xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "argpromotion"
91 
92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
96 
97 /// A vector used to hold the indices of a single GEP instruction
98 using IndicesVector = std::vector<uint64_t>;
99 
100 /// DoPromotion - This method actually performs the promotion of the specified
101 /// arguments, and returns the new function.  At this point, we know that it's
102 /// safe to do so.
103 static Function *
104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
105             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
106             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
107                 ReplaceCallSite) {
108   // Start by computing a new prototype for the function, which is the same as
109   // the old function, but has modified arguments.
110   FunctionType *FTy = F->getFunctionType();
111   std::vector<Type *> Params;
112 
113   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
114 
115   // ScalarizedElements - If we are promoting a pointer that has elements
116   // accessed out of it, keep track of which elements are accessed so that we
117   // can add one argument for each.
118   //
119   // Arguments that are directly loaded will have a zero element value here, to
120   // handle cases where there are both a direct load and GEP accesses.
121   std::map<Argument *, ScalarizeTable> ScalarizedElements;
122 
123   // OriginalLoads - Keep track of a representative load instruction from the
124   // original function so that we can tell the alias analysis implementation
125   // what the new GEP/Load instructions we are inserting look like.
126   // We need to keep the original loads for each argument and the elements
127   // of the argument that are accessed.
128   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
129 
130   // Attribute - Keep track of the parameter attributes for the arguments
131   // that we are *not* promoting. For the ones that we do promote, the parameter
132   // attributes are lost
133   SmallVector<AttributeSet, 8> ArgAttrVec;
134   AttributeList PAL = F->getAttributes();
135 
136   // First, determine the new argument list
137   unsigned ArgNo = 0;
138   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
139        ++I, ++ArgNo) {
140     if (ByValArgsToTransform.count(&*I)) {
141       // Simple byval argument? Just add all the struct element types.
142       Type *AgTy = I->getParamByValType();
143       StructType *STy = cast<StructType>(AgTy);
144       llvm::append_range(Params, STy->elements());
145       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
146                         AttributeSet());
147       ++NumByValArgsPromoted;
148     } else if (!ArgsToPromote.count(&*I)) {
149       // Unchanged argument
150       Params.push_back(I->getType());
151       ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
152     } else if (I->use_empty()) {
153       // Dead argument (which are always marked as promotable)
154       ++NumArgumentsDead;
155     } else {
156       // Okay, this is being promoted. This means that the only uses are loads
157       // or GEPs which are only used by loads
158 
159       // In this table, we will track which indices are loaded from the argument
160       // (where direct loads are tracked as no indices).
161       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
162       for (User *U : make_early_inc_range(I->users())) {
163         Instruction *UI = cast<Instruction>(U);
164         Type *SrcTy;
165         if (LoadInst *L = dyn_cast<LoadInst>(UI))
166           SrcTy = L->getType();
167         else
168           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
169         // Skip dead GEPs and remove them.
170         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
171           UI->eraseFromParent();
172           continue;
173         }
174 
175         IndicesVector Indices;
176         Indices.reserve(UI->getNumOperands() - 1);
177         // Since loads will only have a single operand, and GEPs only a single
178         // non-index operand, this will record direct loads without any indices,
179         // and gep+loads with the GEP indices.
180         for (const Use &I : llvm::drop_begin(UI->operands()))
181           Indices.push_back(cast<ConstantInt>(I)->getSExtValue());
182         // GEPs with a single 0 index can be merged with direct loads
183         if (Indices.size() == 1 && Indices.front() == 0)
184           Indices.clear();
185         ArgIndices.insert(std::make_pair(SrcTy, Indices));
186         LoadInst *OrigLoad;
187         if (LoadInst *L = dyn_cast<LoadInst>(UI))
188           OrigLoad = L;
189         else
190           // Take any load, we will use it only to update Alias Analysis
191           OrigLoad = cast<LoadInst>(UI->user_back());
192         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
193       }
194 
195       // Add a parameter to the function for each element passed in.
196       for (const auto &ArgIndex : ArgIndices) {
197         // not allowed to dereference ->begin() if size() is 0
198         Params.push_back(GetElementPtrInst::getIndexedType(
199             cast<PointerType>(I->getType())->getElementType(),
200             ArgIndex.second));
201         ArgAttrVec.push_back(AttributeSet());
202         assert(Params.back());
203       }
204 
205       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206         ++NumArgumentsPromoted;
207       else
208         ++NumAggregatesPromoted;
209     }
210   }
211 
212   Type *RetTy = FTy->getReturnType();
213 
214   // Construct the new function type using the new arguments.
215   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
216 
217   // Create the new function body and insert it into the module.
218   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219                                   F->getName());
220   NF->copyAttributesFrom(F);
221   NF->copyMetadata(F, 0);
222 
223   // The new function will have the !dbg metadata copied from the original
224   // function. The original function may not be deleted, and dbg metadata need
225   // to be unique so we need to drop it.
226   F->setSubprogram(nullptr);
227 
228   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
229                     << "From: " << *F);
230 
231   // Recompute the parameter attributes list based on the new arguments for
232   // the function.
233   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
234                                        PAL.getRetAttrs(), ArgAttrVec));
235   ArgAttrVec.clear();
236 
237   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
238   NF->takeName(F);
239 
240   // Loop over all of the callers of the function, transforming the call sites
241   // to pass in the loaded pointers.
242   //
243   SmallVector<Value *, 16> Args;
244   const DataLayout &DL = F->getParent()->getDataLayout();
245   while (!F->use_empty()) {
246     CallBase &CB = cast<CallBase>(*F->user_back());
247     assert(CB.getCalledFunction() == F);
248     const AttributeList &CallPAL = CB.getAttributes();
249     IRBuilder<NoFolder> IRB(&CB);
250 
251     // Loop over the operands, inserting GEP and loads in the caller as
252     // appropriate.
253     auto AI = CB.arg_begin();
254     ArgNo = 0;
255     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
256          ++I, ++AI, ++ArgNo)
257       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
258         Args.push_back(*AI); // Unmodified argument
259         ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
260       } else if (ByValArgsToTransform.count(&*I)) {
261         // Emit a GEP and load for each element of the struct.
262         Type *AgTy = I->getParamByValType();
263         StructType *STy = cast<StructType>(AgTy);
264         Value *Idxs[2] = {
265             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
266         const StructLayout *SL = DL.getStructLayout(STy);
267         Align StructAlign = *I->getParamAlign();
268         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
269           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
270           auto *Idx =
271               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
272           // TODO: Tell AA about the new values?
273           Align Alignment =
274               commonAlignment(StructAlign, SL->getElementOffset(i));
275           Args.push_back(IRB.CreateAlignedLoad(
276               STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
277           ArgAttrVec.push_back(AttributeSet());
278         }
279       } else if (!I->use_empty()) {
280         // Non-dead argument: insert GEPs and loads as appropriate.
281         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
282         // Store the Value* version of the indices in here, but declare it now
283         // for reuse.
284         std::vector<Value *> Ops;
285         for (const auto &ArgIndex : ArgIndices) {
286           Value *V = *AI;
287           LoadInst *OrigLoad =
288               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
289           if (!ArgIndex.second.empty()) {
290             Ops.reserve(ArgIndex.second.size());
291             Type *ElTy = V->getType();
292             for (auto II : ArgIndex.second) {
293               // Use i32 to index structs, and i64 for others (pointers/arrays).
294               // This satisfies GEP constraints.
295               Type *IdxTy =
296                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
297                                       : Type::getInt64Ty(F->getContext()));
298               Ops.push_back(ConstantInt::get(IdxTy, II));
299               // Keep track of the type we're currently indexing.
300               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
301                 ElTy = ElPTy->getElementType();
302               else
303                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
304             }
305             // And create a GEP to extract those indices.
306             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
307             Ops.clear();
308           }
309           // Since we're replacing a load make sure we take the alignment
310           // of the previous load.
311           LoadInst *newLoad =
312               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
313           newLoad->setAlignment(OrigLoad->getAlign());
314           // Transfer the AA info too.
315           newLoad->setAAMetadata(OrigLoad->getAAMetadata());
316 
317           Args.push_back(newLoad);
318           ArgAttrVec.push_back(AttributeSet());
319         }
320       }
321 
322     // Push any varargs arguments on the list.
323     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
324       Args.push_back(*AI);
325       ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
326     }
327 
328     SmallVector<OperandBundleDef, 1> OpBundles;
329     CB.getOperandBundlesAsDefs(OpBundles);
330 
331     CallBase *NewCS = nullptr;
332     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
333       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
334                                  Args, OpBundles, "", &CB);
335     } else {
336       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
337       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
338       NewCS = NewCall;
339     }
340     NewCS->setCallingConv(CB.getCallingConv());
341     NewCS->setAttributes(AttributeList::get(F->getContext(),
342                                             CallPAL.getFnAttrs(),
343                                             CallPAL.getRetAttrs(), ArgAttrVec));
344     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
345     Args.clear();
346     ArgAttrVec.clear();
347 
348     // Update the callgraph to know that the callsite has been transformed.
349     if (ReplaceCallSite)
350       (*ReplaceCallSite)(CB, *NewCS);
351 
352     if (!CB.use_empty()) {
353       CB.replaceAllUsesWith(NewCS);
354       NewCS->takeName(&CB);
355     }
356 
357     // Finally, remove the old call from the program, reducing the use-count of
358     // F.
359     CB.eraseFromParent();
360   }
361 
362   // Since we have now created the new function, splice the body of the old
363   // function right into the new function, leaving the old rotting hulk of the
364   // function empty.
365   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
366 
367   // Loop over the argument list, transferring uses of the old arguments over to
368   // the new arguments, also transferring over the names as well.
369   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
370                               I2 = NF->arg_begin();
371        I != E; ++I) {
372     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
373       // If this is an unmodified argument, move the name and users over to the
374       // new version.
375       I->replaceAllUsesWith(&*I2);
376       I2->takeName(&*I);
377       ++I2;
378       continue;
379     }
380 
381     if (ByValArgsToTransform.count(&*I)) {
382       // In the callee, we create an alloca, and store each of the new incoming
383       // arguments into the alloca.
384       Instruction *InsertPt = &NF->begin()->front();
385 
386       // Just add all the struct element types.
387       Type *AgTy = I->getParamByValType();
388       Align StructAlign = *I->getParamAlign();
389       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
390                                         StructAlign, "", InsertPt);
391       StructType *STy = cast<StructType>(AgTy);
392       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
393                         nullptr};
394       const StructLayout *SL = DL.getStructLayout(STy);
395 
396       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
397         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
398         Value *Idx = GetElementPtrInst::Create(
399             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
400             InsertPt);
401         I2->setName(I->getName() + "." + Twine(i));
402         Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
403         new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
404       }
405 
406       // Anything that used the arg should now use the alloca.
407       I->replaceAllUsesWith(TheAlloca);
408       TheAlloca->takeName(&*I);
409       continue;
410     }
411 
412     // There potentially are metadata uses for things like llvm.dbg.value.
413     // Replace them with undef, after handling the other regular uses.
414     auto RauwUndefMetadata = make_scope_exit(
415         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
416 
417     if (I->use_empty())
418       continue;
419 
420     // Otherwise, if we promoted this argument, then all users are load
421     // instructions (or GEPs with only load users), and all loads should be
422     // using the new argument that we added.
423     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
424 
425     while (!I->use_empty()) {
426       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
427         assert(ArgIndices.begin()->second.empty() &&
428                "Load element should sort to front!");
429         I2->setName(I->getName() + ".val");
430         LI->replaceAllUsesWith(&*I2);
431         LI->eraseFromParent();
432         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
433                           << "' in function '" << F->getName() << "'\n");
434       } else {
435         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
436         assert(!GEP->use_empty() &&
437                "GEPs without uses should be cleaned up already");
438         IndicesVector Operands;
439         Operands.reserve(GEP->getNumIndices());
440         for (const Use &Idx : GEP->indices())
441           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
442 
443         // GEPs with a single 0 index can be merged with direct loads
444         if (Operands.size() == 1 && Operands.front() == 0)
445           Operands.clear();
446 
447         Function::arg_iterator TheArg = I2;
448         for (ScalarizeTable::iterator It = ArgIndices.begin();
449              It->second != Operands; ++It, ++TheArg) {
450           assert(It != ArgIndices.end() && "GEP not handled??");
451         }
452 
453         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
454                                 make_range(Operands.begin(), Operands.end())));
455 
456         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
457                           << "' of function '" << NF->getName() << "'\n");
458 
459         // All of the uses must be load instructions.  Replace them all with
460         // the argument specified by ArgNo.
461         while (!GEP->use_empty()) {
462           LoadInst *L = cast<LoadInst>(GEP->user_back());
463           L->replaceAllUsesWith(&*TheArg);
464           L->eraseFromParent();
465         }
466         GEP->eraseFromParent();
467       }
468     }
469     // Increment I2 past all of the arguments added for this promoted pointer.
470     std::advance(I2, ArgIndices.size());
471   }
472 
473   return NF;
474 }
475 
476 /// Return true if we can prove that all callees pass in a valid pointer for the
477 /// specified function argument.
478 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
479   Function *Callee = Arg->getParent();
480   const DataLayout &DL = Callee->getParent()->getDataLayout();
481 
482   unsigned ArgNo = Arg->getArgNo();
483 
484   // Look at all call sites of the function.  At this point we know we only have
485   // direct callees.
486   for (User *U : Callee->users()) {
487     CallBase &CB = cast<CallBase>(*U);
488 
489     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
490       return false;
491   }
492   return true;
493 }
494 
495 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
496 /// that is greater than or equal to the size of prefix, and each of the
497 /// elements in Prefix is the same as the corresponding elements in Longer.
498 ///
499 /// This means it also returns true when Prefix and Longer are equal!
500 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
501   if (Prefix.size() > Longer.size())
502     return false;
503   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
504 }
505 
506 /// Checks if Indices, or a prefix of Indices, is in Set.
507 static bool prefixIn(const IndicesVector &Indices,
508                      std::set<IndicesVector> &Set) {
509   std::set<IndicesVector>::iterator Low;
510   Low = Set.upper_bound(Indices);
511   if (Low != Set.begin())
512     Low--;
513   // Low is now the last element smaller than or equal to Indices. This means
514   // it points to a prefix of Indices (possibly Indices itself), if such
515   // prefix exists.
516   //
517   // This load is safe if any prefix of its operands is safe to load.
518   return Low != Set.end() && isPrefix(*Low, Indices);
519 }
520 
521 /// Mark the given indices (ToMark) as safe in the given set of indices
522 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
523 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
524 /// already. Furthermore, any indices that Indices is itself a prefix of, are
525 /// removed from Safe (since they are implicitely safe because of Indices now).
526 static void markIndicesSafe(const IndicesVector &ToMark,
527                             std::set<IndicesVector> &Safe) {
528   std::set<IndicesVector>::iterator Low;
529   Low = Safe.upper_bound(ToMark);
530   // Guard against the case where Safe is empty
531   if (Low != Safe.begin())
532     Low--;
533   // Low is now the last element smaller than or equal to Indices. This
534   // means it points to a prefix of Indices (possibly Indices itself), if
535   // such prefix exists.
536   if (Low != Safe.end()) {
537     if (isPrefix(*Low, ToMark))
538       // If there is already a prefix of these indices (or exactly these
539       // indices) marked a safe, don't bother adding these indices
540       return;
541 
542     // Increment Low, so we can use it as a "insert before" hint
543     ++Low;
544   }
545   // Insert
546   Low = Safe.insert(Low, ToMark);
547   ++Low;
548   // If there we're a prefix of longer index list(s), remove those
549   std::set<IndicesVector>::iterator End = Safe.end();
550   while (Low != End && isPrefix(ToMark, *Low)) {
551     std::set<IndicesVector>::iterator Remove = Low;
552     ++Low;
553     Safe.erase(Remove);
554   }
555 }
556 
557 /// isSafeToPromoteArgument - As you might guess from the name of this method,
558 /// it checks to see if it is both safe and useful to promote the argument.
559 /// This method limits promotion of aggregates to only promote up to three
560 /// elements of the aggregate in order to avoid exploding the number of
561 /// arguments passed in.
562 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
563                                     unsigned MaxElements) {
564   using GEPIndicesSet = std::set<IndicesVector>;
565 
566   // Quick exit for unused arguments
567   if (Arg->use_empty())
568     return true;
569 
570   // We can only promote this argument if all of the uses are loads, or are GEP
571   // instructions (with constant indices) that are subsequently loaded.
572   //
573   // Promoting the argument causes it to be loaded in the caller
574   // unconditionally. This is only safe if we can prove that either the load
575   // would have happened in the callee anyway (ie, there is a load in the entry
576   // block) or the pointer passed in at every call site is guaranteed to be
577   // valid.
578   // In the former case, invalid loads can happen, but would have happened
579   // anyway, in the latter case, invalid loads won't happen. This prevents us
580   // from introducing an invalid load that wouldn't have happened in the
581   // original code.
582   //
583   // This set will contain all sets of indices that are loaded in the entry
584   // block, and thus are safe to unconditionally load in the caller.
585   GEPIndicesSet SafeToUnconditionallyLoad;
586 
587   // This set contains all the sets of indices that we are planning to promote.
588   // This makes it possible to limit the number of arguments added.
589   GEPIndicesSet ToPromote;
590 
591   // If the pointer is always valid, any load with first index 0 is valid.
592 
593   if (ByValTy)
594     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
595 
596   // Whenever a new underlying type for the operand is found, make sure it's
597   // consistent with the GEPs and loads we've already seen and, if necessary,
598   // use it to see if all incoming pointers are valid (which implies the 0-index
599   // is safe).
600   Type *BaseTy = ByValTy;
601   auto UpdateBaseTy = [&](Type *NewBaseTy) {
602     if (BaseTy)
603       return BaseTy == NewBaseTy;
604 
605     BaseTy = NewBaseTy;
606     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
607       assert(SafeToUnconditionallyLoad.empty());
608       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
609     }
610 
611     return true;
612   };
613 
614   // First, iterate the entry block and mark loads of (geps of) arguments as
615   // safe.
616   BasicBlock &EntryBlock = Arg->getParent()->front();
617   // Declare this here so we can reuse it
618   IndicesVector Indices;
619   for (Instruction &I : EntryBlock)
620     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
621       Value *V = LI->getPointerOperand();
622       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
623         V = GEP->getPointerOperand();
624         if (V == Arg) {
625           // This load actually loads (part of) Arg? Check the indices then.
626           Indices.reserve(GEP->getNumIndices());
627           for (Use &Idx : GEP->indices())
628             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
629               Indices.push_back(CI->getSExtValue());
630             else
631               // We found a non-constant GEP index for this argument? Bail out
632               // right away, can't promote this argument at all.
633               return false;
634 
635           if (!UpdateBaseTy(GEP->getSourceElementType()))
636             return false;
637 
638           // Indices checked out, mark them as safe
639           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
640           Indices.clear();
641         }
642       } else if (V == Arg) {
643         // Direct loads are equivalent to a GEP with a single 0 index.
644         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
645 
646         if (BaseTy && LI->getType() != BaseTy)
647           return false;
648 
649         BaseTy = LI->getType();
650       }
651     }
652 
653   // Now, iterate all uses of the argument to see if there are any uses that are
654   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
655   SmallVector<LoadInst *, 16> Loads;
656   IndicesVector Operands;
657   for (Use &U : Arg->uses()) {
658     User *UR = U.getUser();
659     Operands.clear();
660     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
661       // Don't hack volatile/atomic loads
662       if (!LI->isSimple())
663         return false;
664       Loads.push_back(LI);
665       // Direct loads are equivalent to a GEP with a zero index and then a load.
666       Operands.push_back(0);
667 
668       if (!UpdateBaseTy(LI->getType()))
669         return false;
670     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
671       if (GEP->use_empty()) {
672         // Dead GEP's cause trouble later.  Just remove them if we run into
673         // them.
674         continue;
675       }
676 
677       if (!UpdateBaseTy(GEP->getSourceElementType()))
678         return false;
679 
680       // Ensure that all of the indices are constants.
681       for (Use &Idx : GEP->indices())
682         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
683           Operands.push_back(C->getSExtValue());
684         else
685           return false; // Not a constant operand GEP!
686 
687       // Ensure that the only users of the GEP are load instructions.
688       for (User *GEPU : GEP->users())
689         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
690           // Don't hack volatile/atomic loads
691           if (!LI->isSimple())
692             return false;
693           Loads.push_back(LI);
694         } else {
695           // Other uses than load?
696           return false;
697         }
698     } else {
699       return false; // Not a load or a GEP.
700     }
701 
702     // Now, see if it is safe to promote this load / loads of this GEP. Loading
703     // is safe if Operands, or a prefix of Operands, is marked as safe.
704     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
705       return false;
706 
707     // See if we are already promoting a load with these indices. If not, check
708     // to make sure that we aren't promoting too many elements.  If so, nothing
709     // to do.
710     if (ToPromote.find(Operands) == ToPromote.end()) {
711       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
712         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
713                           << Arg->getName()
714                           << "' because it would require adding more "
715                           << "than " << MaxElements
716                           << " arguments to the function.\n");
717         // We limit aggregate promotion to only promoting up to a fixed number
718         // of elements of the aggregate.
719         return false;
720       }
721       ToPromote.insert(std::move(Operands));
722     }
723   }
724 
725   if (Loads.empty())
726     return true; // No users, this is a dead argument.
727 
728   // Okay, now we know that the argument is only used by load instructions and
729   // it is safe to unconditionally perform all of them. Use alias analysis to
730   // check to see if the pointer is guaranteed to not be modified from entry of
731   // the function to each of the load instructions.
732 
733   // Because there could be several/many load instructions, remember which
734   // blocks we know to be transparent to the load.
735   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
736 
737   for (LoadInst *Load : Loads) {
738     // Check to see if the load is invalidated from the start of the block to
739     // the load itself.
740     BasicBlock *BB = Load->getParent();
741 
742     MemoryLocation Loc = MemoryLocation::get(Load);
743     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
744       return false; // Pointer is invalidated!
745 
746     // Now check every path from the entry block to the load for transparency.
747     // To do this, we perform a depth first search on the inverse CFG from the
748     // loading block.
749     for (BasicBlock *P : predecessors(BB)) {
750       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
751         if (AAR.canBasicBlockModify(*TranspBB, Loc))
752           return false;
753     }
754   }
755 
756   // If the path from the entry of the function to each load is free of
757   // instructions that potentially invalidate the load, we can make the
758   // transformation!
759   return true;
760 }
761 
762 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
763   // There is no size information, so be conservative.
764   if (!type->isSized())
765     return false;
766 
767   // If the alloc size is not equal to the storage size, then there are padding
768   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
769   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
770     return false;
771 
772   // FIXME: This isn't the right way to check for padding in vectors with
773   // non-byte-size elements.
774   if (VectorType *seqTy = dyn_cast<VectorType>(type))
775     return isDenselyPacked(seqTy->getElementType(), DL);
776 
777   // For array types, check for padding within members.
778   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
779     return isDenselyPacked(seqTy->getElementType(), DL);
780 
781   if (!isa<StructType>(type))
782     return true;
783 
784   // Check for padding within and between elements of a struct.
785   StructType *StructTy = cast<StructType>(type);
786   const StructLayout *Layout = DL.getStructLayout(StructTy);
787   uint64_t StartPos = 0;
788   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
789     Type *ElTy = StructTy->getElementType(i);
790     if (!isDenselyPacked(ElTy, DL))
791       return false;
792     if (StartPos != Layout->getElementOffsetInBits(i))
793       return false;
794     StartPos += DL.getTypeAllocSizeInBits(ElTy);
795   }
796 
797   return true;
798 }
799 
800 /// Checks if the padding bytes of an argument could be accessed.
801 static bool canPaddingBeAccessed(Argument *arg) {
802   assert(arg->hasByValAttr());
803 
804   // Track all the pointers to the argument to make sure they are not captured.
805   SmallPtrSet<Value *, 16> PtrValues;
806   PtrValues.insert(arg);
807 
808   // Track all of the stores.
809   SmallVector<StoreInst *, 16> Stores;
810 
811   // Scan through the uses recursively to make sure the pointer is always used
812   // sanely.
813   SmallVector<Value *, 16> WorkList(arg->users());
814   while (!WorkList.empty()) {
815     Value *V = WorkList.pop_back_val();
816     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
817       if (PtrValues.insert(V).second)
818         llvm::append_range(WorkList, V->users());
819     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
820       Stores.push_back(Store);
821     } else if (!isa<LoadInst>(V)) {
822       return true;
823     }
824   }
825 
826   // Check to make sure the pointers aren't captured
827   for (StoreInst *Store : Stores)
828     if (PtrValues.count(Store->getValueOperand()))
829       return true;
830 
831   return false;
832 }
833 
834 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
835     const Function &F, const TargetTransformInfo &TTI,
836     SmallPtrSetImpl<Argument *> &ArgsToPromote,
837     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
838   for (const Use &U : F.uses()) {
839     CallBase *CB = dyn_cast<CallBase>(U.getUser());
840     if (!CB)
841       return false;
842     const Function *Caller = CB->getCaller();
843     const Function *Callee = CB->getCalledFunction();
844     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
845         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
846       return false;
847   }
848   return true;
849 }
850 
851 /// PromoteArguments - This method checks the specified function to see if there
852 /// are any promotable arguments and if it is safe to promote the function (for
853 /// example, all callers are direct).  If safe to promote some arguments, it
854 /// calls the DoPromotion method.
855 static Function *
856 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
857                  unsigned MaxElements,
858                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
859                      ReplaceCallSite,
860                  const TargetTransformInfo &TTI) {
861   // Don't perform argument promotion for naked functions; otherwise we can end
862   // up removing parameters that are seemingly 'not used' as they are referred
863   // to in the assembly.
864   if(F->hasFnAttribute(Attribute::Naked))
865     return nullptr;
866 
867   // Make sure that it is local to this module.
868   if (!F->hasLocalLinkage())
869     return nullptr;
870 
871   // Don't promote arguments for variadic functions. Adding, removing, or
872   // changing non-pack parameters can change the classification of pack
873   // parameters. Frontends encode that classification at the call site in the
874   // IR, while in the callee the classification is determined dynamically based
875   // on the number of registers consumed so far.
876   if (F->isVarArg())
877     return nullptr;
878 
879   // Don't transform functions that receive inallocas, as the transformation may
880   // not be safe depending on calling convention.
881   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
882     return nullptr;
883 
884   // First check: see if there are any pointer arguments!  If not, quick exit.
885   SmallVector<Argument *, 16> PointerArgs;
886   for (Argument &I : F->args())
887     if (I.getType()->isPointerTy())
888       PointerArgs.push_back(&I);
889   if (PointerArgs.empty())
890     return nullptr;
891 
892   // Second check: make sure that all callers are direct callers.  We can't
893   // transform functions that have indirect callers.  Also see if the function
894   // is self-recursive and check that target features are compatible.
895   bool isSelfRecursive = false;
896   for (Use &U : F->uses()) {
897     CallBase *CB = dyn_cast<CallBase>(U.getUser());
898     // Must be a direct call.
899     if (CB == nullptr || !CB->isCallee(&U))
900       return nullptr;
901 
902     // Can't change signature of musttail callee
903     if (CB->isMustTailCall())
904       return nullptr;
905 
906     if (CB->getParent()->getParent() == F)
907       isSelfRecursive = true;
908   }
909 
910   // Can't change signature of musttail caller
911   // FIXME: Support promoting whole chain of musttail functions
912   for (BasicBlock &BB : *F)
913     if (BB.getTerminatingMustTailCall())
914       return nullptr;
915 
916   const DataLayout &DL = F->getParent()->getDataLayout();
917 
918   AAResults &AAR = AARGetter(*F);
919 
920   // Check to see which arguments are promotable.  If an argument is promotable,
921   // add it to ArgsToPromote.
922   SmallPtrSet<Argument *, 8> ArgsToPromote;
923   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
924   for (Argument *PtrArg : PointerArgs) {
925     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
926 
927     // Replace sret attribute with noalias. This reduces register pressure by
928     // avoiding a register copy.
929     if (PtrArg->hasStructRetAttr()) {
930       unsigned ArgNo = PtrArg->getArgNo();
931       F->removeParamAttr(ArgNo, Attribute::StructRet);
932       F->addParamAttr(ArgNo, Attribute::NoAlias);
933       for (Use &U : F->uses()) {
934         CallBase &CB = cast<CallBase>(*U.getUser());
935         CB.removeParamAttr(ArgNo, Attribute::StructRet);
936         CB.addParamAttr(ArgNo, Attribute::NoAlias);
937       }
938     }
939 
940     // If this is a byval argument, and if the aggregate type is small, just
941     // pass the elements, which is always safe, if the passed value is densely
942     // packed or if we can prove the padding bytes are never accessed.
943     //
944     // Only handle arguments with specified alignment; if it's unspecified, the
945     // actual alignment of the argument is target-specific.
946     bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
947                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
948                             !canPaddingBeAccessed(PtrArg));
949     if (isSafeToPromote) {
950       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
951         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
952           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
953                             << PtrArg->getName()
954                             << "' because it would require adding more"
955                             << " than " << MaxElements
956                             << " arguments to the function.\n");
957           continue;
958         }
959 
960         // If all the elements are single-value types, we can promote it.
961         bool AllSimple = true;
962         for (const auto *EltTy : STy->elements()) {
963           if (!EltTy->isSingleValueType()) {
964             AllSimple = false;
965             break;
966           }
967         }
968 
969         // Safe to transform, don't even bother trying to "promote" it.
970         // Passing the elements as a scalar will allow sroa to hack on
971         // the new alloca we introduce.
972         if (AllSimple) {
973           ByValArgsToTransform.insert(PtrArg);
974           continue;
975         }
976       }
977     }
978 
979     // If the argument is a recursive type and we're in a recursive
980     // function, we could end up infinitely peeling the function argument.
981     if (isSelfRecursive) {
982       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
983         bool RecursiveType =
984             llvm::is_contained(STy->elements(), PtrArg->getType());
985         if (RecursiveType)
986           continue;
987       }
988     }
989 
990     // Otherwise, see if we can promote the pointer to its value.
991     Type *ByValTy =
992         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
993     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
994       ArgsToPromote.insert(PtrArg);
995   }
996 
997   // No promotable pointer arguments.
998   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
999     return nullptr;
1000 
1001   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1002           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1003     return nullptr;
1004 
1005   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1006 }
1007 
1008 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1009                                              CGSCCAnalysisManager &AM,
1010                                              LazyCallGraph &CG,
1011                                              CGSCCUpdateResult &UR) {
1012   bool Changed = false, LocalChange;
1013 
1014   // Iterate until we stop promoting from this SCC.
1015   do {
1016     LocalChange = false;
1017 
1018     FunctionAnalysisManager &FAM =
1019         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1020 
1021     for (LazyCallGraph::Node &N : C) {
1022       Function &OldF = N.getFunction();
1023 
1024       // FIXME: This lambda must only be used with this function. We should
1025       // skip the lambda and just get the AA results directly.
1026       auto AARGetter = [&](Function &F) -> AAResults & {
1027         assert(&F == &OldF && "Called with an unexpected function!");
1028         return FAM.getResult<AAManager>(F);
1029       };
1030 
1031       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1032       Function *NewF =
1033           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1034       if (!NewF)
1035         continue;
1036       LocalChange = true;
1037 
1038       // Directly substitute the functions in the call graph. Note that this
1039       // requires the old function to be completely dead and completely
1040       // replaced by the new function. It does no call graph updates, it merely
1041       // swaps out the particular function mapped to a particular node in the
1042       // graph.
1043       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1044       FAM.clear(OldF, OldF.getName());
1045       OldF.eraseFromParent();
1046 
1047       PreservedAnalyses FuncPA;
1048       FuncPA.preserveSet<CFGAnalyses>();
1049       for (auto *U : NewF->users()) {
1050         auto *UserF = cast<CallBase>(U)->getFunction();
1051         FAM.invalidate(*UserF, FuncPA);
1052       }
1053     }
1054 
1055     Changed |= LocalChange;
1056   } while (LocalChange);
1057 
1058   if (!Changed)
1059     return PreservedAnalyses::all();
1060 
1061   PreservedAnalyses PA;
1062   // We've cleared out analyses for deleted functions.
1063   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1064   // We've manually invalidated analyses for functions we've modified.
1065   PA.preserveSet<AllAnalysesOn<Function>>();
1066   return PA;
1067 }
1068 
1069 namespace {
1070 
1071 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1072 struct ArgPromotion : public CallGraphSCCPass {
1073   // Pass identification, replacement for typeid
1074   static char ID;
1075 
1076   explicit ArgPromotion(unsigned MaxElements = 3)
1077       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1078     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1079   }
1080 
1081   void getAnalysisUsage(AnalysisUsage &AU) const override {
1082     AU.addRequired<AssumptionCacheTracker>();
1083     AU.addRequired<TargetLibraryInfoWrapperPass>();
1084     AU.addRequired<TargetTransformInfoWrapperPass>();
1085     getAAResultsAnalysisUsage(AU);
1086     CallGraphSCCPass::getAnalysisUsage(AU);
1087   }
1088 
1089   bool runOnSCC(CallGraphSCC &SCC) override;
1090 
1091 private:
1092   using llvm::Pass::doInitialization;
1093 
1094   bool doInitialization(CallGraph &CG) override;
1095 
1096   /// The maximum number of elements to expand, or 0 for unlimited.
1097   unsigned MaxElements;
1098 };
1099 
1100 } // end anonymous namespace
1101 
1102 char ArgPromotion::ID = 0;
1103 
1104 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1105                       "Promote 'by reference' arguments to scalars", false,
1106                       false)
1107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1108 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1110 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1111 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1112                     "Promote 'by reference' arguments to scalars", false, false)
1113 
1114 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1115   return new ArgPromotion(MaxElements);
1116 }
1117 
1118 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1119   if (skipSCC(SCC))
1120     return false;
1121 
1122   // Get the callgraph information that we need to update to reflect our
1123   // changes.
1124   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1125 
1126   LegacyAARGetter AARGetter(*this);
1127 
1128   bool Changed = false, LocalChange;
1129 
1130   // Iterate until we stop promoting from this SCC.
1131   do {
1132     LocalChange = false;
1133     // Attempt to promote arguments from all functions in this SCC.
1134     for (CallGraphNode *OldNode : SCC) {
1135       Function *OldF = OldNode->getFunction();
1136       if (!OldF)
1137         continue;
1138 
1139       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1140         Function *Caller = OldCS.getParent()->getParent();
1141         CallGraphNode *NewCalleeNode =
1142             CG.getOrInsertFunction(NewCS.getCalledFunction());
1143         CallGraphNode *CallerNode = CG[Caller];
1144         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1145                                     cast<CallBase>(NewCS), NewCalleeNode);
1146       };
1147 
1148       const TargetTransformInfo &TTI =
1149           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1150       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1151                                             {ReplaceCallSite}, TTI)) {
1152         LocalChange = true;
1153 
1154         // Update the call graph for the newly promoted function.
1155         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1156         NewNode->stealCalledFunctionsFrom(OldNode);
1157         if (OldNode->getNumReferences() == 0)
1158           delete CG.removeFunctionFromModule(OldNode);
1159         else
1160           OldF->setLinkage(Function::ExternalLinkage);
1161 
1162         // And updat ethe SCC we're iterating as well.
1163         SCC.ReplaceNode(OldNode, NewNode);
1164       }
1165     }
1166     // Remember that we changed something.
1167     Changed |= LocalChange;
1168   } while (LocalChange);
1169 
1170   return Changed;
1171 }
1172 
1173 bool ArgPromotion::doInitialization(CallGraph &CG) {
1174   return CallGraphSCCPass::doInitialization(CG);
1175 }
1176