCaptured) 1050 continue; 1051 1052 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1053 Argument *A = ArgumentSCC[i]->Definition; 1054 A->addAttr(Attribute::NoCapture); 1055 ++NumNoCapture; 1056 Changed.insert(A->getParent()); 1057 } 1058 1059 // We also want to compute readonly/readnone/writeonly. With a small number 1060 // of false negatives, we can assume that any pointer which is captured 1061 // isn't going to be provably readonly or readnone, since by definition 1062 // we can't analyze all uses of a captured pointer. 1063 // 1064 // The false negatives happen when the pointer is captured by a function 1065 // that promises readonly/readnone behaviour on the pointer, then the 1066 // pointer's lifetime ends before anything that writes to arbitrary memory. 1067 // Also, a readonly/readnone pointer may be returned, but returning a 1068 // pointer is capturing it. 1069 1070 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1071 if (A == B) 1072 return A; 1073 if (A == Attribute::ReadNone) 1074 return B; 1075 if (B == Attribute::ReadNone) 1076 return A; 1077 return Attribute::None; 1078 }; 1079 1080 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1081 for (unsigned i = 0, e = ArgumentSCC.size(); 1082 i != e && AccessAttr != Attribute::None; ++i) { 1083 Argument *A = ArgumentSCC[i]->Definition; 1084 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1085 AccessAttr = meetAccessAttr(AccessAttr, K); 1086 } 1087 1088 if (AccessAttr != Attribute::None) { 1089 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1090 Argument *A = ArgumentSCC[i]->Definition; 1091 if (addAccessAttr(A, AccessAttr)) 1092 Changed.insert(A->getParent()); 1093 } 1094 } 1095 } 1096 } 1097 1098 /// Tests whether a function is "malloc-like". 1099 /// 1100 /// A function is "malloc-like" if it returns either null or a pointer that 1101 /// doesn't alias any other pointer visible to the caller. 1102 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1103 SmallSetVector<Value *, 8> FlowsToReturn; 1104 for (BasicBlock &BB : *F) 1105 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1106 FlowsToReturn.insert(Ret->getReturnValue()); 1107 1108 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1109 Value *RetVal = FlowsToReturn[i]; 1110 1111 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1112 if (!C->isNullValue() && !isa<UndefValue>(C)) 1113 return false; 1114 1115 continue; 1116 } 1117 1118 if (isa<Argument>(RetVal)) 1119 return false; 1120 1121 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1122 switch (RVI->getOpcode()) { 1123 // Extend the analysis by looking upwards. 1124 case Instruction::BitCast: 1125 case Instruction::GetElementPtr: 1126 case Instruction::AddrSpaceCast: 1127 FlowsToReturn.insert(RVI->getOperand(0)); 1128 continue; 1129 case Instruction::Select: { 1130 SelectInst *SI = cast<SelectInst>(RVI); 1131 FlowsToReturn.insert(SI->getTrueValue()); 1132 FlowsToReturn.insert(SI->getFalseValue()); 1133 continue; 1134 } 1135 case Instruction::PHI: { 1136 PHINode *PN = cast<PHINode>(RVI); 1137 for (Value *IncValue : PN->incoming_values()) 1138 FlowsToReturn.insert(IncValue); 1139 continue; 1140 } 1141 1142 // Check whether the pointer came from an allocation. 1143 case Instruction::Alloca: 1144 break; 1145 case Instruction::Call: 1146 case Instruction::Invoke: { 1147 CallBase &CB = cast<CallBase>(*RVI); 1148 if (CB.hasRetAttr(Attribute::NoAlias)) 1149 break; 1150 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1151 break; 1152 LLVM_FALLTHROUGH; 1153 } 1154 default: 1155 return false; // Did not come from an allocation. 1156 } 1157 1158 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1159 return false; 1160 } 1161 1162 return true; 1163 } 1164 1165 /// Deduce noalias attributes for the SCC. 1166 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1167 SmallSet<Function *, 8> &Changed) { 1168 // Check each function in turn, determining which functions return noalias 1169 // pointers. 1170 for (Function *F : SCCNodes) { 1171 // Already noalias. 1172 if (F->returnDoesNotAlias()) 1173 continue; 1174 1175 // We can infer and propagate function attributes only when we know that the 1176 // definition we'll get at link time is *exactly* the definition we see now. 1177 // For more details, see GlobalValue::mayBeDerefined. 1178 if (!F->hasExactDefinition()) 1179 return; 1180 1181 // We annotate noalias return values, which are only applicable to 1182 // pointer types. 1183 if (!F->getReturnType()->isPointerTy()) 1184 continue; 1185 1186 if (!isFunctionMallocLike(F, SCCNodes)) 1187 return; 1188 } 1189 1190 for (Function *F : SCCNodes) { 1191 if (F->returnDoesNotAlias() || 1192 !F->getReturnType()->isPointerTy()) 1193 continue; 1194 1195 F->setReturnDoesNotAlias(); 1196 ++NumNoAlias; 1197 Changed.insert(F); 1198 } 1199 } 1200 1201 /// Tests whether this function is known to not return null. 1202 /// 1203 /// Requires that the function returns a pointer. 1204 /// 1205 /// Returns true if it believes the function will not return a null, and sets 1206 /// \p Speculative based on whether the returned conclusion is a speculative 1207 /// conclusion due to SCC calls. 1208 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1209 bool &Speculative) { 1210 assert(F->getReturnType()->isPointerTy() && 1211 "nonnull only meaningful on pointer types"); 1212 Speculative = false; 1213 1214 SmallSetVector<Value *, 8> FlowsToReturn; 1215 for (BasicBlock &BB : *F) 1216 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1217 FlowsToReturn.insert(Ret->getReturnValue()); 1218 1219 auto &DL = F->getParent()->getDataLayout(); 1220 1221 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1222 Value *RetVal = FlowsToReturn[i]; 1223 1224 // If this value is locally known to be non-null, we're good 1225 if (isKnownNonZero(RetVal, DL)) 1226 continue; 1227 1228 // Otherwise, we need to look upwards since we can't make any local 1229 // conclusions. 1230 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1231 if (!RVI) 1232 return false; 1233 switch (RVI->getOpcode()) { 1234 // Extend the analysis by looking upwards. 1235 case Instruction::BitCast: 1236 case Instruction::GetElementPtr: 1237 case Instruction::AddrSpaceCast: 1238 FlowsToReturn.insert(RVI->getOperand(0)); 1239 continue; 1240 case Instruction::Select: { 1241 SelectInst *SI = cast<SelectInst>(RVI); 1242 FlowsToReturn.insert(SI->getTrueValue()); 1243 FlowsToReturn.insert(SI->getFalseValue()); 1244 continue; 1245 } 1246 case Instruction::PHI: { 1247 PHINode *PN = cast<PHINode>(RVI); 1248 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1249 FlowsToReturn.insert(PN->getIncomingValue(i)); 1250 continue; 1251 } 1252 case Instruction::Call: 1253 case Instruction::Invoke: { 1254 CallBase &CB = cast<CallBase>(*RVI); 1255 Function *Callee = CB.getCalledFunction(); 1256 // A call to a node within the SCC is assumed to return null until 1257 // proven otherwise 1258 if (Callee && SCCNodes.count(Callee)) { 1259 Speculative = true; 1260 continue; 1261 } 1262 return false; 1263 } 1264 default: 1265 return false; // Unknown source, may be null 1266 }; 1267 llvm_unreachable("should have either continued or returned"); 1268 } 1269 1270 return true; 1271 } 1272 1273 /// Deduce nonnull attributes for the SCC. 1274 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1275 SmallSet<Function *, 8> &Changed) { 1276 // Speculative that all functions in the SCC return only nonnull 1277 // pointers. We may refute this as we analyze functions. 1278 bool SCCReturnsNonNull = true; 1279 1280 // Check each function in turn, determining which functions return nonnull 1281 // pointers. 1282 for (Function *F : SCCNodes) { 1283 // Already nonnull. 1284 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1285 continue; 1286 1287 // We can infer and propagate function attributes only when we know that the 1288 // definition we'll get at link time is *exactly* the definition we see now. 1289 // For more details, see GlobalValue::mayBeDerefined. 1290 if (!F->hasExactDefinition()) 1291 return; 1292 1293 // We annotate nonnull return values, which are only applicable to 1294 // pointer types. 1295 if (!F->getReturnType()->isPointerTy()) 1296 continue; 1297 1298 bool Speculative = false; 1299 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1300 if (!Speculative) { 1301 // Mark the function eagerly since we may discover a function 1302 // which prevents us from speculating about the entire SCC 1303 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1304 << " as nonnull\n"); 1305 F->addRetAttr(Attribute::NonNull); 1306 ++NumNonNullReturn; 1307 Changed.insert(F); 1308 } 1309 continue; 1310 } 1311 // At least one function returns something which could be null, can't 1312 // speculate any more. 1313 SCCReturnsNonNull = false; 1314 } 1315 1316 if (SCCReturnsNonNull) { 1317 for (Function *F : SCCNodes) { 1318 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1319 !F->getReturnType()->isPointerTy()) 1320 continue; 1321 1322 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1323 F->addRetAttr(Attribute::NonNull); 1324 ++NumNonNullReturn; 1325 Changed.insert(F); 1326 } 1327 } 1328 } 1329 1330 namespace { 1331 1332 /// Collects a set of attribute inference requests and performs them all in one 1333 /// go on a single SCC Node. Inference involves scanning function bodies 1334 /// looking for instructions that violate attribute assumptions. 1335 /// As soon as all the bodies are fine we are free to set the attribute. 1336 /// Customization of inference for individual attributes is performed by 1337 /// providing a handful of predicates for each attribute. 1338 class AttributeInferer { 1339 public: 1340 /// Describes a request for inference of a single attribute. 1341 struct InferenceDescriptor { 1342 1343 /// Returns true if this function does not have to be handled. 1344 /// General intent for this predicate is to provide an optimization 1345 /// for functions that do not need this attribute inference at all 1346 /// (say, for functions that already have the attribute). 1347 std::function<bool(const Function &)> SkipFunction; 1348 1349 /// Returns true if this instruction violates attribute assumptions. 1350 std::function<bool(Instruction &)> InstrBreaksAttribute; 1351 1352 /// Sets the inferred attribute for this function. 1353 std::function<void(Function &)> SetAttribute; 1354 1355 /// Attribute we derive. 1356 Attribute::AttrKind AKind; 1357 1358 /// If true, only "exact" definitions can be used to infer this attribute. 1359 /// See GlobalValue::isDefinitionExact. 1360 bool RequiresExactDefinition; 1361 1362 InferenceDescriptor(Attribute::AttrKind AK, 1363 std::function<bool(const Function &)> SkipFunc, 1364 std::function<bool(Instruction &)> InstrScan, 1365 std::function<void(Function &)> SetAttr, 1366 bool ReqExactDef) 1367 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1368 SetAttribute(SetAttr), AKind(AK), 1369 RequiresExactDefinition(ReqExactDef) {} 1370 }; 1371 1372 private: 1373 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1374 1375 public: 1376 void registerAttrInference(InferenceDescriptor AttrInference) { 1377 InferenceDescriptors.push_back(AttrInference); 1378 } 1379 1380 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1381 }; 1382 1383 /// Perform all the requested attribute inference actions according to the 1384 /// attribute predicates stored before. 1385 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1386 SmallSet<Function *, 8> &Changed) { 1387 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1388 // Go through all the functions in SCC and check corresponding attribute 1389 // assumptions for each of them. Attributes that are invalid for this SCC 1390 // will be removed from InferInSCC. 1391 for (Function *F : SCCNodes) { 1392 1393 // No attributes whose assumptions are still valid - done. 1394 if (InferInSCC.empty()) 1395 return; 1396 1397 // Check if our attributes ever need scanning/can be scanned. 1398 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1399 if (ID.SkipFunction(*F)) 1400 return false; 1401 1402 // Remove from further inference (invalidate) when visiting a function 1403 // that has no instructions to scan/has an unsuitable definition. 1404 return F->isDeclaration() || 1405 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1406 }); 1407 1408 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1409 // set up the F instructions scan to verify assumptions of the attribute. 1410 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1411 llvm::copy_if( 1412 InferInSCC, std::back_inserter(InferInThisFunc), 1413 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1414 1415 if (InferInThisFunc.empty()) 1416 continue; 1417 1418 // Start instruction scan. 1419 for (Instruction &I : instructions(*F)) { 1420 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1421 if (!ID.InstrBreaksAttribute(I)) 1422 return false; 1423 // Remove attribute from further inference on any other functions 1424 // because attribute assumptions have just been violated. 1425 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1426 return D.AKind == ID.AKind; 1427 }); 1428 // Remove attribute from the rest of current instruction scan. 1429 return true; 1430 }); 1431 1432 if (InferInThisFunc.empty()) 1433 break; 1434 } 1435 } 1436 1437 if (InferInSCC.empty()) 1438 return; 1439 1440 for (Function *F : SCCNodes) 1441 // At this point InferInSCC contains only functions that were either: 1442 // - explicitly skipped from scan/inference, or 1443 // - verified to have no instructions that break attribute assumptions. 1444 // Hence we just go and force the attribute for all non-skipped functions. 1445 for (auto &ID : InferInSCC) { 1446 if (ID.SkipFunction(*F)) 1447 continue; 1448 Changed.insert(F); 1449 ID.SetAttribute(*F); 1450 } 1451 } 1452 1453 struct SCCNodesResult { 1454 SCCNodeSet SCCNodes; 1455 bool HasUnknownCall; 1456 }; 1457 1458 } // end anonymous namespace 1459 1460 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1461 static bool InstrBreaksNonConvergent(Instruction &I, 1462 const SCCNodeSet &SCCNodes) { 1463 const CallBase *CB = dyn_cast<CallBase>(&I); 1464 // Breaks non-convergent assumption if CS is a convergent call to a function 1465 // not in the SCC. 1466 return CB && CB->isConvergent() && 1467 !SCCNodes.contains(CB->getCalledFunction()); 1468 } 1469 1470 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1471 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1472 if (!I.mayThrow()) 1473 return false; 1474 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1475 if (Function *Callee = CI->getCalledFunction()) { 1476 // I is a may-throw call to a function inside our SCC. This doesn't 1477 // invalidate our current working assumption that the SCC is no-throw; we 1478 // just have to scan that other function. 1479 if (SCCNodes.contains(Callee)) 1480 return false; 1481 } 1482 } 1483 return true; 1484 } 1485 1486 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1487 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1488 CallBase *CB = dyn_cast<CallBase>(&I); 1489 if (!CB) 1490 return false; 1491 1492 if (CB->hasFnAttr(Attribute::NoFree)) 1493 return false; 1494 1495 // Speculatively assume in SCC. 1496 if (Function *Callee = CB->getCalledFunction()) 1497 if (SCCNodes.contains(Callee)) 1498 return false; 1499 1500 return true; 1501 } 1502 1503 /// Attempt to remove convergent function attribute when possible. 1504 /// 1505 /// Returns true if any changes to function attributes were made. 1506 static void inferConvergent(const SCCNodeSet &SCCNodes, 1507 SmallSet<Function *, 8> &Changed) { 1508 AttributeInferer AI; 1509 1510 // Request to remove the convergent attribute from all functions in the SCC 1511 // if every callsite within the SCC is not convergent (except for calls 1512 // to functions within the SCC). 1513 // Note: Removal of the attr from the callsites will happen in 1514 // InstCombineCalls separately. 1515 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1516 Attribute::Convergent, 1517 // Skip non-convergent functions. 1518 [](const Function &F) { return !F.isConvergent(); }, 1519 // Instructions that break non-convergent assumption. 1520 [SCCNodes](Instruction &I) { 1521 return InstrBreaksNonConvergent(I, SCCNodes); 1522 }, 1523 [](Function &F) { 1524 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1525 << "\n"); 1526 F.setNotConvergent(); 1527 }, 1528 /* RequiresExactDefinition= */ false}); 1529 // Perform all the requested attribute inference actions. 1530 AI.run(SCCNodes, Changed); 1531 } 1532 1533 /// Infer attributes from all functions in the SCC by scanning every 1534 /// instruction for compliance to the attribute assumptions. Currently it 1535 /// does: 1536 /// - addition of NoUnwind attribute 1537 /// 1538 /// Returns true if any changes to function attributes were made. 1539 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1540 SmallSet<Function *, 8> &Changed) { 1541 AttributeInferer AI; 1542 1543 if (!DisableNoUnwindInference) 1544 // Request to infer nounwind attribute for all the functions in the SCC if 1545 // every callsite within the SCC is not throwing (except for calls to 1546 // functions within the SCC). Note that nounwind attribute suffers from 1547 // derefinement - results may change depending on how functions are 1548 // optimized. Thus it can be inferred only from exact definitions. 1549 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1550 Attribute::NoUnwind, 1551 // Skip non-throwing functions. 1552 [](const Function &F) { return F.doesNotThrow(); }, 1553 // Instructions that break non-throwing assumption. 1554 [&SCCNodes](Instruction &I) { 1555 return InstrBreaksNonThrowing(I, SCCNodes); 1556 }, 1557 [](Function &F) { 1558 LLVM_DEBUG(dbgs() 1559 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1560 F.setDoesNotThrow(); 1561 ++NumNoUnwind; 1562 }, 1563 /* RequiresExactDefinition= */ true}); 1564 1565 if (!DisableNoFreeInference) 1566 // Request to infer nofree attribute for all the functions in the SCC if 1567 // every callsite within the SCC does not directly or indirectly free 1568 // memory (except for calls to functions within the SCC). Note that nofree 1569 // attribute suffers from derefinement - results may change depending on 1570 // how functions are optimized. Thus it can be inferred only from exact 1571 // definitions. 1572 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1573 Attribute::NoFree, 1574 // Skip functions known not to free memory. 1575 [](const Function &F) { return F.doesNotFreeMemory(); }, 1576 // Instructions that break non-deallocating assumption. 1577 [&SCCNodes](Instruction &I) { 1578 return InstrBreaksNoFree(I, SCCNodes); 1579 }, 1580 [](Function &F) { 1581 LLVM_DEBUG(dbgs() 1582 << "Adding nofree attr to fn " << F.getName() << "\n"); 1583 F.setDoesNotFreeMemory(); 1584 ++NumNoFree; 1585 }, 1586 /* RequiresExactDefinition= */ true}); 1587 1588 // Perform all the requested attribute inference actions. 1589 AI.run(SCCNodes, Changed); 1590 } 1591 1592 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1593 SmallSet<Function *, 8> &Changed) { 1594 // Try and identify functions that do not recurse. 1595 1596 // If the SCC contains multiple nodes we know for sure there is recursion. 1597 if (SCCNodes.size() != 1) 1598 return; 1599 1600 Function *F = *SCCNodes.begin(); 1601 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1602 return; 1603 1604 // If all of the calls in F are identifiable and are to norecurse functions, F 1605 // is norecurse. This check also detects self-recursion as F is not currently 1606 // marked norecurse, so any called from F to F will not be marked norecurse. 1607 for (auto &BB : *F) 1608 for (auto &I : BB.instructionsWithoutDebug()) 1609 if (auto *CB = dyn_cast<CallBase>(&I)) { 1610 Function *Callee = CB->getCalledFunction(); 1611 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1612 // Function calls a potentially recursive function. 1613 return; 1614 } 1615 1616 // Every call was to a non-recursive function other than this function, and 1617 // we have no indirect recursion as the SCC size is one. This function cannot 1618 // recurse. 1619 F->setDoesNotRecurse(); 1620 ++NumNoRecurse; 1621 Changed.insert(F); 1622 } 1623 1624 static bool instructionDoesNotReturn(Instruction &I) { 1625 if (auto *CB = dyn_cast<CallBase>(&I)) 1626 return CB->hasFnAttr(Attribute::NoReturn); 1627 return false; 1628 } 1629 1630 // A basic block can only return if it terminates with a ReturnInst and does not 1631 // contain calls to noreturn functions. 1632 static bool basicBlockCanReturn(BasicBlock &BB) { 1633 if (!isa<ReturnInst>(BB.getTerminator())) 1634 return false; 1635 return none_of(BB, instructionDoesNotReturn); 1636 } 1637 1638 // FIXME: this doesn't handle recursion. 1639 static bool canReturn(Function &F) { 1640 SmallVector<BasicBlock *, 16> Worklist; 1641 SmallPtrSet<BasicBlock *, 16> Visited; 1642 1643 Visited.insert(&F.front()); 1644 Worklist.push_back(&F.front()); 1645 1646 do { 1647 BasicBlock *BB = Worklist.pop_back_val(); 1648 if (basicBlockCanReturn(*BB)) 1649 return true; 1650 for (BasicBlock *Succ : successors(BB)) 1651 if (Visited.insert(Succ).second) 1652 Worklist.push_back(Succ); 1653 } while (!Worklist.empty()); 1654 1655 return false; 1656 } 1657 1658 // Set the noreturn function attribute if possible. 1659 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1660 SmallSet<Function *, 8> &Changed) { 1661 for (Function *F : SCCNodes) { 1662 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1663 F->doesNotReturn()) 1664 continue; 1665 1666 if (!canReturn(*F)) { 1667 F->setDoesNotReturn(); 1668 Changed.insert(F); 1669 } 1670 } 1671 } 1672 1673 static bool functionWillReturn(const Function &F) { 1674 // We can infer and propagate function attributes only when we know that the 1675 // definition we'll get at link time is *exactly* the definition we see now. 1676 // For more details, see GlobalValue::mayBeDerefined. 1677 if (!F.hasExactDefinition()) 1678 return false; 1679 1680 // Must-progress function without side-effects must return. 1681 if (F.mustProgress() && F.onlyReadsMemory()) 1682 return true; 1683 1684 // Can only analyze functions with a definition. 1685 if (F.isDeclaration()) 1686 return false; 1687 1688 // Functions with loops require more sophisticated analysis, as the loop 1689 // may be infinite. For now, don't try to handle them. 1690 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1691 FindFunctionBackedges(F, Backedges); 1692 if (!Backedges.empty()) 1693 return false; 1694 1695 // If there are no loops, then the function is willreturn if all calls in 1696 // it are willreturn. 1697 return all_of(instructions(F), [](const Instruction &I) { 1698 return I.willReturn(); 1699 }); 1700 } 1701 1702 // Set the willreturn function attribute if possible. 1703 static void addWillReturn(const SCCNodeSet &SCCNodes, 1704 SmallSet<Function *, 8> &Changed) { 1705 for (Function *F : SCCNodes) { 1706 if (!F || F->willReturn() || !functionWillReturn(*F)) 1707 continue; 1708 1709 F->setWillReturn(); 1710 NumWillReturn++; 1711 Changed.insert(F); 1712 } 1713 } 1714 1715 // Return true if this is an atomic which has an ordering stronger than 1716 // unordered. Note that this is different than the predicate we use in 1717 // Attributor. Here we chose to be conservative and consider monotonic 1718 // operations potentially synchronizing. We generally don't do much with 1719 // monotonic operations, so this is simply risk reduction. 1720 static bool isOrderedAtomic(Instruction *I) { 1721 if (!I->isAtomic()) 1722 return false; 1723 1724 if (auto *FI = dyn_cast<FenceInst>(I)) 1725 // All legal orderings for fence are stronger than monotonic. 1726 return FI->getSyncScopeID() != SyncScope::SingleThread; 1727 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1728 return true; 1729 else if (auto *SI = dyn_cast<StoreInst>(I)) 1730 return !SI->isUnordered(); 1731 else if (auto *LI = dyn_cast<LoadInst>(I)) 1732 return !LI->isUnordered(); 1733 else { 1734 llvm_unreachable("unknown atomic instruction?"); 1735 } 1736 } 1737 1738 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1739 // Volatile may synchronize 1740 if (I.isVolatile()) 1741 return true; 1742 1743 // An ordered atomic may synchronize. (See comment about on monotonic.) 1744 if (isOrderedAtomic(&I)) 1745 return true; 1746 1747 auto *CB = dyn_cast<CallBase>(&I); 1748 if (!CB) 1749 // Non call site cases covered by the two checks above 1750 return false; 1751 1752 if (CB->hasFnAttr(Attribute::NoSync)) 1753 return false; 1754 1755 // Non volatile memset/memcpy/memmoves are nosync 1756 // NOTE: Only intrinsics with volatile flags should be handled here. All 1757 // others should be marked in Intrinsics.td. 1758 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1759 if (!MI->isVolatile()) 1760 return false; 1761 1762 // Speculatively assume in SCC. 1763 if (Function *Callee = CB->getCalledFunction()) 1764 if (SCCNodes.contains(Callee)) 1765 return false; 1766 1767 return true; 1768 } 1769 1770 // Infer the nosync attribute. 1771 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1772 SmallSet<Function *, 8> &Changed) { 1773 AttributeInferer AI; 1774 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1775 Attribute::NoSync, 1776 // Skip already marked functions. 1777 [](const Function &F) { return F.hasNoSync(); }, 1778 // Instructions that break nosync assumption. 1779 [&SCCNodes](Instruction &I) { 1780 return InstrBreaksNoSync(I, SCCNodes); 1781 }, 1782 [](Function &F) { 1783 LLVM_DEBUG(dbgs() 1784 << "Adding nosync attr to fn " << F.getName() << "\n"); 1785 F.setNoSync(); 1786 ++NumNoSync; 1787 }, 1788 /* RequiresExactDefinition= */ true}); 1789 AI.run(SCCNodes, Changed); 1790 } 1791 1792 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1793 SCCNodesResult Res; 1794 Res.HasUnknownCall = false; 1795 for (Function *F : Functions) { 1796 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1797 F->isPresplitCoroutine()) { 1798 // Treat any function we're trying not to optimize as if it were an 1799 // indirect call and omit it from the node set used below. 1800 Res.HasUnknownCall = true; 1801 continue; 1802 } 1803 // Track whether any functions in this SCC have an unknown call edge. 1804 // Note: if this is ever a performance hit, we can common it with 1805 // subsequent routines which also do scans over the instructions of the 1806 // function. 1807 if (!Res.HasUnknownCall) { 1808 for (Instruction &I : instructions(*F)) { 1809 if (auto *CB = dyn_cast<CallBase>(&I)) { 1810 if (!CB->getCalledFunction()) { 1811 Res.HasUnknownCall = true; 1812 break; 1813 } 1814 } 1815 } 1816 } 1817 Res.SCCNodes.insert(F); 1818 } 1819 return Res; 1820 } 1821 1822 template <typename AARGetterT> 1823 static SmallSet<Function *, 8> 1824 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1825 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1826 1827 // Bail if the SCC only contains optnone functions. 1828 if (Nodes.SCCNodes.empty()) 1829 return {}; 1830 1831 SmallSet<Function *, 8> Changed; 1832 1833 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1834 addMemoryAttrs(Nodes.SCCNodes, AARGetter, Changed); 1835 addArgumentAttrs(Nodes.SCCNodes, Changed); 1836 inferConvergent(Nodes.SCCNodes, Changed); 1837 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1838 addWillReturn(Nodes.SCCNodes, Changed); 1839 1840 // If we have no external nodes participating in the SCC, we can deduce some 1841 // more precise attributes as well. 1842 if (!Nodes.HasUnknownCall) { 1843 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1844 addNonNullAttrs(Nodes.SCCNodes, Changed); 1845 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1846 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1847 } 1848 1849 addNoSyncAttr(Nodes.SCCNodes, Changed); 1850 1851 // Finally, infer the maximal set of attributes from the ones we've inferred 1852 // above. This is handling the cases where one attribute on a signature 1853 // implies another, but for implementation reasons the inference rule for 1854 // the later is missing (or simply less sophisticated). 1855 for (Function *F : Nodes.SCCNodes) 1856 if (F) 1857 if (inferAttributesFromOthers(*F)) 1858 Changed.insert(F); 1859 1860 return Changed; 1861 } 1862 1863 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1864 CGSCCAnalysisManager &AM, 1865 LazyCallGraph &CG, 1866 CGSCCUpdateResult &) { 1867 FunctionAnalysisManager &FAM = 1868 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1869 1870 // We pass a lambda into functions to wire them up to the analysis manager 1871 // for getting function analyses. 1872 auto AARGetter = [&](Function &F) -> AAResults & { 1873 return FAM.getResult<AAManager>(F); 1874 }; 1875 1876 SmallVector<Function *, 8> Functions; 1877 for (LazyCallGraph::Node &N : C) { 1878 Functions.push_back(&N.getFunction()); 1879 } 1880 1881 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1882 if (ChangedFunctions.empty()) 1883 return PreservedAnalyses::all(); 1884 1885 // Invalidate analyses for modified functions so that we don't have to 1886 // invalidate all analyses for all functions in this SCC. 1887 PreservedAnalyses FuncPA; 1888 // We haven't changed the CFG for modified functions. 1889 FuncPA.preserveSet<CFGAnalyses>(); 1890 for (Function *Changed : ChangedFunctions) { 1891 FAM.invalidate(*Changed, FuncPA); 1892 // Also invalidate any direct callers of changed functions since analyses 1893 // may care about attributes of direct callees. For example, MemorySSA cares 1894 // about whether or not a call's callee modifies memory and queries that 1895 // through function attributes. 1896 for (auto *U : Changed->users()) { 1897 if (auto *Call = dyn_cast<CallBase>(U)) { 1898 if (Call->getCalledFunction() == Changed) 1899 FAM.invalidate(*Call->getFunction(), FuncPA); 1900 } 1901 } 1902 } 1903 1904 PreservedAnalyses PA; 1905 // We have not added or removed functions. 1906 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1907 // We already invalidated all relevant function analyses above. 1908 PA.preserveSet<AllAnalysesOn<Function>>(); 1909 return PA; 1910 } 1911 1912 namespace { 1913 1914 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1915 // Pass identification, replacement for typeid 1916 static char ID; 1917 1918 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1919 initializePostOrderFunctionAttrsLegacyPassPass( 1920 *PassRegistry::getPassRegistry()); 1921 } 1922 1923 bool runOnSCC(CallGraphSCC &SCC) override; 1924 1925 void getAnalysisUsage(AnalysisUsage &AU) const override { 1926 AU.setPreservesCFG(); 1927 AU.addRequired<AssumptionCacheTracker>(); 1928 getAAResultsAnalysisUsage(AU); 1929 CallGraphSCCPass::getAnalysisUsage(AU); 1930 } 1931 }; 1932 1933 } // end anonymous namespace 1934 1935 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1936 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1937 "Deduce function attributes", false, false) 1938 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1939 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1940 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1941 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1942 "Deduce function attributes", false, false) 1943 1944 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1945 return new PostOrderFunctionAttrsLegacyPass(); 1946 } 1947 1948 template <typename AARGetterT> 1949 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1950 SmallVector<Function *, 8> Functions; 1951 for (CallGraphNode *I : SCC) { 1952 Functions.push_back(I->getFunction()); 1953 } 1954 1955 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1956 } 1957 1958 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1959 if (skipSCC(SCC)) 1960 return false; 1961 return runImpl(SCC, LegacyAARGetter(*this)); 1962 } 1963 1964 namespace { 1965 1966 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1967 // Pass identification, replacement for typeid 1968 static char ID; 1969 1970 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1971 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1972 *PassRegistry::getPassRegistry()); 1973 } 1974 1975 bool runOnModule(Module &M) override; 1976 1977 void getAnalysisUsage(AnalysisUsage &AU) const override { 1978 AU.setPreservesCFG(); 1979 AU.addRequired<CallGraphWrapperPass>(); 1980 AU.addPreserved<CallGraphWrapperPass>(); 1981 } 1982 }; 1983 1984 } // end anonymous namespace 1985 1986 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1987 1988 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1989 "rpo-function-attrs", "Deduce function attributes in RPO", 1990 false, false) 1991 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1992 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1993 "rpo-function-attrs", "Deduce function attributes in RPO", 1994 false, false) 1995 1996 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1997 return new ReversePostOrderFunctionAttrsLegacyPass(); 1998 } 1999 2000 static bool addNoRecurseAttrsTopDown(Function &F) { 2001 // We check the preconditions for the function prior to calling this to avoid 2002 // the cost of building up a reversible post-order list. We assert them here 2003 // to make sure none of the invariants this relies on were violated. 2004 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 2005 assert(!F.doesNotRecurse() && 2006 "This function has already been deduced as norecurs!"); 2007 assert(F.hasInternalLinkage() && 2008 "Can only do top-down deduction for internal linkage functions!"); 2009 2010 // If F is internal and all of its uses are calls from a non-recursive 2011 // functions, then none of its calls could in fact recurse without going 2012 // through a function marked norecurse, and so we can mark this function too 2013 // as norecurse. Note that the uses must actually be calls -- otherwise 2014 // a pointer to this function could be returned from a norecurse function but 2015 // this function could be recursively (indirectly) called. Note that this 2016 // also detects if F is directly recursive as F is not yet marked as 2017 // a norecurse function. 2018 for (auto &U : F.uses()) { 2019 auto *I = dyn_cast<Instruction>(U.getUser()); 2020 if (!I) 2021 return false; 2022 CallBase *CB = dyn_cast<CallBase>(I); 2023 if (!CB || !CB->isCallee(&U) || 2024 !CB->getParent()->getParent()->doesNotRecurse()) 2025 return false; 2026 } 2027 F.setDoesNotRecurse(); 2028 ++NumNoRecurse; 2029 return true; 2030 } 2031 2032 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 2033 // We only have a post-order SCC traversal (because SCCs are inherently 2034 // discovered in post-order), so we accumulate them in a vector and then walk 2035 // it in reverse. This is simpler than using the RPO iterator infrastructure 2036 // because we need to combine SCC detection and the PO walk of the call 2037 // graph. We can also cheat egregiously because we're primarily interested in 2038 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2039 // with multiple functions in them will clearly be recursive. 2040 SmallVector<Function *, 16> Worklist; 2041 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2042 if (I->size() != 1) 2043 continue; 2044 2045 Function *F = I->front()->getFunction(); 2046 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2047 F->hasInternalLinkage()) 2048 Worklist.push_back(F); 2049 } 2050 2051 bool Changed = false; 2052 for (auto *F : llvm::reverse(Worklist)) 2053 Changed |= addNoRecurseAttrsTopDown(*F); 2054 2055 return Changed; 2056 } 2057 2058 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2059 if (skipModule(M)) 2060 return false; 2061 2062 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2063 2064 return deduceFunctionAttributeInRPO(M, CG); 2065 } 2066 2067 PreservedAnalyses 2068 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2069 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2070 2071 if (!deduceFunctionAttributeInRPO(M, CG)) 2072 return PreservedAnalyses::all(); 2073 2074 PreservedAnalyses PA; 2075 PA.preserve<CallGraphAnalysis>(); 2076 return PA; 2077 } 2078