1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::doesNotReadMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->doesNotReadMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttrBuilder AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 assert(!CB->isCallee(U) && "callee operand reported captured?"); 585 const unsigned UseIndex = CB->getDataOperandNo(U); 586 if (UseIndex >= CB->arg_size()) { 587 // Data operand, but not a argument operand -- must be a bundle operand 588 assert(CB->hasOperandBundles() && "Must be!"); 589 590 // CaptureTracking told us that we're being captured by an operand bundle 591 // use. In this case it does not matter if the callee is within our SCC 592 // or not -- we've been captured in some unknown way, and we have to be 593 // conservative. 594 Captured = true; 595 return true; 596 } 597 598 if (UseIndex >= F->arg_size()) { 599 assert(F->isVarArg() && "More params than args in non-varargs call"); 600 Captured = true; 601 return true; 602 } 603 604 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 605 return false; 606 } 607 608 // True only if certainly captured (used outside our SCC). 609 bool Captured = false; 610 611 // Uses within our SCC. 612 SmallVector<Argument *, 4> Uses; 613 614 const SCCNodeSet &SCCNodes; 615 }; 616 617 } // end anonymous namespace 618 619 namespace llvm { 620 621 template <> struct GraphTraits<ArgumentGraphNode *> { 622 using NodeRef = ArgumentGraphNode *; 623 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 624 625 static NodeRef getEntryNode(NodeRef A) { return A; } 626 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 627 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 628 }; 629 630 template <> 631 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 632 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 633 634 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 635 return AG->begin(); 636 } 637 638 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 639 }; 640 641 } // end namespace llvm 642 643 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 644 static Attribute::AttrKind 645 determinePointerAccessAttrs(Argument *A, 646 const SmallPtrSet<Argument *, 8> &SCCNodes) { 647 SmallVector<Use *, 32> Worklist; 648 SmallPtrSet<Use *, 32> Visited; 649 650 // inalloca arguments are always clobbered by the call. 651 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 652 return Attribute::None; 653 654 bool IsRead = false; 655 bool IsWrite = false; 656 657 for (Use &U : A->uses()) { 658 Visited.insert(&U); 659 Worklist.push_back(&U); 660 } 661 662 while (!Worklist.empty()) { 663 if (IsWrite && IsRead) 664 // No point in searching further.. 665 return Attribute::None; 666 667 Use *U = Worklist.pop_back_val(); 668 Instruction *I = cast<Instruction>(U->getUser()); 669 670 switch (I->getOpcode()) { 671 case Instruction::BitCast: 672 case Instruction::GetElementPtr: 673 case Instruction::PHI: 674 case Instruction::Select: 675 case Instruction::AddrSpaceCast: 676 // The original value is not read/written via this if the new value isn't. 677 for (Use &UU : I->uses()) 678 if (Visited.insert(&UU).second) 679 Worklist.push_back(&UU); 680 break; 681 682 case Instruction::Call: 683 case Instruction::Invoke: { 684 CallBase &CB = cast<CallBase>(*I); 685 if (CB.isCallee(U)) { 686 IsRead = true; 687 // Note that indirect calls do not capture, see comment in 688 // CaptureTracking for context 689 continue; 690 } 691 692 // Given we've explictily handled the callee operand above, what's left 693 // must be a data operand (e.g. argument or operand bundle) 694 const unsigned UseIndex = CB.getDataOperandNo(U); 695 696 if (!CB.doesNotCapture(UseIndex)) { 697 if (!CB.onlyReadsMemory()) 698 // If the callee can save a copy into other memory, then simply 699 // scanning uses of the call is insufficient. We have no way 700 // of tracking copies of the pointer through memory to see 701 // if a reloaded copy is written to, thus we must give up. 702 return Attribute::None; 703 // Push users for processing once we finish this one 704 if (!I->getType()->isVoidTy()) 705 for (Use &UU : I->uses()) 706 if (Visited.insert(&UU).second) 707 Worklist.push_back(&UU); 708 } 709 710 if (CB.doesNotAccessMemory()) 711 continue; 712 713 if (Function *F = CB.getCalledFunction()) 714 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 715 SCCNodes.count(F->getArg(UseIndex))) 716 // This is an argument which is part of the speculative SCC. Note 717 // that only operands corresponding to formal arguments of the callee 718 // can participate in the speculation. 719 break; 720 721 // The accessors used on call site here do the right thing for calls and 722 // invokes with operand bundles. 723 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex)) 724 return Attribute::None; 725 if (!CB.doesNotAccessMemory(UseIndex)) 726 IsRead = true; 727 break; 728 } 729 730 case Instruction::Load: 731 // A volatile load has side effects beyond what readonly can be relied 732 // upon. 733 if (cast<LoadInst>(I)->isVolatile()) 734 return Attribute::None; 735 736 IsRead = true; 737 break; 738 739 case Instruction::Store: 740 if (cast<StoreInst>(I)->getValueOperand() == *U) 741 // untrackable capture 742 return Attribute::None; 743 744 // A volatile store has side effects beyond what writeonly can be relied 745 // upon. 746 if (cast<StoreInst>(I)->isVolatile()) 747 return Attribute::None; 748 749 IsWrite = true; 750 break; 751 752 case Instruction::ICmp: 753 case Instruction::Ret: 754 break; 755 756 default: 757 return Attribute::None; 758 } 759 } 760 761 if (IsWrite && IsRead) 762 return Attribute::None; 763 else if (IsRead) 764 return Attribute::ReadOnly; 765 else if (IsWrite) 766 return Attribute::WriteOnly; 767 else 768 return Attribute::ReadNone; 769 } 770 771 /// Deduce returned attributes for the SCC. 772 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 773 SmallSet<Function *, 8> &Changed) { 774 // Check each function in turn, determining if an argument is always returned. 775 for (Function *F : SCCNodes) { 776 // We can infer and propagate function attributes only when we know that the 777 // definition we'll get at link time is *exactly* the definition we see now. 778 // For more details, see GlobalValue::mayBeDerefined. 779 if (!F->hasExactDefinition()) 780 continue; 781 782 if (F->getReturnType()->isVoidTy()) 783 continue; 784 785 // There is nothing to do if an argument is already marked as 'returned'. 786 if (llvm::any_of(F->args(), 787 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 788 continue; 789 790 auto FindRetArg = [&]() -> Value * { 791 Value *RetArg = nullptr; 792 for (BasicBlock &BB : *F) 793 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 794 // Note that stripPointerCasts should look through functions with 795 // returned arguments. 796 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 797 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 798 return nullptr; 799 800 if (!RetArg) 801 RetArg = RetVal; 802 else if (RetArg != RetVal) 803 return nullptr; 804 } 805 806 return RetArg; 807 }; 808 809 if (Value *RetArg = FindRetArg()) { 810 auto *A = cast<Argument>(RetArg); 811 A->addAttr(Attribute::Returned); 812 ++NumReturned; 813 Changed.insert(F); 814 } 815 } 816 } 817 818 /// If a callsite has arguments that are also arguments to the parent function, 819 /// try to propagate attributes from the callsite's arguments to the parent's 820 /// arguments. This may be important because inlining can cause information loss 821 /// when attribute knowledge disappears with the inlined call. 822 static bool addArgumentAttrsFromCallsites(Function &F) { 823 if (!EnableNonnullArgPropagation) 824 return false; 825 826 bool Changed = false; 827 828 // For an argument attribute to transfer from a callsite to the parent, the 829 // call must be guaranteed to execute every time the parent is called. 830 // Conservatively, just check for calls in the entry block that are guaranteed 831 // to execute. 832 // TODO: This could be enhanced by testing if the callsite post-dominates the 833 // entry block or by doing simple forward walks or backward walks to the 834 // callsite. 835 BasicBlock &Entry = F.getEntryBlock(); 836 for (Instruction &I : Entry) { 837 if (auto *CB = dyn_cast<CallBase>(&I)) { 838 if (auto *CalledFunc = CB->getCalledFunction()) { 839 for (auto &CSArg : CalledFunc->args()) { 840 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 841 continue; 842 843 // If the non-null callsite argument operand is an argument to 'F' 844 // (the caller) and the call is guaranteed to execute, then the value 845 // must be non-null throughout 'F'. 846 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 847 if (FArg && !FArg->hasNonNullAttr()) { 848 FArg->addAttr(Attribute::NonNull); 849 Changed = true; 850 } 851 } 852 } 853 } 854 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 855 break; 856 } 857 858 return Changed; 859 } 860 861 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 862 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 863 R == Attribute::WriteOnly) 864 && "Must be an access attribute."); 865 assert(A && "Argument must not be null."); 866 867 // If the argument already has the attribute, nothing needs to be done. 868 if (A->hasAttribute(R)) 869 return false; 870 871 // Otherwise, remove potentially conflicting attribute, add the new one, 872 // and update statistics. 873 A->removeAttr(Attribute::WriteOnly); 874 A->removeAttr(Attribute::ReadOnly); 875 A->removeAttr(Attribute::ReadNone); 876 A->addAttr(R); 877 if (R == Attribute::ReadOnly) 878 ++NumReadOnlyArg; 879 else if (R == Attribute::WriteOnly) 880 ++NumWriteOnlyArg; 881 else 882 ++NumReadNoneArg; 883 return true; 884 } 885 886 /// Deduce nocapture attributes for the SCC. 887 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 888 SmallSet<Function *, 8> &Changed) { 889 ArgumentGraph AG; 890 891 // Check each function in turn, determining which pointer arguments are not 892 // captured. 893 for (Function *F : SCCNodes) { 894 // We can infer and propagate function attributes only when we know that the 895 // definition we'll get at link time is *exactly* the definition we see now. 896 // For more details, see GlobalValue::mayBeDerefined. 897 if (!F->hasExactDefinition()) 898 continue; 899 900 if (addArgumentAttrsFromCallsites(*F)) 901 Changed.insert(F); 902 903 // Functions that are readonly (or readnone) and nounwind and don't return 904 // a value can't capture arguments. Don't analyze them. 905 if (F->onlyReadsMemory() && F->doesNotThrow() && 906 F->getReturnType()->isVoidTy()) { 907 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 908 ++A) { 909 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 910 A->addAttr(Attribute::NoCapture); 911 ++NumNoCapture; 912 Changed.insert(F); 913 } 914 } 915 continue; 916 } 917 918 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 919 ++A) { 920 if (!A->getType()->isPointerTy()) 921 continue; 922 bool HasNonLocalUses = false; 923 if (!A->hasNoCaptureAttr()) { 924 ArgumentUsesTracker Tracker(SCCNodes); 925 PointerMayBeCaptured(&*A, &Tracker); 926 if (!Tracker.Captured) { 927 if (Tracker.Uses.empty()) { 928 // If it's trivially not captured, mark it nocapture now. 929 A->addAttr(Attribute::NoCapture); 930 ++NumNoCapture; 931 Changed.insert(F); 932 } else { 933 // If it's not trivially captured and not trivially not captured, 934 // then it must be calling into another function in our SCC. Save 935 // its particulars for Argument-SCC analysis later. 936 ArgumentGraphNode *Node = AG[&*A]; 937 for (Argument *Use : Tracker.Uses) { 938 Node->Uses.push_back(AG[Use]); 939 if (Use != &*A) 940 HasNonLocalUses = true; 941 } 942 } 943 } 944 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 945 } 946 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 947 // Can we determine that it's readonly/readnone/writeonly without doing 948 // an SCC? Note that we don't allow any calls at all here, or else our 949 // result will be dependent on the iteration order through the 950 // functions in the SCC. 951 SmallPtrSet<Argument *, 8> Self; 952 Self.insert(&*A); 953 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 954 if (R != Attribute::None) 955 if (addAccessAttr(A, R)) 956 Changed.insert(F); 957 } 958 } 959 } 960 961 // The graph we've collected is partial because we stopped scanning for 962 // argument uses once we solved the argument trivially. These partial nodes 963 // show up as ArgumentGraphNode objects with an empty Uses list, and for 964 // these nodes the final decision about whether they capture has already been 965 // made. If the definition doesn't have a 'nocapture' attribute by now, it 966 // captures. 967 968 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 969 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 970 if (ArgumentSCC.size() == 1) { 971 if (!ArgumentSCC[0]->Definition) 972 continue; // synthetic root node 973 974 // eg. "void f(int* x) { if (...) f(x); }" 975 if (ArgumentSCC[0]->Uses.size() == 1 && 976 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 977 Argument *A = ArgumentSCC[0]->Definition; 978 A->addAttr(Attribute::NoCapture); 979 ++NumNoCapture; 980 Changed.insert(A->getParent()); 981 982 // Infer the access attributes given the new nocapture one 983 SmallPtrSet<Argument *, 8> Self; 984 Self.insert(&*A); 985 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 986 if (R != Attribute::None) 987 addAccessAttr(A, R); 988 } 989 continue; 990 } 991 992 bool SCCCaptured = false; 993 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 994 I != E && !SCCCaptured; ++I) { 995 ArgumentGraphNode *Node = *I; 996 if (Node->Uses.empty()) { 997 if (!Node->Definition->hasNoCaptureAttr()) 998 SCCCaptured = true; 999 } 1000 } 1001 if (SCCCaptured) 1002 continue; 1003 1004 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1005 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1006 // quickly looking up whether a given Argument is in this ArgumentSCC. 1007 for (ArgumentGraphNode *I : ArgumentSCC) { 1008 ArgumentSCCNodes.insert(I->Definition); 1009 } 1010 1011 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1012 I != E && !SCCCaptured; ++I) { 1013 ArgumentGraphNode *N = *I; 1014 for (ArgumentGraphNode *Use : N->Uses) { 1015 Argument *A = Use->Definition; 1016 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1017 continue; 1018 SCCCaptured = true; 1019 break; 1020 } 1021 } 1022 if (SCCCaptured) 1023 continue; 1024 1025 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1026 Argument *A = ArgumentSCC[i]->Definition; 1027 A->addAttr(Attribute::NoCapture); 1028 ++NumNoCapture; 1029 Changed.insert(A->getParent()); 1030 } 1031 1032 // We also want to compute readonly/readnone/writeonly. With a small number 1033 // of false negatives, we can assume that any pointer which is captured 1034 // isn't going to be provably readonly or readnone, since by definition 1035 // we can't analyze all uses of a captured pointer. 1036 // 1037 // The false negatives happen when the pointer is captured by a function 1038 // that promises readonly/readnone behaviour on the pointer, then the 1039 // pointer's lifetime ends before anything that writes to arbitrary memory. 1040 // Also, a readonly/readnone pointer may be returned, but returning a 1041 // pointer is capturing it. 1042 1043 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1044 if (A == B) 1045 return A; 1046 if (A == Attribute::ReadNone) 1047 return B; 1048 if (B == Attribute::ReadNone) 1049 return A; 1050 return Attribute::None; 1051 }; 1052 1053 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1054 for (unsigned i = 0, e = ArgumentSCC.size(); 1055 i != e && AccessAttr != Attribute::None; ++i) { 1056 Argument *A = ArgumentSCC[i]->Definition; 1057 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1058 AccessAttr = meetAccessAttr(AccessAttr, K); 1059 } 1060 1061 if (AccessAttr != Attribute::None) { 1062 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1063 Argument *A = ArgumentSCC[i]->Definition; 1064 if (addAccessAttr(A, AccessAttr)) 1065 Changed.insert(A->getParent()); 1066 } 1067 } 1068 } 1069 } 1070 1071 /// Tests whether a function is "malloc-like". 1072 /// 1073 /// A function is "malloc-like" if it returns either null or a pointer that 1074 /// doesn't alias any other pointer visible to the caller. 1075 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1076 SmallSetVector<Value *, 8> FlowsToReturn; 1077 for (BasicBlock &BB : *F) 1078 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1079 FlowsToReturn.insert(Ret->getReturnValue()); 1080 1081 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1082 Value *RetVal = FlowsToReturn[i]; 1083 1084 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1085 if (!C->isNullValue() && !isa<UndefValue>(C)) 1086 return false; 1087 1088 continue; 1089 } 1090 1091 if (isa<Argument>(RetVal)) 1092 return false; 1093 1094 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1095 switch (RVI->getOpcode()) { 1096 // Extend the analysis by looking upwards. 1097 case Instruction::BitCast: 1098 case Instruction::GetElementPtr: 1099 case Instruction::AddrSpaceCast: 1100 FlowsToReturn.insert(RVI->getOperand(0)); 1101 continue; 1102 case Instruction::Select: { 1103 SelectInst *SI = cast<SelectInst>(RVI); 1104 FlowsToReturn.insert(SI->getTrueValue()); 1105 FlowsToReturn.insert(SI->getFalseValue()); 1106 continue; 1107 } 1108 case Instruction::PHI: { 1109 PHINode *PN = cast<PHINode>(RVI); 1110 for (Value *IncValue : PN->incoming_values()) 1111 FlowsToReturn.insert(IncValue); 1112 continue; 1113 } 1114 1115 // Check whether the pointer came from an allocation. 1116 case Instruction::Alloca: 1117 break; 1118 case Instruction::Call: 1119 case Instruction::Invoke: { 1120 CallBase &CB = cast<CallBase>(*RVI); 1121 if (CB.hasRetAttr(Attribute::NoAlias)) 1122 break; 1123 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1124 break; 1125 LLVM_FALLTHROUGH; 1126 } 1127 default: 1128 return false; // Did not come from an allocation. 1129 } 1130 1131 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1132 return false; 1133 } 1134 1135 return true; 1136 } 1137 1138 /// Deduce noalias attributes for the SCC. 1139 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1140 SmallSet<Function *, 8> &Changed) { 1141 // Check each function in turn, determining which functions return noalias 1142 // pointers. 1143 for (Function *F : SCCNodes) { 1144 // Already noalias. 1145 if (F->returnDoesNotAlias()) 1146 continue; 1147 1148 // We can infer and propagate function attributes only when we know that the 1149 // definition we'll get at link time is *exactly* the definition we see now. 1150 // For more details, see GlobalValue::mayBeDerefined. 1151 if (!F->hasExactDefinition()) 1152 return; 1153 1154 // We annotate noalias return values, which are only applicable to 1155 // pointer types. 1156 if (!F->getReturnType()->isPointerTy()) 1157 continue; 1158 1159 if (!isFunctionMallocLike(F, SCCNodes)) 1160 return; 1161 } 1162 1163 for (Function *F : SCCNodes) { 1164 if (F->returnDoesNotAlias() || 1165 !F->getReturnType()->isPointerTy()) 1166 continue; 1167 1168 F->setReturnDoesNotAlias(); 1169 ++NumNoAlias; 1170 Changed.insert(F); 1171 } 1172 } 1173 1174 /// Tests whether this function is known to not return null. 1175 /// 1176 /// Requires that the function returns a pointer. 1177 /// 1178 /// Returns true if it believes the function will not return a null, and sets 1179 /// \p Speculative based on whether the returned conclusion is a speculative 1180 /// conclusion due to SCC calls. 1181 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1182 bool &Speculative) { 1183 assert(F->getReturnType()->isPointerTy() && 1184 "nonnull only meaningful on pointer types"); 1185 Speculative = false; 1186 1187 SmallSetVector<Value *, 8> FlowsToReturn; 1188 for (BasicBlock &BB : *F) 1189 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1190 FlowsToReturn.insert(Ret->getReturnValue()); 1191 1192 auto &DL = F->getParent()->getDataLayout(); 1193 1194 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1195 Value *RetVal = FlowsToReturn[i]; 1196 1197 // If this value is locally known to be non-null, we're good 1198 if (isKnownNonZero(RetVal, DL)) 1199 continue; 1200 1201 // Otherwise, we need to look upwards since we can't make any local 1202 // conclusions. 1203 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1204 if (!RVI) 1205 return false; 1206 switch (RVI->getOpcode()) { 1207 // Extend the analysis by looking upwards. 1208 case Instruction::BitCast: 1209 case Instruction::GetElementPtr: 1210 case Instruction::AddrSpaceCast: 1211 FlowsToReturn.insert(RVI->getOperand(0)); 1212 continue; 1213 case Instruction::Select: { 1214 SelectInst *SI = cast<SelectInst>(RVI); 1215 FlowsToReturn.insert(SI->getTrueValue()); 1216 FlowsToReturn.insert(SI->getFalseValue()); 1217 continue; 1218 } 1219 case Instruction::PHI: { 1220 PHINode *PN = cast<PHINode>(RVI); 1221 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1222 FlowsToReturn.insert(PN->getIncomingValue(i)); 1223 continue; 1224 } 1225 case Instruction::Call: 1226 case Instruction::Invoke: { 1227 CallBase &CB = cast<CallBase>(*RVI); 1228 Function *Callee = CB.getCalledFunction(); 1229 // A call to a node within the SCC is assumed to return null until 1230 // proven otherwise 1231 if (Callee && SCCNodes.count(Callee)) { 1232 Speculative = true; 1233 continue; 1234 } 1235 return false; 1236 } 1237 default: 1238 return false; // Unknown source, may be null 1239 }; 1240 llvm_unreachable("should have either continued or returned"); 1241 } 1242 1243 return true; 1244 } 1245 1246 /// Deduce nonnull attributes for the SCC. 1247 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1248 SmallSet<Function *, 8> &Changed) { 1249 // Speculative that all functions in the SCC return only nonnull 1250 // pointers. We may refute this as we analyze functions. 1251 bool SCCReturnsNonNull = true; 1252 1253 // Check each function in turn, determining which functions return nonnull 1254 // pointers. 1255 for (Function *F : SCCNodes) { 1256 // Already nonnull. 1257 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1258 continue; 1259 1260 // We can infer and propagate function attributes only when we know that the 1261 // definition we'll get at link time is *exactly* the definition we see now. 1262 // For more details, see GlobalValue::mayBeDerefined. 1263 if (!F->hasExactDefinition()) 1264 return; 1265 1266 // We annotate nonnull return values, which are only applicable to 1267 // pointer types. 1268 if (!F->getReturnType()->isPointerTy()) 1269 continue; 1270 1271 bool Speculative = false; 1272 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1273 if (!Speculative) { 1274 // Mark the function eagerly since we may discover a function 1275 // which prevents us from speculating about the entire SCC 1276 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1277 << " as nonnull\n"); 1278 F->addRetAttr(Attribute::NonNull); 1279 ++NumNonNullReturn; 1280 Changed.insert(F); 1281 } 1282 continue; 1283 } 1284 // At least one function returns something which could be null, can't 1285 // speculate any more. 1286 SCCReturnsNonNull = false; 1287 } 1288 1289 if (SCCReturnsNonNull) { 1290 for (Function *F : SCCNodes) { 1291 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1292 !F->getReturnType()->isPointerTy()) 1293 continue; 1294 1295 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1296 F->addRetAttr(Attribute::NonNull); 1297 ++NumNonNullReturn; 1298 Changed.insert(F); 1299 } 1300 } 1301 } 1302 1303 namespace { 1304 1305 /// Collects a set of attribute inference requests and performs them all in one 1306 /// go on a single SCC Node. Inference involves scanning function bodies 1307 /// looking for instructions that violate attribute assumptions. 1308 /// As soon as all the bodies are fine we are free to set the attribute. 1309 /// Customization of inference for individual attributes is performed by 1310 /// providing a handful of predicates for each attribute. 1311 class AttributeInferer { 1312 public: 1313 /// Describes a request for inference of a single attribute. 1314 struct InferenceDescriptor { 1315 1316 /// Returns true if this function does not have to be handled. 1317 /// General intent for this predicate is to provide an optimization 1318 /// for functions that do not need this attribute inference at all 1319 /// (say, for functions that already have the attribute). 1320 std::function<bool(const Function &)> SkipFunction; 1321 1322 /// Returns true if this instruction violates attribute assumptions. 1323 std::function<bool(Instruction &)> InstrBreaksAttribute; 1324 1325 /// Sets the inferred attribute for this function. 1326 std::function<void(Function &)> SetAttribute; 1327 1328 /// Attribute we derive. 1329 Attribute::AttrKind AKind; 1330 1331 /// If true, only "exact" definitions can be used to infer this attribute. 1332 /// See GlobalValue::isDefinitionExact. 1333 bool RequiresExactDefinition; 1334 1335 InferenceDescriptor(Attribute::AttrKind AK, 1336 std::function<bool(const Function &)> SkipFunc, 1337 std::function<bool(Instruction &)> InstrScan, 1338 std::function<void(Function &)> SetAttr, 1339 bool ReqExactDef) 1340 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1341 SetAttribute(SetAttr), AKind(AK), 1342 RequiresExactDefinition(ReqExactDef) {} 1343 }; 1344 1345 private: 1346 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1347 1348 public: 1349 void registerAttrInference(InferenceDescriptor AttrInference) { 1350 InferenceDescriptors.push_back(AttrInference); 1351 } 1352 1353 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1354 }; 1355 1356 /// Perform all the requested attribute inference actions according to the 1357 /// attribute predicates stored before. 1358 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1359 SmallSet<Function *, 8> &Changed) { 1360 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1361 // Go through all the functions in SCC and check corresponding attribute 1362 // assumptions for each of them. Attributes that are invalid for this SCC 1363 // will be removed from InferInSCC. 1364 for (Function *F : SCCNodes) { 1365 1366 // No attributes whose assumptions are still valid - done. 1367 if (InferInSCC.empty()) 1368 return; 1369 1370 // Check if our attributes ever need scanning/can be scanned. 1371 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1372 if (ID.SkipFunction(*F)) 1373 return false; 1374 1375 // Remove from further inference (invalidate) when visiting a function 1376 // that has no instructions to scan/has an unsuitable definition. 1377 return F->isDeclaration() || 1378 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1379 }); 1380 1381 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1382 // set up the F instructions scan to verify assumptions of the attribute. 1383 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1384 llvm::copy_if( 1385 InferInSCC, std::back_inserter(InferInThisFunc), 1386 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1387 1388 if (InferInThisFunc.empty()) 1389 continue; 1390 1391 // Start instruction scan. 1392 for (Instruction &I : instructions(*F)) { 1393 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1394 if (!ID.InstrBreaksAttribute(I)) 1395 return false; 1396 // Remove attribute from further inference on any other functions 1397 // because attribute assumptions have just been violated. 1398 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1399 return D.AKind == ID.AKind; 1400 }); 1401 // Remove attribute from the rest of current instruction scan. 1402 return true; 1403 }); 1404 1405 if (InferInThisFunc.empty()) 1406 break; 1407 } 1408 } 1409 1410 if (InferInSCC.empty()) 1411 return; 1412 1413 for (Function *F : SCCNodes) 1414 // At this point InferInSCC contains only functions that were either: 1415 // - explicitly skipped from scan/inference, or 1416 // - verified to have no instructions that break attribute assumptions. 1417 // Hence we just go and force the attribute for all non-skipped functions. 1418 for (auto &ID : InferInSCC) { 1419 if (ID.SkipFunction(*F)) 1420 continue; 1421 Changed.insert(F); 1422 ID.SetAttribute(*F); 1423 } 1424 } 1425 1426 struct SCCNodesResult { 1427 SCCNodeSet SCCNodes; 1428 bool HasUnknownCall; 1429 }; 1430 1431 } // end anonymous namespace 1432 1433 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1434 static bool InstrBreaksNonConvergent(Instruction &I, 1435 const SCCNodeSet &SCCNodes) { 1436 const CallBase *CB = dyn_cast<CallBase>(&I); 1437 // Breaks non-convergent assumption if CS is a convergent call to a function 1438 // not in the SCC. 1439 return CB && CB->isConvergent() && 1440 !SCCNodes.contains(CB->getCalledFunction()); 1441 } 1442 1443 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1444 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1445 if (!I.mayThrow()) 1446 return false; 1447 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1448 if (Function *Callee = CI->getCalledFunction()) { 1449 // I is a may-throw call to a function inside our SCC. This doesn't 1450 // invalidate our current working assumption that the SCC is no-throw; we 1451 // just have to scan that other function. 1452 if (SCCNodes.contains(Callee)) 1453 return false; 1454 } 1455 } 1456 return true; 1457 } 1458 1459 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1460 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1461 CallBase *CB = dyn_cast<CallBase>(&I); 1462 if (!CB) 1463 return false; 1464 1465 if (CB->hasFnAttr(Attribute::NoFree)) 1466 return false; 1467 1468 // Speculatively assume in SCC. 1469 if (Function *Callee = CB->getCalledFunction()) 1470 if (SCCNodes.contains(Callee)) 1471 return false; 1472 1473 return true; 1474 } 1475 1476 /// Attempt to remove convergent function attribute when possible. 1477 /// 1478 /// Returns true if any changes to function attributes were made. 1479 static void inferConvergent(const SCCNodeSet &SCCNodes, 1480 SmallSet<Function *, 8> &Changed) { 1481 AttributeInferer AI; 1482 1483 // Request to remove the convergent attribute from all functions in the SCC 1484 // if every callsite within the SCC is not convergent (except for calls 1485 // to functions within the SCC). 1486 // Note: Removal of the attr from the callsites will happen in 1487 // InstCombineCalls separately. 1488 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1489 Attribute::Convergent, 1490 // Skip non-convergent functions. 1491 [](const Function &F) { return !F.isConvergent(); }, 1492 // Instructions that break non-convergent assumption. 1493 [SCCNodes](Instruction &I) { 1494 return InstrBreaksNonConvergent(I, SCCNodes); 1495 }, 1496 [](Function &F) { 1497 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1498 << "\n"); 1499 F.setNotConvergent(); 1500 }, 1501 /* RequiresExactDefinition= */ false}); 1502 // Perform all the requested attribute inference actions. 1503 AI.run(SCCNodes, Changed); 1504 } 1505 1506 /// Infer attributes from all functions in the SCC by scanning every 1507 /// instruction for compliance to the attribute assumptions. Currently it 1508 /// does: 1509 /// - addition of NoUnwind attribute 1510 /// 1511 /// Returns true if any changes to function attributes were made. 1512 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1513 SmallSet<Function *, 8> &Changed) { 1514 AttributeInferer AI; 1515 1516 if (!DisableNoUnwindInference) 1517 // Request to infer nounwind attribute for all the functions in the SCC if 1518 // every callsite within the SCC is not throwing (except for calls to 1519 // functions within the SCC). Note that nounwind attribute suffers from 1520 // derefinement - results may change depending on how functions are 1521 // optimized. Thus it can be inferred only from exact definitions. 1522 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1523 Attribute::NoUnwind, 1524 // Skip non-throwing functions. 1525 [](const Function &F) { return F.doesNotThrow(); }, 1526 // Instructions that break non-throwing assumption. 1527 [&SCCNodes](Instruction &I) { 1528 return InstrBreaksNonThrowing(I, SCCNodes); 1529 }, 1530 [](Function &F) { 1531 LLVM_DEBUG(dbgs() 1532 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1533 F.setDoesNotThrow(); 1534 ++NumNoUnwind; 1535 }, 1536 /* RequiresExactDefinition= */ true}); 1537 1538 if (!DisableNoFreeInference) 1539 // Request to infer nofree attribute for all the functions in the SCC if 1540 // every callsite within the SCC does not directly or indirectly free 1541 // memory (except for calls to functions within the SCC). Note that nofree 1542 // attribute suffers from derefinement - results may change depending on 1543 // how functions are optimized. Thus it can be inferred only from exact 1544 // definitions. 1545 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1546 Attribute::NoFree, 1547 // Skip functions known not to free memory. 1548 [](const Function &F) { return F.doesNotFreeMemory(); }, 1549 // Instructions that break non-deallocating assumption. 1550 [&SCCNodes](Instruction &I) { 1551 return InstrBreaksNoFree(I, SCCNodes); 1552 }, 1553 [](Function &F) { 1554 LLVM_DEBUG(dbgs() 1555 << "Adding nofree attr to fn " << F.getName() << "\n"); 1556 F.setDoesNotFreeMemory(); 1557 ++NumNoFree; 1558 }, 1559 /* RequiresExactDefinition= */ true}); 1560 1561 // Perform all the requested attribute inference actions. 1562 AI.run(SCCNodes, Changed); 1563 } 1564 1565 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1566 SmallSet<Function *, 8> &Changed) { 1567 // Try and identify functions that do not recurse. 1568 1569 // If the SCC contains multiple nodes we know for sure there is recursion. 1570 if (SCCNodes.size() != 1) 1571 return; 1572 1573 Function *F = *SCCNodes.begin(); 1574 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1575 return; 1576 1577 // If all of the calls in F are identifiable and are to norecurse functions, F 1578 // is norecurse. This check also detects self-recursion as F is not currently 1579 // marked norecurse, so any called from F to F will not be marked norecurse. 1580 for (auto &BB : *F) 1581 for (auto &I : BB.instructionsWithoutDebug()) 1582 if (auto *CB = dyn_cast<CallBase>(&I)) { 1583 Function *Callee = CB->getCalledFunction(); 1584 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1585 // Function calls a potentially recursive function. 1586 return; 1587 } 1588 1589 // Every call was to a non-recursive function other than this function, and 1590 // we have no indirect recursion as the SCC size is one. This function cannot 1591 // recurse. 1592 F->setDoesNotRecurse(); 1593 ++NumNoRecurse; 1594 Changed.insert(F); 1595 } 1596 1597 static bool instructionDoesNotReturn(Instruction &I) { 1598 if (auto *CB = dyn_cast<CallBase>(&I)) 1599 return CB->hasFnAttr(Attribute::NoReturn); 1600 return false; 1601 } 1602 1603 // A basic block can only return if it terminates with a ReturnInst and does not 1604 // contain calls to noreturn functions. 1605 static bool basicBlockCanReturn(BasicBlock &BB) { 1606 if (!isa<ReturnInst>(BB.getTerminator())) 1607 return false; 1608 return none_of(BB, instructionDoesNotReturn); 1609 } 1610 1611 // Set the noreturn function attribute if possible. 1612 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1613 SmallSet<Function *, 8> &Changed) { 1614 for (Function *F : SCCNodes) { 1615 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1616 F->doesNotReturn()) 1617 continue; 1618 1619 // The function can return if any basic blocks can return. 1620 // FIXME: this doesn't handle recursion or unreachable blocks. 1621 if (none_of(*F, basicBlockCanReturn)) { 1622 F->setDoesNotReturn(); 1623 Changed.insert(F); 1624 } 1625 } 1626 } 1627 1628 static bool functionWillReturn(const Function &F) { 1629 // We can infer and propagate function attributes only when we know that the 1630 // definition we'll get at link time is *exactly* the definition we see now. 1631 // For more details, see GlobalValue::mayBeDerefined. 1632 if (!F.hasExactDefinition()) 1633 return false; 1634 1635 // Must-progress function without side-effects must return. 1636 if (F.mustProgress() && F.onlyReadsMemory()) 1637 return true; 1638 1639 // Can only analyze functions with a definition. 1640 if (F.isDeclaration()) 1641 return false; 1642 1643 // Functions with loops require more sophisticated analysis, as the loop 1644 // may be infinite. For now, don't try to handle them. 1645 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1646 FindFunctionBackedges(F, Backedges); 1647 if (!Backedges.empty()) 1648 return false; 1649 1650 // If there are no loops, then the function is willreturn if all calls in 1651 // it are willreturn. 1652 return all_of(instructions(F), [](const Instruction &I) { 1653 return I.willReturn(); 1654 }); 1655 } 1656 1657 // Set the willreturn function attribute if possible. 1658 static void addWillReturn(const SCCNodeSet &SCCNodes, 1659 SmallSet<Function *, 8> &Changed) { 1660 for (Function *F : SCCNodes) { 1661 if (!F || F->willReturn() || !functionWillReturn(*F)) 1662 continue; 1663 1664 F->setWillReturn(); 1665 NumWillReturn++; 1666 Changed.insert(F); 1667 } 1668 } 1669 1670 // Return true if this is an atomic which has an ordering stronger than 1671 // unordered. Note that this is different than the predicate we use in 1672 // Attributor. Here we chose to be conservative and consider monotonic 1673 // operations potentially synchronizing. We generally don't do much with 1674 // monotonic operations, so this is simply risk reduction. 1675 static bool isOrderedAtomic(Instruction *I) { 1676 if (!I->isAtomic()) 1677 return false; 1678 1679 if (auto *FI = dyn_cast<FenceInst>(I)) 1680 // All legal orderings for fence are stronger than monotonic. 1681 return FI->getSyncScopeID() != SyncScope::SingleThread; 1682 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1683 return true; 1684 else if (auto *SI = dyn_cast<StoreInst>(I)) 1685 return !SI->isUnordered(); 1686 else if (auto *LI = dyn_cast<LoadInst>(I)) 1687 return !LI->isUnordered(); 1688 else { 1689 llvm_unreachable("unknown atomic instruction?"); 1690 } 1691 } 1692 1693 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1694 // Volatile may synchronize 1695 if (I.isVolatile()) 1696 return true; 1697 1698 // An ordered atomic may synchronize. (See comment about on monotonic.) 1699 if (isOrderedAtomic(&I)) 1700 return true; 1701 1702 auto *CB = dyn_cast<CallBase>(&I); 1703 if (!CB) 1704 // Non call site cases covered by the two checks above 1705 return false; 1706 1707 if (CB->hasFnAttr(Attribute::NoSync)) 1708 return false; 1709 1710 // Non volatile memset/memcpy/memmoves are nosync 1711 // NOTE: Only intrinsics with volatile flags should be handled here. All 1712 // others should be marked in Intrinsics.td. 1713 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1714 if (!MI->isVolatile()) 1715 return false; 1716 1717 // Speculatively assume in SCC. 1718 if (Function *Callee = CB->getCalledFunction()) 1719 if (SCCNodes.contains(Callee)) 1720 return false; 1721 1722 return true; 1723 } 1724 1725 // Infer the nosync attribute. 1726 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1727 SmallSet<Function *, 8> &Changed) { 1728 AttributeInferer AI; 1729 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1730 Attribute::NoSync, 1731 // Skip already marked functions. 1732 [](const Function &F) { return F.hasNoSync(); }, 1733 // Instructions that break nosync assumption. 1734 [&SCCNodes](Instruction &I) { 1735 return InstrBreaksNoSync(I, SCCNodes); 1736 }, 1737 [](Function &F) { 1738 LLVM_DEBUG(dbgs() 1739 << "Adding nosync attr to fn " << F.getName() << "\n"); 1740 F.setNoSync(); 1741 ++NumNoSync; 1742 }, 1743 /* RequiresExactDefinition= */ true}); 1744 AI.run(SCCNodes, Changed); 1745 } 1746 1747 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1748 SCCNodesResult Res; 1749 Res.HasUnknownCall = false; 1750 for (Function *F : Functions) { 1751 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1752 F->isPresplitCoroutine()) { 1753 // Treat any function we're trying not to optimize as if it were an 1754 // indirect call and omit it from the node set used below. 1755 Res.HasUnknownCall = true; 1756 continue; 1757 } 1758 // Track whether any functions in this SCC have an unknown call edge. 1759 // Note: if this is ever a performance hit, we can common it with 1760 // subsequent routines which also do scans over the instructions of the 1761 // function. 1762 if (!Res.HasUnknownCall) { 1763 for (Instruction &I : instructions(*F)) { 1764 if (auto *CB = dyn_cast<CallBase>(&I)) { 1765 if (!CB->getCalledFunction()) { 1766 Res.HasUnknownCall = true; 1767 break; 1768 } 1769 } 1770 } 1771 } 1772 Res.SCCNodes.insert(F); 1773 } 1774 return Res; 1775 } 1776 1777 template <typename AARGetterT> 1778 static SmallSet<Function *, 8> 1779 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1780 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1781 1782 // Bail if the SCC only contains optnone functions. 1783 if (Nodes.SCCNodes.empty()) 1784 return {}; 1785 1786 SmallSet<Function *, 8> Changed; 1787 1788 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1789 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1790 addArgumentAttrs(Nodes.SCCNodes, Changed); 1791 inferConvergent(Nodes.SCCNodes, Changed); 1792 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1793 addWillReturn(Nodes.SCCNodes, Changed); 1794 1795 // If we have no external nodes participating in the SCC, we can deduce some 1796 // more precise attributes as well. 1797 if (!Nodes.HasUnknownCall) { 1798 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1799 addNonNullAttrs(Nodes.SCCNodes, Changed); 1800 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1801 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1802 } 1803 1804 addNoSyncAttr(Nodes.SCCNodes, Changed); 1805 1806 // Finally, infer the maximal set of attributes from the ones we've inferred 1807 // above. This is handling the cases where one attribute on a signature 1808 // implies another, but for implementation reasons the inference rule for 1809 // the later is missing (or simply less sophisticated). 1810 for (Function *F : Nodes.SCCNodes) 1811 if (F) 1812 if (inferAttributesFromOthers(*F)) 1813 Changed.insert(F); 1814 1815 return Changed; 1816 } 1817 1818 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1819 CGSCCAnalysisManager &AM, 1820 LazyCallGraph &CG, 1821 CGSCCUpdateResult &) { 1822 FunctionAnalysisManager &FAM = 1823 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1824 1825 // We pass a lambda into functions to wire them up to the analysis manager 1826 // for getting function analyses. 1827 auto AARGetter = [&](Function &F) -> AAResults & { 1828 return FAM.getResult<AAManager>(F); 1829 }; 1830 1831 SmallVector<Function *, 8> Functions; 1832 for (LazyCallGraph::Node &N : C) { 1833 Functions.push_back(&N.getFunction()); 1834 } 1835 1836 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1837 if (ChangedFunctions.empty()) 1838 return PreservedAnalyses::all(); 1839 1840 // Invalidate analyses for modified functions so that we don't have to 1841 // invalidate all analyses for all functions in this SCC. 1842 PreservedAnalyses FuncPA; 1843 // We haven't changed the CFG for modified functions. 1844 FuncPA.preserveSet<CFGAnalyses>(); 1845 for (Function *Changed : ChangedFunctions) { 1846 FAM.invalidate(*Changed, FuncPA); 1847 // Also invalidate any direct callers of changed functions since analyses 1848 // may care about attributes of direct callees. For example, MemorySSA cares 1849 // about whether or not a call's callee modifies memory and queries that 1850 // through function attributes. 1851 for (auto *U : Changed->users()) { 1852 if (auto *Call = dyn_cast<CallBase>(U)) { 1853 if (Call->getCalledFunction() == Changed) 1854 FAM.invalidate(*Call->getFunction(), FuncPA); 1855 } 1856 } 1857 } 1858 1859 PreservedAnalyses PA; 1860 // We have not added or removed functions. 1861 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1862 // We already invalidated all relevant function analyses above. 1863 PA.preserveSet<AllAnalysesOn<Function>>(); 1864 return PA; 1865 } 1866 1867 namespace { 1868 1869 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1870 // Pass identification, replacement for typeid 1871 static char ID; 1872 1873 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1874 initializePostOrderFunctionAttrsLegacyPassPass( 1875 *PassRegistry::getPassRegistry()); 1876 } 1877 1878 bool runOnSCC(CallGraphSCC &SCC) override; 1879 1880 void getAnalysisUsage(AnalysisUsage &AU) const override { 1881 AU.setPreservesCFG(); 1882 AU.addRequired<AssumptionCacheTracker>(); 1883 getAAResultsAnalysisUsage(AU); 1884 CallGraphSCCPass::getAnalysisUsage(AU); 1885 } 1886 }; 1887 1888 } // end anonymous namespace 1889 1890 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1891 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1892 "Deduce function attributes", false, false) 1893 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1894 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1895 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1896 "Deduce function attributes", false, false) 1897 1898 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1899 return new PostOrderFunctionAttrsLegacyPass(); 1900 } 1901 1902 template <typename AARGetterT> 1903 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1904 SmallVector<Function *, 8> Functions; 1905 for (CallGraphNode *I : SCC) { 1906 Functions.push_back(I->getFunction()); 1907 } 1908 1909 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1910 } 1911 1912 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1913 if (skipSCC(SCC)) 1914 return false; 1915 return runImpl(SCC, LegacyAARGetter(*this)); 1916 } 1917 1918 namespace { 1919 1920 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1921 // Pass identification, replacement for typeid 1922 static char ID; 1923 1924 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1925 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1926 *PassRegistry::getPassRegistry()); 1927 } 1928 1929 bool runOnModule(Module &M) override; 1930 1931 void getAnalysisUsage(AnalysisUsage &AU) const override { 1932 AU.setPreservesCFG(); 1933 AU.addRequired<CallGraphWrapperPass>(); 1934 AU.addPreserved<CallGraphWrapperPass>(); 1935 } 1936 }; 1937 1938 } // end anonymous namespace 1939 1940 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1941 1942 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1943 "rpo-function-attrs", "Deduce function attributes in RPO", 1944 false, false) 1945 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1946 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1947 "rpo-function-attrs", "Deduce function attributes in RPO", 1948 false, false) 1949 1950 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1951 return new ReversePostOrderFunctionAttrsLegacyPass(); 1952 } 1953 1954 static bool addNoRecurseAttrsTopDown(Function &F) { 1955 // We check the preconditions for the function prior to calling this to avoid 1956 // the cost of building up a reversible post-order list. We assert them here 1957 // to make sure none of the invariants this relies on were violated. 1958 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1959 assert(!F.doesNotRecurse() && 1960 "This function has already been deduced as norecurs!"); 1961 assert(F.hasInternalLinkage() && 1962 "Can only do top-down deduction for internal linkage functions!"); 1963 1964 // If F is internal and all of its uses are calls from a non-recursive 1965 // functions, then none of its calls could in fact recurse without going 1966 // through a function marked norecurse, and so we can mark this function too 1967 // as norecurse. Note that the uses must actually be calls -- otherwise 1968 // a pointer to this function could be returned from a norecurse function but 1969 // this function could be recursively (indirectly) called. Note that this 1970 // also detects if F is directly recursive as F is not yet marked as 1971 // a norecurse function. 1972 for (auto *U : F.users()) { 1973 auto *I = dyn_cast<Instruction>(U); 1974 if (!I) 1975 return false; 1976 CallBase *CB = dyn_cast<CallBase>(I); 1977 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 1978 return false; 1979 } 1980 F.setDoesNotRecurse(); 1981 ++NumNoRecurse; 1982 return true; 1983 } 1984 1985 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1986 // We only have a post-order SCC traversal (because SCCs are inherently 1987 // discovered in post-order), so we accumulate them in a vector and then walk 1988 // it in reverse. This is simpler than using the RPO iterator infrastructure 1989 // because we need to combine SCC detection and the PO walk of the call 1990 // graph. We can also cheat egregiously because we're primarily interested in 1991 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1992 // with multiple functions in them will clearly be recursive. 1993 SmallVector<Function *, 16> Worklist; 1994 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1995 if (I->size() != 1) 1996 continue; 1997 1998 Function *F = I->front()->getFunction(); 1999 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2000 F->hasInternalLinkage()) 2001 Worklist.push_back(F); 2002 } 2003 2004 bool Changed = false; 2005 for (auto *F : llvm::reverse(Worklist)) 2006 Changed |= addNoRecurseAttrsTopDown(*F); 2007 2008 return Changed; 2009 } 2010 2011 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2012 if (skipModule(M)) 2013 return false; 2014 2015 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2016 2017 return deduceFunctionAttributeInRPO(M, CG); 2018 } 2019 2020 PreservedAnalyses 2021 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2022 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2023 2024 if (!deduceFunctionAttributeInRPO(M, CG)) 2025 return PreservedAnalyses::all(); 2026 2027 PreservedAnalyses PA; 2028 PA.preserve<CallGraphAnalysis>(); 2029 return PA; 2030 } 2031