1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AssumptionCache.h" 42 #include "llvm/Analysis/BasicAliasAnalysis.h" 43 #include "llvm/Analysis/CGSCCPassManager.h" 44 #include "llvm/Analysis/CallGraph.h" 45 #include "llvm/Analysis/CallGraphSCCPass.h" 46 #include "llvm/Analysis/LazyCallGraph.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/PassManager.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/IPO.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <functional> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "argpromotion" 91 92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 96 97 /// A vector used to hold the indices of a single GEP instruction 98 using IndicesVector = std::vector<uint64_t>; 99 100 /// DoPromotion - This method actually performs the promotion of the specified 101 /// arguments, and returns the new function. At this point, we know that it's 102 /// safe to do so. 103 static Function * 104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 105 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 106 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 107 ReplaceCallSite) { 108 // Start by computing a new prototype for the function, which is the same as 109 // the old function, but has modified arguments. 110 FunctionType *FTy = F->getFunctionType(); 111 std::vector<Type *> Params; 112 113 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 114 115 // ScalarizedElements - If we are promoting a pointer that has elements 116 // accessed out of it, keep track of which elements are accessed so that we 117 // can add one argument for each. 118 // 119 // Arguments that are directly loaded will have a zero element value here, to 120 // handle cases where there are both a direct load and GEP accesses. 121 std::map<Argument *, ScalarizeTable> ScalarizedElements; 122 123 // OriginalLoads - Keep track of a representative load instruction from the 124 // original function so that we can tell the alias analysis implementation 125 // what the new GEP/Load instructions we are inserting look like. 126 // We need to keep the original loads for each argument and the elements 127 // of the argument that are accessed. 128 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 129 130 // Attribute - Keep track of the parameter attributes for the arguments 131 // that we are *not* promoting. For the ones that we do promote, the parameter 132 // attributes are lost 133 SmallVector<AttributeSet, 8> ArgAttrVec; 134 AttributeList PAL = F->getAttributes(); 135 136 // First, determine the new argument list 137 unsigned ArgNo = 0; 138 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 139 ++I, ++ArgNo) { 140 if (ByValArgsToTransform.count(&*I)) { 141 // Simple byval argument? Just add all the struct element types. 142 Type *AgTy = I->getParamByValType(); 143 StructType *STy = cast<StructType>(AgTy); 144 llvm::append_range(Params, STy->elements()); 145 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 146 AttributeSet()); 147 ++NumByValArgsPromoted; 148 } else if (!ArgsToPromote.count(&*I)) { 149 // Unchanged argument 150 Params.push_back(I->getType()); 151 ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo)); 152 } else if (I->use_empty()) { 153 // Dead argument (which are always marked as promotable) 154 ++NumArgumentsDead; 155 } else { 156 // Okay, this is being promoted. This means that the only uses are loads 157 // or GEPs which are only used by loads 158 159 // In this table, we will track which indices are loaded from the argument 160 // (where direct loads are tracked as no indices). 161 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 162 for (User *U : make_early_inc_range(I->users())) { 163 Instruction *UI = cast<Instruction>(U); 164 Type *SrcTy; 165 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 166 SrcTy = L->getType(); 167 else 168 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 169 // Skip dead GEPs and remove them. 170 if (isa<GetElementPtrInst>(UI) && UI->use_empty()) { 171 UI->eraseFromParent(); 172 continue; 173 } 174 175 IndicesVector Indices; 176 Indices.reserve(UI->getNumOperands() - 1); 177 // Since loads will only have a single operand, and GEPs only a single 178 // non-index operand, this will record direct loads without any indices, 179 // and gep+loads with the GEP indices. 180 for (const Use &I : llvm::drop_begin(UI->operands())) 181 Indices.push_back(cast<ConstantInt>(I)->getSExtValue()); 182 // GEPs with a single 0 index can be merged with direct loads 183 if (Indices.size() == 1 && Indices.front() == 0) 184 Indices.clear(); 185 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 186 LoadInst *OrigLoad; 187 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 188 OrigLoad = L; 189 else 190 // Take any load, we will use it only to update Alias Analysis 191 OrigLoad = cast<LoadInst>(UI->user_back()); 192 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 193 } 194 195 // Add a parameter to the function for each element passed in. 196 for (const auto &ArgIndex : ArgIndices) { 197 // not allowed to dereference ->begin() if size() is 0 198 Params.push_back(GetElementPtrInst::getIndexedType( 199 cast<PointerType>(I->getType())->getElementType(), 200 ArgIndex.second)); 201 ArgAttrVec.push_back(AttributeSet()); 202 assert(Params.back()); 203 } 204 205 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 206 ++NumArgumentsPromoted; 207 else 208 ++NumAggregatesPromoted; 209 } 210 } 211 212 Type *RetTy = FTy->getReturnType(); 213 214 // Construct the new function type using the new arguments. 215 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 216 217 // Create the new function body and insert it into the module. 218 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 219 F->getName()); 220 NF->copyAttributesFrom(F); 221 NF->copyMetadata(F, 0); 222 223 // The new function will have the !dbg metadata copied from the original 224 // function. The original function may not be deleted, and dbg metadata need 225 // to be unique so we need to drop it. 226 F->setSubprogram(nullptr); 227 228 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 229 << "From: " << *F); 230 231 // Recompute the parameter attributes list based on the new arguments for 232 // the function. 233 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(), 234 PAL.getRetAttrs(), ArgAttrVec)); 235 ArgAttrVec.clear(); 236 237 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 238 NF->takeName(F); 239 240 // Loop over all of the callers of the function, transforming the call sites 241 // to pass in the loaded pointers. 242 // 243 SmallVector<Value *, 16> Args; 244 const DataLayout &DL = F->getParent()->getDataLayout(); 245 while (!F->use_empty()) { 246 CallBase &CB = cast<CallBase>(*F->user_back()); 247 assert(CB.getCalledFunction() == F); 248 const AttributeList &CallPAL = CB.getAttributes(); 249 IRBuilder<NoFolder> IRB(&CB); 250 251 // Loop over the operands, inserting GEP and loads in the caller as 252 // appropriate. 253 auto AI = CB.arg_begin(); 254 ArgNo = 0; 255 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 256 ++I, ++AI, ++ArgNo) 257 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 258 Args.push_back(*AI); // Unmodified argument 259 ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo)); 260 } else if (ByValArgsToTransform.count(&*I)) { 261 // Emit a GEP and load for each element of the struct. 262 Type *AgTy = I->getParamByValType(); 263 StructType *STy = cast<StructType>(AgTy); 264 Value *Idxs[2] = { 265 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 266 const StructLayout *SL = DL.getStructLayout(STy); 267 Align StructAlign = *I->getParamAlign(); 268 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 269 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 270 auto *Idx = 271 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 272 // TODO: Tell AA about the new values? 273 Align Alignment = 274 commonAlignment(StructAlign, SL->getElementOffset(i)); 275 Args.push_back(IRB.CreateAlignedLoad( 276 STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val")); 277 ArgAttrVec.push_back(AttributeSet()); 278 } 279 } else if (!I->use_empty()) { 280 // Non-dead argument: insert GEPs and loads as appropriate. 281 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 282 // Store the Value* version of the indices in here, but declare it now 283 // for reuse. 284 std::vector<Value *> Ops; 285 for (const auto &ArgIndex : ArgIndices) { 286 Value *V = *AI; 287 LoadInst *OrigLoad = 288 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 289 if (!ArgIndex.second.empty()) { 290 Ops.reserve(ArgIndex.second.size()); 291 Type *ElTy = V->getType(); 292 for (auto II : ArgIndex.second) { 293 // Use i32 to index structs, and i64 for others (pointers/arrays). 294 // This satisfies GEP constraints. 295 Type *IdxTy = 296 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 297 : Type::getInt64Ty(F->getContext())); 298 Ops.push_back(ConstantInt::get(IdxTy, II)); 299 // Keep track of the type we're currently indexing. 300 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 301 ElTy = ElPTy->getElementType(); 302 else 303 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II); 304 } 305 // And create a GEP to extract those indices. 306 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 307 Ops.clear(); 308 } 309 // Since we're replacing a load make sure we take the alignment 310 // of the previous load. 311 LoadInst *newLoad = 312 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 313 newLoad->setAlignment(OrigLoad->getAlign()); 314 // Transfer the AA info too. 315 newLoad->setAAMetadata(OrigLoad->getAAMetadata()); 316 317 Args.push_back(newLoad); 318 ArgAttrVec.push_back(AttributeSet()); 319 } 320 } 321 322 // Push any varargs arguments on the list. 323 for (; AI != CB.arg_end(); ++AI, ++ArgNo) { 324 Args.push_back(*AI); 325 ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo)); 326 } 327 328 SmallVector<OperandBundleDef, 1> OpBundles; 329 CB.getOperandBundlesAsDefs(OpBundles); 330 331 CallBase *NewCS = nullptr; 332 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 333 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 334 Args, OpBundles, "", &CB); 335 } else { 336 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); 337 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind()); 338 NewCS = NewCall; 339 } 340 NewCS->setCallingConv(CB.getCallingConv()); 341 NewCS->setAttributes(AttributeList::get(F->getContext(), 342 CallPAL.getFnAttrs(), 343 CallPAL.getRetAttrs(), ArgAttrVec)); 344 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 345 Args.clear(); 346 ArgAttrVec.clear(); 347 348 // Update the callgraph to know that the callsite has been transformed. 349 if (ReplaceCallSite) 350 (*ReplaceCallSite)(CB, *NewCS); 351 352 if (!CB.use_empty()) { 353 CB.replaceAllUsesWith(NewCS); 354 NewCS->takeName(&CB); 355 } 356 357 // Finally, remove the old call from the program, reducing the use-count of 358 // F. 359 CB.eraseFromParent(); 360 } 361 362 // Since we have now created the new function, splice the body of the old 363 // function right into the new function, leaving the old rotting hulk of the 364 // function empty. 365 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 366 367 // Loop over the argument list, transferring uses of the old arguments over to 368 // the new arguments, also transferring over the names as well. 369 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 370 I2 = NF->arg_begin(); 371 I != E; ++I) { 372 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 373 // If this is an unmodified argument, move the name and users over to the 374 // new version. 375 I->replaceAllUsesWith(&*I2); 376 I2->takeName(&*I); 377 ++I2; 378 continue; 379 } 380 381 if (ByValArgsToTransform.count(&*I)) { 382 // In the callee, we create an alloca, and store each of the new incoming 383 // arguments into the alloca. 384 Instruction *InsertPt = &NF->begin()->front(); 385 386 // Just add all the struct element types. 387 Type *AgTy = I->getParamByValType(); 388 Align StructAlign = *I->getParamAlign(); 389 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 390 StructAlign, "", InsertPt); 391 StructType *STy = cast<StructType>(AgTy); 392 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 393 nullptr}; 394 const StructLayout *SL = DL.getStructLayout(STy); 395 396 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 397 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 398 Value *Idx = GetElementPtrInst::Create( 399 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 400 InsertPt); 401 I2->setName(I->getName() + "." + Twine(i)); 402 Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i)); 403 new StoreInst(&*I2++, Idx, false, Alignment, InsertPt); 404 } 405 406 // Anything that used the arg should now use the alloca. 407 I->replaceAllUsesWith(TheAlloca); 408 TheAlloca->takeName(&*I); 409 continue; 410 } 411 412 // There potentially are metadata uses for things like llvm.dbg.value. 413 // Replace them with undef, after handling the other regular uses. 414 auto RauwUndefMetadata = make_scope_exit( 415 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); }); 416 417 if (I->use_empty()) 418 continue; 419 420 // Otherwise, if we promoted this argument, then all users are load 421 // instructions (or GEPs with only load users), and all loads should be 422 // using the new argument that we added. 423 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 424 425 while (!I->use_empty()) { 426 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 427 assert(ArgIndices.begin()->second.empty() && 428 "Load element should sort to front!"); 429 I2->setName(I->getName() + ".val"); 430 LI->replaceAllUsesWith(&*I2); 431 LI->eraseFromParent(); 432 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 433 << "' in function '" << F->getName() << "'\n"); 434 } else { 435 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 436 assert(!GEP->use_empty() && 437 "GEPs without uses should be cleaned up already"); 438 IndicesVector Operands; 439 Operands.reserve(GEP->getNumIndices()); 440 for (const Use &Idx : GEP->indices()) 441 Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue()); 442 443 // GEPs with a single 0 index can be merged with direct loads 444 if (Operands.size() == 1 && Operands.front() == 0) 445 Operands.clear(); 446 447 Function::arg_iterator TheArg = I2; 448 for (ScalarizeTable::iterator It = ArgIndices.begin(); 449 It->second != Operands; ++It, ++TheArg) { 450 assert(It != ArgIndices.end() && "GEP not handled??"); 451 } 452 453 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(), 454 make_range(Operands.begin(), Operands.end()))); 455 456 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 457 << "' of function '" << NF->getName() << "'\n"); 458 459 // All of the uses must be load instructions. Replace them all with 460 // the argument specified by ArgNo. 461 while (!GEP->use_empty()) { 462 LoadInst *L = cast<LoadInst>(GEP->user_back()); 463 L->replaceAllUsesWith(&*TheArg); 464 L->eraseFromParent(); 465 } 466 GEP->eraseFromParent(); 467 } 468 } 469 // Increment I2 past all of the arguments added for this promoted pointer. 470 std::advance(I2, ArgIndices.size()); 471 } 472 473 return NF; 474 } 475 476 /// Return true if we can prove that all callees pass in a valid pointer for the 477 /// specified function argument. 478 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 479 Function *Callee = Arg->getParent(); 480 const DataLayout &DL = Callee->getParent()->getDataLayout(); 481 482 unsigned ArgNo = Arg->getArgNo(); 483 484 // Look at all call sites of the function. At this point we know we only have 485 // direct callees. 486 for (User *U : Callee->users()) { 487 CallBase &CB = cast<CallBase>(*U); 488 489 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL)) 490 return false; 491 } 492 return true; 493 } 494 495 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 496 /// that is greater than or equal to the size of prefix, and each of the 497 /// elements in Prefix is the same as the corresponding elements in Longer. 498 /// 499 /// This means it also returns true when Prefix and Longer are equal! 500 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 501 if (Prefix.size() > Longer.size()) 502 return false; 503 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 504 } 505 506 /// Checks if Indices, or a prefix of Indices, is in Set. 507 static bool prefixIn(const IndicesVector &Indices, 508 std::set<IndicesVector> &Set) { 509 std::set<IndicesVector>::iterator Low; 510 Low = Set.upper_bound(Indices); 511 if (Low != Set.begin()) 512 Low--; 513 // Low is now the last element smaller than or equal to Indices. This means 514 // it points to a prefix of Indices (possibly Indices itself), if such 515 // prefix exists. 516 // 517 // This load is safe if any prefix of its operands is safe to load. 518 return Low != Set.end() && isPrefix(*Low, Indices); 519 } 520 521 /// Mark the given indices (ToMark) as safe in the given set of indices 522 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 523 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 524 /// already. Furthermore, any indices that Indices is itself a prefix of, are 525 /// removed from Safe (since they are implicitely safe because of Indices now). 526 static void markIndicesSafe(const IndicesVector &ToMark, 527 std::set<IndicesVector> &Safe) { 528 std::set<IndicesVector>::iterator Low; 529 Low = Safe.upper_bound(ToMark); 530 // Guard against the case where Safe is empty 531 if (Low != Safe.begin()) 532 Low--; 533 // Low is now the last element smaller than or equal to Indices. This 534 // means it points to a prefix of Indices (possibly Indices itself), if 535 // such prefix exists. 536 if (Low != Safe.end()) { 537 if (isPrefix(*Low, ToMark)) 538 // If there is already a prefix of these indices (or exactly these 539 // indices) marked a safe, don't bother adding these indices 540 return; 541 542 // Increment Low, so we can use it as a "insert before" hint 543 ++Low; 544 } 545 // Insert 546 Low = Safe.insert(Low, ToMark); 547 ++Low; 548 // If there we're a prefix of longer index list(s), remove those 549 std::set<IndicesVector>::iterator End = Safe.end(); 550 while (Low != End && isPrefix(ToMark, *Low)) { 551 std::set<IndicesVector>::iterator Remove = Low; 552 ++Low; 553 Safe.erase(Remove); 554 } 555 } 556 557 /// isSafeToPromoteArgument - As you might guess from the name of this method, 558 /// it checks to see if it is both safe and useful to promote the argument. 559 /// This method limits promotion of aggregates to only promote up to three 560 /// elements of the aggregate in order to avoid exploding the number of 561 /// arguments passed in. 562 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 563 unsigned MaxElements) { 564 using GEPIndicesSet = std::set<IndicesVector>; 565 566 // Quick exit for unused arguments 567 if (Arg->use_empty()) 568 return true; 569 570 // We can only promote this argument if all of the uses are loads, or are GEP 571 // instructions (with constant indices) that are subsequently loaded. 572 // 573 // Promoting the argument causes it to be loaded in the caller 574 // unconditionally. This is only safe if we can prove that either the load 575 // would have happened in the callee anyway (ie, there is a load in the entry 576 // block) or the pointer passed in at every call site is guaranteed to be 577 // valid. 578 // In the former case, invalid loads can happen, but would have happened 579 // anyway, in the latter case, invalid loads won't happen. This prevents us 580 // from introducing an invalid load that wouldn't have happened in the 581 // original code. 582 // 583 // This set will contain all sets of indices that are loaded in the entry 584 // block, and thus are safe to unconditionally load in the caller. 585 GEPIndicesSet SafeToUnconditionallyLoad; 586 587 // This set contains all the sets of indices that we are planning to promote. 588 // This makes it possible to limit the number of arguments added. 589 GEPIndicesSet ToPromote; 590 591 // If the pointer is always valid, any load with first index 0 is valid. 592 593 if (ByValTy) 594 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 595 596 // Whenever a new underlying type for the operand is found, make sure it's 597 // consistent with the GEPs and loads we've already seen and, if necessary, 598 // use it to see if all incoming pointers are valid (which implies the 0-index 599 // is safe). 600 Type *BaseTy = ByValTy; 601 auto UpdateBaseTy = [&](Type *NewBaseTy) { 602 if (BaseTy) 603 return BaseTy == NewBaseTy; 604 605 BaseTy = NewBaseTy; 606 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 607 assert(SafeToUnconditionallyLoad.empty()); 608 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 609 } 610 611 return true; 612 }; 613 614 // First, iterate the entry block and mark loads of (geps of) arguments as 615 // safe. 616 BasicBlock &EntryBlock = Arg->getParent()->front(); 617 // Declare this here so we can reuse it 618 IndicesVector Indices; 619 for (Instruction &I : EntryBlock) 620 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 621 Value *V = LI->getPointerOperand(); 622 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 623 V = GEP->getPointerOperand(); 624 if (V == Arg) { 625 // This load actually loads (part of) Arg? Check the indices then. 626 Indices.reserve(GEP->getNumIndices()); 627 for (Use &Idx : GEP->indices()) 628 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 629 Indices.push_back(CI->getSExtValue()); 630 else 631 // We found a non-constant GEP index for this argument? Bail out 632 // right away, can't promote this argument at all. 633 return false; 634 635 if (!UpdateBaseTy(GEP->getSourceElementType())) 636 return false; 637 638 // Indices checked out, mark them as safe 639 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 640 Indices.clear(); 641 } 642 } else if (V == Arg) { 643 // Direct loads are equivalent to a GEP with a single 0 index. 644 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 645 646 if (BaseTy && LI->getType() != BaseTy) 647 return false; 648 649 BaseTy = LI->getType(); 650 } 651 } 652 653 // Now, iterate all uses of the argument to see if there are any uses that are 654 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 655 SmallVector<LoadInst *, 16> Loads; 656 IndicesVector Operands; 657 for (Use &U : Arg->uses()) { 658 User *UR = U.getUser(); 659 Operands.clear(); 660 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 661 // Don't hack volatile/atomic loads 662 if (!LI->isSimple()) 663 return false; 664 Loads.push_back(LI); 665 // Direct loads are equivalent to a GEP with a zero index and then a load. 666 Operands.push_back(0); 667 668 if (!UpdateBaseTy(LI->getType())) 669 return false; 670 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 671 if (GEP->use_empty()) { 672 // Dead GEP's cause trouble later. Just remove them if we run into 673 // them. 674 continue; 675 } 676 677 if (!UpdateBaseTy(GEP->getSourceElementType())) 678 return false; 679 680 // Ensure that all of the indices are constants. 681 for (Use &Idx : GEP->indices()) 682 if (ConstantInt *C = dyn_cast<ConstantInt>(Idx)) 683 Operands.push_back(C->getSExtValue()); 684 else 685 return false; // Not a constant operand GEP! 686 687 // Ensure that the only users of the GEP are load instructions. 688 for (User *GEPU : GEP->users()) 689 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 690 // Don't hack volatile/atomic loads 691 if (!LI->isSimple()) 692 return false; 693 Loads.push_back(LI); 694 } else { 695 // Other uses than load? 696 return false; 697 } 698 } else { 699 return false; // Not a load or a GEP. 700 } 701 702 // Now, see if it is safe to promote this load / loads of this GEP. Loading 703 // is safe if Operands, or a prefix of Operands, is marked as safe. 704 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 705 return false; 706 707 // See if we are already promoting a load with these indices. If not, check 708 // to make sure that we aren't promoting too many elements. If so, nothing 709 // to do. 710 if (ToPromote.find(Operands) == ToPromote.end()) { 711 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 712 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 713 << Arg->getName() 714 << "' because it would require adding more " 715 << "than " << MaxElements 716 << " arguments to the function.\n"); 717 // We limit aggregate promotion to only promoting up to a fixed number 718 // of elements of the aggregate. 719 return false; 720 } 721 ToPromote.insert(std::move(Operands)); 722 } 723 } 724 725 if (Loads.empty()) 726 return true; // No users, this is a dead argument. 727 728 // Okay, now we know that the argument is only used by load instructions and 729 // it is safe to unconditionally perform all of them. Use alias analysis to 730 // check to see if the pointer is guaranteed to not be modified from entry of 731 // the function to each of the load instructions. 732 733 // Because there could be several/many load instructions, remember which 734 // blocks we know to be transparent to the load. 735 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 736 737 for (LoadInst *Load : Loads) { 738 // Check to see if the load is invalidated from the start of the block to 739 // the load itself. 740 BasicBlock *BB = Load->getParent(); 741 742 MemoryLocation Loc = MemoryLocation::get(Load); 743 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 744 return false; // Pointer is invalidated! 745 746 // Now check every path from the entry block to the load for transparency. 747 // To do this, we perform a depth first search on the inverse CFG from the 748 // loading block. 749 for (BasicBlock *P : predecessors(BB)) { 750 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 751 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 752 return false; 753 } 754 } 755 756 // If the path from the entry of the function to each load is free of 757 // instructions that potentially invalidate the load, we can make the 758 // transformation! 759 return true; 760 } 761 762 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) { 763 // There is no size information, so be conservative. 764 if (!type->isSized()) 765 return false; 766 767 // If the alloc size is not equal to the storage size, then there are padding 768 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 769 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 770 return false; 771 772 // FIXME: This isn't the right way to check for padding in vectors with 773 // non-byte-size elements. 774 if (VectorType *seqTy = dyn_cast<VectorType>(type)) 775 return isDenselyPacked(seqTy->getElementType(), DL); 776 777 // For array types, check for padding within members. 778 if (ArrayType *seqTy = dyn_cast<ArrayType>(type)) 779 return isDenselyPacked(seqTy->getElementType(), DL); 780 781 if (!isa<StructType>(type)) 782 return true; 783 784 // Check for padding within and between elements of a struct. 785 StructType *StructTy = cast<StructType>(type); 786 const StructLayout *Layout = DL.getStructLayout(StructTy); 787 uint64_t StartPos = 0; 788 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 789 Type *ElTy = StructTy->getElementType(i); 790 if (!isDenselyPacked(ElTy, DL)) 791 return false; 792 if (StartPos != Layout->getElementOffsetInBits(i)) 793 return false; 794 StartPos += DL.getTypeAllocSizeInBits(ElTy); 795 } 796 797 return true; 798 } 799 800 /// Checks if the padding bytes of an argument could be accessed. 801 static bool canPaddingBeAccessed(Argument *arg) { 802 assert(arg->hasByValAttr()); 803 804 // Track all the pointers to the argument to make sure they are not captured. 805 SmallPtrSet<Value *, 16> PtrValues; 806 PtrValues.insert(arg); 807 808 // Track all of the stores. 809 SmallVector<StoreInst *, 16> Stores; 810 811 // Scan through the uses recursively to make sure the pointer is always used 812 // sanely. 813 SmallVector<Value *, 16> WorkList(arg->users()); 814 while (!WorkList.empty()) { 815 Value *V = WorkList.pop_back_val(); 816 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 817 if (PtrValues.insert(V).second) 818 llvm::append_range(WorkList, V->users()); 819 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 820 Stores.push_back(Store); 821 } else if (!isa<LoadInst>(V)) { 822 return true; 823 } 824 } 825 826 // Check to make sure the pointers aren't captured 827 for (StoreInst *Store : Stores) 828 if (PtrValues.count(Store->getValueOperand())) 829 return true; 830 831 return false; 832 } 833 834 bool ArgumentPromotionPass::areFunctionArgsABICompatible( 835 const Function &F, const TargetTransformInfo &TTI, 836 SmallPtrSetImpl<Argument *> &ArgsToPromote, 837 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 838 for (const Use &U : F.uses()) { 839 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 840 if (!CB) 841 return false; 842 const Function *Caller = CB->getCaller(); 843 const Function *Callee = CB->getCalledFunction(); 844 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 845 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 846 return false; 847 } 848 return true; 849 } 850 851 /// PromoteArguments - This method checks the specified function to see if there 852 /// are any promotable arguments and if it is safe to promote the function (for 853 /// example, all callers are direct). If safe to promote some arguments, it 854 /// calls the DoPromotion method. 855 static Function * 856 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 857 unsigned MaxElements, 858 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 859 ReplaceCallSite, 860 const TargetTransformInfo &TTI) { 861 // Don't perform argument promotion for naked functions; otherwise we can end 862 // up removing parameters that are seemingly 'not used' as they are referred 863 // to in the assembly. 864 if(F->hasFnAttribute(Attribute::Naked)) 865 return nullptr; 866 867 // Make sure that it is local to this module. 868 if (!F->hasLocalLinkage()) 869 return nullptr; 870 871 // Don't promote arguments for variadic functions. Adding, removing, or 872 // changing non-pack parameters can change the classification of pack 873 // parameters. Frontends encode that classification at the call site in the 874 // IR, while in the callee the classification is determined dynamically based 875 // on the number of registers consumed so far. 876 if (F->isVarArg()) 877 return nullptr; 878 879 // Don't transform functions that receive inallocas, as the transformation may 880 // not be safe depending on calling convention. 881 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 882 return nullptr; 883 884 // First check: see if there are any pointer arguments! If not, quick exit. 885 SmallVector<Argument *, 16> PointerArgs; 886 for (Argument &I : F->args()) 887 if (I.getType()->isPointerTy()) 888 PointerArgs.push_back(&I); 889 if (PointerArgs.empty()) 890 return nullptr; 891 892 // Second check: make sure that all callers are direct callers. We can't 893 // transform functions that have indirect callers. Also see if the function 894 // is self-recursive and check that target features are compatible. 895 bool isSelfRecursive = false; 896 for (Use &U : F->uses()) { 897 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 898 // Must be a direct call. 899 if (CB == nullptr || !CB->isCallee(&U)) 900 return nullptr; 901 902 // Can't change signature of musttail callee 903 if (CB->isMustTailCall()) 904 return nullptr; 905 906 if (CB->getParent()->getParent() == F) 907 isSelfRecursive = true; 908 } 909 910 // Can't change signature of musttail caller 911 // FIXME: Support promoting whole chain of musttail functions 912 for (BasicBlock &BB : *F) 913 if (BB.getTerminatingMustTailCall()) 914 return nullptr; 915 916 const DataLayout &DL = F->getParent()->getDataLayout(); 917 918 AAResults &AAR = AARGetter(*F); 919 920 // Check to see which arguments are promotable. If an argument is promotable, 921 // add it to ArgsToPromote. 922 SmallPtrSet<Argument *, 8> ArgsToPromote; 923 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 924 for (Argument *PtrArg : PointerArgs) { 925 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 926 927 // Replace sret attribute with noalias. This reduces register pressure by 928 // avoiding a register copy. 929 if (PtrArg->hasStructRetAttr()) { 930 unsigned ArgNo = PtrArg->getArgNo(); 931 F->removeParamAttr(ArgNo, Attribute::StructRet); 932 F->addParamAttr(ArgNo, Attribute::NoAlias); 933 for (Use &U : F->uses()) { 934 CallBase &CB = cast<CallBase>(*U.getUser()); 935 CB.removeParamAttr(ArgNo, Attribute::StructRet); 936 CB.addParamAttr(ArgNo, Attribute::NoAlias); 937 } 938 } 939 940 // If this is a byval argument, and if the aggregate type is small, just 941 // pass the elements, which is always safe, if the passed value is densely 942 // packed or if we can prove the padding bytes are never accessed. 943 // 944 // Only handle arguments with specified alignment; if it's unspecified, the 945 // actual alignment of the argument is target-specific. 946 bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() && 947 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) || 948 !canPaddingBeAccessed(PtrArg)); 949 if (isSafeToPromote) { 950 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 951 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 952 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 953 << PtrArg->getName() 954 << "' because it would require adding more" 955 << " than " << MaxElements 956 << " arguments to the function.\n"); 957 continue; 958 } 959 960 // If all the elements are single-value types, we can promote it. 961 bool AllSimple = true; 962 for (const auto *EltTy : STy->elements()) { 963 if (!EltTy->isSingleValueType()) { 964 AllSimple = false; 965 break; 966 } 967 } 968 969 // Safe to transform, don't even bother trying to "promote" it. 970 // Passing the elements as a scalar will allow sroa to hack on 971 // the new alloca we introduce. 972 if (AllSimple) { 973 ByValArgsToTransform.insert(PtrArg); 974 continue; 975 } 976 } 977 } 978 979 // If the argument is a recursive type and we're in a recursive 980 // function, we could end up infinitely peeling the function argument. 981 if (isSelfRecursive) { 982 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 983 bool RecursiveType = 984 llvm::is_contained(STy->elements(), PtrArg->getType()); 985 if (RecursiveType) 986 continue; 987 } 988 } 989 990 // Otherwise, see if we can promote the pointer to its value. 991 Type *ByValTy = 992 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 993 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 994 ArgsToPromote.insert(PtrArg); 995 } 996 997 // No promotable pointer arguments. 998 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 999 return nullptr; 1000 1001 if (!ArgumentPromotionPass::areFunctionArgsABICompatible( 1002 *F, TTI, ArgsToPromote, ByValArgsToTransform)) 1003 return nullptr; 1004 1005 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1006 } 1007 1008 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1009 CGSCCAnalysisManager &AM, 1010 LazyCallGraph &CG, 1011 CGSCCUpdateResult &UR) { 1012 bool Changed = false, LocalChange; 1013 1014 // Iterate until we stop promoting from this SCC. 1015 do { 1016 LocalChange = false; 1017 1018 FunctionAnalysisManager &FAM = 1019 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1020 1021 for (LazyCallGraph::Node &N : C) { 1022 Function &OldF = N.getFunction(); 1023 1024 // FIXME: This lambda must only be used with this function. We should 1025 // skip the lambda and just get the AA results directly. 1026 auto AARGetter = [&](Function &F) -> AAResults & { 1027 assert(&F == &OldF && "Called with an unexpected function!"); 1028 return FAM.getResult<AAManager>(F); 1029 }; 1030 1031 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1032 Function *NewF = 1033 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1034 if (!NewF) 1035 continue; 1036 LocalChange = true; 1037 1038 // Directly substitute the functions in the call graph. Note that this 1039 // requires the old function to be completely dead and completely 1040 // replaced by the new function. It does no call graph updates, it merely 1041 // swaps out the particular function mapped to a particular node in the 1042 // graph. 1043 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1044 FAM.clear(OldF, OldF.getName()); 1045 OldF.eraseFromParent(); 1046 1047 PreservedAnalyses FuncPA; 1048 FuncPA.preserveSet<CFGAnalyses>(); 1049 for (auto *U : NewF->users()) { 1050 auto *UserF = cast<CallBase>(U)->getFunction(); 1051 FAM.invalidate(*UserF, FuncPA); 1052 } 1053 } 1054 1055 Changed |= LocalChange; 1056 } while (LocalChange); 1057 1058 if (!Changed) 1059 return PreservedAnalyses::all(); 1060 1061 PreservedAnalyses PA; 1062 // We've cleared out analyses for deleted functions. 1063 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1064 // We've manually invalidated analyses for functions we've modified. 1065 PA.preserveSet<AllAnalysesOn<Function>>(); 1066 return PA; 1067 } 1068 1069 namespace { 1070 1071 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1072 struct ArgPromotion : public CallGraphSCCPass { 1073 // Pass identification, replacement for typeid 1074 static char ID; 1075 1076 explicit ArgPromotion(unsigned MaxElements = 3) 1077 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1078 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1079 } 1080 1081 void getAnalysisUsage(AnalysisUsage &AU) const override { 1082 AU.addRequired<AssumptionCacheTracker>(); 1083 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1084 AU.addRequired<TargetTransformInfoWrapperPass>(); 1085 getAAResultsAnalysisUsage(AU); 1086 CallGraphSCCPass::getAnalysisUsage(AU); 1087 } 1088 1089 bool runOnSCC(CallGraphSCC &SCC) override; 1090 1091 private: 1092 using llvm::Pass::doInitialization; 1093 1094 bool doInitialization(CallGraph &CG) override; 1095 1096 /// The maximum number of elements to expand, or 0 for unlimited. 1097 unsigned MaxElements; 1098 }; 1099 1100 } // end anonymous namespace 1101 1102 char ArgPromotion::ID = 0; 1103 1104 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1105 "Promote 'by reference' arguments to scalars", false, 1106 false) 1107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1108 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1110 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1111 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1112 "Promote 'by reference' arguments to scalars", false, false) 1113 1114 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1115 return new ArgPromotion(MaxElements); 1116 } 1117 1118 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1119 if (skipSCC(SCC)) 1120 return false; 1121 1122 // Get the callgraph information that we need to update to reflect our 1123 // changes. 1124 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1125 1126 LegacyAARGetter AARGetter(*this); 1127 1128 bool Changed = false, LocalChange; 1129 1130 // Iterate until we stop promoting from this SCC. 1131 do { 1132 LocalChange = false; 1133 // Attempt to promote arguments from all functions in this SCC. 1134 for (CallGraphNode *OldNode : SCC) { 1135 Function *OldF = OldNode->getFunction(); 1136 if (!OldF) 1137 continue; 1138 1139 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) { 1140 Function *Caller = OldCS.getParent()->getParent(); 1141 CallGraphNode *NewCalleeNode = 1142 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1143 CallGraphNode *CallerNode = CG[Caller]; 1144 CallerNode->replaceCallEdge(cast<CallBase>(OldCS), 1145 cast<CallBase>(NewCS), NewCalleeNode); 1146 }; 1147 1148 const TargetTransformInfo &TTI = 1149 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1150 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1151 {ReplaceCallSite}, TTI)) { 1152 LocalChange = true; 1153 1154 // Update the call graph for the newly promoted function. 1155 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1156 NewNode->stealCalledFunctionsFrom(OldNode); 1157 if (OldNode->getNumReferences() == 0) 1158 delete CG.removeFunctionFromModule(OldNode); 1159 else 1160 OldF->setLinkage(Function::ExternalLinkage); 1161 1162 // And updat ethe SCC we're iterating as well. 1163 SCC.ReplaceNode(OldNode, NewNode); 1164 } 1165 } 1166 // Remember that we changed something. 1167 Changed |= LocalChange; 1168 } while (LocalChange); 1169 1170 return Changed; 1171 } 1172 1173 bool ArgPromotion::doInitialization(CallGraph &CG) { 1174 return CallGraphSCCPass::doInitialization(CG); 1175 } 1176