1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 80 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 81 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 82 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 83 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 84 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 85 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 86 87 STATISTIC(NumThinLinkNoRecurse, 88 "Number of functions marked as norecurse during thinlink"); 89 STATISTIC(NumThinLinkNoUnwind, 90 "Number of functions marked as nounwind during thinlink"); 91 92 static cl::opt<bool> EnableNonnullArgPropagation( 93 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 94 cl::desc("Try to propagate nonnull argument attributes from callsites to " 95 "caller functions.")); 96 97 static cl::opt<bool> DisableNoUnwindInference( 98 "disable-nounwind-inference", cl::Hidden, 99 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 100 101 static cl::opt<bool> DisableNoFreeInference( 102 "disable-nofree-inference", cl::Hidden, 103 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 104 105 static cl::opt<bool> DisableThinLTOPropagation( 106 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 107 cl::desc("Don't propagate function-attrs in thinLTO")); 108 109 namespace { 110 111 using SCCNodeSet = SmallSetVector<Function *, 8>; 112 113 } // end anonymous namespace 114 115 /// Returns the memory access attribute for function F using AAR for AA results, 116 /// where SCCNodes is the current SCC. 117 /// 118 /// If ThisBody is true, this function may examine the function body and will 119 /// return a result pertaining to this copy of the function. If it is false, the 120 /// result will be based only on AA results for the function declaration; it 121 /// will be assumed that some other (perhaps less optimized) version of the 122 /// function may be selected at link time. 123 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 124 AAResults &AAR, 125 const SCCNodeSet &SCCNodes) { 126 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 127 if (MRB == FMRB_DoesNotAccessMemory) 128 // Already perfect! 129 return MAK_ReadNone; 130 131 if (!ThisBody) { 132 if (AliasAnalysis::onlyReadsMemory(MRB)) 133 return MAK_ReadOnly; 134 135 if (AliasAnalysis::doesNotReadMemory(MRB)) 136 return MAK_WriteOnly; 137 138 // Conservatively assume it reads and writes to memory. 139 return MAK_MayWrite; 140 } 141 142 // Scan the function body for instructions that may read or write memory. 143 bool ReadsMemory = false; 144 bool WritesMemory = false; 145 for (Instruction &I : instructions(F)) { 146 // Some instructions can be ignored even if they read or write memory. 147 // Detect these now, skipping to the next instruction if one is found. 148 if (auto *Call = dyn_cast<CallBase>(&I)) { 149 // Ignore calls to functions in the same SCC, as long as the call sites 150 // don't have operand bundles. Calls with operand bundles are allowed to 151 // have memory effects not described by the memory effects of the call 152 // target. 153 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 154 SCCNodes.count(Call->getCalledFunction())) 155 continue; 156 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 157 ModRefInfo MRI = createModRefInfo(MRB); 158 159 // If the call doesn't access memory, we're done. 160 if (isNoModRef(MRI)) 161 continue; 162 163 // A pseudo probe call shouldn't change any function attribute since it 164 // doesn't translate to a real instruction. It comes with a memory access 165 // tag to prevent itself being removed by optimizations and not block 166 // other instructions being optimized. 167 if (isa<PseudoProbeInst>(I)) 168 continue; 169 170 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 171 // The call could access any memory. If that includes writes, note it. 172 if (isModSet(MRI)) 173 WritesMemory = true; 174 // If it reads, note it. 175 if (isRefSet(MRI)) 176 ReadsMemory = true; 177 continue; 178 } 179 180 // Check whether all pointer arguments point to local memory, and 181 // ignore calls that only access local memory. 182 for (const Use &U : Call->args()) { 183 const Value *Arg = U; 184 if (!Arg->getType()->isPtrOrPtrVectorTy()) 185 continue; 186 187 MemoryLocation Loc = 188 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 189 190 // Skip accesses to local or constant memory as they don't impact the 191 // externally visible mod/ref behavior. 192 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 193 continue; 194 195 if (isModSet(MRI)) 196 // Writes non-local memory. 197 WritesMemory = true; 198 if (isRefSet(MRI)) 199 // Ok, it reads non-local memory. 200 ReadsMemory = true; 201 } 202 continue; 203 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 204 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 205 if (!LI->isVolatile()) { 206 MemoryLocation Loc = MemoryLocation::get(LI); 207 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 208 continue; 209 } 210 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 211 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 212 if (!SI->isVolatile()) { 213 MemoryLocation Loc = MemoryLocation::get(SI); 214 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 215 continue; 216 } 217 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 218 // Ignore vaargs on local memory. 219 MemoryLocation Loc = MemoryLocation::get(VI); 220 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 221 continue; 222 } 223 224 // Any remaining instructions need to be taken seriously! Check if they 225 // read or write memory. 226 // 227 // Writes memory, remember that. 228 WritesMemory |= I.mayWriteToMemory(); 229 230 // If this instruction may read memory, remember that. 231 ReadsMemory |= I.mayReadFromMemory(); 232 } 233 234 if (WritesMemory) { 235 if (!ReadsMemory) 236 return MAK_WriteOnly; 237 else 238 return MAK_MayWrite; 239 } 240 241 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 242 } 243 244 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 245 AAResults &AAR) { 246 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 247 } 248 249 /// Deduce readonly/readnone attributes for the SCC. 250 template <typename AARGetterT> 251 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 252 SmallSet<Function *, 8> &Changed) { 253 // Check if any of the functions in the SCC read or write memory. If they 254 // write memory then they can't be marked readnone or readonly. 255 bool ReadsMemory = false; 256 bool WritesMemory = false; 257 for (Function *F : SCCNodes) { 258 // Call the callable parameter to look up AA results for this function. 259 AAResults &AAR = AARGetter(*F); 260 261 // Non-exact function definitions may not be selected at link time, and an 262 // alternative version that writes to memory may be selected. See the 263 // comment on GlobalValue::isDefinitionExact for more details. 264 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 265 AAR, SCCNodes)) { 266 case MAK_MayWrite: 267 return; 268 case MAK_ReadOnly: 269 ReadsMemory = true; 270 break; 271 case MAK_WriteOnly: 272 WritesMemory = true; 273 break; 274 case MAK_ReadNone: 275 // Nothing to do! 276 break; 277 } 278 } 279 280 // If the SCC contains both functions that read and functions that write, then 281 // we cannot add readonly attributes. 282 if (ReadsMemory && WritesMemory) 283 return; 284 285 // Success! Functions in this SCC do not access memory, or only read memory. 286 // Give them the appropriate attribute. 287 288 for (Function *F : SCCNodes) { 289 if (F->doesNotAccessMemory()) 290 // Already perfect! 291 continue; 292 293 if (F->onlyReadsMemory() && ReadsMemory) 294 // No change. 295 continue; 296 297 if (F->doesNotReadMemory() && WritesMemory) 298 continue; 299 300 Changed.insert(F); 301 302 // Clear out any existing attributes. 303 AttrBuilder AttrsToRemove; 304 AttrsToRemove.addAttribute(Attribute::ReadOnly); 305 AttrsToRemove.addAttribute(Attribute::ReadNone); 306 AttrsToRemove.addAttribute(Attribute::WriteOnly); 307 308 if (!WritesMemory && !ReadsMemory) { 309 // Clear out any "access range attributes" if readnone was deduced. 310 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 311 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 313 } 314 F->removeFnAttrs(AttrsToRemove); 315 316 // Add in the new attribute. 317 if (WritesMemory && !ReadsMemory) 318 F->addFnAttr(Attribute::WriteOnly); 319 else 320 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 321 322 if (WritesMemory && !ReadsMemory) 323 ++NumWriteOnly; 324 else if (ReadsMemory) 325 ++NumReadOnly; 326 else 327 ++NumReadNone; 328 } 329 } 330 331 // Compute definitive function attributes for a function taking into account 332 // prevailing definitions and linkage types 333 static FunctionSummary *calculatePrevailingSummary( 334 ValueInfo VI, 335 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 336 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 337 IsPrevailing) { 338 339 if (CachedPrevailingSummary.count(VI)) 340 return CachedPrevailingSummary[VI]; 341 342 /// At this point, prevailing symbols have been resolved. The following leads 343 /// to returning a conservative result: 344 /// - Multiple instances with local linkage. Normally local linkage would be 345 /// unique per module 346 /// as the GUID includes the module path. We could have a guid alias if 347 /// there wasn't any distinguishing path when each file was compiled, but 348 /// that should be rare so we'll punt on those. 349 350 /// These next 2 cases should not happen and will assert: 351 /// - Multiple instances with external linkage. This should be caught in 352 /// symbol resolution 353 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 354 /// knowledge meaning we have to go conservative. 355 356 /// Otherwise, we calculate attributes for a function as: 357 /// 1. If we have a local linkage, take its attributes. If there's somehow 358 /// multiple, bail and go conservative. 359 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 360 /// prevailing, take its attributes. 361 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 362 /// differences. However, if the prevailing copy is known it will be used 363 /// so take its attributes. If the prevailing copy is in a native file 364 /// all IR copies will be dead and propagation will go conservative. 365 /// 4. AvailableExternally summaries without a prevailing copy are known to 366 /// occur in a couple of circumstances: 367 /// a. An internal function gets imported due to its caller getting 368 /// imported, it becomes AvailableExternally but no prevailing 369 /// definition exists. Because it has to get imported along with its 370 /// caller the attributes will be captured by propagating on its 371 /// caller. 372 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 373 /// definitions of explicitly instanced template declarations 374 /// for inlining which are ultimately dropped from the TU. Since this 375 /// is localized to the TU the attributes will have already made it to 376 /// the callers. 377 /// These are edge cases and already captured by their callers so we 378 /// ignore these for now. If they become relevant to optimize in the 379 /// future this can be revisited. 380 /// 5. Otherwise, go conservative. 381 382 CachedPrevailingSummary[VI] = nullptr; 383 FunctionSummary *Local = nullptr; 384 FunctionSummary *Prevailing = nullptr; 385 386 for (const auto &GVS : VI.getSummaryList()) { 387 if (!GVS->isLive()) 388 continue; 389 390 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 391 // Virtual and Unknown (e.g. indirect) calls require going conservative 392 if (!FS || FS->fflags().HasUnknownCall) 393 return nullptr; 394 395 const auto &Linkage = GVS->linkage(); 396 if (GlobalValue::isLocalLinkage(Linkage)) { 397 if (Local) { 398 LLVM_DEBUG( 399 dbgs() 400 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 401 "function " 402 << VI.name() << " from " << FS->modulePath() << ". Previous module " 403 << Local->modulePath() << "\n"); 404 return nullptr; 405 } 406 Local = FS; 407 } else if (GlobalValue::isExternalLinkage(Linkage)) { 408 assert(IsPrevailing(VI.getGUID(), GVS.get())); 409 Prevailing = FS; 410 break; 411 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 412 GlobalValue::isLinkOnceODRLinkage(Linkage) || 413 GlobalValue::isWeakAnyLinkage(Linkage) || 414 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 415 if (IsPrevailing(VI.getGUID(), GVS.get())) { 416 Prevailing = FS; 417 break; 418 } 419 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 420 // TODO: Handle these cases if they become meaningful 421 continue; 422 } 423 } 424 425 if (Local) { 426 assert(!Prevailing); 427 CachedPrevailingSummary[VI] = Local; 428 } else if (Prevailing) { 429 assert(!Local); 430 CachedPrevailingSummary[VI] = Prevailing; 431 } 432 433 return CachedPrevailingSummary[VI]; 434 } 435 436 bool llvm::thinLTOPropagateFunctionAttrs( 437 ModuleSummaryIndex &Index, 438 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 439 IsPrevailing) { 440 // TODO: implement addNoAliasAttrs once 441 // there's more information about the return type in the summary 442 if (DisableThinLTOPropagation) 443 return false; 444 445 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 446 bool Changed = false; 447 448 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 449 // Assume we can propagate unless we discover otherwise 450 FunctionSummary::FFlags InferredFlags; 451 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 452 InferredFlags.NoUnwind = true; 453 454 for (auto &V : SCCNodes) { 455 FunctionSummary *CallerSummary = 456 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 457 458 // Function summaries can fail to contain information such as declarations 459 if (!CallerSummary) 460 return; 461 462 if (CallerSummary->fflags().MayThrow) 463 InferredFlags.NoUnwind = false; 464 465 for (const auto &Callee : CallerSummary->calls()) { 466 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 467 Callee.first, CachedPrevailingSummary, IsPrevailing); 468 469 if (!CalleeSummary) 470 return; 471 472 if (!CalleeSummary->fflags().NoRecurse) 473 InferredFlags.NoRecurse = false; 474 475 if (!CalleeSummary->fflags().NoUnwind) 476 InferredFlags.NoUnwind = false; 477 478 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 479 break; 480 } 481 } 482 483 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 484 Changed = true; 485 for (auto &V : SCCNodes) { 486 if (InferredFlags.NoRecurse) { 487 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 488 << V.name() << "\n"); 489 ++NumThinLinkNoRecurse; 490 } 491 492 if (InferredFlags.NoUnwind) { 493 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 494 << V.name() << "\n"); 495 ++NumThinLinkNoUnwind; 496 } 497 498 for (auto &S : V.getSummaryList()) { 499 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 500 if (InferredFlags.NoRecurse) 501 FS->setNoRecurse(); 502 503 if (InferredFlags.NoUnwind) 504 FS->setNoUnwind(); 505 } 506 } 507 } 508 } 509 }; 510 511 // Call propagation functions on each SCC in the Index 512 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 513 ++I) { 514 std::vector<ValueInfo> Nodes(*I); 515 PropagateAttributes(Nodes); 516 } 517 return Changed; 518 } 519 520 namespace { 521 522 /// For a given pointer Argument, this retains a list of Arguments of functions 523 /// in the same SCC that the pointer data flows into. We use this to build an 524 /// SCC of the arguments. 525 struct ArgumentGraphNode { 526 Argument *Definition; 527 SmallVector<ArgumentGraphNode *, 4> Uses; 528 }; 529 530 class ArgumentGraph { 531 // We store pointers to ArgumentGraphNode objects, so it's important that 532 // that they not move around upon insert. 533 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 534 535 ArgumentMapTy ArgumentMap; 536 537 // There is no root node for the argument graph, in fact: 538 // void f(int *x, int *y) { if (...) f(x, y); } 539 // is an example where the graph is disconnected. The SCCIterator requires a 540 // single entry point, so we maintain a fake ("synthetic") root node that 541 // uses every node. Because the graph is directed and nothing points into 542 // the root, it will not participate in any SCCs (except for its own). 543 ArgumentGraphNode SyntheticRoot; 544 545 public: 546 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 547 548 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 549 550 iterator begin() { return SyntheticRoot.Uses.begin(); } 551 iterator end() { return SyntheticRoot.Uses.end(); } 552 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 553 554 ArgumentGraphNode *operator[](Argument *A) { 555 ArgumentGraphNode &Node = ArgumentMap[A]; 556 Node.Definition = A; 557 SyntheticRoot.Uses.push_back(&Node); 558 return &Node; 559 } 560 }; 561 562 /// This tracker checks whether callees are in the SCC, and if so it does not 563 /// consider that a capture, instead adding it to the "Uses" list and 564 /// continuing with the analysis. 565 struct ArgumentUsesTracker : public CaptureTracker { 566 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 567 568 void tooManyUses() override { Captured = true; } 569 570 bool captured(const Use *U) override { 571 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 572 if (!CB) { 573 Captured = true; 574 return true; 575 } 576 577 Function *F = CB->getCalledFunction(); 578 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 579 Captured = true; 580 return true; 581 } 582 583 // Note: the callee and the two successor blocks *follow* the argument 584 // operands. This means there is no need to adjust UseIndex to account for 585 // these. 586 587 unsigned UseIndex = 588 std::distance(const_cast<const Use *>(CB->arg_begin()), U); 589 590 assert(UseIndex < CB->data_operands_size() && 591 "Indirect function calls should have been filtered above!"); 592 593 if (UseIndex >= CB->arg_size()) { 594 // Data operand, but not a argument operand -- must be a bundle operand 595 assert(CB->hasOperandBundles() && "Must be!"); 596 597 // CaptureTracking told us that we're being captured by an operand bundle 598 // use. In this case it does not matter if the callee is within our SCC 599 // or not -- we've been captured in some unknown way, and we have to be 600 // conservative. 601 Captured = true; 602 return true; 603 } 604 605 if (UseIndex >= F->arg_size()) { 606 assert(F->isVarArg() && "More params than args in non-varargs call"); 607 Captured = true; 608 return true; 609 } 610 611 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 612 return false; 613 } 614 615 // True only if certainly captured (used outside our SCC). 616 bool Captured = false; 617 618 // Uses within our SCC. 619 SmallVector<Argument *, 4> Uses; 620 621 const SCCNodeSet &SCCNodes; 622 }; 623 624 } // end anonymous namespace 625 626 namespace llvm { 627 628 template <> struct GraphTraits<ArgumentGraphNode *> { 629 using NodeRef = ArgumentGraphNode *; 630 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 631 632 static NodeRef getEntryNode(NodeRef A) { return A; } 633 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 634 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 635 }; 636 637 template <> 638 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 639 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 640 641 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 642 return AG->begin(); 643 } 644 645 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 646 }; 647 648 } // end namespace llvm 649 650 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 651 static Attribute::AttrKind 652 determinePointerReadAttrs(Argument *A, 653 const SmallPtrSet<Argument *, 8> &SCCNodes) { 654 SmallVector<Use *, 32> Worklist; 655 SmallPtrSet<Use *, 32> Visited; 656 657 // inalloca arguments are always clobbered by the call. 658 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 659 return Attribute::None; 660 661 bool IsRead = false; 662 // We don't need to track IsWritten. If A is written to, return immediately. 663 664 for (Use &U : A->uses()) { 665 Visited.insert(&U); 666 Worklist.push_back(&U); 667 } 668 669 while (!Worklist.empty()) { 670 Use *U = Worklist.pop_back_val(); 671 Instruction *I = cast<Instruction>(U->getUser()); 672 673 switch (I->getOpcode()) { 674 case Instruction::BitCast: 675 case Instruction::GetElementPtr: 676 case Instruction::PHI: 677 case Instruction::Select: 678 case Instruction::AddrSpaceCast: 679 // The original value is not read/written via this if the new value isn't. 680 for (Use &UU : I->uses()) 681 if (Visited.insert(&UU).second) 682 Worklist.push_back(&UU); 683 break; 684 685 case Instruction::Call: 686 case Instruction::Invoke: { 687 bool Captures = true; 688 689 if (I->getType()->isVoidTy()) 690 Captures = false; 691 692 auto AddUsersToWorklistIfCapturing = [&] { 693 if (Captures) 694 for (Use &UU : I->uses()) 695 if (Visited.insert(&UU).second) 696 Worklist.push_back(&UU); 697 }; 698 699 CallBase &CB = cast<CallBase>(*I); 700 if (CB.doesNotAccessMemory()) { 701 AddUsersToWorklistIfCapturing(); 702 continue; 703 } 704 705 Function *F = CB.getCalledFunction(); 706 if (!F) { 707 if (CB.onlyReadsMemory()) { 708 IsRead = true; 709 AddUsersToWorklistIfCapturing(); 710 continue; 711 } 712 return Attribute::None; 713 } 714 715 // Note: the callee and the two successor blocks *follow* the argument 716 // operands. This means there is no need to adjust UseIndex to account 717 // for these. 718 719 unsigned UseIndex = std::distance(CB.arg_begin(), U); 720 721 // U cannot be the callee operand use: since we're exploring the 722 // transitive uses of an Argument, having such a use be a callee would 723 // imply the call site is an indirect call or invoke; and we'd take the 724 // early exit above. 725 assert(UseIndex < CB.data_operands_size() && 726 "Data operand use expected!"); 727 728 bool IsOperandBundleUse = UseIndex >= CB.arg_size(); 729 730 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 731 assert(F->isVarArg() && "More params than args in non-varargs call"); 732 return Attribute::None; 733 } 734 735 Captures &= !CB.doesNotCapture(UseIndex); 736 737 // Since the optimizer (by design) cannot see the data flow corresponding 738 // to a operand bundle use, these cannot participate in the optimistic SCC 739 // analysis. Instead, we model the operand bundle uses as arguments in 740 // call to a function external to the SCC. 741 if (IsOperandBundleUse || 742 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { 743 744 // The accessors used on call site here do the right thing for calls and 745 // invokes with operand bundles. 746 747 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 748 return Attribute::None; 749 if (!CB.doesNotAccessMemory(UseIndex)) 750 IsRead = true; 751 } 752 753 AddUsersToWorklistIfCapturing(); 754 break; 755 } 756 757 case Instruction::Load: 758 // A volatile load has side effects beyond what readonly can be relied 759 // upon. 760 if (cast<LoadInst>(I)->isVolatile()) 761 return Attribute::None; 762 763 IsRead = true; 764 break; 765 766 case Instruction::ICmp: 767 case Instruction::Ret: 768 break; 769 770 default: 771 return Attribute::None; 772 } 773 } 774 775 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; 776 } 777 778 /// Deduce returned attributes for the SCC. 779 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 780 SmallSet<Function *, 8> &Changed) { 781 // Check each function in turn, determining if an argument is always returned. 782 for (Function *F : SCCNodes) { 783 // We can infer and propagate function attributes only when we know that the 784 // definition we'll get at link time is *exactly* the definition we see now. 785 // For more details, see GlobalValue::mayBeDerefined. 786 if (!F->hasExactDefinition()) 787 continue; 788 789 if (F->getReturnType()->isVoidTy()) 790 continue; 791 792 // There is nothing to do if an argument is already marked as 'returned'. 793 if (llvm::any_of(F->args(), 794 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 795 continue; 796 797 auto FindRetArg = [&]() -> Value * { 798 Value *RetArg = nullptr; 799 for (BasicBlock &BB : *F) 800 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 801 // Note that stripPointerCasts should look through functions with 802 // returned arguments. 803 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 804 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 805 return nullptr; 806 807 if (!RetArg) 808 RetArg = RetVal; 809 else if (RetArg != RetVal) 810 return nullptr; 811 } 812 813 return RetArg; 814 }; 815 816 if (Value *RetArg = FindRetArg()) { 817 auto *A = cast<Argument>(RetArg); 818 A->addAttr(Attribute::Returned); 819 ++NumReturned; 820 Changed.insert(F); 821 } 822 } 823 } 824 825 /// If a callsite has arguments that are also arguments to the parent function, 826 /// try to propagate attributes from the callsite's arguments to the parent's 827 /// arguments. This may be important because inlining can cause information loss 828 /// when attribute knowledge disappears with the inlined call. 829 static bool addArgumentAttrsFromCallsites(Function &F) { 830 if (!EnableNonnullArgPropagation) 831 return false; 832 833 bool Changed = false; 834 835 // For an argument attribute to transfer from a callsite to the parent, the 836 // call must be guaranteed to execute every time the parent is called. 837 // Conservatively, just check for calls in the entry block that are guaranteed 838 // to execute. 839 // TODO: This could be enhanced by testing if the callsite post-dominates the 840 // entry block or by doing simple forward walks or backward walks to the 841 // callsite. 842 BasicBlock &Entry = F.getEntryBlock(); 843 for (Instruction &I : Entry) { 844 if (auto *CB = dyn_cast<CallBase>(&I)) { 845 if (auto *CalledFunc = CB->getCalledFunction()) { 846 for (auto &CSArg : CalledFunc->args()) { 847 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 848 continue; 849 850 // If the non-null callsite argument operand is an argument to 'F' 851 // (the caller) and the call is guaranteed to execute, then the value 852 // must be non-null throughout 'F'. 853 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 854 if (FArg && !FArg->hasNonNullAttr()) { 855 FArg->addAttr(Attribute::NonNull); 856 Changed = true; 857 } 858 } 859 } 860 } 861 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 862 break; 863 } 864 865 return Changed; 866 } 867 868 static bool addReadAttr(Argument *A, Attribute::AttrKind R) { 869 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone) 870 && "Must be a Read attribute."); 871 assert(A && "Argument must not be null."); 872 873 // If the argument already has the attribute, nothing needs to be done. 874 if (A->hasAttribute(R)) 875 return false; 876 877 // Otherwise, remove potentially conflicting attribute, add the new one, 878 // and update statistics. 879 A->removeAttr(Attribute::WriteOnly); 880 A->removeAttr(Attribute::ReadOnly); 881 A->removeAttr(Attribute::ReadNone); 882 A->addAttr(R); 883 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 884 return true; 885 } 886 887 /// Deduce nocapture attributes for the SCC. 888 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 889 SmallSet<Function *, 8> &Changed) { 890 ArgumentGraph AG; 891 892 // Check each function in turn, determining which pointer arguments are not 893 // captured. 894 for (Function *F : SCCNodes) { 895 // We can infer and propagate function attributes only when we know that the 896 // definition we'll get at link time is *exactly* the definition we see now. 897 // For more details, see GlobalValue::mayBeDerefined. 898 if (!F->hasExactDefinition()) 899 continue; 900 901 if (addArgumentAttrsFromCallsites(*F)) 902 Changed.insert(F); 903 904 // Functions that are readonly (or readnone) and nounwind and don't return 905 // a value can't capture arguments. Don't analyze them. 906 if (F->onlyReadsMemory() && F->doesNotThrow() && 907 F->getReturnType()->isVoidTy()) { 908 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 909 ++A) { 910 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 911 A->addAttr(Attribute::NoCapture); 912 ++NumNoCapture; 913 Changed.insert(F); 914 } 915 } 916 continue; 917 } 918 919 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 920 ++A) { 921 if (!A->getType()->isPointerTy()) 922 continue; 923 bool HasNonLocalUses = false; 924 if (!A->hasNoCaptureAttr()) { 925 ArgumentUsesTracker Tracker(SCCNodes); 926 PointerMayBeCaptured(&*A, &Tracker); 927 if (!Tracker.Captured) { 928 if (Tracker.Uses.empty()) { 929 // If it's trivially not captured, mark it nocapture now. 930 A->addAttr(Attribute::NoCapture); 931 ++NumNoCapture; 932 Changed.insert(F); 933 } else { 934 // If it's not trivially captured and not trivially not captured, 935 // then it must be calling into another function in our SCC. Save 936 // its particulars for Argument-SCC analysis later. 937 ArgumentGraphNode *Node = AG[&*A]; 938 for (Argument *Use : Tracker.Uses) { 939 Node->Uses.push_back(AG[Use]); 940 if (Use != &*A) 941 HasNonLocalUses = true; 942 } 943 } 944 } 945 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 946 } 947 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 948 // Can we determine that it's readonly/readnone without doing an SCC? 949 // Note that we don't allow any calls at all here, or else our result 950 // will be dependent on the iteration order through the functions in the 951 // SCC. 952 SmallPtrSet<Argument *, 8> Self; 953 Self.insert(&*A); 954 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); 955 if (R != Attribute::None) 956 if (addReadAttr(A, R)) 957 Changed.insert(F); 958 } 959 } 960 } 961 962 // The graph we've collected is partial because we stopped scanning for 963 // argument uses once we solved the argument trivially. These partial nodes 964 // show up as ArgumentGraphNode objects with an empty Uses list, and for 965 // these nodes the final decision about whether they capture has already been 966 // made. If the definition doesn't have a 'nocapture' attribute by now, it 967 // captures. 968 969 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 970 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 971 if (ArgumentSCC.size() == 1) { 972 if (!ArgumentSCC[0]->Definition) 973 continue; // synthetic root node 974 975 // eg. "void f(int* x) { if (...) f(x); }" 976 if (ArgumentSCC[0]->Uses.size() == 1 && 977 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 978 Argument *A = ArgumentSCC[0]->Definition; 979 A->addAttr(Attribute::NoCapture); 980 ++NumNoCapture; 981 Changed.insert(A->getParent()); 982 } 983 continue; 984 } 985 986 bool SCCCaptured = false; 987 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 988 I != E && !SCCCaptured; ++I) { 989 ArgumentGraphNode *Node = *I; 990 if (Node->Uses.empty()) { 991 if (!Node->Definition->hasNoCaptureAttr()) 992 SCCCaptured = true; 993 } 994 } 995 if (SCCCaptured) 996 continue; 997 998 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 999 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1000 // quickly looking up whether a given Argument is in this ArgumentSCC. 1001 for (ArgumentGraphNode *I : ArgumentSCC) { 1002 ArgumentSCCNodes.insert(I->Definition); 1003 } 1004 1005 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1006 I != E && !SCCCaptured; ++I) { 1007 ArgumentGraphNode *N = *I; 1008 for (ArgumentGraphNode *Use : N->Uses) { 1009 Argument *A = Use->Definition; 1010 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1011 continue; 1012 SCCCaptured = true; 1013 break; 1014 } 1015 } 1016 if (SCCCaptured) 1017 continue; 1018 1019 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1020 Argument *A = ArgumentSCC[i]->Definition; 1021 A->addAttr(Attribute::NoCapture); 1022 ++NumNoCapture; 1023 Changed.insert(A->getParent()); 1024 } 1025 1026 // We also want to compute readonly/readnone. With a small number of false 1027 // negatives, we can assume that any pointer which is captured isn't going 1028 // to be provably readonly or readnone, since by definition we can't 1029 // analyze all uses of a captured pointer. 1030 // 1031 // The false negatives happen when the pointer is captured by a function 1032 // that promises readonly/readnone behaviour on the pointer, then the 1033 // pointer's lifetime ends before anything that writes to arbitrary memory. 1034 // Also, a readonly/readnone pointer may be returned, but returning a 1035 // pointer is capturing it. 1036 1037 Attribute::AttrKind ReadAttr = Attribute::ReadNone; 1038 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1039 Argument *A = ArgumentSCC[i]->Definition; 1040 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); 1041 if (K == Attribute::ReadNone) 1042 continue; 1043 if (K == Attribute::ReadOnly) { 1044 ReadAttr = Attribute::ReadOnly; 1045 continue; 1046 } 1047 ReadAttr = K; 1048 break; 1049 } 1050 1051 if (ReadAttr != Attribute::None) { 1052 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1053 Argument *A = ArgumentSCC[i]->Definition; 1054 if (addReadAttr(A, ReadAttr)) 1055 Changed.insert(A->getParent()); 1056 } 1057 } 1058 } 1059 } 1060 1061 /// Tests whether a function is "malloc-like". 1062 /// 1063 /// A function is "malloc-like" if it returns either null or a pointer that 1064 /// doesn't alias any other pointer visible to the caller. 1065 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1066 SmallSetVector<Value *, 8> FlowsToReturn; 1067 for (BasicBlock &BB : *F) 1068 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1069 FlowsToReturn.insert(Ret->getReturnValue()); 1070 1071 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1072 Value *RetVal = FlowsToReturn[i]; 1073 1074 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1075 if (!C->isNullValue() && !isa<UndefValue>(C)) 1076 return false; 1077 1078 continue; 1079 } 1080 1081 if (isa<Argument>(RetVal)) 1082 return false; 1083 1084 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1085 switch (RVI->getOpcode()) { 1086 // Extend the analysis by looking upwards. 1087 case Instruction::BitCast: 1088 case Instruction::GetElementPtr: 1089 case Instruction::AddrSpaceCast: 1090 FlowsToReturn.insert(RVI->getOperand(0)); 1091 continue; 1092 case Instruction::Select: { 1093 SelectInst *SI = cast<SelectInst>(RVI); 1094 FlowsToReturn.insert(SI->getTrueValue()); 1095 FlowsToReturn.insert(SI->getFalseValue()); 1096 continue; 1097 } 1098 case Instruction::PHI: { 1099 PHINode *PN = cast<PHINode>(RVI); 1100 for (Value *IncValue : PN->incoming_values()) 1101 FlowsToReturn.insert(IncValue); 1102 continue; 1103 } 1104 1105 // Check whether the pointer came from an allocation. 1106 case Instruction::Alloca: 1107 break; 1108 case Instruction::Call: 1109 case Instruction::Invoke: { 1110 CallBase &CB = cast<CallBase>(*RVI); 1111 if (CB.hasRetAttr(Attribute::NoAlias)) 1112 break; 1113 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1114 break; 1115 LLVM_FALLTHROUGH; 1116 } 1117 default: 1118 return false; // Did not come from an allocation. 1119 } 1120 1121 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1122 return false; 1123 } 1124 1125 return true; 1126 } 1127 1128 /// Deduce noalias attributes for the SCC. 1129 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1130 SmallSet<Function *, 8> &Changed) { 1131 // Check each function in turn, determining which functions return noalias 1132 // pointers. 1133 for (Function *F : SCCNodes) { 1134 // Already noalias. 1135 if (F->returnDoesNotAlias()) 1136 continue; 1137 1138 // We can infer and propagate function attributes only when we know that the 1139 // definition we'll get at link time is *exactly* the definition we see now. 1140 // For more details, see GlobalValue::mayBeDerefined. 1141 if (!F->hasExactDefinition()) 1142 return; 1143 1144 // We annotate noalias return values, which are only applicable to 1145 // pointer types. 1146 if (!F->getReturnType()->isPointerTy()) 1147 continue; 1148 1149 if (!isFunctionMallocLike(F, SCCNodes)) 1150 return; 1151 } 1152 1153 for (Function *F : SCCNodes) { 1154 if (F->returnDoesNotAlias() || 1155 !F->getReturnType()->isPointerTy()) 1156 continue; 1157 1158 F->setReturnDoesNotAlias(); 1159 ++NumNoAlias; 1160 Changed.insert(F); 1161 } 1162 } 1163 1164 /// Tests whether this function is known to not return null. 1165 /// 1166 /// Requires that the function returns a pointer. 1167 /// 1168 /// Returns true if it believes the function will not return a null, and sets 1169 /// \p Speculative based on whether the returned conclusion is a speculative 1170 /// conclusion due to SCC calls. 1171 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1172 bool &Speculative) { 1173 assert(F->getReturnType()->isPointerTy() && 1174 "nonnull only meaningful on pointer types"); 1175 Speculative = false; 1176 1177 SmallSetVector<Value *, 8> FlowsToReturn; 1178 for (BasicBlock &BB : *F) 1179 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1180 FlowsToReturn.insert(Ret->getReturnValue()); 1181 1182 auto &DL = F->getParent()->getDataLayout(); 1183 1184 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1185 Value *RetVal = FlowsToReturn[i]; 1186 1187 // If this value is locally known to be non-null, we're good 1188 if (isKnownNonZero(RetVal, DL)) 1189 continue; 1190 1191 // Otherwise, we need to look upwards since we can't make any local 1192 // conclusions. 1193 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1194 if (!RVI) 1195 return false; 1196 switch (RVI->getOpcode()) { 1197 // Extend the analysis by looking upwards. 1198 case Instruction::BitCast: 1199 case Instruction::GetElementPtr: 1200 case Instruction::AddrSpaceCast: 1201 FlowsToReturn.insert(RVI->getOperand(0)); 1202 continue; 1203 case Instruction::Select: { 1204 SelectInst *SI = cast<SelectInst>(RVI); 1205 FlowsToReturn.insert(SI->getTrueValue()); 1206 FlowsToReturn.insert(SI->getFalseValue()); 1207 continue; 1208 } 1209 case Instruction::PHI: { 1210 PHINode *PN = cast<PHINode>(RVI); 1211 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1212 FlowsToReturn.insert(PN->getIncomingValue(i)); 1213 continue; 1214 } 1215 case Instruction::Call: 1216 case Instruction::Invoke: { 1217 CallBase &CB = cast<CallBase>(*RVI); 1218 Function *Callee = CB.getCalledFunction(); 1219 // A call to a node within the SCC is assumed to return null until 1220 // proven otherwise 1221 if (Callee && SCCNodes.count(Callee)) { 1222 Speculative = true; 1223 continue; 1224 } 1225 return false; 1226 } 1227 default: 1228 return false; // Unknown source, may be null 1229 }; 1230 llvm_unreachable("should have either continued or returned"); 1231 } 1232 1233 return true; 1234 } 1235 1236 /// Deduce nonnull attributes for the SCC. 1237 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1238 SmallSet<Function *, 8> &Changed) { 1239 // Speculative that all functions in the SCC return only nonnull 1240 // pointers. We may refute this as we analyze functions. 1241 bool SCCReturnsNonNull = true; 1242 1243 // Check each function in turn, determining which functions return nonnull 1244 // pointers. 1245 for (Function *F : SCCNodes) { 1246 // Already nonnull. 1247 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1248 continue; 1249 1250 // We can infer and propagate function attributes only when we know that the 1251 // definition we'll get at link time is *exactly* the definition we see now. 1252 // For more details, see GlobalValue::mayBeDerefined. 1253 if (!F->hasExactDefinition()) 1254 return; 1255 1256 // We annotate nonnull return values, which are only applicable to 1257 // pointer types. 1258 if (!F->getReturnType()->isPointerTy()) 1259 continue; 1260 1261 bool Speculative = false; 1262 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1263 if (!Speculative) { 1264 // Mark the function eagerly since we may discover a function 1265 // which prevents us from speculating about the entire SCC 1266 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1267 << " as nonnull\n"); 1268 F->addRetAttr(Attribute::NonNull); 1269 ++NumNonNullReturn; 1270 Changed.insert(F); 1271 } 1272 continue; 1273 } 1274 // At least one function returns something which could be null, can't 1275 // speculate any more. 1276 SCCReturnsNonNull = false; 1277 } 1278 1279 if (SCCReturnsNonNull) { 1280 for (Function *F : SCCNodes) { 1281 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1282 !F->getReturnType()->isPointerTy()) 1283 continue; 1284 1285 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1286 F->addRetAttr(Attribute::NonNull); 1287 ++NumNonNullReturn; 1288 Changed.insert(F); 1289 } 1290 } 1291 } 1292 1293 namespace { 1294 1295 /// Collects a set of attribute inference requests and performs them all in one 1296 /// go on a single SCC Node. Inference involves scanning function bodies 1297 /// looking for instructions that violate attribute assumptions. 1298 /// As soon as all the bodies are fine we are free to set the attribute. 1299 /// Customization of inference for individual attributes is performed by 1300 /// providing a handful of predicates for each attribute. 1301 class AttributeInferer { 1302 public: 1303 /// Describes a request for inference of a single attribute. 1304 struct InferenceDescriptor { 1305 1306 /// Returns true if this function does not have to be handled. 1307 /// General intent for this predicate is to provide an optimization 1308 /// for functions that do not need this attribute inference at all 1309 /// (say, for functions that already have the attribute). 1310 std::function<bool(const Function &)> SkipFunction; 1311 1312 /// Returns true if this instruction violates attribute assumptions. 1313 std::function<bool(Instruction &)> InstrBreaksAttribute; 1314 1315 /// Sets the inferred attribute for this function. 1316 std::function<void(Function &)> SetAttribute; 1317 1318 /// Attribute we derive. 1319 Attribute::AttrKind AKind; 1320 1321 /// If true, only "exact" definitions can be used to infer this attribute. 1322 /// See GlobalValue::isDefinitionExact. 1323 bool RequiresExactDefinition; 1324 1325 InferenceDescriptor(Attribute::AttrKind AK, 1326 std::function<bool(const Function &)> SkipFunc, 1327 std::function<bool(Instruction &)> InstrScan, 1328 std::function<void(Function &)> SetAttr, 1329 bool ReqExactDef) 1330 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1331 SetAttribute(SetAttr), AKind(AK), 1332 RequiresExactDefinition(ReqExactDef) {} 1333 }; 1334 1335 private: 1336 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1337 1338 public: 1339 void registerAttrInference(InferenceDescriptor AttrInference) { 1340 InferenceDescriptors.push_back(AttrInference); 1341 } 1342 1343 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1344 }; 1345 1346 /// Perform all the requested attribute inference actions according to the 1347 /// attribute predicates stored before. 1348 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1349 SmallSet<Function *, 8> &Changed) { 1350 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1351 // Go through all the functions in SCC and check corresponding attribute 1352 // assumptions for each of them. Attributes that are invalid for this SCC 1353 // will be removed from InferInSCC. 1354 for (Function *F : SCCNodes) { 1355 1356 // No attributes whose assumptions are still valid - done. 1357 if (InferInSCC.empty()) 1358 return; 1359 1360 // Check if our attributes ever need scanning/can be scanned. 1361 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1362 if (ID.SkipFunction(*F)) 1363 return false; 1364 1365 // Remove from further inference (invalidate) when visiting a function 1366 // that has no instructions to scan/has an unsuitable definition. 1367 return F->isDeclaration() || 1368 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1369 }); 1370 1371 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1372 // set up the F instructions scan to verify assumptions of the attribute. 1373 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1374 llvm::copy_if( 1375 InferInSCC, std::back_inserter(InferInThisFunc), 1376 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1377 1378 if (InferInThisFunc.empty()) 1379 continue; 1380 1381 // Start instruction scan. 1382 for (Instruction &I : instructions(*F)) { 1383 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1384 if (!ID.InstrBreaksAttribute(I)) 1385 return false; 1386 // Remove attribute from further inference on any other functions 1387 // because attribute assumptions have just been violated. 1388 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1389 return D.AKind == ID.AKind; 1390 }); 1391 // Remove attribute from the rest of current instruction scan. 1392 return true; 1393 }); 1394 1395 if (InferInThisFunc.empty()) 1396 break; 1397 } 1398 } 1399 1400 if (InferInSCC.empty()) 1401 return; 1402 1403 for (Function *F : SCCNodes) 1404 // At this point InferInSCC contains only functions that were either: 1405 // - explicitly skipped from scan/inference, or 1406 // - verified to have no instructions that break attribute assumptions. 1407 // Hence we just go and force the attribute for all non-skipped functions. 1408 for (auto &ID : InferInSCC) { 1409 if (ID.SkipFunction(*F)) 1410 continue; 1411 Changed.insert(F); 1412 ID.SetAttribute(*F); 1413 } 1414 } 1415 1416 struct SCCNodesResult { 1417 SCCNodeSet SCCNodes; 1418 bool HasUnknownCall; 1419 }; 1420 1421 } // end anonymous namespace 1422 1423 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1424 static bool InstrBreaksNonConvergent(Instruction &I, 1425 const SCCNodeSet &SCCNodes) { 1426 const CallBase *CB = dyn_cast<CallBase>(&I); 1427 // Breaks non-convergent assumption if CS is a convergent call to a function 1428 // not in the SCC. 1429 return CB && CB->isConvergent() && 1430 !SCCNodes.contains(CB->getCalledFunction()); 1431 } 1432 1433 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1434 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1435 if (!I.mayThrow()) 1436 return false; 1437 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1438 if (Function *Callee = CI->getCalledFunction()) { 1439 // I is a may-throw call to a function inside our SCC. This doesn't 1440 // invalidate our current working assumption that the SCC is no-throw; we 1441 // just have to scan that other function. 1442 if (SCCNodes.contains(Callee)) 1443 return false; 1444 } 1445 } 1446 return true; 1447 } 1448 1449 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1450 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1451 CallBase *CB = dyn_cast<CallBase>(&I); 1452 if (!CB) 1453 return false; 1454 1455 if (CB->hasFnAttr(Attribute::NoFree)) 1456 return false; 1457 1458 // Speculatively assume in SCC. 1459 if (Function *Callee = CB->getCalledFunction()) 1460 if (SCCNodes.contains(Callee)) 1461 return false; 1462 1463 return true; 1464 } 1465 1466 /// Attempt to remove convergent function attribute when possible. 1467 /// 1468 /// Returns true if any changes to function attributes were made. 1469 static void inferConvergent(const SCCNodeSet &SCCNodes, 1470 SmallSet<Function *, 8> &Changed) { 1471 AttributeInferer AI; 1472 1473 // Request to remove the convergent attribute from all functions in the SCC 1474 // if every callsite within the SCC is not convergent (except for calls 1475 // to functions within the SCC). 1476 // Note: Removal of the attr from the callsites will happen in 1477 // InstCombineCalls separately. 1478 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1479 Attribute::Convergent, 1480 // Skip non-convergent functions. 1481 [](const Function &F) { return !F.isConvergent(); }, 1482 // Instructions that break non-convergent assumption. 1483 [SCCNodes](Instruction &I) { 1484 return InstrBreaksNonConvergent(I, SCCNodes); 1485 }, 1486 [](Function &F) { 1487 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1488 << "\n"); 1489 F.setNotConvergent(); 1490 }, 1491 /* RequiresExactDefinition= */ false}); 1492 // Perform all the requested attribute inference actions. 1493 AI.run(SCCNodes, Changed); 1494 } 1495 1496 /// Infer attributes from all functions in the SCC by scanning every 1497 /// instruction for compliance to the attribute assumptions. Currently it 1498 /// does: 1499 /// - addition of NoUnwind attribute 1500 /// 1501 /// Returns true if any changes to function attributes were made. 1502 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1503 SmallSet<Function *, 8> &Changed) { 1504 AttributeInferer AI; 1505 1506 if (!DisableNoUnwindInference) 1507 // Request to infer nounwind attribute for all the functions in the SCC if 1508 // every callsite within the SCC is not throwing (except for calls to 1509 // functions within the SCC). Note that nounwind attribute suffers from 1510 // derefinement - results may change depending on how functions are 1511 // optimized. Thus it can be inferred only from exact definitions. 1512 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1513 Attribute::NoUnwind, 1514 // Skip non-throwing functions. 1515 [](const Function &F) { return F.doesNotThrow(); }, 1516 // Instructions that break non-throwing assumption. 1517 [&SCCNodes](Instruction &I) { 1518 return InstrBreaksNonThrowing(I, SCCNodes); 1519 }, 1520 [](Function &F) { 1521 LLVM_DEBUG(dbgs() 1522 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1523 F.setDoesNotThrow(); 1524 ++NumNoUnwind; 1525 }, 1526 /* RequiresExactDefinition= */ true}); 1527 1528 if (!DisableNoFreeInference) 1529 // Request to infer nofree attribute for all the functions in the SCC if 1530 // every callsite within the SCC does not directly or indirectly free 1531 // memory (except for calls to functions within the SCC). Note that nofree 1532 // attribute suffers from derefinement - results may change depending on 1533 // how functions are optimized. Thus it can be inferred only from exact 1534 // definitions. 1535 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1536 Attribute::NoFree, 1537 // Skip functions known not to free memory. 1538 [](const Function &F) { return F.doesNotFreeMemory(); }, 1539 // Instructions that break non-deallocating assumption. 1540 [&SCCNodes](Instruction &I) { 1541 return InstrBreaksNoFree(I, SCCNodes); 1542 }, 1543 [](Function &F) { 1544 LLVM_DEBUG(dbgs() 1545 << "Adding nofree attr to fn " << F.getName() << "\n"); 1546 F.setDoesNotFreeMemory(); 1547 ++NumNoFree; 1548 }, 1549 /* RequiresExactDefinition= */ true}); 1550 1551 // Perform all the requested attribute inference actions. 1552 AI.run(SCCNodes, Changed); 1553 } 1554 1555 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1556 SmallSet<Function *, 8> &Changed) { 1557 // Try and identify functions that do not recurse. 1558 1559 // If the SCC contains multiple nodes we know for sure there is recursion. 1560 if (SCCNodes.size() != 1) 1561 return; 1562 1563 Function *F = *SCCNodes.begin(); 1564 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1565 return; 1566 1567 // If all of the calls in F are identifiable and are to norecurse functions, F 1568 // is norecurse. This check also detects self-recursion as F is not currently 1569 // marked norecurse, so any called from F to F will not be marked norecurse. 1570 for (auto &BB : *F) 1571 for (auto &I : BB.instructionsWithoutDebug()) 1572 if (auto *CB = dyn_cast<CallBase>(&I)) { 1573 Function *Callee = CB->getCalledFunction(); 1574 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1575 // Function calls a potentially recursive function. 1576 return; 1577 } 1578 1579 // Every call was to a non-recursive function other than this function, and 1580 // we have no indirect recursion as the SCC size is one. This function cannot 1581 // recurse. 1582 F->setDoesNotRecurse(); 1583 ++NumNoRecurse; 1584 Changed.insert(F); 1585 } 1586 1587 static bool instructionDoesNotReturn(Instruction &I) { 1588 if (auto *CB = dyn_cast<CallBase>(&I)) 1589 return CB->hasFnAttr(Attribute::NoReturn); 1590 return false; 1591 } 1592 1593 // A basic block can only return if it terminates with a ReturnInst and does not 1594 // contain calls to noreturn functions. 1595 static bool basicBlockCanReturn(BasicBlock &BB) { 1596 if (!isa<ReturnInst>(BB.getTerminator())) 1597 return false; 1598 return none_of(BB, instructionDoesNotReturn); 1599 } 1600 1601 // Set the noreturn function attribute if possible. 1602 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1603 SmallSet<Function *, 8> &Changed) { 1604 for (Function *F : SCCNodes) { 1605 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1606 F->doesNotReturn()) 1607 continue; 1608 1609 // The function can return if any basic blocks can return. 1610 // FIXME: this doesn't handle recursion or unreachable blocks. 1611 if (none_of(*F, basicBlockCanReturn)) { 1612 F->setDoesNotReturn(); 1613 Changed.insert(F); 1614 } 1615 } 1616 } 1617 1618 static bool functionWillReturn(const Function &F) { 1619 // We can infer and propagate function attributes only when we know that the 1620 // definition we'll get at link time is *exactly* the definition we see now. 1621 // For more details, see GlobalValue::mayBeDerefined. 1622 if (!F.hasExactDefinition()) 1623 return false; 1624 1625 // Must-progress function without side-effects must return. 1626 if (F.mustProgress() && F.onlyReadsMemory()) 1627 return true; 1628 1629 // Can only analyze functions with a definition. 1630 if (F.isDeclaration()) 1631 return false; 1632 1633 // Functions with loops require more sophisticated analysis, as the loop 1634 // may be infinite. For now, don't try to handle them. 1635 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1636 FindFunctionBackedges(F, Backedges); 1637 if (!Backedges.empty()) 1638 return false; 1639 1640 // If there are no loops, then the function is willreturn if all calls in 1641 // it are willreturn. 1642 return all_of(instructions(F), [](const Instruction &I) { 1643 return I.willReturn(); 1644 }); 1645 } 1646 1647 // Set the willreturn function attribute if possible. 1648 static void addWillReturn(const SCCNodeSet &SCCNodes, 1649 SmallSet<Function *, 8> &Changed) { 1650 for (Function *F : SCCNodes) { 1651 if (!F || F->willReturn() || !functionWillReturn(*F)) 1652 continue; 1653 1654 F->setWillReturn(); 1655 NumWillReturn++; 1656 Changed.insert(F); 1657 } 1658 } 1659 1660 // Return true if this is an atomic which has an ordering stronger than 1661 // unordered. Note that this is different than the predicate we use in 1662 // Attributor. Here we chose to be conservative and consider monotonic 1663 // operations potentially synchronizing. We generally don't do much with 1664 // monotonic operations, so this is simply risk reduction. 1665 static bool isOrderedAtomic(Instruction *I) { 1666 if (!I->isAtomic()) 1667 return false; 1668 1669 if (auto *FI = dyn_cast<FenceInst>(I)) 1670 // All legal orderings for fence are stronger than monotonic. 1671 return FI->getSyncScopeID() != SyncScope::SingleThread; 1672 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1673 return true; 1674 else if (auto *SI = dyn_cast<StoreInst>(I)) 1675 return !SI->isUnordered(); 1676 else if (auto *LI = dyn_cast<LoadInst>(I)) 1677 return !LI->isUnordered(); 1678 else { 1679 llvm_unreachable("unknown atomic instruction?"); 1680 } 1681 } 1682 1683 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1684 // Volatile may synchronize 1685 if (I.isVolatile()) 1686 return true; 1687 1688 // An ordered atomic may synchronize. (See comment about on monotonic.) 1689 if (isOrderedAtomic(&I)) 1690 return true; 1691 1692 auto *CB = dyn_cast<CallBase>(&I); 1693 if (!CB) 1694 // Non call site cases covered by the two checks above 1695 return false; 1696 1697 if (CB->hasFnAttr(Attribute::NoSync)) 1698 return false; 1699 1700 // Non volatile memset/memcpy/memmoves are nosync 1701 // NOTE: Only intrinsics with volatile flags should be handled here. All 1702 // others should be marked in Intrinsics.td. 1703 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1704 if (!MI->isVolatile()) 1705 return false; 1706 1707 // Speculatively assume in SCC. 1708 if (Function *Callee = CB->getCalledFunction()) 1709 if (SCCNodes.contains(Callee)) 1710 return false; 1711 1712 return true; 1713 } 1714 1715 // Infer the nosync attribute. 1716 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1717 SmallSet<Function *, 8> &Changed) { 1718 AttributeInferer AI; 1719 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1720 Attribute::NoSync, 1721 // Skip already marked functions. 1722 [](const Function &F) { return F.hasNoSync(); }, 1723 // Instructions that break nosync assumption. 1724 [&SCCNodes](Instruction &I) { 1725 return InstrBreaksNoSync(I, SCCNodes); 1726 }, 1727 [](Function &F) { 1728 LLVM_DEBUG(dbgs() 1729 << "Adding nosync attr to fn " << F.getName() << "\n"); 1730 F.setNoSync(); 1731 ++NumNoSync; 1732 }, 1733 /* RequiresExactDefinition= */ true}); 1734 AI.run(SCCNodes, Changed); 1735 } 1736 1737 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1738 SCCNodesResult Res; 1739 Res.HasUnknownCall = false; 1740 for (Function *F : Functions) { 1741 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1742 F->isPresplitCoroutine()) { 1743 // Treat any function we're trying not to optimize as if it were an 1744 // indirect call and omit it from the node set used below. 1745 Res.HasUnknownCall = true; 1746 continue; 1747 } 1748 // Track whether any functions in this SCC have an unknown call edge. 1749 // Note: if this is ever a performance hit, we can common it with 1750 // subsequent routines which also do scans over the instructions of the 1751 // function. 1752 if (!Res.HasUnknownCall) { 1753 for (Instruction &I : instructions(*F)) { 1754 if (auto *CB = dyn_cast<CallBase>(&I)) { 1755 if (!CB->getCalledFunction()) { 1756 Res.HasUnknownCall = true; 1757 break; 1758 } 1759 } 1760 } 1761 } 1762 Res.SCCNodes.insert(F); 1763 } 1764 return Res; 1765 } 1766 1767 template <typename AARGetterT> 1768 static SmallSet<Function *, 8> 1769 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1770 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1771 1772 // Bail if the SCC only contains optnone functions. 1773 if (Nodes.SCCNodes.empty()) 1774 return {}; 1775 1776 SmallSet<Function *, 8> Changed; 1777 1778 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1779 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1780 addArgumentAttrs(Nodes.SCCNodes, Changed); 1781 inferConvergent(Nodes.SCCNodes, Changed); 1782 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1783 addWillReturn(Nodes.SCCNodes, Changed); 1784 1785 // If we have no external nodes participating in the SCC, we can deduce some 1786 // more precise attributes as well. 1787 if (!Nodes.HasUnknownCall) { 1788 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1789 addNonNullAttrs(Nodes.SCCNodes, Changed); 1790 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1791 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1792 } 1793 1794 addNoSyncAttr(Nodes.SCCNodes, Changed); 1795 1796 // Finally, infer the maximal set of attributes from the ones we've inferred 1797 // above. This is handling the cases where one attribute on a signature 1798 // implies another, but for implementation reasons the inference rule for 1799 // the later is missing (or simply less sophisticated). 1800 for (Function *F : Nodes.SCCNodes) 1801 if (F) 1802 if (inferAttributesFromOthers(*F)) 1803 Changed.insert(F); 1804 1805 return Changed; 1806 } 1807 1808 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1809 CGSCCAnalysisManager &AM, 1810 LazyCallGraph &CG, 1811 CGSCCUpdateResult &) { 1812 FunctionAnalysisManager &FAM = 1813 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1814 1815 // We pass a lambda into functions to wire them up to the analysis manager 1816 // for getting function analyses. 1817 auto AARGetter = [&](Function &F) -> AAResults & { 1818 return FAM.getResult<AAManager>(F); 1819 }; 1820 1821 SmallVector<Function *, 8> Functions; 1822 for (LazyCallGraph::Node &N : C) { 1823 Functions.push_back(&N.getFunction()); 1824 } 1825 1826 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1827 if (ChangedFunctions.empty()) 1828 return PreservedAnalyses::all(); 1829 1830 // Invalidate analyses for modified functions so that we don't have to 1831 // invalidate all analyses for all functions in this SCC. 1832 PreservedAnalyses FuncPA; 1833 // We haven't changed the CFG for modified functions. 1834 FuncPA.preserveSet<CFGAnalyses>(); 1835 for (Function *Changed : ChangedFunctions) { 1836 FAM.invalidate(*Changed, FuncPA); 1837 // Also invalidate any direct callers of changed functions since analyses 1838 // may care about attributes of direct callees. For example, MemorySSA cares 1839 // about whether or not a call's callee modifies memory and queries that 1840 // through function attributes. 1841 for (auto *U : Changed->users()) { 1842 if (auto *Call = dyn_cast<CallBase>(U)) { 1843 if (Call->getCalledFunction() == Changed) 1844 FAM.invalidate(*Call->getFunction(), FuncPA); 1845 } 1846 } 1847 } 1848 1849 PreservedAnalyses PA; 1850 // We have not added or removed functions. 1851 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1852 // We already invalidated all relevant function analyses above. 1853 PA.preserveSet<AllAnalysesOn<Function>>(); 1854 return PA; 1855 } 1856 1857 namespace { 1858 1859 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1860 // Pass identification, replacement for typeid 1861 static char ID; 1862 1863 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1864 initializePostOrderFunctionAttrsLegacyPassPass( 1865 *PassRegistry::getPassRegistry()); 1866 } 1867 1868 bool runOnSCC(CallGraphSCC &SCC) override; 1869 1870 void getAnalysisUsage(AnalysisUsage &AU) const override { 1871 AU.setPreservesCFG(); 1872 AU.addRequired<AssumptionCacheTracker>(); 1873 getAAResultsAnalysisUsage(AU); 1874 CallGraphSCCPass::getAnalysisUsage(AU); 1875 } 1876 }; 1877 1878 } // end anonymous namespace 1879 1880 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1881 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1882 "Deduce function attributes", false, false) 1883 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1884 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1885 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1886 "Deduce function attributes", false, false) 1887 1888 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1889 return new PostOrderFunctionAttrsLegacyPass(); 1890 } 1891 1892 template <typename AARGetterT> 1893 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1894 SmallVector<Function *, 8> Functions; 1895 for (CallGraphNode *I : SCC) { 1896 Functions.push_back(I->getFunction()); 1897 } 1898 1899 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1900 } 1901 1902 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1903 if (skipSCC(SCC)) 1904 return false; 1905 return runImpl(SCC, LegacyAARGetter(*this)); 1906 } 1907 1908 namespace { 1909 1910 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1911 // Pass identification, replacement for typeid 1912 static char ID; 1913 1914 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1915 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1916 *PassRegistry::getPassRegistry()); 1917 } 1918 1919 bool runOnModule(Module &M) override; 1920 1921 void getAnalysisUsage(AnalysisUsage &AU) const override { 1922 AU.setPreservesCFG(); 1923 AU.addRequired<CallGraphWrapperPass>(); 1924 AU.addPreserved<CallGraphWrapperPass>(); 1925 } 1926 }; 1927 1928 } // end anonymous namespace 1929 1930 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1931 1932 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1933 "rpo-function-attrs", "Deduce function attributes in RPO", 1934 false, false) 1935 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1936 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1937 "rpo-function-attrs", "Deduce function attributes in RPO", 1938 false, false) 1939 1940 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1941 return new ReversePostOrderFunctionAttrsLegacyPass(); 1942 } 1943 1944 static bool addNoRecurseAttrsTopDown(Function &F) { 1945 // We check the preconditions for the function prior to calling this to avoid 1946 // the cost of building up a reversible post-order list. We assert them here 1947 // to make sure none of the invariants this relies on were violated. 1948 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1949 assert(!F.doesNotRecurse() && 1950 "This function has already been deduced as norecurs!"); 1951 assert(F.hasInternalLinkage() && 1952 "Can only do top-down deduction for internal linkage functions!"); 1953 1954 // If F is internal and all of its uses are calls from a non-recursive 1955 // functions, then none of its calls could in fact recurse without going 1956 // through a function marked norecurse, and so we can mark this function too 1957 // as norecurse. Note that the uses must actually be calls -- otherwise 1958 // a pointer to this function could be returned from a norecurse function but 1959 // this function could be recursively (indirectly) called. Note that this 1960 // also detects if F is directly recursive as F is not yet marked as 1961 // a norecurse function. 1962 for (auto *U : F.users()) { 1963 auto *I = dyn_cast<Instruction>(U); 1964 if (!I) 1965 return false; 1966 CallBase *CB = dyn_cast<CallBase>(I); 1967 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1968 return false; 1969 } 1970 F.setDoesNotRecurse(); 1971 ++NumNoRecurse; 1972 return true; 1973 } 1974 1975 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1976 // We only have a post-order SCC traversal (because SCCs are inherently 1977 // discovered in post-order), so we accumulate them in a vector and then walk 1978 // it in reverse. This is simpler than using the RPO iterator infrastructure 1979 // because we need to combine SCC detection and the PO walk of the call 1980 // graph. We can also cheat egregiously because we're primarily interested in 1981 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1982 // with multiple functions in them will clearly be recursive. 1983 SmallVector<Function *, 16> Worklist; 1984 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1985 if (I->size() != 1) 1986 continue; 1987 1988 Function *F = I->front()->getFunction(); 1989 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1990 F->hasInternalLinkage()) 1991 Worklist.push_back(F); 1992 } 1993 1994 bool Changed = false; 1995 for (auto *F : llvm::reverse(Worklist)) 1996 Changed |= addNoRecurseAttrsTopDown(*F); 1997 1998 return Changed; 1999 } 2000 2001 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2002 if (skipModule(M)) 2003 return false; 2004 2005 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2006 2007 return deduceFunctionAttributeInRPO(M, CG); 2008 } 2009 2010 PreservedAnalyses 2011 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2012 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2013 2014 if (!deduceFunctionAttributeInRPO(M, CG)) 2015 return PreservedAnalyses::all(); 2016 2017 PreservedAnalyses PA; 2018 PA.preserve<CallGraphAnalysis>(); 2019 return PA; 2020 } 2021