xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/X86/X86ISelLowering.cpp (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86ISelLowering.h"
15 #include "Utils/X86ShuffleDecode.h"
16 #include "X86CallingConv.h"
17 #include "X86FrameLowering.h"
18 #include "X86InstrBuilder.h"
19 #include "X86IntrinsicsInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "X86TargetMachine.h"
22 #include "X86TargetObjectFile.h"
23 #include "llvm/ADT/SmallBitVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/WinEHFuncInfo.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/MC/MCAsmInfo.h"
51 #include "llvm/MC/MCContext.h"
52 #include "llvm/MC/MCExpr.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Target/TargetOptions.h"
60 #include <algorithm>
61 #include <bitset>
62 #include <cctype>
63 #include <numeric>
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "x86-isel"
67 
68 STATISTIC(NumTailCalls, "Number of tail calls");
69 
70 static cl::opt<int> ExperimentalPrefLoopAlignment(
71     "x86-experimental-pref-loop-alignment", cl::init(4),
72     cl::desc(
73         "Sets the preferable loop alignment for experiments (as log2 bytes)"
74         "(the last x86-experimental-pref-loop-alignment bits"
75         " of the loop header PC will be 0)."),
76     cl::Hidden);
77 
78 // Added in 10.0.
79 static cl::opt<bool> EnableOldKNLABI(
80     "x86-enable-old-knl-abi", cl::init(false),
81     cl::desc("Enables passing v32i16 and v64i8 in 2 YMM registers instead of "
82              "one ZMM register on AVX512F, but not AVX512BW targets."),
83     cl::Hidden);
84 
85 static cl::opt<bool> MulConstantOptimization(
86     "mul-constant-optimization", cl::init(true),
87     cl::desc("Replace 'mul x, Const' with more effective instructions like "
88              "SHIFT, LEA, etc."),
89     cl::Hidden);
90 
91 static cl::opt<bool> ExperimentalUnorderedISEL(
92     "x86-experimental-unordered-atomic-isel", cl::init(false),
93     cl::desc("Use LoadSDNode and StoreSDNode instead of "
94              "AtomicSDNode for unordered atomic loads and "
95              "stores respectively."),
96     cl::Hidden);
97 
98 /// Call this when the user attempts to do something unsupported, like
99 /// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike
100 /// report_fatal_error, so calling code should attempt to recover without
101 /// crashing.
102 static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl,
103                              const char *Msg) {
104   MachineFunction &MF = DAG.getMachineFunction();
105   DAG.getContext()->diagnose(
106       DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc()));
107 }
108 
109 X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
110                                      const X86Subtarget &STI)
111     : TargetLowering(TM), Subtarget(STI) {
112   bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
113   X86ScalarSSEf64 = Subtarget.hasSSE2();
114   X86ScalarSSEf32 = Subtarget.hasSSE1();
115   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
116 
117   // Set up the TargetLowering object.
118 
119   // X86 is weird. It always uses i8 for shift amounts and setcc results.
120   setBooleanContents(ZeroOrOneBooleanContent);
121   // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
122   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
123 
124   // For 64-bit, since we have so many registers, use the ILP scheduler.
125   // For 32-bit, use the register pressure specific scheduling.
126   // For Atom, always use ILP scheduling.
127   if (Subtarget.isAtom())
128     setSchedulingPreference(Sched::ILP);
129   else if (Subtarget.is64Bit())
130     setSchedulingPreference(Sched::ILP);
131   else
132     setSchedulingPreference(Sched::RegPressure);
133   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
134   setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
135 
136   // Bypass expensive divides and use cheaper ones.
137   if (TM.getOptLevel() >= CodeGenOpt::Default) {
138     if (Subtarget.hasSlowDivide32())
139       addBypassSlowDiv(32, 8);
140     if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit())
141       addBypassSlowDiv(64, 32);
142   }
143 
144   if (Subtarget.isTargetWindowsMSVC() ||
145       Subtarget.isTargetWindowsItanium()) {
146     // Setup Windows compiler runtime calls.
147     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
148     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
149     setLibcallName(RTLIB::SREM_I64, "_allrem");
150     setLibcallName(RTLIB::UREM_I64, "_aullrem");
151     setLibcallName(RTLIB::MUL_I64, "_allmul");
152     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
153     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
154     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
155     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
156     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
157   }
158 
159   if (Subtarget.getTargetTriple().isOSMSVCRT()) {
160     // MSVCRT doesn't have powi; fall back to pow
161     setLibcallName(RTLIB::POWI_F32, nullptr);
162     setLibcallName(RTLIB::POWI_F64, nullptr);
163   }
164 
165   // If we don't have cmpxchg8b(meaing this is a 386/486), limit atomic size to
166   // 32 bits so the AtomicExpandPass will expand it so we don't need cmpxchg8b.
167   // FIXME: Should we be limitting the atomic size on other configs? Default is
168   // 1024.
169   if (!Subtarget.hasCmpxchg8b())
170     setMaxAtomicSizeInBitsSupported(32);
171 
172   // Set up the register classes.
173   addRegisterClass(MVT::i8, &X86::GR8RegClass);
174   addRegisterClass(MVT::i16, &X86::GR16RegClass);
175   addRegisterClass(MVT::i32, &X86::GR32RegClass);
176   if (Subtarget.is64Bit())
177     addRegisterClass(MVT::i64, &X86::GR64RegClass);
178 
179   for (MVT VT : MVT::integer_valuetypes())
180     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
181 
182   // We don't accept any truncstore of integer registers.
183   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
184   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
185   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
186   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
187   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
188   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
189 
190   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
191 
192   // SETOEQ and SETUNE require checking two conditions.
193   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
194   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
195   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
196   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
197   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
198   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
199 
200   // Integer absolute.
201   if (Subtarget.hasCMov()) {
202     setOperationAction(ISD::ABS            , MVT::i16  , Custom);
203     setOperationAction(ISD::ABS            , MVT::i32  , Custom);
204   }
205   setOperationAction(ISD::ABS              , MVT::i64  , Custom);
206 
207   // Funnel shifts.
208   for (auto ShiftOp : {ISD::FSHL, ISD::FSHR}) {
209     setOperationAction(ShiftOp             , MVT::i16  , Custom);
210     setOperationAction(ShiftOp             , MVT::i32  , Custom);
211     if (Subtarget.is64Bit())
212       setOperationAction(ShiftOp           , MVT::i64  , Custom);
213   }
214 
215   if (!Subtarget.useSoftFloat()) {
216     // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
217     // operation.
218     setOperationAction(ISD::UINT_TO_FP,        MVT::i8, Promote);
219     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i8, Promote);
220     setOperationAction(ISD::UINT_TO_FP,        MVT::i16, Promote);
221     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i16, Promote);
222     // We have an algorithm for SSE2, and we turn this into a 64-bit
223     // FILD or VCVTUSI2SS/SD for other targets.
224     setOperationAction(ISD::UINT_TO_FP,        MVT::i32, Custom);
225     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
226     // We have an algorithm for SSE2->double, and we turn this into a
227     // 64-bit FILD followed by conditional FADD for other targets.
228     setOperationAction(ISD::UINT_TO_FP,        MVT::i64, Custom);
229     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
230 
231     // Promote i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
232     // this operation.
233     setOperationAction(ISD::SINT_TO_FP,        MVT::i8, Promote);
234     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i8, Promote);
235     // SSE has no i16 to fp conversion, only i32. We promote in the handler
236     // to allow f80 to use i16 and f64 to use i16 with sse1 only
237     setOperationAction(ISD::SINT_TO_FP,        MVT::i16, Custom);
238     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i16, Custom);
239     // f32 and f64 cases are Legal with SSE1/SSE2, f80 case is not
240     setOperationAction(ISD::SINT_TO_FP,        MVT::i32, Custom);
241     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
242     // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
243     // are Legal, f80 is custom lowered.
244     setOperationAction(ISD::SINT_TO_FP,        MVT::i64, Custom);
245     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
246 
247     // Promote i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
248     // this operation.
249     setOperationAction(ISD::FP_TO_SINT,        MVT::i8,  Promote);
250     // FIXME: This doesn't generate invalid exception when it should. PR44019.
251     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i8,  Promote);
252     setOperationAction(ISD::FP_TO_SINT,        MVT::i16, Custom);
253     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i16, Custom);
254     setOperationAction(ISD::FP_TO_SINT,        MVT::i32, Custom);
255     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
256     // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
257     // are Legal, f80 is custom lowered.
258     setOperationAction(ISD::FP_TO_SINT,        MVT::i64, Custom);
259     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
260 
261     // Handle FP_TO_UINT by promoting the destination to a larger signed
262     // conversion.
263     setOperationAction(ISD::FP_TO_UINT,        MVT::i8,  Promote);
264     // FIXME: This doesn't generate invalid exception when it should. PR44019.
265     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i8,  Promote);
266     setOperationAction(ISD::FP_TO_UINT,        MVT::i16, Promote);
267     // FIXME: This doesn't generate invalid exception when it should. PR44019.
268     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i16, Promote);
269     setOperationAction(ISD::FP_TO_UINT,        MVT::i32, Custom);
270     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
271     setOperationAction(ISD::FP_TO_UINT,        MVT::i64, Custom);
272     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
273   }
274 
275   // Handle address space casts between mixed sized pointers.
276   setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
277   setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
278 
279   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
280   if (!X86ScalarSSEf64) {
281     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
282     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
283     if (Subtarget.is64Bit()) {
284       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
285       // Without SSE, i64->f64 goes through memory.
286       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
287     }
288   } else if (!Subtarget.is64Bit())
289     setOperationAction(ISD::BITCAST      , MVT::i64  , Custom);
290 
291   // Scalar integer divide and remainder are lowered to use operations that
292   // produce two results, to match the available instructions. This exposes
293   // the two-result form to trivial CSE, which is able to combine x/y and x%y
294   // into a single instruction.
295   //
296   // Scalar integer multiply-high is also lowered to use two-result
297   // operations, to match the available instructions. However, plain multiply
298   // (low) operations are left as Legal, as there are single-result
299   // instructions for this in x86. Using the two-result multiply instructions
300   // when both high and low results are needed must be arranged by dagcombine.
301   for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
302     setOperationAction(ISD::MULHS, VT, Expand);
303     setOperationAction(ISD::MULHU, VT, Expand);
304     setOperationAction(ISD::SDIV, VT, Expand);
305     setOperationAction(ISD::UDIV, VT, Expand);
306     setOperationAction(ISD::SREM, VT, Expand);
307     setOperationAction(ISD::UREM, VT, Expand);
308   }
309 
310   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
311   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
312   for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128,
313                    MVT::i8,  MVT::i16, MVT::i32, MVT::i64 }) {
314     setOperationAction(ISD::BR_CC,     VT, Expand);
315     setOperationAction(ISD::SELECT_CC, VT, Expand);
316   }
317   if (Subtarget.is64Bit())
318     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
319   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
320   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
321   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
322 
323   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
324   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
325   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
326   setOperationAction(ISD::FREM             , MVT::f128 , Expand);
327   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
328 
329   // Promote the i8 variants and force them on up to i32 which has a shorter
330   // encoding.
331   setOperationPromotedToType(ISD::CTTZ           , MVT::i8   , MVT::i32);
332   setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
333   if (!Subtarget.hasBMI()) {
334     setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
335     setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
336     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Legal);
337     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Legal);
338     if (Subtarget.is64Bit()) {
339       setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
340       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal);
341     }
342   }
343 
344   if (Subtarget.hasLZCNT()) {
345     // When promoting the i8 variants, force them to i32 for a shorter
346     // encoding.
347     setOperationPromotedToType(ISD::CTLZ           , MVT::i8   , MVT::i32);
348     setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
349   } else {
350     setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
351     setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
352     setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
353     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
354     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
355     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
356     if (Subtarget.is64Bit()) {
357       setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
358       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
359     }
360   }
361 
362   // Special handling for half-precision floating point conversions.
363   // If we don't have F16C support, then lower half float conversions
364   // into library calls.
365   if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) {
366     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
367     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
368   }
369 
370   // There's never any support for operations beyond MVT::f32.
371   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
372   setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
373   setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
374   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
375   setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
376   setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
377 
378   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
379   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
380   setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
381   setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f16, Expand);
382   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
383   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
384   setTruncStoreAction(MVT::f80, MVT::f16, Expand);
385   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
386 
387   if (Subtarget.hasPOPCNT()) {
388     setOperationPromotedToType(ISD::CTPOP, MVT::i8, MVT::i32);
389   } else {
390     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
391     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
392     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
393     if (Subtarget.is64Bit())
394       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
395     else
396       setOperationAction(ISD::CTPOP        , MVT::i64  , Custom);
397   }
398 
399   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400 
401   if (!Subtarget.hasMOVBE())
402     setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
403 
404   // X86 wants to expand cmov itself.
405   for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) {
406     setOperationAction(ISD::SELECT, VT, Custom);
407     setOperationAction(ISD::SETCC, VT, Custom);
408     setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
409     setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
410   }
411   for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
412     if (VT == MVT::i64 && !Subtarget.is64Bit())
413       continue;
414     setOperationAction(ISD::SELECT, VT, Custom);
415     setOperationAction(ISD::SETCC,  VT, Custom);
416   }
417 
418   // Custom action for SELECT MMX and expand action for SELECT_CC MMX
419   setOperationAction(ISD::SELECT, MVT::x86mmx, Custom);
420   setOperationAction(ISD::SELECT_CC, MVT::x86mmx, Expand);
421 
422   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
423   // NOTE: EH_SJLJ_SETJMP/_LONGJMP are not recommended, since
424   // LLVM/Clang supports zero-cost DWARF and SEH exception handling.
425   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
426   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
427   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
428   if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
429     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
430 
431   // Darwin ABI issue.
432   for (auto VT : { MVT::i32, MVT::i64 }) {
433     if (VT == MVT::i64 && !Subtarget.is64Bit())
434       continue;
435     setOperationAction(ISD::ConstantPool    , VT, Custom);
436     setOperationAction(ISD::JumpTable       , VT, Custom);
437     setOperationAction(ISD::GlobalAddress   , VT, Custom);
438     setOperationAction(ISD::GlobalTLSAddress, VT, Custom);
439     setOperationAction(ISD::ExternalSymbol  , VT, Custom);
440     setOperationAction(ISD::BlockAddress    , VT, Custom);
441   }
442 
443   // 64-bit shl, sra, srl (iff 32-bit x86)
444   for (auto VT : { MVT::i32, MVT::i64 }) {
445     if (VT == MVT::i64 && !Subtarget.is64Bit())
446       continue;
447     setOperationAction(ISD::SHL_PARTS, VT, Custom);
448     setOperationAction(ISD::SRA_PARTS, VT, Custom);
449     setOperationAction(ISD::SRL_PARTS, VT, Custom);
450   }
451 
452   if (Subtarget.hasSSEPrefetch() || Subtarget.has3DNow())
453     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
454 
455   setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
456 
457   // Expand certain atomics
458   for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
459     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
460     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
461     setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
462     setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
463     setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
464     setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
465     setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
466   }
467 
468   if (!Subtarget.is64Bit())
469     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
470 
471   if (Subtarget.hasCmpxchg16b()) {
472     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
473   }
474 
475   // FIXME - use subtarget debug flags
476   if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() &&
477       !Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() &&
478       TM.Options.ExceptionModel != ExceptionHandling::SjLj) {
479     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
480   }
481 
482   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
483   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
484 
485   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
486   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
487 
488   setOperationAction(ISD::TRAP, MVT::Other, Legal);
489   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
490 
491   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
492   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
493   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
494   bool Is64Bit = Subtarget.is64Bit();
495   setOperationAction(ISD::VAARG,  MVT::Other, Is64Bit ? Custom : Expand);
496   setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand);
497 
498   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
499   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
500 
501   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
502 
503   // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
504   setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
505   setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
506 
507   if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) {
508     // f32 and f64 use SSE.
509     // Set up the FP register classes.
510     addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass
511                                                      : &X86::FR32RegClass);
512     addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass
513                                                      : &X86::FR64RegClass);
514 
515     // Disable f32->f64 extload as we can only generate this in one instruction
516     // under optsize. So its easier to pattern match (fpext (load)) for that
517     // case instead of needing to emit 2 instructions for extload in the
518     // non-optsize case.
519     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
520 
521     for (auto VT : { MVT::f32, MVT::f64 }) {
522       // Use ANDPD to simulate FABS.
523       setOperationAction(ISD::FABS, VT, Custom);
524 
525       // Use XORP to simulate FNEG.
526       setOperationAction(ISD::FNEG, VT, Custom);
527 
528       // Use ANDPD and ORPD to simulate FCOPYSIGN.
529       setOperationAction(ISD::FCOPYSIGN, VT, Custom);
530 
531       // These might be better off as horizontal vector ops.
532       setOperationAction(ISD::FADD, VT, Custom);
533       setOperationAction(ISD::FSUB, VT, Custom);
534 
535       // We don't support sin/cos/fmod
536       setOperationAction(ISD::FSIN   , VT, Expand);
537       setOperationAction(ISD::FCOS   , VT, Expand);
538       setOperationAction(ISD::FSINCOS, VT, Expand);
539     }
540 
541     // Lower this to MOVMSK plus an AND.
542     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544 
545   } else if (!useSoftFloat() && X86ScalarSSEf32 && (UseX87 || Is64Bit)) {
546     // Use SSE for f32, x87 for f64.
547     // Set up the FP register classes.
548     addRegisterClass(MVT::f32, &X86::FR32RegClass);
549     if (UseX87)
550       addRegisterClass(MVT::f64, &X86::RFP64RegClass);
551 
552     // Use ANDPS to simulate FABS.
553     setOperationAction(ISD::FABS , MVT::f32, Custom);
554 
555     // Use XORP to simulate FNEG.
556     setOperationAction(ISD::FNEG , MVT::f32, Custom);
557 
558     if (UseX87)
559       setOperationAction(ISD::UNDEF, MVT::f64, Expand);
560 
561     // Use ANDPS and ORPS to simulate FCOPYSIGN.
562     if (UseX87)
563       setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
564     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
565 
566     // We don't support sin/cos/fmod
567     setOperationAction(ISD::FSIN   , MVT::f32, Expand);
568     setOperationAction(ISD::FCOS   , MVT::f32, Expand);
569     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
570 
571     if (UseX87) {
572       // Always expand sin/cos functions even though x87 has an instruction.
573       setOperationAction(ISD::FSIN, MVT::f64, Expand);
574       setOperationAction(ISD::FCOS, MVT::f64, Expand);
575       setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
576     }
577   } else if (UseX87) {
578     // f32 and f64 in x87.
579     // Set up the FP register classes.
580     addRegisterClass(MVT::f64, &X86::RFP64RegClass);
581     addRegisterClass(MVT::f32, &X86::RFP32RegClass);
582 
583     for (auto VT : { MVT::f32, MVT::f64 }) {
584       setOperationAction(ISD::UNDEF,     VT, Expand);
585       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
586 
587       // Always expand sin/cos functions even though x87 has an instruction.
588       setOperationAction(ISD::FSIN   , VT, Expand);
589       setOperationAction(ISD::FCOS   , VT, Expand);
590       setOperationAction(ISD::FSINCOS, VT, Expand);
591     }
592   }
593 
594   // Expand FP32 immediates into loads from the stack, save special cases.
595   if (isTypeLegal(MVT::f32)) {
596     if (UseX87 && (getRegClassFor(MVT::f32) == &X86::RFP32RegClass)) {
597       addLegalFPImmediate(APFloat(+0.0f)); // FLD0
598       addLegalFPImmediate(APFloat(+1.0f)); // FLD1
599       addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
600       addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
601     } else // SSE immediates.
602       addLegalFPImmediate(APFloat(+0.0f)); // xorps
603   }
604   // Expand FP64 immediates into loads from the stack, save special cases.
605   if (isTypeLegal(MVT::f64)) {
606     if (UseX87 && getRegClassFor(MVT::f64) == &X86::RFP64RegClass) {
607       addLegalFPImmediate(APFloat(+0.0)); // FLD0
608       addLegalFPImmediate(APFloat(+1.0)); // FLD1
609       addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
610       addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
611     } else // SSE immediates.
612       addLegalFPImmediate(APFloat(+0.0)); // xorpd
613   }
614   // Handle constrained floating-point operations of scalar.
615   setOperationAction(ISD::STRICT_FADD,      MVT::f32, Legal);
616   setOperationAction(ISD::STRICT_FADD,      MVT::f64, Legal);
617   setOperationAction(ISD::STRICT_FSUB,      MVT::f32, Legal);
618   setOperationAction(ISD::STRICT_FSUB,      MVT::f64, Legal);
619   setOperationAction(ISD::STRICT_FMUL,      MVT::f32, Legal);
620   setOperationAction(ISD::STRICT_FMUL,      MVT::f64, Legal);
621   setOperationAction(ISD::STRICT_FDIV,      MVT::f32, Legal);
622   setOperationAction(ISD::STRICT_FDIV,      MVT::f64, Legal);
623   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
624   setOperationAction(ISD::STRICT_FP_ROUND,  MVT::f32, Legal);
625   setOperationAction(ISD::STRICT_FP_ROUND,  MVT::f64, Legal);
626   setOperationAction(ISD::STRICT_FSQRT,     MVT::f32, Legal);
627   setOperationAction(ISD::STRICT_FSQRT,     MVT::f64, Legal);
628 
629   // We don't support FMA.
630   setOperationAction(ISD::FMA, MVT::f64, Expand);
631   setOperationAction(ISD::FMA, MVT::f32, Expand);
632 
633   // f80 always uses X87.
634   if (UseX87) {
635     addRegisterClass(MVT::f80, &X86::RFP80RegClass);
636     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
637     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
638     {
639       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended());
640       addLegalFPImmediate(TmpFlt);  // FLD0
641       TmpFlt.changeSign();
642       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
643 
644       bool ignored;
645       APFloat TmpFlt2(+1.0);
646       TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
647                       &ignored);
648       addLegalFPImmediate(TmpFlt2);  // FLD1
649       TmpFlt2.changeSign();
650       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
651     }
652 
653     // Always expand sin/cos functions even though x87 has an instruction.
654     setOperationAction(ISD::FSIN   , MVT::f80, Expand);
655     setOperationAction(ISD::FCOS   , MVT::f80, Expand);
656     setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
657 
658     setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
659     setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
660     setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
661     setOperationAction(ISD::FRINT,  MVT::f80, Expand);
662     setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
663     setOperationAction(ISD::FMA, MVT::f80, Expand);
664     setOperationAction(ISD::LROUND, MVT::f80, Expand);
665     setOperationAction(ISD::LLROUND, MVT::f80, Expand);
666     setOperationAction(ISD::LRINT, MVT::f80, Expand);
667     setOperationAction(ISD::LLRINT, MVT::f80, Expand);
668 
669     // Handle constrained floating-point operations of scalar.
670     setOperationAction(ISD::STRICT_FADD     , MVT::f80, Legal);
671     setOperationAction(ISD::STRICT_FSUB     , MVT::f80, Legal);
672     setOperationAction(ISD::STRICT_FMUL     , MVT::f80, Legal);
673     setOperationAction(ISD::STRICT_FDIV     , MVT::f80, Legal);
674     setOperationAction(ISD::STRICT_FSQRT    , MVT::f80, Legal);
675     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f80, Legal);
676     // FIXME: When the target is 64-bit, STRICT_FP_ROUND will be overwritten
677     // as Custom.
678     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f80, Legal);
679   }
680 
681   // f128 uses xmm registers, but most operations require libcalls.
682   if (!Subtarget.useSoftFloat() && Subtarget.is64Bit() && Subtarget.hasSSE1()) {
683     addRegisterClass(MVT::f128, Subtarget.hasVLX() ? &X86::VR128XRegClass
684                                                    : &X86::VR128RegClass);
685 
686     addLegalFPImmediate(APFloat::getZero(APFloat::IEEEquad())); // xorps
687 
688     setOperationAction(ISD::FADD,        MVT::f128, LibCall);
689     setOperationAction(ISD::STRICT_FADD, MVT::f128, LibCall);
690     setOperationAction(ISD::FSUB,        MVT::f128, LibCall);
691     setOperationAction(ISD::STRICT_FSUB, MVT::f128, LibCall);
692     setOperationAction(ISD::FDIV,        MVT::f128, LibCall);
693     setOperationAction(ISD::STRICT_FDIV, MVT::f128, LibCall);
694     setOperationAction(ISD::FMUL,        MVT::f128, LibCall);
695     setOperationAction(ISD::STRICT_FMUL, MVT::f128, LibCall);
696     setOperationAction(ISD::FMA,         MVT::f128, LibCall);
697     setOperationAction(ISD::STRICT_FMA,  MVT::f128, LibCall);
698 
699     setOperationAction(ISD::FABS, MVT::f128, Custom);
700     setOperationAction(ISD::FNEG, MVT::f128, Custom);
701     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
702 
703     setOperationAction(ISD::FSIN,         MVT::f128, LibCall);
704     setOperationAction(ISD::STRICT_FSIN,  MVT::f128, LibCall);
705     setOperationAction(ISD::FCOS,         MVT::f128, LibCall);
706     setOperationAction(ISD::STRICT_FCOS,  MVT::f128, LibCall);
707     setOperationAction(ISD::FSINCOS,      MVT::f128, LibCall);
708     // No STRICT_FSINCOS
709     setOperationAction(ISD::FSQRT,        MVT::f128, LibCall);
710     setOperationAction(ISD::STRICT_FSQRT, MVT::f128, LibCall);
711 
712     setOperationAction(ISD::FP_EXTEND,        MVT::f128, Custom);
713     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Custom);
714     // We need to custom handle any FP_ROUND with an f128 input, but
715     // LegalizeDAG uses the result type to know when to run a custom handler.
716     // So we have to list all legal floating point result types here.
717     if (isTypeLegal(MVT::f32)) {
718       setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
719       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
720     }
721     if (isTypeLegal(MVT::f64)) {
722       setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
723       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
724     }
725     if (isTypeLegal(MVT::f80)) {
726       setOperationAction(ISD::FP_ROUND, MVT::f80, Custom);
727       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f80, Custom);
728     }
729 
730     setOperationAction(ISD::SETCC, MVT::f128, Custom);
731 
732     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
733     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
734     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f80, Expand);
735     setTruncStoreAction(MVT::f128, MVT::f32, Expand);
736     setTruncStoreAction(MVT::f128, MVT::f64, Expand);
737     setTruncStoreAction(MVT::f128, MVT::f80, Expand);
738   }
739 
740   // Always use a library call for pow.
741   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
742   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
743   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
744   setOperationAction(ISD::FPOW             , MVT::f128 , Expand);
745 
746   setOperationAction(ISD::FLOG, MVT::f80, Expand);
747   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
748   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
749   setOperationAction(ISD::FEXP, MVT::f80, Expand);
750   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
751   setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
752   setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
753 
754   // Some FP actions are always expanded for vector types.
755   for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32,
756                    MVT::v2f64, MVT::v4f64, MVT::v8f64 }) {
757     setOperationAction(ISD::FSIN,      VT, Expand);
758     setOperationAction(ISD::FSINCOS,   VT, Expand);
759     setOperationAction(ISD::FCOS,      VT, Expand);
760     setOperationAction(ISD::FREM,      VT, Expand);
761     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
762     setOperationAction(ISD::FPOW,      VT, Expand);
763     setOperationAction(ISD::FLOG,      VT, Expand);
764     setOperationAction(ISD::FLOG2,     VT, Expand);
765     setOperationAction(ISD::FLOG10,    VT, Expand);
766     setOperationAction(ISD::FEXP,      VT, Expand);
767     setOperationAction(ISD::FEXP2,     VT, Expand);
768   }
769 
770   // First set operation action for all vector types to either promote
771   // (for widening) or expand (for scalarization). Then we will selectively
772   // turn on ones that can be effectively codegen'd.
773   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
774     setOperationAction(ISD::SDIV, VT, Expand);
775     setOperationAction(ISD::UDIV, VT, Expand);
776     setOperationAction(ISD::SREM, VT, Expand);
777     setOperationAction(ISD::UREM, VT, Expand);
778     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
779     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
780     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
781     setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
782     setOperationAction(ISD::FMA,  VT, Expand);
783     setOperationAction(ISD::FFLOOR, VT, Expand);
784     setOperationAction(ISD::FCEIL, VT, Expand);
785     setOperationAction(ISD::FTRUNC, VT, Expand);
786     setOperationAction(ISD::FRINT, VT, Expand);
787     setOperationAction(ISD::FNEARBYINT, VT, Expand);
788     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
789     setOperationAction(ISD::MULHS, VT, Expand);
790     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
791     setOperationAction(ISD::MULHU, VT, Expand);
792     setOperationAction(ISD::SDIVREM, VT, Expand);
793     setOperationAction(ISD::UDIVREM, VT, Expand);
794     setOperationAction(ISD::CTPOP, VT, Expand);
795     setOperationAction(ISD::CTTZ, VT, Expand);
796     setOperationAction(ISD::CTLZ, VT, Expand);
797     setOperationAction(ISD::ROTL, VT, Expand);
798     setOperationAction(ISD::ROTR, VT, Expand);
799     setOperationAction(ISD::BSWAP, VT, Expand);
800     setOperationAction(ISD::SETCC, VT, Expand);
801     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
802     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
803     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
804     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
805     setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
806     setOperationAction(ISD::TRUNCATE, VT, Expand);
807     setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
808     setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
809     setOperationAction(ISD::ANY_EXTEND, VT, Expand);
810     setOperationAction(ISD::SELECT_CC, VT, Expand);
811     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
812       setTruncStoreAction(InnerVT, VT, Expand);
813 
814       setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
815       setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
816 
817       // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
818       // types, we have to deal with them whether we ask for Expansion or not.
819       // Setting Expand causes its own optimisation problems though, so leave
820       // them legal.
821       if (VT.getVectorElementType() == MVT::i1)
822         setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
823 
824       // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
825       // split/scalarized right now.
826       if (VT.getVectorElementType() == MVT::f16)
827         setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
828     }
829   }
830 
831   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
832   // with -msoft-float, disable use of MMX as well.
833   if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) {
834     addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
835     // No operations on x86mmx supported, everything uses intrinsics.
836   }
837 
838   if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) {
839     addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass
840                                                     : &X86::VR128RegClass);
841 
842     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
843     setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
844     setOperationAction(ISD::FCOPYSIGN,          MVT::v4f32, Custom);
845     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
846     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
847     setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
848     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
849     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
850 
851     setOperationAction(ISD::LOAD,               MVT::v2f32, Custom);
852     setOperationAction(ISD::STORE,              MVT::v2f32, Custom);
853 
854     setOperationAction(ISD::STRICT_FADD,        MVT::v4f32, Legal);
855     setOperationAction(ISD::STRICT_FSUB,        MVT::v4f32, Legal);
856     setOperationAction(ISD::STRICT_FMUL,        MVT::v4f32, Legal);
857     setOperationAction(ISD::STRICT_FDIV,        MVT::v4f32, Legal);
858     setOperationAction(ISD::STRICT_FSQRT,       MVT::v4f32, Legal);
859   }
860 
861   if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) {
862     addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass
863                                                     : &X86::VR128RegClass);
864 
865     // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
866     // registers cannot be used even for integer operations.
867     addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass
868                                                     : &X86::VR128RegClass);
869     addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass
870                                                     : &X86::VR128RegClass);
871     addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass
872                                                     : &X86::VR128RegClass);
873     addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass
874                                                     : &X86::VR128RegClass);
875 
876     for (auto VT : { MVT::v2i8, MVT::v4i8, MVT::v8i8,
877                      MVT::v2i16, MVT::v4i16, MVT::v2i32 }) {
878       setOperationAction(ISD::SDIV, VT, Custom);
879       setOperationAction(ISD::SREM, VT, Custom);
880       setOperationAction(ISD::UDIV, VT, Custom);
881       setOperationAction(ISD::UREM, VT, Custom);
882     }
883 
884     setOperationAction(ISD::MUL,                MVT::v2i8,  Custom);
885     setOperationAction(ISD::MUL,                MVT::v4i8,  Custom);
886     setOperationAction(ISD::MUL,                MVT::v8i8,  Custom);
887 
888     setOperationAction(ISD::MUL,                MVT::v16i8, Custom);
889     setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
890     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
891     setOperationAction(ISD::MULHU,              MVT::v4i32, Custom);
892     setOperationAction(ISD::MULHS,              MVT::v4i32, Custom);
893     setOperationAction(ISD::MULHU,              MVT::v16i8, Custom);
894     setOperationAction(ISD::MULHS,              MVT::v16i8, Custom);
895     setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
896     setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
897     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
898     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
899     setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
900     setOperationAction(ISD::FCOPYSIGN,          MVT::v2f64, Custom);
901 
902     for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
903       setOperationAction(ISD::SMAX, VT, VT == MVT::v8i16 ? Legal : Custom);
904       setOperationAction(ISD::SMIN, VT, VT == MVT::v8i16 ? Legal : Custom);
905       setOperationAction(ISD::UMAX, VT, VT == MVT::v16i8 ? Legal : Custom);
906       setOperationAction(ISD::UMIN, VT, VT == MVT::v16i8 ? Legal : Custom);
907     }
908 
909     setOperationAction(ISD::UADDSAT,            MVT::v16i8, Legal);
910     setOperationAction(ISD::SADDSAT,            MVT::v16i8, Legal);
911     setOperationAction(ISD::USUBSAT,            MVT::v16i8, Legal);
912     setOperationAction(ISD::SSUBSAT,            MVT::v16i8, Legal);
913     setOperationAction(ISD::UADDSAT,            MVT::v8i16, Legal);
914     setOperationAction(ISD::SADDSAT,            MVT::v8i16, Legal);
915     setOperationAction(ISD::USUBSAT,            MVT::v8i16, Legal);
916     setOperationAction(ISD::SSUBSAT,            MVT::v8i16, Legal);
917     setOperationAction(ISD::UADDSAT,            MVT::v4i32, Custom);
918     setOperationAction(ISD::USUBSAT,            MVT::v4i32, Custom);
919     setOperationAction(ISD::UADDSAT,            MVT::v2i64, Custom);
920     setOperationAction(ISD::USUBSAT,            MVT::v2i64, Custom);
921 
922     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
923     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
924     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
925 
926     for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
927       setOperationAction(ISD::SETCC,              VT, Custom);
928       setOperationAction(ISD::STRICT_FSETCC,      VT, Custom);
929       setOperationAction(ISD::STRICT_FSETCCS,     VT, Custom);
930       setOperationAction(ISD::CTPOP,              VT, Custom);
931       setOperationAction(ISD::ABS,                VT, Custom);
932 
933       // The condition codes aren't legal in SSE/AVX and under AVX512 we use
934       // setcc all the way to isel and prefer SETGT in some isel patterns.
935       setCondCodeAction(ISD::SETLT, VT, Custom);
936       setCondCodeAction(ISD::SETLE, VT, Custom);
937     }
938 
939     for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
940       setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
941       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
942       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
943       setOperationAction(ISD::VSELECT,            VT, Custom);
944       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
945     }
946 
947     for (auto VT : { MVT::v2f64, MVT::v2i64 }) {
948       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
949       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
950       setOperationAction(ISD::VSELECT,            VT, Custom);
951 
952       if (VT == MVT::v2i64 && !Subtarget.is64Bit())
953         continue;
954 
955       setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
956       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
957     }
958 
959     // Custom lower v2i64 and v2f64 selects.
960     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
961     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
962     setOperationAction(ISD::SELECT,             MVT::v4i32, Custom);
963     setOperationAction(ISD::SELECT,             MVT::v8i16, Custom);
964     setOperationAction(ISD::SELECT,             MVT::v16i8, Custom);
965 
966     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
967     setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
968     setOperationAction(ISD::STRICT_FP_TO_SINT,  MVT::v4i32, Legal);
969     setOperationAction(ISD::STRICT_FP_TO_SINT,  MVT::v2i32, Custom);
970 
971     // Custom legalize these to avoid over promotion or custom promotion.
972     for (auto VT : {MVT::v2i8, MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16}) {
973       setOperationAction(ISD::FP_TO_SINT,        VT, Custom);
974       setOperationAction(ISD::FP_TO_UINT,        VT, Custom);
975       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Custom);
976       setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Custom);
977     }
978 
979     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
980     setOperationAction(ISD::STRICT_SINT_TO_FP,  MVT::v4i32, Legal);
981     setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
982     setOperationAction(ISD::STRICT_SINT_TO_FP,  MVT::v2i32, Custom);
983 
984     setOperationAction(ISD::UINT_TO_FP,         MVT::v2i32, Custom);
985     setOperationAction(ISD::STRICT_UINT_TO_FP,  MVT::v2i32, Custom);
986 
987     setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Custom);
988     setOperationAction(ISD::STRICT_UINT_TO_FP,  MVT::v4i32, Custom);
989 
990     // Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion.
991     setOperationAction(ISD::SINT_TO_FP,         MVT::v2f32, Custom);
992     setOperationAction(ISD::STRICT_SINT_TO_FP,  MVT::v2f32, Custom);
993     setOperationAction(ISD::UINT_TO_FP,         MVT::v2f32, Custom);
994     setOperationAction(ISD::STRICT_UINT_TO_FP,  MVT::v2f32, Custom);
995 
996     setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
997     setOperationAction(ISD::STRICT_FP_EXTEND,   MVT::v2f32, Custom);
998     setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
999     setOperationAction(ISD::STRICT_FP_ROUND,    MVT::v2f32, Custom);
1000 
1001     // We want to legalize this to an f64 load rather than an i64 load on
1002     // 64-bit targets and two 32-bit loads on a 32-bit target. Similar for
1003     // store.
1004     setOperationAction(ISD::LOAD,               MVT::v2i32, Custom);
1005     setOperationAction(ISD::LOAD,               MVT::v4i16, Custom);
1006     setOperationAction(ISD::LOAD,               MVT::v8i8,  Custom);
1007     setOperationAction(ISD::STORE,              MVT::v2i32, Custom);
1008     setOperationAction(ISD::STORE,              MVT::v4i16, Custom);
1009     setOperationAction(ISD::STORE,              MVT::v8i8,  Custom);
1010 
1011     setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
1012     setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
1013     setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
1014     if (!Subtarget.hasAVX512())
1015       setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
1016 
1017     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
1018     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
1019     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
1020 
1021     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
1022 
1023     setOperationAction(ISD::TRUNCATE,    MVT::v2i8,  Custom);
1024     setOperationAction(ISD::TRUNCATE,    MVT::v2i16, Custom);
1025     setOperationAction(ISD::TRUNCATE,    MVT::v2i32, Custom);
1026     setOperationAction(ISD::TRUNCATE,    MVT::v4i8,  Custom);
1027     setOperationAction(ISD::TRUNCATE,    MVT::v4i16, Custom);
1028     setOperationAction(ISD::TRUNCATE,    MVT::v8i8,  Custom);
1029 
1030     // In the customized shift lowering, the legal v4i32/v2i64 cases
1031     // in AVX2 will be recognized.
1032     for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
1033       setOperationAction(ISD::SRL,              VT, Custom);
1034       setOperationAction(ISD::SHL,              VT, Custom);
1035       setOperationAction(ISD::SRA,              VT, Custom);
1036     }
1037 
1038     setOperationAction(ISD::ROTL,               MVT::v4i32, Custom);
1039     setOperationAction(ISD::ROTL,               MVT::v8i16, Custom);
1040 
1041     // With AVX512, expanding (and promoting the shifts) is better.
1042     if (!Subtarget.hasAVX512())
1043       setOperationAction(ISD::ROTL,             MVT::v16i8, Custom);
1044 
1045     setOperationAction(ISD::STRICT_FSQRT,       MVT::v2f64, Legal);
1046     setOperationAction(ISD::STRICT_FADD,        MVT::v2f64, Legal);
1047     setOperationAction(ISD::STRICT_FSUB,        MVT::v2f64, Legal);
1048     setOperationAction(ISD::STRICT_FMUL,        MVT::v2f64, Legal);
1049     setOperationAction(ISD::STRICT_FDIV,        MVT::v2f64, Legal);
1050   }
1051 
1052   if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) {
1053     setOperationAction(ISD::ABS,                MVT::v16i8, Legal);
1054     setOperationAction(ISD::ABS,                MVT::v8i16, Legal);
1055     setOperationAction(ISD::ABS,                MVT::v4i32, Legal);
1056     setOperationAction(ISD::BITREVERSE,         MVT::v16i8, Custom);
1057     setOperationAction(ISD::CTLZ,               MVT::v16i8, Custom);
1058     setOperationAction(ISD::CTLZ,               MVT::v8i16, Custom);
1059     setOperationAction(ISD::CTLZ,               MVT::v4i32, Custom);
1060     setOperationAction(ISD::CTLZ,               MVT::v2i64, Custom);
1061 
1062     // These might be better off as horizontal vector ops.
1063     setOperationAction(ISD::ADD,                MVT::i16, Custom);
1064     setOperationAction(ISD::ADD,                MVT::i32, Custom);
1065     setOperationAction(ISD::SUB,                MVT::i16, Custom);
1066     setOperationAction(ISD::SUB,                MVT::i32, Custom);
1067   }
1068 
1069   if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) {
1070     for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
1071       setOperationAction(ISD::FFLOOR,            RoundedTy,  Legal);
1072       setOperationAction(ISD::STRICT_FFLOOR,     RoundedTy,  Legal);
1073       setOperationAction(ISD::FCEIL,             RoundedTy,  Legal);
1074       setOperationAction(ISD::STRICT_FCEIL,      RoundedTy,  Legal);
1075       setOperationAction(ISD::FTRUNC,            RoundedTy,  Legal);
1076       setOperationAction(ISD::STRICT_FTRUNC,     RoundedTy,  Legal);
1077       setOperationAction(ISD::FRINT,             RoundedTy,  Legal);
1078       setOperationAction(ISD::STRICT_FRINT,      RoundedTy,  Legal);
1079       setOperationAction(ISD::FNEARBYINT,        RoundedTy,  Legal);
1080       setOperationAction(ISD::STRICT_FNEARBYINT, RoundedTy,  Legal);
1081     }
1082 
1083     setOperationAction(ISD::SMAX,               MVT::v16i8, Legal);
1084     setOperationAction(ISD::SMAX,               MVT::v4i32, Legal);
1085     setOperationAction(ISD::UMAX,               MVT::v8i16, Legal);
1086     setOperationAction(ISD::UMAX,               MVT::v4i32, Legal);
1087     setOperationAction(ISD::SMIN,               MVT::v16i8, Legal);
1088     setOperationAction(ISD::SMIN,               MVT::v4i32, Legal);
1089     setOperationAction(ISD::UMIN,               MVT::v8i16, Legal);
1090     setOperationAction(ISD::UMIN,               MVT::v4i32, Legal);
1091 
1092     // FIXME: Do we need to handle scalar-to-vector here?
1093     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1094 
1095     // We directly match byte blends in the backend as they match the VSELECT
1096     // condition form.
1097     setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1098 
1099     // SSE41 brings specific instructions for doing vector sign extend even in
1100     // cases where we don't have SRA.
1101     for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
1102       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Legal);
1103       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Legal);
1104     }
1105 
1106     // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
1107     for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
1108       setLoadExtAction(LoadExtOp, MVT::v8i16, MVT::v8i8,  Legal);
1109       setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i8,  Legal);
1110       setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i8,  Legal);
1111       setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i16, Legal);
1112       setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i16, Legal);
1113       setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i32, Legal);
1114     }
1115 
1116     // i8 vectors are custom because the source register and source
1117     // source memory operand types are not the same width.
1118     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1119 
1120     if (Subtarget.is64Bit() && !Subtarget.hasAVX512()) {
1121       // We need to scalarize v4i64->v432 uint_to_fp using cvtsi2ss, but we can
1122       // do the pre and post work in the vector domain.
1123       setOperationAction(ISD::UINT_TO_FP,        MVT::v4i64, Custom);
1124       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i64, Custom);
1125       // We need to mark SINT_TO_FP as Custom even though we want to expand it
1126       // so that DAG combine doesn't try to turn it into uint_to_fp.
1127       setOperationAction(ISD::SINT_TO_FP,        MVT::v4i64, Custom);
1128       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i64, Custom);
1129     }
1130   }
1131 
1132   if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) {
1133     for (auto VT : { MVT::v16i8, MVT::v8i16,  MVT::v4i32, MVT::v2i64,
1134                      MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
1135       setOperationAction(ISD::ROTL, VT, Custom);
1136 
1137     // XOP can efficiently perform BITREVERSE with VPPERM.
1138     for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 })
1139       setOperationAction(ISD::BITREVERSE, VT, Custom);
1140 
1141     for (auto VT : { MVT::v16i8, MVT::v8i16,  MVT::v4i32, MVT::v2i64,
1142                      MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
1143       setOperationAction(ISD::BITREVERSE, VT, Custom);
1144   }
1145 
1146   if (!Subtarget.useSoftFloat() && Subtarget.hasAVX()) {
1147     bool HasInt256 = Subtarget.hasInt256();
1148 
1149     addRegisterClass(MVT::v32i8,  Subtarget.hasVLX() ? &X86::VR256XRegClass
1150                                                      : &X86::VR256RegClass);
1151     addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass
1152                                                      : &X86::VR256RegClass);
1153     addRegisterClass(MVT::v8i32,  Subtarget.hasVLX() ? &X86::VR256XRegClass
1154                                                      : &X86::VR256RegClass);
1155     addRegisterClass(MVT::v8f32,  Subtarget.hasVLX() ? &X86::VR256XRegClass
1156                                                      : &X86::VR256RegClass);
1157     addRegisterClass(MVT::v4i64,  Subtarget.hasVLX() ? &X86::VR256XRegClass
1158                                                      : &X86::VR256RegClass);
1159     addRegisterClass(MVT::v4f64,  Subtarget.hasVLX() ? &X86::VR256XRegClass
1160                                                      : &X86::VR256RegClass);
1161 
1162     for (auto VT : { MVT::v8f32, MVT::v4f64 }) {
1163       setOperationAction(ISD::FFLOOR,            VT, Legal);
1164       setOperationAction(ISD::STRICT_FFLOOR,     VT, Legal);
1165       setOperationAction(ISD::FCEIL,             VT, Legal);
1166       setOperationAction(ISD::STRICT_FCEIL,      VT, Legal);
1167       setOperationAction(ISD::FTRUNC,            VT, Legal);
1168       setOperationAction(ISD::STRICT_FTRUNC,     VT, Legal);
1169       setOperationAction(ISD::FRINT,             VT, Legal);
1170       setOperationAction(ISD::STRICT_FRINT,      VT, Legal);
1171       setOperationAction(ISD::FNEARBYINT,        VT, Legal);
1172       setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
1173       setOperationAction(ISD::FNEG,              VT, Custom);
1174       setOperationAction(ISD::FABS,              VT, Custom);
1175       setOperationAction(ISD::FCOPYSIGN,         VT, Custom);
1176     }
1177 
1178     // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1179     // even though v8i16 is a legal type.
1180     setOperationPromotedToType(ISD::FP_TO_SINT,        MVT::v8i16, MVT::v8i32);
1181     setOperationPromotedToType(ISD::FP_TO_UINT,        MVT::v8i16, MVT::v8i32);
1182     setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::v8i16, MVT::v8i32);
1183     setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::v8i16, MVT::v8i32);
1184     setOperationAction(ISD::FP_TO_SINT,                MVT::v8i32, Legal);
1185     setOperationAction(ISD::STRICT_FP_TO_SINT,         MVT::v8i32, Legal);
1186 
1187     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1188     setOperationAction(ISD::STRICT_SINT_TO_FP,  MVT::v8i32, Legal);
1189 
1190     setOperationAction(ISD::STRICT_FP_ROUND,    MVT::v4f32, Legal);
1191     setOperationAction(ISD::STRICT_FADD,        MVT::v8f32, Legal);
1192     setOperationAction(ISD::STRICT_FADD,        MVT::v4f64, Legal);
1193     setOperationAction(ISD::STRICT_FSUB,        MVT::v8f32, Legal);
1194     setOperationAction(ISD::STRICT_FSUB,        MVT::v4f64, Legal);
1195     setOperationAction(ISD::STRICT_FMUL,        MVT::v8f32, Legal);
1196     setOperationAction(ISD::STRICT_FMUL,        MVT::v4f64, Legal);
1197     setOperationAction(ISD::STRICT_FDIV,        MVT::v8f32, Legal);
1198     setOperationAction(ISD::STRICT_FDIV,        MVT::v4f64, Legal);
1199     setOperationAction(ISD::STRICT_FP_EXTEND,   MVT::v4f64, Legal);
1200     setOperationAction(ISD::STRICT_FSQRT,       MVT::v8f32, Legal);
1201     setOperationAction(ISD::STRICT_FSQRT,       MVT::v4f64, Legal);
1202 
1203     if (!Subtarget.hasAVX512())
1204       setOperationAction(ISD::BITCAST, MVT::v32i1, Custom);
1205 
1206     // In the customized shift lowering, the legal v8i32/v4i64 cases
1207     // in AVX2 will be recognized.
1208     for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
1209       setOperationAction(ISD::SRL, VT, Custom);
1210       setOperationAction(ISD::SHL, VT, Custom);
1211       setOperationAction(ISD::SRA, VT, Custom);
1212     }
1213 
1214     // These types need custom splitting if their input is a 128-bit vector.
1215     setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i64,  Custom);
1216     setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i32, Custom);
1217     setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i64,  Custom);
1218     setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i32, Custom);
1219 
1220     setOperationAction(ISD::ROTL,              MVT::v8i32,  Custom);
1221     setOperationAction(ISD::ROTL,              MVT::v16i16, Custom);
1222 
1223     // With BWI, expanding (and promoting the shifts) is the better.
1224     if (!Subtarget.hasBWI())
1225       setOperationAction(ISD::ROTL,            MVT::v32i8,  Custom);
1226 
1227     setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1228     setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1229     setOperationAction(ISD::SELECT,            MVT::v8i32, Custom);
1230     setOperationAction(ISD::SELECT,            MVT::v16i16, Custom);
1231     setOperationAction(ISD::SELECT,            MVT::v32i8, Custom);
1232     setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1233 
1234     for (auto VT : { MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
1235       setOperationAction(ISD::SIGN_EXTEND,     VT, Custom);
1236       setOperationAction(ISD::ZERO_EXTEND,     VT, Custom);
1237       setOperationAction(ISD::ANY_EXTEND,      VT, Custom);
1238     }
1239 
1240     setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1241     setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1242     setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1243     setOperationAction(ISD::BITREVERSE,        MVT::v32i8, Custom);
1244 
1245     for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
1246       setOperationAction(ISD::SETCC,           VT, Custom);
1247       setOperationAction(ISD::STRICT_FSETCC,   VT, Custom);
1248       setOperationAction(ISD::STRICT_FSETCCS,  VT, Custom);
1249       setOperationAction(ISD::CTPOP,           VT, Custom);
1250       setOperationAction(ISD::CTLZ,            VT, Custom);
1251 
1252       // The condition codes aren't legal in SSE/AVX and under AVX512 we use
1253       // setcc all the way to isel and prefer SETGT in some isel patterns.
1254       setCondCodeAction(ISD::SETLT, VT, Custom);
1255       setCondCodeAction(ISD::SETLE, VT, Custom);
1256     }
1257 
1258     if (Subtarget.hasAnyFMA()) {
1259       for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32,
1260                        MVT::v2f64, MVT::v4f64 }) {
1261         setOperationAction(ISD::FMA, VT, Legal);
1262         setOperationAction(ISD::STRICT_FMA, VT, Legal);
1263       }
1264     }
1265 
1266     for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
1267       setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom);
1268       setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom);
1269     }
1270 
1271     setOperationAction(ISD::MUL,       MVT::v4i64,  Custom);
1272     setOperationAction(ISD::MUL,       MVT::v8i32,  HasInt256 ? Legal : Custom);
1273     setOperationAction(ISD::MUL,       MVT::v16i16, HasInt256 ? Legal : Custom);
1274     setOperationAction(ISD::MUL,       MVT::v32i8,  Custom);
1275 
1276     setOperationAction(ISD::MULHU,     MVT::v8i32,  Custom);
1277     setOperationAction(ISD::MULHS,     MVT::v8i32,  Custom);
1278     setOperationAction(ISD::MULHU,     MVT::v16i16, HasInt256 ? Legal : Custom);
1279     setOperationAction(ISD::MULHS,     MVT::v16i16, HasInt256 ? Legal : Custom);
1280     setOperationAction(ISD::MULHU,     MVT::v32i8,  Custom);
1281     setOperationAction(ISD::MULHS,     MVT::v32i8,  Custom);
1282 
1283     setOperationAction(ISD::ABS,       MVT::v4i64,  Custom);
1284     setOperationAction(ISD::SMAX,      MVT::v4i64,  Custom);
1285     setOperationAction(ISD::UMAX,      MVT::v4i64,  Custom);
1286     setOperationAction(ISD::SMIN,      MVT::v4i64,  Custom);
1287     setOperationAction(ISD::UMIN,      MVT::v4i64,  Custom);
1288 
1289     setOperationAction(ISD::UADDSAT,   MVT::v32i8,  HasInt256 ? Legal : Custom);
1290     setOperationAction(ISD::SADDSAT,   MVT::v32i8,  HasInt256 ? Legal : Custom);
1291     setOperationAction(ISD::USUBSAT,   MVT::v32i8,  HasInt256 ? Legal : Custom);
1292     setOperationAction(ISD::SSUBSAT,   MVT::v32i8,  HasInt256 ? Legal : Custom);
1293     setOperationAction(ISD::UADDSAT,   MVT::v16i16, HasInt256 ? Legal : Custom);
1294     setOperationAction(ISD::SADDSAT,   MVT::v16i16, HasInt256 ? Legal : Custom);
1295     setOperationAction(ISD::USUBSAT,   MVT::v16i16, HasInt256 ? Legal : Custom);
1296     setOperationAction(ISD::SSUBSAT,   MVT::v16i16, HasInt256 ? Legal : Custom);
1297 
1298     for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
1299       setOperationAction(ISD::ABS,  VT, HasInt256 ? Legal : Custom);
1300       setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom);
1301       setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom);
1302       setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom);
1303       setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom);
1304     }
1305 
1306     for (auto VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64}) {
1307       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
1308       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
1309     }
1310 
1311     if (HasInt256) {
1312       // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
1313       // when we have a 256bit-wide blend with immediate.
1314       setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
1315       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v8i32, Custom);
1316 
1317       // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
1318       for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
1319         setLoadExtAction(LoadExtOp, MVT::v16i16, MVT::v16i8, Legal);
1320         setLoadExtAction(LoadExtOp, MVT::v8i32,  MVT::v8i8,  Legal);
1321         setLoadExtAction(LoadExtOp, MVT::v4i64,  MVT::v4i8,  Legal);
1322         setLoadExtAction(LoadExtOp, MVT::v8i32,  MVT::v8i16, Legal);
1323         setLoadExtAction(LoadExtOp, MVT::v4i64,  MVT::v4i16, Legal);
1324         setLoadExtAction(LoadExtOp, MVT::v4i64,  MVT::v4i32, Legal);
1325       }
1326     }
1327 
1328     for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
1329                      MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
1330       setOperationAction(ISD::MLOAD,  VT, Subtarget.hasVLX() ? Legal : Custom);
1331       setOperationAction(ISD::MSTORE, VT, Legal);
1332     }
1333 
1334     // Extract subvector is special because the value type
1335     // (result) is 128-bit but the source is 256-bit wide.
1336     for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
1337                      MVT::v4f32, MVT::v2f64 }) {
1338       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1339     }
1340 
1341     // Custom lower several nodes for 256-bit types.
1342     for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
1343                     MVT::v8f32, MVT::v4f64 }) {
1344       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1345       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1346       setOperationAction(ISD::VSELECT,            VT, Custom);
1347       setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1348       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1349       setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1350       setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Legal);
1351       setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1352       setOperationAction(ISD::STORE,              VT, Custom);
1353     }
1354 
1355     if (HasInt256) {
1356       setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
1357 
1358       // Custom legalize 2x32 to get a little better code.
1359       setOperationAction(ISD::MGATHER, MVT::v2f32, Custom);
1360       setOperationAction(ISD::MGATHER, MVT::v2i32, Custom);
1361 
1362       for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
1363                        MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
1364         setOperationAction(ISD::MGATHER,  VT, Custom);
1365     }
1366   }
1367 
1368   // This block controls legalization of the mask vector sizes that are
1369   // available with AVX512. 512-bit vectors are in a separate block controlled
1370   // by useAVX512Regs.
1371   if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
1372     addRegisterClass(MVT::v1i1,   &X86::VK1RegClass);
1373     addRegisterClass(MVT::v2i1,   &X86::VK2RegClass);
1374     addRegisterClass(MVT::v4i1,   &X86::VK4RegClass);
1375     addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1376     addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1377 
1378     setOperationAction(ISD::SELECT,             MVT::v1i1, Custom);
1379     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v1i1, Custom);
1380     setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i1, Custom);
1381 
1382     setOperationPromotedToType(ISD::FP_TO_SINT,        MVT::v8i1,  MVT::v8i32);
1383     setOperationPromotedToType(ISD::FP_TO_UINT,        MVT::v8i1,  MVT::v8i32);
1384     setOperationPromotedToType(ISD::FP_TO_SINT,        MVT::v4i1,  MVT::v4i32);
1385     setOperationPromotedToType(ISD::FP_TO_UINT,        MVT::v4i1,  MVT::v4i32);
1386     setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::v8i1,  MVT::v8i32);
1387     setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::v8i1,  MVT::v8i32);
1388     setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::v4i1,  MVT::v4i32);
1389     setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::v4i1,  MVT::v4i32);
1390     setOperationAction(ISD::FP_TO_SINT,                MVT::v2i1,  Custom);
1391     setOperationAction(ISD::FP_TO_UINT,                MVT::v2i1,  Custom);
1392     setOperationAction(ISD::STRICT_FP_TO_SINT,         MVT::v2i1,  Custom);
1393     setOperationAction(ISD::STRICT_FP_TO_UINT,         MVT::v2i1,  Custom);
1394 
1395     // There is no byte sized k-register load or store without AVX512DQ.
1396     if (!Subtarget.hasDQI()) {
1397       setOperationAction(ISD::LOAD, MVT::v1i1, Custom);
1398       setOperationAction(ISD::LOAD, MVT::v2i1, Custom);
1399       setOperationAction(ISD::LOAD, MVT::v4i1, Custom);
1400       setOperationAction(ISD::LOAD, MVT::v8i1, Custom);
1401 
1402       setOperationAction(ISD::STORE, MVT::v1i1, Custom);
1403       setOperationAction(ISD::STORE, MVT::v2i1, Custom);
1404       setOperationAction(ISD::STORE, MVT::v4i1, Custom);
1405       setOperationAction(ISD::STORE, MVT::v8i1, Custom);
1406     }
1407 
1408     // Extends of v16i1/v8i1/v4i1/v2i1 to 128-bit vectors.
1409     for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
1410       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
1411       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
1412       setOperationAction(ISD::ANY_EXTEND,  VT, Custom);
1413     }
1414 
1415     for (auto VT : { MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v16i1 }) {
1416       setOperationAction(ISD::ADD,              VT, Custom);
1417       setOperationAction(ISD::SUB,              VT, Custom);
1418       setOperationAction(ISD::MUL,              VT, Custom);
1419       setOperationAction(ISD::SETCC,            VT, Custom);
1420       setOperationAction(ISD::STRICT_FSETCC,    VT, Custom);
1421       setOperationAction(ISD::STRICT_FSETCCS,   VT, Custom);
1422       setOperationAction(ISD::SELECT,           VT, Custom);
1423       setOperationAction(ISD::TRUNCATE,         VT, Custom);
1424       setOperationAction(ISD::UADDSAT,          VT, Custom);
1425       setOperationAction(ISD::SADDSAT,          VT, Custom);
1426       setOperationAction(ISD::USUBSAT,          VT, Custom);
1427       setOperationAction(ISD::SSUBSAT,          VT, Custom);
1428 
1429       setOperationAction(ISD::BUILD_VECTOR,     VT, Custom);
1430       setOperationAction(ISD::CONCAT_VECTORS,   VT, Custom);
1431       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1432       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
1433       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
1434       setOperationAction(ISD::VECTOR_SHUFFLE,   VT,  Custom);
1435       setOperationAction(ISD::VSELECT,          VT,  Expand);
1436     }
1437 
1438     for (auto VT : { MVT::v1i1, MVT::v2i1, MVT::v4i1, MVT::v8i1 })
1439       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1440   }
1441 
1442   // This block controls legalization for 512-bit operations with 32/64 bit
1443   // elements. 512-bits can be disabled based on prefer-vector-width and
1444   // required-vector-width function attributes.
1445   if (!Subtarget.useSoftFloat() && Subtarget.useAVX512Regs()) {
1446     addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1447     addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1448     addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1449     addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1450 
1451     for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
1452       setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8,  Legal);
1453       setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal);
1454       setLoadExtAction(ExtType, MVT::v8i64,  MVT::v8i8,   Legal);
1455       setLoadExtAction(ExtType, MVT::v8i64,  MVT::v8i16,  Legal);
1456       setLoadExtAction(ExtType, MVT::v8i64,  MVT::v8i32,  Legal);
1457     }
1458 
1459     for (MVT VT : { MVT::v16f32, MVT::v8f64 }) {
1460       setOperationAction(ISD::FNEG,  VT, Custom);
1461       setOperationAction(ISD::FABS,  VT, Custom);
1462       setOperationAction(ISD::FMA,   VT, Legal);
1463       setOperationAction(ISD::STRICT_FMA, VT, Legal);
1464       setOperationAction(ISD::FCOPYSIGN, VT, Custom);
1465     }
1466 
1467     for (MVT VT : { MVT::v16i1, MVT::v16i8, MVT::v16i16 }) {
1468       setOperationPromotedToType(ISD::FP_TO_SINT       , VT, MVT::v16i32);
1469       setOperationPromotedToType(ISD::FP_TO_UINT       , VT, MVT::v16i32);
1470       setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, VT, MVT::v16i32);
1471       setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, VT, MVT::v16i32);
1472     }
1473     setOperationAction(ISD::FP_TO_SINT,        MVT::v16i32, Legal);
1474     setOperationAction(ISD::FP_TO_UINT,        MVT::v16i32, Legal);
1475     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v16i32, Legal);
1476     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v16i32, Legal);
1477     setOperationAction(ISD::SINT_TO_FP,        MVT::v16i32, Legal);
1478     setOperationAction(ISD::UINT_TO_FP,        MVT::v16i32, Legal);
1479     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v16i32, Legal);
1480     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v16i32, Legal);
1481 
1482     setOperationAction(ISD::STRICT_FADD,      MVT::v16f32, Legal);
1483     setOperationAction(ISD::STRICT_FADD,      MVT::v8f64,  Legal);
1484     setOperationAction(ISD::STRICT_FSUB,      MVT::v16f32, Legal);
1485     setOperationAction(ISD::STRICT_FSUB,      MVT::v8f64,  Legal);
1486     setOperationAction(ISD::STRICT_FMUL,      MVT::v16f32, Legal);
1487     setOperationAction(ISD::STRICT_FMUL,      MVT::v8f64,  Legal);
1488     setOperationAction(ISD::STRICT_FDIV,      MVT::v16f32, Legal);
1489     setOperationAction(ISD::STRICT_FDIV,      MVT::v8f64,  Legal);
1490     setOperationAction(ISD::STRICT_FSQRT,     MVT::v16f32, Legal);
1491     setOperationAction(ISD::STRICT_FSQRT,     MVT::v8f64,  Legal);
1492     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::v8f64,  Legal);
1493     setOperationAction(ISD::STRICT_FP_ROUND,  MVT::v8f32,  Legal);
1494 
1495     setTruncStoreAction(MVT::v8i64,   MVT::v8i8,   Legal);
1496     setTruncStoreAction(MVT::v8i64,   MVT::v8i16,  Legal);
1497     setTruncStoreAction(MVT::v8i64,   MVT::v8i32,  Legal);
1498     setTruncStoreAction(MVT::v16i32,  MVT::v16i8,  Legal);
1499     setTruncStoreAction(MVT::v16i32,  MVT::v16i16, Legal);
1500 
1501     // With 512-bit vectors and no VLX, we prefer to widen MLOAD/MSTORE
1502     // to 512-bit rather than use the AVX2 instructions so that we can use
1503     // k-masks.
1504     if (!Subtarget.hasVLX()) {
1505       for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
1506            MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) {
1507         setOperationAction(ISD::MLOAD,  VT, Custom);
1508         setOperationAction(ISD::MSTORE, VT, Custom);
1509       }
1510     }
1511 
1512     setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1513     setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
1514     setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1515     setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1516     setOperationAction(ISD::ANY_EXTEND,         MVT::v16i32, Custom);
1517     setOperationAction(ISD::ANY_EXTEND,         MVT::v8i64, Custom);
1518     setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1519     setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1520 
1521     // Need to custom widen this if we don't have AVX512BW.
1522     setOperationAction(ISD::ANY_EXTEND,         MVT::v8i8, Custom);
1523     setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i8, Custom);
1524     setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i8, Custom);
1525 
1526     for (auto VT : { MVT::v16f32, MVT::v8f64 }) {
1527       setOperationAction(ISD::FFLOOR,            VT, Legal);
1528       setOperationAction(ISD::STRICT_FFLOOR,     VT, Legal);
1529       setOperationAction(ISD::FCEIL,             VT, Legal);
1530       setOperationAction(ISD::STRICT_FCEIL,      VT, Legal);
1531       setOperationAction(ISD::FTRUNC,            VT, Legal);
1532       setOperationAction(ISD::STRICT_FTRUNC,     VT, Legal);
1533       setOperationAction(ISD::FRINT,             VT, Legal);
1534       setOperationAction(ISD::STRICT_FRINT,      VT, Legal);
1535       setOperationAction(ISD::FNEARBYINT,        VT, Legal);
1536       setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
1537 
1538       setOperationAction(ISD::SELECT,           VT, Custom);
1539     }
1540 
1541     // Without BWI we need to use custom lowering to handle MVT::v64i8 input.
1542     for (auto VT : {MVT::v16i32, MVT::v8i64, MVT::v64i8}) {
1543       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
1544       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
1545     }
1546 
1547     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1548     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1549     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1550     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1551 
1552     setOperationAction(ISD::MUL,                MVT::v8i64, Custom);
1553     setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1554 
1555     setOperationAction(ISD::MULHU,              MVT::v16i32,  Custom);
1556     setOperationAction(ISD::MULHS,              MVT::v16i32,  Custom);
1557 
1558     for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
1559       setOperationAction(ISD::SMAX,             VT, Legal);
1560       setOperationAction(ISD::UMAX,             VT, Legal);
1561       setOperationAction(ISD::SMIN,             VT, Legal);
1562       setOperationAction(ISD::UMIN,             VT, Legal);
1563       setOperationAction(ISD::ABS,              VT, Legal);
1564       setOperationAction(ISD::SRL,              VT, Custom);
1565       setOperationAction(ISD::SHL,              VT, Custom);
1566       setOperationAction(ISD::SRA,              VT, Custom);
1567       setOperationAction(ISD::CTPOP,            VT, Custom);
1568       setOperationAction(ISD::ROTL,             VT, Custom);
1569       setOperationAction(ISD::ROTR,             VT, Custom);
1570       setOperationAction(ISD::SETCC,            VT, Custom);
1571       setOperationAction(ISD::STRICT_FSETCC,    VT, Custom);
1572       setOperationAction(ISD::STRICT_FSETCCS,   VT, Custom);
1573       setOperationAction(ISD::SELECT,           VT, Custom);
1574 
1575       // The condition codes aren't legal in SSE/AVX and under AVX512 we use
1576       // setcc all the way to isel and prefer SETGT in some isel patterns.
1577       setCondCodeAction(ISD::SETLT, VT, Custom);
1578       setCondCodeAction(ISD::SETLE, VT, Custom);
1579     }
1580 
1581     if (Subtarget.hasDQI()) {
1582       setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal);
1583       setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal);
1584       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v8i64, Legal);
1585       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v8i64, Legal);
1586       setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal);
1587       setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal);
1588       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v8i64, Legal);
1589       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v8i64, Legal);
1590 
1591       setOperationAction(ISD::MUL,        MVT::v8i64, Legal);
1592     }
1593 
1594     if (Subtarget.hasCDI()) {
1595       // NonVLX sub-targets extend 128/256 vectors to use the 512 version.
1596       for (auto VT : { MVT::v16i32, MVT::v8i64} ) {
1597         setOperationAction(ISD::CTLZ,            VT, Legal);
1598       }
1599     } // Subtarget.hasCDI()
1600 
1601     if (Subtarget.hasVPOPCNTDQ()) {
1602       for (auto VT : { MVT::v16i32, MVT::v8i64 })
1603         setOperationAction(ISD::CTPOP, VT, Legal);
1604     }
1605 
1606     // Extract subvector is special because the value type
1607     // (result) is 256-bit but the source is 512-bit wide.
1608     // 128-bit was made Legal under AVX1.
1609     for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
1610                      MVT::v8f32, MVT::v4f64 })
1611       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1612 
1613     for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) {
1614       setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1615       setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1616       setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1617       setOperationAction(ISD::VSELECT,             VT, Custom);
1618       setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1619       setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1620       setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Legal);
1621       setOperationAction(ISD::MLOAD,               VT, Legal);
1622       setOperationAction(ISD::MSTORE,              VT, Legal);
1623       setOperationAction(ISD::MGATHER,             VT, Custom);
1624       setOperationAction(ISD::MSCATTER,            VT, Custom);
1625     }
1626     if (!Subtarget.hasBWI()) {
1627       // Need to custom split v32i16/v64i8 bitcasts.
1628       setOperationAction(ISD::BITCAST, MVT::v32i16, Custom);
1629       setOperationAction(ISD::BITCAST, MVT::v64i8,  Custom);
1630 
1631       // Better to split these into two 256-bit ops.
1632       setOperationAction(ISD::BITREVERSE, MVT::v8i64, Custom);
1633       setOperationAction(ISD::BITREVERSE, MVT::v16i32, Custom);
1634     }
1635 
1636     if (Subtarget.hasVBMI2()) {
1637       for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
1638         setOperationAction(ISD::FSHL, VT, Custom);
1639         setOperationAction(ISD::FSHR, VT, Custom);
1640       }
1641     }
1642   }// has  AVX-512
1643 
1644   // This block controls legalization for operations that don't have
1645   // pre-AVX512 equivalents. Without VLX we use 512-bit operations for
1646   // narrower widths.
1647   if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
1648     // These operations are handled on non-VLX by artificially widening in
1649     // isel patterns.
1650 
1651     setOperationAction(ISD::FP_TO_UINT, MVT::v8i32,
1652                        Subtarget.hasVLX() ? Legal : Custom);
1653     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32,
1654                        Subtarget.hasVLX() ? Legal : Custom);
1655     setOperationAction(ISD::FP_TO_UINT,         MVT::v2i32, Custom);
1656     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v8i32,
1657                        Subtarget.hasVLX() ? Legal : Custom);
1658     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32,
1659                        Subtarget.hasVLX() ? Legal : Custom);
1660     setOperationAction(ISD::STRICT_FP_TO_UINT,  MVT::v2i32, Custom);
1661     setOperationAction(ISD::UINT_TO_FP, MVT::v8i32,
1662                        Subtarget.hasVLX() ? Legal : Custom);
1663     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32,
1664                        Subtarget.hasVLX() ? Legal : Custom);
1665     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v8i32,
1666                        Subtarget.hasVLX() ? Legal : Custom);
1667     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32,
1668                        Subtarget.hasVLX() ? Legal : Custom);
1669 
1670     for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
1671       setOperationAction(ISD::SMAX, VT, Legal);
1672       setOperationAction(ISD::UMAX, VT, Legal);
1673       setOperationAction(ISD::SMIN, VT, Legal);
1674       setOperationAction(ISD::UMIN, VT, Legal);
1675       setOperationAction(ISD::ABS,  VT, Legal);
1676     }
1677 
1678     for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
1679       setOperationAction(ISD::ROTL,     VT, Custom);
1680       setOperationAction(ISD::ROTR,     VT, Custom);
1681     }
1682 
1683     // Custom legalize 2x32 to get a little better code.
1684     setOperationAction(ISD::MSCATTER, MVT::v2f32, Custom);
1685     setOperationAction(ISD::MSCATTER, MVT::v2i32, Custom);
1686 
1687     for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
1688                      MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
1689       setOperationAction(ISD::MSCATTER, VT, Custom);
1690 
1691     if (Subtarget.hasDQI()) {
1692       for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
1693         setOperationAction(ISD::SINT_TO_FP, VT,
1694                            Subtarget.hasVLX() ? Legal : Custom);
1695         setOperationAction(ISD::UINT_TO_FP, VT,
1696                            Subtarget.hasVLX() ? Legal : Custom);
1697         setOperationAction(ISD::STRICT_SINT_TO_FP, VT,
1698                            Subtarget.hasVLX() ? Legal : Custom);
1699         setOperationAction(ISD::STRICT_UINT_TO_FP, VT,
1700                            Subtarget.hasVLX() ? Legal : Custom);
1701         setOperationAction(ISD::FP_TO_SINT, VT,
1702                            Subtarget.hasVLX() ? Legal : Custom);
1703         setOperationAction(ISD::FP_TO_UINT, VT,
1704                            Subtarget.hasVLX() ? Legal : Custom);
1705         setOperationAction(ISD::STRICT_FP_TO_SINT, VT,
1706                            Subtarget.hasVLX() ? Legal : Custom);
1707         setOperationAction(ISD::STRICT_FP_TO_UINT, VT,
1708                            Subtarget.hasVLX() ? Legal : Custom);
1709         setOperationAction(ISD::MUL,               VT, Legal);
1710       }
1711     }
1712 
1713     if (Subtarget.hasCDI()) {
1714       for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
1715         setOperationAction(ISD::CTLZ,            VT, Legal);
1716       }
1717     } // Subtarget.hasCDI()
1718 
1719     if (Subtarget.hasVPOPCNTDQ()) {
1720       for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 })
1721         setOperationAction(ISD::CTPOP, VT, Legal);
1722     }
1723   }
1724 
1725   // This block control legalization of v32i1/v64i1 which are available with
1726   // AVX512BW. 512-bit v32i16 and v64i8 vector legalization is controlled with
1727   // useBWIRegs.
1728   if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
1729     addRegisterClass(MVT::v32i1,  &X86::VK32RegClass);
1730     addRegisterClass(MVT::v64i1,  &X86::VK64RegClass);
1731 
1732     for (auto VT : { MVT::v32i1, MVT::v64i1 }) {
1733       setOperationAction(ISD::ADD,                VT, Custom);
1734       setOperationAction(ISD::SUB,                VT, Custom);
1735       setOperationAction(ISD::MUL,                VT, Custom);
1736       setOperationAction(ISD::VSELECT,            VT, Expand);
1737       setOperationAction(ISD::UADDSAT,            VT, Custom);
1738       setOperationAction(ISD::SADDSAT,            VT, Custom);
1739       setOperationAction(ISD::USUBSAT,            VT, Custom);
1740       setOperationAction(ISD::SSUBSAT,            VT, Custom);
1741 
1742       setOperationAction(ISD::TRUNCATE,           VT, Custom);
1743       setOperationAction(ISD::SETCC,              VT, Custom);
1744       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1745       setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1746       setOperationAction(ISD::SELECT,             VT, Custom);
1747       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1748       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1749     }
1750 
1751     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i1, Custom);
1752     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i1, Custom);
1753     setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i1, Custom);
1754     setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i1, Custom);
1755     for (auto VT : { MVT::v16i1, MVT::v32i1 })
1756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1757 
1758     // Extends from v32i1 masks to 256-bit vectors.
1759     setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i8, Custom);
1760     setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i8, Custom);
1761     setOperationAction(ISD::ANY_EXTEND,         MVT::v32i8, Custom);
1762   }
1763 
1764   // This block controls legalization for v32i16 and v64i8. 512-bits can be
1765   // disabled based on prefer-vector-width and required-vector-width function
1766   // attributes.
1767   if (!Subtarget.useSoftFloat() && Subtarget.useBWIRegs()) {
1768     addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
1769     addRegisterClass(MVT::v64i8,  &X86::VR512RegClass);
1770 
1771     // Extends from v64i1 masks to 512-bit vectors.
1772     setOperationAction(ISD::SIGN_EXTEND,        MVT::v64i8, Custom);
1773     setOperationAction(ISD::ZERO_EXTEND,        MVT::v64i8, Custom);
1774     setOperationAction(ISD::ANY_EXTEND,         MVT::v64i8, Custom);
1775 
1776     setOperationAction(ISD::MUL,                MVT::v32i16, Legal);
1777     setOperationAction(ISD::MUL,                MVT::v64i8, Custom);
1778     setOperationAction(ISD::MULHS,              MVT::v32i16, Legal);
1779     setOperationAction(ISD::MULHU,              MVT::v32i16, Legal);
1780     setOperationAction(ISD::MULHS,              MVT::v64i8, Custom);
1781     setOperationAction(ISD::MULHU,              MVT::v64i8, Custom);
1782     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i16, Custom);
1783     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v64i8, Custom);
1784     setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v32i16, Legal);
1785     setOperationAction(ISD::INSERT_SUBVECTOR,   MVT::v64i8, Legal);
1786     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
1787     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
1788     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i16, Custom);
1789     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v64i8, Custom);
1790     setOperationAction(ISD::SIGN_EXTEND,        MVT::v32i16, Custom);
1791     setOperationAction(ISD::ZERO_EXTEND,        MVT::v32i16, Custom);
1792     setOperationAction(ISD::ANY_EXTEND,         MVT::v32i16, Custom);
1793     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v32i16, Custom);
1794     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v64i8, Custom);
1795     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v32i16, Custom);
1796     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v64i8, Custom);
1797     setOperationAction(ISD::TRUNCATE,           MVT::v32i8, Custom);
1798     setOperationAction(ISD::BITREVERSE,         MVT::v64i8, Custom);
1799 
1800     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
1801     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
1802 
1803     setTruncStoreAction(MVT::v32i16,  MVT::v32i8, Legal);
1804 
1805     for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
1806       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
1807       setOperationAction(ISD::VSELECT,      VT, Custom);
1808       setOperationAction(ISD::ABS,          VT, Legal);
1809       setOperationAction(ISD::SRL,          VT, Custom);
1810       setOperationAction(ISD::SHL,          VT, Custom);
1811       setOperationAction(ISD::SRA,          VT, Custom);
1812       setOperationAction(ISD::MLOAD,        VT, Legal);
1813       setOperationAction(ISD::MSTORE,       VT, Legal);
1814       setOperationAction(ISD::CTPOP,        VT, Custom);
1815       setOperationAction(ISD::CTLZ,         VT, Custom);
1816       setOperationAction(ISD::SMAX,         VT, Legal);
1817       setOperationAction(ISD::UMAX,         VT, Legal);
1818       setOperationAction(ISD::SMIN,         VT, Legal);
1819       setOperationAction(ISD::UMIN,         VT, Legal);
1820       setOperationAction(ISD::SETCC,        VT, Custom);
1821       setOperationAction(ISD::UADDSAT,      VT, Legal);
1822       setOperationAction(ISD::SADDSAT,      VT, Legal);
1823       setOperationAction(ISD::USUBSAT,      VT, Legal);
1824       setOperationAction(ISD::SSUBSAT,      VT, Legal);
1825       setOperationAction(ISD::SELECT,       VT, Custom);
1826 
1827       // The condition codes aren't legal in SSE/AVX and under AVX512 we use
1828       // setcc all the way to isel and prefer SETGT in some isel patterns.
1829       setCondCodeAction(ISD::SETLT, VT, Custom);
1830       setCondCodeAction(ISD::SETLE, VT, Custom);
1831     }
1832 
1833     for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
1834       setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
1835     }
1836 
1837     if (Subtarget.hasBITALG()) {
1838       for (auto VT : { MVT::v64i8, MVT::v32i16 })
1839         setOperationAction(ISD::CTPOP, VT, Legal);
1840     }
1841 
1842     if (Subtarget.hasVBMI2()) {
1843       setOperationAction(ISD::FSHL, MVT::v32i16, Custom);
1844       setOperationAction(ISD::FSHR, MVT::v32i16, Custom);
1845     }
1846   }
1847 
1848   if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
1849     for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) {
1850       setOperationAction(ISD::MLOAD,  VT, Subtarget.hasVLX() ? Legal : Custom);
1851       setOperationAction(ISD::MSTORE, VT, Subtarget.hasVLX() ? Legal : Custom);
1852     }
1853 
1854     // These operations are handled on non-VLX by artificially widening in
1855     // isel patterns.
1856     // TODO: Custom widen in lowering on non-VLX and drop the isel patterns?
1857 
1858     if (Subtarget.hasBITALG()) {
1859       for (auto VT : { MVT::v16i8, MVT::v32i8, MVT::v8i16, MVT::v16i16 })
1860         setOperationAction(ISD::CTPOP, VT, Legal);
1861     }
1862   }
1863 
1864   if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) {
1865     setTruncStoreAction(MVT::v4i64, MVT::v4i8,  Legal);
1866     setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
1867     setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
1868     setTruncStoreAction(MVT::v8i32, MVT::v8i8,  Legal);
1869     setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
1870 
1871     setTruncStoreAction(MVT::v2i64, MVT::v2i8,  Legal);
1872     setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
1873     setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
1874     setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
1875     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
1876 
1877     if (Subtarget.hasDQI()) {
1878       // Fast v2f32 SINT_TO_FP( v2i64 ) custom conversion.
1879       // v2f32 UINT_TO_FP is already custom under SSE2.
1880       assert(isOperationCustom(ISD::UINT_TO_FP, MVT::v2f32) &&
1881              isOperationCustom(ISD::STRICT_UINT_TO_FP, MVT::v2f32) &&
1882              "Unexpected operation action!");
1883       // v2i64 FP_TO_S/UINT(v2f32) custom conversion.
1884       setOperationAction(ISD::FP_TO_SINT,        MVT::v2f32, Custom);
1885       setOperationAction(ISD::FP_TO_UINT,        MVT::v2f32, Custom);
1886       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f32, Custom);
1887       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f32, Custom);
1888     }
1889 
1890     if (Subtarget.hasBWI()) {
1891       setTruncStoreAction(MVT::v16i16,  MVT::v16i8, Legal);
1892       setTruncStoreAction(MVT::v8i16,   MVT::v8i8,  Legal);
1893     }
1894 
1895     if (Subtarget.hasVBMI2()) {
1896       // TODO: Make these legal even without VLX?
1897       for (auto VT : { MVT::v8i16,  MVT::v4i32, MVT::v2i64,
1898                        MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
1899         setOperationAction(ISD::FSHL, VT, Custom);
1900         setOperationAction(ISD::FSHR, VT, Custom);
1901       }
1902     }
1903 
1904     setOperationAction(ISD::TRUNCATE, MVT::v16i32, Custom);
1905     setOperationAction(ISD::TRUNCATE, MVT::v8i64, Custom);
1906     setOperationAction(ISD::TRUNCATE, MVT::v16i64, Custom);
1907   }
1908 
1909   // We want to custom lower some of our intrinsics.
1910   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1911   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1912   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1913   if (!Subtarget.is64Bit()) {
1914     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1915   }
1916 
1917   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1918   // handle type legalization for these operations here.
1919   //
1920   // FIXME: We really should do custom legalization for addition and
1921   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1922   // than generic legalization for 64-bit multiplication-with-overflow, though.
1923   for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
1924     if (VT == MVT::i64 && !Subtarget.is64Bit())
1925       continue;
1926     // Add/Sub/Mul with overflow operations are custom lowered.
1927     setOperationAction(ISD::SADDO, VT, Custom);
1928     setOperationAction(ISD::UADDO, VT, Custom);
1929     setOperationAction(ISD::SSUBO, VT, Custom);
1930     setOperationAction(ISD::USUBO, VT, Custom);
1931     setOperationAction(ISD::SMULO, VT, Custom);
1932     setOperationAction(ISD::UMULO, VT, Custom);
1933 
1934     // Support carry in as value rather than glue.
1935     setOperationAction(ISD::ADDCARRY, VT, Custom);
1936     setOperationAction(ISD::SUBCARRY, VT, Custom);
1937     setOperationAction(ISD::SETCCCARRY, VT, Custom);
1938   }
1939 
1940   if (!Subtarget.is64Bit()) {
1941     // These libcalls are not available in 32-bit.
1942     setLibcallName(RTLIB::SHL_I128, nullptr);
1943     setLibcallName(RTLIB::SRL_I128, nullptr);
1944     setLibcallName(RTLIB::SRA_I128, nullptr);
1945     setLibcallName(RTLIB::MUL_I128, nullptr);
1946   }
1947 
1948   // Combine sin / cos into _sincos_stret if it is available.
1949   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1950       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1951     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1952     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1953   }
1954 
1955   if (Subtarget.isTargetWin64()) {
1956     setOperationAction(ISD::SDIV, MVT::i128, Custom);
1957     setOperationAction(ISD::UDIV, MVT::i128, Custom);
1958     setOperationAction(ISD::SREM, MVT::i128, Custom);
1959     setOperationAction(ISD::UREM, MVT::i128, Custom);
1960     setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1961     setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1962   }
1963 
1964   // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
1965   // is. We should promote the value to 64-bits to solve this.
1966   // This is what the CRT headers do - `fmodf` is an inline header
1967   // function casting to f64 and calling `fmod`.
1968   if (Subtarget.is32Bit() &&
1969       (Subtarget.isTargetWindowsMSVC() || Subtarget.isTargetWindowsItanium()))
1970     for (ISD::NodeType Op :
1971          {ISD::FCEIL,  ISD::STRICT_FCEIL,
1972           ISD::FCOS,   ISD::STRICT_FCOS,
1973           ISD::FEXP,   ISD::STRICT_FEXP,
1974           ISD::FFLOOR, ISD::STRICT_FFLOOR,
1975           ISD::FREM,   ISD::STRICT_FREM,
1976           ISD::FLOG,   ISD::STRICT_FLOG,
1977           ISD::FLOG10, ISD::STRICT_FLOG10,
1978           ISD::FPOW,   ISD::STRICT_FPOW,
1979           ISD::FSIN,   ISD::STRICT_FSIN})
1980       if (isOperationExpand(Op, MVT::f32))
1981         setOperationAction(Op, MVT::f32, Promote);
1982 
1983   // We have target-specific dag combine patterns for the following nodes:
1984   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1985   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
1986   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1987   setTargetDAGCombine(ISD::CONCAT_VECTORS);
1988   setTargetDAGCombine(ISD::INSERT_SUBVECTOR);
1989   setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
1990   setTargetDAGCombine(ISD::BITCAST);
1991   setTargetDAGCombine(ISD::VSELECT);
1992   setTargetDAGCombine(ISD::SELECT);
1993   setTargetDAGCombine(ISD::SHL);
1994   setTargetDAGCombine(ISD::SRA);
1995   setTargetDAGCombine(ISD::SRL);
1996   setTargetDAGCombine(ISD::OR);
1997   setTargetDAGCombine(ISD::AND);
1998   setTargetDAGCombine(ISD::ADD);
1999   setTargetDAGCombine(ISD::FADD);
2000   setTargetDAGCombine(ISD::FSUB);
2001   setTargetDAGCombine(ISD::FNEG);
2002   setTargetDAGCombine(ISD::FMA);
2003   setTargetDAGCombine(ISD::FMINNUM);
2004   setTargetDAGCombine(ISD::FMAXNUM);
2005   setTargetDAGCombine(ISD::SUB);
2006   setTargetDAGCombine(ISD::LOAD);
2007   setTargetDAGCombine(ISD::MLOAD);
2008   setTargetDAGCombine(ISD::STORE);
2009   setTargetDAGCombine(ISD::MSTORE);
2010   setTargetDAGCombine(ISD::TRUNCATE);
2011   setTargetDAGCombine(ISD::ZERO_EXTEND);
2012   setTargetDAGCombine(ISD::ANY_EXTEND);
2013   setTargetDAGCombine(ISD::SIGN_EXTEND);
2014   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
2015   setTargetDAGCombine(ISD::ANY_EXTEND_VECTOR_INREG);
2016   setTargetDAGCombine(ISD::SIGN_EXTEND_VECTOR_INREG);
2017   setTargetDAGCombine(ISD::ZERO_EXTEND_VECTOR_INREG);
2018   setTargetDAGCombine(ISD::SINT_TO_FP);
2019   setTargetDAGCombine(ISD::UINT_TO_FP);
2020   setTargetDAGCombine(ISD::STRICT_SINT_TO_FP);
2021   setTargetDAGCombine(ISD::STRICT_UINT_TO_FP);
2022   setTargetDAGCombine(ISD::SETCC);
2023   setTargetDAGCombine(ISD::MUL);
2024   setTargetDAGCombine(ISD::XOR);
2025   setTargetDAGCombine(ISD::MSCATTER);
2026   setTargetDAGCombine(ISD::MGATHER);
2027 
2028   computeRegisterProperties(Subtarget.getRegisterInfo());
2029 
2030   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
2031   MaxStoresPerMemsetOptSize = 8;
2032   MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
2033   MaxStoresPerMemcpyOptSize = 4;
2034   MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
2035   MaxStoresPerMemmoveOptSize = 4;
2036 
2037   // TODO: These control memcmp expansion in CGP and could be raised higher, but
2038   // that needs to benchmarked and balanced with the potential use of vector
2039   // load/store types (PR33329, PR33914).
2040   MaxLoadsPerMemcmp = 2;
2041   MaxLoadsPerMemcmpOptSize = 2;
2042 
2043   // Set loop alignment to 2^ExperimentalPrefLoopAlignment bytes (default: 2^4).
2044   setPrefLoopAlignment(Align(1ULL << ExperimentalPrefLoopAlignment));
2045 
2046   // An out-of-order CPU can speculatively execute past a predictable branch,
2047   // but a conditional move could be stalled by an expensive earlier operation.
2048   PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder();
2049   EnableExtLdPromotion = true;
2050   setPrefFunctionAlignment(Align(16));
2051 
2052   verifyIntrinsicTables();
2053 
2054   // Default to having -disable-strictnode-mutation on
2055   IsStrictFPEnabled = true;
2056 }
2057 
2058 // This has so far only been implemented for 64-bit MachO.
2059 bool X86TargetLowering::useLoadStackGuardNode() const {
2060   return Subtarget.isTargetMachO() && Subtarget.is64Bit();
2061 }
2062 
2063 bool X86TargetLowering::useStackGuardXorFP() const {
2064   // Currently only MSVC CRTs XOR the frame pointer into the stack guard value.
2065   return Subtarget.getTargetTriple().isOSMSVCRT() && !Subtarget.isTargetMachO();
2066 }
2067 
2068 SDValue X86TargetLowering::emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
2069                                                const SDLoc &DL) const {
2070   EVT PtrTy = getPointerTy(DAG.getDataLayout());
2071   unsigned XorOp = Subtarget.is64Bit() ? X86::XOR64_FP : X86::XOR32_FP;
2072   MachineSDNode *Node = DAG.getMachineNode(XorOp, DL, PtrTy, Val);
2073   return SDValue(Node, 0);
2074 }
2075 
2076 TargetLoweringBase::LegalizeTypeAction
2077 X86TargetLowering::getPreferredVectorAction(MVT VT) const {
2078   if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
2079     return TypeSplitVector;
2080 
2081   if (VT.getVectorNumElements() != 1 &&
2082       VT.getVectorElementType() != MVT::i1)
2083     return TypeWidenVector;
2084 
2085   return TargetLoweringBase::getPreferredVectorAction(VT);
2086 }
2087 
2088 MVT X86TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
2089                                                      CallingConv::ID CC,
2090                                                      EVT VT) const {
2091   // v32i1 vectors should be promoted to v32i8 to match avx2.
2092   if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
2093     return MVT::v32i8;
2094   // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
2095   if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
2096       Subtarget.hasAVX512() &&
2097       (!isPowerOf2_32(VT.getVectorNumElements()) ||
2098        (VT.getVectorNumElements() > 16 && !Subtarget.hasBWI()) ||
2099        (VT.getVectorNumElements() > 64 && Subtarget.hasBWI())))
2100     return MVT::i8;
2101   // Split v64i1 vectors if we don't have v64i8 available.
2102   if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
2103       CC != CallingConv::X86_RegCall)
2104     return MVT::v32i1;
2105   // FIXME: Should we just make these types legal and custom split operations?
2106   if ((VT == MVT::v32i16 || VT == MVT::v64i8) && !EnableOldKNLABI &&
2107       Subtarget.useAVX512Regs() && !Subtarget.hasBWI())
2108     return MVT::v16i32;
2109   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
2110 }
2111 
2112 unsigned X86TargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
2113                                                           CallingConv::ID CC,
2114                                                           EVT VT) const {
2115   // v32i1 vectors should be promoted to v32i8 to match avx2.
2116   if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
2117     return 1;
2118   // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
2119   if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
2120       Subtarget.hasAVX512() &&
2121       (!isPowerOf2_32(VT.getVectorNumElements()) ||
2122        (VT.getVectorNumElements() > 16 && !Subtarget.hasBWI()) ||
2123        (VT.getVectorNumElements() > 64 && Subtarget.hasBWI())))
2124     return VT.getVectorNumElements();
2125   // Split v64i1 vectors if we don't have v64i8 available.
2126   if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
2127       CC != CallingConv::X86_RegCall)
2128     return 2;
2129   // FIXME: Should we just make these types legal and custom split operations?
2130   if ((VT == MVT::v32i16 || VT == MVT::v64i8) && !EnableOldKNLABI &&
2131       Subtarget.useAVX512Regs() && !Subtarget.hasBWI())
2132     return 1;
2133   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
2134 }
2135 
2136 unsigned X86TargetLowering::getVectorTypeBreakdownForCallingConv(
2137     LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
2138     unsigned &NumIntermediates, MVT &RegisterVT) const {
2139   // Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
2140   if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
2141       Subtarget.hasAVX512() &&
2142       (!isPowerOf2_32(VT.getVectorNumElements()) ||
2143        (VT.getVectorNumElements() > 16 && !Subtarget.hasBWI()) ||
2144        (VT.getVectorNumElements() > 64 && Subtarget.hasBWI()))) {
2145     RegisterVT = MVT::i8;
2146     IntermediateVT = MVT::i1;
2147     NumIntermediates = VT.getVectorNumElements();
2148     return NumIntermediates;
2149   }
2150 
2151   // Split v64i1 vectors if we don't have v64i8 available.
2152   if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
2153       CC != CallingConv::X86_RegCall) {
2154     RegisterVT = MVT::v32i1;
2155     IntermediateVT = MVT::v32i1;
2156     NumIntermediates = 2;
2157     return 2;
2158   }
2159 
2160   return TargetLowering::getVectorTypeBreakdownForCallingConv(Context, CC, VT, IntermediateVT,
2161                                               NumIntermediates, RegisterVT);
2162 }
2163 
2164 EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
2165                                           LLVMContext& Context,
2166                                           EVT VT) const {
2167   if (!VT.isVector())
2168     return MVT::i8;
2169 
2170   if (Subtarget.hasAVX512()) {
2171     const unsigned NumElts = VT.getVectorNumElements();
2172 
2173     // Figure out what this type will be legalized to.
2174     EVT LegalVT = VT;
2175     while (getTypeAction(Context, LegalVT) != TypeLegal)
2176       LegalVT = getTypeToTransformTo(Context, LegalVT);
2177 
2178     // If we got a 512-bit vector then we'll definitely have a vXi1 compare.
2179     if (LegalVT.getSimpleVT().is512BitVector())
2180       return EVT::getVectorVT(Context, MVT::i1, NumElts);
2181 
2182     if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) {
2183       // If we legalized to less than a 512-bit vector, then we will use a vXi1
2184       // compare for vXi32/vXi64 for sure. If we have BWI we will also support
2185       // vXi16/vXi8.
2186       MVT EltVT = LegalVT.getSimpleVT().getVectorElementType();
2187       if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32)
2188         return EVT::getVectorVT(Context, MVT::i1, NumElts);
2189     }
2190   }
2191 
2192   return VT.changeVectorElementTypeToInteger();
2193 }
2194 
2195 /// Helper for getByValTypeAlignment to determine
2196 /// the desired ByVal argument alignment.
2197 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
2198   if (MaxAlign == 16)
2199     return;
2200   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
2201     if (VTy->getBitWidth() == 128)
2202       MaxAlign = 16;
2203   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2204     unsigned EltAlign = 0;
2205     getMaxByValAlign(ATy->getElementType(), EltAlign);
2206     if (EltAlign > MaxAlign)
2207       MaxAlign = EltAlign;
2208   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2209     for (auto *EltTy : STy->elements()) {
2210       unsigned EltAlign = 0;
2211       getMaxByValAlign(EltTy, EltAlign);
2212       if (EltAlign > MaxAlign)
2213         MaxAlign = EltAlign;
2214       if (MaxAlign == 16)
2215         break;
2216     }
2217   }
2218 }
2219 
2220 /// Return the desired alignment for ByVal aggregate
2221 /// function arguments in the caller parameter area. For X86, aggregates
2222 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
2223 /// are at 4-byte boundaries.
2224 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
2225                                                   const DataLayout &DL) const {
2226   if (Subtarget.is64Bit()) {
2227     // Max of 8 and alignment of type.
2228     unsigned TyAlign = DL.getABITypeAlignment(Ty);
2229     if (TyAlign > 8)
2230       return TyAlign;
2231     return 8;
2232   }
2233 
2234   unsigned Align = 4;
2235   if (Subtarget.hasSSE1())
2236     getMaxByValAlign(Ty, Align);
2237   return Align;
2238 }
2239 
2240 /// Returns the target specific optimal type for load
2241 /// and store operations as a result of memset, memcpy, and memmove
2242 /// lowering. If DstAlign is zero that means it's safe to destination
2243 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
2244 /// means there isn't a need to check it against alignment requirement,
2245 /// probably because the source does not need to be loaded. If 'IsMemset' is
2246 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
2247 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
2248 /// source is constant so it does not need to be loaded.
2249 /// It returns EVT::Other if the type should be determined using generic
2250 /// target-independent logic.
2251 /// For vector ops we check that the overall size isn't larger than our
2252 /// preferred vector width.
2253 EVT X86TargetLowering::getOptimalMemOpType(
2254     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
2255     bool ZeroMemset, bool MemcpyStrSrc,
2256     const AttributeList &FuncAttributes) const {
2257   if (!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
2258     if (Size >= 16 && (!Subtarget.isUnalignedMem16Slow() ||
2259                        ((DstAlign == 0 || DstAlign >= 16) &&
2260                         (SrcAlign == 0 || SrcAlign >= 16)))) {
2261       // FIXME: Check if unaligned 64-byte accesses are slow.
2262       if (Size >= 64 && Subtarget.hasAVX512() &&
2263           (Subtarget.getPreferVectorWidth() >= 512)) {
2264         return Subtarget.hasBWI() ? MVT::v64i8 : MVT::v16i32;
2265       }
2266       // FIXME: Check if unaligned 32-byte accesses are slow.
2267       if (Size >= 32 && Subtarget.hasAVX() &&
2268           (Subtarget.getPreferVectorWidth() >= 256)) {
2269         // Although this isn't a well-supported type for AVX1, we'll let
2270         // legalization and shuffle lowering produce the optimal codegen. If we
2271         // choose an optimal type with a vector element larger than a byte,
2272         // getMemsetStores() may create an intermediate splat (using an integer
2273         // multiply) before we splat as a vector.
2274         return MVT::v32i8;
2275       }
2276       if (Subtarget.hasSSE2() && (Subtarget.getPreferVectorWidth() >= 128))
2277         return MVT::v16i8;
2278       // TODO: Can SSE1 handle a byte vector?
2279       // If we have SSE1 registers we should be able to use them.
2280       if (Subtarget.hasSSE1() && (Subtarget.is64Bit() || Subtarget.hasX87()) &&
2281           (Subtarget.getPreferVectorWidth() >= 128))
2282         return MVT::v4f32;
2283     } else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 &&
2284                !Subtarget.is64Bit() && Subtarget.hasSSE2()) {
2285       // Do not use f64 to lower memcpy if source is string constant. It's
2286       // better to use i32 to avoid the loads.
2287       // Also, do not use f64 to lower memset unless this is a memset of zeros.
2288       // The gymnastics of splatting a byte value into an XMM register and then
2289       // only using 8-byte stores (because this is a CPU with slow unaligned
2290       // 16-byte accesses) makes that a loser.
2291       return MVT::f64;
2292     }
2293   }
2294   // This is a compromise. If we reach here, unaligned accesses may be slow on
2295   // this target. However, creating smaller, aligned accesses could be even
2296   // slower and would certainly be a lot more code.
2297   if (Subtarget.is64Bit() && Size >= 8)
2298     return MVT::i64;
2299   return MVT::i32;
2300 }
2301 
2302 bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
2303   if (VT == MVT::f32)
2304     return X86ScalarSSEf32;
2305   else if (VT == MVT::f64)
2306     return X86ScalarSSEf64;
2307   return true;
2308 }
2309 
2310 bool X86TargetLowering::allowsMisalignedMemoryAccesses(
2311     EVT VT, unsigned, unsigned Align, MachineMemOperand::Flags Flags,
2312     bool *Fast) const {
2313   if (Fast) {
2314     switch (VT.getSizeInBits()) {
2315     default:
2316       // 8-byte and under are always assumed to be fast.
2317       *Fast = true;
2318       break;
2319     case 128:
2320       *Fast = !Subtarget.isUnalignedMem16Slow();
2321       break;
2322     case 256:
2323       *Fast = !Subtarget.isUnalignedMem32Slow();
2324       break;
2325     // TODO: What about AVX-512 (512-bit) accesses?
2326     }
2327   }
2328   // NonTemporal vector memory ops must be aligned.
2329   if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) {
2330     // NT loads can only be vector aligned, so if its less aligned than the
2331     // minimum vector size (which we can split the vector down to), we might as
2332     // well use a regular unaligned vector load.
2333     // We don't have any NT loads pre-SSE41.
2334     if (!!(Flags & MachineMemOperand::MOLoad))
2335       return (Align < 16 || !Subtarget.hasSSE41());
2336     return false;
2337   }
2338   // Misaligned accesses of any size are always allowed.
2339   return true;
2340 }
2341 
2342 /// Return the entry encoding for a jump table in the
2343 /// current function.  The returned value is a member of the
2344 /// MachineJumpTableInfo::JTEntryKind enum.
2345 unsigned X86TargetLowering::getJumpTableEncoding() const {
2346   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
2347   // symbol.
2348   if (isPositionIndependent() && Subtarget.isPICStyleGOT())
2349     return MachineJumpTableInfo::EK_Custom32;
2350 
2351   // Otherwise, use the normal jump table encoding heuristics.
2352   return TargetLowering::getJumpTableEncoding();
2353 }
2354 
2355 bool X86TargetLowering::useSoftFloat() const {
2356   return Subtarget.useSoftFloat();
2357 }
2358 
2359 void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC,
2360                                               ArgListTy &Args) const {
2361 
2362   // Only relabel X86-32 for C / Stdcall CCs.
2363   if (Subtarget.is64Bit())
2364     return;
2365   if (CC != CallingConv::C && CC != CallingConv::X86_StdCall)
2366     return;
2367   unsigned ParamRegs = 0;
2368   if (auto *M = MF->getFunction().getParent())
2369     ParamRegs = M->getNumberRegisterParameters();
2370 
2371   // Mark the first N int arguments as having reg
2372   for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
2373     Type *T = Args[Idx].Ty;
2374     if (T->isIntOrPtrTy())
2375       if (MF->getDataLayout().getTypeAllocSize(T) <= 8) {
2376         unsigned numRegs = 1;
2377         if (MF->getDataLayout().getTypeAllocSize(T) > 4)
2378           numRegs = 2;
2379         if (ParamRegs < numRegs)
2380           return;
2381         ParamRegs -= numRegs;
2382         Args[Idx].IsInReg = true;
2383       }
2384   }
2385 }
2386 
2387 const MCExpr *
2388 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
2389                                              const MachineBasicBlock *MBB,
2390                                              unsigned uid,MCContext &Ctx) const{
2391   assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
2392   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
2393   // entries.
2394   return MCSymbolRefExpr::create(MBB->getSymbol(),
2395                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
2396 }
2397 
2398 /// Returns relocation base for the given PIC jumptable.
2399 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
2400                                                     SelectionDAG &DAG) const {
2401   if (!Subtarget.is64Bit())
2402     // This doesn't have SDLoc associated with it, but is not really the
2403     // same as a Register.
2404     return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
2405                        getPointerTy(DAG.getDataLayout()));
2406   return Table;
2407 }
2408 
2409 /// This returns the relocation base for the given PIC jumptable,
2410 /// the same as getPICJumpTableRelocBase, but as an MCExpr.
2411 const MCExpr *X86TargetLowering::
2412 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
2413                              MCContext &Ctx) const {
2414   // X86-64 uses RIP relative addressing based on the jump table label.
2415   if (Subtarget.isPICStyleRIPRel())
2416     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2417 
2418   // Otherwise, the reference is relative to the PIC base.
2419   return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2420 }
2421 
2422 std::pair<const TargetRegisterClass *, uint8_t>
2423 X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
2424                                            MVT VT) const {
2425   const TargetRegisterClass *RRC = nullptr;
2426   uint8_t Cost = 1;
2427   switch (VT.SimpleTy) {
2428   default:
2429     return TargetLowering::findRepresentativeClass(TRI, VT);
2430   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
2431     RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
2432     break;
2433   case MVT::x86mmx:
2434     RRC = &X86::VR64RegClass;
2435     break;
2436   case MVT::f32: case MVT::f64:
2437   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
2438   case MVT::v4f32: case MVT::v2f64:
2439   case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
2440   case MVT::v8f32: case MVT::v4f64:
2441   case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
2442   case MVT::v16f32: case MVT::v8f64:
2443     RRC = &X86::VR128XRegClass;
2444     break;
2445   }
2446   return std::make_pair(RRC, Cost);
2447 }
2448 
2449 unsigned X86TargetLowering::getAddressSpace() const {
2450   if (Subtarget.is64Bit())
2451     return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
2452   return 256;
2453 }
2454 
2455 static bool hasStackGuardSlotTLS(const Triple &TargetTriple) {
2456   return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() ||
2457          (TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17));
2458 }
2459 
2460 static Constant* SegmentOffset(IRBuilder<> &IRB,
2461                                unsigned Offset, unsigned AddressSpace) {
2462   return ConstantExpr::getIntToPtr(
2463       ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
2464       Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
2465 }
2466 
2467 Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
2468   // glibc, bionic, and Fuchsia have a special slot for the stack guard in
2469   // tcbhead_t; use it instead of the usual global variable (see
2470   // sysdeps/{i386,x86_64}/nptl/tls.h)
2471   if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) {
2472     if (Subtarget.isTargetFuchsia()) {
2473       // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
2474       return SegmentOffset(IRB, 0x10, getAddressSpace());
2475     } else {
2476       // %fs:0x28, unless we're using a Kernel code model, in which case
2477       // it's %gs:0x28.  gs:0x14 on i386.
2478       unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
2479       return SegmentOffset(IRB, Offset, getAddressSpace());
2480     }
2481   }
2482 
2483   return TargetLowering::getIRStackGuard(IRB);
2484 }
2485 
2486 void X86TargetLowering::insertSSPDeclarations(Module &M) const {
2487   // MSVC CRT provides functionalities for stack protection.
2488   if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
2489       Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
2490     // MSVC CRT has a global variable holding security cookie.
2491     M.getOrInsertGlobal("__security_cookie",
2492                         Type::getInt8PtrTy(M.getContext()));
2493 
2494     // MSVC CRT has a function to validate security cookie.
2495     FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
2496         "__security_check_cookie", Type::getVoidTy(M.getContext()),
2497         Type::getInt8PtrTy(M.getContext()));
2498     if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
2499       F->setCallingConv(CallingConv::X86_FastCall);
2500       F->addAttribute(1, Attribute::AttrKind::InReg);
2501     }
2502     return;
2503   }
2504   // glibc, bionic, and Fuchsia have a special slot for the stack guard.
2505   if (hasStackGuardSlotTLS(Subtarget.getTargetTriple()))
2506     return;
2507   TargetLowering::insertSSPDeclarations(M);
2508 }
2509 
2510 Value *X86TargetLowering::getSDagStackGuard(const Module &M) const {
2511   // MSVC CRT has a global variable holding security cookie.
2512   if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
2513       Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
2514     return M.getGlobalVariable("__security_cookie");
2515   }
2516   return TargetLowering::getSDagStackGuard(M);
2517 }
2518 
2519 Function *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
2520   // MSVC CRT has a function to validate security cookie.
2521   if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
2522       Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
2523     return M.getFunction("__security_check_cookie");
2524   }
2525   return TargetLowering::getSSPStackGuardCheck(M);
2526 }
2527 
2528 Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
2529   if (Subtarget.getTargetTriple().isOSContiki())
2530     return getDefaultSafeStackPointerLocation(IRB, false);
2531 
2532   // Android provides a fixed TLS slot for the SafeStack pointer. See the
2533   // definition of TLS_SLOT_SAFESTACK in
2534   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
2535   if (Subtarget.isTargetAndroid()) {
2536     // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
2537     // %gs:0x24 on i386
2538     unsigned Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
2539     return SegmentOffset(IRB, Offset, getAddressSpace());
2540   }
2541 
2542   // Fuchsia is similar.
2543   if (Subtarget.isTargetFuchsia()) {
2544     // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
2545     return SegmentOffset(IRB, 0x18, getAddressSpace());
2546   }
2547 
2548   return TargetLowering::getSafeStackPointerLocation(IRB);
2549 }
2550 
2551 bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
2552                                             unsigned DestAS) const {
2553   assert(SrcAS != DestAS && "Expected different address spaces!");
2554 
2555   const TargetMachine &TM = getTargetMachine();
2556   if (TM.getPointerSize(SrcAS) != TM.getPointerSize(DestAS))
2557     return false;
2558 
2559   return SrcAS < 256 && DestAS < 256;
2560 }
2561 
2562 //===----------------------------------------------------------------------===//
2563 //               Return Value Calling Convention Implementation
2564 //===----------------------------------------------------------------------===//
2565 
2566 bool X86TargetLowering::CanLowerReturn(
2567     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2568     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2569   SmallVector<CCValAssign, 16> RVLocs;
2570   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2571   return CCInfo.CheckReturn(Outs, RetCC_X86);
2572 }
2573 
2574 const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
2575   static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
2576   return ScratchRegs;
2577 }
2578 
2579 /// Lowers masks values (v*i1) to the local register values
2580 /// \returns DAG node after lowering to register type
2581 static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
2582                                const SDLoc &Dl, SelectionDAG &DAG) {
2583   EVT ValVT = ValArg.getValueType();
2584 
2585   if (ValVT == MVT::v1i1)
2586     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, Dl, ValLoc, ValArg,
2587                        DAG.getIntPtrConstant(0, Dl));
2588 
2589   if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
2590       (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
2591     // Two stage lowering might be required
2592     // bitcast:   v8i1 -> i8 / v16i1 -> i16
2593     // anyextend: i8   -> i32 / i16   -> i32
2594     EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
2595     SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
2596     if (ValLoc == MVT::i32)
2597       ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy);
2598     return ValToCopy;
2599   }
2600 
2601   if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
2602       (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
2603     // One stage lowering is required
2604     // bitcast:   v32i1 -> i32 / v64i1 -> i64
2605     return DAG.getBitcast(ValLoc, ValArg);
2606   }
2607 
2608   return DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValArg);
2609 }
2610 
2611 /// Breaks v64i1 value into two registers and adds the new node to the DAG
2612 static void Passv64i1ArgInRegs(
2613     const SDLoc &Dl, SelectionDAG &DAG, SDValue &Arg,
2614     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, CCValAssign &VA,
2615     CCValAssign &NextVA, const X86Subtarget &Subtarget) {
2616   assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
2617   assert(Subtarget.is32Bit() && "Expecting 32 bit target");
2618   assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
2619   assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2620          "The value should reside in two registers");
2621 
2622   // Before splitting the value we cast it to i64
2623   Arg = DAG.getBitcast(MVT::i64, Arg);
2624 
2625   // Splitting the value into two i32 types
2626   SDValue Lo, Hi;
2627   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
2628                    DAG.getConstant(0, Dl, MVT::i32));
2629   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
2630                    DAG.getConstant(1, Dl, MVT::i32));
2631 
2632   // Attach the two i32 types into corresponding registers
2633   RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
2634   RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
2635 }
2636 
2637 SDValue
2638 X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2639                                bool isVarArg,
2640                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2641                                const SmallVectorImpl<SDValue> &OutVals,
2642                                const SDLoc &dl, SelectionDAG &DAG) const {
2643   MachineFunction &MF = DAG.getMachineFunction();
2644   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2645 
2646   // In some cases we need to disable registers from the default CSR list.
2647   // For example, when they are used for argument passing.
2648   bool ShouldDisableCalleeSavedRegister =
2649       CallConv == CallingConv::X86_RegCall ||
2650       MF.getFunction().hasFnAttribute("no_caller_saved_registers");
2651 
2652   if (CallConv == CallingConv::X86_INTR && !Outs.empty())
2653     report_fatal_error("X86 interrupts may not return any value");
2654 
2655   SmallVector<CCValAssign, 16> RVLocs;
2656   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
2657   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
2658 
2659   SDValue Flag;
2660   SmallVector<SDValue, 6> RetOps;
2661   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2662   // Operand #1 = Bytes To Pop
2663   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
2664                    MVT::i32));
2665 
2666   // Copy the result values into the output registers.
2667   for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
2668        ++I, ++OutsIndex) {
2669     CCValAssign &VA = RVLocs[I];
2670     assert(VA.isRegLoc() && "Can only return in registers!");
2671 
2672     // Add the register to the CalleeSaveDisableRegs list.
2673     if (ShouldDisableCalleeSavedRegister)
2674       MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg());
2675 
2676     SDValue ValToCopy = OutVals[OutsIndex];
2677     EVT ValVT = ValToCopy.getValueType();
2678 
2679     // Promote values to the appropriate types.
2680     if (VA.getLocInfo() == CCValAssign::SExt)
2681       ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
2682     else if (VA.getLocInfo() == CCValAssign::ZExt)
2683       ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
2684     else if (VA.getLocInfo() == CCValAssign::AExt) {
2685       if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
2686         ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
2687       else
2688         ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
2689     }
2690     else if (VA.getLocInfo() == CCValAssign::BCvt)
2691       ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
2692 
2693     assert(VA.getLocInfo() != CCValAssign::FPExt &&
2694            "Unexpected FP-extend for return value.");
2695 
2696     // Report an error if we have attempted to return a value via an XMM
2697     // register and SSE was disabled.
2698     if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
2699       errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
2700       VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
2701     } else if (!Subtarget.hasSSE2() &&
2702                X86::FR64XRegClass.contains(VA.getLocReg()) &&
2703                ValVT == MVT::f64) {
2704       // When returning a double via an XMM register, report an error if SSE2 is
2705       // not enabled.
2706       errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
2707       VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
2708     }
2709 
2710     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
2711     // the RET instruction and handled by the FP Stackifier.
2712     if (VA.getLocReg() == X86::FP0 ||
2713         VA.getLocReg() == X86::FP1) {
2714       // If this is a copy from an xmm register to ST(0), use an FPExtend to
2715       // change the value to the FP stack register class.
2716       if (isScalarFPTypeInSSEReg(VA.getValVT()))
2717         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
2718       RetOps.push_back(ValToCopy);
2719       // Don't emit a copytoreg.
2720       continue;
2721     }
2722 
2723     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
2724     // which is returned in RAX / RDX.
2725     if (Subtarget.is64Bit()) {
2726       if (ValVT == MVT::x86mmx) {
2727         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
2728           ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
2729           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
2730                                   ValToCopy);
2731           // If we don't have SSE2 available, convert to v4f32 so the generated
2732           // register is legal.
2733           if (!Subtarget.hasSSE2())
2734             ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
2735         }
2736       }
2737     }
2738 
2739     SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2740 
2741     if (VA.needsCustom()) {
2742       assert(VA.getValVT() == MVT::v64i1 &&
2743              "Currently the only custom case is when we split v64i1 to 2 regs");
2744 
2745       Passv64i1ArgInRegs(dl, DAG, ValToCopy, RegsToPass, VA, RVLocs[++I],
2746                          Subtarget);
2747 
2748       assert(2 == RegsToPass.size() &&
2749              "Expecting two registers after Pass64BitArgInRegs");
2750 
2751       // Add the second register to the CalleeSaveDisableRegs list.
2752       if (ShouldDisableCalleeSavedRegister)
2753         MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg());
2754     } else {
2755       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
2756     }
2757 
2758     // Add nodes to the DAG and add the values into the RetOps list
2759     for (auto &Reg : RegsToPass) {
2760       Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag);
2761       Flag = Chain.getValue(1);
2762       RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2763     }
2764   }
2765 
2766   // Swift calling convention does not require we copy the sret argument
2767   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
2768 
2769   // All x86 ABIs require that for returning structs by value we copy
2770   // the sret argument into %rax/%eax (depending on ABI) for the return.
2771   // We saved the argument into a virtual register in the entry block,
2772   // so now we copy the value out and into %rax/%eax.
2773   //
2774   // Checking Function.hasStructRetAttr() here is insufficient because the IR
2775   // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
2776   // false, then an sret argument may be implicitly inserted in the SelDAG. In
2777   // either case FuncInfo->setSRetReturnReg() will have been called.
2778   if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
2779     // When we have both sret and another return value, we should use the
2780     // original Chain stored in RetOps[0], instead of the current Chain updated
2781     // in the above loop. If we only have sret, RetOps[0] equals to Chain.
2782 
2783     // For the case of sret and another return value, we have
2784     //   Chain_0 at the function entry
2785     //   Chain_1 = getCopyToReg(Chain_0) in the above loop
2786     // If we use Chain_1 in getCopyFromReg, we will have
2787     //   Val = getCopyFromReg(Chain_1)
2788     //   Chain_2 = getCopyToReg(Chain_1, Val) from below
2789 
2790     // getCopyToReg(Chain_0) will be glued together with
2791     // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
2792     // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
2793     //   Data dependency from Unit B to Unit A due to usage of Val in
2794     //     getCopyToReg(Chain_1, Val)
2795     //   Chain dependency from Unit A to Unit B
2796 
2797     // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
2798     SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
2799                                      getPointerTy(MF.getDataLayout()));
2800 
2801     unsigned RetValReg
2802         = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
2803           X86::RAX : X86::EAX;
2804     Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
2805     Flag = Chain.getValue(1);
2806 
2807     // RAX/EAX now acts like a return value.
2808     RetOps.push_back(
2809         DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
2810 
2811     // Add the returned register to the CalleeSaveDisableRegs list.
2812     if (ShouldDisableCalleeSavedRegister)
2813       MF.getRegInfo().disableCalleeSavedRegister(RetValReg);
2814   }
2815 
2816   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
2817   const MCPhysReg *I =
2818       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2819   if (I) {
2820     for (; *I; ++I) {
2821       if (X86::GR64RegClass.contains(*I))
2822         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2823       else
2824         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2825     }
2826   }
2827 
2828   RetOps[0] = Chain;  // Update chain.
2829 
2830   // Add the flag if we have it.
2831   if (Flag.getNode())
2832     RetOps.push_back(Flag);
2833 
2834   X86ISD::NodeType opcode = X86ISD::RET_FLAG;
2835   if (CallConv == CallingConv::X86_INTR)
2836     opcode = X86ISD::IRET;
2837   return DAG.getNode(opcode, dl, MVT::Other, RetOps);
2838 }
2839 
2840 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2841   if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
2842     return false;
2843 
2844   SDValue TCChain = Chain;
2845   SDNode *Copy = *N->use_begin();
2846   if (Copy->getOpcode() == ISD::CopyToReg) {
2847     // If the copy has a glue operand, we conservatively assume it isn't safe to
2848     // perform a tail call.
2849     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2850       return false;
2851     TCChain = Copy->getOperand(0);
2852   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
2853     return false;
2854 
2855   bool HasRet = false;
2856   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2857        UI != UE; ++UI) {
2858     if (UI->getOpcode() != X86ISD::RET_FLAG)
2859       return false;
2860     // If we are returning more than one value, we can definitely
2861     // not make a tail call see PR19530
2862     if (UI->getNumOperands() > 4)
2863       return false;
2864     if (UI->getNumOperands() == 4 &&
2865         UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
2866       return false;
2867     HasRet = true;
2868   }
2869 
2870   if (!HasRet)
2871     return false;
2872 
2873   Chain = TCChain;
2874   return true;
2875 }
2876 
2877 EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
2878                                            ISD::NodeType ExtendKind) const {
2879   MVT ReturnMVT = MVT::i32;
2880 
2881   bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
2882   if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
2883     // The ABI does not require i1, i8 or i16 to be extended.
2884     //
2885     // On Darwin, there is code in the wild relying on Clang's old behaviour of
2886     // always extending i8/i16 return values, so keep doing that for now.
2887     // (PR26665).
2888     ReturnMVT = MVT::i8;
2889   }
2890 
2891   EVT MinVT = getRegisterType(Context, ReturnMVT);
2892   return VT.bitsLT(MinVT) ? MinVT : VT;
2893 }
2894 
2895 /// Reads two 32 bit registers and creates a 64 bit mask value.
2896 /// \param VA The current 32 bit value that need to be assigned.
2897 /// \param NextVA The next 32 bit value that need to be assigned.
2898 /// \param Root The parent DAG node.
2899 /// \param [in,out] InFlag Represents SDvalue in the parent DAG node for
2900 ///                        glue purposes. In the case the DAG is already using
2901 ///                        physical register instead of virtual, we should glue
2902 ///                        our new SDValue to InFlag SDvalue.
2903 /// \return a new SDvalue of size 64bit.
2904 static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA,
2905                                 SDValue &Root, SelectionDAG &DAG,
2906                                 const SDLoc &Dl, const X86Subtarget &Subtarget,
2907                                 SDValue *InFlag = nullptr) {
2908   assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
2909   assert(Subtarget.is32Bit() && "Expecting 32 bit target");
2910   assert(VA.getValVT() == MVT::v64i1 &&
2911          "Expecting first location of 64 bit width type");
2912   assert(NextVA.getValVT() == VA.getValVT() &&
2913          "The locations should have the same type");
2914   assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2915          "The values should reside in two registers");
2916 
2917   SDValue Lo, Hi;
2918   SDValue ArgValueLo, ArgValueHi;
2919 
2920   MachineFunction &MF = DAG.getMachineFunction();
2921   const TargetRegisterClass *RC = &X86::GR32RegClass;
2922 
2923   // Read a 32 bit value from the registers.
2924   if (nullptr == InFlag) {
2925     // When no physical register is present,
2926     // create an intermediate virtual register.
2927     unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2928     ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
2929     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2930     ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
2931   } else {
2932     // When a physical register is available read the value from it and glue
2933     // the reads together.
2934     ArgValueLo =
2935       DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag);
2936     *InFlag = ArgValueLo.getValue(2);
2937     ArgValueHi =
2938       DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag);
2939     *InFlag = ArgValueHi.getValue(2);
2940   }
2941 
2942   // Convert the i32 type into v32i1 type.
2943   Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);
2944 
2945   // Convert the i32 type into v32i1 type.
2946   Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);
2947 
2948   // Concatenate the two values together.
2949   return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi);
2950 }
2951 
2952 /// The function will lower a register of various sizes (8/16/32/64)
2953 /// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
2954 /// \returns a DAG node contains the operand after lowering to mask type.
2955 static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
2956                                const EVT &ValLoc, const SDLoc &Dl,
2957                                SelectionDAG &DAG) {
2958   SDValue ValReturned = ValArg;
2959 
2960   if (ValVT == MVT::v1i1)
2961     return DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v1i1, ValReturned);
2962 
2963   if (ValVT == MVT::v64i1) {
2964     // In 32 bit machine, this case is handled by getv64i1Argument
2965     assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
2966     // In 64 bit machine, There is no need to truncate the value only bitcast
2967   } else {
2968     MVT maskLen;
2969     switch (ValVT.getSimpleVT().SimpleTy) {
2970     case MVT::v8i1:
2971       maskLen = MVT::i8;
2972       break;
2973     case MVT::v16i1:
2974       maskLen = MVT::i16;
2975       break;
2976     case MVT::v32i1:
2977       maskLen = MVT::i32;
2978       break;
2979     default:
2980       llvm_unreachable("Expecting a vector of i1 types");
2981     }
2982 
2983     ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned);
2984   }
2985   return DAG.getBitcast(ValVT, ValReturned);
2986 }
2987 
2988 /// Lower the result values of a call into the
2989 /// appropriate copies out of appropriate physical registers.
2990 ///
2991 SDValue X86TargetLowering::LowerCallResult(
2992     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2993     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2994     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
2995     uint32_t *RegMask) const {
2996 
2997   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2998   // Assign locations to each value returned by this call.
2999   SmallVector<CCValAssign, 16> RVLocs;
3000   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3001                  *DAG.getContext());
3002   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3003 
3004   // Copy all of the result registers out of their specified physreg.
3005   for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
3006        ++I, ++InsIndex) {
3007     CCValAssign &VA = RVLocs[I];
3008     EVT CopyVT = VA.getLocVT();
3009 
3010     // In some calling conventions we need to remove the used registers
3011     // from the register mask.
3012     if (RegMask) {
3013       for (MCSubRegIterator SubRegs(VA.getLocReg(), TRI, /*IncludeSelf=*/true);
3014            SubRegs.isValid(); ++SubRegs)
3015         RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
3016     }
3017 
3018     // Report an error if there was an attempt to return FP values via XMM
3019     // registers.
3020     if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
3021       errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
3022       if (VA.getLocReg() == X86::XMM1)
3023         VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
3024       else
3025         VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
3026     } else if (!Subtarget.hasSSE2() &&
3027                X86::FR64XRegClass.contains(VA.getLocReg()) &&
3028                CopyVT == MVT::f64) {
3029       errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
3030       if (VA.getLocReg() == X86::XMM1)
3031         VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
3032       else
3033         VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
3034     }
3035 
3036     // If we prefer to use the value in xmm registers, copy it out as f80 and
3037     // use a truncate to move it from fp stack reg to xmm reg.
3038     bool RoundAfterCopy = false;
3039     if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3040         isScalarFPTypeInSSEReg(VA.getValVT())) {
3041       if (!Subtarget.hasX87())
3042         report_fatal_error("X87 register return with X87 disabled");
3043       CopyVT = MVT::f80;
3044       RoundAfterCopy = (CopyVT != VA.getLocVT());
3045     }
3046 
3047     SDValue Val;
3048     if (VA.needsCustom()) {
3049       assert(VA.getValVT() == MVT::v64i1 &&
3050              "Currently the only custom case is when we split v64i1 to 2 regs");
3051       Val =
3052           getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag);
3053     } else {
3054       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag)
3055                   .getValue(1);
3056       Val = Chain.getValue(0);
3057       InFlag = Chain.getValue(2);
3058     }
3059 
3060     if (RoundAfterCopy)
3061       Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
3062                         // This truncation won't change the value.
3063                         DAG.getIntPtrConstant(1, dl));
3064 
3065     if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) {
3066       if (VA.getValVT().isVector() &&
3067           ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
3068            (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
3069         // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
3070         Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
3071       } else
3072         Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3073     }
3074 
3075     if (VA.getLocInfo() == CCValAssign::BCvt)
3076       Val = DAG.getBitcast(VA.getValVT(), Val);
3077 
3078     InVals.push_back(Val);
3079   }
3080 
3081   return Chain;
3082 }
3083 
3084 //===----------------------------------------------------------------------===//
3085 //                C & StdCall & Fast Calling Convention implementation
3086 //===----------------------------------------------------------------------===//
3087 //  StdCall calling convention seems to be standard for many Windows' API
3088 //  routines and around. It differs from C calling convention just a little:
3089 //  callee should clean up the stack, not caller. Symbols should be also
3090 //  decorated in some fancy way :) It doesn't support any vector arguments.
3091 //  For info on fast calling convention see Fast Calling Convention (tail call)
3092 //  implementation LowerX86_32FastCCCallTo.
3093 
3094 /// CallIsStructReturn - Determines whether a call uses struct return
3095 /// semantics.
3096 enum StructReturnType {
3097   NotStructReturn,
3098   RegStructReturn,
3099   StackStructReturn
3100 };
3101 static StructReturnType
3102 callIsStructReturn(ArrayRef<ISD::OutputArg> Outs, bool IsMCU) {
3103   if (Outs.empty())
3104     return NotStructReturn;
3105 
3106   const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
3107   if (!Flags.isSRet())
3108     return NotStructReturn;
3109   if (Flags.isInReg() || IsMCU)
3110     return RegStructReturn;
3111   return StackStructReturn;
3112 }
3113 
3114 /// Determines whether a function uses struct return semantics.
3115 static StructReturnType
3116 argsAreStructReturn(ArrayRef<ISD::InputArg> Ins, bool IsMCU) {
3117   if (Ins.empty())
3118     return NotStructReturn;
3119 
3120   const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
3121   if (!Flags.isSRet())
3122     return NotStructReturn;
3123   if (Flags.isInReg() || IsMCU)
3124     return RegStructReturn;
3125   return StackStructReturn;
3126 }
3127 
3128 /// Make a copy of an aggregate at address specified by "Src" to address
3129 /// "Dst" with size and alignment information specified by the specific
3130 /// parameter attribute. The copy will be passed as a byval function parameter.
3131 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
3132                                          SDValue Chain, ISD::ArgFlagsTy Flags,
3133                                          SelectionDAG &DAG, const SDLoc &dl) {
3134   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
3135 
3136   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3137                        /*isVolatile*/false, /*AlwaysInline=*/true,
3138                        /*isTailCall*/false,
3139                        MachinePointerInfo(), MachinePointerInfo());
3140 }
3141 
3142 /// Return true if the calling convention is one that we can guarantee TCO for.
3143 static bool canGuaranteeTCO(CallingConv::ID CC) {
3144   return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3145           CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE ||
3146           CC == CallingConv::HHVM || CC == CallingConv::Tail);
3147 }
3148 
3149 /// Return true if we might ever do TCO for calls with this calling convention.
3150 static bool mayTailCallThisCC(CallingConv::ID CC) {
3151   switch (CC) {
3152   // C calling conventions:
3153   case CallingConv::C:
3154   case CallingConv::Win64:
3155   case CallingConv::X86_64_SysV:
3156   // Callee pop conventions:
3157   case CallingConv::X86_ThisCall:
3158   case CallingConv::X86_StdCall:
3159   case CallingConv::X86_VectorCall:
3160   case CallingConv::X86_FastCall:
3161   // Swift:
3162   case CallingConv::Swift:
3163     return true;
3164   default:
3165     return canGuaranteeTCO(CC);
3166   }
3167 }
3168 
3169 /// Return true if the function is being made into a tailcall target by
3170 /// changing its ABI.
3171 static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
3172   return (GuaranteedTailCallOpt && canGuaranteeTCO(CC)) || CC == CallingConv::Tail;
3173 }
3174 
3175 bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3176   if (!CI->isTailCall())
3177     return false;
3178 
3179   ImmutableCallSite CS(CI);
3180   CallingConv::ID CalleeCC = CS.getCallingConv();
3181   if (!mayTailCallThisCC(CalleeCC))
3182     return false;
3183 
3184   return true;
3185 }
3186 
3187 SDValue
3188 X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
3189                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3190                                     const SDLoc &dl, SelectionDAG &DAG,
3191                                     const CCValAssign &VA,
3192                                     MachineFrameInfo &MFI, unsigned i) const {
3193   // Create the nodes corresponding to a load from this parameter slot.
3194   ISD::ArgFlagsTy Flags = Ins[i].Flags;
3195   bool AlwaysUseMutable = shouldGuaranteeTCO(
3196       CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
3197   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
3198   EVT ValVT;
3199   MVT PtrVT = getPointerTy(DAG.getDataLayout());
3200 
3201   // If value is passed by pointer we have address passed instead of the value
3202   // itself. No need to extend if the mask value and location share the same
3203   // absolute size.
3204   bool ExtendedInMem =
3205       VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
3206       VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits();
3207 
3208   if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
3209     ValVT = VA.getLocVT();
3210   else
3211     ValVT = VA.getValVT();
3212 
3213   // FIXME: For now, all byval parameter objects are marked mutable. This can be
3214   // changed with more analysis.
3215   // In case of tail call optimization mark all arguments mutable. Since they
3216   // could be overwritten by lowering of arguments in case of a tail call.
3217   if (Flags.isByVal()) {
3218     unsigned Bytes = Flags.getByValSize();
3219     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
3220 
3221     // FIXME: For now, all byval parameter objects are marked as aliasing. This
3222     // can be improved with deeper analysis.
3223     int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable,
3224                                    /*isAliased=*/true);
3225     return DAG.getFrameIndex(FI, PtrVT);
3226   }
3227 
3228   // This is an argument in memory. We might be able to perform copy elision.
3229   // If the argument is passed directly in memory without any extension, then we
3230   // can perform copy elision. Large vector types, for example, may be passed
3231   // indirectly by pointer.
3232   if (Flags.isCopyElisionCandidate() &&
3233       VA.getLocInfo() != CCValAssign::Indirect && !ExtendedInMem) {
3234     EVT ArgVT = Ins[i].ArgVT;
3235     SDValue PartAddr;
3236     if (Ins[i].PartOffset == 0) {
3237       // If this is a one-part value or the first part of a multi-part value,
3238       // create a stack object for the entire argument value type and return a
3239       // load from our portion of it. This assumes that if the first part of an
3240       // argument is in memory, the rest will also be in memory.
3241       int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(),
3242                                      /*IsImmutable=*/false);
3243       PartAddr = DAG.getFrameIndex(FI, PtrVT);
3244       return DAG.getLoad(
3245           ValVT, dl, Chain, PartAddr,
3246           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3247     } else {
3248       // This is not the first piece of an argument in memory. See if there is
3249       // already a fixed stack object including this offset. If so, assume it
3250       // was created by the PartOffset == 0 branch above and create a load from
3251       // the appropriate offset into it.
3252       int64_t PartBegin = VA.getLocMemOffset();
3253       int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8;
3254       int FI = MFI.getObjectIndexBegin();
3255       for (; MFI.isFixedObjectIndex(FI); ++FI) {
3256         int64_t ObjBegin = MFI.getObjectOffset(FI);
3257         int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI);
3258         if (ObjBegin <= PartBegin && PartEnd <= ObjEnd)
3259           break;
3260       }
3261       if (MFI.isFixedObjectIndex(FI)) {
3262         SDValue Addr =
3263             DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT),
3264                         DAG.getIntPtrConstant(Ins[i].PartOffset, dl));
3265         return DAG.getLoad(
3266             ValVT, dl, Chain, Addr,
3267             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI,
3268                                               Ins[i].PartOffset));
3269       }
3270     }
3271   }
3272 
3273   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
3274                                  VA.getLocMemOffset(), isImmutable);
3275 
3276   // Set SExt or ZExt flag.
3277   if (VA.getLocInfo() == CCValAssign::ZExt) {
3278     MFI.setObjectZExt(FI, true);
3279   } else if (VA.getLocInfo() == CCValAssign::SExt) {
3280     MFI.setObjectSExt(FI, true);
3281   }
3282 
3283   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3284   SDValue Val = DAG.getLoad(
3285       ValVT, dl, Chain, FIN,
3286       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3287   return ExtendedInMem
3288              ? (VA.getValVT().isVector()
3289                     ? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val)
3290                     : DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val))
3291              : Val;
3292 }
3293 
3294 // FIXME: Get this from tablegen.
3295 static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
3296                                                 const X86Subtarget &Subtarget) {
3297   assert(Subtarget.is64Bit());
3298 
3299   if (Subtarget.isCallingConvWin64(CallConv)) {
3300     static const MCPhysReg GPR64ArgRegsWin64[] = {
3301       X86::RCX, X86::RDX, X86::R8,  X86::R9
3302     };
3303     return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
3304   }
3305 
3306   static const MCPhysReg GPR64ArgRegs64Bit[] = {
3307     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
3308   };
3309   return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
3310 }
3311 
3312 // FIXME: Get this from tablegen.
3313 static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
3314                                                 CallingConv::ID CallConv,
3315                                                 const X86Subtarget &Subtarget) {
3316   assert(Subtarget.is64Bit());
3317   if (Subtarget.isCallingConvWin64(CallConv)) {
3318     // The XMM registers which might contain var arg parameters are shadowed
3319     // in their paired GPR.  So we only need to save the GPR to their home
3320     // slots.
3321     // TODO: __vectorcall will change this.
3322     return None;
3323   }
3324 
3325   const Function &F = MF.getFunction();
3326   bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
3327   bool isSoftFloat = Subtarget.useSoftFloat();
3328   assert(!(isSoftFloat && NoImplicitFloatOps) &&
3329          "SSE register cannot be used when SSE is disabled!");
3330   if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1())
3331     // Kernel mode asks for SSE to be disabled, so there are no XMM argument
3332     // registers.
3333     return None;
3334 
3335   static const MCPhysReg XMMArgRegs64Bit[] = {
3336     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3337     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3338   };
3339   return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
3340 }
3341 
3342 #ifndef NDEBUG
3343 static bool isSortedByValueNo(ArrayRef<CCValAssign> ArgLocs) {
3344   return std::is_sorted(ArgLocs.begin(), ArgLocs.end(),
3345                         [](const CCValAssign &A, const CCValAssign &B) -> bool {
3346                           return A.getValNo() < B.getValNo();
3347                         });
3348 }
3349 #endif
3350 
3351 SDValue X86TargetLowering::LowerFormalArguments(
3352     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3353     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3354     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3355   MachineFunction &MF = DAG.getMachineFunction();
3356   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3357   const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
3358 
3359   const Function &F = MF.getFunction();
3360   if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() &&
3361       F.getName() == "main")
3362     FuncInfo->setForceFramePointer(true);
3363 
3364   MachineFrameInfo &MFI = MF.getFrameInfo();
3365   bool Is64Bit = Subtarget.is64Bit();
3366   bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
3367 
3368   assert(
3369       !(isVarArg && canGuaranteeTCO(CallConv)) &&
3370       "Var args not supported with calling conv' regcall, fastcc, ghc or hipe");
3371 
3372   // Assign locations to all of the incoming arguments.
3373   SmallVector<CCValAssign, 16> ArgLocs;
3374   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
3375 
3376   // Allocate shadow area for Win64.
3377   if (IsWin64)
3378     CCInfo.AllocateStack(32, 8);
3379 
3380   CCInfo.AnalyzeArguments(Ins, CC_X86);
3381 
3382   // In vectorcall calling convention a second pass is required for the HVA
3383   // types.
3384   if (CallingConv::X86_VectorCall == CallConv) {
3385     CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
3386   }
3387 
3388   // The next loop assumes that the locations are in the same order of the
3389   // input arguments.
3390   assert(isSortedByValueNo(ArgLocs) &&
3391          "Argument Location list must be sorted before lowering");
3392 
3393   SDValue ArgValue;
3394   for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
3395        ++I, ++InsIndex) {
3396     assert(InsIndex < Ins.size() && "Invalid Ins index");
3397     CCValAssign &VA = ArgLocs[I];
3398 
3399     if (VA.isRegLoc()) {
3400       EVT RegVT = VA.getLocVT();
3401       if (VA.needsCustom()) {
3402         assert(
3403             VA.getValVT() == MVT::v64i1 &&
3404             "Currently the only custom case is when we split v64i1 to 2 regs");
3405 
3406         // v64i1 values, in regcall calling convention, that are
3407         // compiled to 32 bit arch, are split up into two registers.
3408         ArgValue =
3409             getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
3410       } else {
3411         const TargetRegisterClass *RC;
3412         if (RegVT == MVT::i8)
3413           RC = &X86::GR8RegClass;
3414         else if (RegVT == MVT::i16)
3415           RC = &X86::GR16RegClass;
3416         else if (RegVT == MVT::i32)
3417           RC = &X86::GR32RegClass;
3418         else if (Is64Bit && RegVT == MVT::i64)
3419           RC = &X86::GR64RegClass;
3420         else if (RegVT == MVT::f32)
3421           RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
3422         else if (RegVT == MVT::f64)
3423           RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
3424         else if (RegVT == MVT::f80)
3425           RC = &X86::RFP80RegClass;
3426         else if (RegVT == MVT::f128)
3427           RC = &X86::VR128RegClass;
3428         else if (RegVT.is512BitVector())
3429           RC = &X86::VR512RegClass;
3430         else if (RegVT.is256BitVector())
3431           RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
3432         else if (RegVT.is128BitVector())
3433           RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
3434         else if (RegVT == MVT::x86mmx)
3435           RC = &X86::VR64RegClass;
3436         else if (RegVT == MVT::v1i1)
3437           RC = &X86::VK1RegClass;
3438         else if (RegVT == MVT::v8i1)
3439           RC = &X86::VK8RegClass;
3440         else if (RegVT == MVT::v16i1)
3441           RC = &X86::VK16RegClass;
3442         else if (RegVT == MVT::v32i1)
3443           RC = &X86::VK32RegClass;
3444         else if (RegVT == MVT::v64i1)
3445           RC = &X86::VK64RegClass;
3446         else
3447           llvm_unreachable("Unknown argument type!");
3448 
3449         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3450         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3451       }
3452 
3453       // If this is an 8 or 16-bit value, it is really passed promoted to 32
3454       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
3455       // right size.
3456       if (VA.getLocInfo() == CCValAssign::SExt)
3457         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3458                                DAG.getValueType(VA.getValVT()));
3459       else if (VA.getLocInfo() == CCValAssign::ZExt)
3460         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3461                                DAG.getValueType(VA.getValVT()));
3462       else if (VA.getLocInfo() == CCValAssign::BCvt)
3463         ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
3464 
3465       if (VA.isExtInLoc()) {
3466         // Handle MMX values passed in XMM regs.
3467         if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
3468           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
3469         else if (VA.getValVT().isVector() &&
3470                  VA.getValVT().getScalarType() == MVT::i1 &&
3471                  ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
3472                   (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
3473           // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
3474           ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
3475         } else
3476           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3477       }
3478     } else {
3479       assert(VA.isMemLoc());
3480       ArgValue =
3481           LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
3482     }
3483 
3484     // If value is passed via pointer - do a load.
3485     if (VA.getLocInfo() == CCValAssign::Indirect && !Ins[I].Flags.isByVal())
3486       ArgValue =
3487           DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
3488 
3489     InVals.push_back(ArgValue);
3490   }
3491 
3492   for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
3493     // Swift calling convention does not require we copy the sret argument
3494     // into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
3495     if (CallConv == CallingConv::Swift)
3496       continue;
3497 
3498     // All x86 ABIs require that for returning structs by value we copy the
3499     // sret argument into %rax/%eax (depending on ABI) for the return. Save
3500     // the argument into a virtual register so that we can access it from the
3501     // return points.
3502     if (Ins[I].Flags.isSRet()) {
3503       unsigned Reg = FuncInfo->getSRetReturnReg();
3504       if (!Reg) {
3505         MVT PtrTy = getPointerTy(DAG.getDataLayout());
3506         Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
3507         FuncInfo->setSRetReturnReg(Reg);
3508       }
3509       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
3510       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3511       break;
3512     }
3513   }
3514 
3515   unsigned StackSize = CCInfo.getNextStackOffset();
3516   // Align stack specially for tail calls.
3517   if (shouldGuaranteeTCO(CallConv,
3518                          MF.getTarget().Options.GuaranteedTailCallOpt))
3519     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
3520 
3521   // If the function takes variable number of arguments, make a frame index for
3522   // the start of the first vararg value... for expansion of llvm.va_start. We
3523   // can skip this if there are no va_start calls.
3524   if (MFI.hasVAStart() &&
3525       (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
3526                    CallConv != CallingConv::X86_ThisCall))) {
3527     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
3528   }
3529 
3530   // Figure out if XMM registers are in use.
3531   assert(!(Subtarget.useSoftFloat() &&
3532            F.hasFnAttribute(Attribute::NoImplicitFloat)) &&
3533          "SSE register cannot be used when SSE is disabled!");
3534 
3535   // 64-bit calling conventions support varargs and register parameters, so we
3536   // have to do extra work to spill them in the prologue.
3537   if (Is64Bit && isVarArg && MFI.hasVAStart()) {
3538     // Find the first unallocated argument registers.
3539     ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
3540     ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
3541     unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
3542     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
3543     assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
3544            "SSE register cannot be used when SSE is disabled!");
3545 
3546     // Gather all the live in physical registers.
3547     SmallVector<SDValue, 6> LiveGPRs;
3548     SmallVector<SDValue, 8> LiveXMMRegs;
3549     SDValue ALVal;
3550     for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
3551       unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
3552       LiveGPRs.push_back(
3553           DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
3554     }
3555     if (!ArgXMMs.empty()) {
3556       unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
3557       ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
3558       for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
3559         unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
3560         LiveXMMRegs.push_back(
3561             DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
3562       }
3563     }
3564 
3565     if (IsWin64) {
3566       // Get to the caller-allocated home save location.  Add 8 to account
3567       // for the return address.
3568       int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
3569       FuncInfo->setRegSaveFrameIndex(
3570           MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
3571       // Fixup to set vararg frame on shadow area (4 x i64).
3572       if (NumIntRegs < 4)
3573         FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
3574     } else {
3575       // For X86-64, if there are vararg parameters that are passed via
3576       // registers, then we must store them to their spots on the stack so
3577       // they may be loaded by dereferencing the result of va_next.
3578       FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
3579       FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
3580       FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject(
3581           ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
3582     }
3583 
3584     // Store the integer parameter registers.
3585     SmallVector<SDValue, 8> MemOps;
3586     SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
3587                                       getPointerTy(DAG.getDataLayout()));
3588     unsigned Offset = FuncInfo->getVarArgsGPOffset();
3589     for (SDValue Val : LiveGPRs) {
3590       SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
3591                                 RSFIN, DAG.getIntPtrConstant(Offset, dl));
3592       SDValue Store =
3593           DAG.getStore(Val.getValue(1), dl, Val, FIN,
3594                        MachinePointerInfo::getFixedStack(
3595                            DAG.getMachineFunction(),
3596                            FuncInfo->getRegSaveFrameIndex(), Offset));
3597       MemOps.push_back(Store);
3598       Offset += 8;
3599     }
3600 
3601     if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
3602       // Now store the XMM (fp + vector) parameter registers.
3603       SmallVector<SDValue, 12> SaveXMMOps;
3604       SaveXMMOps.push_back(Chain);
3605       SaveXMMOps.push_back(ALVal);
3606       SaveXMMOps.push_back(DAG.getIntPtrConstant(
3607                              FuncInfo->getRegSaveFrameIndex(), dl));
3608       SaveXMMOps.push_back(DAG.getIntPtrConstant(
3609                              FuncInfo->getVarArgsFPOffset(), dl));
3610       SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
3611                         LiveXMMRegs.end());
3612       MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
3613                                    MVT::Other, SaveXMMOps));
3614     }
3615 
3616     if (!MemOps.empty())
3617       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3618   }
3619 
3620   if (isVarArg && MFI.hasMustTailInVarArgFunc()) {
3621     // Find the largest legal vector type.
3622     MVT VecVT = MVT::Other;
3623     // FIXME: Only some x86_32 calling conventions support AVX512.
3624     if (Subtarget.useAVX512Regs() &&
3625         (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
3626                      CallConv == CallingConv::Intel_OCL_BI)))
3627       VecVT = MVT::v16f32;
3628     else if (Subtarget.hasAVX())
3629       VecVT = MVT::v8f32;
3630     else if (Subtarget.hasSSE2())
3631       VecVT = MVT::v4f32;
3632 
3633     // We forward some GPRs and some vector types.
3634     SmallVector<MVT, 2> RegParmTypes;
3635     MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
3636     RegParmTypes.push_back(IntVT);
3637     if (VecVT != MVT::Other)
3638       RegParmTypes.push_back(VecVT);
3639 
3640     // Compute the set of forwarded registers. The rest are scratch.
3641     SmallVectorImpl<ForwardedRegister> &Forwards =
3642         FuncInfo->getForwardedMustTailRegParms();
3643     CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
3644 
3645     // Forward AL for SysV x86_64 targets, since it is used for varargs.
3646     if (Is64Bit && !IsWin64 && !CCInfo.isAllocated(X86::AL)) {
3647       unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
3648       Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
3649     }
3650 
3651     // Copy all forwards from physical to virtual registers.
3652     for (ForwardedRegister &FR : Forwards) {
3653       // FIXME: Can we use a less constrained schedule?
3654       SDValue RegVal = DAG.getCopyFromReg(Chain, dl, FR.VReg, FR.VT);
3655       FR.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(FR.VT));
3656       Chain = DAG.getCopyToReg(Chain, dl, FR.VReg, RegVal);
3657     }
3658   }
3659 
3660   // Some CCs need callee pop.
3661   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
3662                        MF.getTarget().Options.GuaranteedTailCallOpt)) {
3663     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
3664   } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
3665     // X86 interrupts must pop the error code (and the alignment padding) if
3666     // present.
3667     FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4);
3668   } else {
3669     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
3670     // If this is an sret function, the return should pop the hidden pointer.
3671     if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
3672         !Subtarget.getTargetTriple().isOSMSVCRT() &&
3673         argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn)
3674       FuncInfo->setBytesToPopOnReturn(4);
3675   }
3676 
3677   if (!Is64Bit) {
3678     // RegSaveFrameIndex is X86-64 only.
3679     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
3680     if (CallConv == CallingConv::X86_FastCall ||
3681         CallConv == CallingConv::X86_ThisCall)
3682       // fastcc functions can't have varargs.
3683       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
3684   }
3685 
3686   FuncInfo->setArgumentStackSize(StackSize);
3687 
3688   if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
3689     EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn());
3690     if (Personality == EHPersonality::CoreCLR) {
3691       assert(Is64Bit);
3692       // TODO: Add a mechanism to frame lowering that will allow us to indicate
3693       // that we'd prefer this slot be allocated towards the bottom of the frame
3694       // (i.e. near the stack pointer after allocating the frame).  Every
3695       // funclet needs a copy of this slot in its (mostly empty) frame, and the
3696       // offset from the bottom of this and each funclet's frame must be the
3697       // same, so the size of funclets' (mostly empty) frames is dictated by
3698       // how far this slot is from the bottom (since they allocate just enough
3699       // space to accommodate holding this slot at the correct offset).
3700       int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false);
3701       EHInfo->PSPSymFrameIdx = PSPSymFI;
3702     }
3703   }
3704 
3705   if (CallConv == CallingConv::X86_RegCall ||
3706       F.hasFnAttribute("no_caller_saved_registers")) {
3707     MachineRegisterInfo &MRI = MF.getRegInfo();
3708     for (std::pair<unsigned, unsigned> Pair : MRI.liveins())
3709       MRI.disableCalleeSavedRegister(Pair.first);
3710   }
3711 
3712   return Chain;
3713 }
3714 
3715 SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
3716                                             SDValue Arg, const SDLoc &dl,
3717                                             SelectionDAG &DAG,
3718                                             const CCValAssign &VA,
3719                                             ISD::ArgFlagsTy Flags) const {
3720   unsigned LocMemOffset = VA.getLocMemOffset();
3721   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
3722   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
3723                        StackPtr, PtrOff);
3724   if (Flags.isByVal())
3725     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
3726 
3727   return DAG.getStore(
3728       Chain, dl, Arg, PtrOff,
3729       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
3730 }
3731 
3732 /// Emit a load of return address if tail call
3733 /// optimization is performed and it is required.
3734 SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
3735     SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
3736     bool Is64Bit, int FPDiff, const SDLoc &dl) const {
3737   // Adjust the Return address stack slot.
3738   EVT VT = getPointerTy(DAG.getDataLayout());
3739   OutRetAddr = getReturnAddressFrameIndex(DAG);
3740 
3741   // Load the "old" Return address.
3742   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
3743   return SDValue(OutRetAddr.getNode(), 1);
3744 }
3745 
3746 /// Emit a store of the return address if tail call
3747 /// optimization is performed and it is required (FPDiff!=0).
3748 static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
3749                                         SDValue Chain, SDValue RetAddrFrIdx,
3750                                         EVT PtrVT, unsigned SlotSize,
3751                                         int FPDiff, const SDLoc &dl) {
3752   // Store the return address to the appropriate stack slot.
3753   if (!FPDiff) return Chain;
3754   // Calculate the new stack slot for the return address.
3755   int NewReturnAddrFI =
3756     MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
3757                                          false);
3758   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
3759   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
3760                        MachinePointerInfo::getFixedStack(
3761                            DAG.getMachineFunction(), NewReturnAddrFI));
3762   return Chain;
3763 }
3764 
3765 /// Returns a vector_shuffle mask for an movs{s|d}, movd
3766 /// operation of specified width.
3767 static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
3768                        SDValue V2) {
3769   unsigned NumElems = VT.getVectorNumElements();
3770   SmallVector<int, 8> Mask;
3771   Mask.push_back(NumElems);
3772   for (unsigned i = 1; i != NumElems; ++i)
3773     Mask.push_back(i);
3774   return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
3775 }
3776 
3777 SDValue
3778 X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3779                              SmallVectorImpl<SDValue> &InVals) const {
3780   SelectionDAG &DAG                     = CLI.DAG;
3781   SDLoc &dl                             = CLI.DL;
3782   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3783   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3784   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3785   SDValue Chain                         = CLI.Chain;
3786   SDValue Callee                        = CLI.Callee;
3787   CallingConv::ID CallConv              = CLI.CallConv;
3788   bool &isTailCall                      = CLI.IsTailCall;
3789   bool isVarArg                         = CLI.IsVarArg;
3790 
3791   MachineFunction &MF = DAG.getMachineFunction();
3792   bool Is64Bit        = Subtarget.is64Bit();
3793   bool IsWin64        = Subtarget.isCallingConvWin64(CallConv);
3794   StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU());
3795   bool IsSibcall      = false;
3796   bool IsGuaranteeTCO = MF.getTarget().Options.GuaranteedTailCallOpt ||
3797       CallConv == CallingConv::Tail;
3798   X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
3799   const auto *CI = dyn_cast_or_null<CallInst>(CLI.CS.getInstruction());
3800   const Function *Fn = CI ? CI->getCalledFunction() : nullptr;
3801   bool HasNCSR = (CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3802                  (Fn && Fn->hasFnAttribute("no_caller_saved_registers"));
3803   const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CS.getInstruction());
3804   bool HasNoCfCheck =
3805       (CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck());
3806   const Module *M = MF.getMMI().getModule();
3807   Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");
3808 
3809   MachineFunction::CallSiteInfo CSInfo;
3810 
3811   if (CallConv == CallingConv::X86_INTR)
3812     report_fatal_error("X86 interrupts may not be called directly");
3813 
3814   if (Subtarget.isPICStyleGOT() && !IsGuaranteeTCO) {
3815     // If we are using a GOT, disable tail calls to external symbols with
3816     // default visibility. Tail calling such a symbol requires using a GOT
3817     // relocation, which forces early binding of the symbol. This breaks code
3818     // that require lazy function symbol resolution. Using musttail or
3819     // GuaranteedTailCallOpt will override this.
3820     GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3821     if (!G || (!G->getGlobal()->hasLocalLinkage() &&
3822                G->getGlobal()->hasDefaultVisibility()))
3823       isTailCall = false;
3824   }
3825 
3826   bool IsMustTail = CLI.CS && CLI.CS.isMustTailCall();
3827   if (IsMustTail) {
3828     // Force this to be a tail call.  The verifier rules are enough to ensure
3829     // that we can lower this successfully without moving the return address
3830     // around.
3831     isTailCall = true;
3832   } else if (isTailCall) {
3833     // Check if it's really possible to do a tail call.
3834     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
3835                     isVarArg, SR != NotStructReturn,
3836                     MF.getFunction().hasStructRetAttr(), CLI.RetTy,
3837                     Outs, OutVals, Ins, DAG);
3838 
3839     // Sibcalls are automatically detected tailcalls which do not require
3840     // ABI changes.
3841     if (!IsGuaranteeTCO && isTailCall)
3842       IsSibcall = true;
3843 
3844     if (isTailCall)
3845       ++NumTailCalls;
3846   }
3847 
3848   assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
3849          "Var args not supported with calling convention fastcc, ghc or hipe");
3850 
3851   // Analyze operands of the call, assigning locations to each operand.
3852   SmallVector<CCValAssign, 16> ArgLocs;
3853   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
3854 
3855   // Allocate shadow area for Win64.
3856   if (IsWin64)
3857     CCInfo.AllocateStack(32, 8);
3858 
3859   CCInfo.AnalyzeArguments(Outs, CC_X86);
3860 
3861   // In vectorcall calling convention a second pass is required for the HVA
3862   // types.
3863   if (CallingConv::X86_VectorCall == CallConv) {
3864     CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
3865   }
3866 
3867   // Get a count of how many bytes are to be pushed on the stack.
3868   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3869   if (IsSibcall)
3870     // This is a sibcall. The memory operands are available in caller's
3871     // own caller's stack.
3872     NumBytes = 0;
3873   else if (IsGuaranteeTCO && canGuaranteeTCO(CallConv))
3874     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
3875 
3876   int FPDiff = 0;
3877   if (isTailCall && !IsSibcall && !IsMustTail) {
3878     // Lower arguments at fp - stackoffset + fpdiff.
3879     unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
3880 
3881     FPDiff = NumBytesCallerPushed - NumBytes;
3882 
3883     // Set the delta of movement of the returnaddr stackslot.
3884     // But only set if delta is greater than previous delta.
3885     if (FPDiff < X86Info->getTCReturnAddrDelta())
3886       X86Info->setTCReturnAddrDelta(FPDiff);
3887   }
3888 
3889   unsigned NumBytesToPush = NumBytes;
3890   unsigned NumBytesToPop = NumBytes;
3891 
3892   // If we have an inalloca argument, all stack space has already been allocated
3893   // for us and be right at the top of the stack.  We don't support multiple
3894   // arguments passed in memory when using inalloca.
3895   if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
3896     NumBytesToPush = 0;
3897     if (!ArgLocs.back().isMemLoc())
3898       report_fatal_error("cannot use inalloca attribute on a register "
3899                          "parameter");
3900     if (ArgLocs.back().getLocMemOffset() != 0)
3901       report_fatal_error("any parameter with the inalloca attribute must be "
3902                          "the only memory argument");
3903   }
3904 
3905   if (!IsSibcall && !IsMustTail)
3906     Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
3907                                  NumBytes - NumBytesToPush, dl);
3908 
3909   SDValue RetAddrFrIdx;
3910   // Load return address for tail calls.
3911   if (isTailCall && FPDiff)
3912     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
3913                                     Is64Bit, FPDiff, dl);
3914 
3915   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3916   SmallVector<SDValue, 8> MemOpChains;
3917   SDValue StackPtr;
3918 
3919   // The next loop assumes that the locations are in the same order of the
3920   // input arguments.
3921   assert(isSortedByValueNo(ArgLocs) &&
3922          "Argument Location list must be sorted before lowering");
3923 
3924   // Walk the register/memloc assignments, inserting copies/loads.  In the case
3925   // of tail call optimization arguments are handle later.
3926   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
3927   for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
3928        ++I, ++OutIndex) {
3929     assert(OutIndex < Outs.size() && "Invalid Out index");
3930     // Skip inalloca arguments, they have already been written.
3931     ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
3932     if (Flags.isInAlloca())
3933       continue;
3934 
3935     CCValAssign &VA = ArgLocs[I];
3936     EVT RegVT = VA.getLocVT();
3937     SDValue Arg = OutVals[OutIndex];
3938     bool isByVal = Flags.isByVal();
3939 
3940     // Promote the value if needed.
3941     switch (VA.getLocInfo()) {
3942     default: llvm_unreachable("Unknown loc info!");
3943     case CCValAssign::Full: break;
3944     case CCValAssign::SExt:
3945       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
3946       break;
3947     case CCValAssign::ZExt:
3948       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
3949       break;
3950     case CCValAssign::AExt:
3951       if (Arg.getValueType().isVector() &&
3952           Arg.getValueType().getVectorElementType() == MVT::i1)
3953         Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
3954       else if (RegVT.is128BitVector()) {
3955         // Special case: passing MMX values in XMM registers.
3956         Arg = DAG.getBitcast(MVT::i64, Arg);
3957         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
3958         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
3959       } else
3960         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
3961       break;
3962     case CCValAssign::BCvt:
3963       Arg = DAG.getBitcast(RegVT, Arg);
3964       break;
3965     case CCValAssign::Indirect: {
3966       if (isByVal) {
3967         // Memcpy the argument to a temporary stack slot to prevent
3968         // the caller from seeing any modifications the callee may make
3969         // as guaranteed by the `byval` attribute.
3970         int FrameIdx = MF.getFrameInfo().CreateStackObject(
3971             Flags.getByValSize(), std::max(16, (int)Flags.getByValAlign()),
3972             false);
3973         SDValue StackSlot =
3974             DAG.getFrameIndex(FrameIdx, getPointerTy(DAG.getDataLayout()));
3975         Chain =
3976             CreateCopyOfByValArgument(Arg, StackSlot, Chain, Flags, DAG, dl);
3977         // From now on treat this as a regular pointer
3978         Arg = StackSlot;
3979         isByVal = false;
3980       } else {
3981         // Store the argument.
3982         SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
3983         int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
3984         Chain = DAG.getStore(
3985             Chain, dl, Arg, SpillSlot,
3986             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3987         Arg = SpillSlot;
3988       }
3989       break;
3990     }
3991     }
3992 
3993     if (VA.needsCustom()) {
3994       assert(VA.getValVT() == MVT::v64i1 &&
3995              "Currently the only custom case is when we split v64i1 to 2 regs");
3996       // Split v64i1 value into two registers
3997       Passv64i1ArgInRegs(dl, DAG, Arg, RegsToPass, VA, ArgLocs[++I], Subtarget);
3998     } else if (VA.isRegLoc()) {
3999       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4000       const TargetOptions &Options = DAG.getTarget().Options;
4001       if (Options.EnableDebugEntryValues)
4002         CSInfo.emplace_back(VA.getLocReg(), I);
4003       if (isVarArg && IsWin64) {
4004         // Win64 ABI requires argument XMM reg to be copied to the corresponding
4005         // shadow reg if callee is a varargs function.
4006         unsigned ShadowReg = 0;
4007         switch (VA.getLocReg()) {
4008         case X86::XMM0: ShadowReg = X86::RCX; break;
4009         case X86::XMM1: ShadowReg = X86::RDX; break;
4010         case X86::XMM2: ShadowReg = X86::R8; break;
4011         case X86::XMM3: ShadowReg = X86::R9; break;
4012         }
4013         if (ShadowReg)
4014           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
4015       }
4016     } else if (!IsSibcall && (!isTailCall || isByVal)) {
4017       assert(VA.isMemLoc());
4018       if (!StackPtr.getNode())
4019         StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
4020                                       getPointerTy(DAG.getDataLayout()));
4021       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
4022                                              dl, DAG, VA, Flags));
4023     }
4024   }
4025 
4026   if (!MemOpChains.empty())
4027     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4028 
4029   if (Subtarget.isPICStyleGOT()) {
4030     // ELF / PIC requires GOT in the EBX register before function calls via PLT
4031     // GOT pointer.
4032     if (!isTailCall) {
4033       RegsToPass.push_back(std::make_pair(
4034           unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
4035                                           getPointerTy(DAG.getDataLayout()))));
4036     } else {
4037       // If we are tail calling and generating PIC/GOT style code load the
4038       // address of the callee into ECX. The value in ecx is used as target of
4039       // the tail jump. This is done to circumvent the ebx/callee-saved problem
4040       // for tail calls on PIC/GOT architectures. Normally we would just put the
4041       // address of GOT into ebx and then call target@PLT. But for tail calls
4042       // ebx would be restored (since ebx is callee saved) before jumping to the
4043       // target@PLT.
4044 
4045       // Note: The actual moving to ECX is done further down.
4046       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4047       if (G && !G->getGlobal()->hasLocalLinkage() &&
4048           G->getGlobal()->hasDefaultVisibility())
4049         Callee = LowerGlobalAddress(Callee, DAG);
4050       else if (isa<ExternalSymbolSDNode>(Callee))
4051         Callee = LowerExternalSymbol(Callee, DAG);
4052     }
4053   }
4054 
4055   if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
4056     // From AMD64 ABI document:
4057     // For calls that may call functions that use varargs or stdargs
4058     // (prototype-less calls or calls to functions containing ellipsis (...) in
4059     // the declaration) %al is used as hidden argument to specify the number
4060     // of SSE registers used. The contents of %al do not need to match exactly
4061     // the number of registers, but must be an ubound on the number of SSE
4062     // registers used and is in the range 0 - 8 inclusive.
4063 
4064     // Count the number of XMM registers allocated.
4065     static const MCPhysReg XMMArgRegs[] = {
4066       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4067       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
4068     };
4069     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
4070     assert((Subtarget.hasSSE1() || !NumXMMRegs)
4071            && "SSE registers cannot be used when SSE is disabled");
4072 
4073     RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
4074                                         DAG.getConstant(NumXMMRegs, dl,
4075                                                         MVT::i8)));
4076   }
4077 
4078   if (isVarArg && IsMustTail) {
4079     const auto &Forwards = X86Info->getForwardedMustTailRegParms();
4080     for (const auto &F : Forwards) {
4081       SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
4082       RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
4083     }
4084   }
4085 
4086   // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
4087   // don't need this because the eligibility check rejects calls that require
4088   // shuffling arguments passed in memory.
4089   if (!IsSibcall && isTailCall) {
4090     // Force all the incoming stack arguments to be loaded from the stack
4091     // before any new outgoing arguments are stored to the stack, because the
4092     // outgoing stack slots may alias the incoming argument stack slots, and
4093     // the alias isn't otherwise explicit. This is slightly more conservative
4094     // than necessary, because it means that each store effectively depends
4095     // on every argument instead of just those arguments it would clobber.
4096     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
4097 
4098     SmallVector<SDValue, 8> MemOpChains2;
4099     SDValue FIN;
4100     int FI = 0;
4101     for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
4102          ++I, ++OutsIndex) {
4103       CCValAssign &VA = ArgLocs[I];
4104 
4105       if (VA.isRegLoc()) {
4106         if (VA.needsCustom()) {
4107           assert((CallConv == CallingConv::X86_RegCall) &&
4108                  "Expecting custom case only in regcall calling convention");
4109           // This means that we are in special case where one argument was
4110           // passed through two register locations - Skip the next location
4111           ++I;
4112         }
4113 
4114         continue;
4115       }
4116 
4117       assert(VA.isMemLoc());
4118       SDValue Arg = OutVals[OutsIndex];
4119       ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
4120       // Skip inalloca arguments.  They don't require any work.
4121       if (Flags.isInAlloca())
4122         continue;
4123       // Create frame index.
4124       int32_t Offset = VA.getLocMemOffset()+FPDiff;
4125       uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
4126       FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4127       FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4128 
4129       if (Flags.isByVal()) {
4130         // Copy relative to framepointer.
4131         SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
4132         if (!StackPtr.getNode())
4133           StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
4134                                         getPointerTy(DAG.getDataLayout()));
4135         Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
4136                              StackPtr, Source);
4137 
4138         MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
4139                                                          ArgChain,
4140                                                          Flags, DAG, dl));
4141       } else {
4142         // Store relative to framepointer.
4143         MemOpChains2.push_back(DAG.getStore(
4144             ArgChain, dl, Arg, FIN,
4145             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4146       }
4147     }
4148 
4149     if (!MemOpChains2.empty())
4150       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4151 
4152     // Store the return address to the appropriate stack slot.
4153     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
4154                                      getPointerTy(DAG.getDataLayout()),
4155                                      RegInfo->getSlotSize(), FPDiff, dl);
4156   }
4157 
4158   // Build a sequence of copy-to-reg nodes chained together with token chain
4159   // and flag operands which copy the outgoing args into registers.
4160   SDValue InFlag;
4161   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4162     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4163                              RegsToPass[i].second, InFlag);
4164     InFlag = Chain.getValue(1);
4165   }
4166 
4167   if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
4168     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
4169     // In the 64-bit large code model, we have to make all calls
4170     // through a register, since the call instruction's 32-bit
4171     // pc-relative offset may not be large enough to hold the whole
4172     // address.
4173   } else if (Callee->getOpcode() == ISD::GlobalAddress ||
4174              Callee->getOpcode() == ISD::ExternalSymbol) {
4175     // Lower direct calls to global addresses and external symbols. Setting
4176     // ForCall to true here has the effect of removing WrapperRIP when possible
4177     // to allow direct calls to be selected without first materializing the
4178     // address into a register.
4179     Callee = LowerGlobalOrExternal(Callee, DAG, /*ForCall=*/true);
4180   } else if (Subtarget.isTarget64BitILP32() &&
4181              Callee->getValueType(0) == MVT::i32) {
4182     // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
4183     Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
4184   }
4185 
4186   // Returns a chain & a flag for retval copy to use.
4187   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4188   SmallVector<SDValue, 8> Ops;
4189 
4190   if (!IsSibcall && isTailCall && !IsMustTail) {
4191     Chain = DAG.getCALLSEQ_END(Chain,
4192                                DAG.getIntPtrConstant(NumBytesToPop, dl, true),
4193                                DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4194     InFlag = Chain.getValue(1);
4195   }
4196 
4197   Ops.push_back(Chain);
4198   Ops.push_back(Callee);
4199 
4200   if (isTailCall)
4201     Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
4202 
4203   // Add argument registers to the end of the list so that they are known live
4204   // into the call.
4205   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4206     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4207                                   RegsToPass[i].second.getValueType()));
4208 
4209   // Add a register mask operand representing the call-preserved registers.
4210   // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists) then we
4211   // set X86_INTR calling convention because it has the same CSR mask
4212   // (same preserved registers).
4213   const uint32_t *Mask = RegInfo->getCallPreservedMask(
4214       MF, HasNCSR ? (CallingConv::ID)CallingConv::X86_INTR : CallConv);
4215   assert(Mask && "Missing call preserved mask for calling convention");
4216 
4217   // If this is an invoke in a 32-bit function using a funclet-based
4218   // personality, assume the function clobbers all registers. If an exception
4219   // is thrown, the runtime will not restore CSRs.
4220   // FIXME: Model this more precisely so that we can register allocate across
4221   // the normal edge and spill and fill across the exceptional edge.
4222   if (!Is64Bit && CLI.CS && CLI.CS.isInvoke()) {
4223     const Function &CallerFn = MF.getFunction();
4224     EHPersonality Pers =
4225         CallerFn.hasPersonalityFn()
4226             ? classifyEHPersonality(CallerFn.getPersonalityFn())
4227             : EHPersonality::Unknown;
4228     if (isFuncletEHPersonality(Pers))
4229       Mask = RegInfo->getNoPreservedMask();
4230   }
4231 
4232   // Define a new register mask from the existing mask.
4233   uint32_t *RegMask = nullptr;
4234 
4235   // In some calling conventions we need to remove the used physical registers
4236   // from the reg mask.
4237   if (CallConv == CallingConv::X86_RegCall || HasNCSR) {
4238     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4239 
4240     // Allocate a new Reg Mask and copy Mask.
4241     RegMask = MF.allocateRegMask();
4242     unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
4243     memcpy(RegMask, Mask, sizeof(RegMask[0]) * RegMaskSize);
4244 
4245     // Make sure all sub registers of the argument registers are reset
4246     // in the RegMask.
4247     for (auto const &RegPair : RegsToPass)
4248       for (MCSubRegIterator SubRegs(RegPair.first, TRI, /*IncludeSelf=*/true);
4249            SubRegs.isValid(); ++SubRegs)
4250         RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
4251 
4252     // Create the RegMask Operand according to our updated mask.
4253     Ops.push_back(DAG.getRegisterMask(RegMask));
4254   } else {
4255     // Create the RegMask Operand according to the static mask.
4256     Ops.push_back(DAG.getRegisterMask(Mask));
4257   }
4258 
4259   if (InFlag.getNode())
4260     Ops.push_back(InFlag);
4261 
4262   if (isTailCall) {
4263     // We used to do:
4264     //// If this is the first return lowered for this function, add the regs
4265     //// to the liveout set for the function.
4266     // This isn't right, although it's probably harmless on x86; liveouts
4267     // should be computed from returns not tail calls.  Consider a void
4268     // function making a tail call to a function returning int.
4269     MF.getFrameInfo().setHasTailCall();
4270     SDValue Ret = DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
4271     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
4272     return Ret;
4273   }
4274 
4275   if (HasNoCfCheck && IsCFProtectionSupported) {
4276     Chain = DAG.getNode(X86ISD::NT_CALL, dl, NodeTys, Ops);
4277   } else {
4278     Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
4279   }
4280   InFlag = Chain.getValue(1);
4281   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
4282 
4283   // Save heapallocsite metadata.
4284   if (CLI.CS)
4285     if (MDNode *HeapAlloc = CLI.CS->getMetadata("heapallocsite"))
4286       DAG.addHeapAllocSite(Chain.getNode(), HeapAlloc);
4287 
4288   // Create the CALLSEQ_END node.
4289   unsigned NumBytesForCalleeToPop;
4290   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
4291                        DAG.getTarget().Options.GuaranteedTailCallOpt))
4292     NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
4293   else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
4294            !Subtarget.getTargetTriple().isOSMSVCRT() &&
4295            SR == StackStructReturn)
4296     // If this is a call to a struct-return function, the callee
4297     // pops the hidden struct pointer, so we have to push it back.
4298     // This is common for Darwin/X86, Linux & Mingw32 targets.
4299     // For MSVC Win32 targets, the caller pops the hidden struct pointer.
4300     NumBytesForCalleeToPop = 4;
4301   else
4302     NumBytesForCalleeToPop = 0;  // Callee pops nothing.
4303 
4304   if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
4305     // No need to reset the stack after the call if the call doesn't return. To
4306     // make the MI verify, we'll pretend the callee does it for us.
4307     NumBytesForCalleeToPop = NumBytes;
4308   }
4309 
4310   // Returns a flag for retval copy to use.
4311   if (!IsSibcall) {
4312     Chain = DAG.getCALLSEQ_END(Chain,
4313                                DAG.getIntPtrConstant(NumBytesToPop, dl, true),
4314                                DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
4315                                                      true),
4316                                InFlag, dl);
4317     InFlag = Chain.getValue(1);
4318   }
4319 
4320   // Handle result values, copying them out of physregs into vregs that we
4321   // return.
4322   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
4323                          InVals, RegMask);
4324 }
4325 
4326 //===----------------------------------------------------------------------===//
4327 //                Fast Calling Convention (tail call) implementation
4328 //===----------------------------------------------------------------------===//
4329 
4330 //  Like std call, callee cleans arguments, convention except that ECX is
4331 //  reserved for storing the tail called function address. Only 2 registers are
4332 //  free for argument passing (inreg). Tail call optimization is performed
4333 //  provided:
4334 //                * tailcallopt is enabled
4335 //                * caller/callee are fastcc
4336 //  On X86_64 architecture with GOT-style position independent code only local
4337 //  (within module) calls are supported at the moment.
4338 //  To keep the stack aligned according to platform abi the function
4339 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
4340 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
4341 //  If a tail called function callee has more arguments than the caller the
4342 //  caller needs to make sure that there is room to move the RETADDR to. This is
4343 //  achieved by reserving an area the size of the argument delta right after the
4344 //  original RETADDR, but before the saved framepointer or the spilled registers
4345 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
4346 //  stack layout:
4347 //    arg1
4348 //    arg2
4349 //    RETADDR
4350 //    [ new RETADDR
4351 //      move area ]
4352 //    (possible EBP)
4353 //    ESI
4354 //    EDI
4355 //    local1 ..
4356 
4357 /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
4358 /// requirement.
4359 unsigned
4360 X86TargetLowering::GetAlignedArgumentStackSize(const unsigned StackSize,
4361                                                SelectionDAG &DAG) const {
4362   const Align StackAlignment(Subtarget.getFrameLowering()->getStackAlignment());
4363   const uint64_t SlotSize = Subtarget.getRegisterInfo()->getSlotSize();
4364   assert(StackSize % SlotSize == 0 &&
4365          "StackSize must be a multiple of SlotSize");
4366   return alignTo(StackSize + SlotSize, StackAlignment) - SlotSize;
4367 }
4368 
4369 /// Return true if the given stack call argument is already available in the
4370 /// same position (relatively) of the caller's incoming argument stack.
4371 static
4372 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
4373                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
4374                          const X86InstrInfo *TII, const CCValAssign &VA) {
4375   unsigned Bytes = Arg.getValueSizeInBits() / 8;
4376 
4377   for (;;) {
4378     // Look through nodes that don't alter the bits of the incoming value.
4379     unsigned Op = Arg.getOpcode();
4380     if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
4381       Arg = Arg.getOperand(0);
4382       continue;
4383     }
4384     if (Op == ISD::TRUNCATE) {
4385       const SDValue &TruncInput = Arg.getOperand(0);
4386       if (TruncInput.getOpcode() == ISD::AssertZext &&
4387           cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
4388               Arg.getValueType()) {
4389         Arg = TruncInput.getOperand(0);
4390         continue;
4391       }
4392     }
4393     break;
4394   }
4395 
4396   int FI = INT_MAX;
4397   if (Arg.getOpcode() == ISD::CopyFromReg) {
4398     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
4399     if (!Register::isVirtualRegister(VR))
4400       return false;
4401     MachineInstr *Def = MRI->getVRegDef(VR);
4402     if (!Def)
4403       return false;
4404     if (!Flags.isByVal()) {
4405       if (!TII->isLoadFromStackSlot(*Def, FI))
4406         return false;
4407     } else {
4408       unsigned Opcode = Def->getOpcode();
4409       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
4410            Opcode == X86::LEA64_32r) &&
4411           Def->getOperand(1).isFI()) {
4412         FI = Def->getOperand(1).getIndex();
4413         Bytes = Flags.getByValSize();
4414       } else
4415         return false;
4416     }
4417   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
4418     if (Flags.isByVal())
4419       // ByVal argument is passed in as a pointer but it's now being
4420       // dereferenced. e.g.
4421       // define @foo(%struct.X* %A) {
4422       //   tail call @bar(%struct.X* byval %A)
4423       // }
4424       return false;
4425     SDValue Ptr = Ld->getBasePtr();
4426     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
4427     if (!FINode)
4428       return false;
4429     FI = FINode->getIndex();
4430   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
4431     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
4432     FI = FINode->getIndex();
4433     Bytes = Flags.getByValSize();
4434   } else
4435     return false;
4436 
4437   assert(FI != INT_MAX);
4438   if (!MFI.isFixedObjectIndex(FI))
4439     return false;
4440 
4441   if (Offset != MFI.getObjectOffset(FI))
4442     return false;
4443 
4444   // If this is not byval, check that the argument stack object is immutable.
4445   // inalloca and argument copy elision can create mutable argument stack
4446   // objects. Byval objects can be mutated, but a byval call intends to pass the
4447   // mutated memory.
4448   if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
4449     return false;
4450 
4451   if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) {
4452     // If the argument location is wider than the argument type, check that any
4453     // extension flags match.
4454     if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
4455         Flags.isSExt() != MFI.isObjectSExt(FI)) {
4456       return false;
4457     }
4458   }
4459 
4460   return Bytes == MFI.getObjectSize(FI);
4461 }
4462 
4463 /// Check whether the call is eligible for tail call optimization. Targets
4464 /// that want to do tail call optimization should implement this function.
4465 bool X86TargetLowering::IsEligibleForTailCallOptimization(
4466     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
4467     bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
4468     const SmallVectorImpl<ISD::OutputArg> &Outs,
4469     const SmallVectorImpl<SDValue> &OutVals,
4470     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4471   if (!mayTailCallThisCC(CalleeCC))
4472     return false;
4473 
4474   // If -tailcallopt is specified, make fastcc functions tail-callable.
4475   MachineFunction &MF = DAG.getMachineFunction();
4476   const Function &CallerF = MF.getFunction();
4477 
4478   // If the function return type is x86_fp80 and the callee return type is not,
4479   // then the FP_EXTEND of the call result is not a nop. It's not safe to
4480   // perform a tailcall optimization here.
4481   if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
4482     return false;
4483 
4484   CallingConv::ID CallerCC = CallerF.getCallingConv();
4485   bool CCMatch = CallerCC == CalleeCC;
4486   bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
4487   bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
4488   bool IsGuaranteeTCO = DAG.getTarget().Options.GuaranteedTailCallOpt ||
4489       CalleeCC == CallingConv::Tail;
4490 
4491   // Win64 functions have extra shadow space for argument homing. Don't do the
4492   // sibcall if the caller and callee have mismatched expectations for this
4493   // space.
4494   if (IsCalleeWin64 != IsCallerWin64)
4495     return false;
4496 
4497   if (IsGuaranteeTCO) {
4498     if (canGuaranteeTCO(CalleeCC) && CCMatch)
4499       return true;
4500     return false;
4501   }
4502 
4503   // Look for obvious safe cases to perform tail call optimization that do not
4504   // require ABI changes. This is what gcc calls sibcall.
4505 
4506   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
4507   // emit a special epilogue.
4508   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
4509   if (RegInfo->needsStackRealignment(MF))
4510     return false;
4511 
4512   // Also avoid sibcall optimization if either caller or callee uses struct
4513   // return semantics.
4514   if (isCalleeStructRet || isCallerStructRet)
4515     return false;
4516 
4517   // Do not sibcall optimize vararg calls unless all arguments are passed via
4518   // registers.
4519   LLVMContext &C = *DAG.getContext();
4520   if (isVarArg && !Outs.empty()) {
4521     // Optimizing for varargs on Win64 is unlikely to be safe without
4522     // additional testing.
4523     if (IsCalleeWin64 || IsCallerWin64)
4524       return false;
4525 
4526     SmallVector<CCValAssign, 16> ArgLocs;
4527     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
4528 
4529     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
4530     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
4531       if (!ArgLocs[i].isRegLoc())
4532         return false;
4533   }
4534 
4535   // If the call result is in ST0 / ST1, it needs to be popped off the x87
4536   // stack.  Therefore, if it's not used by the call it is not safe to optimize
4537   // this into a sibcall.
4538   bool Unused = false;
4539   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4540     if (!Ins[i].Used) {
4541       Unused = true;
4542       break;
4543     }
4544   }
4545   if (Unused) {
4546     SmallVector<CCValAssign, 16> RVLocs;
4547     CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
4548     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
4549     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4550       CCValAssign &VA = RVLocs[i];
4551       if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
4552         return false;
4553     }
4554   }
4555 
4556   // Check that the call results are passed in the same way.
4557   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
4558                                   RetCC_X86, RetCC_X86))
4559     return false;
4560   // The callee has to preserve all registers the caller needs to preserve.
4561   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4562   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
4563   if (!CCMatch) {
4564     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
4565     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
4566       return false;
4567   }
4568 
4569   unsigned StackArgsSize = 0;
4570 
4571   // If the callee takes no arguments then go on to check the results of the
4572   // call.
4573   if (!Outs.empty()) {
4574     // Check if stack adjustment is needed. For now, do not do this if any
4575     // argument is passed on the stack.
4576     SmallVector<CCValAssign, 16> ArgLocs;
4577     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
4578 
4579     // Allocate shadow area for Win64
4580     if (IsCalleeWin64)
4581       CCInfo.AllocateStack(32, 8);
4582 
4583     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
4584     StackArgsSize = CCInfo.getNextStackOffset();
4585 
4586     if (CCInfo.getNextStackOffset()) {
4587       // Check if the arguments are already laid out in the right way as
4588       // the caller's fixed stack objects.
4589       MachineFrameInfo &MFI = MF.getFrameInfo();
4590       const MachineRegisterInfo *MRI = &MF.getRegInfo();
4591       const X86InstrInfo *TII = Subtarget.getInstrInfo();
4592       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4593         CCValAssign &VA = ArgLocs[i];
4594         SDValue Arg = OutVals[i];
4595         ISD::ArgFlagsTy Flags = Outs[i].Flags;
4596         if (VA.getLocInfo() == CCValAssign::Indirect)
4597           return false;
4598         if (!VA.isRegLoc()) {
4599           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
4600                                    MFI, MRI, TII, VA))
4601             return false;
4602         }
4603       }
4604     }
4605 
4606     bool PositionIndependent = isPositionIndependent();
4607     // If the tailcall address may be in a register, then make sure it's
4608     // possible to register allocate for it. In 32-bit, the call address can
4609     // only target EAX, EDX, or ECX since the tail call must be scheduled after
4610     // callee-saved registers are restored. These happen to be the same
4611     // registers used to pass 'inreg' arguments so watch out for those.
4612     if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
4613                                   !isa<ExternalSymbolSDNode>(Callee)) ||
4614                                  PositionIndependent)) {
4615       unsigned NumInRegs = 0;
4616       // In PIC we need an extra register to formulate the address computation
4617       // for the callee.
4618       unsigned MaxInRegs = PositionIndependent ? 2 : 3;
4619 
4620       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4621         CCValAssign &VA = ArgLocs[i];
4622         if (!VA.isRegLoc())
4623           continue;
4624         Register Reg = VA.getLocReg();
4625         switch (Reg) {
4626         default: break;
4627         case X86::EAX: case X86::EDX: case X86::ECX:
4628           if (++NumInRegs == MaxInRegs)
4629             return false;
4630           break;
4631         }
4632       }
4633     }
4634 
4635     const MachineRegisterInfo &MRI = MF.getRegInfo();
4636     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
4637       return false;
4638   }
4639 
4640   bool CalleeWillPop =
4641       X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
4642                        MF.getTarget().Options.GuaranteedTailCallOpt);
4643 
4644   if (unsigned BytesToPop =
4645           MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
4646     // If we have bytes to pop, the callee must pop them.
4647     bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
4648     if (!CalleePopMatches)
4649       return false;
4650   } else if (CalleeWillPop && StackArgsSize > 0) {
4651     // If we don't have bytes to pop, make sure the callee doesn't pop any.
4652     return false;
4653   }
4654 
4655   return true;
4656 }
4657 
4658 FastISel *
4659 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
4660                                   const TargetLibraryInfo *libInfo) const {
4661   return X86::createFastISel(funcInfo, libInfo);
4662 }
4663 
4664 //===----------------------------------------------------------------------===//
4665 //                           Other Lowering Hooks
4666 //===----------------------------------------------------------------------===//
4667 
4668 static bool MayFoldLoad(SDValue Op) {
4669   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
4670 }
4671 
4672 static bool MayFoldIntoStore(SDValue Op) {
4673   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
4674 }
4675 
4676 static bool MayFoldIntoZeroExtend(SDValue Op) {
4677   if (Op.hasOneUse()) {
4678     unsigned Opcode = Op.getNode()->use_begin()->getOpcode();
4679     return (ISD::ZERO_EXTEND == Opcode);
4680   }
4681   return false;
4682 }
4683 
4684 static bool isTargetShuffle(unsigned Opcode) {
4685   switch(Opcode) {
4686   default: return false;
4687   case X86ISD::BLENDI:
4688   case X86ISD::PSHUFB:
4689   case X86ISD::PSHUFD:
4690   case X86ISD::PSHUFHW:
4691   case X86ISD::PSHUFLW:
4692   case X86ISD::SHUFP:
4693   case X86ISD::INSERTPS:
4694   case X86ISD::EXTRQI:
4695   case X86ISD::INSERTQI:
4696   case X86ISD::PALIGNR:
4697   case X86ISD::VSHLDQ:
4698   case X86ISD::VSRLDQ:
4699   case X86ISD::MOVLHPS:
4700   case X86ISD::MOVHLPS:
4701   case X86ISD::MOVSHDUP:
4702   case X86ISD::MOVSLDUP:
4703   case X86ISD::MOVDDUP:
4704   case X86ISD::MOVSS:
4705   case X86ISD::MOVSD:
4706   case X86ISD::UNPCKL:
4707   case X86ISD::UNPCKH:
4708   case X86ISD::VBROADCAST:
4709   case X86ISD::VPERMILPI:
4710   case X86ISD::VPERMILPV:
4711   case X86ISD::VPERM2X128:
4712   case X86ISD::SHUF128:
4713   case X86ISD::VPERMIL2:
4714   case X86ISD::VPERMI:
4715   case X86ISD::VPPERM:
4716   case X86ISD::VPERMV:
4717   case X86ISD::VPERMV3:
4718   case X86ISD::VZEXT_MOVL:
4719     return true;
4720   }
4721 }
4722 
4723 static bool isTargetShuffleVariableMask(unsigned Opcode) {
4724   switch (Opcode) {
4725   default: return false;
4726   // Target Shuffles.
4727   case X86ISD::PSHUFB:
4728   case X86ISD::VPERMILPV:
4729   case X86ISD::VPERMIL2:
4730   case X86ISD::VPPERM:
4731   case X86ISD::VPERMV:
4732   case X86ISD::VPERMV3:
4733     return true;
4734   // 'Faux' Target Shuffles.
4735   case ISD::OR:
4736   case ISD::AND:
4737   case X86ISD::ANDNP:
4738     return true;
4739   }
4740 }
4741 
4742 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
4743   MachineFunction &MF = DAG.getMachineFunction();
4744   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
4745   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
4746   int ReturnAddrIndex = FuncInfo->getRAIndex();
4747 
4748   if (ReturnAddrIndex == 0) {
4749     // Set up a frame object for the return address.
4750     unsigned SlotSize = RegInfo->getSlotSize();
4751     ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize,
4752                                                           -(int64_t)SlotSize,
4753                                                           false);
4754     FuncInfo->setRAIndex(ReturnAddrIndex);
4755   }
4756 
4757   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
4758 }
4759 
4760 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
4761                                        bool hasSymbolicDisplacement) {
4762   // Offset should fit into 32 bit immediate field.
4763   if (!isInt<32>(Offset))
4764     return false;
4765 
4766   // If we don't have a symbolic displacement - we don't have any extra
4767   // restrictions.
4768   if (!hasSymbolicDisplacement)
4769     return true;
4770 
4771   // FIXME: Some tweaks might be needed for medium code model.
4772   if (M != CodeModel::Small && M != CodeModel::Kernel)
4773     return false;
4774 
4775   // For small code model we assume that latest object is 16MB before end of 31
4776   // bits boundary. We may also accept pretty large negative constants knowing
4777   // that all objects are in the positive half of address space.
4778   if (M == CodeModel::Small && Offset < 16*1024*1024)
4779     return true;
4780 
4781   // For kernel code model we know that all object resist in the negative half
4782   // of 32bits address space. We may not accept negative offsets, since they may
4783   // be just off and we may accept pretty large positive ones.
4784   if (M == CodeModel::Kernel && Offset >= 0)
4785     return true;
4786 
4787   return false;
4788 }
4789 
4790 /// Determines whether the callee is required to pop its own arguments.
4791 /// Callee pop is necessary to support tail calls.
4792 bool X86::isCalleePop(CallingConv::ID CallingConv,
4793                       bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
4794   // If GuaranteeTCO is true, we force some calls to be callee pop so that we
4795   // can guarantee TCO.
4796   if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
4797     return true;
4798 
4799   switch (CallingConv) {
4800   default:
4801     return false;
4802   case CallingConv::X86_StdCall:
4803   case CallingConv::X86_FastCall:
4804   case CallingConv::X86_ThisCall:
4805   case CallingConv::X86_VectorCall:
4806     return !is64Bit;
4807   }
4808 }
4809 
4810 /// Return true if the condition is an signed comparison operation.
4811 static bool isX86CCSigned(unsigned X86CC) {
4812   switch (X86CC) {
4813   default:
4814     llvm_unreachable("Invalid integer condition!");
4815   case X86::COND_E:
4816   case X86::COND_NE:
4817   case X86::COND_B:
4818   case X86::COND_A:
4819   case X86::COND_BE:
4820   case X86::COND_AE:
4821     return false;
4822   case X86::COND_G:
4823   case X86::COND_GE:
4824   case X86::COND_L:
4825   case X86::COND_LE:
4826     return true;
4827   }
4828 }
4829 
4830 static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
4831   switch (SetCCOpcode) {
4832   default: llvm_unreachable("Invalid integer condition!");
4833   case ISD::SETEQ:  return X86::COND_E;
4834   case ISD::SETGT:  return X86::COND_G;
4835   case ISD::SETGE:  return X86::COND_GE;
4836   case ISD::SETLT:  return X86::COND_L;
4837   case ISD::SETLE:  return X86::COND_LE;
4838   case ISD::SETNE:  return X86::COND_NE;
4839   case ISD::SETULT: return X86::COND_B;
4840   case ISD::SETUGT: return X86::COND_A;
4841   case ISD::SETULE: return X86::COND_BE;
4842   case ISD::SETUGE: return X86::COND_AE;
4843   }
4844 }
4845 
4846 /// Do a one-to-one translation of a ISD::CondCode to the X86-specific
4847 /// condition code, returning the condition code and the LHS/RHS of the
4848 /// comparison to make.
4849 static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
4850                                bool isFP, SDValue &LHS, SDValue &RHS,
4851                                SelectionDAG &DAG) {
4852   if (!isFP) {
4853     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4854       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
4855         // X > -1   -> X == 0, jump !sign.
4856         RHS = DAG.getConstant(0, DL, RHS.getValueType());
4857         return X86::COND_NS;
4858       }
4859       if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
4860         // X < 0   -> X == 0, jump on sign.
4861         return X86::COND_S;
4862       }
4863       if (SetCCOpcode == ISD::SETGE && RHSC->isNullValue()) {
4864         // X >= 0   -> X == 0, jump on !sign.
4865         return X86::COND_NS;
4866       }
4867       if (SetCCOpcode == ISD::SETLT && RHSC->isOne()) {
4868         // X < 1   -> X <= 0
4869         RHS = DAG.getConstant(0, DL, RHS.getValueType());
4870         return X86::COND_LE;
4871       }
4872     }
4873 
4874     return TranslateIntegerX86CC(SetCCOpcode);
4875   }
4876 
4877   // First determine if it is required or is profitable to flip the operands.
4878 
4879   // If LHS is a foldable load, but RHS is not, flip the condition.
4880   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
4881       !ISD::isNON_EXTLoad(RHS.getNode())) {
4882     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
4883     std::swap(LHS, RHS);
4884   }
4885 
4886   switch (SetCCOpcode) {
4887   default: break;
4888   case ISD::SETOLT:
4889   case ISD::SETOLE:
4890   case ISD::SETUGT:
4891   case ISD::SETUGE:
4892     std::swap(LHS, RHS);
4893     break;
4894   }
4895 
4896   // On a floating point condition, the flags are set as follows:
4897   // ZF  PF  CF   op
4898   //  0 | 0 | 0 | X > Y
4899   //  0 | 0 | 1 | X < Y
4900   //  1 | 0 | 0 | X == Y
4901   //  1 | 1 | 1 | unordered
4902   switch (SetCCOpcode) {
4903   default: llvm_unreachable("Condcode should be pre-legalized away");
4904   case ISD::SETUEQ:
4905   case ISD::SETEQ:   return X86::COND_E;
4906   case ISD::SETOLT:              // flipped
4907   case ISD::SETOGT:
4908   case ISD::SETGT:   return X86::COND_A;
4909   case ISD::SETOLE:              // flipped
4910   case ISD::SETOGE:
4911   case ISD::SETGE:   return X86::COND_AE;
4912   case ISD::SETUGT:              // flipped
4913   case ISD::SETULT:
4914   case ISD::SETLT:   return X86::COND_B;
4915   case ISD::SETUGE:              // flipped
4916   case ISD::SETULE:
4917   case ISD::SETLE:   return X86::COND_BE;
4918   case ISD::SETONE:
4919   case ISD::SETNE:   return X86::COND_NE;
4920   case ISD::SETUO:   return X86::COND_P;
4921   case ISD::SETO:    return X86::COND_NP;
4922   case ISD::SETOEQ:
4923   case ISD::SETUNE:  return X86::COND_INVALID;
4924   }
4925 }
4926 
4927 /// Is there a floating point cmov for the specific X86 condition code?
4928 /// Current x86 isa includes the following FP cmov instructions:
4929 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
4930 static bool hasFPCMov(unsigned X86CC) {
4931   switch (X86CC) {
4932   default:
4933     return false;
4934   case X86::COND_B:
4935   case X86::COND_BE:
4936   case X86::COND_E:
4937   case X86::COND_P:
4938   case X86::COND_A:
4939   case X86::COND_AE:
4940   case X86::COND_NE:
4941   case X86::COND_NP:
4942     return true;
4943   }
4944 }
4945 
4946 
4947 bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
4948                                            const CallInst &I,
4949                                            MachineFunction &MF,
4950                                            unsigned Intrinsic) const {
4951 
4952   const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic);
4953   if (!IntrData)
4954     return false;
4955 
4956   Info.flags = MachineMemOperand::MONone;
4957   Info.offset = 0;
4958 
4959   switch (IntrData->Type) {
4960   case TRUNCATE_TO_MEM_VI8:
4961   case TRUNCATE_TO_MEM_VI16:
4962   case TRUNCATE_TO_MEM_VI32: {
4963     Info.opc = ISD::INTRINSIC_VOID;
4964     Info.ptrVal = I.getArgOperand(0);
4965     MVT VT  = MVT::getVT(I.getArgOperand(1)->getType());
4966     MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
4967     if (IntrData->Type == TRUNCATE_TO_MEM_VI8)
4968       ScalarVT = MVT::i8;
4969     else if (IntrData->Type == TRUNCATE_TO_MEM_VI16)
4970       ScalarVT = MVT::i16;
4971     else if (IntrData->Type == TRUNCATE_TO_MEM_VI32)
4972       ScalarVT = MVT::i32;
4973 
4974     Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements());
4975     Info.align = Align::None();
4976     Info.flags |= MachineMemOperand::MOStore;
4977     break;
4978   }
4979   case GATHER:
4980   case GATHER_AVX2: {
4981     Info.opc = ISD::INTRINSIC_W_CHAIN;
4982     Info.ptrVal = nullptr;
4983     MVT DataVT = MVT::getVT(I.getType());
4984     MVT IndexVT = MVT::getVT(I.getArgOperand(2)->getType());
4985     unsigned NumElts = std::min(DataVT.getVectorNumElements(),
4986                                 IndexVT.getVectorNumElements());
4987     Info.memVT = MVT::getVectorVT(DataVT.getVectorElementType(), NumElts);
4988     Info.align = Align::None();
4989     Info.flags |= MachineMemOperand::MOLoad;
4990     break;
4991   }
4992   case SCATTER: {
4993     Info.opc = ISD::INTRINSIC_VOID;
4994     Info.ptrVal = nullptr;
4995     MVT DataVT = MVT::getVT(I.getArgOperand(3)->getType());
4996     MVT IndexVT = MVT::getVT(I.getArgOperand(2)->getType());
4997     unsigned NumElts = std::min(DataVT.getVectorNumElements(),
4998                                 IndexVT.getVectorNumElements());
4999     Info.memVT = MVT::getVectorVT(DataVT.getVectorElementType(), NumElts);
5000     Info.align = Align::None();
5001     Info.flags |= MachineMemOperand::MOStore;
5002     break;
5003   }
5004   default:
5005     return false;
5006   }
5007 
5008   return true;
5009 }
5010 
5011 /// Returns true if the target can instruction select the
5012 /// specified FP immediate natively. If false, the legalizer will
5013 /// materialize the FP immediate as a load from a constant pool.
5014 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
5015                                      bool ForCodeSize) const {
5016   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
5017     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
5018       return true;
5019   }
5020   return false;
5021 }
5022 
5023 bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
5024                                               ISD::LoadExtType ExtTy,
5025                                               EVT NewVT) const {
5026   assert(cast<LoadSDNode>(Load)->isSimple() && "illegal to narrow");
5027 
5028   // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
5029   // relocation target a movq or addq instruction: don't let the load shrink.
5030   SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
5031   if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
5032     if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
5033       return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
5034 
5035   // If this is an (1) AVX vector load with (2) multiple uses and (3) all of
5036   // those uses are extracted directly into a store, then the extract + store
5037   // can be store-folded. Therefore, it's probably not worth splitting the load.
5038   EVT VT = Load->getValueType(0);
5039   if ((VT.is256BitVector() || VT.is512BitVector()) && !Load->hasOneUse()) {
5040     for (auto UI = Load->use_begin(), UE = Load->use_end(); UI != UE; ++UI) {
5041       // Skip uses of the chain value. Result 0 of the node is the load value.
5042       if (UI.getUse().getResNo() != 0)
5043         continue;
5044 
5045       // If this use is not an extract + store, it's probably worth splitting.
5046       if (UI->getOpcode() != ISD::EXTRACT_SUBVECTOR || !UI->hasOneUse() ||
5047           UI->use_begin()->getOpcode() != ISD::STORE)
5048         return true;
5049     }
5050     // All non-chain uses are extract + store.
5051     return false;
5052   }
5053 
5054   return true;
5055 }
5056 
5057 /// Returns true if it is beneficial to convert a load of a constant
5058 /// to just the constant itself.
5059 bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
5060                                                           Type *Ty) const {
5061   assert(Ty->isIntegerTy());
5062 
5063   unsigned BitSize = Ty->getPrimitiveSizeInBits();
5064   if (BitSize == 0 || BitSize > 64)
5065     return false;
5066   return true;
5067 }
5068 
5069 bool X86TargetLowering::reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
5070   // If we are using XMM registers in the ABI and the condition of the select is
5071   // a floating-point compare and we have blendv or conditional move, then it is
5072   // cheaper to select instead of doing a cross-register move and creating a
5073   // load that depends on the compare result.
5074   bool IsFPSetCC = CmpOpVT.isFloatingPoint() && CmpOpVT != MVT::f128;
5075   return !IsFPSetCC || !Subtarget.isTarget64BitLP64() || !Subtarget.hasAVX();
5076 }
5077 
5078 bool X86TargetLowering::convertSelectOfConstantsToMath(EVT VT) const {
5079   // TODO: It might be a win to ease or lift this restriction, but the generic
5080   // folds in DAGCombiner conflict with vector folds for an AVX512 target.
5081   if (VT.isVector() && Subtarget.hasAVX512())
5082     return false;
5083 
5084   return true;
5085 }
5086 
5087 bool X86TargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
5088                                                SDValue C) const {
5089   // TODO: We handle scalars using custom code, but generic combining could make
5090   // that unnecessary.
5091   APInt MulC;
5092   if (!ISD::isConstantSplatVector(C.getNode(), MulC))
5093     return false;
5094 
5095   // Find the type this will be legalized too. Otherwise we might prematurely
5096   // convert this to shl+add/sub and then still have to type legalize those ops.
5097   // Another choice would be to defer the decision for illegal types until
5098   // after type legalization. But constant splat vectors of i64 can't make it
5099   // through type legalization on 32-bit targets so we would need to special
5100   // case vXi64.
5101   while (getTypeAction(Context, VT) != TypeLegal)
5102     VT = getTypeToTransformTo(Context, VT);
5103 
5104   // If vector multiply is legal, assume that's faster than shl + add/sub.
5105   // TODO: Multiply is a complex op with higher latency and lower throughput in
5106   //       most implementations, so this check could be loosened based on type
5107   //       and/or a CPU attribute.
5108   if (isOperationLegal(ISD::MUL, VT))
5109     return false;
5110 
5111   // shl+add, shl+sub, shl+add+neg
5112   return (MulC + 1).isPowerOf2() || (MulC - 1).isPowerOf2() ||
5113          (1 - MulC).isPowerOf2() || (-(MulC + 1)).isPowerOf2();
5114 }
5115 
5116 bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
5117                                                 unsigned Index) const {
5118   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
5119     return false;
5120 
5121   // Mask vectors support all subregister combinations and operations that
5122   // extract half of vector.
5123   if (ResVT.getVectorElementType() == MVT::i1)
5124     return Index == 0 || ((ResVT.getSizeInBits() == SrcVT.getSizeInBits()*2) &&
5125                           (Index == ResVT.getVectorNumElements()));
5126 
5127   return (Index % ResVT.getVectorNumElements()) == 0;
5128 }
5129 
5130 bool X86TargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
5131   unsigned Opc = VecOp.getOpcode();
5132 
5133   // Assume target opcodes can't be scalarized.
5134   // TODO - do we have any exceptions?
5135   if (Opc >= ISD::BUILTIN_OP_END)
5136     return false;
5137 
5138   // If the vector op is not supported, try to convert to scalar.
5139   EVT VecVT = VecOp.getValueType();
5140   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
5141     return true;
5142 
5143   // If the vector op is supported, but the scalar op is not, the transform may
5144   // not be worthwhile.
5145   EVT ScalarVT = VecVT.getScalarType();
5146   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
5147 }
5148 
5149 bool X86TargetLowering::shouldFormOverflowOp(unsigned Opcode, EVT VT) const {
5150   // TODO: Allow vectors?
5151   if (VT.isVector())
5152     return false;
5153   return VT.isSimple() || !isOperationExpand(Opcode, VT);
5154 }
5155 
5156 bool X86TargetLowering::isCheapToSpeculateCttz() const {
5157   // Speculate cttz only if we can directly use TZCNT.
5158   return Subtarget.hasBMI();
5159 }
5160 
5161 bool X86TargetLowering::isCheapToSpeculateCtlz() const {
5162   // Speculate ctlz only if we can directly use LZCNT.
5163   return Subtarget.hasLZCNT();
5164 }
5165 
5166 bool X86TargetLowering::isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
5167                                                 const SelectionDAG &DAG,
5168                                                 const MachineMemOperand &MMO) const {
5169   if (!Subtarget.hasAVX512() && !LoadVT.isVector() && BitcastVT.isVector() &&
5170       BitcastVT.getVectorElementType() == MVT::i1)
5171     return false;
5172 
5173   if (!Subtarget.hasDQI() && BitcastVT == MVT::v8i1 && LoadVT == MVT::i8)
5174     return false;
5175 
5176   // If both types are legal vectors, it's always ok to convert them.
5177   if (LoadVT.isVector() && BitcastVT.isVector() &&
5178       isTypeLegal(LoadVT) && isTypeLegal(BitcastVT))
5179     return true;
5180 
5181   return TargetLowering::isLoadBitCastBeneficial(LoadVT, BitcastVT, DAG, MMO);
5182 }
5183 
5184 bool X86TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
5185                                          const SelectionDAG &DAG) const {
5186   // Do not merge to float value size (128 bytes) if no implicit
5187   // float attribute is set.
5188   bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute(
5189       Attribute::NoImplicitFloat);
5190 
5191   if (NoFloat) {
5192     unsigned MaxIntSize = Subtarget.is64Bit() ? 64 : 32;
5193     return (MemVT.getSizeInBits() <= MaxIntSize);
5194   }
5195   // Make sure we don't merge greater than our preferred vector
5196   // width.
5197   if (MemVT.getSizeInBits() > Subtarget.getPreferVectorWidth())
5198     return false;
5199   return true;
5200 }
5201 
5202 bool X86TargetLowering::isCtlzFast() const {
5203   return Subtarget.hasFastLZCNT();
5204 }
5205 
5206 bool X86TargetLowering::isMaskAndCmp0FoldingBeneficial(
5207     const Instruction &AndI) const {
5208   return true;
5209 }
5210 
5211 bool X86TargetLowering::hasAndNotCompare(SDValue Y) const {
5212   EVT VT = Y.getValueType();
5213 
5214   if (VT.isVector())
5215     return false;
5216 
5217   if (!Subtarget.hasBMI())
5218     return false;
5219 
5220   // There are only 32-bit and 64-bit forms for 'andn'.
5221   if (VT != MVT::i32 && VT != MVT::i64)
5222     return false;
5223 
5224   return !isa<ConstantSDNode>(Y);
5225 }
5226 
5227 bool X86TargetLowering::hasAndNot(SDValue Y) const {
5228   EVT VT = Y.getValueType();
5229 
5230   if (!VT.isVector())
5231     return hasAndNotCompare(Y);
5232 
5233   // Vector.
5234 
5235   if (!Subtarget.hasSSE1() || VT.getSizeInBits() < 128)
5236     return false;
5237 
5238   if (VT == MVT::v4i32)
5239     return true;
5240 
5241   return Subtarget.hasSSE2();
5242 }
5243 
5244 bool X86TargetLowering::hasBitTest(SDValue X, SDValue Y) const {
5245   return X.getValueType().isScalarInteger(); // 'bt'
5246 }
5247 
5248 bool X86TargetLowering::
5249     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
5250         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
5251         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
5252         SelectionDAG &DAG) const {
5253   // Does baseline recommend not to perform the fold by default?
5254   if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
5255           X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
5256     return false;
5257   // For scalars this transform is always beneficial.
5258   if (X.getValueType().isScalarInteger())
5259     return true;
5260   // If all the shift amounts are identical, then transform is beneficial even
5261   // with rudimentary SSE2 shifts.
5262   if (DAG.isSplatValue(Y, /*AllowUndefs=*/true))
5263     return true;
5264   // If we have AVX2 with it's powerful shift operations, then it's also good.
5265   if (Subtarget.hasAVX2())
5266     return true;
5267   // Pre-AVX2 vector codegen for this pattern is best for variant with 'shl'.
5268   return NewShiftOpcode == ISD::SHL;
5269 }
5270 
5271 bool X86TargetLowering::shouldFoldConstantShiftPairToMask(
5272     const SDNode *N, CombineLevel Level) const {
5273   assert(((N->getOpcode() == ISD::SHL &&
5274            N->getOperand(0).getOpcode() == ISD::SRL) ||
5275           (N->getOpcode() == ISD::SRL &&
5276            N->getOperand(0).getOpcode() == ISD::SHL)) &&
5277          "Expected shift-shift mask");
5278   EVT VT = N->getValueType(0);
5279   if ((Subtarget.hasFastVectorShiftMasks() && VT.isVector()) ||
5280       (Subtarget.hasFastScalarShiftMasks() && !VT.isVector())) {
5281     // Only fold if the shift values are equal - so it folds to AND.
5282     // TODO - we should fold if either is a non-uniform vector but we don't do
5283     // the fold for non-splats yet.
5284     return N->getOperand(1) == N->getOperand(0).getOperand(1);
5285   }
5286   return TargetLoweringBase::shouldFoldConstantShiftPairToMask(N, Level);
5287 }
5288 
5289 bool X86TargetLowering::shouldFoldMaskToVariableShiftPair(SDValue Y) const {
5290   EVT VT = Y.getValueType();
5291 
5292   // For vectors, we don't have a preference, but we probably want a mask.
5293   if (VT.isVector())
5294     return false;
5295 
5296   // 64-bit shifts on 32-bit targets produce really bad bloated code.
5297   if (VT == MVT::i64 && !Subtarget.is64Bit())
5298     return false;
5299 
5300   return true;
5301 }
5302 
5303 bool X86TargetLowering::shouldExpandShift(SelectionDAG &DAG,
5304                                           SDNode *N) const {
5305   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
5306       !Subtarget.isOSWindows())
5307     return false;
5308   return true;
5309 }
5310 
5311 bool X86TargetLowering::shouldSplatInsEltVarIndex(EVT VT) const {
5312   // Any legal vector type can be splatted more efficiently than
5313   // loading/spilling from memory.
5314   return isTypeLegal(VT);
5315 }
5316 
5317 MVT X86TargetLowering::hasFastEqualityCompare(unsigned NumBits) const {
5318   MVT VT = MVT::getIntegerVT(NumBits);
5319   if (isTypeLegal(VT))
5320     return VT;
5321 
5322   // PMOVMSKB can handle this.
5323   if (NumBits == 128 && isTypeLegal(MVT::v16i8))
5324     return MVT::v16i8;
5325 
5326   // VPMOVMSKB can handle this.
5327   if (NumBits == 256 && isTypeLegal(MVT::v32i8))
5328     return MVT::v32i8;
5329 
5330   // TODO: Allow 64-bit type for 32-bit target.
5331   // TODO: 512-bit types should be allowed, but make sure that those
5332   // cases are handled in combineVectorSizedSetCCEquality().
5333 
5334   return MVT::INVALID_SIMPLE_VALUE_TYPE;
5335 }
5336 
5337 /// Val is the undef sentinel value or equal to the specified value.
5338 static bool isUndefOrEqual(int Val, int CmpVal) {
5339   return ((Val == SM_SentinelUndef) || (Val == CmpVal));
5340 }
5341 
5342 /// Val is either the undef or zero sentinel value.
5343 static bool isUndefOrZero(int Val) {
5344   return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero));
5345 }
5346 
5347 /// Return true if every element in Mask, beginning from position Pos and ending
5348 /// in Pos+Size is the undef sentinel value.
5349 static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
5350   return llvm::all_of(Mask.slice(Pos, Size),
5351                       [](int M) { return M == SM_SentinelUndef; });
5352 }
5353 
5354 /// Return true if the mask creates a vector whose lower half is undefined.
5355 static bool isUndefLowerHalf(ArrayRef<int> Mask) {
5356   unsigned NumElts = Mask.size();
5357   return isUndefInRange(Mask, 0, NumElts / 2);
5358 }
5359 
5360 /// Return true if the mask creates a vector whose upper half is undefined.
5361 static bool isUndefUpperHalf(ArrayRef<int> Mask) {
5362   unsigned NumElts = Mask.size();
5363   return isUndefInRange(Mask, NumElts / 2, NumElts / 2);
5364 }
5365 
5366 /// Return true if Val falls within the specified range (L, H].
5367 static bool isInRange(int Val, int Low, int Hi) {
5368   return (Val >= Low && Val < Hi);
5369 }
5370 
5371 /// Return true if the value of any element in Mask falls within the specified
5372 /// range (L, H].
5373 static bool isAnyInRange(ArrayRef<int> Mask, int Low, int Hi) {
5374   return llvm::any_of(Mask, [Low, Hi](int M) { return isInRange(M, Low, Hi); });
5375 }
5376 
5377 /// Return true if Val is undef or if its value falls within the
5378 /// specified range (L, H].
5379 static bool isUndefOrInRange(int Val, int Low, int Hi) {
5380   return (Val == SM_SentinelUndef) || isInRange(Val, Low, Hi);
5381 }
5382 
5383 /// Return true if every element in Mask is undef or if its value
5384 /// falls within the specified range (L, H].
5385 static bool isUndefOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
5386   return llvm::all_of(
5387       Mask, [Low, Hi](int M) { return isUndefOrInRange(M, Low, Hi); });
5388 }
5389 
5390 /// Return true if Val is undef, zero or if its value falls within the
5391 /// specified range (L, H].
5392 static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) {
5393   return isUndefOrZero(Val) || isInRange(Val, Low, Hi);
5394 }
5395 
5396 /// Return true if every element in Mask is undef, zero or if its value
5397 /// falls within the specified range (L, H].
5398 static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
5399   return llvm::all_of(
5400       Mask, [Low, Hi](int M) { return isUndefOrZeroOrInRange(M, Low, Hi); });
5401 }
5402 
5403 /// Return true if every element in Mask, beginning
5404 /// from position Pos and ending in Pos + Size, falls within the specified
5405 /// sequence (Low, Low + Step, ..., Low + (Size - 1) * Step) or is undef.
5406 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, unsigned Pos,
5407                                        unsigned Size, int Low, int Step = 1) {
5408   for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step)
5409     if (!isUndefOrEqual(Mask[i], Low))
5410       return false;
5411   return true;
5412 }
5413 
5414 /// Return true if every element in Mask, beginning
5415 /// from position Pos and ending in Pos+Size, falls within the specified
5416 /// sequential range (Low, Low+Size], or is undef or is zero.
5417 static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
5418                                              unsigned Size, int Low,
5419                                              int Step = 1) {
5420   for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step)
5421     if (!isUndefOrZero(Mask[i]) && Mask[i] != Low)
5422       return false;
5423   return true;
5424 }
5425 
5426 /// Return true if every element in Mask, beginning
5427 /// from position Pos and ending in Pos+Size is undef or is zero.
5428 static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
5429                                  unsigned Size) {
5430   return llvm::all_of(Mask.slice(Pos, Size),
5431                       [](int M) { return isUndefOrZero(M); });
5432 }
5433 
5434 /// Helper function to test whether a shuffle mask could be
5435 /// simplified by widening the elements being shuffled.
5436 ///
5437 /// Appends the mask for wider elements in WidenedMask if valid. Otherwise
5438 /// leaves it in an unspecified state.
5439 ///
5440 /// NOTE: This must handle normal vector shuffle masks and *target* vector
5441 /// shuffle masks. The latter have the special property of a '-2' representing
5442 /// a zero-ed lane of a vector.
5443 static bool canWidenShuffleElements(ArrayRef<int> Mask,
5444                                     SmallVectorImpl<int> &WidenedMask) {
5445   WidenedMask.assign(Mask.size() / 2, 0);
5446   for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
5447     int M0 = Mask[i];
5448     int M1 = Mask[i + 1];
5449 
5450     // If both elements are undef, its trivial.
5451     if (M0 == SM_SentinelUndef && M1 == SM_SentinelUndef) {
5452       WidenedMask[i / 2] = SM_SentinelUndef;
5453       continue;
5454     }
5455 
5456     // Check for an undef mask and a mask value properly aligned to fit with
5457     // a pair of values. If we find such a case, use the non-undef mask's value.
5458     if (M0 == SM_SentinelUndef && M1 >= 0 && (M1 % 2) == 1) {
5459       WidenedMask[i / 2] = M1 / 2;
5460       continue;
5461     }
5462     if (M1 == SM_SentinelUndef && M0 >= 0 && (M0 % 2) == 0) {
5463       WidenedMask[i / 2] = M0 / 2;
5464       continue;
5465     }
5466 
5467     // When zeroing, we need to spread the zeroing across both lanes to widen.
5468     if (M0 == SM_SentinelZero || M1 == SM_SentinelZero) {
5469       if ((M0 == SM_SentinelZero || M0 == SM_SentinelUndef) &&
5470           (M1 == SM_SentinelZero || M1 == SM_SentinelUndef)) {
5471         WidenedMask[i / 2] = SM_SentinelZero;
5472         continue;
5473       }
5474       return false;
5475     }
5476 
5477     // Finally check if the two mask values are adjacent and aligned with
5478     // a pair.
5479     if (M0 != SM_SentinelUndef && (M0 % 2) == 0 && (M0 + 1) == M1) {
5480       WidenedMask[i / 2] = M0 / 2;
5481       continue;
5482     }
5483 
5484     // Otherwise we can't safely widen the elements used in this shuffle.
5485     return false;
5486   }
5487   assert(WidenedMask.size() == Mask.size() / 2 &&
5488          "Incorrect size of mask after widening the elements!");
5489 
5490   return true;
5491 }
5492 
5493 static bool canWidenShuffleElements(ArrayRef<int> Mask,
5494                                     const APInt &Zeroable,
5495                                     bool V2IsZero,
5496                                     SmallVectorImpl<int> &WidenedMask) {
5497   // Create an alternative mask with info about zeroable elements.
5498   // Here we do not set undef elements as zeroable.
5499   SmallVector<int, 64> ZeroableMask(Mask.begin(), Mask.end());
5500   if (V2IsZero) {
5501     assert(!Zeroable.isNullValue() && "V2's non-undef elements are used?!");
5502     for (int i = 0, Size = Mask.size(); i != Size; ++i)
5503       if (Mask[i] != SM_SentinelUndef && Zeroable[i])
5504         ZeroableMask[i] = SM_SentinelZero;
5505   }
5506   return canWidenShuffleElements(ZeroableMask, WidenedMask);
5507 }
5508 
5509 static bool canWidenShuffleElements(ArrayRef<int> Mask) {
5510   SmallVector<int, 32> WidenedMask;
5511   return canWidenShuffleElements(Mask, WidenedMask);
5512 }
5513 
5514 /// Returns true if Elt is a constant zero or a floating point constant +0.0.
5515 bool X86::isZeroNode(SDValue Elt) {
5516   return isNullConstant(Elt) || isNullFPConstant(Elt);
5517 }
5518 
5519 // Build a vector of constants.
5520 // Use an UNDEF node if MaskElt == -1.
5521 // Split 64-bit constants in the 32-bit mode.
5522 static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG,
5523                               const SDLoc &dl, bool IsMask = false) {
5524 
5525   SmallVector<SDValue, 32>  Ops;
5526   bool Split = false;
5527 
5528   MVT ConstVecVT = VT;
5529   unsigned NumElts = VT.getVectorNumElements();
5530   bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
5531   if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
5532     ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
5533     Split = true;
5534   }
5535 
5536   MVT EltVT = ConstVecVT.getVectorElementType();
5537   for (unsigned i = 0; i < NumElts; ++i) {
5538     bool IsUndef = Values[i] < 0 && IsMask;
5539     SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
5540       DAG.getConstant(Values[i], dl, EltVT);
5541     Ops.push_back(OpNode);
5542     if (Split)
5543       Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
5544                     DAG.getConstant(0, dl, EltVT));
5545   }
5546   SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
5547   if (Split)
5548     ConstsNode = DAG.getBitcast(VT, ConstsNode);
5549   return ConstsNode;
5550 }
5551 
5552 static SDValue getConstVector(ArrayRef<APInt> Bits, APInt &Undefs,
5553                               MVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5554   assert(Bits.size() == Undefs.getBitWidth() &&
5555          "Unequal constant and undef arrays");
5556   SmallVector<SDValue, 32> Ops;
5557   bool Split = false;
5558 
5559   MVT ConstVecVT = VT;
5560   unsigned NumElts = VT.getVectorNumElements();
5561   bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
5562   if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
5563     ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
5564     Split = true;
5565   }
5566 
5567   MVT EltVT = ConstVecVT.getVectorElementType();
5568   for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
5569     if (Undefs[i]) {
5570       Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT));
5571       continue;
5572     }
5573     const APInt &V = Bits[i];
5574     assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes");
5575     if (Split) {
5576       Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT));
5577       Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT));
5578     } else if (EltVT == MVT::f32) {
5579       APFloat FV(APFloat::IEEEsingle(), V);
5580       Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
5581     } else if (EltVT == MVT::f64) {
5582       APFloat FV(APFloat::IEEEdouble(), V);
5583       Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
5584     } else {
5585       Ops.push_back(DAG.getConstant(V, dl, EltVT));
5586     }
5587   }
5588 
5589   SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
5590   return DAG.getBitcast(VT, ConstsNode);
5591 }
5592 
5593 /// Returns a vector of specified type with all zero elements.
5594 static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget,
5595                              SelectionDAG &DAG, const SDLoc &dl) {
5596   assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() ||
5597           VT.getVectorElementType() == MVT::i1) &&
5598          "Unexpected vector type");
5599 
5600   // Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest
5601   // type. This ensures they get CSE'd. But if the integer type is not
5602   // available, use a floating-point +0.0 instead.
5603   SDValue Vec;
5604   if (!Subtarget.hasSSE2() && VT.is128BitVector()) {
5605     Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32);
5606   } else if (VT.isFloatingPoint()) {
5607     Vec = DAG.getConstantFP(+0.0, dl, VT);
5608   } else if (VT.getVectorElementType() == MVT::i1) {
5609     assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) &&
5610            "Unexpected vector type");
5611     Vec = DAG.getConstant(0, dl, VT);
5612   } else {
5613     unsigned Num32BitElts = VT.getSizeInBits() / 32;
5614     Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts));
5615   }
5616   return DAG.getBitcast(VT, Vec);
5617 }
5618 
5619 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
5620                                 const SDLoc &dl, unsigned vectorWidth) {
5621   EVT VT = Vec.getValueType();
5622   EVT ElVT = VT.getVectorElementType();
5623   unsigned Factor = VT.getSizeInBits()/vectorWidth;
5624   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
5625                                   VT.getVectorNumElements()/Factor);
5626 
5627   // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
5628   unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
5629   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
5630 
5631   // This is the index of the first element of the vectorWidth-bit chunk
5632   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
5633   IdxVal &= ~(ElemsPerChunk - 1);
5634 
5635   // If the input is a buildvector just emit a smaller one.
5636   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
5637     return DAG.getBuildVector(ResultVT, dl,
5638                               Vec->ops().slice(IdxVal, ElemsPerChunk));
5639 
5640   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
5641   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
5642 }
5643 
5644 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
5645 /// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
5646 /// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
5647 /// instructions or a simple subregister reference. Idx is an index in the
5648 /// 128 bits we want.  It need not be aligned to a 128-bit boundary.  That makes
5649 /// lowering EXTRACT_VECTOR_ELT operations easier.
5650 static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal,
5651                                    SelectionDAG &DAG, const SDLoc &dl) {
5652   assert((Vec.getValueType().is256BitVector() ||
5653           Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
5654   return extractSubVector(Vec, IdxVal, DAG, dl, 128);
5655 }
5656 
5657 /// Generate a DAG to grab 256-bits from a 512-bit vector.
5658 static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal,
5659                                    SelectionDAG &DAG, const SDLoc &dl) {
5660   assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
5661   return extractSubVector(Vec, IdxVal, DAG, dl, 256);
5662 }
5663 
5664 static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal,
5665                                SelectionDAG &DAG, const SDLoc &dl,
5666                                unsigned vectorWidth) {
5667   assert((vectorWidth == 128 || vectorWidth == 256) &&
5668          "Unsupported vector width");
5669   // Inserting UNDEF is Result
5670   if (Vec.isUndef())
5671     return Result;
5672   EVT VT = Vec.getValueType();
5673   EVT ElVT = VT.getVectorElementType();
5674   EVT ResultVT = Result.getValueType();
5675 
5676   // Insert the relevant vectorWidth bits.
5677   unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
5678   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
5679 
5680   // This is the index of the first element of the vectorWidth-bit chunk
5681   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
5682   IdxVal &= ~(ElemsPerChunk - 1);
5683 
5684   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
5685   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
5686 }
5687 
5688 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
5689 /// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
5690 /// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
5691 /// simple superregister reference.  Idx is an index in the 128 bits
5692 /// we want.  It need not be aligned to a 128-bit boundary.  That makes
5693 /// lowering INSERT_VECTOR_ELT operations easier.
5694 static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
5695                                   SelectionDAG &DAG, const SDLoc &dl) {
5696   assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
5697   return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
5698 }
5699 
5700 /// Widen a vector to a larger size with the same scalar type, with the new
5701 /// elements either zero or undef.
5702 static SDValue widenSubVector(MVT VT, SDValue Vec, bool ZeroNewElements,
5703                               const X86Subtarget &Subtarget, SelectionDAG &DAG,
5704                               const SDLoc &dl) {
5705   assert(Vec.getValueSizeInBits() < VT.getSizeInBits() &&
5706          Vec.getValueType().getScalarType() == VT.getScalarType() &&
5707          "Unsupported vector widening type");
5708   SDValue Res = ZeroNewElements ? getZeroVector(VT, Subtarget, DAG, dl)
5709                                 : DAG.getUNDEF(VT);
5710   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, Vec,
5711                      DAG.getIntPtrConstant(0, dl));
5712 }
5713 
5714 /// Widen a vector to a larger size with the same scalar type, with the new
5715 /// elements either zero or undef.
5716 static SDValue widenSubVector(SDValue Vec, bool ZeroNewElements,
5717                               const X86Subtarget &Subtarget, SelectionDAG &DAG,
5718                               const SDLoc &dl, unsigned WideSizeInBits) {
5719   assert(Vec.getValueSizeInBits() < WideSizeInBits &&
5720          (WideSizeInBits % Vec.getScalarValueSizeInBits()) == 0 &&
5721          "Unsupported vector widening type");
5722   unsigned WideNumElts = WideSizeInBits / Vec.getScalarValueSizeInBits();
5723   MVT SVT = Vec.getSimpleValueType().getScalarType();
5724   MVT VT = MVT::getVectorVT(SVT, WideNumElts);
5725   return widenSubVector(VT, Vec, ZeroNewElements, Subtarget, DAG, dl);
5726 }
5727 
5728 // Helper function to collect subvector ops that are concated together,
5729 // either by ISD::CONCAT_VECTORS or a ISD::INSERT_SUBVECTOR series.
5730 // The subvectors in Ops are guaranteed to be the same type.
5731 static bool collectConcatOps(SDNode *N, SmallVectorImpl<SDValue> &Ops) {
5732   assert(Ops.empty() && "Expected an empty ops vector");
5733 
5734   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
5735     Ops.append(N->op_begin(), N->op_end());
5736     return true;
5737   }
5738 
5739   if (N->getOpcode() == ISD::INSERT_SUBVECTOR &&
5740       isa<ConstantSDNode>(N->getOperand(2))) {
5741     SDValue Src = N->getOperand(0);
5742     SDValue Sub = N->getOperand(1);
5743     const APInt &Idx = N->getConstantOperandAPInt(2);
5744     EVT VT = Src.getValueType();
5745     EVT SubVT = Sub.getValueType();
5746 
5747     // TODO - Handle more general insert_subvector chains.
5748     if (VT.getSizeInBits() == (SubVT.getSizeInBits() * 2) &&
5749         Idx == (VT.getVectorNumElements() / 2) &&
5750         Src.getOpcode() == ISD::INSERT_SUBVECTOR &&
5751         Src.getOperand(1).getValueType() == SubVT &&
5752         isNullConstant(Src.getOperand(2))) {
5753       Ops.push_back(Src.getOperand(1));
5754       Ops.push_back(Sub);
5755       return true;
5756     }
5757   }
5758 
5759   return false;
5760 }
5761 
5762 // Helper for splitting operands of an operation to legal target size and
5763 // apply a function on each part.
5764 // Useful for operations that are available on SSE2 in 128-bit, on AVX2 in
5765 // 256-bit and on AVX512BW in 512-bit. The argument VT is the type used for
5766 // deciding if/how to split Ops. Ops elements do *not* have to be of type VT.
5767 // The argument Builder is a function that will be applied on each split part:
5768 // SDValue Builder(SelectionDAG&G, SDLoc, ArrayRef<SDValue>)
5769 template <typename F>
5770 SDValue SplitOpsAndApply(SelectionDAG &DAG, const X86Subtarget &Subtarget,
5771                          const SDLoc &DL, EVT VT, ArrayRef<SDValue> Ops,
5772                          F Builder, bool CheckBWI = true) {
5773   assert(Subtarget.hasSSE2() && "Target assumed to support at least SSE2");
5774   unsigned NumSubs = 1;
5775   if ((CheckBWI && Subtarget.useBWIRegs()) ||
5776       (!CheckBWI && Subtarget.useAVX512Regs())) {
5777     if (VT.getSizeInBits() > 512) {
5778       NumSubs = VT.getSizeInBits() / 512;
5779       assert((VT.getSizeInBits() % 512) == 0 && "Illegal vector size");
5780     }
5781   } else if (Subtarget.hasAVX2()) {
5782     if (VT.getSizeInBits() > 256) {
5783       NumSubs = VT.getSizeInBits() / 256;
5784       assert((VT.getSizeInBits() % 256) == 0 && "Illegal vector size");
5785     }
5786   } else {
5787     if (VT.getSizeInBits() > 128) {
5788       NumSubs = VT.getSizeInBits() / 128;
5789       assert((VT.getSizeInBits() % 128) == 0 && "Illegal vector size");
5790     }
5791   }
5792 
5793   if (NumSubs == 1)
5794     return Builder(DAG, DL, Ops);
5795 
5796   SmallVector<SDValue, 4> Subs;
5797   for (unsigned i = 0; i != NumSubs; ++i) {
5798     SmallVector<SDValue, 2> SubOps;
5799     for (SDValue Op : Ops) {
5800       EVT OpVT = Op.getValueType();
5801       unsigned NumSubElts = OpVT.getVectorNumElements() / NumSubs;
5802       unsigned SizeSub = OpVT.getSizeInBits() / NumSubs;
5803       SubOps.push_back(extractSubVector(Op, i * NumSubElts, DAG, DL, SizeSub));
5804     }
5805     Subs.push_back(Builder(DAG, DL, SubOps));
5806   }
5807   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Subs);
5808 }
5809 
5810 /// Insert i1-subvector to i1-vector.
5811 static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG,
5812                                 const X86Subtarget &Subtarget) {
5813 
5814   SDLoc dl(Op);
5815   SDValue Vec = Op.getOperand(0);
5816   SDValue SubVec = Op.getOperand(1);
5817   SDValue Idx = Op.getOperand(2);
5818 
5819   if (!isa<ConstantSDNode>(Idx))
5820     return SDValue();
5821 
5822   // Inserting undef is a nop. We can just return the original vector.
5823   if (SubVec.isUndef())
5824     return Vec;
5825 
5826   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5827   if (IdxVal == 0 && Vec.isUndef()) // the operation is legal
5828     return Op;
5829 
5830   MVT OpVT = Op.getSimpleValueType();
5831   unsigned NumElems = OpVT.getVectorNumElements();
5832 
5833   SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
5834 
5835   // Extend to natively supported kshift.
5836   MVT WideOpVT = OpVT;
5837   if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8)
5838     WideOpVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
5839 
5840   // Inserting into the lsbs of a zero vector is legal. ISel will insert shifts
5841   // if necessary.
5842   if (IdxVal == 0 && ISD::isBuildVectorAllZeros(Vec.getNode())) {
5843     // May need to promote to a legal type.
5844     Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
5845                      DAG.getConstant(0, dl, WideOpVT),
5846                      SubVec, Idx);
5847     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
5848   }
5849 
5850   MVT SubVecVT = SubVec.getSimpleValueType();
5851   unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
5852 
5853   assert(IdxVal + SubVecNumElems <= NumElems &&
5854          IdxVal % SubVecVT.getSizeInBits() == 0 &&
5855          "Unexpected index value in INSERT_SUBVECTOR");
5856 
5857   SDValue Undef = DAG.getUNDEF(WideOpVT);
5858 
5859   if (IdxVal == 0) {
5860     // Zero lower bits of the Vec
5861     SDValue ShiftBits = DAG.getTargetConstant(SubVecNumElems, dl, MVT::i8);
5862     Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec,
5863                       ZeroIdx);
5864     Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
5865     Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
5866     // Merge them together, SubVec should be zero extended.
5867     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
5868                          DAG.getConstant(0, dl, WideOpVT),
5869                          SubVec, ZeroIdx);
5870     Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
5871     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
5872   }
5873 
5874   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
5875                        Undef, SubVec, ZeroIdx);
5876 
5877   if (Vec.isUndef()) {
5878     assert(IdxVal != 0 && "Unexpected index");
5879     SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
5880                          DAG.getTargetConstant(IdxVal, dl, MVT::i8));
5881     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
5882   }
5883 
5884   if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
5885     assert(IdxVal != 0 && "Unexpected index");
5886     NumElems = WideOpVT.getVectorNumElements();
5887     unsigned ShiftLeft = NumElems - SubVecNumElems;
5888     unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
5889     SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
5890                          DAG.getTargetConstant(ShiftLeft, dl, MVT::i8));
5891     if (ShiftRight != 0)
5892       SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
5893                            DAG.getTargetConstant(ShiftRight, dl, MVT::i8));
5894     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
5895   }
5896 
5897   // Simple case when we put subvector in the upper part
5898   if (IdxVal + SubVecNumElems == NumElems) {
5899     SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
5900                          DAG.getTargetConstant(IdxVal, dl, MVT::i8));
5901     if (SubVecNumElems * 2 == NumElems) {
5902       // Special case, use legal zero extending insert_subvector. This allows
5903       // isel to opimitize when bits are known zero.
5904       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVecVT, Vec, ZeroIdx);
5905       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
5906                         DAG.getConstant(0, dl, WideOpVT),
5907                         Vec, ZeroIdx);
5908     } else {
5909       // Otherwise use explicit shifts to zero the bits.
5910       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
5911                         Undef, Vec, ZeroIdx);
5912       NumElems = WideOpVT.getVectorNumElements();
5913       SDValue ShiftBits = DAG.getTargetConstant(NumElems - IdxVal, dl, MVT::i8);
5914       Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
5915       Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
5916     }
5917     Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
5918     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
5919   }
5920 
5921   // Inserting into the middle is more complicated.
5922 
5923   NumElems = WideOpVT.getVectorNumElements();
5924 
5925   // Widen the vector if needed.
5926   Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
5927 
5928   unsigned ShiftLeft = NumElems - SubVecNumElems;
5929   unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
5930 
5931   // Do an optimization for the the most frequently used types.
5932   if (WideOpVT != MVT::v64i1 || Subtarget.is64Bit()) {
5933     APInt Mask0 = APInt::getBitsSet(NumElems, IdxVal, IdxVal + SubVecNumElems);
5934     Mask0.flipAllBits();
5935     SDValue CMask0 = DAG.getConstant(Mask0, dl, MVT::getIntegerVT(NumElems));
5936     SDValue VMask0 = DAG.getNode(ISD::BITCAST, dl, WideOpVT, CMask0);
5937     Vec = DAG.getNode(ISD::AND, dl, WideOpVT, Vec, VMask0);
5938     SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
5939                          DAG.getTargetConstant(ShiftLeft, dl, MVT::i8));
5940     SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
5941                          DAG.getTargetConstant(ShiftRight, dl, MVT::i8));
5942     Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
5943 
5944     // Reduce to original width if needed.
5945     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
5946   }
5947 
5948   // Clear the upper bits of the subvector and move it to its insert position.
5949   SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
5950                        DAG.getTargetConstant(ShiftLeft, dl, MVT::i8));
5951   SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
5952                        DAG.getTargetConstant(ShiftRight, dl, MVT::i8));
5953 
5954   // Isolate the bits below the insertion point.
5955   unsigned LowShift = NumElems - IdxVal;
5956   SDValue Low = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec,
5957                             DAG.getTargetConstant(LowShift, dl, MVT::i8));
5958   Low = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Low,
5959                     DAG.getTargetConstant(LowShift, dl, MVT::i8));
5960 
5961   // Isolate the bits after the last inserted bit.
5962   unsigned HighShift = IdxVal + SubVecNumElems;
5963   SDValue High = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec,
5964                             DAG.getTargetConstant(HighShift, dl, MVT::i8));
5965   High = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, High,
5966                     DAG.getTargetConstant(HighShift, dl, MVT::i8));
5967 
5968   // Now OR all 3 pieces together.
5969   Vec = DAG.getNode(ISD::OR, dl, WideOpVT, Low, High);
5970   SubVec = DAG.getNode(ISD::OR, dl, WideOpVT, SubVec, Vec);
5971 
5972   // Reduce to original width if needed.
5973   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
5974 }
5975 
5976 static SDValue concatSubVectors(SDValue V1, SDValue V2, SelectionDAG &DAG,
5977                                 const SDLoc &dl) {
5978   assert(V1.getValueType() == V2.getValueType() && "subvector type mismatch");
5979   EVT SubVT = V1.getValueType();
5980   EVT SubSVT = SubVT.getScalarType();
5981   unsigned SubNumElts = SubVT.getVectorNumElements();
5982   unsigned SubVectorWidth = SubVT.getSizeInBits();
5983   EVT VT = EVT::getVectorVT(*DAG.getContext(), SubSVT, 2 * SubNumElts);
5984   SDValue V = insertSubVector(DAG.getUNDEF(VT), V1, 0, DAG, dl, SubVectorWidth);
5985   return insertSubVector(V, V2, SubNumElts, DAG, dl, SubVectorWidth);
5986 }
5987 
5988 /// Returns a vector of specified type with all bits set.
5989 /// Always build ones vectors as <4 x i32>, <8 x i32> or <16 x i32>.
5990 /// Then bitcast to their original type, ensuring they get CSE'd.
5991 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5992   assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5993          "Expected a 128/256/512-bit vector type");
5994 
5995   APInt Ones = APInt::getAllOnesValue(32);
5996   unsigned NumElts = VT.getSizeInBits() / 32;
5997   SDValue Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts));
5998   return DAG.getBitcast(VT, Vec);
5999 }
6000 
6001 // Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode.
6002 static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) {
6003   switch (Opcode) {
6004   case ISD::ANY_EXTEND:
6005   case ISD::ANY_EXTEND_VECTOR_INREG:
6006     return ISD::ANY_EXTEND_VECTOR_INREG;
6007   case ISD::ZERO_EXTEND:
6008   case ISD::ZERO_EXTEND_VECTOR_INREG:
6009     return ISD::ZERO_EXTEND_VECTOR_INREG;
6010   case ISD::SIGN_EXTEND:
6011   case ISD::SIGN_EXTEND_VECTOR_INREG:
6012     return ISD::SIGN_EXTEND_VECTOR_INREG;
6013   }
6014   llvm_unreachable("Unknown opcode");
6015 }
6016 
6017 static SDValue getExtendInVec(unsigned Opcode, const SDLoc &DL, EVT VT,
6018                               SDValue In, SelectionDAG &DAG) {
6019   EVT InVT = In.getValueType();
6020   assert(VT.isVector() && InVT.isVector() && "Expected vector VTs.");
6021   assert((ISD::ANY_EXTEND == Opcode || ISD::SIGN_EXTEND == Opcode ||
6022           ISD::ZERO_EXTEND == Opcode) &&
6023          "Unknown extension opcode");
6024 
6025   // For 256-bit vectors, we only need the lower (128-bit) input half.
6026   // For 512-bit vectors, we only need the lower input half or quarter.
6027   if (InVT.getSizeInBits() > 128) {
6028     assert(VT.getSizeInBits() == InVT.getSizeInBits() &&
6029            "Expected VTs to be the same size!");
6030     unsigned Scale = VT.getScalarSizeInBits() / InVT.getScalarSizeInBits();
6031     In = extractSubVector(In, 0, DAG, DL,
6032                           std::max(128U, (unsigned)VT.getSizeInBits() / Scale));
6033     InVT = In.getValueType();
6034   }
6035 
6036   if (VT.getVectorNumElements() != InVT.getVectorNumElements())
6037     Opcode = getOpcode_EXTEND_VECTOR_INREG(Opcode);
6038 
6039   return DAG.getNode(Opcode, DL, VT, In);
6040 }
6041 
6042 // Match (xor X, -1) -> X.
6043 // Match extract_subvector(xor X, -1) -> extract_subvector(X).
6044 // Match concat_vectors(xor X, -1, xor Y, -1) -> concat_vectors(X, Y).
6045 static SDValue IsNOT(SDValue V, SelectionDAG &DAG) {
6046   V = peekThroughBitcasts(V);
6047   if (V.getOpcode() == ISD::XOR &&
6048       ISD::isBuildVectorAllOnes(V.getOperand(1).getNode()))
6049     return V.getOperand(0);
6050   if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6051       (isNullConstant(V.getOperand(1)) || V.getOperand(0).hasOneUse())) {
6052     if (SDValue Not = IsNOT(V.getOperand(0), DAG)) {
6053       Not = DAG.getBitcast(V.getOperand(0).getValueType(), Not);
6054       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Not), V.getValueType(),
6055                          Not, V.getOperand(1));
6056     }
6057   }
6058   SmallVector<SDValue, 2> CatOps;
6059   if (collectConcatOps(V.getNode(), CatOps)) {
6060     for (SDValue &CatOp : CatOps) {
6061       SDValue NotCat = IsNOT(CatOp, DAG);
6062       if (!NotCat) return SDValue();
6063       CatOp = DAG.getBitcast(CatOp.getValueType(), NotCat);
6064     }
6065     return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(V), V.getValueType(), CatOps);
6066   }
6067   return SDValue();
6068 }
6069 
6070 /// Returns a vector_shuffle node for an unpackl operation.
6071 static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
6072                           SDValue V1, SDValue V2) {
6073   SmallVector<int, 8> Mask;
6074   createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false);
6075   return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
6076 }
6077 
6078 /// Returns a vector_shuffle node for an unpackh operation.
6079 static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
6080                           SDValue V1, SDValue V2) {
6081   SmallVector<int, 8> Mask;
6082   createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false);
6083   return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
6084 }
6085 
6086 /// Return a vector_shuffle of the specified vector of zero or undef vector.
6087 /// This produces a shuffle where the low element of V2 is swizzled into the
6088 /// zero/undef vector, landing at element Idx.
6089 /// This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
6090 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx,
6091                                            bool IsZero,
6092                                            const X86Subtarget &Subtarget,
6093                                            SelectionDAG &DAG) {
6094   MVT VT = V2.getSimpleValueType();
6095   SDValue V1 = IsZero
6096     ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
6097   int NumElems = VT.getVectorNumElements();
6098   SmallVector<int, 16> MaskVec(NumElems);
6099   for (int i = 0; i != NumElems; ++i)
6100     // If this is the insertion idx, put the low elt of V2 here.
6101     MaskVec[i] = (i == Idx) ? NumElems : i;
6102   return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec);
6103 }
6104 
6105 static const Constant *getTargetConstantFromNode(LoadSDNode *Load) {
6106   if (!Load || !ISD::isNormalLoad(Load))
6107     return nullptr;
6108 
6109   SDValue Ptr = Load->getBasePtr();
6110   if (Ptr->getOpcode() == X86ISD::Wrapper ||
6111       Ptr->getOpcode() == X86ISD::WrapperRIP)
6112     Ptr = Ptr->getOperand(0);
6113 
6114   auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
6115   if (!CNode || CNode->isMachineConstantPoolEntry() || CNode->getOffset() != 0)
6116     return nullptr;
6117 
6118   return CNode->getConstVal();
6119 }
6120 
6121 static const Constant *getTargetConstantFromNode(SDValue Op) {
6122   Op = peekThroughBitcasts(Op);
6123   return getTargetConstantFromNode(dyn_cast<LoadSDNode>(Op));
6124 }
6125 
6126 const Constant *
6127 X86TargetLowering::getTargetConstantFromLoad(LoadSDNode *LD) const {
6128   assert(LD && "Unexpected null LoadSDNode");
6129   return getTargetConstantFromNode(LD);
6130 }
6131 
6132 // Extract raw constant bits from constant pools.
6133 static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits,
6134                                           APInt &UndefElts,
6135                                           SmallVectorImpl<APInt> &EltBits,
6136                                           bool AllowWholeUndefs = true,
6137                                           bool AllowPartialUndefs = true) {
6138   assert(EltBits.empty() && "Expected an empty EltBits vector");
6139 
6140   Op = peekThroughBitcasts(Op);
6141 
6142   EVT VT = Op.getValueType();
6143   unsigned SizeInBits = VT.getSizeInBits();
6144   assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!");
6145   unsigned NumElts = SizeInBits / EltSizeInBits;
6146 
6147   // Bitcast a source array of element bits to the target size.
6148   auto CastBitData = [&](APInt &UndefSrcElts, ArrayRef<APInt> SrcEltBits) {
6149     unsigned NumSrcElts = UndefSrcElts.getBitWidth();
6150     unsigned SrcEltSizeInBits = SrcEltBits[0].getBitWidth();
6151     assert((NumSrcElts * SrcEltSizeInBits) == SizeInBits &&
6152            "Constant bit sizes don't match");
6153 
6154     // Don't split if we don't allow undef bits.
6155     bool AllowUndefs = AllowWholeUndefs || AllowPartialUndefs;
6156     if (UndefSrcElts.getBoolValue() && !AllowUndefs)
6157       return false;
6158 
6159     // If we're already the right size, don't bother bitcasting.
6160     if (NumSrcElts == NumElts) {
6161       UndefElts = UndefSrcElts;
6162       EltBits.assign(SrcEltBits.begin(), SrcEltBits.end());
6163       return true;
6164     }
6165 
6166     // Extract all the undef/constant element data and pack into single bitsets.
6167     APInt UndefBits(SizeInBits, 0);
6168     APInt MaskBits(SizeInBits, 0);
6169 
6170     for (unsigned i = 0; i != NumSrcElts; ++i) {
6171       unsigned BitOffset = i * SrcEltSizeInBits;
6172       if (UndefSrcElts[i])
6173         UndefBits.setBits(BitOffset, BitOffset + SrcEltSizeInBits);
6174       MaskBits.insertBits(SrcEltBits[i], BitOffset);
6175     }
6176 
6177     // Split the undef/constant single bitset data into the target elements.
6178     UndefElts = APInt(NumElts, 0);
6179     EltBits.resize(NumElts, APInt(EltSizeInBits, 0));
6180 
6181     for (unsigned i = 0; i != NumElts; ++i) {
6182       unsigned BitOffset = i * EltSizeInBits;
6183       APInt UndefEltBits = UndefBits.extractBits(EltSizeInBits, BitOffset);
6184 
6185       // Only treat an element as UNDEF if all bits are UNDEF.
6186       if (UndefEltBits.isAllOnesValue()) {
6187         if (!AllowWholeUndefs)
6188           return false;
6189         UndefElts.setBit(i);
6190         continue;
6191       }
6192 
6193       // If only some bits are UNDEF then treat them as zero (or bail if not
6194       // supported).
6195       if (UndefEltBits.getBoolValue() && !AllowPartialUndefs)
6196         return false;
6197 
6198       EltBits[i] = MaskBits.extractBits(EltSizeInBits, BitOffset);
6199     }
6200     return true;
6201   };
6202 
6203   // Collect constant bits and insert into mask/undef bit masks.
6204   auto CollectConstantBits = [](const Constant *Cst, APInt &Mask, APInt &Undefs,
6205                                 unsigned UndefBitIndex) {
6206     if (!Cst)
6207       return false;
6208     if (isa<UndefValue>(Cst)) {
6209       Undefs.setBit(UndefBitIndex);
6210       return true;
6211     }
6212     if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
6213       Mask = CInt->getValue();
6214       return true;
6215     }
6216     if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
6217       Mask = CFP->getValueAPF().bitcastToAPInt();
6218       return true;
6219     }
6220     return false;
6221   };
6222 
6223   // Handle UNDEFs.
6224   if (Op.isUndef()) {
6225     APInt UndefSrcElts = APInt::getAllOnesValue(NumElts);
6226     SmallVector<APInt, 64> SrcEltBits(NumElts, APInt(EltSizeInBits, 0));
6227     return CastBitData(UndefSrcElts, SrcEltBits);
6228   }
6229 
6230   // Extract scalar constant bits.
6231   if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
6232     APInt UndefSrcElts = APInt::getNullValue(1);
6233     SmallVector<APInt, 64> SrcEltBits(1, Cst->getAPIntValue());
6234     return CastBitData(UndefSrcElts, SrcEltBits);
6235   }
6236   if (auto *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
6237     APInt UndefSrcElts = APInt::getNullValue(1);
6238     APInt RawBits = Cst->getValueAPF().bitcastToAPInt();
6239     SmallVector<APInt, 64> SrcEltBits(1, RawBits);
6240     return CastBitData(UndefSrcElts, SrcEltBits);
6241   }
6242 
6243   // Extract constant bits from build vector.
6244   if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
6245     unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
6246     unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
6247 
6248     APInt UndefSrcElts(NumSrcElts, 0);
6249     SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
6250     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
6251       const SDValue &Src = Op.getOperand(i);
6252       if (Src.isUndef()) {
6253         UndefSrcElts.setBit(i);
6254         continue;
6255       }
6256       auto *Cst = cast<ConstantSDNode>(Src);
6257       SrcEltBits[i] = Cst->getAPIntValue().zextOrTrunc(SrcEltSizeInBits);
6258     }
6259     return CastBitData(UndefSrcElts, SrcEltBits);
6260   }
6261   if (ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) {
6262     unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
6263     unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
6264 
6265     APInt UndefSrcElts(NumSrcElts, 0);
6266     SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
6267     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
6268       const SDValue &Src = Op.getOperand(i);
6269       if (Src.isUndef()) {
6270         UndefSrcElts.setBit(i);
6271         continue;
6272       }
6273       auto *Cst = cast<ConstantFPSDNode>(Src);
6274       APInt RawBits = Cst->getValueAPF().bitcastToAPInt();
6275       SrcEltBits[i] = RawBits.zextOrTrunc(SrcEltSizeInBits);
6276     }
6277     return CastBitData(UndefSrcElts, SrcEltBits);
6278   }
6279 
6280   // Extract constant bits from constant pool vector.
6281   if (auto *Cst = getTargetConstantFromNode(Op)) {
6282     Type *CstTy = Cst->getType();
6283     unsigned CstSizeInBits = CstTy->getPrimitiveSizeInBits();
6284     if (!CstTy->isVectorTy() || (CstSizeInBits % SizeInBits) != 0)
6285       return false;
6286 
6287     unsigned SrcEltSizeInBits = CstTy->getScalarSizeInBits();
6288     unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
6289 
6290     APInt UndefSrcElts(NumSrcElts, 0);
6291     SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
6292     for (unsigned i = 0; i != NumSrcElts; ++i)
6293       if (!CollectConstantBits(Cst->getAggregateElement(i), SrcEltBits[i],
6294                                UndefSrcElts, i))
6295         return false;
6296 
6297     return CastBitData(UndefSrcElts, SrcEltBits);
6298   }
6299 
6300   // Extract constant bits from a broadcasted constant pool scalar.
6301   if (Op.getOpcode() == X86ISD::VBROADCAST &&
6302       EltSizeInBits <= VT.getScalarSizeInBits()) {
6303     if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) {
6304       unsigned SrcEltSizeInBits = Broadcast->getType()->getScalarSizeInBits();
6305       unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
6306 
6307       APInt UndefSrcElts(NumSrcElts, 0);
6308       SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0));
6309       if (CollectConstantBits(Broadcast, SrcEltBits[0], UndefSrcElts, 0)) {
6310         if (UndefSrcElts[0])
6311           UndefSrcElts.setBits(0, NumSrcElts);
6312         SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]);
6313         return CastBitData(UndefSrcElts, SrcEltBits);
6314       }
6315     }
6316   }
6317 
6318   if (Op.getOpcode() == X86ISD::VBROADCAST_LOAD &&
6319       EltSizeInBits <= VT.getScalarSizeInBits()) {
6320     auto *MemIntr = cast<MemIntrinsicSDNode>(Op);
6321     if (MemIntr->getMemoryVT().getScalarSizeInBits() != VT.getScalarSizeInBits())
6322       return false;
6323 
6324     SDValue Ptr = MemIntr->getBasePtr();
6325     if (Ptr->getOpcode() == X86ISD::Wrapper ||
6326         Ptr->getOpcode() == X86ISD::WrapperRIP)
6327       Ptr = Ptr->getOperand(0);
6328 
6329     auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
6330     if (!CNode || CNode->isMachineConstantPoolEntry() ||
6331         CNode->getOffset() != 0)
6332       return false;
6333 
6334     if (const Constant *C = CNode->getConstVal()) {
6335       unsigned SrcEltSizeInBits = C->getType()->getScalarSizeInBits();
6336       unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
6337 
6338       APInt UndefSrcElts(NumSrcElts, 0);
6339       SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0));
6340       if (CollectConstantBits(C, SrcEltBits[0], UndefSrcElts, 0)) {
6341         if (UndefSrcElts[0])
6342           UndefSrcElts.setBits(0, NumSrcElts);
6343         SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]);
6344         return CastBitData(UndefSrcElts, SrcEltBits);
6345       }
6346     }
6347   }
6348 
6349   // Extract constant bits from a subvector broadcast.
6350   if (Op.getOpcode() == X86ISD::SUBV_BROADCAST) {
6351     SmallVector<APInt, 16> SubEltBits;
6352     if (getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
6353                                       UndefElts, SubEltBits, AllowWholeUndefs,
6354                                       AllowPartialUndefs)) {
6355       UndefElts = APInt::getSplat(NumElts, UndefElts);
6356       while (EltBits.size() < NumElts)
6357         EltBits.append(SubEltBits.begin(), SubEltBits.end());
6358       return true;
6359     }
6360   }
6361 
6362   // Extract a rematerialized scalar constant insertion.
6363   if (Op.getOpcode() == X86ISD::VZEXT_MOVL &&
6364       Op.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6365       isa<ConstantSDNode>(Op.getOperand(0).getOperand(0))) {
6366     unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
6367     unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
6368 
6369     APInt UndefSrcElts(NumSrcElts, 0);
6370     SmallVector<APInt, 64> SrcEltBits;
6371     auto *CN = cast<ConstantSDNode>(Op.getOperand(0).getOperand(0));
6372     SrcEltBits.push_back(CN->getAPIntValue().zextOrTrunc(SrcEltSizeInBits));
6373     SrcEltBits.append(NumSrcElts - 1, APInt(SrcEltSizeInBits, 0));
6374     return CastBitData(UndefSrcElts, SrcEltBits);
6375   }
6376 
6377   // Insert constant bits from a base and sub vector sources.
6378   if (Op.getOpcode() == ISD::INSERT_SUBVECTOR &&
6379       isa<ConstantSDNode>(Op.getOperand(2))) {
6380     // TODO - support insert_subvector through bitcasts.
6381     if (EltSizeInBits != VT.getScalarSizeInBits())
6382       return false;
6383 
6384     APInt UndefSubElts;
6385     SmallVector<APInt, 32> EltSubBits;
6386     if (getTargetConstantBitsFromNode(Op.getOperand(1), EltSizeInBits,
6387                                       UndefSubElts, EltSubBits,
6388                                       AllowWholeUndefs, AllowPartialUndefs) &&
6389         getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
6390                                       UndefElts, EltBits, AllowWholeUndefs,
6391                                       AllowPartialUndefs)) {
6392       unsigned BaseIdx = Op.getConstantOperandVal(2);
6393       UndefElts.insertBits(UndefSubElts, BaseIdx);
6394       for (unsigned i = 0, e = EltSubBits.size(); i != e; ++i)
6395         EltBits[BaseIdx + i] = EltSubBits[i];
6396       return true;
6397     }
6398   }
6399 
6400   // Extract constant bits from a subvector's source.
6401   if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6402       isa<ConstantSDNode>(Op.getOperand(1))) {
6403     // TODO - support extract_subvector through bitcasts.
6404     if (EltSizeInBits != VT.getScalarSizeInBits())
6405       return false;
6406 
6407     if (getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
6408                                       UndefElts, EltBits, AllowWholeUndefs,
6409                                       AllowPartialUndefs)) {
6410       EVT SrcVT = Op.getOperand(0).getValueType();
6411       unsigned NumSrcElts = SrcVT.getVectorNumElements();
6412       unsigned NumSubElts = VT.getVectorNumElements();
6413       unsigned BaseIdx = Op.getConstantOperandVal(1);
6414       UndefElts = UndefElts.extractBits(NumSubElts, BaseIdx);
6415       if ((BaseIdx + NumSubElts) != NumSrcElts)
6416         EltBits.erase(EltBits.begin() + BaseIdx + NumSubElts, EltBits.end());
6417       if (BaseIdx != 0)
6418         EltBits.erase(EltBits.begin(), EltBits.begin() + BaseIdx);
6419       return true;
6420     }
6421   }
6422 
6423   // Extract constant bits from shuffle node sources.
6424   if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(Op)) {
6425     // TODO - support shuffle through bitcasts.
6426     if (EltSizeInBits != VT.getScalarSizeInBits())
6427       return false;
6428 
6429     ArrayRef<int> Mask = SVN->getMask();
6430     if ((!AllowWholeUndefs || !AllowPartialUndefs) &&
6431         llvm::any_of(Mask, [](int M) { return M < 0; }))
6432       return false;
6433 
6434     APInt UndefElts0, UndefElts1;
6435     SmallVector<APInt, 32> EltBits0, EltBits1;
6436     if (isAnyInRange(Mask, 0, NumElts) &&
6437         !getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
6438                                        UndefElts0, EltBits0, AllowWholeUndefs,
6439                                        AllowPartialUndefs))
6440       return false;
6441     if (isAnyInRange(Mask, NumElts, 2 * NumElts) &&
6442         !getTargetConstantBitsFromNode(Op.getOperand(1), EltSizeInBits,
6443                                        UndefElts1, EltBits1, AllowWholeUndefs,
6444                                        AllowPartialUndefs))
6445       return false;
6446 
6447     UndefElts = APInt::getNullValue(NumElts);
6448     for (int i = 0; i != (int)NumElts; ++i) {
6449       int M = Mask[i];
6450       if (M < 0) {
6451         UndefElts.setBit(i);
6452         EltBits.push_back(APInt::getNullValue(EltSizeInBits));
6453       } else if (M < (int)NumElts) {
6454         if (UndefElts0[M])
6455           UndefElts.setBit(i);
6456         EltBits.push_back(EltBits0[M]);
6457       } else {
6458         if (UndefElts1[M - NumElts])
6459           UndefElts.setBit(i);
6460         EltBits.push_back(EltBits1[M - NumElts]);
6461       }
6462     }
6463     return true;
6464   }
6465 
6466   return false;
6467 }
6468 
6469 namespace llvm {
6470 namespace X86 {
6471 bool isConstantSplat(SDValue Op, APInt &SplatVal) {
6472   APInt UndefElts;
6473   SmallVector<APInt, 16> EltBits;
6474   if (getTargetConstantBitsFromNode(Op, Op.getScalarValueSizeInBits(),
6475                                     UndefElts, EltBits, true, false)) {
6476     int SplatIndex = -1;
6477     for (int i = 0, e = EltBits.size(); i != e; ++i) {
6478       if (UndefElts[i])
6479         continue;
6480       if (0 <= SplatIndex && EltBits[i] != EltBits[SplatIndex]) {
6481         SplatIndex = -1;
6482         break;
6483       }
6484       SplatIndex = i;
6485     }
6486     if (0 <= SplatIndex) {
6487       SplatVal = EltBits[SplatIndex];
6488       return true;
6489     }
6490   }
6491 
6492   return false;
6493 }
6494 } // namespace X86
6495 } // namespace llvm
6496 
6497 static bool getTargetShuffleMaskIndices(SDValue MaskNode,
6498                                         unsigned MaskEltSizeInBits,
6499                                         SmallVectorImpl<uint64_t> &RawMask,
6500                                         APInt &UndefElts) {
6501   // Extract the raw target constant bits.
6502   SmallVector<APInt, 64> EltBits;
6503   if (!getTargetConstantBitsFromNode(MaskNode, MaskEltSizeInBits, UndefElts,
6504                                      EltBits, /* AllowWholeUndefs */ true,
6505                                      /* AllowPartialUndefs */ false))
6506     return false;
6507 
6508   // Insert the extracted elements into the mask.
6509   for (APInt Elt : EltBits)
6510     RawMask.push_back(Elt.getZExtValue());
6511 
6512   return true;
6513 }
6514 
6515 /// Create a shuffle mask that matches the PACKSS/PACKUS truncation.
6516 /// Note: This ignores saturation, so inputs must be checked first.
6517 static void createPackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask,
6518                                   bool Unary) {
6519   assert(Mask.empty() && "Expected an empty shuffle mask vector");
6520   unsigned NumElts = VT.getVectorNumElements();
6521   unsigned NumLanes = VT.getSizeInBits() / 128;
6522   unsigned NumEltsPerLane = 128 / VT.getScalarSizeInBits();
6523   unsigned Offset = Unary ? 0 : NumElts;
6524 
6525   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
6526     for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
6527       Mask.push_back(Elt + (Lane * NumEltsPerLane));
6528     for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
6529       Mask.push_back(Elt + (Lane * NumEltsPerLane) + Offset);
6530   }
6531 }
6532 
6533 // Split the demanded elts of a PACKSS/PACKUS node between its operands.
6534 static void getPackDemandedElts(EVT VT, const APInt &DemandedElts,
6535                                 APInt &DemandedLHS, APInt &DemandedRHS) {
6536   int NumLanes = VT.getSizeInBits() / 128;
6537   int NumElts = DemandedElts.getBitWidth();
6538   int NumInnerElts = NumElts / 2;
6539   int NumEltsPerLane = NumElts / NumLanes;
6540   int NumInnerEltsPerLane = NumInnerElts / NumLanes;
6541 
6542   DemandedLHS = APInt::getNullValue(NumInnerElts);
6543   DemandedRHS = APInt::getNullValue(NumInnerElts);
6544 
6545   // Map DemandedElts to the packed operands.
6546   for (int Lane = 0; Lane != NumLanes; ++Lane) {
6547     for (int Elt = 0; Elt != NumInnerEltsPerLane; ++Elt) {
6548       int OuterIdx = (Lane * NumEltsPerLane) + Elt;
6549       int InnerIdx = (Lane * NumInnerEltsPerLane) + Elt;
6550       if (DemandedElts[OuterIdx])
6551         DemandedLHS.setBit(InnerIdx);
6552       if (DemandedElts[OuterIdx + NumInnerEltsPerLane])
6553         DemandedRHS.setBit(InnerIdx);
6554     }
6555   }
6556 }
6557 
6558 // Split the demanded elts of a HADD/HSUB node between its operands.
6559 static void getHorizDemandedElts(EVT VT, const APInt &DemandedElts,
6560                                  APInt &DemandedLHS, APInt &DemandedRHS) {
6561   int NumLanes = VT.getSizeInBits() / 128;
6562   int NumElts = DemandedElts.getBitWidth();
6563   int NumEltsPerLane = NumElts / NumLanes;
6564   int HalfEltsPerLane = NumEltsPerLane / 2;
6565 
6566   DemandedLHS = APInt::getNullValue(NumElts);
6567   DemandedRHS = APInt::getNullValue(NumElts);
6568 
6569   // Map DemandedElts to the horizontal operands.
6570   for (int Idx = 0; Idx != NumElts; ++Idx) {
6571     if (!DemandedElts[Idx])
6572       continue;
6573     int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane;
6574     int LocalIdx = Idx % NumEltsPerLane;
6575     if (LocalIdx < HalfEltsPerLane) {
6576       DemandedLHS.setBit(LaneIdx + 2 * LocalIdx + 0);
6577       DemandedLHS.setBit(LaneIdx + 2 * LocalIdx + 1);
6578     } else {
6579       LocalIdx -= HalfEltsPerLane;
6580       DemandedRHS.setBit(LaneIdx + 2 * LocalIdx + 0);
6581       DemandedRHS.setBit(LaneIdx + 2 * LocalIdx + 1);
6582     }
6583   }
6584 }
6585 
6586 /// Calculates the shuffle mask corresponding to the target-specific opcode.
6587 /// If the mask could be calculated, returns it in \p Mask, returns the shuffle
6588 /// operands in \p Ops, and returns true.
6589 /// Sets \p IsUnary to true if only one source is used. Note that this will set
6590 /// IsUnary for shuffles which use a single input multiple times, and in those
6591 /// cases it will adjust the mask to only have indices within that single input.
6592 /// It is an error to call this with non-empty Mask/Ops vectors.
6593 static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero,
6594                                  SmallVectorImpl<SDValue> &Ops,
6595                                  SmallVectorImpl<int> &Mask, bool &IsUnary) {
6596   unsigned NumElems = VT.getVectorNumElements();
6597   unsigned MaskEltSize = VT.getScalarSizeInBits();
6598   SmallVector<uint64_t, 32> RawMask;
6599   APInt RawUndefs;
6600   SDValue ImmN;
6601 
6602   assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector");
6603   assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector");
6604 
6605   IsUnary = false;
6606   bool IsFakeUnary = false;
6607   switch (N->getOpcode()) {
6608   case X86ISD::BLENDI:
6609     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6610     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6611     ImmN = N->getOperand(N->getNumOperands() - 1);
6612     DecodeBLENDMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
6613     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6614     break;
6615   case X86ISD::SHUFP:
6616     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6617     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6618     ImmN = N->getOperand(N->getNumOperands() - 1);
6619     DecodeSHUFPMask(NumElems, MaskEltSize,
6620                     cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
6621     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6622     break;
6623   case X86ISD::INSERTPS:
6624     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6625     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6626     ImmN = N->getOperand(N->getNumOperands() - 1);
6627     DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
6628     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6629     break;
6630   case X86ISD::EXTRQI:
6631     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6632     if (isa<ConstantSDNode>(N->getOperand(1)) &&
6633         isa<ConstantSDNode>(N->getOperand(2))) {
6634       int BitLen = N->getConstantOperandVal(1);
6635       int BitIdx = N->getConstantOperandVal(2);
6636       DecodeEXTRQIMask(NumElems, MaskEltSize, BitLen, BitIdx, Mask);
6637       IsUnary = true;
6638     }
6639     break;
6640   case X86ISD::INSERTQI:
6641     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6642     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6643     if (isa<ConstantSDNode>(N->getOperand(2)) &&
6644         isa<ConstantSDNode>(N->getOperand(3))) {
6645       int BitLen = N->getConstantOperandVal(2);
6646       int BitIdx = N->getConstantOperandVal(3);
6647       DecodeINSERTQIMask(NumElems, MaskEltSize, BitLen, BitIdx, Mask);
6648       IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6649     }
6650     break;
6651   case X86ISD::UNPCKH:
6652     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6653     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6654     DecodeUNPCKHMask(NumElems, MaskEltSize, Mask);
6655     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6656     break;
6657   case X86ISD::UNPCKL:
6658     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6659     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6660     DecodeUNPCKLMask(NumElems, MaskEltSize, Mask);
6661     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6662     break;
6663   case X86ISD::MOVHLPS:
6664     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6665     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6666     DecodeMOVHLPSMask(NumElems, Mask);
6667     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6668     break;
6669   case X86ISD::MOVLHPS:
6670     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6671     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6672     DecodeMOVLHPSMask(NumElems, Mask);
6673     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6674     break;
6675   case X86ISD::PALIGNR:
6676     assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
6677     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6678     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6679     ImmN = N->getOperand(N->getNumOperands() - 1);
6680     DecodePALIGNRMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
6681                       Mask);
6682     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6683     Ops.push_back(N->getOperand(1));
6684     Ops.push_back(N->getOperand(0));
6685     break;
6686   case X86ISD::VSHLDQ:
6687     assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
6688     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6689     ImmN = N->getOperand(N->getNumOperands() - 1);
6690     DecodePSLLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
6691                      Mask);
6692     IsUnary = true;
6693     break;
6694   case X86ISD::VSRLDQ:
6695     assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
6696     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6697     ImmN = N->getOperand(N->getNumOperands() - 1);
6698     DecodePSRLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
6699                      Mask);
6700     IsUnary = true;
6701     break;
6702   case X86ISD::PSHUFD:
6703   case X86ISD::VPERMILPI:
6704     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6705     ImmN = N->getOperand(N->getNumOperands() - 1);
6706     DecodePSHUFMask(NumElems, MaskEltSize,
6707                     cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
6708     IsUnary = true;
6709     break;
6710   case X86ISD::PSHUFHW:
6711     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6712     ImmN = N->getOperand(N->getNumOperands() - 1);
6713     DecodePSHUFHWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
6714                       Mask);
6715     IsUnary = true;
6716     break;
6717   case X86ISD::PSHUFLW:
6718     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6719     ImmN = N->getOperand(N->getNumOperands() - 1);
6720     DecodePSHUFLWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
6721                       Mask);
6722     IsUnary = true;
6723     break;
6724   case X86ISD::VZEXT_MOVL:
6725     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6726     DecodeZeroMoveLowMask(NumElems, Mask);
6727     IsUnary = true;
6728     break;
6729   case X86ISD::VBROADCAST: {
6730     SDValue N0 = N->getOperand(0);
6731     // See if we're broadcasting from index 0 of an EXTRACT_SUBVECTOR. If so,
6732     // add the pre-extracted value to the Ops vector.
6733     if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6734         N0.getOperand(0).getValueType() == VT &&
6735         N0.getConstantOperandVal(1) == 0)
6736       Ops.push_back(N0.getOperand(0));
6737 
6738     // We only decode broadcasts of same-sized vectors, unless the broadcast
6739     // came from an extract from the original width. If we found one, we
6740     // pushed it the Ops vector above.
6741     if (N0.getValueType() == VT || !Ops.empty()) {
6742       DecodeVectorBroadcast(NumElems, Mask);
6743       IsUnary = true;
6744       break;
6745     }
6746     return false;
6747   }
6748   case X86ISD::VPERMILPV: {
6749     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6750     IsUnary = true;
6751     SDValue MaskNode = N->getOperand(1);
6752     if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
6753                                     RawUndefs)) {
6754       DecodeVPERMILPMask(NumElems, MaskEltSize, RawMask, RawUndefs, Mask);
6755       break;
6756     }
6757     return false;
6758   }
6759   case X86ISD::PSHUFB: {
6760     assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
6761     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6762     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6763     IsUnary = true;
6764     SDValue MaskNode = N->getOperand(1);
6765     if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask, RawUndefs)) {
6766       DecodePSHUFBMask(RawMask, RawUndefs, Mask);
6767       break;
6768     }
6769     return false;
6770   }
6771   case X86ISD::VPERMI:
6772     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6773     ImmN = N->getOperand(N->getNumOperands() - 1);
6774     DecodeVPERMMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
6775     IsUnary = true;
6776     break;
6777   case X86ISD::MOVSS:
6778   case X86ISD::MOVSD:
6779     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6780     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6781     DecodeScalarMoveMask(NumElems, /* IsLoad */ false, Mask);
6782     break;
6783   case X86ISD::VPERM2X128:
6784     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6785     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6786     ImmN = N->getOperand(N->getNumOperands() - 1);
6787     DecodeVPERM2X128Mask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
6788                          Mask);
6789     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6790     break;
6791   case X86ISD::SHUF128:
6792     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6793     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6794     ImmN = N->getOperand(N->getNumOperands() - 1);
6795     decodeVSHUF64x2FamilyMask(NumElems, MaskEltSize,
6796                               cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
6797     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6798     break;
6799   case X86ISD::MOVSLDUP:
6800     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6801     DecodeMOVSLDUPMask(NumElems, Mask);
6802     IsUnary = true;
6803     break;
6804   case X86ISD::MOVSHDUP:
6805     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6806     DecodeMOVSHDUPMask(NumElems, Mask);
6807     IsUnary = true;
6808     break;
6809   case X86ISD::MOVDDUP:
6810     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6811     DecodeMOVDDUPMask(NumElems, Mask);
6812     IsUnary = true;
6813     break;
6814   case X86ISD::VPERMIL2: {
6815     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6816     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6817     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6818     SDValue MaskNode = N->getOperand(2);
6819     SDValue CtrlNode = N->getOperand(3);
6820     if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) {
6821       unsigned CtrlImm = CtrlOp->getZExtValue();
6822       if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
6823                                       RawUndefs)) {
6824         DecodeVPERMIL2PMask(NumElems, MaskEltSize, CtrlImm, RawMask, RawUndefs,
6825                             Mask);
6826         break;
6827       }
6828     }
6829     return false;
6830   }
6831   case X86ISD::VPPERM: {
6832     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6833     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6834     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
6835     SDValue MaskNode = N->getOperand(2);
6836     if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask, RawUndefs)) {
6837       DecodeVPPERMMask(RawMask, RawUndefs, Mask);
6838       break;
6839     }
6840     return false;
6841   }
6842   case X86ISD::VPERMV: {
6843     assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
6844     IsUnary = true;
6845     // Unlike most shuffle nodes, VPERMV's mask operand is operand 0.
6846     Ops.push_back(N->getOperand(1));
6847     SDValue MaskNode = N->getOperand(0);
6848     if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
6849                                     RawUndefs)) {
6850       DecodeVPERMVMask(RawMask, RawUndefs, Mask);
6851       break;
6852     }
6853     return false;
6854   }
6855   case X86ISD::VPERMV3: {
6856     assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
6857     assert(N->getOperand(2).getValueType() == VT && "Unexpected value type");
6858     IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2);
6859     // Unlike most shuffle nodes, VPERMV3's mask operand is the middle one.
6860     Ops.push_back(N->getOperand(0));
6861     Ops.push_back(N->getOperand(2));
6862     SDValue MaskNode = N->getOperand(1);
6863     if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
6864                                     RawUndefs)) {
6865       DecodeVPERMV3Mask(RawMask, RawUndefs, Mask);
6866       break;
6867     }
6868     return false;
6869   }
6870   default: llvm_unreachable("unknown target shuffle node");
6871   }
6872 
6873   // Empty mask indicates the decode failed.
6874   if (Mask.empty())
6875     return false;
6876 
6877   // Check if we're getting a shuffle mask with zero'd elements.
6878   if (!AllowSentinelZero)
6879     if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
6880       return false;
6881 
6882   // If we have a fake unary shuffle, the shuffle mask is spread across two
6883   // inputs that are actually the same node. Re-map the mask to always point
6884   // into the first input.
6885   if (IsFakeUnary)
6886     for (int &M : Mask)
6887       if (M >= (int)Mask.size())
6888         M -= Mask.size();
6889 
6890   // If we didn't already add operands in the opcode-specific code, default to
6891   // adding 1 or 2 operands starting at 0.
6892   if (Ops.empty()) {
6893     Ops.push_back(N->getOperand(0));
6894     if (!IsUnary || IsFakeUnary)
6895       Ops.push_back(N->getOperand(1));
6896   }
6897 
6898   return true;
6899 }
6900 
6901 /// Compute whether each element of a shuffle is zeroable.
6902 ///
6903 /// A "zeroable" vector shuffle element is one which can be lowered to zero.
6904 /// Either it is an undef element in the shuffle mask, the element of the input
6905 /// referenced is undef, or the element of the input referenced is known to be
6906 /// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
6907 /// as many lanes with this technique as possible to simplify the remaining
6908 /// shuffle.
6909 static void computeZeroableShuffleElements(ArrayRef<int> Mask,
6910                                            SDValue V1, SDValue V2,
6911                                            APInt &KnownUndef, APInt &KnownZero) {
6912   int Size = Mask.size();
6913   KnownUndef = KnownZero = APInt::getNullValue(Size);
6914 
6915   V1 = peekThroughBitcasts(V1);
6916   V2 = peekThroughBitcasts(V2);
6917 
6918   bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
6919   bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
6920 
6921   int VectorSizeInBits = V1.getValueSizeInBits();
6922   int ScalarSizeInBits = VectorSizeInBits / Size;
6923   assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
6924 
6925   for (int i = 0; i < Size; ++i) {
6926     int M = Mask[i];
6927     // Handle the easy cases.
6928     if (M < 0) {
6929       KnownUndef.setBit(i);
6930       continue;
6931     }
6932     if ((M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
6933       KnownZero.setBit(i);
6934       continue;
6935     }
6936 
6937     // Determine shuffle input and normalize the mask.
6938     SDValue V = M < Size ? V1 : V2;
6939     M %= Size;
6940 
6941     // Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
6942     if (V.getOpcode() != ISD::BUILD_VECTOR)
6943       continue;
6944 
6945     // If the BUILD_VECTOR has fewer elements then the bitcasted portion of
6946     // the (larger) source element must be UNDEF/ZERO.
6947     if ((Size % V.getNumOperands()) == 0) {
6948       int Scale = Size / V->getNumOperands();
6949       SDValue Op = V.getOperand(M / Scale);
6950       if (Op.isUndef())
6951         KnownUndef.setBit(i);
6952       if (X86::isZeroNode(Op))
6953         KnownZero.setBit(i);
6954       else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
6955         APInt Val = Cst->getAPIntValue();
6956         Val = Val.extractBits(ScalarSizeInBits, (M % Scale) * ScalarSizeInBits);
6957         if (Val == 0)
6958           KnownZero.setBit(i);
6959       } else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
6960         APInt Val = Cst->getValueAPF().bitcastToAPInt();
6961         Val = Val.extractBits(ScalarSizeInBits, (M % Scale) * ScalarSizeInBits);
6962         if (Val == 0)
6963           KnownZero.setBit(i);
6964       }
6965       continue;
6966     }
6967 
6968     // If the BUILD_VECTOR has more elements then all the (smaller) source
6969     // elements must be UNDEF or ZERO.
6970     if ((V.getNumOperands() % Size) == 0) {
6971       int Scale = V->getNumOperands() / Size;
6972       bool AllUndef = true;
6973       bool AllZero = true;
6974       for (int j = 0; j < Scale; ++j) {
6975         SDValue Op = V.getOperand((M * Scale) + j);
6976         AllUndef &= Op.isUndef();
6977         AllZero &= X86::isZeroNode(Op);
6978       }
6979       if (AllUndef)
6980         KnownUndef.setBit(i);
6981       if (AllZero)
6982         KnownZero.setBit(i);
6983       continue;
6984     }
6985   }
6986 }
6987 
6988 /// Decode a target shuffle mask and inputs and see if any values are
6989 /// known to be undef or zero from their inputs.
6990 /// Returns true if the target shuffle mask was decoded.
6991 /// FIXME: Merge this with computeZeroableShuffleElements?
6992 static bool getTargetShuffleAndZeroables(SDValue N, SmallVectorImpl<int> &Mask,
6993                                          SmallVectorImpl<SDValue> &Ops,
6994                                          APInt &KnownUndef, APInt &KnownZero) {
6995   bool IsUnary;
6996   if (!isTargetShuffle(N.getOpcode()))
6997     return false;
6998 
6999   MVT VT = N.getSimpleValueType();
7000   if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary))
7001     return false;
7002 
7003   int Size = Mask.size();
7004   SDValue V1 = Ops[0];
7005   SDValue V2 = IsUnary ? V1 : Ops[1];
7006   KnownUndef = KnownZero = APInt::getNullValue(Size);
7007 
7008   V1 = peekThroughBitcasts(V1);
7009   V2 = peekThroughBitcasts(V2);
7010 
7011   assert((VT.getSizeInBits() % Size) == 0 &&
7012          "Illegal split of shuffle value type");
7013   unsigned EltSizeInBits = VT.getSizeInBits() / Size;
7014 
7015   // Extract known constant input data.
7016   APInt UndefSrcElts[2];
7017   SmallVector<APInt, 32> SrcEltBits[2];
7018   bool IsSrcConstant[2] = {
7019       getTargetConstantBitsFromNode(V1, EltSizeInBits, UndefSrcElts[0],
7020                                     SrcEltBits[0], true, false),
7021       getTargetConstantBitsFromNode(V2, EltSizeInBits, UndefSrcElts[1],
7022                                     SrcEltBits[1], true, false)};
7023 
7024   for (int i = 0; i < Size; ++i) {
7025     int M = Mask[i];
7026 
7027     // Already decoded as SM_SentinelZero / SM_SentinelUndef.
7028     if (M < 0) {
7029       assert(isUndefOrZero(M) && "Unknown shuffle sentinel value!");
7030       if (SM_SentinelUndef == M)
7031         KnownUndef.setBit(i);
7032       if (SM_SentinelZero == M)
7033         KnownZero.setBit(i);
7034       continue;
7035     }
7036 
7037     // Determine shuffle input and normalize the mask.
7038     unsigned SrcIdx = M / Size;
7039     SDValue V = M < Size ? V1 : V2;
7040     M %= Size;
7041 
7042     // We are referencing an UNDEF input.
7043     if (V.isUndef()) {
7044       KnownUndef.setBit(i);
7045       continue;
7046     }
7047 
7048     // SCALAR_TO_VECTOR - only the first element is defined, and the rest UNDEF.
7049     // TODO: We currently only set UNDEF for integer types - floats use the same
7050     // registers as vectors and many of the scalar folded loads rely on the
7051     // SCALAR_TO_VECTOR pattern.
7052     if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
7053         (Size % V.getValueType().getVectorNumElements()) == 0) {
7054       int Scale = Size / V.getValueType().getVectorNumElements();
7055       int Idx = M / Scale;
7056       if (Idx != 0 && !VT.isFloatingPoint())
7057         KnownUndef.setBit(i);
7058       else if (Idx == 0 && X86::isZeroNode(V.getOperand(0)))
7059         KnownZero.setBit(i);
7060       continue;
7061     }
7062 
7063     // Attempt to extract from the source's constant bits.
7064     if (IsSrcConstant[SrcIdx]) {
7065       if (UndefSrcElts[SrcIdx][M])
7066         KnownUndef.setBit(i);
7067       else if (SrcEltBits[SrcIdx][M] == 0)
7068         KnownZero.setBit(i);
7069     }
7070   }
7071 
7072   assert(VT.getVectorNumElements() == (unsigned)Size &&
7073          "Different mask size from vector size!");
7074   return true;
7075 }
7076 
7077 // Replace target shuffle mask elements with known undef/zero sentinels.
7078 static void resolveTargetShuffleFromZeroables(SmallVectorImpl<int> &Mask,
7079                                               const APInt &KnownUndef,
7080                                               const APInt &KnownZero,
7081                                               bool ResolveKnownZeros= true) {
7082   unsigned NumElts = Mask.size();
7083   assert(KnownUndef.getBitWidth() == NumElts &&
7084          KnownZero.getBitWidth() == NumElts && "Shuffle mask size mismatch");
7085 
7086   for (unsigned i = 0; i != NumElts; ++i) {
7087     if (KnownUndef[i])
7088       Mask[i] = SM_SentinelUndef;
7089     else if (ResolveKnownZeros && KnownZero[i])
7090       Mask[i] = SM_SentinelZero;
7091   }
7092 }
7093 
7094 // Extract target shuffle mask sentinel elements to known undef/zero bitmasks.
7095 static void resolveZeroablesFromTargetShuffle(const SmallVectorImpl<int> &Mask,
7096                                               APInt &KnownUndef,
7097                                               APInt &KnownZero) {
7098   unsigned NumElts = Mask.size();
7099   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
7100 
7101   for (unsigned i = 0; i != NumElts; ++i) {
7102     int M = Mask[i];
7103     if (SM_SentinelUndef == M)
7104       KnownUndef.setBit(i);
7105     if (SM_SentinelZero == M)
7106       KnownZero.setBit(i);
7107   }
7108 }
7109 
7110 // Forward declaration (for getFauxShuffleMask recursive check).
7111 // TODO: Use DemandedElts variant.
7112 static bool getTargetShuffleInputs(SDValue Op, SmallVectorImpl<SDValue> &Inputs,
7113                                    SmallVectorImpl<int> &Mask,
7114                                    SelectionDAG &DAG, unsigned Depth,
7115                                    bool ResolveKnownElts);
7116 
7117 // Attempt to decode ops that could be represented as a shuffle mask.
7118 // The decoded shuffle mask may contain a different number of elements to the
7119 // destination value type.
7120 static bool getFauxShuffleMask(SDValue N, const APInt &DemandedElts,
7121                                SmallVectorImpl<int> &Mask,
7122                                SmallVectorImpl<SDValue> &Ops,
7123                                SelectionDAG &DAG, unsigned Depth,
7124                                bool ResolveKnownElts) {
7125   Mask.clear();
7126   Ops.clear();
7127 
7128   MVT VT = N.getSimpleValueType();
7129   unsigned NumElts = VT.getVectorNumElements();
7130   unsigned NumSizeInBits = VT.getSizeInBits();
7131   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7132   if ((NumBitsPerElt % 8) != 0 || (NumSizeInBits % 8) != 0)
7133     return false;
7134   assert(NumElts == DemandedElts.getBitWidth() && "Unexpected vector size");
7135 
7136   unsigned Opcode = N.getOpcode();
7137   switch (Opcode) {
7138   case ISD::VECTOR_SHUFFLE: {
7139     // Don't treat ISD::VECTOR_SHUFFLE as a target shuffle so decode it here.
7140     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(N)->getMask();
7141     if (isUndefOrInRange(ShuffleMask, 0, 2 * NumElts)) {
7142       Mask.append(ShuffleMask.begin(), ShuffleMask.end());
7143       Ops.push_back(N.getOperand(0));
7144       Ops.push_back(N.getOperand(1));
7145       return true;
7146     }
7147     return false;
7148   }
7149   case ISD::AND:
7150   case X86ISD::ANDNP: {
7151     // Attempt to decode as a per-byte mask.
7152     APInt UndefElts;
7153     SmallVector<APInt, 32> EltBits;
7154     SDValue N0 = N.getOperand(0);
7155     SDValue N1 = N.getOperand(1);
7156     bool IsAndN = (X86ISD::ANDNP == Opcode);
7157     uint64_t ZeroMask = IsAndN ? 255 : 0;
7158     if (!getTargetConstantBitsFromNode(IsAndN ? N0 : N1, 8, UndefElts, EltBits))
7159       return false;
7160     for (int i = 0, e = (int)EltBits.size(); i != e; ++i) {
7161       if (UndefElts[i]) {
7162         Mask.push_back(SM_SentinelUndef);
7163         continue;
7164       }
7165       const APInt &ByteBits = EltBits[i];
7166       if (ByteBits != 0 && ByteBits != 255)
7167         return false;
7168       Mask.push_back(ByteBits == ZeroMask ? SM_SentinelZero : i);
7169     }
7170     Ops.push_back(IsAndN ? N1 : N0);
7171     return true;
7172   }
7173   case ISD::OR: {
7174     // Inspect each operand at the byte level. We can merge these into a
7175     // blend shuffle mask if for each byte at least one is masked out (zero).
7176     KnownBits Known0 =
7177         DAG.computeKnownBits(N.getOperand(0), DemandedElts, Depth + 1);
7178     KnownBits Known1 =
7179         DAG.computeKnownBits(N.getOperand(1), DemandedElts, Depth + 1);
7180     if (Known0.One.isNullValue() && Known1.One.isNullValue()) {
7181       bool IsByteMask = true;
7182       unsigned NumSizeInBytes = NumSizeInBits / 8;
7183       unsigned NumBytesPerElt = NumBitsPerElt / 8;
7184       APInt ZeroMask = APInt::getNullValue(NumBytesPerElt);
7185       APInt SelectMask = APInt::getNullValue(NumBytesPerElt);
7186       for (unsigned i = 0; i != NumBytesPerElt && IsByteMask; ++i) {
7187         unsigned LHS = Known0.Zero.extractBits(8, i * 8).getZExtValue();
7188         unsigned RHS = Known1.Zero.extractBits(8, i * 8).getZExtValue();
7189         if (LHS == 255 && RHS == 0)
7190           SelectMask.setBit(i);
7191         else if (LHS == 255 && RHS == 255)
7192           ZeroMask.setBit(i);
7193         else if (!(LHS == 0 && RHS == 255))
7194           IsByteMask = false;
7195       }
7196       if (IsByteMask) {
7197         for (unsigned i = 0; i != NumSizeInBytes; i += NumBytesPerElt) {
7198           for (unsigned j = 0; j != NumBytesPerElt; ++j) {
7199             unsigned Ofs = (SelectMask[j] ? NumSizeInBytes : 0);
7200             int Idx = (ZeroMask[j] ? (int)SM_SentinelZero : (i + j + Ofs));
7201             Mask.push_back(Idx);
7202           }
7203         }
7204         Ops.push_back(N.getOperand(0));
7205         Ops.push_back(N.getOperand(1));
7206         return true;
7207       }
7208     }
7209 
7210     // Handle OR(SHUFFLE,SHUFFLE) case where one source is zero and the other
7211     // is a valid shuffle index.
7212     SDValue N0 = peekThroughOneUseBitcasts(N.getOperand(0));
7213     SDValue N1 = peekThroughOneUseBitcasts(N.getOperand(1));
7214     if (!N0.getValueType().isVector() || !N1.getValueType().isVector())
7215       return false;
7216     SmallVector<int, 64> SrcMask0, SrcMask1;
7217     SmallVector<SDValue, 2> SrcInputs0, SrcInputs1;
7218     if (!getTargetShuffleInputs(N0, SrcInputs0, SrcMask0, DAG, Depth + 1,
7219                                 true) ||
7220         !getTargetShuffleInputs(N1, SrcInputs1, SrcMask1, DAG, Depth + 1,
7221                                 true))
7222       return false;
7223     size_t MaskSize = std::max(SrcMask0.size(), SrcMask1.size());
7224     SmallVector<int, 64> Mask0, Mask1;
7225     scaleShuffleMask<int>(MaskSize / SrcMask0.size(), SrcMask0, Mask0);
7226     scaleShuffleMask<int>(MaskSize / SrcMask1.size(), SrcMask1, Mask1);
7227     for (size_t i = 0; i != MaskSize; ++i) {
7228       if (Mask0[i] == SM_SentinelUndef && Mask1[i] == SM_SentinelUndef)
7229         Mask.push_back(SM_SentinelUndef);
7230       else if (Mask0[i] == SM_SentinelZero && Mask1[i] == SM_SentinelZero)
7231         Mask.push_back(SM_SentinelZero);
7232       else if (Mask1[i] == SM_SentinelZero)
7233         Mask.push_back(Mask0[i]);
7234       else if (Mask0[i] == SM_SentinelZero)
7235         Mask.push_back(Mask1[i] + (int)(MaskSize * SrcInputs0.size()));
7236       else
7237         return false;
7238     }
7239     Ops.append(SrcInputs0.begin(), SrcInputs0.end());
7240     Ops.append(SrcInputs1.begin(), SrcInputs1.end());
7241     return true;
7242   }
7243   case ISD::INSERT_SUBVECTOR: {
7244     SDValue Src = N.getOperand(0);
7245     SDValue Sub = N.getOperand(1);
7246     EVT SubVT = Sub.getValueType();
7247     unsigned NumSubElts = SubVT.getVectorNumElements();
7248     if (!isa<ConstantSDNode>(N.getOperand(2)) ||
7249         !N->isOnlyUserOf(Sub.getNode()))
7250       return false;
7251     uint64_t InsertIdx = N.getConstantOperandVal(2);
7252     // Handle INSERT_SUBVECTOR(SRC0, EXTRACT_SUBVECTOR(SRC1)).
7253     if (Sub.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7254         Sub.getOperand(0).getValueType() == VT &&
7255         isa<ConstantSDNode>(Sub.getOperand(1))) {
7256       uint64_t ExtractIdx = Sub.getConstantOperandVal(1);
7257       for (int i = 0; i != (int)NumElts; ++i)
7258         Mask.push_back(i);
7259       for (int i = 0; i != (int)NumSubElts; ++i)
7260         Mask[InsertIdx + i] = NumElts + ExtractIdx + i;
7261       Ops.push_back(Src);
7262       Ops.push_back(Sub.getOperand(0));
7263       return true;
7264     }
7265     // Handle INSERT_SUBVECTOR(SRC0, SHUFFLE(SRC1)).
7266     SmallVector<int, 64> SubMask;
7267     SmallVector<SDValue, 2> SubInputs;
7268     if (!getTargetShuffleInputs(peekThroughOneUseBitcasts(Sub), SubInputs,
7269                                 SubMask, DAG, Depth + 1, ResolveKnownElts))
7270       return false;
7271     if (SubMask.size() != NumSubElts) {
7272       assert(((SubMask.size() % NumSubElts) == 0 ||
7273               (NumSubElts % SubMask.size()) == 0) && "Illegal submask scale");
7274       if ((NumSubElts % SubMask.size()) == 0) {
7275         int Scale = NumSubElts / SubMask.size();
7276         SmallVector<int,64> ScaledSubMask;
7277         scaleShuffleMask<int>(Scale, SubMask, ScaledSubMask);
7278         SubMask = ScaledSubMask;
7279       } else {
7280         int Scale = SubMask.size() / NumSubElts;
7281         NumSubElts = SubMask.size();
7282         NumElts *= Scale;
7283         InsertIdx *= Scale;
7284       }
7285     }
7286     Ops.push_back(Src);
7287     for (SDValue &SubInput : SubInputs) {
7288       EVT SubSVT = SubInput.getValueType().getScalarType();
7289       EVT AltVT = EVT::getVectorVT(*DAG.getContext(), SubSVT,
7290                                    NumSizeInBits / SubSVT.getSizeInBits());
7291       Ops.push_back(DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), AltVT,
7292                                 DAG.getUNDEF(AltVT), SubInput,
7293                                 DAG.getIntPtrConstant(0, SDLoc(N))));
7294     }
7295     for (int i = 0; i != (int)NumElts; ++i)
7296       Mask.push_back(i);
7297     for (int i = 0; i != (int)NumSubElts; ++i) {
7298       int M = SubMask[i];
7299       if (0 <= M) {
7300         int InputIdx = M / NumSubElts;
7301         M = (NumElts * (1 + InputIdx)) + (M % NumSubElts);
7302       }
7303       Mask[i + InsertIdx] = M;
7304     }
7305     return true;
7306   }
7307   case ISD::SCALAR_TO_VECTOR: {
7308     // Match against a scalar_to_vector of an extract from a vector,
7309     // for PEXTRW/PEXTRB we must handle the implicit zext of the scalar.
7310     SDValue N0 = N.getOperand(0);
7311     SDValue SrcExtract;
7312 
7313     if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7314          N0.getOperand(0).getValueType() == VT) ||
7315         (N0.getOpcode() == X86ISD::PEXTRW &&
7316          N0.getOperand(0).getValueType() == MVT::v8i16) ||
7317         (N0.getOpcode() == X86ISD::PEXTRB &&
7318          N0.getOperand(0).getValueType() == MVT::v16i8)) {
7319       SrcExtract = N0;
7320     }
7321 
7322     if (!SrcExtract || !isa<ConstantSDNode>(SrcExtract.getOperand(1)))
7323       return false;
7324 
7325     SDValue SrcVec = SrcExtract.getOperand(0);
7326     EVT SrcVT = SrcVec.getValueType();
7327     unsigned NumSrcElts = SrcVT.getVectorNumElements();
7328     unsigned NumZeros = (NumBitsPerElt / SrcVT.getScalarSizeInBits()) - 1;
7329 
7330     unsigned SrcIdx = SrcExtract.getConstantOperandVal(1);
7331     if (NumSrcElts <= SrcIdx)
7332       return false;
7333 
7334     Ops.push_back(SrcVec);
7335     Mask.push_back(SrcIdx);
7336     Mask.append(NumZeros, SM_SentinelZero);
7337     Mask.append(NumSrcElts - Mask.size(), SM_SentinelUndef);
7338     return true;
7339   }
7340   case X86ISD::PINSRB:
7341   case X86ISD::PINSRW: {
7342     SDValue InVec = N.getOperand(0);
7343     SDValue InScl = N.getOperand(1);
7344     SDValue InIndex = N.getOperand(2);
7345     if (!isa<ConstantSDNode>(InIndex) ||
7346         cast<ConstantSDNode>(InIndex)->getAPIntValue().uge(NumElts))
7347       return false;
7348     uint64_t InIdx = N.getConstantOperandVal(2);
7349 
7350     // Attempt to recognise a PINSR*(VEC, 0, Idx) shuffle pattern.
7351     if (X86::isZeroNode(InScl)) {
7352       Ops.push_back(InVec);
7353       for (unsigned i = 0; i != NumElts; ++i)
7354         Mask.push_back(i == InIdx ? SM_SentinelZero : (int)i);
7355       return true;
7356     }
7357 
7358     // Attempt to recognise a PINSR*(PEXTR*) shuffle pattern.
7359     // TODO: Expand this to support INSERT_VECTOR_ELT/etc.
7360     unsigned ExOp =
7361         (X86ISD::PINSRB == Opcode ? X86ISD::PEXTRB : X86ISD::PEXTRW);
7362     if (InScl.getOpcode() != ExOp)
7363       return false;
7364 
7365     SDValue ExVec = InScl.getOperand(0);
7366     SDValue ExIndex = InScl.getOperand(1);
7367     if (!isa<ConstantSDNode>(ExIndex) ||
7368         cast<ConstantSDNode>(ExIndex)->getAPIntValue().uge(NumElts))
7369       return false;
7370     uint64_t ExIdx = InScl.getConstantOperandVal(1);
7371 
7372     Ops.push_back(InVec);
7373     Ops.push_back(ExVec);
7374     for (unsigned i = 0; i != NumElts; ++i)
7375       Mask.push_back(i == InIdx ? NumElts + ExIdx : i);
7376     return true;
7377   }
7378   case X86ISD::PACKSS:
7379   case X86ISD::PACKUS: {
7380     SDValue N0 = N.getOperand(0);
7381     SDValue N1 = N.getOperand(1);
7382     assert(N0.getValueType().getVectorNumElements() == (NumElts / 2) &&
7383            N1.getValueType().getVectorNumElements() == (NumElts / 2) &&
7384            "Unexpected input value type");
7385 
7386     APInt EltsLHS, EltsRHS;
7387     getPackDemandedElts(VT, DemandedElts, EltsLHS, EltsRHS);
7388 
7389     // If we know input saturation won't happen we can treat this
7390     // as a truncation shuffle.
7391     if (Opcode == X86ISD::PACKSS) {
7392       if ((!N0.isUndef() &&
7393            DAG.ComputeNumSignBits(N0, EltsLHS, Depth + 1) <= NumBitsPerElt) ||
7394           (!N1.isUndef() &&
7395            DAG.ComputeNumSignBits(N1, EltsRHS, Depth + 1) <= NumBitsPerElt))
7396         return false;
7397     } else {
7398       APInt ZeroMask = APInt::getHighBitsSet(2 * NumBitsPerElt, NumBitsPerElt);
7399       if ((!N0.isUndef() &&
7400            !DAG.MaskedValueIsZero(N0, ZeroMask, EltsLHS, Depth + 1)) ||
7401           (!N1.isUndef() &&
7402            !DAG.MaskedValueIsZero(N1, ZeroMask, EltsRHS, Depth + 1)))
7403         return false;
7404     }
7405 
7406     bool IsUnary = (N0 == N1);
7407 
7408     Ops.push_back(N0);
7409     if (!IsUnary)
7410       Ops.push_back(N1);
7411 
7412     createPackShuffleMask(VT, Mask, IsUnary);
7413     return true;
7414   }
7415   case X86ISD::VSHLI:
7416   case X86ISD::VSRLI: {
7417     uint64_t ShiftVal = N.getConstantOperandVal(1);
7418     // Out of range bit shifts are guaranteed to be zero.
7419     if (NumBitsPerElt <= ShiftVal) {
7420       Mask.append(NumElts, SM_SentinelZero);
7421       return true;
7422     }
7423 
7424     // We can only decode 'whole byte' bit shifts as shuffles.
7425     if ((ShiftVal % 8) != 0)
7426       break;
7427 
7428     uint64_t ByteShift = ShiftVal / 8;
7429     unsigned NumBytes = NumSizeInBits / 8;
7430     unsigned NumBytesPerElt = NumBitsPerElt / 8;
7431     Ops.push_back(N.getOperand(0));
7432 
7433     // Clear mask to all zeros and insert the shifted byte indices.
7434     Mask.append(NumBytes, SM_SentinelZero);
7435 
7436     if (X86ISD::VSHLI == Opcode) {
7437       for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
7438         for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
7439           Mask[i + j] = i + j - ByteShift;
7440     } else {
7441       for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
7442         for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
7443           Mask[i + j - ByteShift] = i + j;
7444     }
7445     return true;
7446   }
7447   case X86ISD::VBROADCAST: {
7448     SDValue Src = N.getOperand(0);
7449     MVT SrcVT = Src.getSimpleValueType();
7450     if (!SrcVT.isVector())
7451       return false;
7452 
7453     if (NumSizeInBits != SrcVT.getSizeInBits()) {
7454       assert((NumSizeInBits % SrcVT.getSizeInBits()) == 0 &&
7455              "Illegal broadcast type");
7456       SrcVT = MVT::getVectorVT(SrcVT.getScalarType(),
7457                                NumSizeInBits / SrcVT.getScalarSizeInBits());
7458       Src = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), SrcVT,
7459                         DAG.getUNDEF(SrcVT), Src,
7460                         DAG.getIntPtrConstant(0, SDLoc(N)));
7461     }
7462 
7463     Ops.push_back(Src);
7464     Mask.append(NumElts, 0);
7465     return true;
7466   }
7467   case ISD::ZERO_EXTEND:
7468   case ISD::ANY_EXTEND:
7469   case ISD::ZERO_EXTEND_VECTOR_INREG:
7470   case ISD::ANY_EXTEND_VECTOR_INREG: {
7471     SDValue Src = N.getOperand(0);
7472     EVT SrcVT = Src.getValueType();
7473 
7474     // Extended source must be a simple vector.
7475     if (!SrcVT.isSimple() || (SrcVT.getSizeInBits() % 128) != 0 ||
7476         (SrcVT.getScalarSizeInBits() % 8) != 0)
7477       return false;
7478 
7479     unsigned NumSrcBitsPerElt = SrcVT.getScalarSizeInBits();
7480     bool IsAnyExtend =
7481         (ISD::ANY_EXTEND == Opcode || ISD::ANY_EXTEND_VECTOR_INREG == Opcode);
7482     DecodeZeroExtendMask(NumSrcBitsPerElt, NumBitsPerElt, NumElts, IsAnyExtend,
7483                          Mask);
7484 
7485     if (NumSizeInBits != SrcVT.getSizeInBits()) {
7486       assert((NumSizeInBits % SrcVT.getSizeInBits()) == 0 &&
7487              "Illegal zero-extension type");
7488       SrcVT = MVT::getVectorVT(SrcVT.getSimpleVT().getScalarType(),
7489                                NumSizeInBits / NumSrcBitsPerElt);
7490       Src = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), SrcVT,
7491                         DAG.getUNDEF(SrcVT), Src,
7492                         DAG.getIntPtrConstant(0, SDLoc(N)));
7493     }
7494 
7495     Ops.push_back(Src);
7496     return true;
7497   }
7498   }
7499 
7500   return false;
7501 }
7502 
7503 /// Removes unused/repeated shuffle source inputs and adjusts the shuffle mask.
7504 static void resolveTargetShuffleInputsAndMask(SmallVectorImpl<SDValue> &Inputs,
7505                                               SmallVectorImpl<int> &Mask) {
7506   int MaskWidth = Mask.size();
7507   SmallVector<SDValue, 16> UsedInputs;
7508   for (int i = 0, e = Inputs.size(); i < e; ++i) {
7509     int lo = UsedInputs.size() * MaskWidth;
7510     int hi = lo + MaskWidth;
7511 
7512     // Strip UNDEF input usage.
7513     if (Inputs[i].isUndef())
7514       for (int &M : Mask)
7515         if ((lo <= M) && (M < hi))
7516           M = SM_SentinelUndef;
7517 
7518     // Check for unused inputs.
7519     if (none_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) {
7520       for (int &M : Mask)
7521         if (lo <= M)
7522           M -= MaskWidth;
7523       continue;
7524     }
7525 
7526     // Check for repeated inputs.
7527     bool IsRepeat = false;
7528     for (int j = 0, ue = UsedInputs.size(); j != ue; ++j) {
7529       if (UsedInputs[j] != Inputs[i])
7530         continue;
7531       for (int &M : Mask)
7532         if (lo <= M)
7533           M = (M < hi) ? ((M - lo) + (j * MaskWidth)) : (M - MaskWidth);
7534       IsRepeat = true;
7535       break;
7536     }
7537     if (IsRepeat)
7538       continue;
7539 
7540     UsedInputs.push_back(Inputs[i]);
7541   }
7542   Inputs = UsedInputs;
7543 }
7544 
7545 /// Calls getTargetShuffleAndZeroables to resolve a target shuffle mask's inputs
7546 /// and then sets the SM_SentinelUndef and SM_SentinelZero values.
7547 /// Returns true if the target shuffle mask was decoded.
7548 static bool getTargetShuffleInputs(SDValue Op, const APInt &DemandedElts,
7549                                    SmallVectorImpl<SDValue> &Inputs,
7550                                    SmallVectorImpl<int> &Mask,
7551                                    APInt &KnownUndef, APInt &KnownZero,
7552                                    SelectionDAG &DAG, unsigned Depth,
7553                                    bool ResolveKnownElts) {
7554   EVT VT = Op.getValueType();
7555   if (!VT.isSimple() || !VT.isVector())
7556     return false;
7557 
7558   if (getTargetShuffleAndZeroables(Op, Mask, Inputs, KnownUndef, KnownZero)) {
7559     if (ResolveKnownElts)
7560       resolveTargetShuffleFromZeroables(Mask, KnownUndef, KnownZero);
7561     return true;
7562   }
7563   if (getFauxShuffleMask(Op, DemandedElts, Mask, Inputs, DAG, Depth,
7564                          ResolveKnownElts)) {
7565     resolveZeroablesFromTargetShuffle(Mask, KnownUndef, KnownZero);
7566     return true;
7567   }
7568   return false;
7569 }
7570 
7571 static bool getTargetShuffleInputs(SDValue Op, SmallVectorImpl<SDValue> &Inputs,
7572                                    SmallVectorImpl<int> &Mask,
7573                                    SelectionDAG &DAG, unsigned Depth = 0,
7574                                    bool ResolveKnownElts = true) {
7575   EVT VT = Op.getValueType();
7576   if (!VT.isSimple() || !VT.isVector())
7577     return false;
7578 
7579   APInt KnownUndef, KnownZero;
7580   unsigned NumElts = Op.getValueType().getVectorNumElements();
7581   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
7582   return getTargetShuffleInputs(Op, DemandedElts, Inputs, Mask, KnownUndef,
7583                                 KnownZero, DAG, Depth, ResolveKnownElts);
7584 }
7585 
7586 /// Returns the scalar element that will make up the ith
7587 /// element of the result of the vector shuffle.
7588 static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
7589                                    unsigned Depth) {
7590   if (Depth == 6)
7591     return SDValue();  // Limit search depth.
7592 
7593   SDValue V = SDValue(N, 0);
7594   EVT VT = V.getValueType();
7595   unsigned Opcode = V.getOpcode();
7596 
7597   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
7598   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
7599     int Elt = SV->getMaskElt(Index);
7600 
7601     if (Elt < 0)
7602       return DAG.getUNDEF(VT.getVectorElementType());
7603 
7604     unsigned NumElems = VT.getVectorNumElements();
7605     SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
7606                                          : SV->getOperand(1);
7607     return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
7608   }
7609 
7610   // Recurse into target specific vector shuffles to find scalars.
7611   if (isTargetShuffle(Opcode)) {
7612     MVT ShufVT = V.getSimpleValueType();
7613     MVT ShufSVT = ShufVT.getVectorElementType();
7614     int NumElems = (int)ShufVT.getVectorNumElements();
7615     SmallVector<int, 16> ShuffleMask;
7616     SmallVector<SDValue, 16> ShuffleOps;
7617     bool IsUnary;
7618 
7619     if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary))
7620       return SDValue();
7621 
7622     int Elt = ShuffleMask[Index];
7623     if (Elt == SM_SentinelZero)
7624       return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT)
7625                                  : DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT);
7626     if (Elt == SM_SentinelUndef)
7627       return DAG.getUNDEF(ShufSVT);
7628 
7629     assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range");
7630     SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1];
7631     return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
7632                                Depth+1);
7633   }
7634 
7635   // Recurse into insert_subvector base/sub vector to find scalars.
7636   if (Opcode == ISD::INSERT_SUBVECTOR &&
7637       isa<ConstantSDNode>(N->getOperand(2))) {
7638     SDValue Vec = N->getOperand(0);
7639     SDValue Sub = N->getOperand(1);
7640     EVT SubVT = Sub.getValueType();
7641     unsigned NumSubElts = SubVT.getVectorNumElements();
7642     uint64_t SubIdx = N->getConstantOperandVal(2);
7643 
7644     if (SubIdx <= Index && Index < (SubIdx + NumSubElts))
7645       return getShuffleScalarElt(Sub.getNode(), Index - SubIdx, DAG, Depth + 1);
7646     return getShuffleScalarElt(Vec.getNode(), Index, DAG, Depth + 1);
7647   }
7648 
7649   // Recurse into extract_subvector src vector to find scalars.
7650   if (Opcode == ISD::EXTRACT_SUBVECTOR &&
7651       isa<ConstantSDNode>(N->getOperand(1))) {
7652     SDValue Src = N->getOperand(0);
7653     uint64_t SrcIdx = N->getConstantOperandVal(1);
7654     return getShuffleScalarElt(Src.getNode(), Index + SrcIdx, DAG, Depth + 1);
7655   }
7656 
7657   // Actual nodes that may contain scalar elements
7658   if (Opcode == ISD::BITCAST) {
7659     V = V.getOperand(0);
7660     EVT SrcVT = V.getValueType();
7661     unsigned NumElems = VT.getVectorNumElements();
7662 
7663     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
7664       return SDValue();
7665   }
7666 
7667   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
7668     return (Index == 0) ? V.getOperand(0)
7669                         : DAG.getUNDEF(VT.getVectorElementType());
7670 
7671   if (V.getOpcode() == ISD::BUILD_VECTOR)
7672     return V.getOperand(Index);
7673 
7674   return SDValue();
7675 }
7676 
7677 // Use PINSRB/PINSRW/PINSRD to create a build vector.
7678 static SDValue LowerBuildVectorAsInsert(SDValue Op, unsigned NonZeros,
7679                                         unsigned NumNonZero, unsigned NumZero,
7680                                         SelectionDAG &DAG,
7681                                         const X86Subtarget &Subtarget) {
7682   MVT VT = Op.getSimpleValueType();
7683   unsigned NumElts = VT.getVectorNumElements();
7684   assert(((VT == MVT::v8i16 && Subtarget.hasSSE2()) ||
7685           ((VT == MVT::v16i8 || VT == MVT::v4i32) && Subtarget.hasSSE41())) &&
7686          "Illegal vector insertion");
7687 
7688   SDLoc dl(Op);
7689   SDValue V;
7690   bool First = true;
7691 
7692   for (unsigned i = 0; i < NumElts; ++i) {
7693     bool IsNonZero = (NonZeros & (1 << i)) != 0;
7694     if (!IsNonZero)
7695       continue;
7696 
7697     // If the build vector contains zeros or our first insertion is not the
7698     // first index then insert into zero vector to break any register
7699     // dependency else use SCALAR_TO_VECTOR.
7700     if (First) {
7701       First = false;
7702       if (NumZero || 0 != i)
7703         V = getZeroVector(VT, Subtarget, DAG, dl);
7704       else {
7705         assert(0 == i && "Expected insertion into zero-index");
7706         V = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
7707         V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V);
7708         V = DAG.getBitcast(VT, V);
7709         continue;
7710       }
7711     }
7712     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V, Op.getOperand(i),
7713                     DAG.getIntPtrConstant(i, dl));
7714   }
7715 
7716   return V;
7717 }
7718 
7719 /// Custom lower build_vector of v16i8.
7720 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
7721                                      unsigned NumNonZero, unsigned NumZero,
7722                                      SelectionDAG &DAG,
7723                                      const X86Subtarget &Subtarget) {
7724   if (NumNonZero > 8 && !Subtarget.hasSSE41())
7725     return SDValue();
7726 
7727   // SSE4.1 - use PINSRB to insert each byte directly.
7728   if (Subtarget.hasSSE41())
7729     return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
7730                                     Subtarget);
7731 
7732   SDLoc dl(Op);
7733   SDValue V;
7734 
7735   // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
7736   for (unsigned i = 0; i < 16; i += 2) {
7737     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
7738     bool NextIsNonZero = (NonZeros & (1 << (i + 1))) != 0;
7739     if (!ThisIsNonZero && !NextIsNonZero)
7740       continue;
7741 
7742     // FIXME: Investigate combining the first 4 bytes as a i32 instead.
7743     SDValue Elt;
7744     if (ThisIsNonZero) {
7745       if (NumZero || NextIsNonZero)
7746         Elt = DAG.getZExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
7747       else
7748         Elt = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
7749     }
7750 
7751     if (NextIsNonZero) {
7752       SDValue NextElt = Op.getOperand(i + 1);
7753       if (i == 0 && NumZero)
7754         NextElt = DAG.getZExtOrTrunc(NextElt, dl, MVT::i32);
7755       else
7756         NextElt = DAG.getAnyExtOrTrunc(NextElt, dl, MVT::i32);
7757       NextElt = DAG.getNode(ISD::SHL, dl, MVT::i32, NextElt,
7758                             DAG.getConstant(8, dl, MVT::i8));
7759       if (ThisIsNonZero)
7760         Elt = DAG.getNode(ISD::OR, dl, MVT::i32, NextElt, Elt);
7761       else
7762         Elt = NextElt;
7763     }
7764 
7765     // If our first insertion is not the first index then insert into zero
7766     // vector to break any register dependency else use SCALAR_TO_VECTOR.
7767     if (!V) {
7768       if (i != 0)
7769         V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
7770       else {
7771         V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Elt);
7772         V = DAG.getBitcast(MVT::v8i16, V);
7773         continue;
7774       }
7775     }
7776     Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Elt);
7777     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, Elt,
7778                     DAG.getIntPtrConstant(i / 2, dl));
7779   }
7780 
7781   return DAG.getBitcast(MVT::v16i8, V);
7782 }
7783 
7784 /// Custom lower build_vector of v8i16.
7785 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
7786                                      unsigned NumNonZero, unsigned NumZero,
7787                                      SelectionDAG &DAG,
7788                                      const X86Subtarget &Subtarget) {
7789   if (NumNonZero > 4 && !Subtarget.hasSSE41())
7790     return SDValue();
7791 
7792   // Use PINSRW to insert each byte directly.
7793   return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
7794                                   Subtarget);
7795 }
7796 
7797 /// Custom lower build_vector of v4i32 or v4f32.
7798 static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
7799                                      const X86Subtarget &Subtarget) {
7800   // If this is a splat of a pair of elements, use MOVDDUP (unless the target
7801   // has XOP; in that case defer lowering to potentially use VPERMIL2PS).
7802   // Because we're creating a less complicated build vector here, we may enable
7803   // further folding of the MOVDDUP via shuffle transforms.
7804   if (Subtarget.hasSSE3() && !Subtarget.hasXOP() &&
7805       Op.getOperand(0) == Op.getOperand(2) &&
7806       Op.getOperand(1) == Op.getOperand(3) &&
7807       Op.getOperand(0) != Op.getOperand(1)) {
7808     SDLoc DL(Op);
7809     MVT VT = Op.getSimpleValueType();
7810     MVT EltVT = VT.getVectorElementType();
7811     // Create a new build vector with the first 2 elements followed by undef
7812     // padding, bitcast to v2f64, duplicate, and bitcast back.
7813     SDValue Ops[4] = { Op.getOperand(0), Op.getOperand(1),
7814                        DAG.getUNDEF(EltVT), DAG.getUNDEF(EltVT) };
7815     SDValue NewBV = DAG.getBitcast(MVT::v2f64, DAG.getBuildVector(VT, DL, Ops));
7816     SDValue Dup = DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, NewBV);
7817     return DAG.getBitcast(VT, Dup);
7818   }
7819 
7820   // Find all zeroable elements.
7821   std::bitset<4> Zeroable, Undefs;
7822   for (int i = 0; i < 4; ++i) {
7823     SDValue Elt = Op.getOperand(i);
7824     Undefs[i] = Elt.isUndef();
7825     Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt));
7826   }
7827   assert(Zeroable.size() - Zeroable.count() > 1 &&
7828          "We expect at least two non-zero elements!");
7829 
7830   // We only know how to deal with build_vector nodes where elements are either
7831   // zeroable or extract_vector_elt with constant index.
7832   SDValue FirstNonZero;
7833   unsigned FirstNonZeroIdx;
7834   for (unsigned i = 0; i < 4; ++i) {
7835     if (Zeroable[i])
7836       continue;
7837     SDValue Elt = Op.getOperand(i);
7838     if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7839         !isa<ConstantSDNode>(Elt.getOperand(1)))
7840       return SDValue();
7841     // Make sure that this node is extracting from a 128-bit vector.
7842     MVT VT = Elt.getOperand(0).getSimpleValueType();
7843     if (!VT.is128BitVector())
7844       return SDValue();
7845     if (!FirstNonZero.getNode()) {
7846       FirstNonZero = Elt;
7847       FirstNonZeroIdx = i;
7848     }
7849   }
7850 
7851   assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
7852   SDValue V1 = FirstNonZero.getOperand(0);
7853   MVT VT = V1.getSimpleValueType();
7854 
7855   // See if this build_vector can be lowered as a blend with zero.
7856   SDValue Elt;
7857   unsigned EltMaskIdx, EltIdx;
7858   int Mask[4];
7859   for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
7860     if (Zeroable[EltIdx]) {
7861       // The zero vector will be on the right hand side.
7862       Mask[EltIdx] = EltIdx+4;
7863       continue;
7864     }
7865 
7866     Elt = Op->getOperand(EltIdx);
7867     // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
7868     EltMaskIdx = Elt.getConstantOperandVal(1);
7869     if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
7870       break;
7871     Mask[EltIdx] = EltIdx;
7872   }
7873 
7874   if (EltIdx == 4) {
7875     // Let the shuffle legalizer deal with blend operations.
7876     SDValue VZeroOrUndef = (Zeroable == Undefs)
7877                                ? DAG.getUNDEF(VT)
7878                                : getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
7879     if (V1.getSimpleValueType() != VT)
7880       V1 = DAG.getBitcast(VT, V1);
7881     return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZeroOrUndef, Mask);
7882   }
7883 
7884   // See if we can lower this build_vector to a INSERTPS.
7885   if (!Subtarget.hasSSE41())
7886     return SDValue();
7887 
7888   SDValue V2 = Elt.getOperand(0);
7889   if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
7890     V1 = SDValue();
7891 
7892   bool CanFold = true;
7893   for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
7894     if (Zeroable[i])
7895       continue;
7896 
7897     SDValue Current = Op->getOperand(i);
7898     SDValue SrcVector = Current->getOperand(0);
7899     if (!V1.getNode())
7900       V1 = SrcVector;
7901     CanFold = (SrcVector == V1) && (Current.getConstantOperandAPInt(1) == i);
7902   }
7903 
7904   if (!CanFold)
7905     return SDValue();
7906 
7907   assert(V1.getNode() && "Expected at least two non-zero elements!");
7908   if (V1.getSimpleValueType() != MVT::v4f32)
7909     V1 = DAG.getBitcast(MVT::v4f32, V1);
7910   if (V2.getSimpleValueType() != MVT::v4f32)
7911     V2 = DAG.getBitcast(MVT::v4f32, V2);
7912 
7913   // Ok, we can emit an INSERTPS instruction.
7914   unsigned ZMask = Zeroable.to_ulong();
7915 
7916   unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
7917   assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
7918   SDLoc DL(Op);
7919   SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
7920                                DAG.getIntPtrConstant(InsertPSMask, DL, true));
7921   return DAG.getBitcast(VT, Result);
7922 }
7923 
7924 /// Return a vector logical shift node.
7925 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits,
7926                          SelectionDAG &DAG, const TargetLowering &TLI,
7927                          const SDLoc &dl) {
7928   assert(VT.is128BitVector() && "Unknown type for VShift");
7929   MVT ShVT = MVT::v16i8;
7930   unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
7931   SrcOp = DAG.getBitcast(ShVT, SrcOp);
7932   assert(NumBits % 8 == 0 && "Only support byte sized shifts");
7933   SDValue ShiftVal = DAG.getTargetConstant(NumBits / 8, dl, MVT::i8);
7934   return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
7935 }
7936 
7937 static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl,
7938                                       SelectionDAG &DAG) {
7939 
7940   // Check if the scalar load can be widened into a vector load. And if
7941   // the address is "base + cst" see if the cst can be "absorbed" into
7942   // the shuffle mask.
7943   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
7944     SDValue Ptr = LD->getBasePtr();
7945     if (!ISD::isNormalLoad(LD) || !LD->isSimple())
7946       return SDValue();
7947     EVT PVT = LD->getValueType(0);
7948     if (PVT != MVT::i32 && PVT != MVT::f32)
7949       return SDValue();
7950 
7951     int FI = -1;
7952     int64_t Offset = 0;
7953     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
7954       FI = FINode->getIndex();
7955       Offset = 0;
7956     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
7957                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7958       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7959       Offset = Ptr.getConstantOperandVal(1);
7960       Ptr = Ptr.getOperand(0);
7961     } else {
7962       return SDValue();
7963     }
7964 
7965     // FIXME: 256-bit vector instructions don't require a strict alignment,
7966     // improve this code to support it better.
7967     unsigned RequiredAlign = VT.getSizeInBits()/8;
7968     SDValue Chain = LD->getChain();
7969     // Make sure the stack object alignment is at least 16 or 32.
7970     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7971     if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
7972       if (MFI.isFixedObjectIndex(FI)) {
7973         // Can't change the alignment. FIXME: It's possible to compute
7974         // the exact stack offset and reference FI + adjust offset instead.
7975         // If someone *really* cares about this. That's the way to implement it.
7976         return SDValue();
7977       } else {
7978         MFI.setObjectAlignment(FI, RequiredAlign);
7979       }
7980     }
7981 
7982     // (Offset % 16 or 32) must be multiple of 4. Then address is then
7983     // Ptr + (Offset & ~15).
7984     if (Offset < 0)
7985       return SDValue();
7986     if ((Offset % RequiredAlign) & 3)
7987       return SDValue();
7988     int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
7989     if (StartOffset) {
7990       SDLoc DL(Ptr);
7991       Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
7992                         DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
7993     }
7994 
7995     int EltNo = (Offset - StartOffset) >> 2;
7996     unsigned NumElems = VT.getVectorNumElements();
7997 
7998     EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
7999     SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
8000                              LD->getPointerInfo().getWithOffset(StartOffset));
8001 
8002     SmallVector<int, 8> Mask(NumElems, EltNo);
8003 
8004     return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask);
8005   }
8006 
8007   return SDValue();
8008 }
8009 
8010 // Recurse to find a LoadSDNode source and the accumulated ByteOffest.
8011 static bool findEltLoadSrc(SDValue Elt, LoadSDNode *&Ld, int64_t &ByteOffset) {
8012   if (ISD::isNON_EXTLoad(Elt.getNode())) {
8013     auto *BaseLd = cast<LoadSDNode>(Elt);
8014     if (!BaseLd->isSimple())
8015       return false;
8016     Ld = BaseLd;
8017     ByteOffset = 0;
8018     return true;
8019   }
8020 
8021   switch (Elt.getOpcode()) {
8022   case ISD::BITCAST:
8023   case ISD::TRUNCATE:
8024   case ISD::SCALAR_TO_VECTOR:
8025     return findEltLoadSrc(Elt.getOperand(0), Ld, ByteOffset);
8026   case ISD::SRL:
8027     if (isa<ConstantSDNode>(Elt.getOperand(1))) {
8028       uint64_t Idx = Elt.getConstantOperandVal(1);
8029       if ((Idx % 8) == 0 && findEltLoadSrc(Elt.getOperand(0), Ld, ByteOffset)) {
8030         ByteOffset += Idx / 8;
8031         return true;
8032       }
8033     }
8034     break;
8035   case ISD::EXTRACT_VECTOR_ELT:
8036     if (isa<ConstantSDNode>(Elt.getOperand(1))) {
8037       SDValue Src = Elt.getOperand(0);
8038       unsigned SrcSizeInBits = Src.getScalarValueSizeInBits();
8039       unsigned DstSizeInBits = Elt.getScalarValueSizeInBits();
8040       if (DstSizeInBits == SrcSizeInBits && (SrcSizeInBits % 8) == 0 &&
8041           findEltLoadSrc(Src, Ld, ByteOffset)) {
8042         uint64_t Idx = Elt.getConstantOperandVal(1);
8043         ByteOffset += Idx * (SrcSizeInBits / 8);
8044         return true;
8045       }
8046     }
8047     break;
8048   }
8049 
8050   return false;
8051 }
8052 
8053 /// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
8054 /// elements can be replaced by a single large load which has the same value as
8055 /// a build_vector or insert_subvector whose loaded operands are 'Elts'.
8056 ///
8057 /// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a
8058 static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
8059                                         const SDLoc &DL, SelectionDAG &DAG,
8060                                         const X86Subtarget &Subtarget,
8061                                         bool isAfterLegalize) {
8062   if ((VT.getScalarSizeInBits() % 8) != 0)
8063     return SDValue();
8064 
8065   unsigned NumElems = Elts.size();
8066 
8067   int LastLoadedElt = -1;
8068   APInt LoadMask = APInt::getNullValue(NumElems);
8069   APInt ZeroMask = APInt::getNullValue(NumElems);
8070   APInt UndefMask = APInt::getNullValue(NumElems);
8071 
8072   SmallVector<LoadSDNode*, 8> Loads(NumElems, nullptr);
8073   SmallVector<int64_t, 8> ByteOffsets(NumElems, 0);
8074 
8075   // For each element in the initializer, see if we've found a load, zero or an
8076   // undef.
8077   for (unsigned i = 0; i < NumElems; ++i) {
8078     SDValue Elt = peekThroughBitcasts(Elts[i]);
8079     if (!Elt.getNode())
8080       return SDValue();
8081     if (Elt.isUndef()) {
8082       UndefMask.setBit(i);
8083       continue;
8084     }
8085     if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode())) {
8086       ZeroMask.setBit(i);
8087       continue;
8088     }
8089 
8090     // Each loaded element must be the correct fractional portion of the
8091     // requested vector load.
8092     unsigned EltSizeInBits = Elt.getValueSizeInBits();
8093     if ((NumElems * EltSizeInBits) != VT.getSizeInBits())
8094       return SDValue();
8095 
8096     if (!findEltLoadSrc(Elt, Loads[i], ByteOffsets[i]) || ByteOffsets[i] < 0)
8097       return SDValue();
8098     unsigned LoadSizeInBits = Loads[i]->getValueSizeInBits(0);
8099     if (((ByteOffsets[i] * 8) + EltSizeInBits) > LoadSizeInBits)
8100       return SDValue();
8101 
8102     LoadMask.setBit(i);
8103     LastLoadedElt = i;
8104   }
8105   assert((ZeroMask.countPopulation() + UndefMask.countPopulation() +
8106           LoadMask.countPopulation()) == NumElems &&
8107          "Incomplete element masks");
8108 
8109   // Handle Special Cases - all undef or undef/zero.
8110   if (UndefMask.countPopulation() == NumElems)
8111     return DAG.getUNDEF(VT);
8112 
8113   // FIXME: Should we return this as a BUILD_VECTOR instead?
8114   if ((ZeroMask.countPopulation() + UndefMask.countPopulation()) == NumElems)
8115     return VT.isInteger() ? DAG.getConstant(0, DL, VT)
8116                           : DAG.getConstantFP(0.0, DL, VT);
8117 
8118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8119   int FirstLoadedElt = LoadMask.countTrailingZeros();
8120   SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]);
8121   EVT EltBaseVT = EltBase.getValueType();
8122   assert(EltBaseVT.getSizeInBits() == EltBaseVT.getStoreSizeInBits() &&
8123          "Register/Memory size mismatch");
8124   LoadSDNode *LDBase = Loads[FirstLoadedElt];
8125   assert(LDBase && "Did not find base load for merging consecutive loads");
8126   unsigned BaseSizeInBits = EltBaseVT.getStoreSizeInBits();
8127   unsigned BaseSizeInBytes = BaseSizeInBits / 8;
8128   int LoadSizeInBits = (1 + LastLoadedElt - FirstLoadedElt) * BaseSizeInBits;
8129   assert((BaseSizeInBits % 8) == 0 && "Sub-byte element loads detected");
8130 
8131   // TODO: Support offsetting the base load.
8132   if (ByteOffsets[FirstLoadedElt] != 0)
8133     return SDValue();
8134 
8135   // Check to see if the element's load is consecutive to the base load
8136   // or offset from a previous (already checked) load.
8137   auto CheckConsecutiveLoad = [&](LoadSDNode *Base, int EltIdx) {
8138     LoadSDNode *Ld = Loads[EltIdx];
8139     int64_t ByteOffset = ByteOffsets[EltIdx];
8140     if (ByteOffset && (ByteOffset % BaseSizeInBytes) == 0) {
8141       int64_t BaseIdx = EltIdx - (ByteOffset / BaseSizeInBytes);
8142       return (0 <= BaseIdx && BaseIdx < (int)NumElems && LoadMask[BaseIdx] &&
8143               Loads[BaseIdx] == Ld && ByteOffsets[BaseIdx] == 0);
8144     }
8145     return DAG.areNonVolatileConsecutiveLoads(Ld, Base, BaseSizeInBytes,
8146                                               EltIdx - FirstLoadedElt);
8147   };
8148 
8149   // Consecutive loads can contain UNDEFS but not ZERO elements.
8150   // Consecutive loads with UNDEFs and ZEROs elements require a
8151   // an additional shuffle stage to clear the ZERO elements.
8152   bool IsConsecutiveLoad = true;
8153   bool IsConsecutiveLoadWithZeros = true;
8154   for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) {
8155     if (LoadMask[i]) {
8156       if (!CheckConsecutiveLoad(LDBase, i)) {
8157         IsConsecutiveLoad = false;
8158         IsConsecutiveLoadWithZeros = false;
8159         break;
8160       }
8161     } else if (ZeroMask[i]) {
8162       IsConsecutiveLoad = false;
8163     }
8164   }
8165 
8166   auto CreateLoad = [&DAG, &DL, &Loads](EVT VT, LoadSDNode *LDBase) {
8167     auto MMOFlags = LDBase->getMemOperand()->getFlags();
8168     assert(LDBase->isSimple() &&
8169            "Cannot merge volatile or atomic loads.");
8170     SDValue NewLd =
8171         DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
8172                     LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags);
8173     for (auto *LD : Loads)
8174       if (LD)
8175         DAG.makeEquivalentMemoryOrdering(LD, NewLd);
8176     return NewLd;
8177   };
8178 
8179   // Check if the base load is entirely dereferenceable.
8180   bool IsDereferenceable = LDBase->getPointerInfo().isDereferenceable(
8181       VT.getSizeInBits() / 8, *DAG.getContext(), DAG.getDataLayout());
8182 
8183   // LOAD - all consecutive load/undefs (must start/end with a load or be
8184   // entirely dereferenceable). If we have found an entire vector of loads and
8185   // undefs, then return a large load of the entire vector width starting at the
8186   // base pointer. If the vector contains zeros, then attempt to shuffle those
8187   // elements.
8188   if (FirstLoadedElt == 0 &&
8189       (LastLoadedElt == (int)(NumElems - 1) || IsDereferenceable) &&
8190       (IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) {
8191     if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT))
8192       return SDValue();
8193 
8194     // Don't create 256-bit non-temporal aligned loads without AVX2 as these
8195     // will lower to regular temporal loads and use the cache.
8196     if (LDBase->isNonTemporal() && LDBase->getAlignment() >= 32 &&
8197         VT.is256BitVector() && !Subtarget.hasInt256())
8198       return SDValue();
8199 
8200     if (NumElems == 1)
8201       return DAG.getBitcast(VT, Elts[FirstLoadedElt]);
8202 
8203     if (!ZeroMask)
8204       return CreateLoad(VT, LDBase);
8205 
8206     // IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded
8207     // vector and a zero vector to clear out the zero elements.
8208     if (!isAfterLegalize && VT.isVector()) {
8209       unsigned NumMaskElts = VT.getVectorNumElements();
8210       if ((NumMaskElts % NumElems) == 0) {
8211         unsigned Scale = NumMaskElts / NumElems;
8212         SmallVector<int, 4> ClearMask(NumMaskElts, -1);
8213         for (unsigned i = 0; i < NumElems; ++i) {
8214           if (UndefMask[i])
8215             continue;
8216           int Offset = ZeroMask[i] ? NumMaskElts : 0;
8217           for (unsigned j = 0; j != Scale; ++j)
8218             ClearMask[(i * Scale) + j] = (i * Scale) + j + Offset;
8219         }
8220         SDValue V = CreateLoad(VT, LDBase);
8221         SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT)
8222                                    : DAG.getConstantFP(0.0, DL, VT);
8223         return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask);
8224       }
8225     }
8226   }
8227 
8228   // If the upper half of a ymm/zmm load is undef then just load the lower half.
8229   if (VT.is256BitVector() || VT.is512BitVector()) {
8230     unsigned HalfNumElems = NumElems / 2;
8231     if (UndefMask.extractBits(HalfNumElems, HalfNumElems).isAllOnesValue()) {
8232       EVT HalfVT =
8233           EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), HalfNumElems);
8234       SDValue HalfLD =
8235           EltsFromConsecutiveLoads(HalfVT, Elts.drop_back(HalfNumElems), DL,
8236                                    DAG, Subtarget, isAfterLegalize);
8237       if (HalfLD)
8238         return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT),
8239                            HalfLD, DAG.getIntPtrConstant(0, DL));
8240     }
8241   }
8242 
8243   // VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs.
8244   if (IsConsecutiveLoad && FirstLoadedElt == 0 &&
8245       (LoadSizeInBits == 32 || LoadSizeInBits == 64) &&
8246       ((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
8247     MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSizeInBits)
8248                                       : MVT::getIntegerVT(LoadSizeInBits);
8249     MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSizeInBits);
8250     if (TLI.isTypeLegal(VecVT)) {
8251       SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
8252       SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
8253       SDValue ResNode =
8254           DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT,
8255                                   LDBase->getPointerInfo(),
8256                                   LDBase->getAlignment(),
8257                                   MachineMemOperand::MOLoad);
8258       for (auto *LD : Loads)
8259         if (LD)
8260           DAG.makeEquivalentMemoryOrdering(LD, ResNode);
8261       return DAG.getBitcast(VT, ResNode);
8262     }
8263   }
8264 
8265   // BROADCAST - match the smallest possible repetition pattern, load that
8266   // scalar/subvector element and then broadcast to the entire vector.
8267   if (ZeroMask.isNullValue() && isPowerOf2_32(NumElems) && Subtarget.hasAVX() &&
8268       (VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector())) {
8269     for (unsigned SubElems = 1; SubElems < NumElems; SubElems *= 2) {
8270       unsigned RepeatSize = SubElems * BaseSizeInBits;
8271       unsigned ScalarSize = std::min(RepeatSize, 64u);
8272       if (!Subtarget.hasAVX2() && ScalarSize < 32)
8273         continue;
8274 
8275       bool Match = true;
8276       SmallVector<SDValue, 8> RepeatedLoads(SubElems, DAG.getUNDEF(EltBaseVT));
8277       for (unsigned i = 0; i != NumElems && Match; ++i) {
8278         if (!LoadMask[i])
8279           continue;
8280         SDValue Elt = peekThroughBitcasts(Elts[i]);
8281         if (RepeatedLoads[i % SubElems].isUndef())
8282           RepeatedLoads[i % SubElems] = Elt;
8283         else
8284           Match &= (RepeatedLoads[i % SubElems] == Elt);
8285       }
8286 
8287       // We must have loads at both ends of the repetition.
8288       Match &= !RepeatedLoads.front().isUndef();
8289       Match &= !RepeatedLoads.back().isUndef();
8290       if (!Match)
8291         continue;
8292 
8293       EVT RepeatVT =
8294           VT.isInteger() && (RepeatSize != 64 || TLI.isTypeLegal(MVT::i64))
8295               ? EVT::getIntegerVT(*DAG.getContext(), ScalarSize)
8296               : EVT::getFloatingPointVT(ScalarSize);
8297       if (RepeatSize > ScalarSize)
8298         RepeatVT = EVT::getVectorVT(*DAG.getContext(), RepeatVT,
8299                                     RepeatSize / ScalarSize);
8300       EVT BroadcastVT =
8301           EVT::getVectorVT(*DAG.getContext(), RepeatVT.getScalarType(),
8302                            VT.getSizeInBits() / ScalarSize);
8303       if (TLI.isTypeLegal(BroadcastVT)) {
8304         if (SDValue RepeatLoad = EltsFromConsecutiveLoads(
8305                 RepeatVT, RepeatedLoads, DL, DAG, Subtarget, isAfterLegalize)) {
8306           unsigned Opcode = RepeatSize > ScalarSize ? X86ISD::SUBV_BROADCAST
8307                                                     : X86ISD::VBROADCAST;
8308           SDValue Broadcast = DAG.getNode(Opcode, DL, BroadcastVT, RepeatLoad);
8309           return DAG.getBitcast(VT, Broadcast);
8310         }
8311       }
8312     }
8313   }
8314 
8315   return SDValue();
8316 }
8317 
8318 // Combine a vector ops (shuffles etc.) that is equal to build_vector load1,
8319 // load2, load3, load4, <0, 1, 2, 3> into a vector load if the load addresses
8320 // are consecutive, non-overlapping, and in the right order.
8321 static SDValue combineToConsecutiveLoads(EVT VT, SDNode *N, const SDLoc &DL,
8322                                          SelectionDAG &DAG,
8323                                          const X86Subtarget &Subtarget,
8324                                          bool isAfterLegalize) {
8325   SmallVector<SDValue, 64> Elts;
8326   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8327     if (SDValue Elt = getShuffleScalarElt(N, i, DAG, 0)) {
8328       Elts.push_back(Elt);
8329       continue;
8330     }
8331     return SDValue();
8332   }
8333   assert(Elts.size() == VT.getVectorNumElements());
8334   return EltsFromConsecutiveLoads(VT, Elts, DL, DAG, Subtarget,
8335                                   isAfterLegalize);
8336 }
8337 
8338 static Constant *getConstantVector(MVT VT, const APInt &SplatValue,
8339                                    unsigned SplatBitSize, LLVMContext &C) {
8340   unsigned ScalarSize = VT.getScalarSizeInBits();
8341   unsigned NumElm = SplatBitSize / ScalarSize;
8342 
8343   SmallVector<Constant *, 32> ConstantVec;
8344   for (unsigned i = 0; i < NumElm; i++) {
8345     APInt Val = SplatValue.extractBits(ScalarSize, ScalarSize * i);
8346     Constant *Const;
8347     if (VT.isFloatingPoint()) {
8348       if (ScalarSize == 32) {
8349         Const = ConstantFP::get(C, APFloat(APFloat::IEEEsingle(), Val));
8350       } else {
8351         assert(ScalarSize == 64 && "Unsupported floating point scalar size");
8352         Const = ConstantFP::get(C, APFloat(APFloat::IEEEdouble(), Val));
8353       }
8354     } else
8355       Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val);
8356     ConstantVec.push_back(Const);
8357   }
8358   return ConstantVector::get(ArrayRef<Constant *>(ConstantVec));
8359 }
8360 
8361 static bool isFoldableUseOfShuffle(SDNode *N) {
8362   for (auto *U : N->uses()) {
8363     unsigned Opc = U->getOpcode();
8364     // VPERMV/VPERMV3 shuffles can never fold their index operands.
8365     if (Opc == X86ISD::VPERMV && U->getOperand(0).getNode() == N)
8366       return false;
8367     if (Opc == X86ISD::VPERMV3 && U->getOperand(1).getNode() == N)
8368       return false;
8369     if (isTargetShuffle(Opc))
8370       return true;
8371     if (Opc == ISD::BITCAST) // Ignore bitcasts
8372       return isFoldableUseOfShuffle(U);
8373     if (N->hasOneUse())
8374       return true;
8375   }
8376   return false;
8377 }
8378 
8379 // Check if the current node of build vector is a zero extended vector.
8380 // // If so, return the value extended.
8381 // // For example: (0,0,0,a,0,0,0,a,0,0,0,a,0,0,0,a) returns a.
8382 // // NumElt - return the number of zero extended identical values.
8383 // // EltType - return the type of the value include the zero extend.
8384 static SDValue isSplatZeroExtended(const BuildVectorSDNode *Op,
8385                                    unsigned &NumElt, MVT &EltType) {
8386   SDValue ExtValue = Op->getOperand(0);
8387   unsigned NumElts = Op->getNumOperands();
8388   unsigned Delta = NumElts;
8389 
8390   for (unsigned i = 1; i < NumElts; i++) {
8391     if (Op->getOperand(i) == ExtValue) {
8392       Delta = i;
8393       break;
8394     }
8395     if (!(Op->getOperand(i).isUndef() || isNullConstant(Op->getOperand(i))))
8396       return SDValue();
8397   }
8398   if (!isPowerOf2_32(Delta) || Delta == 1)
8399     return SDValue();
8400 
8401   for (unsigned i = Delta; i < NumElts; i++) {
8402     if (i % Delta == 0) {
8403       if (Op->getOperand(i) != ExtValue)
8404         return SDValue();
8405     } else if (!(isNullConstant(Op->getOperand(i)) ||
8406                  Op->getOperand(i).isUndef()))
8407       return SDValue();
8408   }
8409   unsigned EltSize = Op->getSimpleValueType(0).getScalarSizeInBits();
8410   unsigned ExtVTSize = EltSize * Delta;
8411   EltType = MVT::getIntegerVT(ExtVTSize);
8412   NumElt = NumElts / Delta;
8413   return ExtValue;
8414 }
8415 
8416 /// Attempt to use the vbroadcast instruction to generate a splat value
8417 /// from a splat BUILD_VECTOR which uses:
8418 ///  a. A single scalar load, or a constant.
8419 ///  b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>).
8420 ///
8421 /// The VBROADCAST node is returned when a pattern is found,
8422 /// or SDValue() otherwise.
8423 static SDValue lowerBuildVectorAsBroadcast(BuildVectorSDNode *BVOp,
8424                                            const X86Subtarget &Subtarget,
8425                                            SelectionDAG &DAG) {
8426   // VBROADCAST requires AVX.
8427   // TODO: Splats could be generated for non-AVX CPUs using SSE
8428   // instructions, but there's less potential gain for only 128-bit vectors.
8429   if (!Subtarget.hasAVX())
8430     return SDValue();
8431 
8432   MVT VT = BVOp->getSimpleValueType(0);
8433   SDLoc dl(BVOp);
8434 
8435   assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
8436          "Unsupported vector type for broadcast.");
8437 
8438   BitVector UndefElements;
8439   SDValue Ld = BVOp->getSplatValue(&UndefElements);
8440 
8441   // Attempt to use VBROADCASTM
8442   // From this paterrn:
8443   // a. t0 = (zext_i64 (bitcast_i8 v2i1 X))
8444   // b. t1 = (build_vector t0 t0)
8445   //
8446   // Create (VBROADCASTM v2i1 X)
8447   if (Subtarget.hasCDI() && (VT.is512BitVector() || Subtarget.hasVLX())) {
8448     MVT EltType = VT.getScalarType();
8449     unsigned NumElts = VT.getVectorNumElements();
8450     SDValue BOperand;
8451     SDValue ZeroExtended = isSplatZeroExtended(BVOp, NumElts, EltType);
8452     if ((ZeroExtended && ZeroExtended.getOpcode() == ISD::BITCAST) ||
8453         (Ld && Ld.getOpcode() == ISD::ZERO_EXTEND &&
8454          Ld.getOperand(0).getOpcode() == ISD::BITCAST)) {
8455       if (ZeroExtended)
8456         BOperand = ZeroExtended.getOperand(0);
8457       else
8458         BOperand = Ld.getOperand(0).getOperand(0);
8459       MVT MaskVT = BOperand.getSimpleValueType();
8460       if ((EltType == MVT::i64 && MaskVT == MVT::v8i1) || // for broadcastmb2q
8461           (EltType == MVT::i32 && MaskVT == MVT::v16i1)) { // for broadcastmw2d
8462         SDValue Brdcst =
8463             DAG.getNode(X86ISD::VBROADCASTM, dl,
8464                         MVT::getVectorVT(EltType, NumElts), BOperand);
8465         return DAG.getBitcast(VT, Brdcst);
8466       }
8467     }
8468   }
8469 
8470   unsigned NumElts = VT.getVectorNumElements();
8471   unsigned NumUndefElts = UndefElements.count();
8472   if (!Ld || (NumElts - NumUndefElts) <= 1) {
8473     APInt SplatValue, Undef;
8474     unsigned SplatBitSize;
8475     bool HasUndef;
8476     // Check if this is a repeated constant pattern suitable for broadcasting.
8477     if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) &&
8478         SplatBitSize > VT.getScalarSizeInBits() &&
8479         SplatBitSize < VT.getSizeInBits()) {
8480       // Avoid replacing with broadcast when it's a use of a shuffle
8481       // instruction to preserve the present custom lowering of shuffles.
8482       if (isFoldableUseOfShuffle(BVOp))
8483         return SDValue();
8484       // replace BUILD_VECTOR with broadcast of the repeated constants.
8485       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8486       LLVMContext *Ctx = DAG.getContext();
8487       MVT PVT = TLI.getPointerTy(DAG.getDataLayout());
8488       if (Subtarget.hasAVX()) {
8489         if (SplatBitSize <= 64 && Subtarget.hasAVX2() &&
8490             !(SplatBitSize == 64 && Subtarget.is32Bit())) {
8491           // Splatted value can fit in one INTEGER constant in constant pool.
8492           // Load the constant and broadcast it.
8493           MVT CVT = MVT::getIntegerVT(SplatBitSize);
8494           Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize);
8495           Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue);
8496           SDValue CP = DAG.getConstantPool(C, PVT);
8497           unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
8498 
8499           unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8500           Ld = DAG.getLoad(
8501               CVT, dl, DAG.getEntryNode(), CP,
8502               MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
8503               Alignment);
8504           SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
8505                                        MVT::getVectorVT(CVT, Repeat), Ld);
8506           return DAG.getBitcast(VT, Brdcst);
8507         } else if (SplatBitSize == 32 || SplatBitSize == 64) {
8508           // Splatted value can fit in one FLOAT constant in constant pool.
8509           // Load the constant and broadcast it.
8510           // AVX have support for 32 and 64 bit broadcast for floats only.
8511           // No 64bit integer in 32bit subtarget.
8512           MVT CVT = MVT::getFloatingPointVT(SplatBitSize);
8513           // Lower the splat via APFloat directly, to avoid any conversion.
8514           Constant *C =
8515               SplatBitSize == 32
8516                   ? ConstantFP::get(*Ctx,
8517                                     APFloat(APFloat::IEEEsingle(), SplatValue))
8518                   : ConstantFP::get(*Ctx,
8519                                     APFloat(APFloat::IEEEdouble(), SplatValue));
8520           SDValue CP = DAG.getConstantPool(C, PVT);
8521           unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
8522 
8523           unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8524           Ld = DAG.getLoad(
8525               CVT, dl, DAG.getEntryNode(), CP,
8526               MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
8527               Alignment);
8528           SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
8529                                        MVT::getVectorVT(CVT, Repeat), Ld);
8530           return DAG.getBitcast(VT, Brdcst);
8531         } else if (SplatBitSize > 64) {
8532           // Load the vector of constants and broadcast it.
8533           MVT CVT = VT.getScalarType();
8534           Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize,
8535                                              *Ctx);
8536           SDValue VCP = DAG.getConstantPool(VecC, PVT);
8537           unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits();
8538           unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment();
8539           Ld = DAG.getLoad(
8540               MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP,
8541               MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
8542               Alignment);
8543           SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld);
8544           return DAG.getBitcast(VT, Brdcst);
8545         }
8546       }
8547     }
8548 
8549     // If we are moving a scalar into a vector (Ld must be set and all elements
8550     // but 1 are undef) and that operation is not obviously supported by
8551     // vmovd/vmovq/vmovss/vmovsd, then keep trying to form a broadcast.
8552     // That's better than general shuffling and may eliminate a load to GPR and
8553     // move from scalar to vector register.
8554     if (!Ld || NumElts - NumUndefElts != 1)
8555       return SDValue();
8556     unsigned ScalarSize = Ld.getValueSizeInBits();
8557     if (!(UndefElements[0] || (ScalarSize != 32 && ScalarSize != 64)))
8558       return SDValue();
8559   }
8560 
8561   bool ConstSplatVal =
8562       (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP);
8563 
8564   // Make sure that all of the users of a non-constant load are from the
8565   // BUILD_VECTOR node.
8566   if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
8567     return SDValue();
8568 
8569   unsigned ScalarSize = Ld.getValueSizeInBits();
8570   bool IsGE256 = (VT.getSizeInBits() >= 256);
8571 
8572   // When optimizing for size, generate up to 5 extra bytes for a broadcast
8573   // instruction to save 8 or more bytes of constant pool data.
8574   // TODO: If multiple splats are generated to load the same constant,
8575   // it may be detrimental to overall size. There needs to be a way to detect
8576   // that condition to know if this is truly a size win.
8577   bool OptForSize = DAG.shouldOptForSize();
8578 
8579   // Handle broadcasting a single constant scalar from the constant pool
8580   // into a vector.
8581   // On Sandybridge (no AVX2), it is still better to load a constant vector
8582   // from the constant pool and not to broadcast it from a scalar.
8583   // But override that restriction when optimizing for size.
8584   // TODO: Check if splatting is recommended for other AVX-capable CPUs.
8585   if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) {
8586     EVT CVT = Ld.getValueType();
8587     assert(!CVT.isVector() && "Must not broadcast a vector type");
8588 
8589     // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
8590     // For size optimization, also splat v2f64 and v2i64, and for size opt
8591     // with AVX2, also splat i8 and i16.
8592     // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
8593     if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
8594         (OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) {
8595       const Constant *C = nullptr;
8596       if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
8597         C = CI->getConstantIntValue();
8598       else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
8599         C = CF->getConstantFPValue();
8600 
8601       assert(C && "Invalid constant type");
8602 
8603       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8604       SDValue CP =
8605           DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
8606       unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8607       Ld = DAG.getLoad(
8608           CVT, dl, DAG.getEntryNode(), CP,
8609           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
8610           Alignment);
8611 
8612       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
8613     }
8614   }
8615 
8616   bool IsLoad = ISD::isNormalLoad(Ld.getNode());
8617 
8618   // Handle AVX2 in-register broadcasts.
8619   if (!IsLoad && Subtarget.hasInt256() &&
8620       (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
8621     return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
8622 
8623   // The scalar source must be a normal load.
8624   if (!IsLoad)
8625     return SDValue();
8626 
8627   if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
8628       (Subtarget.hasVLX() && ScalarSize == 64))
8629     return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
8630 
8631   // The integer check is needed for the 64-bit into 128-bit so it doesn't match
8632   // double since there is no vbroadcastsd xmm
8633   if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) {
8634     if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
8635       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
8636   }
8637 
8638   // Unsupported broadcast.
8639   return SDValue();
8640 }
8641 
8642 /// For an EXTRACT_VECTOR_ELT with a constant index return the real
8643 /// underlying vector and index.
8644 ///
8645 /// Modifies \p ExtractedFromVec to the real vector and returns the real
8646 /// index.
8647 static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
8648                                          SDValue ExtIdx) {
8649   int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
8650   if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
8651     return Idx;
8652 
8653   // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
8654   // lowered this:
8655   //   (extract_vector_elt (v8f32 %1), Constant<6>)
8656   // to:
8657   //   (extract_vector_elt (vector_shuffle<2,u,u,u>
8658   //                           (extract_subvector (v8f32 %0), Constant<4>),
8659   //                           undef)
8660   //                       Constant<0>)
8661   // In this case the vector is the extract_subvector expression and the index
8662   // is 2, as specified by the shuffle.
8663   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
8664   SDValue ShuffleVec = SVOp->getOperand(0);
8665   MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
8666   assert(ShuffleVecVT.getVectorElementType() ==
8667          ExtractedFromVec.getSimpleValueType().getVectorElementType());
8668 
8669   int ShuffleIdx = SVOp->getMaskElt(Idx);
8670   if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
8671     ExtractedFromVec = ShuffleVec;
8672     return ShuffleIdx;
8673   }
8674   return Idx;
8675 }
8676 
8677 static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
8678   MVT VT = Op.getSimpleValueType();
8679 
8680   // Skip if insert_vec_elt is not supported.
8681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8682   if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
8683     return SDValue();
8684 
8685   SDLoc DL(Op);
8686   unsigned NumElems = Op.getNumOperands();
8687 
8688   SDValue VecIn1;
8689   SDValue VecIn2;
8690   SmallVector<unsigned, 4> InsertIndices;
8691   SmallVector<int, 8> Mask(NumElems, -1);
8692 
8693   for (unsigned i = 0; i != NumElems; ++i) {
8694     unsigned Opc = Op.getOperand(i).getOpcode();
8695 
8696     if (Opc == ISD::UNDEF)
8697       continue;
8698 
8699     if (Opc != ISD::EXTRACT_VECTOR_ELT) {
8700       // Quit if more than 1 elements need inserting.
8701       if (InsertIndices.size() > 1)
8702         return SDValue();
8703 
8704       InsertIndices.push_back(i);
8705       continue;
8706     }
8707 
8708     SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
8709     SDValue ExtIdx = Op.getOperand(i).getOperand(1);
8710 
8711     // Quit if non-constant index.
8712     if (!isa<ConstantSDNode>(ExtIdx))
8713       return SDValue();
8714     int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
8715 
8716     // Quit if extracted from vector of different type.
8717     if (ExtractedFromVec.getValueType() != VT)
8718       return SDValue();
8719 
8720     if (!VecIn1.getNode())
8721       VecIn1 = ExtractedFromVec;
8722     else if (VecIn1 != ExtractedFromVec) {
8723       if (!VecIn2.getNode())
8724         VecIn2 = ExtractedFromVec;
8725       else if (VecIn2 != ExtractedFromVec)
8726         // Quit if more than 2 vectors to shuffle
8727         return SDValue();
8728     }
8729 
8730     if (ExtractedFromVec == VecIn1)
8731       Mask[i] = Idx;
8732     else if (ExtractedFromVec == VecIn2)
8733       Mask[i] = Idx + NumElems;
8734   }
8735 
8736   if (!VecIn1.getNode())
8737     return SDValue();
8738 
8739   VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8740   SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask);
8741 
8742   for (unsigned Idx : InsertIndices)
8743     NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
8744                      DAG.getIntPtrConstant(Idx, DL));
8745 
8746   return NV;
8747 }
8748 
8749 static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
8750   assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
8751          Op.getScalarValueSizeInBits() == 1 &&
8752          "Can not convert non-constant vector");
8753   uint64_t Immediate = 0;
8754   for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
8755     SDValue In = Op.getOperand(idx);
8756     if (!In.isUndef())
8757       Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
8758   }
8759   SDLoc dl(Op);
8760   MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8));
8761   return DAG.getConstant(Immediate, dl, VT);
8762 }
8763 // Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
8764 static SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG,
8765                                      const X86Subtarget &Subtarget) {
8766 
8767   MVT VT = Op.getSimpleValueType();
8768   assert((VT.getVectorElementType() == MVT::i1) &&
8769          "Unexpected type in LowerBUILD_VECTORvXi1!");
8770 
8771   SDLoc dl(Op);
8772   if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
8773       ISD::isBuildVectorAllOnes(Op.getNode()))
8774     return Op;
8775 
8776   uint64_t Immediate = 0;
8777   SmallVector<unsigned, 16> NonConstIdx;
8778   bool IsSplat = true;
8779   bool HasConstElts = false;
8780   int SplatIdx = -1;
8781   for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
8782     SDValue In = Op.getOperand(idx);
8783     if (In.isUndef())
8784       continue;
8785     if (!isa<ConstantSDNode>(In))
8786       NonConstIdx.push_back(idx);
8787     else {
8788       Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
8789       HasConstElts = true;
8790     }
8791     if (SplatIdx < 0)
8792       SplatIdx = idx;
8793     else if (In != Op.getOperand(SplatIdx))
8794       IsSplat = false;
8795   }
8796 
8797   // for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
8798   if (IsSplat) {
8799     // The build_vector allows the scalar element to be larger than the vector
8800     // element type. We need to mask it to use as a condition unless we know
8801     // the upper bits are zero.
8802     // FIXME: Use computeKnownBits instead of checking specific opcode?
8803     SDValue Cond = Op.getOperand(SplatIdx);
8804     assert(Cond.getValueType() == MVT::i8 && "Unexpected VT!");
8805     if (Cond.getOpcode() != ISD::SETCC)
8806       Cond = DAG.getNode(ISD::AND, dl, MVT::i8, Cond,
8807                          DAG.getConstant(1, dl, MVT::i8));
8808     return DAG.getSelect(dl, VT, Cond,
8809                          DAG.getConstant(1, dl, VT),
8810                          DAG.getConstant(0, dl, VT));
8811   }
8812 
8813   // insert elements one by one
8814   SDValue DstVec;
8815   if (HasConstElts) {
8816     if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
8817       SDValue ImmL = DAG.getConstant(Lo_32(Immediate), dl, MVT::i32);
8818       SDValue ImmH = DAG.getConstant(Hi_32(Immediate), dl, MVT::i32);
8819       ImmL = DAG.getBitcast(MVT::v32i1, ImmL);
8820       ImmH = DAG.getBitcast(MVT::v32i1, ImmH);
8821       DstVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, ImmL, ImmH);
8822     } else {
8823       MVT ImmVT = MVT::getIntegerVT(std::max((unsigned)VT.getSizeInBits(), 8U));
8824       SDValue Imm = DAG.getConstant(Immediate, dl, ImmVT);
8825       MVT VecVT = VT.getSizeInBits() >= 8 ? VT : MVT::v8i1;
8826       DstVec = DAG.getBitcast(VecVT, Imm);
8827       DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, DstVec,
8828                            DAG.getIntPtrConstant(0, dl));
8829     }
8830   } else
8831     DstVec = DAG.getUNDEF(VT);
8832 
8833   for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) {
8834     unsigned InsertIdx = NonConstIdx[i];
8835     DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
8836                          Op.getOperand(InsertIdx),
8837                          DAG.getIntPtrConstant(InsertIdx, dl));
8838   }
8839   return DstVec;
8840 }
8841 
8842 /// This is a helper function of LowerToHorizontalOp().
8843 /// This function checks that the build_vector \p N in input implements a
8844 /// 128-bit partial horizontal operation on a 256-bit vector, but that operation
8845 /// may not match the layout of an x86 256-bit horizontal instruction.
8846 /// In other words, if this returns true, then some extraction/insertion will
8847 /// be required to produce a valid horizontal instruction.
8848 ///
8849 /// Parameter \p Opcode defines the kind of horizontal operation to match.
8850 /// For example, if \p Opcode is equal to ISD::ADD, then this function
8851 /// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
8852 /// is equal to ISD::SUB, then this function checks if this is a horizontal
8853 /// arithmetic sub.
8854 ///
8855 /// This function only analyzes elements of \p N whose indices are
8856 /// in range [BaseIdx, LastIdx).
8857 ///
8858 /// TODO: This function was originally used to match both real and fake partial
8859 /// horizontal operations, but the index-matching logic is incorrect for that.
8860 /// See the corrected implementation in isHopBuildVector(). Can we reduce this
8861 /// code because it is only used for partial h-op matching now?
8862 static bool isHorizontalBinOpPart(const BuildVectorSDNode *N, unsigned Opcode,
8863                                   SelectionDAG &DAG,
8864                                   unsigned BaseIdx, unsigned LastIdx,
8865                                   SDValue &V0, SDValue &V1) {
8866   EVT VT = N->getValueType(0);
8867   assert(VT.is256BitVector() && "Only use for matching partial 256-bit h-ops");
8868   assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
8869   assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
8870          "Invalid Vector in input!");
8871 
8872   bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
8873   bool CanFold = true;
8874   unsigned ExpectedVExtractIdx = BaseIdx;
8875   unsigned NumElts = LastIdx - BaseIdx;
8876   V0 = DAG.getUNDEF(VT);
8877   V1 = DAG.getUNDEF(VT);
8878 
8879   // Check if N implements a horizontal binop.
8880   for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
8881     SDValue Op = N->getOperand(i + BaseIdx);
8882 
8883     // Skip UNDEFs.
8884     if (Op->isUndef()) {
8885       // Update the expected vector extract index.
8886       if (i * 2 == NumElts)
8887         ExpectedVExtractIdx = BaseIdx;
8888       ExpectedVExtractIdx += 2;
8889       continue;
8890     }
8891 
8892     CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
8893 
8894     if (!CanFold)
8895       break;
8896 
8897     SDValue Op0 = Op.getOperand(0);
8898     SDValue Op1 = Op.getOperand(1);
8899 
8900     // Try to match the following pattern:
8901     // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
8902     CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
8903         Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
8904         Op0.getOperand(0) == Op1.getOperand(0) &&
8905         isa<ConstantSDNode>(Op0.getOperand(1)) &&
8906         isa<ConstantSDNode>(Op1.getOperand(1)));
8907     if (!CanFold)
8908       break;
8909 
8910     unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
8911     unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
8912 
8913     if (i * 2 < NumElts) {
8914       if (V0.isUndef()) {
8915         V0 = Op0.getOperand(0);
8916         if (V0.getValueType() != VT)
8917           return false;
8918       }
8919     } else {
8920       if (V1.isUndef()) {
8921         V1 = Op0.getOperand(0);
8922         if (V1.getValueType() != VT)
8923           return false;
8924       }
8925       if (i * 2 == NumElts)
8926         ExpectedVExtractIdx = BaseIdx;
8927     }
8928 
8929     SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
8930     if (I0 == ExpectedVExtractIdx)
8931       CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
8932     else if (IsCommutable && I1 == ExpectedVExtractIdx) {
8933       // Try to match the following dag sequence:
8934       // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
8935       CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
8936     } else
8937       CanFold = false;
8938 
8939     ExpectedVExtractIdx += 2;
8940   }
8941 
8942   return CanFold;
8943 }
8944 
8945 /// Emit a sequence of two 128-bit horizontal add/sub followed by
8946 /// a concat_vector.
8947 ///
8948 /// This is a helper function of LowerToHorizontalOp().
8949 /// This function expects two 256-bit vectors called V0 and V1.
8950 /// At first, each vector is split into two separate 128-bit vectors.
8951 /// Then, the resulting 128-bit vectors are used to implement two
8952 /// horizontal binary operations.
8953 ///
8954 /// The kind of horizontal binary operation is defined by \p X86Opcode.
8955 ///
8956 /// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
8957 /// the two new horizontal binop.
8958 /// When Mode is set, the first horizontal binop dag node would take as input
8959 /// the lower 128-bit of V0 and the upper 128-bit of V0. The second
8960 /// horizontal binop dag node would take as input the lower 128-bit of V1
8961 /// and the upper 128-bit of V1.
8962 ///   Example:
8963 ///     HADD V0_LO, V0_HI
8964 ///     HADD V1_LO, V1_HI
8965 ///
8966 /// Otherwise, the first horizontal binop dag node takes as input the lower
8967 /// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
8968 /// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
8969 ///   Example:
8970 ///     HADD V0_LO, V1_LO
8971 ///     HADD V0_HI, V1_HI
8972 ///
8973 /// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
8974 /// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
8975 /// the upper 128-bits of the result.
8976 static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
8977                                      const SDLoc &DL, SelectionDAG &DAG,
8978                                      unsigned X86Opcode, bool Mode,
8979                                      bool isUndefLO, bool isUndefHI) {
8980   MVT VT = V0.getSimpleValueType();
8981   assert(VT.is256BitVector() && VT == V1.getSimpleValueType() &&
8982          "Invalid nodes in input!");
8983 
8984   unsigned NumElts = VT.getVectorNumElements();
8985   SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL);
8986   SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL);
8987   SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL);
8988   SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL);
8989   MVT NewVT = V0_LO.getSimpleValueType();
8990 
8991   SDValue LO = DAG.getUNDEF(NewVT);
8992   SDValue HI = DAG.getUNDEF(NewVT);
8993 
8994   if (Mode) {
8995     // Don't emit a horizontal binop if the result is expected to be UNDEF.
8996     if (!isUndefLO && !V0->isUndef())
8997       LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
8998     if (!isUndefHI && !V1->isUndef())
8999       HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
9000   } else {
9001     // Don't emit a horizontal binop if the result is expected to be UNDEF.
9002     if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef()))
9003       LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
9004 
9005     if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef()))
9006       HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
9007   }
9008 
9009   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
9010 }
9011 
9012 /// Returns true iff \p BV builds a vector with the result equivalent to
9013 /// the result of ADDSUB/SUBADD operation.
9014 /// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1
9015 /// (SUBADD = Opnd0 -+ Opnd1) operation are written to the parameters
9016 /// \p Opnd0 and \p Opnd1.
9017 static bool isAddSubOrSubAdd(const BuildVectorSDNode *BV,
9018                              const X86Subtarget &Subtarget, SelectionDAG &DAG,
9019                              SDValue &Opnd0, SDValue &Opnd1,
9020                              unsigned &NumExtracts,
9021                              bool &IsSubAdd) {
9022 
9023   MVT VT = BV->getSimpleValueType(0);
9024   if (!Subtarget.hasSSE3() || !VT.isFloatingPoint())
9025     return false;
9026 
9027   unsigned NumElts = VT.getVectorNumElements();
9028   SDValue InVec0 = DAG.getUNDEF(VT);
9029   SDValue InVec1 = DAG.getUNDEF(VT);
9030 
9031   NumExtracts = 0;
9032 
9033   // Odd-numbered elements in the input build vector are obtained from
9034   // adding/subtracting two integer/float elements.
9035   // Even-numbered elements in the input build vector are obtained from
9036   // subtracting/adding two integer/float elements.
9037   unsigned Opc[2] = {0, 0};
9038   for (unsigned i = 0, e = NumElts; i != e; ++i) {
9039     SDValue Op = BV->getOperand(i);
9040 
9041     // Skip 'undef' values.
9042     unsigned Opcode = Op.getOpcode();
9043     if (Opcode == ISD::UNDEF)
9044       continue;
9045 
9046     // Early exit if we found an unexpected opcode.
9047     if (Opcode != ISD::FADD && Opcode != ISD::FSUB)
9048       return false;
9049 
9050     SDValue Op0 = Op.getOperand(0);
9051     SDValue Op1 = Op.getOperand(1);
9052 
9053     // Try to match the following pattern:
9054     // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
9055     // Early exit if we cannot match that sequence.
9056     if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9057         Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9058         !isa<ConstantSDNode>(Op0.getOperand(1)) ||
9059         !isa<ConstantSDNode>(Op1.getOperand(1)) ||
9060         Op0.getOperand(1) != Op1.getOperand(1))
9061       return false;
9062 
9063     unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
9064     if (I0 != i)
9065       return false;
9066 
9067     // We found a valid add/sub node, make sure its the same opcode as previous
9068     // elements for this parity.
9069     if (Opc[i % 2] != 0 && Opc[i % 2] != Opcode)
9070       return false;
9071     Opc[i % 2] = Opcode;
9072 
9073     // Update InVec0 and InVec1.
9074     if (InVec0.isUndef()) {
9075       InVec0 = Op0.getOperand(0);
9076       if (InVec0.getSimpleValueType() != VT)
9077         return false;
9078     }
9079     if (InVec1.isUndef()) {
9080       InVec1 = Op1.getOperand(0);
9081       if (InVec1.getSimpleValueType() != VT)
9082         return false;
9083     }
9084 
9085     // Make sure that operands in input to each add/sub node always
9086     // come from a same pair of vectors.
9087     if (InVec0 != Op0.getOperand(0)) {
9088       if (Opcode == ISD::FSUB)
9089         return false;
9090 
9091       // FADD is commutable. Try to commute the operands
9092       // and then test again.
9093       std::swap(Op0, Op1);
9094       if (InVec0 != Op0.getOperand(0))
9095         return false;
9096     }
9097 
9098     if (InVec1 != Op1.getOperand(0))
9099       return false;
9100 
9101     // Increment the number of extractions done.
9102     ++NumExtracts;
9103   }
9104 
9105   // Ensure we have found an opcode for both parities and that they are
9106   // different. Don't try to fold this build_vector into an ADDSUB/SUBADD if the
9107   // inputs are undef.
9108   if (!Opc[0] || !Opc[1] || Opc[0] == Opc[1] ||
9109       InVec0.isUndef() || InVec1.isUndef())
9110     return false;
9111 
9112   IsSubAdd = Opc[0] == ISD::FADD;
9113 
9114   Opnd0 = InVec0;
9115   Opnd1 = InVec1;
9116   return true;
9117 }
9118 
9119 /// Returns true if is possible to fold MUL and an idiom that has already been
9120 /// recognized as ADDSUB/SUBADD(\p Opnd0, \p Opnd1) into
9121 /// FMADDSUB/FMSUBADD(x, y, \p Opnd1). If (and only if) true is returned, the
9122 /// operands of FMADDSUB/FMSUBADD are written to parameters \p Opnd0, \p Opnd1, \p Opnd2.
9123 ///
9124 /// Prior to calling this function it should be known that there is some
9125 /// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation
9126 /// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called
9127 /// before replacement of such SDNode with ADDSUB operation. Thus the number
9128 /// of \p Opnd0 uses is expected to be equal to 2.
9129 /// For example, this function may be called for the following IR:
9130 ///    %AB = fmul fast <2 x double> %A, %B
9131 ///    %Sub = fsub fast <2 x double> %AB, %C
9132 ///    %Add = fadd fast <2 x double> %AB, %C
9133 ///    %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add,
9134 ///                            <2 x i32> <i32 0, i32 3>
9135 /// There is a def for %Addsub here, which potentially can be replaced by
9136 /// X86ISD::ADDSUB operation:
9137 ///    %Addsub = X86ISD::ADDSUB %AB, %C
9138 /// and such ADDSUB can further be replaced with FMADDSUB:
9139 ///    %Addsub = FMADDSUB %A, %B, %C.
9140 ///
9141 /// The main reason why this method is called before the replacement of the
9142 /// recognized ADDSUB idiom with ADDSUB operation is that such replacement
9143 /// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit
9144 /// FMADDSUB is.
9145 static bool isFMAddSubOrFMSubAdd(const X86Subtarget &Subtarget,
9146                                  SelectionDAG &DAG,
9147                                  SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2,
9148                                  unsigned ExpectedUses) {
9149   if (Opnd0.getOpcode() != ISD::FMUL ||
9150       !Opnd0->hasNUsesOfValue(ExpectedUses, 0) || !Subtarget.hasAnyFMA())
9151     return false;
9152 
9153   // FIXME: These checks must match the similar ones in
9154   // DAGCombiner::visitFADDForFMACombine. It would be good to have one
9155   // function that would answer if it is Ok to fuse MUL + ADD to FMADD
9156   // or MUL + ADDSUB to FMADDSUB.
9157   const TargetOptions &Options = DAG.getTarget().Options;
9158   bool AllowFusion =
9159       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
9160   if (!AllowFusion)
9161     return false;
9162 
9163   Opnd2 = Opnd1;
9164   Opnd1 = Opnd0.getOperand(1);
9165   Opnd0 = Opnd0.getOperand(0);
9166 
9167   return true;
9168 }
9169 
9170 /// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' or
9171 /// 'fsubadd' operation accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB or
9172 /// X86ISD::FMSUBADD node.
9173 static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV,
9174                                        const X86Subtarget &Subtarget,
9175                                        SelectionDAG &DAG) {
9176   SDValue Opnd0, Opnd1;
9177   unsigned NumExtracts;
9178   bool IsSubAdd;
9179   if (!isAddSubOrSubAdd(BV, Subtarget, DAG, Opnd0, Opnd1, NumExtracts,
9180                         IsSubAdd))
9181     return SDValue();
9182 
9183   MVT VT = BV->getSimpleValueType(0);
9184   SDLoc DL(BV);
9185 
9186   // Try to generate X86ISD::FMADDSUB node here.
9187   SDValue Opnd2;
9188   if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, NumExtracts)) {
9189     unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
9190     return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2);
9191   }
9192 
9193   // We only support ADDSUB.
9194   if (IsSubAdd)
9195     return SDValue();
9196 
9197   // Do not generate X86ISD::ADDSUB node for 512-bit types even though
9198   // the ADDSUB idiom has been successfully recognized. There are no known
9199   // X86 targets with 512-bit ADDSUB instructions!
9200   // 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom
9201   // recognition.
9202   if (VT.is512BitVector())
9203     return SDValue();
9204 
9205   return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
9206 }
9207 
9208 static bool isHopBuildVector(const BuildVectorSDNode *BV, SelectionDAG &DAG,
9209                              unsigned &HOpcode, SDValue &V0, SDValue &V1) {
9210   // Initialize outputs to known values.
9211   MVT VT = BV->getSimpleValueType(0);
9212   HOpcode = ISD::DELETED_NODE;
9213   V0 = DAG.getUNDEF(VT);
9214   V1 = DAG.getUNDEF(VT);
9215 
9216   // x86 256-bit horizontal ops are defined in a non-obvious way. Each 128-bit
9217   // half of the result is calculated independently from the 128-bit halves of
9218   // the inputs, so that makes the index-checking logic below more complicated.
9219   unsigned NumElts = VT.getVectorNumElements();
9220   unsigned GenericOpcode = ISD::DELETED_NODE;
9221   unsigned Num128BitChunks = VT.is256BitVector() ? 2 : 1;
9222   unsigned NumEltsIn128Bits = NumElts / Num128BitChunks;
9223   unsigned NumEltsIn64Bits = NumEltsIn128Bits / 2;
9224   for (unsigned i = 0; i != Num128BitChunks; ++i) {
9225     for (unsigned j = 0; j != NumEltsIn128Bits; ++j) {
9226       // Ignore undef elements.
9227       SDValue Op = BV->getOperand(i * NumEltsIn128Bits + j);
9228       if (Op.isUndef())
9229         continue;
9230 
9231       // If there's an opcode mismatch, we're done.
9232       if (HOpcode != ISD::DELETED_NODE && Op.getOpcode() != GenericOpcode)
9233         return false;
9234 
9235       // Initialize horizontal opcode.
9236       if (HOpcode == ISD::DELETED_NODE) {
9237         GenericOpcode = Op.getOpcode();
9238         switch (GenericOpcode) {
9239         case ISD::ADD: HOpcode = X86ISD::HADD; break;
9240         case ISD::SUB: HOpcode = X86ISD::HSUB; break;
9241         case ISD::FADD: HOpcode = X86ISD::FHADD; break;
9242         case ISD::FSUB: HOpcode = X86ISD::FHSUB; break;
9243         default: return false;
9244         }
9245       }
9246 
9247       SDValue Op0 = Op.getOperand(0);
9248       SDValue Op1 = Op.getOperand(1);
9249       if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9250           Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9251           Op0.getOperand(0) != Op1.getOperand(0) ||
9252           !isa<ConstantSDNode>(Op0.getOperand(1)) ||
9253           !isa<ConstantSDNode>(Op1.getOperand(1)) || !Op.hasOneUse())
9254         return false;
9255 
9256       // The source vector is chosen based on which 64-bit half of the
9257       // destination vector is being calculated.
9258       if (j < NumEltsIn64Bits) {
9259         if (V0.isUndef())
9260           V0 = Op0.getOperand(0);
9261       } else {
9262         if (V1.isUndef())
9263           V1 = Op0.getOperand(0);
9264       }
9265 
9266       SDValue SourceVec = (j < NumEltsIn64Bits) ? V0 : V1;
9267       if (SourceVec != Op0.getOperand(0))
9268         return false;
9269 
9270       // op (extract_vector_elt A, I), (extract_vector_elt A, I+1)
9271       unsigned ExtIndex0 = Op0.getConstantOperandVal(1);
9272       unsigned ExtIndex1 = Op1.getConstantOperandVal(1);
9273       unsigned ExpectedIndex = i * NumEltsIn128Bits +
9274                                (j % NumEltsIn64Bits) * 2;
9275       if (ExpectedIndex == ExtIndex0 && ExtIndex1 == ExtIndex0 + 1)
9276         continue;
9277 
9278       // If this is not a commutative op, this does not match.
9279       if (GenericOpcode != ISD::ADD && GenericOpcode != ISD::FADD)
9280         return false;
9281 
9282       // Addition is commutative, so try swapping the extract indexes.
9283       // op (extract_vector_elt A, I+1), (extract_vector_elt A, I)
9284       if (ExpectedIndex == ExtIndex1 && ExtIndex0 == ExtIndex1 + 1)
9285         continue;
9286 
9287       // Extract indexes do not match horizontal requirement.
9288       return false;
9289     }
9290   }
9291   // We matched. Opcode and operands are returned by reference as arguments.
9292   return true;
9293 }
9294 
9295 static SDValue getHopForBuildVector(const BuildVectorSDNode *BV,
9296                                     SelectionDAG &DAG, unsigned HOpcode,
9297                                     SDValue V0, SDValue V1) {
9298   // If either input vector is not the same size as the build vector,
9299   // extract/insert the low bits to the correct size.
9300   // This is free (examples: zmm --> xmm, xmm --> ymm).
9301   MVT VT = BV->getSimpleValueType(0);
9302   unsigned Width = VT.getSizeInBits();
9303   if (V0.getValueSizeInBits() > Width)
9304     V0 = extractSubVector(V0, 0, DAG, SDLoc(BV), Width);
9305   else if (V0.getValueSizeInBits() < Width)
9306     V0 = insertSubVector(DAG.getUNDEF(VT), V0, 0, DAG, SDLoc(BV), Width);
9307 
9308   if (V1.getValueSizeInBits() > Width)
9309     V1 = extractSubVector(V1, 0, DAG, SDLoc(BV), Width);
9310   else if (V1.getValueSizeInBits() < Width)
9311     V1 = insertSubVector(DAG.getUNDEF(VT), V1, 0, DAG, SDLoc(BV), Width);
9312 
9313   unsigned NumElts = VT.getVectorNumElements();
9314   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
9315   for (unsigned i = 0; i != NumElts; ++i)
9316     if (BV->getOperand(i).isUndef())
9317       DemandedElts.clearBit(i);
9318 
9319   // If we don't need the upper xmm, then perform as a xmm hop.
9320   unsigned HalfNumElts = NumElts / 2;
9321   if (VT.is256BitVector() && DemandedElts.lshr(HalfNumElts) == 0) {
9322     MVT HalfVT = VT.getHalfNumVectorElementsVT();
9323     V0 = extractSubVector(V0, 0, DAG, SDLoc(BV), 128);
9324     V1 = extractSubVector(V1, 0, DAG, SDLoc(BV), 128);
9325     SDValue Half = DAG.getNode(HOpcode, SDLoc(BV), HalfVT, V0, V1);
9326     return insertSubVector(DAG.getUNDEF(VT), Half, 0, DAG, SDLoc(BV), 256);
9327   }
9328 
9329   return DAG.getNode(HOpcode, SDLoc(BV), VT, V0, V1);
9330 }
9331 
9332 /// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
9333 static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
9334                                    const X86Subtarget &Subtarget,
9335                                    SelectionDAG &DAG) {
9336   // We need at least 2 non-undef elements to make this worthwhile by default.
9337   unsigned NumNonUndefs =
9338       count_if(BV->op_values(), [](SDValue V) { return !V.isUndef(); });
9339   if (NumNonUndefs < 2)
9340     return SDValue();
9341 
9342   // There are 4 sets of horizontal math operations distinguished by type:
9343   // int/FP at 128-bit/256-bit. Each type was introduced with a different
9344   // subtarget feature. Try to match those "native" patterns first.
9345   MVT VT = BV->getSimpleValueType(0);
9346   if (((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) ||
9347       ((VT == MVT::v8i16 || VT == MVT::v4i32) && Subtarget.hasSSSE3()) ||
9348       ((VT == MVT::v8f32 || VT == MVT::v4f64) && Subtarget.hasAVX()) ||
9349       ((VT == MVT::v16i16 || VT == MVT::v8i32) && Subtarget.hasAVX2())) {
9350     unsigned HOpcode;
9351     SDValue V0, V1;
9352     if (isHopBuildVector(BV, DAG, HOpcode, V0, V1))
9353       return getHopForBuildVector(BV, DAG, HOpcode, V0, V1);
9354   }
9355 
9356   // Try harder to match 256-bit ops by using extract/concat.
9357   if (!Subtarget.hasAVX() || !VT.is256BitVector())
9358     return SDValue();
9359 
9360   // Count the number of UNDEF operands in the build_vector in input.
9361   unsigned NumElts = VT.getVectorNumElements();
9362   unsigned Half = NumElts / 2;
9363   unsigned NumUndefsLO = 0;
9364   unsigned NumUndefsHI = 0;
9365   for (unsigned i = 0, e = Half; i != e; ++i)
9366     if (BV->getOperand(i)->isUndef())
9367       NumUndefsLO++;
9368 
9369   for (unsigned i = Half, e = NumElts; i != e; ++i)
9370     if (BV->getOperand(i)->isUndef())
9371       NumUndefsHI++;
9372 
9373   SDLoc DL(BV);
9374   SDValue InVec0, InVec1;
9375   if (VT == MVT::v8i32 || VT == MVT::v16i16) {
9376     SDValue InVec2, InVec3;
9377     unsigned X86Opcode;
9378     bool CanFold = true;
9379 
9380     if (isHorizontalBinOpPart(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
9381         isHorizontalBinOpPart(BV, ISD::ADD, DAG, Half, NumElts, InVec2,
9382                               InVec3) &&
9383         ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
9384         ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
9385       X86Opcode = X86ISD::HADD;
9386     else if (isHorizontalBinOpPart(BV, ISD::SUB, DAG, 0, Half, InVec0,
9387                                    InVec1) &&
9388              isHorizontalBinOpPart(BV, ISD::SUB, DAG, Half, NumElts, InVec2,
9389                                    InVec3) &&
9390              ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
9391              ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
9392       X86Opcode = X86ISD::HSUB;
9393     else
9394       CanFold = false;
9395 
9396     if (CanFold) {
9397       // Do not try to expand this build_vector into a pair of horizontal
9398       // add/sub if we can emit a pair of scalar add/sub.
9399       if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
9400         return SDValue();
9401 
9402       // Convert this build_vector into a pair of horizontal binops followed by
9403       // a concat vector. We must adjust the outputs from the partial horizontal
9404       // matching calls above to account for undefined vector halves.
9405       SDValue V0 = InVec0.isUndef() ? InVec2 : InVec0;
9406       SDValue V1 = InVec1.isUndef() ? InVec3 : InVec1;
9407       assert((!V0.isUndef() || !V1.isUndef()) && "Horizontal-op of undefs?");
9408       bool isUndefLO = NumUndefsLO == Half;
9409       bool isUndefHI = NumUndefsHI == Half;
9410       return ExpandHorizontalBinOp(V0, V1, DL, DAG, X86Opcode, false, isUndefLO,
9411                                    isUndefHI);
9412     }
9413   }
9414 
9415   if (VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
9416       VT == MVT::v16i16) {
9417     unsigned X86Opcode;
9418     if (isHorizontalBinOpPart(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
9419       X86Opcode = X86ISD::HADD;
9420     else if (isHorizontalBinOpPart(BV, ISD::SUB, DAG, 0, NumElts, InVec0,
9421                                    InVec1))
9422       X86Opcode = X86ISD::HSUB;
9423     else if (isHorizontalBinOpPart(BV, ISD::FADD, DAG, 0, NumElts, InVec0,
9424                                    InVec1))
9425       X86Opcode = X86ISD::FHADD;
9426     else if (isHorizontalBinOpPart(BV, ISD::FSUB, DAG, 0, NumElts, InVec0,
9427                                    InVec1))
9428       X86Opcode = X86ISD::FHSUB;
9429     else
9430       return SDValue();
9431 
9432     // Don't try to expand this build_vector into a pair of horizontal add/sub
9433     // if we can simply emit a pair of scalar add/sub.
9434     if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
9435       return SDValue();
9436 
9437     // Convert this build_vector into two horizontal add/sub followed by
9438     // a concat vector.
9439     bool isUndefLO = NumUndefsLO == Half;
9440     bool isUndefHI = NumUndefsHI == Half;
9441     return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
9442                                  isUndefLO, isUndefHI);
9443   }
9444 
9445   return SDValue();
9446 }
9447 
9448 /// If a BUILD_VECTOR's source elements all apply the same bit operation and
9449 /// one of their operands is constant, lower to a pair of BUILD_VECTOR and
9450 /// just apply the bit to the vectors.
9451 /// NOTE: Its not in our interest to start make a general purpose vectorizer
9452 /// from this, but enough scalar bit operations are created from the later
9453 /// legalization + scalarization stages to need basic support.
9454 static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op,
9455                                        SelectionDAG &DAG) {
9456   SDLoc DL(Op);
9457   MVT VT = Op->getSimpleValueType(0);
9458   unsigned NumElems = VT.getVectorNumElements();
9459   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9460 
9461   // Check that all elements have the same opcode.
9462   // TODO: Should we allow UNDEFS and if so how many?
9463   unsigned Opcode = Op->getOperand(0).getOpcode();
9464   for (unsigned i = 1; i < NumElems; ++i)
9465     if (Opcode != Op->getOperand(i).getOpcode())
9466       return SDValue();
9467 
9468   // TODO: We may be able to add support for other Ops (ADD/SUB + shifts).
9469   bool IsShift = false;
9470   switch (Opcode) {
9471   default:
9472     return SDValue();
9473   case ISD::SHL:
9474   case ISD::SRL:
9475   case ISD::SRA:
9476     IsShift = true;
9477     break;
9478   case ISD::AND:
9479   case ISD::XOR:
9480   case ISD::OR:
9481     // Don't do this if the buildvector is a splat - we'd replace one
9482     // constant with an entire vector.
9483     if (Op->getSplatValue())
9484       return SDValue();
9485     if (!TLI.isOperationLegalOrPromote(Opcode, VT))
9486       return SDValue();
9487     break;
9488   }
9489 
9490   SmallVector<SDValue, 4> LHSElts, RHSElts;
9491   for (SDValue Elt : Op->ops()) {
9492     SDValue LHS = Elt.getOperand(0);
9493     SDValue RHS = Elt.getOperand(1);
9494 
9495     // We expect the canonicalized RHS operand to be the constant.
9496     if (!isa<ConstantSDNode>(RHS))
9497       return SDValue();
9498 
9499     // Extend shift amounts.
9500     if (RHS.getValueSizeInBits() != VT.getScalarSizeInBits()) {
9501       if (!IsShift)
9502         return SDValue();
9503       RHS = DAG.getZExtOrTrunc(RHS, DL, VT.getScalarType());
9504     }
9505 
9506     LHSElts.push_back(LHS);
9507     RHSElts.push_back(RHS);
9508   }
9509 
9510   // Limit to shifts by uniform immediates.
9511   // TODO: Only accept vXi8/vXi64 special cases?
9512   // TODO: Permit non-uniform XOP/AVX2/MULLO cases?
9513   if (IsShift && any_of(RHSElts, [&](SDValue V) { return RHSElts[0] != V; }))
9514     return SDValue();
9515 
9516   SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts);
9517   SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts);
9518   return DAG.getNode(Opcode, DL, VT, LHS, RHS);
9519 }
9520 
9521 /// Create a vector constant without a load. SSE/AVX provide the bare minimum
9522 /// functionality to do this, so it's all zeros, all ones, or some derivation
9523 /// that is cheap to calculate.
9524 static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG,
9525                                          const X86Subtarget &Subtarget) {
9526   SDLoc DL(Op);
9527   MVT VT = Op.getSimpleValueType();
9528 
9529   // Vectors containing all zeros can be matched by pxor and xorps.
9530   if (ISD::isBuildVectorAllZeros(Op.getNode()))
9531     return Op;
9532 
9533   // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
9534   // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
9535   // vpcmpeqd on 256-bit vectors.
9536   if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
9537     if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
9538       return Op;
9539 
9540     return getOnesVector(VT, DAG, DL);
9541   }
9542 
9543   return SDValue();
9544 }
9545 
9546 /// Look for opportunities to create a VPERMV/VPERMILPV/PSHUFB variable permute
9547 /// from a vector of source values and a vector of extraction indices.
9548 /// The vectors might be manipulated to match the type of the permute op.
9549 static SDValue createVariablePermute(MVT VT, SDValue SrcVec, SDValue IndicesVec,
9550                                      SDLoc &DL, SelectionDAG &DAG,
9551                                      const X86Subtarget &Subtarget) {
9552   MVT ShuffleVT = VT;
9553   EVT IndicesVT = EVT(VT).changeVectorElementTypeToInteger();
9554   unsigned NumElts = VT.getVectorNumElements();
9555   unsigned SizeInBits = VT.getSizeInBits();
9556 
9557   // Adjust IndicesVec to match VT size.
9558   assert(IndicesVec.getValueType().getVectorNumElements() >= NumElts &&
9559          "Illegal variable permute mask size");
9560   if (IndicesVec.getValueType().getVectorNumElements() > NumElts)
9561     IndicesVec = extractSubVector(IndicesVec, 0, DAG, SDLoc(IndicesVec),
9562                                   NumElts * VT.getScalarSizeInBits());
9563   IndicesVec = DAG.getZExtOrTrunc(IndicesVec, SDLoc(IndicesVec), IndicesVT);
9564 
9565   // Handle SrcVec that don't match VT type.
9566   if (SrcVec.getValueSizeInBits() != SizeInBits) {
9567     if ((SrcVec.getValueSizeInBits() % SizeInBits) == 0) {
9568       // Handle larger SrcVec by treating it as a larger permute.
9569       unsigned Scale = SrcVec.getValueSizeInBits() / SizeInBits;
9570       VT = MVT::getVectorVT(VT.getScalarType(), Scale * NumElts);
9571       IndicesVT = EVT(VT).changeVectorElementTypeToInteger();
9572       IndicesVec = widenSubVector(IndicesVT.getSimpleVT(), IndicesVec, false,
9573                                   Subtarget, DAG, SDLoc(IndicesVec));
9574       return extractSubVector(
9575           createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget), 0,
9576           DAG, DL, SizeInBits);
9577     } else if (SrcVec.getValueSizeInBits() < SizeInBits) {
9578       // Widen smaller SrcVec to match VT.
9579       SrcVec = widenSubVector(VT, SrcVec, false, Subtarget, DAG, SDLoc(SrcVec));
9580     } else
9581       return SDValue();
9582   }
9583 
9584   auto ScaleIndices = [&DAG](SDValue Idx, uint64_t Scale) {
9585     assert(isPowerOf2_64(Scale) && "Illegal variable permute shuffle scale");
9586     EVT SrcVT = Idx.getValueType();
9587     unsigned NumDstBits = SrcVT.getScalarSizeInBits() / Scale;
9588     uint64_t IndexScale = 0;
9589     uint64_t IndexOffset = 0;
9590 
9591     // If we're scaling a smaller permute op, then we need to repeat the
9592     // indices, scaling and offsetting them as well.
9593     // e.g. v4i32 -> v16i8 (Scale = 4)
9594     // IndexScale = v4i32 Splat(4 << 24 | 4 << 16 | 4 << 8 | 4)
9595     // IndexOffset = v4i32 Splat(3 << 24 | 2 << 16 | 1 << 8 | 0)
9596     for (uint64_t i = 0; i != Scale; ++i) {
9597       IndexScale |= Scale << (i * NumDstBits);
9598       IndexOffset |= i << (i * NumDstBits);
9599     }
9600 
9601     Idx = DAG.getNode(ISD::MUL, SDLoc(Idx), SrcVT, Idx,
9602                       DAG.getConstant(IndexScale, SDLoc(Idx), SrcVT));
9603     Idx = DAG.getNode(ISD::ADD, SDLoc(Idx), SrcVT, Idx,
9604                       DAG.getConstant(IndexOffset, SDLoc(Idx), SrcVT));
9605     return Idx;
9606   };
9607 
9608   unsigned Opcode = 0;
9609   switch (VT.SimpleTy) {
9610   default:
9611     break;
9612   case MVT::v16i8:
9613     if (Subtarget.hasSSSE3())
9614       Opcode = X86ISD::PSHUFB;
9615     break;
9616   case MVT::v8i16:
9617     if (Subtarget.hasVLX() && Subtarget.hasBWI())
9618       Opcode = X86ISD::VPERMV;
9619     else if (Subtarget.hasSSSE3()) {
9620       Opcode = X86ISD::PSHUFB;
9621       ShuffleVT = MVT::v16i8;
9622     }
9623     break;
9624   case MVT::v4f32:
9625   case MVT::v4i32:
9626     if (Subtarget.hasAVX()) {
9627       Opcode = X86ISD::VPERMILPV;
9628       ShuffleVT = MVT::v4f32;
9629     } else if (Subtarget.hasSSSE3()) {
9630       Opcode = X86ISD::PSHUFB;
9631       ShuffleVT = MVT::v16i8;
9632     }
9633     break;
9634   case MVT::v2f64:
9635   case MVT::v2i64:
9636     if (Subtarget.hasAVX()) {
9637       // VPERMILPD selects using bit#1 of the index vector, so scale IndicesVec.
9638       IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec);
9639       Opcode = X86ISD::VPERMILPV;
9640       ShuffleVT = MVT::v2f64;
9641     } else if (Subtarget.hasSSE41()) {
9642       // SSE41 can compare v2i64 - select between indices 0 and 1.
9643       return DAG.getSelectCC(
9644           DL, IndicesVec,
9645           getZeroVector(IndicesVT.getSimpleVT(), Subtarget, DAG, DL),
9646           DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {0, 0}),
9647           DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {1, 1}),
9648           ISD::CondCode::SETEQ);
9649     }
9650     break;
9651   case MVT::v32i8:
9652     if (Subtarget.hasVLX() && Subtarget.hasVBMI())
9653       Opcode = X86ISD::VPERMV;
9654     else if (Subtarget.hasXOP()) {
9655       SDValue LoSrc = extract128BitVector(SrcVec, 0, DAG, DL);
9656       SDValue HiSrc = extract128BitVector(SrcVec, 16, DAG, DL);
9657       SDValue LoIdx = extract128BitVector(IndicesVec, 0, DAG, DL);
9658       SDValue HiIdx = extract128BitVector(IndicesVec, 16, DAG, DL);
9659       return DAG.getNode(
9660           ISD::CONCAT_VECTORS, DL, VT,
9661           DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, LoIdx),
9662           DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, HiIdx));
9663     } else if (Subtarget.hasAVX()) {
9664       SDValue Lo = extract128BitVector(SrcVec, 0, DAG, DL);
9665       SDValue Hi = extract128BitVector(SrcVec, 16, DAG, DL);
9666       SDValue LoLo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Lo);
9667       SDValue HiHi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Hi, Hi);
9668       auto PSHUFBBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
9669                               ArrayRef<SDValue> Ops) {
9670         // Permute Lo and Hi and then select based on index range.
9671         // This works as SHUFB uses bits[3:0] to permute elements and we don't
9672         // care about the bit[7] as its just an index vector.
9673         SDValue Idx = Ops[2];
9674         EVT VT = Idx.getValueType();
9675         return DAG.getSelectCC(DL, Idx, DAG.getConstant(15, DL, VT),
9676                                DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[1], Idx),
9677                                DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[0], Idx),
9678                                ISD::CondCode::SETGT);
9679       };
9680       SDValue Ops[] = {LoLo, HiHi, IndicesVec};
9681       return SplitOpsAndApply(DAG, Subtarget, DL, MVT::v32i8, Ops,
9682                               PSHUFBBuilder);
9683     }
9684     break;
9685   case MVT::v16i16:
9686     if (Subtarget.hasVLX() && Subtarget.hasBWI())
9687       Opcode = X86ISD::VPERMV;
9688     else if (Subtarget.hasAVX()) {
9689       // Scale to v32i8 and perform as v32i8.
9690       IndicesVec = ScaleIndices(IndicesVec, 2);
9691       return DAG.getBitcast(
9692           VT, createVariablePermute(
9693                   MVT::v32i8, DAG.getBitcast(MVT::v32i8, SrcVec),
9694                   DAG.getBitcast(MVT::v32i8, IndicesVec), DL, DAG, Subtarget));
9695     }
9696     break;
9697   case MVT::v8f32:
9698   case MVT::v8i32:
9699     if (Subtarget.hasAVX2())
9700       Opcode = X86ISD::VPERMV;
9701     else if (Subtarget.hasAVX()) {
9702       SrcVec = DAG.getBitcast(MVT::v8f32, SrcVec);
9703       SDValue LoLo = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec,
9704                                           {0, 1, 2, 3, 0, 1, 2, 3});
9705       SDValue HiHi = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec,
9706                                           {4, 5, 6, 7, 4, 5, 6, 7});
9707       if (Subtarget.hasXOP())
9708         return DAG.getBitcast(
9709             VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v8f32, LoLo, HiHi,
9710                             IndicesVec, DAG.getTargetConstant(0, DL, MVT::i8)));
9711       // Permute Lo and Hi and then select based on index range.
9712       // This works as VPERMILPS only uses index bits[0:1] to permute elements.
9713       SDValue Res = DAG.getSelectCC(
9714           DL, IndicesVec, DAG.getConstant(3, DL, MVT::v8i32),
9715           DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, HiHi, IndicesVec),
9716           DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, LoLo, IndicesVec),
9717           ISD::CondCode::SETGT);
9718       return DAG.getBitcast(VT, Res);
9719     }
9720     break;
9721   case MVT::v4i64:
9722   case MVT::v4f64:
9723     if (Subtarget.hasAVX512()) {
9724       if (!Subtarget.hasVLX()) {
9725         MVT WidenSrcVT = MVT::getVectorVT(VT.getScalarType(), 8);
9726         SrcVec = widenSubVector(WidenSrcVT, SrcVec, false, Subtarget, DAG,
9727                                 SDLoc(SrcVec));
9728         IndicesVec = widenSubVector(MVT::v8i64, IndicesVec, false, Subtarget,
9729                                     DAG, SDLoc(IndicesVec));
9730         SDValue Res = createVariablePermute(WidenSrcVT, SrcVec, IndicesVec, DL,
9731                                             DAG, Subtarget);
9732         return extract256BitVector(Res, 0, DAG, DL);
9733       }
9734       Opcode = X86ISD::VPERMV;
9735     } else if (Subtarget.hasAVX()) {
9736       SrcVec = DAG.getBitcast(MVT::v4f64, SrcVec);
9737       SDValue LoLo =
9738           DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {0, 1, 0, 1});
9739       SDValue HiHi =
9740           DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {2, 3, 2, 3});
9741       // VPERMIL2PD selects with bit#1 of the index vector, so scale IndicesVec.
9742       IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec);
9743       if (Subtarget.hasXOP())
9744         return DAG.getBitcast(
9745             VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v4f64, LoLo, HiHi,
9746                             IndicesVec, DAG.getTargetConstant(0, DL, MVT::i8)));
9747       // Permute Lo and Hi and then select based on index range.
9748       // This works as VPERMILPD only uses index bit[1] to permute elements.
9749       SDValue Res = DAG.getSelectCC(
9750           DL, IndicesVec, DAG.getConstant(2, DL, MVT::v4i64),
9751           DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, HiHi, IndicesVec),
9752           DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, LoLo, IndicesVec),
9753           ISD::CondCode::SETGT);
9754       return DAG.getBitcast(VT, Res);
9755     }
9756     break;
9757   case MVT::v64i8:
9758     if (Subtarget.hasVBMI())
9759       Opcode = X86ISD::VPERMV;
9760     break;
9761   case MVT::v32i16:
9762     if (Subtarget.hasBWI())
9763       Opcode = X86ISD::VPERMV;
9764     break;
9765   case MVT::v16f32:
9766   case MVT::v16i32:
9767   case MVT::v8f64:
9768   case MVT::v8i64:
9769     if (Subtarget.hasAVX512())
9770       Opcode = X86ISD::VPERMV;
9771     break;
9772   }
9773   if (!Opcode)
9774     return SDValue();
9775 
9776   assert((VT.getSizeInBits() == ShuffleVT.getSizeInBits()) &&
9777          (VT.getScalarSizeInBits() % ShuffleVT.getScalarSizeInBits()) == 0 &&
9778          "Illegal variable permute shuffle type");
9779 
9780   uint64_t Scale = VT.getScalarSizeInBits() / ShuffleVT.getScalarSizeInBits();
9781   if (Scale > 1)
9782     IndicesVec = ScaleIndices(IndicesVec, Scale);
9783 
9784   EVT ShuffleIdxVT = EVT(ShuffleVT).changeVectorElementTypeToInteger();
9785   IndicesVec = DAG.getBitcast(ShuffleIdxVT, IndicesVec);
9786 
9787   SrcVec = DAG.getBitcast(ShuffleVT, SrcVec);
9788   SDValue Res = Opcode == X86ISD::VPERMV
9789                     ? DAG.getNode(Opcode, DL, ShuffleVT, IndicesVec, SrcVec)
9790                     : DAG.getNode(Opcode, DL, ShuffleVT, SrcVec, IndicesVec);
9791   return DAG.getBitcast(VT, Res);
9792 }
9793 
9794 // Tries to lower a BUILD_VECTOR composed of extract-extract chains that can be
9795 // reasoned to be a permutation of a vector by indices in a non-constant vector.
9796 // (build_vector (extract_elt V, (extract_elt I, 0)),
9797 //               (extract_elt V, (extract_elt I, 1)),
9798 //                    ...
9799 // ->
9800 // (vpermv I, V)
9801 //
9802 // TODO: Handle undefs
9803 // TODO: Utilize pshufb and zero mask blending to support more efficient
9804 // construction of vectors with constant-0 elements.
9805 static SDValue
9806 LowerBUILD_VECTORAsVariablePermute(SDValue V, SelectionDAG &DAG,
9807                                    const X86Subtarget &Subtarget) {
9808   SDValue SrcVec, IndicesVec;
9809   // Check for a match of the permute source vector and permute index elements.
9810   // This is done by checking that the i-th build_vector operand is of the form:
9811   // (extract_elt SrcVec, (extract_elt IndicesVec, i)).
9812   for (unsigned Idx = 0, E = V.getNumOperands(); Idx != E; ++Idx) {
9813     SDValue Op = V.getOperand(Idx);
9814     if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9815       return SDValue();
9816 
9817     // If this is the first extract encountered in V, set the source vector,
9818     // otherwise verify the extract is from the previously defined source
9819     // vector.
9820     if (!SrcVec)
9821       SrcVec = Op.getOperand(0);
9822     else if (SrcVec != Op.getOperand(0))
9823       return SDValue();
9824     SDValue ExtractedIndex = Op->getOperand(1);
9825     // Peek through extends.
9826     if (ExtractedIndex.getOpcode() == ISD::ZERO_EXTEND ||
9827         ExtractedIndex.getOpcode() == ISD::SIGN_EXTEND)
9828       ExtractedIndex = ExtractedIndex.getOperand(0);
9829     if (ExtractedIndex.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9830       return SDValue();
9831 
9832     // If this is the first extract from the index vector candidate, set the
9833     // indices vector, otherwise verify the extract is from the previously
9834     // defined indices vector.
9835     if (!IndicesVec)
9836       IndicesVec = ExtractedIndex.getOperand(0);
9837     else if (IndicesVec != ExtractedIndex.getOperand(0))
9838       return SDValue();
9839 
9840     auto *PermIdx = dyn_cast<ConstantSDNode>(ExtractedIndex.getOperand(1));
9841     if (!PermIdx || PermIdx->getAPIntValue() != Idx)
9842       return SDValue();
9843   }
9844 
9845   SDLoc DL(V);
9846   MVT VT = V.getSimpleValueType();
9847   return createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget);
9848 }
9849 
9850 SDValue
9851 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
9852   SDLoc dl(Op);
9853 
9854   MVT VT = Op.getSimpleValueType();
9855   MVT EltVT = VT.getVectorElementType();
9856   unsigned NumElems = Op.getNumOperands();
9857 
9858   // Generate vectors for predicate vectors.
9859   if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512())
9860     return LowerBUILD_VECTORvXi1(Op, DAG, Subtarget);
9861 
9862   if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget))
9863     return VectorConstant;
9864 
9865   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
9866   if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG))
9867     return AddSub;
9868   if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
9869     return HorizontalOp;
9870   if (SDValue Broadcast = lowerBuildVectorAsBroadcast(BV, Subtarget, DAG))
9871     return Broadcast;
9872   if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG))
9873     return BitOp;
9874 
9875   unsigned EVTBits = EltVT.getSizeInBits();
9876 
9877   unsigned NumZero  = 0;
9878   unsigned NumNonZero = 0;
9879   uint64_t NonZeros = 0;
9880   bool IsAllConstants = true;
9881   SmallSet<SDValue, 8> Values;
9882   unsigned NumConstants = NumElems;
9883   for (unsigned i = 0; i < NumElems; ++i) {
9884     SDValue Elt = Op.getOperand(i);
9885     if (Elt.isUndef())
9886       continue;
9887     Values.insert(Elt);
9888     if (!isa<ConstantSDNode>(Elt) && !isa<ConstantFPSDNode>(Elt)) {
9889       IsAllConstants = false;
9890       NumConstants--;
9891     }
9892     if (X86::isZeroNode(Elt))
9893       NumZero++;
9894     else {
9895       assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
9896       NonZeros |= ((uint64_t)1 << i);
9897       NumNonZero++;
9898     }
9899   }
9900 
9901   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
9902   if (NumNonZero == 0)
9903     return DAG.getUNDEF(VT);
9904 
9905   // If we are inserting one variable into a vector of non-zero constants, try
9906   // to avoid loading each constant element as a scalar. Load the constants as a
9907   // vector and then insert the variable scalar element. If insertion is not
9908   // supported, fall back to a shuffle to get the scalar blended with the
9909   // constants. Insertion into a zero vector is handled as a special-case
9910   // somewhere below here.
9911   if (NumConstants == NumElems - 1 && NumNonZero != 1 &&
9912       (isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT) ||
9913        isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) {
9914     // Create an all-constant vector. The variable element in the old
9915     // build vector is replaced by undef in the constant vector. Save the
9916     // variable scalar element and its index for use in the insertelement.
9917     LLVMContext &Context = *DAG.getContext();
9918     Type *EltType = Op.getValueType().getScalarType().getTypeForEVT(Context);
9919     SmallVector<Constant *, 16> ConstVecOps(NumElems, UndefValue::get(EltType));
9920     SDValue VarElt;
9921     SDValue InsIndex;
9922     for (unsigned i = 0; i != NumElems; ++i) {
9923       SDValue Elt = Op.getOperand(i);
9924       if (auto *C = dyn_cast<ConstantSDNode>(Elt))
9925         ConstVecOps[i] = ConstantInt::get(Context, C->getAPIntValue());
9926       else if (auto *C = dyn_cast<ConstantFPSDNode>(Elt))
9927         ConstVecOps[i] = ConstantFP::get(Context, C->getValueAPF());
9928       else if (!Elt.isUndef()) {
9929         assert(!VarElt.getNode() && !InsIndex.getNode() &&
9930                "Expected one variable element in this vector");
9931         VarElt = Elt;
9932         InsIndex = DAG.getConstant(i, dl, getVectorIdxTy(DAG.getDataLayout()));
9933       }
9934     }
9935     Constant *CV = ConstantVector::get(ConstVecOps);
9936     SDValue DAGConstVec = DAG.getConstantPool(CV, VT);
9937 
9938     // The constants we just created may not be legal (eg, floating point). We
9939     // must lower the vector right here because we can not guarantee that we'll
9940     // legalize it before loading it. This is also why we could not just create
9941     // a new build vector here. If the build vector contains illegal constants,
9942     // it could get split back up into a series of insert elements.
9943     // TODO: Improve this by using shorter loads with broadcast/VZEXT_LOAD.
9944     SDValue LegalDAGConstVec = LowerConstantPool(DAGConstVec, DAG);
9945     MachineFunction &MF = DAG.getMachineFunction();
9946     MachinePointerInfo MPI = MachinePointerInfo::getConstantPool(MF);
9947     SDValue Ld = DAG.getLoad(VT, dl, DAG.getEntryNode(), LegalDAGConstVec, MPI);
9948     unsigned InsertC = cast<ConstantSDNode>(InsIndex)->getZExtValue();
9949     unsigned NumEltsInLow128Bits = 128 / VT.getScalarSizeInBits();
9950     if (InsertC < NumEltsInLow128Bits)
9951       return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ld, VarElt, InsIndex);
9952 
9953     // There's no good way to insert into the high elements of a >128-bit
9954     // vector, so use shuffles to avoid an extract/insert sequence.
9955     assert(VT.getSizeInBits() > 128 && "Invalid insertion index?");
9956     assert(Subtarget.hasAVX() && "Must have AVX with >16-byte vector");
9957     SmallVector<int, 8> ShuffleMask;
9958     unsigned NumElts = VT.getVectorNumElements();
9959     for (unsigned i = 0; i != NumElts; ++i)
9960       ShuffleMask.push_back(i == InsertC ? NumElts : i);
9961     SDValue S2V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, VarElt);
9962     return DAG.getVectorShuffle(VT, dl, Ld, S2V, ShuffleMask);
9963   }
9964 
9965   // Special case for single non-zero, non-undef, element.
9966   if (NumNonZero == 1) {
9967     unsigned Idx = countTrailingZeros(NonZeros);
9968     SDValue Item = Op.getOperand(Idx);
9969 
9970     // If we have a constant or non-constant insertion into the low element of
9971     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
9972     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
9973     // depending on what the source datatype is.
9974     if (Idx == 0) {
9975       if (NumZero == 0)
9976         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
9977 
9978       if (EltVT == MVT::i32 || EltVT == MVT::f32 || EltVT == MVT::f64 ||
9979           (EltVT == MVT::i64 && Subtarget.is64Bit())) {
9980         assert((VT.is128BitVector() || VT.is256BitVector() ||
9981                 VT.is512BitVector()) &&
9982                "Expected an SSE value type!");
9983         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
9984         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
9985         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
9986       }
9987 
9988       // We can't directly insert an i8 or i16 into a vector, so zero extend
9989       // it to i32 first.
9990       if (EltVT == MVT::i16 || EltVT == MVT::i8) {
9991         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
9992         MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
9993         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item);
9994         Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
9995         return DAG.getBitcast(VT, Item);
9996       }
9997     }
9998 
9999     // Is it a vector logical left shift?
10000     if (NumElems == 2 && Idx == 1 &&
10001         X86::isZeroNode(Op.getOperand(0)) &&
10002         !X86::isZeroNode(Op.getOperand(1))) {
10003       unsigned NumBits = VT.getSizeInBits();
10004       return getVShift(true, VT,
10005                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
10006                                    VT, Op.getOperand(1)),
10007                        NumBits/2, DAG, *this, dl);
10008     }
10009 
10010     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
10011       return SDValue();
10012 
10013     // Otherwise, if this is a vector with i32 or f32 elements, and the element
10014     // is a non-constant being inserted into an element other than the low one,
10015     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
10016     // movd/movss) to move this into the low element, then shuffle it into
10017     // place.
10018     if (EVTBits == 32) {
10019       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
10020       return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
10021     }
10022   }
10023 
10024   // Splat is obviously ok. Let legalizer expand it to a shuffle.
10025   if (Values.size() == 1) {
10026     if (EVTBits == 32) {
10027       // Instead of a shuffle like this:
10028       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
10029       // Check if it's possible to issue this instead.
10030       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
10031       unsigned Idx = countTrailingZeros(NonZeros);
10032       SDValue Item = Op.getOperand(Idx);
10033       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
10034         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
10035     }
10036     return SDValue();
10037   }
10038 
10039   // A vector full of immediates; various special cases are already
10040   // handled, so this is best done with a single constant-pool load.
10041   if (IsAllConstants)
10042     return SDValue();
10043 
10044   if (SDValue V = LowerBUILD_VECTORAsVariablePermute(Op, DAG, Subtarget))
10045       return V;
10046 
10047   // See if we can use a vector load to get all of the elements.
10048   {
10049     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
10050     if (SDValue LD =
10051             EltsFromConsecutiveLoads(VT, Ops, dl, DAG, Subtarget, false))
10052       return LD;
10053   }
10054 
10055   // If this is a splat of pairs of 32-bit elements, we can use a narrower
10056   // build_vector and broadcast it.
10057   // TODO: We could probably generalize this more.
10058   if (Subtarget.hasAVX2() && EVTBits == 32 && Values.size() == 2) {
10059     SDValue Ops[4] = { Op.getOperand(0), Op.getOperand(1),
10060                        DAG.getUNDEF(EltVT), DAG.getUNDEF(EltVT) };
10061     auto CanSplat = [](SDValue Op, unsigned NumElems, ArrayRef<SDValue> Ops) {
10062       // Make sure all the even/odd operands match.
10063       for (unsigned i = 2; i != NumElems; ++i)
10064         if (Ops[i % 2] != Op.getOperand(i))
10065           return false;
10066       return true;
10067     };
10068     if (CanSplat(Op, NumElems, Ops)) {
10069       MVT WideEltVT = VT.isFloatingPoint() ? MVT::f64 : MVT::i64;
10070       MVT NarrowVT = MVT::getVectorVT(EltVT, 4);
10071       // Create a new build vector and cast to v2i64/v2f64.
10072       SDValue NewBV = DAG.getBitcast(MVT::getVectorVT(WideEltVT, 2),
10073                                      DAG.getBuildVector(NarrowVT, dl, Ops));
10074       // Broadcast from v2i64/v2f64 and cast to final VT.
10075       MVT BcastVT = MVT::getVectorVT(WideEltVT, NumElems/2);
10076       return DAG.getBitcast(VT, DAG.getNode(X86ISD::VBROADCAST, dl, BcastVT,
10077                                             NewBV));
10078     }
10079   }
10080 
10081   // For AVX-length vectors, build the individual 128-bit pieces and use
10082   // shuffles to put them in place.
10083   if (VT.getSizeInBits() > 128) {
10084     MVT HVT = MVT::getVectorVT(EltVT, NumElems/2);
10085 
10086     // Build both the lower and upper subvector.
10087     SDValue Lower =
10088         DAG.getBuildVector(HVT, dl, Op->ops().slice(0, NumElems / 2));
10089     SDValue Upper = DAG.getBuildVector(
10090         HVT, dl, Op->ops().slice(NumElems / 2, NumElems /2));
10091 
10092     // Recreate the wider vector with the lower and upper part.
10093     return concatSubVectors(Lower, Upper, DAG, dl);
10094   }
10095 
10096   // Let legalizer expand 2-wide build_vectors.
10097   if (EVTBits == 64) {
10098     if (NumNonZero == 1) {
10099       // One half is zero or undef.
10100       unsigned Idx = countTrailingZeros(NonZeros);
10101       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
10102                                Op.getOperand(Idx));
10103       return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
10104     }
10105     return SDValue();
10106   }
10107 
10108   // If element VT is < 32 bits, convert it to inserts into a zero vector.
10109   if (EVTBits == 8 && NumElems == 16)
10110     if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
10111                                           DAG, Subtarget))
10112       return V;
10113 
10114   if (EVTBits == 16 && NumElems == 8)
10115     if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
10116                                           DAG, Subtarget))
10117       return V;
10118 
10119   // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
10120   if (EVTBits == 32 && NumElems == 4)
10121     if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget))
10122       return V;
10123 
10124   // If element VT is == 32 bits, turn it into a number of shuffles.
10125   if (NumElems == 4 && NumZero > 0) {
10126     SmallVector<SDValue, 8> Ops(NumElems);
10127     for (unsigned i = 0; i < 4; ++i) {
10128       bool isZero = !(NonZeros & (1ULL << i));
10129       if (isZero)
10130         Ops[i] = getZeroVector(VT, Subtarget, DAG, dl);
10131       else
10132         Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
10133     }
10134 
10135     for (unsigned i = 0; i < 2; ++i) {
10136       switch ((NonZeros >> (i*2)) & 0x3) {
10137         default: llvm_unreachable("Unexpected NonZero count");
10138         case 0:
10139           Ops[i] = Ops[i*2];  // Must be a zero vector.
10140           break;
10141         case 1:
10142           Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]);
10143           break;
10144         case 2:
10145           Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
10146           break;
10147         case 3:
10148           Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
10149           break;
10150       }
10151     }
10152 
10153     bool Reverse1 = (NonZeros & 0x3) == 2;
10154     bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
10155     int MaskVec[] = {
10156       Reverse1 ? 1 : 0,
10157       Reverse1 ? 0 : 1,
10158       static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
10159       static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
10160     };
10161     return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
10162   }
10163 
10164   assert(Values.size() > 1 && "Expected non-undef and non-splat vector");
10165 
10166   // Check for a build vector from mostly shuffle plus few inserting.
10167   if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
10168     return Sh;
10169 
10170   // For SSE 4.1, use insertps to put the high elements into the low element.
10171   if (Subtarget.hasSSE41()) {
10172     SDValue Result;
10173     if (!Op.getOperand(0).isUndef())
10174       Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
10175     else
10176       Result = DAG.getUNDEF(VT);
10177 
10178     for (unsigned i = 1; i < NumElems; ++i) {
10179       if (Op.getOperand(i).isUndef()) continue;
10180       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
10181                            Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
10182     }
10183     return Result;
10184   }
10185 
10186   // Otherwise, expand into a number of unpckl*, start by extending each of
10187   // our (non-undef) elements to the full vector width with the element in the
10188   // bottom slot of the vector (which generates no code for SSE).
10189   SmallVector<SDValue, 8> Ops(NumElems);
10190   for (unsigned i = 0; i < NumElems; ++i) {
10191     if (!Op.getOperand(i).isUndef())
10192       Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
10193     else
10194       Ops[i] = DAG.getUNDEF(VT);
10195   }
10196 
10197   // Next, we iteratively mix elements, e.g. for v4f32:
10198   //   Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0>
10199   //         : unpcklps 2, 3 ==> Y: <?, ?, 3, 2>
10200   //   Step 2: unpcklpd X, Y ==>    <3, 2, 1, 0>
10201   for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) {
10202     // Generate scaled UNPCKL shuffle mask.
10203     SmallVector<int, 16> Mask;
10204     for(unsigned i = 0; i != Scale; ++i)
10205       Mask.push_back(i);
10206     for (unsigned i = 0; i != Scale; ++i)
10207       Mask.push_back(NumElems+i);
10208     Mask.append(NumElems - Mask.size(), SM_SentinelUndef);
10209 
10210     for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i)
10211       Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask);
10212   }
10213   return Ops[0];
10214 }
10215 
10216 // 256-bit AVX can use the vinsertf128 instruction
10217 // to create 256-bit vectors from two other 128-bit ones.
10218 // TODO: Detect subvector broadcast here instead of DAG combine?
10219 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
10220                                       const X86Subtarget &Subtarget) {
10221   SDLoc dl(Op);
10222   MVT ResVT = Op.getSimpleValueType();
10223 
10224   assert((ResVT.is256BitVector() ||
10225           ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
10226 
10227   unsigned NumOperands = Op.getNumOperands();
10228   unsigned NumZero = 0;
10229   unsigned NumNonZero = 0;
10230   unsigned NonZeros = 0;
10231   for (unsigned i = 0; i != NumOperands; ++i) {
10232     SDValue SubVec = Op.getOperand(i);
10233     if (SubVec.isUndef())
10234       continue;
10235     if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
10236       ++NumZero;
10237     else {
10238       assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
10239       NonZeros |= 1 << i;
10240       ++NumNonZero;
10241     }
10242   }
10243 
10244   // If we have more than 2 non-zeros, build each half separately.
10245   if (NumNonZero > 2) {
10246     MVT HalfVT = ResVT.getHalfNumVectorElementsVT();
10247     ArrayRef<SDUse> Ops = Op->ops();
10248     SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
10249                              Ops.slice(0, NumOperands/2));
10250     SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
10251                              Ops.slice(NumOperands/2));
10252     return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
10253   }
10254 
10255   // Otherwise, build it up through insert_subvectors.
10256   SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl)
10257                         : DAG.getUNDEF(ResVT);
10258 
10259   MVT SubVT = Op.getOperand(0).getSimpleValueType();
10260   unsigned NumSubElems = SubVT.getVectorNumElements();
10261   for (unsigned i = 0; i != NumOperands; ++i) {
10262     if ((NonZeros & (1 << i)) == 0)
10263       continue;
10264 
10265     Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec,
10266                       Op.getOperand(i),
10267                       DAG.getIntPtrConstant(i * NumSubElems, dl));
10268   }
10269 
10270   return Vec;
10271 }
10272 
10273 // Returns true if the given node is a type promotion (by concatenating i1
10274 // zeros) of the result of a node that already zeros all upper bits of
10275 // k-register.
10276 // TODO: Merge this with LowerAVXCONCAT_VECTORS?
10277 static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
10278                                        const X86Subtarget &Subtarget,
10279                                        SelectionDAG & DAG) {
10280   SDLoc dl(Op);
10281   MVT ResVT = Op.getSimpleValueType();
10282   unsigned NumOperands = Op.getNumOperands();
10283 
10284   assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
10285          "Unexpected number of operands in CONCAT_VECTORS");
10286 
10287   uint64_t Zeros = 0;
10288   uint64_t NonZeros = 0;
10289   for (unsigned i = 0; i != NumOperands; ++i) {
10290     SDValue SubVec = Op.getOperand(i);
10291     if (SubVec.isUndef())
10292       continue;
10293     assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
10294     if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
10295       Zeros |= (uint64_t)1 << i;
10296     else
10297       NonZeros |= (uint64_t)1 << i;
10298   }
10299 
10300   unsigned NumElems = ResVT.getVectorNumElements();
10301 
10302   // If we are inserting non-zero vector and there are zeros in LSBs and undef
10303   // in the MSBs we need to emit a KSHIFTL. The generic lowering to
10304   // insert_subvector will give us two kshifts.
10305   if (isPowerOf2_64(NonZeros) && Zeros != 0 && NonZeros > Zeros &&
10306       Log2_64(NonZeros) != NumOperands - 1) {
10307     MVT ShiftVT = ResVT;
10308     if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8)
10309       ShiftVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
10310     unsigned Idx = Log2_64(NonZeros);
10311     SDValue SubVec = Op.getOperand(Idx);
10312     unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements();
10313     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ShiftVT,
10314                          DAG.getUNDEF(ShiftVT), SubVec,
10315                          DAG.getIntPtrConstant(0, dl));
10316     Op = DAG.getNode(X86ISD::KSHIFTL, dl, ShiftVT, SubVec,
10317                      DAG.getTargetConstant(Idx * SubVecNumElts, dl, MVT::i8));
10318     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, Op,
10319                        DAG.getIntPtrConstant(0, dl));
10320   }
10321 
10322   // If there are zero or one non-zeros we can handle this very simply.
10323   if (NonZeros == 0 || isPowerOf2_64(NonZeros)) {
10324     SDValue Vec = Zeros ? DAG.getConstant(0, dl, ResVT) : DAG.getUNDEF(ResVT);
10325     if (!NonZeros)
10326       return Vec;
10327     unsigned Idx = Log2_64(NonZeros);
10328     SDValue SubVec = Op.getOperand(Idx);
10329     unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements();
10330     return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, SubVec,
10331                        DAG.getIntPtrConstant(Idx * SubVecNumElts, dl));
10332   }
10333 
10334   if (NumOperands > 2) {
10335     MVT HalfVT = ResVT.getHalfNumVectorElementsVT();
10336     ArrayRef<SDUse> Ops = Op->ops();
10337     SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
10338                              Ops.slice(0, NumOperands/2));
10339     SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
10340                              Ops.slice(NumOperands/2));
10341     return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
10342   }
10343 
10344   assert(countPopulation(NonZeros) == 2 && "Simple cases not handled?");
10345 
10346   if (ResVT.getVectorNumElements() >= 16)
10347     return Op; // The operation is legal with KUNPCK
10348 
10349   SDValue Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT,
10350                             DAG.getUNDEF(ResVT), Op.getOperand(0),
10351                             DAG.getIntPtrConstant(0, dl));
10352   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Op.getOperand(1),
10353                      DAG.getIntPtrConstant(NumElems/2, dl));
10354 }
10355 
10356 static SDValue LowerCONCAT_VECTORS(SDValue Op,
10357                                    const X86Subtarget &Subtarget,
10358                                    SelectionDAG &DAG) {
10359   MVT VT = Op.getSimpleValueType();
10360   if (VT.getVectorElementType() == MVT::i1)
10361     return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
10362 
10363   assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
10364          (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
10365           Op.getNumOperands() == 4)));
10366 
10367   // AVX can use the vinsertf128 instruction to create 256-bit vectors
10368   // from two other 128-bit ones.
10369 
10370   // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
10371   return LowerAVXCONCAT_VECTORS(Op, DAG, Subtarget);
10372 }
10373 
10374 //===----------------------------------------------------------------------===//
10375 // Vector shuffle lowering
10376 //
10377 // This is an experimental code path for lowering vector shuffles on x86. It is
10378 // designed to handle arbitrary vector shuffles and blends, gracefully
10379 // degrading performance as necessary. It works hard to recognize idiomatic
10380 // shuffles and lower them to optimal instruction patterns without leaving
10381 // a framework that allows reasonably efficient handling of all vector shuffle
10382 // patterns.
10383 //===----------------------------------------------------------------------===//
10384 
10385 /// Tiny helper function to identify a no-op mask.
10386 ///
10387 /// This is a somewhat boring predicate function. It checks whether the mask
10388 /// array input, which is assumed to be a single-input shuffle mask of the kind
10389 /// used by the X86 shuffle instructions (not a fully general
10390 /// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
10391 /// in-place shuffle are 'no-op's.
10392 static bool isNoopShuffleMask(ArrayRef<int> Mask) {
10393   for (int i = 0, Size = Mask.size(); i < Size; ++i) {
10394     assert(Mask[i] >= -1 && "Out of bound mask element!");
10395     if (Mask[i] >= 0 && Mask[i] != i)
10396       return false;
10397   }
10398   return true;
10399 }
10400 
10401 /// Test whether there are elements crossing LaneSizeInBits lanes in this
10402 /// shuffle mask.
10403 ///
10404 /// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
10405 /// and we routinely test for these.
10406 static bool isLaneCrossingShuffleMask(unsigned LaneSizeInBits,
10407                                       unsigned ScalarSizeInBits,
10408                                       ArrayRef<int> Mask) {
10409   assert(LaneSizeInBits && ScalarSizeInBits &&
10410          (LaneSizeInBits % ScalarSizeInBits) == 0 &&
10411          "Illegal shuffle lane size");
10412   int LaneSize = LaneSizeInBits / ScalarSizeInBits;
10413   int Size = Mask.size();
10414   for (int i = 0; i < Size; ++i)
10415     if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
10416       return true;
10417   return false;
10418 }
10419 
10420 /// Test whether there are elements crossing 128-bit lanes in this
10421 /// shuffle mask.
10422 static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
10423   return isLaneCrossingShuffleMask(128, VT.getScalarSizeInBits(), Mask);
10424 }
10425 
10426 /// Test whether a shuffle mask is equivalent within each sub-lane.
10427 ///
10428 /// This checks a shuffle mask to see if it is performing the same
10429 /// lane-relative shuffle in each sub-lane. This trivially implies
10430 /// that it is also not lane-crossing. It may however involve a blend from the
10431 /// same lane of a second vector.
10432 ///
10433 /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
10434 /// non-trivial to compute in the face of undef lanes. The representation is
10435 /// suitable for use with existing 128-bit shuffles as entries from the second
10436 /// vector have been remapped to [LaneSize, 2*LaneSize).
10437 static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT,
10438                                   ArrayRef<int> Mask,
10439                                   SmallVectorImpl<int> &RepeatedMask) {
10440   auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
10441   RepeatedMask.assign(LaneSize, -1);
10442   int Size = Mask.size();
10443   for (int i = 0; i < Size; ++i) {
10444     assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0);
10445     if (Mask[i] < 0)
10446       continue;
10447     if ((Mask[i] % Size) / LaneSize != i / LaneSize)
10448       // This entry crosses lanes, so there is no way to model this shuffle.
10449       return false;
10450 
10451     // Ok, handle the in-lane shuffles by detecting if and when they repeat.
10452     // Adjust second vector indices to start at LaneSize instead of Size.
10453     int LocalM = Mask[i] < Size ? Mask[i] % LaneSize
10454                                 : Mask[i] % LaneSize + LaneSize;
10455     if (RepeatedMask[i % LaneSize] < 0)
10456       // This is the first non-undef entry in this slot of a 128-bit lane.
10457       RepeatedMask[i % LaneSize] = LocalM;
10458     else if (RepeatedMask[i % LaneSize] != LocalM)
10459       // Found a mismatch with the repeated mask.
10460       return false;
10461   }
10462   return true;
10463 }
10464 
10465 /// Test whether a shuffle mask is equivalent within each 128-bit lane.
10466 static bool
10467 is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
10468                                 SmallVectorImpl<int> &RepeatedMask) {
10469   return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
10470 }
10471 
10472 static bool
10473 is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask) {
10474   SmallVector<int, 32> RepeatedMask;
10475   return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
10476 }
10477 
10478 /// Test whether a shuffle mask is equivalent within each 256-bit lane.
10479 static bool
10480 is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
10481                                 SmallVectorImpl<int> &RepeatedMask) {
10482   return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask);
10483 }
10484 
10485 /// Test whether a target shuffle mask is equivalent within each sub-lane.
10486 /// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero.
10487 static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT,
10488                                         ArrayRef<int> Mask,
10489                                         SmallVectorImpl<int> &RepeatedMask) {
10490   int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
10491   RepeatedMask.assign(LaneSize, SM_SentinelUndef);
10492   int Size = Mask.size();
10493   for (int i = 0; i < Size; ++i) {
10494     assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0));
10495     if (Mask[i] == SM_SentinelUndef)
10496       continue;
10497     if (Mask[i] == SM_SentinelZero) {
10498       if (!isUndefOrZero(RepeatedMask[i % LaneSize]))
10499         return false;
10500       RepeatedMask[i % LaneSize] = SM_SentinelZero;
10501       continue;
10502     }
10503     if ((Mask[i] % Size) / LaneSize != i / LaneSize)
10504       // This entry crosses lanes, so there is no way to model this shuffle.
10505       return false;
10506 
10507     // Ok, handle the in-lane shuffles by detecting if and when they repeat.
10508     // Adjust second vector indices to start at LaneSize instead of Size.
10509     int LocalM =
10510         Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
10511     if (RepeatedMask[i % LaneSize] == SM_SentinelUndef)
10512       // This is the first non-undef entry in this slot of a 128-bit lane.
10513       RepeatedMask[i % LaneSize] = LocalM;
10514     else if (RepeatedMask[i % LaneSize] != LocalM)
10515       // Found a mismatch with the repeated mask.
10516       return false;
10517   }
10518   return true;
10519 }
10520 
10521 /// Checks whether a shuffle mask is equivalent to an explicit list of
10522 /// arguments.
10523 ///
10524 /// This is a fast way to test a shuffle mask against a fixed pattern:
10525 ///
10526 ///   if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
10527 ///
10528 /// It returns true if the mask is exactly as wide as the argument list, and
10529 /// each element of the mask is either -1 (signifying undef) or the value given
10530 /// in the argument.
10531 static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
10532                                 ArrayRef<int> ExpectedMask) {
10533   if (Mask.size() != ExpectedMask.size())
10534     return false;
10535 
10536   int Size = Mask.size();
10537 
10538   // If the values are build vectors, we can look through them to find
10539   // equivalent inputs that make the shuffles equivalent.
10540   auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
10541   auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
10542 
10543   for (int i = 0; i < Size; ++i) {
10544     assert(Mask[i] >= -1 && "Out of bound mask element!");
10545     if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) {
10546       auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
10547       auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
10548       if (!MaskBV || !ExpectedBV ||
10549           MaskBV->getOperand(Mask[i] % Size) !=
10550               ExpectedBV->getOperand(ExpectedMask[i] % Size))
10551         return false;
10552     }
10553   }
10554 
10555   return true;
10556 }
10557 
10558 /// Checks whether a target shuffle mask is equivalent to an explicit pattern.
10559 ///
10560 /// The masks must be exactly the same width.
10561 ///
10562 /// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding
10563 /// value in ExpectedMask is always accepted. Otherwise the indices must match.
10564 ///
10565 /// SM_SentinelZero is accepted as a valid negative index but must match in
10566 /// both.
10567 static bool isTargetShuffleEquivalent(ArrayRef<int> Mask,
10568                                       ArrayRef<int> ExpectedMask,
10569                                       SDValue V1 = SDValue(),
10570                                       SDValue V2 = SDValue()) {
10571   int Size = Mask.size();
10572   if (Size != (int)ExpectedMask.size())
10573     return false;
10574   assert(isUndefOrZeroOrInRange(ExpectedMask, 0, 2 * Size) &&
10575          "Illegal target shuffle mask");
10576 
10577   // Check for out-of-range target shuffle mask indices.
10578   if (!isUndefOrZeroOrInRange(Mask, 0, 2 * Size))
10579     return false;
10580 
10581   // If the values are build vectors, we can look through them to find
10582   // equivalent inputs that make the shuffles equivalent.
10583   auto *BV1 = dyn_cast_or_null<BuildVectorSDNode>(V1);
10584   auto *BV2 = dyn_cast_or_null<BuildVectorSDNode>(V2);
10585   BV1 = ((BV1 && Size != (int)BV1->getNumOperands()) ? nullptr : BV1);
10586   BV2 = ((BV2 && Size != (int)BV2->getNumOperands()) ? nullptr : BV2);
10587 
10588   for (int i = 0; i < Size; ++i) {
10589     if (Mask[i] == SM_SentinelUndef || Mask[i] == ExpectedMask[i])
10590       continue;
10591     if (0 <= Mask[i] && 0 <= ExpectedMask[i]) {
10592       auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
10593       auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
10594       if (MaskBV && ExpectedBV &&
10595           MaskBV->getOperand(Mask[i] % Size) ==
10596               ExpectedBV->getOperand(ExpectedMask[i] % Size))
10597         continue;
10598     }
10599     // TODO - handle SM_Sentinel equivalences.
10600     return false;
10601   }
10602   return true;
10603 }
10604 
10605 // Attempt to create a shuffle mask from a VSELECT condition mask.
10606 static bool createShuffleMaskFromVSELECT(SmallVectorImpl<int> &Mask,
10607                                          SDValue Cond) {
10608   if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
10609     return false;
10610 
10611   unsigned Size = Cond.getValueType().getVectorNumElements();
10612   Mask.resize(Size, SM_SentinelUndef);
10613 
10614   for (int i = 0; i != (int)Size; ++i) {
10615     SDValue CondElt = Cond.getOperand(i);
10616     Mask[i] = i;
10617     // Arbitrarily choose from the 2nd operand if the select condition element
10618     // is undef.
10619     // TODO: Can we do better by matching patterns such as even/odd?
10620     if (CondElt.isUndef() || isNullConstant(CondElt))
10621       Mask[i] += Size;
10622   }
10623 
10624   return true;
10625 }
10626 
10627 // Check if the shuffle mask is suitable for the AVX vpunpcklwd or vpunpckhwd
10628 // instructions.
10629 static bool isUnpackWdShuffleMask(ArrayRef<int> Mask, MVT VT) {
10630   if (VT != MVT::v8i32 && VT != MVT::v8f32)
10631     return false;
10632 
10633   SmallVector<int, 8> Unpcklwd;
10634   createUnpackShuffleMask(MVT::v8i16, Unpcklwd, /* Lo = */ true,
10635                           /* Unary = */ false);
10636   SmallVector<int, 8> Unpckhwd;
10637   createUnpackShuffleMask(MVT::v8i16, Unpckhwd, /* Lo = */ false,
10638                           /* Unary = */ false);
10639   bool IsUnpackwdMask = (isTargetShuffleEquivalent(Mask, Unpcklwd) ||
10640                          isTargetShuffleEquivalent(Mask, Unpckhwd));
10641   return IsUnpackwdMask;
10642 }
10643 
10644 static bool is128BitUnpackShuffleMask(ArrayRef<int> Mask) {
10645   // Create 128-bit vector type based on mask size.
10646   MVT EltVT = MVT::getIntegerVT(128 / Mask.size());
10647   MVT VT = MVT::getVectorVT(EltVT, Mask.size());
10648 
10649   // We can't assume a canonical shuffle mask, so try the commuted version too.
10650   SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
10651   ShuffleVectorSDNode::commuteMask(CommutedMask);
10652 
10653   // Match any of unary/binary or low/high.
10654   for (unsigned i = 0; i != 4; ++i) {
10655     SmallVector<int, 16> UnpackMask;
10656     createUnpackShuffleMask(VT, UnpackMask, (i >> 1) % 2, i % 2);
10657     if (isTargetShuffleEquivalent(Mask, UnpackMask) ||
10658         isTargetShuffleEquivalent(CommutedMask, UnpackMask))
10659       return true;
10660   }
10661   return false;
10662 }
10663 
10664 /// Return true if a shuffle mask chooses elements identically in its top and
10665 /// bottom halves. For example, any splat mask has the same top and bottom
10666 /// halves. If an element is undefined in only one half of the mask, the halves
10667 /// are not considered identical.
10668 static bool hasIdenticalHalvesShuffleMask(ArrayRef<int> Mask) {
10669   assert(Mask.size() % 2 == 0 && "Expecting even number of elements in mask");
10670   unsigned HalfSize = Mask.size() / 2;
10671   for (unsigned i = 0; i != HalfSize; ++i) {
10672     if (Mask[i] != Mask[i + HalfSize])
10673       return false;
10674   }
10675   return true;
10676 }
10677 
10678 /// Get a 4-lane 8-bit shuffle immediate for a mask.
10679 ///
10680 /// This helper function produces an 8-bit shuffle immediate corresponding to
10681 /// the ubiquitous shuffle encoding scheme used in x86 instructions for
10682 /// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
10683 /// example.
10684 ///
10685 /// NB: We rely heavily on "undef" masks preserving the input lane.
10686 static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) {
10687   assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
10688   assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
10689   assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
10690   assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
10691   assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
10692 
10693   unsigned Imm = 0;
10694   Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0;
10695   Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2;
10696   Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4;
10697   Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6;
10698   return Imm;
10699 }
10700 
10701 static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL,
10702                                           SelectionDAG &DAG) {
10703   return DAG.getTargetConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8);
10704 }
10705 
10706 // The Shuffle result is as follow:
10707 // 0*a[0]0*a[1]...0*a[n] , n >=0 where a[] elements in a ascending order.
10708 // Each Zeroable's element correspond to a particular Mask's element.
10709 // As described in computeZeroableShuffleElements function.
10710 //
10711 // The function looks for a sub-mask that the nonzero elements are in
10712 // increasing order. If such sub-mask exist. The function returns true.
10713 static bool isNonZeroElementsInOrder(const APInt &Zeroable,
10714                                      ArrayRef<int> Mask, const EVT &VectorType,
10715                                      bool &IsZeroSideLeft) {
10716   int NextElement = -1;
10717   // Check if the Mask's nonzero elements are in increasing order.
10718   for (int i = 0, e = Mask.size(); i < e; i++) {
10719     // Checks if the mask's zeros elements are built from only zeros.
10720     assert(Mask[i] >= -1 && "Out of bound mask element!");
10721     if (Mask[i] < 0)
10722       return false;
10723     if (Zeroable[i])
10724       continue;
10725     // Find the lowest non zero element
10726     if (NextElement < 0) {
10727       NextElement = Mask[i] != 0 ? VectorType.getVectorNumElements() : 0;
10728       IsZeroSideLeft = NextElement != 0;
10729     }
10730     // Exit if the mask's non zero elements are not in increasing order.
10731     if (NextElement != Mask[i])
10732       return false;
10733     NextElement++;
10734   }
10735   return true;
10736 }
10737 
10738 /// Try to lower a shuffle with a single PSHUFB of V1 or V2.
10739 static SDValue lowerShuffleWithPSHUFB(const SDLoc &DL, MVT VT,
10740                                       ArrayRef<int> Mask, SDValue V1,
10741                                       SDValue V2, const APInt &Zeroable,
10742                                       const X86Subtarget &Subtarget,
10743                                       SelectionDAG &DAG) {
10744   int Size = Mask.size();
10745   int LaneSize = 128 / VT.getScalarSizeInBits();
10746   const int NumBytes = VT.getSizeInBits() / 8;
10747   const int NumEltBytes = VT.getScalarSizeInBits() / 8;
10748 
10749   assert((Subtarget.hasSSSE3() && VT.is128BitVector()) ||
10750          (Subtarget.hasAVX2() && VT.is256BitVector()) ||
10751          (Subtarget.hasBWI() && VT.is512BitVector()));
10752 
10753   SmallVector<SDValue, 64> PSHUFBMask(NumBytes);
10754   // Sign bit set in i8 mask means zero element.
10755   SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8);
10756 
10757   SDValue V;
10758   for (int i = 0; i < NumBytes; ++i) {
10759     int M = Mask[i / NumEltBytes];
10760     if (M < 0) {
10761       PSHUFBMask[i] = DAG.getUNDEF(MVT::i8);
10762       continue;
10763     }
10764     if (Zeroable[i / NumEltBytes]) {
10765       PSHUFBMask[i] = ZeroMask;
10766       continue;
10767     }
10768 
10769     // We can only use a single input of V1 or V2.
10770     SDValue SrcV = (M >= Size ? V2 : V1);
10771     if (V && V != SrcV)
10772       return SDValue();
10773     V = SrcV;
10774     M %= Size;
10775 
10776     // PSHUFB can't cross lanes, ensure this doesn't happen.
10777     if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize))
10778       return SDValue();
10779 
10780     M = M % LaneSize;
10781     M = M * NumEltBytes + (i % NumEltBytes);
10782     PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8);
10783   }
10784   assert(V && "Failed to find a source input");
10785 
10786   MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes);
10787   return DAG.getBitcast(
10788       VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V),
10789                       DAG.getBuildVector(I8VT, DL, PSHUFBMask)));
10790 }
10791 
10792 static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
10793                            const X86Subtarget &Subtarget, SelectionDAG &DAG,
10794                            const SDLoc &dl);
10795 
10796 // X86 has dedicated shuffle that can be lowered to VEXPAND
10797 static SDValue lowerShuffleToEXPAND(const SDLoc &DL, MVT VT,
10798                                     const APInt &Zeroable,
10799                                     ArrayRef<int> Mask, SDValue &V1,
10800                                     SDValue &V2, SelectionDAG &DAG,
10801                                     const X86Subtarget &Subtarget) {
10802   bool IsLeftZeroSide = true;
10803   if (!isNonZeroElementsInOrder(Zeroable, Mask, V1.getValueType(),
10804                                 IsLeftZeroSide))
10805     return SDValue();
10806   unsigned VEXPANDMask = (~Zeroable).getZExtValue();
10807   MVT IntegerType =
10808       MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
10809   SDValue MaskNode = DAG.getConstant(VEXPANDMask, DL, IntegerType);
10810   unsigned NumElts = VT.getVectorNumElements();
10811   assert((NumElts == 4 || NumElts == 8 || NumElts == 16) &&
10812          "Unexpected number of vector elements");
10813   SDValue VMask = getMaskNode(MaskNode, MVT::getVectorVT(MVT::i1, NumElts),
10814                               Subtarget, DAG, DL);
10815   SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, DL);
10816   SDValue ExpandedVector = IsLeftZeroSide ? V2 : V1;
10817   return DAG.getNode(X86ISD::EXPAND, DL, VT, ExpandedVector, ZeroVector, VMask);
10818 }
10819 
10820 static bool matchShuffleWithUNPCK(MVT VT, SDValue &V1, SDValue &V2,
10821                                   unsigned &UnpackOpcode, bool IsUnary,
10822                                   ArrayRef<int> TargetMask, const SDLoc &DL,
10823                                   SelectionDAG &DAG,
10824                                   const X86Subtarget &Subtarget) {
10825   int NumElts = VT.getVectorNumElements();
10826 
10827   bool Undef1 = true, Undef2 = true, Zero1 = true, Zero2 = true;
10828   for (int i = 0; i != NumElts; i += 2) {
10829     int M1 = TargetMask[i + 0];
10830     int M2 = TargetMask[i + 1];
10831     Undef1 &= (SM_SentinelUndef == M1);
10832     Undef2 &= (SM_SentinelUndef == M2);
10833     Zero1 &= isUndefOrZero(M1);
10834     Zero2 &= isUndefOrZero(M2);
10835   }
10836   assert(!((Undef1 || Zero1) && (Undef2 || Zero2)) &&
10837          "Zeroable shuffle detected");
10838 
10839   // Attempt to match the target mask against the unpack lo/hi mask patterns.
10840   SmallVector<int, 64> Unpckl, Unpckh;
10841   createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, IsUnary);
10842   if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
10843     UnpackOpcode = X86ISD::UNPCKL;
10844     V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
10845     V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
10846     return true;
10847   }
10848 
10849   createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, IsUnary);
10850   if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
10851     UnpackOpcode = X86ISD::UNPCKH;
10852     V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
10853     V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
10854     return true;
10855   }
10856 
10857   // If an unary shuffle, attempt to match as an unpack lo/hi with zero.
10858   if (IsUnary && (Zero1 || Zero2)) {
10859     // Don't bother if we can blend instead.
10860     if ((Subtarget.hasSSE41() || VT == MVT::v2i64 || VT == MVT::v2f64) &&
10861         isSequentialOrUndefOrZeroInRange(TargetMask, 0, NumElts, 0))
10862       return false;
10863 
10864     bool MatchLo = true, MatchHi = true;
10865     for (int i = 0; (i != NumElts) && (MatchLo || MatchHi); ++i) {
10866       int M = TargetMask[i];
10867 
10868       // Ignore if the input is known to be zero or the index is undef.
10869       if ((((i & 1) == 0) && Zero1) || (((i & 1) == 1) && Zero2) ||
10870           (M == SM_SentinelUndef))
10871         continue;
10872 
10873       MatchLo &= (M == Unpckl[i]);
10874       MatchHi &= (M == Unpckh[i]);
10875     }
10876 
10877     if (MatchLo || MatchHi) {
10878       UnpackOpcode = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
10879       V2 = Zero2 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
10880       V1 = Zero1 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
10881       return true;
10882     }
10883   }
10884 
10885   // If a binary shuffle, commute and try again.
10886   if (!IsUnary) {
10887     ShuffleVectorSDNode::commuteMask(Unpckl);
10888     if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
10889       UnpackOpcode = X86ISD::UNPCKL;
10890       std::swap(V1, V2);
10891       return true;
10892     }
10893 
10894     ShuffleVectorSDNode::commuteMask(Unpckh);
10895     if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
10896       UnpackOpcode = X86ISD::UNPCKH;
10897       std::swap(V1, V2);
10898       return true;
10899     }
10900   }
10901 
10902   return false;
10903 }
10904 
10905 // X86 has dedicated unpack instructions that can handle specific blend
10906 // operations: UNPCKH and UNPCKL.
10907 static SDValue lowerShuffleWithUNPCK(const SDLoc &DL, MVT VT,
10908                                      ArrayRef<int> Mask, SDValue V1, SDValue V2,
10909                                      SelectionDAG &DAG) {
10910   SmallVector<int, 8> Unpckl;
10911   createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false);
10912   if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
10913     return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
10914 
10915   SmallVector<int, 8> Unpckh;
10916   createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false);
10917   if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
10918     return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
10919 
10920   // Commute and try again.
10921   ShuffleVectorSDNode::commuteMask(Unpckl);
10922   if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
10923     return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
10924 
10925   ShuffleVectorSDNode::commuteMask(Unpckh);
10926   if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
10927     return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
10928 
10929   return SDValue();
10930 }
10931 
10932 static bool matchShuffleAsVPMOV(ArrayRef<int> Mask, bool SwappedOps,
10933                                 int Delta) {
10934   int Size = (int)Mask.size();
10935   int Split = Size / Delta;
10936   int TruncatedVectorStart = SwappedOps ? Size : 0;
10937 
10938   // Match for mask starting with e.g.: <8, 10, 12, 14,... or <0, 2, 4, 6,...
10939   if (!isSequentialOrUndefInRange(Mask, 0, Split, TruncatedVectorStart, Delta))
10940     return false;
10941 
10942   // The rest of the mask should not refer to the truncated vector's elements.
10943   if (isAnyInRange(Mask.slice(Split, Size - Split), TruncatedVectorStart,
10944                    TruncatedVectorStart + Size))
10945     return false;
10946 
10947   return true;
10948 }
10949 
10950 // Try to lower trunc+vector_shuffle to a vpmovdb or a vpmovdw instruction.
10951 //
10952 // An example is the following:
10953 //
10954 // t0: ch = EntryToken
10955 //           t2: v4i64,ch = CopyFromReg t0, Register:v4i64 %0
10956 //         t25: v4i32 = truncate t2
10957 //       t41: v8i16 = bitcast t25
10958 //       t21: v8i16 = BUILD_VECTOR undef:i16, undef:i16, undef:i16, undef:i16,
10959 //       Constant:i16<0>, Constant:i16<0>, Constant:i16<0>, Constant:i16<0>
10960 //     t51: v8i16 = vector_shuffle<0,2,4,6,12,13,14,15> t41, t21
10961 //   t18: v2i64 = bitcast t51
10962 //
10963 // Without avx512vl, this is lowered to:
10964 //
10965 // vpmovqd %zmm0, %ymm0
10966 // vpshufb {{.*#+}} xmm0 =
10967 // xmm0[0,1,4,5,8,9,12,13],zero,zero,zero,zero,zero,zero,zero,zero
10968 //
10969 // But when avx512vl is available, one can just use a single vpmovdw
10970 // instruction.
10971 static SDValue lowerShuffleWithVPMOV(const SDLoc &DL, ArrayRef<int> Mask,
10972                                      MVT VT, SDValue V1, SDValue V2,
10973                                      SelectionDAG &DAG,
10974                                      const X86Subtarget &Subtarget) {
10975   if (VT != MVT::v16i8 && VT != MVT::v8i16)
10976     return SDValue();
10977 
10978   if (Mask.size() != VT.getVectorNumElements())
10979     return SDValue();
10980 
10981   bool SwappedOps = false;
10982 
10983   if (!ISD::isBuildVectorAllZeros(V2.getNode())) {
10984     if (!ISD::isBuildVectorAllZeros(V1.getNode()))
10985       return SDValue();
10986 
10987     std::swap(V1, V2);
10988     SwappedOps = true;
10989   }
10990 
10991   // Look for:
10992   //
10993   // bitcast (truncate <8 x i32> %vec to <8 x i16>) to <16 x i8>
10994   // bitcast (truncate <4 x i64> %vec to <4 x i32>) to <8 x i16>
10995   //
10996   // and similar ones.
10997   if (V1.getOpcode() != ISD::BITCAST)
10998     return SDValue();
10999   if (V1.getOperand(0).getOpcode() != ISD::TRUNCATE)
11000     return SDValue();
11001 
11002   SDValue Src = V1.getOperand(0).getOperand(0);
11003   MVT SrcVT = Src.getSimpleValueType();
11004 
11005   // The vptrunc** instructions truncating 128 bit and 256 bit vectors
11006   // are only available with avx512vl.
11007   if (!SrcVT.is512BitVector() && !Subtarget.hasVLX())
11008     return SDValue();
11009 
11010   // Down Convert Word to Byte is only available with avx512bw. The case with
11011   // 256-bit output doesn't contain a shuffle and is therefore not handled here.
11012   if (SrcVT.getVectorElementType() == MVT::i16 && VT == MVT::v16i8 &&
11013       !Subtarget.hasBWI())
11014     return SDValue();
11015 
11016   // The first half/quarter of the mask should refer to every second/fourth
11017   // element of the vector truncated and bitcasted.
11018   if (!matchShuffleAsVPMOV(Mask, SwappedOps, 2) &&
11019       !matchShuffleAsVPMOV(Mask, SwappedOps, 4))
11020     return SDValue();
11021 
11022   return DAG.getNode(X86ISD::VTRUNC, DL, VT, Src);
11023 }
11024 
11025 // X86 has dedicated pack instructions that can handle specific truncation
11026 // operations: PACKSS and PACKUS.
11027 static bool matchShuffleWithPACK(MVT VT, MVT &SrcVT, SDValue &V1, SDValue &V2,
11028                                  unsigned &PackOpcode, ArrayRef<int> TargetMask,
11029                                  SelectionDAG &DAG,
11030                                  const X86Subtarget &Subtarget) {
11031   unsigned NumElts = VT.getVectorNumElements();
11032   unsigned BitSize = VT.getScalarSizeInBits();
11033   MVT PackSVT = MVT::getIntegerVT(BitSize * 2);
11034   MVT PackVT = MVT::getVectorVT(PackSVT, NumElts / 2);
11035 
11036   auto MatchPACK = [&](SDValue N1, SDValue N2) {
11037     SDValue VV1 = DAG.getBitcast(PackVT, N1);
11038     SDValue VV2 = DAG.getBitcast(PackVT, N2);
11039     if (Subtarget.hasSSE41() || PackSVT == MVT::i16) {
11040       APInt ZeroMask = APInt::getHighBitsSet(BitSize * 2, BitSize);
11041       if ((N1.isUndef() || DAG.MaskedValueIsZero(VV1, ZeroMask)) &&
11042           (N2.isUndef() || DAG.MaskedValueIsZero(VV2, ZeroMask))) {
11043         V1 = VV1;
11044         V2 = VV2;
11045         SrcVT = PackVT;
11046         PackOpcode = X86ISD::PACKUS;
11047         return true;
11048       }
11049     }
11050     if ((N1.isUndef() || DAG.ComputeNumSignBits(VV1) > BitSize) &&
11051         (N2.isUndef() || DAG.ComputeNumSignBits(VV2) > BitSize)) {
11052       V1 = VV1;
11053       V2 = VV2;
11054       SrcVT = PackVT;
11055       PackOpcode = X86ISD::PACKSS;
11056       return true;
11057     }
11058     return false;
11059   };
11060 
11061   // Try binary shuffle.
11062   SmallVector<int, 32> BinaryMask;
11063   createPackShuffleMask(VT, BinaryMask, false);
11064   if (isTargetShuffleEquivalent(TargetMask, BinaryMask, V1, V2))
11065     if (MatchPACK(V1, V2))
11066       return true;
11067 
11068   // Try unary shuffle.
11069   SmallVector<int, 32> UnaryMask;
11070   createPackShuffleMask(VT, UnaryMask, true);
11071   if (isTargetShuffleEquivalent(TargetMask, UnaryMask, V1))
11072     if (MatchPACK(V1, V1))
11073       return true;
11074 
11075   return false;
11076 }
11077 
11078 static SDValue lowerShuffleWithPACK(const SDLoc &DL, MVT VT, ArrayRef<int> Mask,
11079                                     SDValue V1, SDValue V2, SelectionDAG &DAG,
11080                                     const X86Subtarget &Subtarget) {
11081   MVT PackVT;
11082   unsigned PackOpcode;
11083   if (matchShuffleWithPACK(VT, PackVT, V1, V2, PackOpcode, Mask, DAG,
11084                            Subtarget))
11085     return DAG.getNode(PackOpcode, DL, VT, DAG.getBitcast(PackVT, V1),
11086                        DAG.getBitcast(PackVT, V2));
11087 
11088   return SDValue();
11089 }
11090 
11091 /// Try to emit a bitmask instruction for a shuffle.
11092 ///
11093 /// This handles cases where we can model a blend exactly as a bitmask due to
11094 /// one of the inputs being zeroable.
11095 static SDValue lowerShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1,
11096                                      SDValue V2, ArrayRef<int> Mask,
11097                                      const APInt &Zeroable,
11098                                      const X86Subtarget &Subtarget,
11099                                      SelectionDAG &DAG) {
11100   MVT MaskVT = VT;
11101   MVT EltVT = VT.getVectorElementType();
11102   SDValue Zero, AllOnes;
11103   // Use f64 if i64 isn't legal.
11104   if (EltVT == MVT::i64 && !Subtarget.is64Bit()) {
11105     EltVT = MVT::f64;
11106     MaskVT = MVT::getVectorVT(EltVT, Mask.size());
11107   }
11108 
11109   MVT LogicVT = VT;
11110   if (EltVT == MVT::f32 || EltVT == MVT::f64) {
11111     Zero = DAG.getConstantFP(0.0, DL, EltVT);
11112     AllOnes = DAG.getConstantFP(
11113         APFloat::getAllOnesValue(EltVT.getSizeInBits(), true), DL, EltVT);
11114     LogicVT =
11115         MVT::getVectorVT(EltVT == MVT::f64 ? MVT::i64 : MVT::i32, Mask.size());
11116   } else {
11117     Zero = DAG.getConstant(0, DL, EltVT);
11118     AllOnes = DAG.getAllOnesConstant(DL, EltVT);
11119   }
11120 
11121   SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
11122   SDValue V;
11123   for (int i = 0, Size = Mask.size(); i < Size; ++i) {
11124     if (Zeroable[i])
11125       continue;
11126     if (Mask[i] % Size != i)
11127       return SDValue(); // Not a blend.
11128     if (!V)
11129       V = Mask[i] < Size ? V1 : V2;
11130     else if (V != (Mask[i] < Size ? V1 : V2))
11131       return SDValue(); // Can only let one input through the mask.
11132 
11133     VMaskOps[i] = AllOnes;
11134   }
11135   if (!V)
11136     return SDValue(); // No non-zeroable elements!
11137 
11138   SDValue VMask = DAG.getBuildVector(MaskVT, DL, VMaskOps);
11139   VMask = DAG.getBitcast(LogicVT, VMask);
11140   V = DAG.getBitcast(LogicVT, V);
11141   SDValue And = DAG.getNode(ISD::AND, DL, LogicVT, V, VMask);
11142   return DAG.getBitcast(VT, And);
11143 }
11144 
11145 /// Try to emit a blend instruction for a shuffle using bit math.
11146 ///
11147 /// This is used as a fallback approach when first class blend instructions are
11148 /// unavailable. Currently it is only suitable for integer vectors, but could
11149 /// be generalized for floating point vectors if desirable.
11150 static SDValue lowerShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1,
11151                                       SDValue V2, ArrayRef<int> Mask,
11152                                       SelectionDAG &DAG) {
11153   assert(VT.isInteger() && "Only supports integer vector types!");
11154   MVT EltVT = VT.getVectorElementType();
11155   SDValue Zero = DAG.getConstant(0, DL, EltVT);
11156   SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT);
11157   SmallVector<SDValue, 16> MaskOps;
11158   for (int i = 0, Size = Mask.size(); i < Size; ++i) {
11159     if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size)
11160       return SDValue(); // Shuffled input!
11161     MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
11162   }
11163 
11164   SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps);
11165   V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
11166   V2 = DAG.getNode(X86ISD::ANDNP, DL, VT, V1Mask, V2);
11167   return DAG.getNode(ISD::OR, DL, VT, V1, V2);
11168 }
11169 
11170 static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
11171                                     SDValue PreservedSrc,
11172                                     const X86Subtarget &Subtarget,
11173                                     SelectionDAG &DAG);
11174 
11175 static bool matchShuffleAsBlend(SDValue V1, SDValue V2,
11176                                 MutableArrayRef<int> Mask,
11177                                 const APInt &Zeroable, bool &ForceV1Zero,
11178                                 bool &ForceV2Zero, uint64_t &BlendMask) {
11179   bool V1IsZeroOrUndef =
11180       V1.isUndef() || ISD::isBuildVectorAllZeros(V1.getNode());
11181   bool V2IsZeroOrUndef =
11182       V2.isUndef() || ISD::isBuildVectorAllZeros(V2.getNode());
11183 
11184   BlendMask = 0;
11185   ForceV1Zero = false, ForceV2Zero = false;
11186   assert(Mask.size() <= 64 && "Shuffle mask too big for blend mask");
11187 
11188   // Attempt to generate the binary blend mask. If an input is zero then
11189   // we can use any lane.
11190   for (int i = 0, Size = Mask.size(); i < Size; ++i) {
11191     int M = Mask[i];
11192     if (M == SM_SentinelUndef)
11193       continue;
11194     if (M == i)
11195       continue;
11196     if (M == i + Size) {
11197       BlendMask |= 1ull << i;
11198       continue;
11199     }
11200     if (Zeroable[i]) {
11201       if (V1IsZeroOrUndef) {
11202         ForceV1Zero = true;
11203         Mask[i] = i;
11204         continue;
11205       }
11206       if (V2IsZeroOrUndef) {
11207         ForceV2Zero = true;
11208         BlendMask |= 1ull << i;
11209         Mask[i] = i + Size;
11210         continue;
11211       }
11212     }
11213     return false;
11214   }
11215   return true;
11216 }
11217 
11218 static uint64_t scaleVectorShuffleBlendMask(uint64_t BlendMask, int Size,
11219                                             int Scale) {
11220   uint64_t ScaledMask = 0;
11221   for (int i = 0; i != Size; ++i)
11222     if (BlendMask & (1ull << i))
11223       ScaledMask |= ((1ull << Scale) - 1) << (i * Scale);
11224   return ScaledMask;
11225 }
11226 
11227 /// Try to emit a blend instruction for a shuffle.
11228 ///
11229 /// This doesn't do any checks for the availability of instructions for blending
11230 /// these values. It relies on the availability of the X86ISD::BLENDI pattern to
11231 /// be matched in the backend with the type given. What it does check for is
11232 /// that the shuffle mask is a blend, or convertible into a blend with zero.
11233 static SDValue lowerShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1,
11234                                    SDValue V2, ArrayRef<int> Original,
11235                                    const APInt &Zeroable,
11236                                    const X86Subtarget &Subtarget,
11237                                    SelectionDAG &DAG) {
11238   uint64_t BlendMask = 0;
11239   bool ForceV1Zero = false, ForceV2Zero = false;
11240   SmallVector<int, 64> Mask(Original.begin(), Original.end());
11241   if (!matchShuffleAsBlend(V1, V2, Mask, Zeroable, ForceV1Zero, ForceV2Zero,
11242                            BlendMask))
11243     return SDValue();
11244 
11245   // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
11246   if (ForceV1Zero)
11247     V1 = getZeroVector(VT, Subtarget, DAG, DL);
11248   if (ForceV2Zero)
11249     V2 = getZeroVector(VT, Subtarget, DAG, DL);
11250 
11251   switch (VT.SimpleTy) {
11252   case MVT::v4i64:
11253   case MVT::v8i32:
11254     assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
11255     LLVM_FALLTHROUGH;
11256   case MVT::v4f64:
11257   case MVT::v8f32:
11258     assert(Subtarget.hasAVX() && "256-bit float blends require AVX!");
11259     LLVM_FALLTHROUGH;
11260   case MVT::v2f64:
11261   case MVT::v2i64:
11262   case MVT::v4f32:
11263   case MVT::v4i32:
11264   case MVT::v8i16:
11265     assert(Subtarget.hasSSE41() && "128-bit blends require SSE41!");
11266     return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
11267                        DAG.getTargetConstant(BlendMask, DL, MVT::i8));
11268   case MVT::v16i16: {
11269     assert(Subtarget.hasAVX2() && "v16i16 blends require AVX2!");
11270     SmallVector<int, 8> RepeatedMask;
11271     if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
11272       // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
11273       assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
11274       BlendMask = 0;
11275       for (int i = 0; i < 8; ++i)
11276         if (RepeatedMask[i] >= 8)
11277           BlendMask |= 1ull << i;
11278       return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
11279                          DAG.getTargetConstant(BlendMask, DL, MVT::i8));
11280     }
11281     // Use PBLENDW for lower/upper lanes and then blend lanes.
11282     // TODO - we should allow 2 PBLENDW here and leave shuffle combine to
11283     // merge to VSELECT where useful.
11284     uint64_t LoMask = BlendMask & 0xFF;
11285     uint64_t HiMask = (BlendMask >> 8) & 0xFF;
11286     if (LoMask == 0 || LoMask == 255 || HiMask == 0 || HiMask == 255) {
11287       SDValue Lo = DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
11288                                DAG.getTargetConstant(LoMask, DL, MVT::i8));
11289       SDValue Hi = DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
11290                                DAG.getTargetConstant(HiMask, DL, MVT::i8));
11291       return DAG.getVectorShuffle(
11292           MVT::v16i16, DL, Lo, Hi,
11293           {0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31});
11294     }
11295     LLVM_FALLTHROUGH;
11296   }
11297   case MVT::v32i8:
11298     assert(Subtarget.hasAVX2() && "256-bit byte-blends require AVX2!");
11299     LLVM_FALLTHROUGH;
11300   case MVT::v16i8: {
11301     assert(Subtarget.hasSSE41() && "128-bit byte-blends require SSE41!");
11302 
11303     // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
11304     if (SDValue Masked = lowerShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable,
11305                                                Subtarget, DAG))
11306       return Masked;
11307 
11308     if (Subtarget.hasBWI() && Subtarget.hasVLX()) {
11309       MVT IntegerType =
11310           MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
11311       SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
11312       return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
11313     }
11314 
11315     // Scale the blend by the number of bytes per element.
11316     int Scale = VT.getScalarSizeInBits() / 8;
11317 
11318     // This form of blend is always done on bytes. Compute the byte vector
11319     // type.
11320     MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
11321 
11322     // x86 allows load folding with blendvb from the 2nd source operand. But
11323     // we are still using LLVM select here (see comment below), so that's V1.
11324     // If V2 can be load-folded and V1 cannot be load-folded, then commute to
11325     // allow that load-folding possibility.
11326     if (!ISD::isNormalLoad(V1.getNode()) && ISD::isNormalLoad(V2.getNode())) {
11327       ShuffleVectorSDNode::commuteMask(Mask);
11328       std::swap(V1, V2);
11329     }
11330 
11331     // Compute the VSELECT mask. Note that VSELECT is really confusing in the
11332     // mix of LLVM's code generator and the x86 backend. We tell the code
11333     // generator that boolean values in the elements of an x86 vector register
11334     // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
11335     // mapping a select to operand #1, and 'false' mapping to operand #2. The
11336     // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
11337     // of the element (the remaining are ignored) and 0 in that high bit would
11338     // mean operand #1 while 1 in the high bit would mean operand #2. So while
11339     // the LLVM model for boolean values in vector elements gets the relevant
11340     // bit set, it is set backwards and over constrained relative to x86's
11341     // actual model.
11342     SmallVector<SDValue, 32> VSELECTMask;
11343     for (int i = 0, Size = Mask.size(); i < Size; ++i)
11344       for (int j = 0; j < Scale; ++j)
11345         VSELECTMask.push_back(
11346             Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
11347                         : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
11348                                           MVT::i8));
11349 
11350     V1 = DAG.getBitcast(BlendVT, V1);
11351     V2 = DAG.getBitcast(BlendVT, V2);
11352     return DAG.getBitcast(
11353         VT,
11354         DAG.getSelect(DL, BlendVT, DAG.getBuildVector(BlendVT, DL, VSELECTMask),
11355                       V1, V2));
11356   }
11357   case MVT::v16f32:
11358   case MVT::v8f64:
11359   case MVT::v8i64:
11360   case MVT::v16i32:
11361   case MVT::v32i16:
11362   case MVT::v64i8: {
11363     // Attempt to lower to a bitmask if we can. Only if not optimizing for size.
11364     bool OptForSize = DAG.shouldOptForSize();
11365     if (!OptForSize) {
11366       if (SDValue Masked = lowerShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable,
11367                                                  Subtarget, DAG))
11368         return Masked;
11369     }
11370 
11371     // Otherwise load an immediate into a GPR, cast to k-register, and use a
11372     // masked move.
11373     MVT IntegerType =
11374         MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
11375     SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
11376     return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
11377   }
11378   default:
11379     llvm_unreachable("Not a supported integer vector type!");
11380   }
11381 }
11382 
11383 /// Try to lower as a blend of elements from two inputs followed by
11384 /// a single-input permutation.
11385 ///
11386 /// This matches the pattern where we can blend elements from two inputs and
11387 /// then reduce the shuffle to a single-input permutation.
11388 static SDValue lowerShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT,
11389                                              SDValue V1, SDValue V2,
11390                                              ArrayRef<int> Mask,
11391                                              SelectionDAG &DAG,
11392                                              bool ImmBlends = false) {
11393   // We build up the blend mask while checking whether a blend is a viable way
11394   // to reduce the shuffle.
11395   SmallVector<int, 32> BlendMask(Mask.size(), -1);
11396   SmallVector<int, 32> PermuteMask(Mask.size(), -1);
11397 
11398   for (int i = 0, Size = Mask.size(); i < Size; ++i) {
11399     if (Mask[i] < 0)
11400       continue;
11401 
11402     assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
11403 
11404     if (BlendMask[Mask[i] % Size] < 0)
11405       BlendMask[Mask[i] % Size] = Mask[i];
11406     else if (BlendMask[Mask[i] % Size] != Mask[i])
11407       return SDValue(); // Can't blend in the needed input!
11408 
11409     PermuteMask[i] = Mask[i] % Size;
11410   }
11411 
11412   // If only immediate blends, then bail if the blend mask can't be widened to
11413   // i16.
11414   unsigned EltSize = VT.getScalarSizeInBits();
11415   if (ImmBlends && EltSize == 8 && !canWidenShuffleElements(BlendMask))
11416     return SDValue();
11417 
11418   SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
11419   return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
11420 }
11421 
11422 /// Try to lower as an unpack of elements from two inputs followed by
11423 /// a single-input permutation.
11424 ///
11425 /// This matches the pattern where we can unpack elements from two inputs and
11426 /// then reduce the shuffle to a single-input (wider) permutation.
11427 static SDValue lowerShuffleAsUNPCKAndPermute(const SDLoc &DL, MVT VT,
11428                                              SDValue V1, SDValue V2,
11429                                              ArrayRef<int> Mask,
11430                                              SelectionDAG &DAG) {
11431   int NumElts = Mask.size();
11432   int NumLanes = VT.getSizeInBits() / 128;
11433   int NumLaneElts = NumElts / NumLanes;
11434   int NumHalfLaneElts = NumLaneElts / 2;
11435 
11436   bool MatchLo = true, MatchHi = true;
11437   SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
11438 
11439   // Determine UNPCKL/UNPCKH type and operand order.
11440   for (int Lane = 0; Lane != NumElts; Lane += NumLaneElts) {
11441     for (int Elt = 0; Elt != NumLaneElts; ++Elt) {
11442       int M = Mask[Lane + Elt];
11443       if (M < 0)
11444         continue;
11445 
11446       SDValue &Op = Ops[Elt & 1];
11447       if (M < NumElts && (Op.isUndef() || Op == V1))
11448         Op = V1;
11449       else if (NumElts <= M && (Op.isUndef() || Op == V2))
11450         Op = V2;
11451       else
11452         return SDValue();
11453 
11454       int Lo = Lane, Mid = Lane + NumHalfLaneElts, Hi = Lane + NumLaneElts;
11455       MatchLo &= isUndefOrInRange(M, Lo, Mid) ||
11456                  isUndefOrInRange(M, NumElts + Lo, NumElts + Mid);
11457       MatchHi &= isUndefOrInRange(M, Mid, Hi) ||
11458                  isUndefOrInRange(M, NumElts + Mid, NumElts + Hi);
11459       if (!MatchLo && !MatchHi)
11460         return SDValue();
11461     }
11462   }
11463   assert((MatchLo ^ MatchHi) && "Failed to match UNPCKLO/UNPCKHI");
11464 
11465   // Now check that each pair of elts come from the same unpack pair
11466   // and set the permute mask based on each pair.
11467   // TODO - Investigate cases where we permute individual elements.
11468   SmallVector<int, 32> PermuteMask(NumElts, -1);
11469   for (int Lane = 0; Lane != NumElts; Lane += NumLaneElts) {
11470     for (int Elt = 0; Elt != NumLaneElts; Elt += 2) {
11471       int M0 = Mask[Lane + Elt + 0];
11472       int M1 = Mask[Lane + Elt + 1];
11473       if (0 <= M0 && 0 <= M1 &&
11474           (M0 % NumHalfLaneElts) != (M1 % NumHalfLaneElts))
11475         return SDValue();
11476       if (0 <= M0)
11477         PermuteMask[Lane + Elt + 0] = Lane + (2 * (M0 % NumHalfLaneElts));
11478       if (0 <= M1)
11479         PermuteMask[Lane + Elt + 1] = Lane + (2 * (M1 % NumHalfLaneElts)) + 1;
11480     }
11481   }
11482 
11483   unsigned UnpckOp = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
11484   SDValue Unpck = DAG.getNode(UnpckOp, DL, VT, Ops);
11485   return DAG.getVectorShuffle(VT, DL, Unpck, DAG.getUNDEF(VT), PermuteMask);
11486 }
11487 
11488 /// Helper to form a PALIGNR-based rotate+permute, merging 2 inputs and then
11489 /// permuting the elements of the result in place.
11490 static SDValue lowerShuffleAsByteRotateAndPermute(
11491     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
11492     const X86Subtarget &Subtarget, SelectionDAG &DAG) {
11493   if ((VT.is128BitVector() && !Subtarget.hasSSSE3()) ||
11494       (VT.is256BitVector() && !Subtarget.hasAVX2()) ||
11495       (VT.is512BitVector() && !Subtarget.hasBWI()))
11496     return SDValue();
11497 
11498   // We don't currently support lane crossing permutes.
11499   if (is128BitLaneCrossingShuffleMask(VT, Mask))
11500     return SDValue();
11501 
11502   int Scale = VT.getScalarSizeInBits() / 8;
11503   int NumLanes = VT.getSizeInBits() / 128;
11504   int NumElts = VT.getVectorNumElements();
11505   int NumEltsPerLane = NumElts / NumLanes;
11506 
11507   // Determine range of mask elts.
11508   bool Blend1 = true;
11509   bool Blend2 = true;
11510   std::pair<int, int> Range1 = std::make_pair(INT_MAX, INT_MIN);
11511   std::pair<int, int> Range2 = std::make_pair(INT_MAX, INT_MIN);
11512   for (int Lane = 0; Lane != NumElts; Lane += NumEltsPerLane) {
11513     for (int Elt = 0; Elt != NumEltsPerLane; ++Elt) {
11514       int M = Mask[Lane + Elt];
11515       if (M < 0)
11516         continue;
11517       if (M < NumElts) {
11518         Blend1 &= (M == (Lane + Elt));
11519         assert(Lane <= M && M < (Lane + NumEltsPerLane) && "Out of range mask");
11520         M = M % NumEltsPerLane;
11521         Range1.first = std::min(Range1.first, M);
11522         Range1.second = std::max(Range1.second, M);
11523       } else {
11524         M -= NumElts;
11525         Blend2 &= (M == (Lane + Elt));
11526         assert(Lane <= M && M < (Lane + NumEltsPerLane) && "Out of range mask");
11527         M = M % NumEltsPerLane;
11528         Range2.first = std::min(Range2.first, M);
11529         Range2.second = std::max(Range2.second, M);
11530       }
11531     }
11532   }
11533 
11534   // Bail if we don't need both elements.
11535   // TODO - it might be worth doing this for unary shuffles if the permute
11536   // can be widened.
11537   if (!(0 <= Range1.first && Range1.second < NumEltsPerLane) ||
11538       !(0 <= Range2.first && Range2.second < NumEltsPerLane))
11539     return SDValue();
11540 
11541   if (VT.getSizeInBits() > 128 && (Blend1 || Blend2))
11542     return SDValue();
11543 
11544   // Rotate the 2 ops so we can access both ranges, then permute the result.
11545   auto RotateAndPermute = [&](SDValue Lo, SDValue Hi, int RotAmt, int Ofs) {
11546     MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
11547     SDValue Rotate = DAG.getBitcast(
11548         VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, DAG.getBitcast(ByteVT, Hi),
11549                         DAG.getBitcast(ByteVT, Lo),
11550                         DAG.getTargetConstant(Scale * RotAmt, DL, MVT::i8)));
11551     SmallVector<int, 64> PermMask(NumElts, SM_SentinelUndef);
11552     for (int Lane = 0; Lane != NumElts; Lane += NumEltsPerLane) {
11553       for (int Elt = 0; Elt != NumEltsPerLane; ++Elt) {
11554         int M = Mask[Lane + Elt];
11555         if (M < 0)
11556           continue;
11557         if (M < NumElts)
11558           PermMask[Lane + Elt] = Lane + ((M + Ofs - RotAmt) % NumEltsPerLane);
11559         else
11560           PermMask[Lane + Elt] = Lane + ((M - Ofs - RotAmt) % NumEltsPerLane);
11561       }
11562     }
11563     return DAG.getVectorShuffle(VT, DL, Rotate, DAG.getUNDEF(VT), PermMask);
11564   };
11565 
11566   // Check if the ranges are small enough to rotate from either direction.
11567   if (Range2.second < Range1.first)
11568     return RotateAndPermute(V1, V2, Range1.first, 0);
11569   if (Range1.second < Range2.first)
11570     return RotateAndPermute(V2, V1, Range2.first, NumElts);
11571   return SDValue();
11572 }
11573 
11574 /// Generic routine to decompose a shuffle and blend into independent
11575 /// blends and permutes.
11576 ///
11577 /// This matches the extremely common pattern for handling combined
11578 /// shuffle+blend operations on newer X86 ISAs where we have very fast blend
11579 /// operations. It will try to pick the best arrangement of shuffles and
11580 /// blends.
11581 static SDValue lowerShuffleAsDecomposedShuffleBlend(
11582     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
11583     const X86Subtarget &Subtarget, SelectionDAG &DAG) {
11584   // Shuffle the input elements into the desired positions in V1 and V2 and
11585   // blend them together.
11586   SmallVector<int, 32> V1Mask(Mask.size(), -1);
11587   SmallVector<int, 32> V2Mask(Mask.size(), -1);
11588   SmallVector<int, 32> BlendMask(Mask.size(), -1);
11589   for (int i = 0, Size = Mask.size(); i < Size; ++i)
11590     if (Mask[i] >= 0 && Mask[i] < Size) {
11591       V1Mask[i] = Mask[i];
11592       BlendMask[i] = i;
11593     } else if (Mask[i] >= Size) {
11594       V2Mask[i] = Mask[i] - Size;
11595       BlendMask[i] = i + Size;
11596     }
11597 
11598   // Try to lower with the simpler initial blend/unpack/rotate strategies unless
11599   // one of the input shuffles would be a no-op. We prefer to shuffle inputs as
11600   // the shuffle may be able to fold with a load or other benefit. However, when
11601   // we'll have to do 2x as many shuffles in order to achieve this, a 2-input
11602   // pre-shuffle first is a better strategy.
11603   if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) {
11604     // Only prefer immediate blends to unpack/rotate.
11605     if (SDValue BlendPerm = lowerShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask,
11606                                                           DAG, true))
11607       return BlendPerm;
11608     if (SDValue UnpackPerm = lowerShuffleAsUNPCKAndPermute(DL, VT, V1, V2, Mask,
11609                                                            DAG))
11610       return UnpackPerm;
11611     if (SDValue RotatePerm = lowerShuffleAsByteRotateAndPermute(
11612             DL, VT, V1, V2, Mask, Subtarget, DAG))
11613       return RotatePerm;
11614     // Unpack/rotate failed - try again with variable blends.
11615     if (SDValue BlendPerm = lowerShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask,
11616                                                           DAG))
11617       return BlendPerm;
11618   }
11619 
11620   V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
11621   V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
11622   return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
11623 }
11624 
11625 /// Try to lower a vector shuffle as a rotation.
11626 ///
11627 /// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512.
11628 static int matchShuffleAsRotate(SDValue &V1, SDValue &V2, ArrayRef<int> Mask) {
11629   int NumElts = Mask.size();
11630 
11631   // We need to detect various ways of spelling a rotation:
11632   //   [11, 12, 13, 14, 15,  0,  1,  2]
11633   //   [-1, 12, 13, 14, -1, -1,  1, -1]
11634   //   [-1, -1, -1, -1, -1, -1,  1,  2]
11635   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
11636   //   [-1,  4,  5,  6, -1, -1,  9, -1]
11637   //   [-1,  4,  5,  6, -1, -1, -1, -1]
11638   int Rotation = 0;
11639   SDValue Lo, Hi;
11640   for (int i = 0; i < NumElts; ++i) {
11641     int M = Mask[i];
11642     assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) &&
11643            "Unexpected mask index.");
11644     if (M < 0)
11645       continue;
11646 
11647     // Determine where a rotated vector would have started.
11648     int StartIdx = i - (M % NumElts);
11649     if (StartIdx == 0)
11650       // The identity rotation isn't interesting, stop.
11651       return -1;
11652 
11653     // If we found the tail of a vector the rotation must be the missing
11654     // front. If we found the head of a vector, it must be how much of the
11655     // head.
11656     int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
11657 
11658     if (Rotation == 0)
11659       Rotation = CandidateRotation;
11660     else if (Rotation != CandidateRotation)
11661       // The rotations don't match, so we can't match this mask.
11662       return -1;
11663 
11664     // Compute which value this mask is pointing at.
11665     SDValue MaskV = M < NumElts ? V1 : V2;
11666 
11667     // Compute which of the two target values this index should be assigned
11668     // to. This reflects whether the high elements are remaining or the low
11669     // elements are remaining.
11670     SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
11671 
11672     // Either set up this value if we've not encountered it before, or check
11673     // that it remains consistent.
11674     if (!TargetV)
11675       TargetV = MaskV;
11676     else if (TargetV != MaskV)
11677       // This may be a rotation, but it pulls from the inputs in some
11678       // unsupported interleaving.
11679       return -1;
11680   }
11681 
11682   // Check that we successfully analyzed the mask, and normalize the results.
11683   assert(Rotation != 0 && "Failed to locate a viable rotation!");
11684   assert((Lo || Hi) && "Failed to find a rotated input vector!");
11685   if (!Lo)
11686     Lo = Hi;
11687   else if (!Hi)
11688     Hi = Lo;
11689 
11690   V1 = Lo;
11691   V2 = Hi;
11692 
11693   return Rotation;
11694 }
11695 
11696 /// Try to lower a vector shuffle as a byte rotation.
11697 ///
11698 /// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
11699 /// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
11700 /// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
11701 /// try to generically lower a vector shuffle through such an pattern. It
11702 /// does not check for the profitability of lowering either as PALIGNR or
11703 /// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
11704 /// This matches shuffle vectors that look like:
11705 ///
11706 ///   v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
11707 ///
11708 /// Essentially it concatenates V1 and V2, shifts right by some number of
11709 /// elements, and takes the low elements as the result. Note that while this is
11710 /// specified as a *right shift* because x86 is little-endian, it is a *left
11711 /// rotate* of the vector lanes.
11712 static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2,
11713                                     ArrayRef<int> Mask) {
11714   // Don't accept any shuffles with zero elements.
11715   if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
11716     return -1;
11717 
11718   // PALIGNR works on 128-bit lanes.
11719   SmallVector<int, 16> RepeatedMask;
11720   if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask))
11721     return -1;
11722 
11723   int Rotation = matchShuffleAsRotate(V1, V2, RepeatedMask);
11724   if (Rotation <= 0)
11725     return -1;
11726 
11727   // PALIGNR rotates bytes, so we need to scale the
11728   // rotation based on how many bytes are in the vector lane.
11729   int NumElts = RepeatedMask.size();
11730   int Scale = 16 / NumElts;
11731   return Rotation * Scale;
11732 }
11733 
11734 static SDValue lowerShuffleAsByteRotate(const SDLoc &DL, MVT VT, SDValue V1,
11735                                         SDValue V2, ArrayRef<int> Mask,
11736                                         const X86Subtarget &Subtarget,
11737                                         SelectionDAG &DAG) {
11738   assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
11739 
11740   SDValue Lo = V1, Hi = V2;
11741   int ByteRotation = matchShuffleAsByteRotate(VT, Lo, Hi, Mask);
11742   if (ByteRotation <= 0)
11743     return SDValue();
11744 
11745   // Cast the inputs to i8 vector of correct length to match PALIGNR or
11746   // PSLLDQ/PSRLDQ.
11747   MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
11748   Lo = DAG.getBitcast(ByteVT, Lo);
11749   Hi = DAG.getBitcast(ByteVT, Hi);
11750 
11751   // SSSE3 targets can use the palignr instruction.
11752   if (Subtarget.hasSSSE3()) {
11753     assert((!VT.is512BitVector() || Subtarget.hasBWI()) &&
11754            "512-bit PALIGNR requires BWI instructions");
11755     return DAG.getBitcast(
11756         VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi,
11757                         DAG.getTargetConstant(ByteRotation, DL, MVT::i8)));
11758   }
11759 
11760   assert(VT.is128BitVector() &&
11761          "Rotate-based lowering only supports 128-bit lowering!");
11762   assert(Mask.size() <= 16 &&
11763          "Can shuffle at most 16 bytes in a 128-bit vector!");
11764   assert(ByteVT == MVT::v16i8 &&
11765          "SSE2 rotate lowering only needed for v16i8!");
11766 
11767   // Default SSE2 implementation
11768   int LoByteShift = 16 - ByteRotation;
11769   int HiByteShift = ByteRotation;
11770 
11771   SDValue LoShift =
11772       DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo,
11773                   DAG.getTargetConstant(LoByteShift, DL, MVT::i8));
11774   SDValue HiShift =
11775       DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi,
11776                   DAG.getTargetConstant(HiByteShift, DL, MVT::i8));
11777   return DAG.getBitcast(VT,
11778                         DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift));
11779 }
11780 
11781 /// Try to lower a vector shuffle as a dword/qword rotation.
11782 ///
11783 /// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary
11784 /// rotation of the concatenation of two vectors; This routine will
11785 /// try to generically lower a vector shuffle through such an pattern.
11786 ///
11787 /// Essentially it concatenates V1 and V2, shifts right by some number of
11788 /// elements, and takes the low elements as the result. Note that while this is
11789 /// specified as a *right shift* because x86 is little-endian, it is a *left
11790 /// rotate* of the vector lanes.
11791 static SDValue lowerShuffleAsRotate(const SDLoc &DL, MVT VT, SDValue V1,
11792                                     SDValue V2, ArrayRef<int> Mask,
11793                                     const X86Subtarget &Subtarget,
11794                                     SelectionDAG &DAG) {
11795   assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) &&
11796          "Only 32-bit and 64-bit elements are supported!");
11797 
11798   // 128/256-bit vectors are only supported with VLX.
11799   assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector()))
11800          && "VLX required for 128/256-bit vectors");
11801 
11802   SDValue Lo = V1, Hi = V2;
11803   int Rotation = matchShuffleAsRotate(Lo, Hi, Mask);
11804   if (Rotation <= 0)
11805     return SDValue();
11806 
11807   return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi,
11808                      DAG.getTargetConstant(Rotation, DL, MVT::i8));
11809 }
11810 
11811 /// Try to lower a vector shuffle as a byte shift sequence.
11812 static SDValue lowerShuffleAsByteShiftMask(const SDLoc &DL, MVT VT, SDValue V1,
11813                                            SDValue V2, ArrayRef<int> Mask,
11814                                            const APInt &Zeroable,
11815                                            const X86Subtarget &Subtarget,
11816                                            SelectionDAG &DAG) {
11817   assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
11818   assert(VT.is128BitVector() && "Only 128-bit vectors supported");
11819 
11820   // We need a shuffle that has zeros at one/both ends and a sequential
11821   // shuffle from one source within.
11822   unsigned ZeroLo = Zeroable.countTrailingOnes();
11823   unsigned ZeroHi = Zeroable.countLeadingOnes();
11824   if (!ZeroLo && !ZeroHi)
11825     return SDValue();
11826 
11827   unsigned NumElts = Mask.size();
11828   unsigned Len = NumElts - (ZeroLo + ZeroHi);
11829   if (!isSequentialOrUndefInRange(Mask, ZeroLo, Len, Mask[ZeroLo]))
11830     return SDValue();
11831 
11832   unsigned Scale = VT.getScalarSizeInBits() / 8;
11833   ArrayRef<int> StubMask = Mask.slice(ZeroLo, Len);
11834   if (!isUndefOrInRange(StubMask, 0, NumElts) &&
11835       !isUndefOrInRange(StubMask, NumElts, 2 * NumElts))
11836     return SDValue();
11837 
11838   SDValue Res = Mask[ZeroLo] < (int)NumElts ? V1 : V2;
11839   Res = DAG.getBitcast(MVT::v16i8, Res);
11840 
11841   // Use VSHLDQ/VSRLDQ ops to zero the ends of a vector and leave an
11842   // inner sequential set of elements, possibly offset:
11843   // 01234567 --> zzzzzz01 --> 1zzzzzzz
11844   // 01234567 --> 4567zzzz --> zzzzz456
11845   // 01234567 --> z0123456 --> 3456zzzz --> zz3456zz
11846   if (ZeroLo == 0) {
11847     unsigned Shift = (NumElts - 1) - (Mask[ZeroLo + Len - 1] % NumElts);
11848     Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
11849                       DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
11850     Res = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Res,
11851                       DAG.getTargetConstant(Scale * ZeroHi, DL, MVT::i8));
11852   } else if (ZeroHi == 0) {
11853     unsigned Shift = Mask[ZeroLo] % NumElts;
11854     Res = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Res,
11855                       DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
11856     Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
11857                       DAG.getTargetConstant(Scale * ZeroLo, DL, MVT::i8));
11858   } else if (!Subtarget.hasSSSE3()) {
11859     // If we don't have PSHUFB then its worth avoiding an AND constant mask
11860     // by performing 3 byte shifts. Shuffle combining can kick in above that.
11861     // TODO: There may be some cases where VSH{LR}DQ+PAND is still better.
11862     unsigned Shift = (NumElts - 1) - (Mask[ZeroLo + Len - 1] % NumElts);
11863     Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
11864                       DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
11865     Shift += Mask[ZeroLo] % NumElts;
11866     Res = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Res,
11867                       DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
11868     Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
11869                       DAG.getTargetConstant(Scale * ZeroLo, DL, MVT::i8));
11870   } else
11871     return SDValue();
11872 
11873   return DAG.getBitcast(VT, Res);
11874 }
11875 
11876 /// Try to lower a vector shuffle as a bit shift (shifts in zeros).
11877 ///
11878 /// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
11879 /// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
11880 /// matches elements from one of the input vectors shuffled to the left or
11881 /// right with zeroable elements 'shifted in'. It handles both the strictly
11882 /// bit-wise element shifts and the byte shift across an entire 128-bit double
11883 /// quad word lane.
11884 ///
11885 /// PSHL : (little-endian) left bit shift.
11886 /// [ zz, 0, zz,  2 ]
11887 /// [ -1, 4, zz, -1 ]
11888 /// PSRL : (little-endian) right bit shift.
11889 /// [  1, zz,  3, zz]
11890 /// [ -1, -1,  7, zz]
11891 /// PSLLDQ : (little-endian) left byte shift
11892 /// [ zz,  0,  1,  2,  3,  4,  5,  6]
11893 /// [ zz, zz, -1, -1,  2,  3,  4, -1]
11894 /// [ zz, zz, zz, zz, zz, zz, -1,  1]
11895 /// PSRLDQ : (little-endian) right byte shift
11896 /// [  5, 6,  7, zz, zz, zz, zz, zz]
11897 /// [ -1, 5,  6,  7, zz, zz, zz, zz]
11898 /// [  1, 2, -1, -1, -1, -1, zz, zz]
11899 static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode,
11900                                unsigned ScalarSizeInBits, ArrayRef<int> Mask,
11901                                int MaskOffset, const APInt &Zeroable,
11902                                const X86Subtarget &Subtarget) {
11903   int Size = Mask.size();
11904   unsigned SizeInBits = Size * ScalarSizeInBits;
11905 
11906   auto CheckZeros = [&](int Shift, int Scale, bool Left) {
11907     for (int i = 0; i < Size; i += Scale)
11908       for (int j = 0; j < Shift; ++j)
11909         if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
11910           return false;
11911 
11912     return true;
11913   };
11914 
11915   auto MatchShift = [&](int Shift, int Scale, bool Left) {
11916     for (int i = 0; i != Size; i += Scale) {
11917       unsigned Pos = Left ? i + Shift : i;
11918       unsigned Low = Left ? i : i + Shift;
11919       unsigned Len = Scale - Shift;
11920       if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset))
11921         return -1;
11922     }
11923 
11924     int ShiftEltBits = ScalarSizeInBits * Scale;
11925     bool ByteShift = ShiftEltBits > 64;
11926     Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
11927                   : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
11928     int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
11929 
11930     // Normalize the scale for byte shifts to still produce an i64 element
11931     // type.
11932     Scale = ByteShift ? Scale / 2 : Scale;
11933 
11934     // We need to round trip through the appropriate type for the shift.
11935     MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale);
11936     ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8)
11937                         : MVT::getVectorVT(ShiftSVT, Size / Scale);
11938     return (int)ShiftAmt;
11939   };
11940 
11941   // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
11942   // keep doubling the size of the integer elements up to that. We can
11943   // then shift the elements of the integer vector by whole multiples of
11944   // their width within the elements of the larger integer vector. Test each
11945   // multiple to see if we can find a match with the moved element indices
11946   // and that the shifted in elements are all zeroable.
11947   unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128);
11948   for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
11949     for (int Shift = 1; Shift != Scale; ++Shift)
11950       for (bool Left : {true, false})
11951         if (CheckZeros(Shift, Scale, Left)) {
11952           int ShiftAmt = MatchShift(Shift, Scale, Left);
11953           if (0 < ShiftAmt)
11954             return ShiftAmt;
11955         }
11956 
11957   // no match
11958   return -1;
11959 }
11960 
11961 static SDValue lowerShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1,
11962                                    SDValue V2, ArrayRef<int> Mask,
11963                                    const APInt &Zeroable,
11964                                    const X86Subtarget &Subtarget,
11965                                    SelectionDAG &DAG) {
11966   int Size = Mask.size();
11967   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
11968 
11969   MVT ShiftVT;
11970   SDValue V = V1;
11971   unsigned Opcode;
11972 
11973   // Try to match shuffle against V1 shift.
11974   int ShiftAmt = matchShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
11975                                      Mask, 0, Zeroable, Subtarget);
11976 
11977   // If V1 failed, try to match shuffle against V2 shift.
11978   if (ShiftAmt < 0) {
11979     ShiftAmt = matchShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
11980                                    Mask, Size, Zeroable, Subtarget);
11981     V = V2;
11982   }
11983 
11984   if (ShiftAmt < 0)
11985     return SDValue();
11986 
11987   assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
11988          "Illegal integer vector type");
11989   V = DAG.getBitcast(ShiftVT, V);
11990   V = DAG.getNode(Opcode, DL, ShiftVT, V,
11991                   DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
11992   return DAG.getBitcast(VT, V);
11993 }
11994 
11995 // EXTRQ: Extract Len elements from lower half of source, starting at Idx.
11996 // Remainder of lower half result is zero and upper half is all undef.
11997 static bool matchShuffleAsEXTRQ(MVT VT, SDValue &V1, SDValue &V2,
11998                                 ArrayRef<int> Mask, uint64_t &BitLen,
11999                                 uint64_t &BitIdx, const APInt &Zeroable) {
12000   int Size = Mask.size();
12001   int HalfSize = Size / 2;
12002   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
12003   assert(!Zeroable.isAllOnesValue() && "Fully zeroable shuffle mask");
12004 
12005   // Upper half must be undefined.
12006   if (!isUndefUpperHalf(Mask))
12007     return false;
12008 
12009   // Determine the extraction length from the part of the
12010   // lower half that isn't zeroable.
12011   int Len = HalfSize;
12012   for (; Len > 0; --Len)
12013     if (!Zeroable[Len - 1])
12014       break;
12015   assert(Len > 0 && "Zeroable shuffle mask");
12016 
12017   // Attempt to match first Len sequential elements from the lower half.
12018   SDValue Src;
12019   int Idx = -1;
12020   for (int i = 0; i != Len; ++i) {
12021     int M = Mask[i];
12022     if (M == SM_SentinelUndef)
12023       continue;
12024     SDValue &V = (M < Size ? V1 : V2);
12025     M = M % Size;
12026 
12027     // The extracted elements must start at a valid index and all mask
12028     // elements must be in the lower half.
12029     if (i > M || M >= HalfSize)
12030       return false;
12031 
12032     if (Idx < 0 || (Src == V && Idx == (M - i))) {
12033       Src = V;
12034       Idx = M - i;
12035       continue;
12036     }
12037     return false;
12038   }
12039 
12040   if (!Src || Idx < 0)
12041     return false;
12042 
12043   assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
12044   BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
12045   BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
12046   V1 = Src;
12047   return true;
12048 }
12049 
12050 // INSERTQ: Extract lowest Len elements from lower half of second source and
12051 // insert over first source, starting at Idx.
12052 // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
12053 static bool matchShuffleAsINSERTQ(MVT VT, SDValue &V1, SDValue &V2,
12054                                   ArrayRef<int> Mask, uint64_t &BitLen,
12055                                   uint64_t &BitIdx) {
12056   int Size = Mask.size();
12057   int HalfSize = Size / 2;
12058   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
12059 
12060   // Upper half must be undefined.
12061   if (!isUndefUpperHalf(Mask))
12062     return false;
12063 
12064   for (int Idx = 0; Idx != HalfSize; ++Idx) {
12065     SDValue Base;
12066 
12067     // Attempt to match first source from mask before insertion point.
12068     if (isUndefInRange(Mask, 0, Idx)) {
12069       /* EMPTY */
12070     } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
12071       Base = V1;
12072     } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
12073       Base = V2;
12074     } else {
12075       continue;
12076     }
12077 
12078     // Extend the extraction length looking to match both the insertion of
12079     // the second source and the remaining elements of the first.
12080     for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
12081       SDValue Insert;
12082       int Len = Hi - Idx;
12083 
12084       // Match insertion.
12085       if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
12086         Insert = V1;
12087       } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
12088         Insert = V2;
12089       } else {
12090         continue;
12091       }
12092 
12093       // Match the remaining elements of the lower half.
12094       if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
12095         /* EMPTY */
12096       } else if ((!Base || (Base == V1)) &&
12097                  isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
12098         Base = V1;
12099       } else if ((!Base || (Base == V2)) &&
12100                  isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
12101                                             Size + Hi)) {
12102         Base = V2;
12103       } else {
12104         continue;
12105       }
12106 
12107       BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
12108       BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
12109       V1 = Base;
12110       V2 = Insert;
12111       return true;
12112     }
12113   }
12114 
12115   return false;
12116 }
12117 
12118 /// Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
12119 static SDValue lowerShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1,
12120                                      SDValue V2, ArrayRef<int> Mask,
12121                                      const APInt &Zeroable, SelectionDAG &DAG) {
12122   uint64_t BitLen, BitIdx;
12123   if (matchShuffleAsEXTRQ(VT, V1, V2, Mask, BitLen, BitIdx, Zeroable))
12124     return DAG.getNode(X86ISD::EXTRQI, DL, VT, V1,
12125                        DAG.getTargetConstant(BitLen, DL, MVT::i8),
12126                        DAG.getTargetConstant(BitIdx, DL, MVT::i8));
12127 
12128   if (matchShuffleAsINSERTQ(VT, V1, V2, Mask, BitLen, BitIdx))
12129     return DAG.getNode(X86ISD::INSERTQI, DL, VT, V1 ? V1 : DAG.getUNDEF(VT),
12130                        V2 ? V2 : DAG.getUNDEF(VT),
12131                        DAG.getTargetConstant(BitLen, DL, MVT::i8),
12132                        DAG.getTargetConstant(BitIdx, DL, MVT::i8));
12133 
12134   return SDValue();
12135 }
12136 
12137 /// Lower a vector shuffle as a zero or any extension.
12138 ///
12139 /// Given a specific number of elements, element bit width, and extension
12140 /// stride, produce either a zero or any extension based on the available
12141 /// features of the subtarget. The extended elements are consecutive and
12142 /// begin and can start from an offsetted element index in the input; to
12143 /// avoid excess shuffling the offset must either being in the bottom lane
12144 /// or at the start of a higher lane. All extended elements must be from
12145 /// the same lane.
12146 static SDValue lowerShuffleAsSpecificZeroOrAnyExtend(
12147     const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
12148     ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) {
12149   assert(Scale > 1 && "Need a scale to extend.");
12150   int EltBits = VT.getScalarSizeInBits();
12151   int NumElements = VT.getVectorNumElements();
12152   int NumEltsPerLane = 128 / EltBits;
12153   int OffsetLane = Offset / NumEltsPerLane;
12154   assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
12155          "Only 8, 16, and 32 bit elements can be extended.");
12156   assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
12157   assert(0 <= Offset && "Extension offset must be positive.");
12158   assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
12159          "Extension offset must be in the first lane or start an upper lane.");
12160 
12161   // Check that an index is in same lane as the base offset.
12162   auto SafeOffset = [&](int Idx) {
12163     return OffsetLane == (Idx / NumEltsPerLane);
12164   };
12165 
12166   // Shift along an input so that the offset base moves to the first element.
12167   auto ShuffleOffset = [&](SDValue V) {
12168     if (!Offset)
12169       return V;
12170 
12171     SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
12172     for (int i = 0; i * Scale < NumElements; ++i) {
12173       int SrcIdx = i + Offset;
12174       ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
12175     }
12176     return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
12177   };
12178 
12179   // Found a valid a/zext mask! Try various lowering strategies based on the
12180   // input type and available ISA extensions.
12181   if (Subtarget.hasSSE41()) {
12182     // Not worth offsetting 128-bit vectors if scale == 2, a pattern using
12183     // PUNPCK will catch this in a later shuffle match.
12184     if (Offset && Scale == 2 && VT.is128BitVector())
12185       return SDValue();
12186     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
12187                                  NumElements / Scale);
12188     InputV = ShuffleOffset(InputV);
12189     InputV = getExtendInVec(AnyExt ? ISD::ANY_EXTEND : ISD::ZERO_EXTEND, DL,
12190                             ExtVT, InputV, DAG);
12191     return DAG.getBitcast(VT, InputV);
12192   }
12193 
12194   assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
12195 
12196   // For any extends we can cheat for larger element sizes and use shuffle
12197   // instructions that can fold with a load and/or copy.
12198   if (AnyExt && EltBits == 32) {
12199     int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
12200                          -1};
12201     return DAG.getBitcast(
12202         VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
12203                         DAG.getBitcast(MVT::v4i32, InputV),
12204                         getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
12205   }
12206   if (AnyExt && EltBits == 16 && Scale > 2) {
12207     int PSHUFDMask[4] = {Offset / 2, -1,
12208                          SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
12209     InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
12210                          DAG.getBitcast(MVT::v4i32, InputV),
12211                          getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
12212     int PSHUFWMask[4] = {1, -1, -1, -1};
12213     unsigned OddEvenOp = (Offset & 1) ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
12214     return DAG.getBitcast(
12215         VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
12216                         DAG.getBitcast(MVT::v8i16, InputV),
12217                         getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
12218   }
12219 
12220   // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
12221   // to 64-bits.
12222   if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) {
12223     assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
12224     assert(VT.is128BitVector() && "Unexpected vector width!");
12225 
12226     int LoIdx = Offset * EltBits;
12227     SDValue Lo = DAG.getBitcast(
12228         MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
12229                                 DAG.getTargetConstant(EltBits, DL, MVT::i8),
12230                                 DAG.getTargetConstant(LoIdx, DL, MVT::i8)));
12231 
12232     if (isUndefUpperHalf(Mask) || !SafeOffset(Offset + 1))
12233       return DAG.getBitcast(VT, Lo);
12234 
12235     int HiIdx = (Offset + 1) * EltBits;
12236     SDValue Hi = DAG.getBitcast(
12237         MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
12238                                 DAG.getTargetConstant(EltBits, DL, MVT::i8),
12239                                 DAG.getTargetConstant(HiIdx, DL, MVT::i8)));
12240     return DAG.getBitcast(VT,
12241                           DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
12242   }
12243 
12244   // If this would require more than 2 unpack instructions to expand, use
12245   // pshufb when available. We can only use more than 2 unpack instructions
12246   // when zero extending i8 elements which also makes it easier to use pshufb.
12247   if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) {
12248     assert(NumElements == 16 && "Unexpected byte vector width!");
12249     SDValue PSHUFBMask[16];
12250     for (int i = 0; i < 16; ++i) {
12251       int Idx = Offset + (i / Scale);
12252       if ((i % Scale == 0 && SafeOffset(Idx))) {
12253         PSHUFBMask[i] = DAG.getConstant(Idx, DL, MVT::i8);
12254         continue;
12255       }
12256       PSHUFBMask[i] =
12257           AnyExt ? DAG.getUNDEF(MVT::i8) : DAG.getConstant(0x80, DL, MVT::i8);
12258     }
12259     InputV = DAG.getBitcast(MVT::v16i8, InputV);
12260     return DAG.getBitcast(
12261         VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
12262                         DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask)));
12263   }
12264 
12265   // If we are extending from an offset, ensure we start on a boundary that
12266   // we can unpack from.
12267   int AlignToUnpack = Offset % (NumElements / Scale);
12268   if (AlignToUnpack) {
12269     SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
12270     for (int i = AlignToUnpack; i < NumElements; ++i)
12271       ShMask[i - AlignToUnpack] = i;
12272     InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
12273     Offset -= AlignToUnpack;
12274   }
12275 
12276   // Otherwise emit a sequence of unpacks.
12277   do {
12278     unsigned UnpackLoHi = X86ISD::UNPCKL;
12279     if (Offset >= (NumElements / 2)) {
12280       UnpackLoHi = X86ISD::UNPCKH;
12281       Offset -= (NumElements / 2);
12282     }
12283 
12284     MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
12285     SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
12286                          : getZeroVector(InputVT, Subtarget, DAG, DL);
12287     InputV = DAG.getBitcast(InputVT, InputV);
12288     InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
12289     Scale /= 2;
12290     EltBits *= 2;
12291     NumElements /= 2;
12292   } while (Scale > 1);
12293   return DAG.getBitcast(VT, InputV);
12294 }
12295 
12296 /// Try to lower a vector shuffle as a zero extension on any microarch.
12297 ///
12298 /// This routine will try to do everything in its power to cleverly lower
12299 /// a shuffle which happens to match the pattern of a zero extend. It doesn't
12300 /// check for the profitability of this lowering,  it tries to aggressively
12301 /// match this pattern. It will use all of the micro-architectural details it
12302 /// can to emit an efficient lowering. It handles both blends with all-zero
12303 /// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
12304 /// masking out later).
12305 ///
12306 /// The reason we have dedicated lowering for zext-style shuffles is that they
12307 /// are both incredibly common and often quite performance sensitive.
12308 static SDValue lowerShuffleAsZeroOrAnyExtend(
12309     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
12310     const APInt &Zeroable, const X86Subtarget &Subtarget,
12311     SelectionDAG &DAG) {
12312   int Bits = VT.getSizeInBits();
12313   int NumLanes = Bits / 128;
12314   int NumElements = VT.getVectorNumElements();
12315   int NumEltsPerLane = NumElements / NumLanes;
12316   assert(VT.getScalarSizeInBits() <= 32 &&
12317          "Exceeds 32-bit integer zero extension limit");
12318   assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
12319 
12320   // Define a helper function to check a particular ext-scale and lower to it if
12321   // valid.
12322   auto Lower = [&](int Scale) -> SDValue {
12323     SDValue InputV;
12324     bool AnyExt = true;
12325     int Offset = 0;
12326     int Matches = 0;
12327     for (int i = 0; i < NumElements; ++i) {
12328       int M = Mask[i];
12329       if (M < 0)
12330         continue; // Valid anywhere but doesn't tell us anything.
12331       if (i % Scale != 0) {
12332         // Each of the extended elements need to be zeroable.
12333         if (!Zeroable[i])
12334           return SDValue();
12335 
12336         // We no longer are in the anyext case.
12337         AnyExt = false;
12338         continue;
12339       }
12340 
12341       // Each of the base elements needs to be consecutive indices into the
12342       // same input vector.
12343       SDValue V = M < NumElements ? V1 : V2;
12344       M = M % NumElements;
12345       if (!InputV) {
12346         InputV = V;
12347         Offset = M - (i / Scale);
12348       } else if (InputV != V)
12349         return SDValue(); // Flip-flopping inputs.
12350 
12351       // Offset must start in the lowest 128-bit lane or at the start of an
12352       // upper lane.
12353       // FIXME: Is it ever worth allowing a negative base offset?
12354       if (!((0 <= Offset && Offset < NumEltsPerLane) ||
12355             (Offset % NumEltsPerLane) == 0))
12356         return SDValue();
12357 
12358       // If we are offsetting, all referenced entries must come from the same
12359       // lane.
12360       if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
12361         return SDValue();
12362 
12363       if ((M % NumElements) != (Offset + (i / Scale)))
12364         return SDValue(); // Non-consecutive strided elements.
12365       Matches++;
12366     }
12367 
12368     // If we fail to find an input, we have a zero-shuffle which should always
12369     // have already been handled.
12370     // FIXME: Maybe handle this here in case during blending we end up with one?
12371     if (!InputV)
12372       return SDValue();
12373 
12374     // If we are offsetting, don't extend if we only match a single input, we
12375     // can always do better by using a basic PSHUF or PUNPCK.
12376     if (Offset != 0 && Matches < 2)
12377       return SDValue();
12378 
12379     return lowerShuffleAsSpecificZeroOrAnyExtend(DL, VT, Scale, Offset, AnyExt,
12380                                                  InputV, Mask, Subtarget, DAG);
12381   };
12382 
12383   // The widest scale possible for extending is to a 64-bit integer.
12384   assert(Bits % 64 == 0 &&
12385          "The number of bits in a vector must be divisible by 64 on x86!");
12386   int NumExtElements = Bits / 64;
12387 
12388   // Each iteration, try extending the elements half as much, but into twice as
12389   // many elements.
12390   for (; NumExtElements < NumElements; NumExtElements *= 2) {
12391     assert(NumElements % NumExtElements == 0 &&
12392            "The input vector size must be divisible by the extended size.");
12393     if (SDValue V = Lower(NumElements / NumExtElements))
12394       return V;
12395   }
12396 
12397   // General extends failed, but 128-bit vectors may be able to use MOVQ.
12398   if (Bits != 128)
12399     return SDValue();
12400 
12401   // Returns one of the source operands if the shuffle can be reduced to a
12402   // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
12403   auto CanZExtLowHalf = [&]() {
12404     for (int i = NumElements / 2; i != NumElements; ++i)
12405       if (!Zeroable[i])
12406         return SDValue();
12407     if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
12408       return V1;
12409     if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
12410       return V2;
12411     return SDValue();
12412   };
12413 
12414   if (SDValue V = CanZExtLowHalf()) {
12415     V = DAG.getBitcast(MVT::v2i64, V);
12416     V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
12417     return DAG.getBitcast(VT, V);
12418   }
12419 
12420   // No viable ext lowering found.
12421   return SDValue();
12422 }
12423 
12424 /// Try to get a scalar value for a specific element of a vector.
12425 ///
12426 /// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
12427 static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
12428                                               SelectionDAG &DAG) {
12429   MVT VT = V.getSimpleValueType();
12430   MVT EltVT = VT.getVectorElementType();
12431   V = peekThroughBitcasts(V);
12432 
12433   // If the bitcasts shift the element size, we can't extract an equivalent
12434   // element from it.
12435   MVT NewVT = V.getSimpleValueType();
12436   if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
12437     return SDValue();
12438 
12439   if (V.getOpcode() == ISD::BUILD_VECTOR ||
12440       (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
12441     // Ensure the scalar operand is the same size as the destination.
12442     // FIXME: Add support for scalar truncation where possible.
12443     SDValue S = V.getOperand(Idx);
12444     if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
12445       return DAG.getBitcast(EltVT, S);
12446   }
12447 
12448   return SDValue();
12449 }
12450 
12451 /// Helper to test for a load that can be folded with x86 shuffles.
12452 ///
12453 /// This is particularly important because the set of instructions varies
12454 /// significantly based on whether the operand is a load or not.
12455 static bool isShuffleFoldableLoad(SDValue V) {
12456   V = peekThroughBitcasts(V);
12457   return ISD::isNON_EXTLoad(V.getNode());
12458 }
12459 
12460 /// Try to lower insertion of a single element into a zero vector.
12461 ///
12462 /// This is a common pattern that we have especially efficient patterns to lower
12463 /// across all subtarget feature sets.
12464 static SDValue lowerShuffleAsElementInsertion(
12465     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
12466     const APInt &Zeroable, const X86Subtarget &Subtarget,
12467     SelectionDAG &DAG) {
12468   MVT ExtVT = VT;
12469   MVT EltVT = VT.getVectorElementType();
12470 
12471   int V2Index =
12472       find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) -
12473       Mask.begin();
12474   bool IsV1Zeroable = true;
12475   for (int i = 0, Size = Mask.size(); i < Size; ++i)
12476     if (i != V2Index && !Zeroable[i]) {
12477       IsV1Zeroable = false;
12478       break;
12479     }
12480 
12481   // Check for a single input from a SCALAR_TO_VECTOR node.
12482   // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
12483   // all the smarts here sunk into that routine. However, the current
12484   // lowering of BUILD_VECTOR makes that nearly impossible until the old
12485   // vector shuffle lowering is dead.
12486   SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
12487                                                DAG);
12488   if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
12489     // We need to zext the scalar if it is smaller than an i32.
12490     V2S = DAG.getBitcast(EltVT, V2S);
12491     if (EltVT == MVT::i8 || EltVT == MVT::i16) {
12492       // Using zext to expand a narrow element won't work for non-zero
12493       // insertions.
12494       if (!IsV1Zeroable)
12495         return SDValue();
12496 
12497       // Zero-extend directly to i32.
12498       ExtVT = MVT::getVectorVT(MVT::i32, ExtVT.getSizeInBits() / 32);
12499       V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
12500     }
12501     V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
12502   } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
12503              EltVT == MVT::i16) {
12504     // Either not inserting from the low element of the input or the input
12505     // element size is too small to use VZEXT_MOVL to clear the high bits.
12506     return SDValue();
12507   }
12508 
12509   if (!IsV1Zeroable) {
12510     // If V1 can't be treated as a zero vector we have fewer options to lower
12511     // this. We can't support integer vectors or non-zero targets cheaply, and
12512     // the V1 elements can't be permuted in any way.
12513     assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
12514     if (!VT.isFloatingPoint() || V2Index != 0)
12515       return SDValue();
12516     SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
12517     V1Mask[V2Index] = -1;
12518     if (!isNoopShuffleMask(V1Mask))
12519       return SDValue();
12520     if (!VT.is128BitVector())
12521       return SDValue();
12522 
12523     // Otherwise, use MOVSD or MOVSS.
12524     assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
12525            "Only two types of floating point element types to handle!");
12526     return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
12527                        ExtVT, V1, V2);
12528   }
12529 
12530   // This lowering only works for the low element with floating point vectors.
12531   if (VT.isFloatingPoint() && V2Index != 0)
12532     return SDValue();
12533 
12534   V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
12535   if (ExtVT != VT)
12536     V2 = DAG.getBitcast(VT, V2);
12537 
12538   if (V2Index != 0) {
12539     // If we have 4 or fewer lanes we can cheaply shuffle the element into
12540     // the desired position. Otherwise it is more efficient to do a vector
12541     // shift left. We know that we can do a vector shift left because all
12542     // the inputs are zero.
12543     if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
12544       SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
12545       V2Shuffle[V2Index] = 0;
12546       V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
12547     } else {
12548       V2 = DAG.getBitcast(MVT::v16i8, V2);
12549       V2 = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, V2,
12550                        DAG.getTargetConstant(
12551                            V2Index * EltVT.getSizeInBits() / 8, DL, MVT::i8));
12552       V2 = DAG.getBitcast(VT, V2);
12553     }
12554   }
12555   return V2;
12556 }
12557 
12558 /// Try to lower broadcast of a single - truncated - integer element,
12559 /// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
12560 ///
12561 /// This assumes we have AVX2.
12562 static SDValue lowerShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT, SDValue V0,
12563                                             int BroadcastIdx,
12564                                             const X86Subtarget &Subtarget,
12565                                             SelectionDAG &DAG) {
12566   assert(Subtarget.hasAVX2() &&
12567          "We can only lower integer broadcasts with AVX2!");
12568 
12569   EVT EltVT = VT.getVectorElementType();
12570   EVT V0VT = V0.getValueType();
12571 
12572   assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
12573   assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
12574 
12575   EVT V0EltVT = V0VT.getVectorElementType();
12576   if (!V0EltVT.isInteger())
12577     return SDValue();
12578 
12579   const unsigned EltSize = EltVT.getSizeInBits();
12580   const unsigned V0EltSize = V0EltVT.getSizeInBits();
12581 
12582   // This is only a truncation if the original element type is larger.
12583   if (V0EltSize <= EltSize)
12584     return SDValue();
12585 
12586   assert(((V0EltSize % EltSize) == 0) &&
12587          "Scalar type sizes must all be powers of 2 on x86!");
12588 
12589   const unsigned V0Opc = V0.getOpcode();
12590   const unsigned Scale = V0EltSize / EltSize;
12591   const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
12592 
12593   if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
12594       V0Opc != ISD::BUILD_VECTOR)
12595     return SDValue();
12596 
12597   SDValue Scalar = V0.getOperand(V0BroadcastIdx);
12598 
12599   // If we're extracting non-least-significant bits, shift so we can truncate.
12600   // Hopefully, we can fold away the trunc/srl/load into the broadcast.
12601   // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
12602   // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
12603   if (const int OffsetIdx = BroadcastIdx % Scale)
12604     Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
12605                          DAG.getConstant(OffsetIdx * EltSize, DL, MVT::i8));
12606 
12607   return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
12608                      DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
12609 }
12610 
12611 /// Test whether this can be lowered with a single SHUFPS instruction.
12612 ///
12613 /// This is used to disable more specialized lowerings when the shufps lowering
12614 /// will happen to be efficient.
12615 static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
12616   // This routine only handles 128-bit shufps.
12617   assert(Mask.size() == 4 && "Unsupported mask size!");
12618   assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!");
12619   assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!");
12620   assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!");
12621   assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!");
12622 
12623   // To lower with a single SHUFPS we need to have the low half and high half
12624   // each requiring a single input.
12625   if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4))
12626     return false;
12627   if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4))
12628     return false;
12629 
12630   return true;
12631 }
12632 
12633 /// If we are extracting two 128-bit halves of a vector and shuffling the
12634 /// result, match that to a 256-bit AVX2 vperm* instruction to avoid a
12635 /// multi-shuffle lowering.
12636 static SDValue lowerShuffleOfExtractsAsVperm(const SDLoc &DL, SDValue N0,
12637                                              SDValue N1, ArrayRef<int> Mask,
12638                                              SelectionDAG &DAG) {
12639   EVT VT = N0.getValueType();
12640   assert((VT.is128BitVector() &&
12641           (VT.getScalarSizeInBits() == 32 || VT.getScalarSizeInBits() == 64)) &&
12642          "VPERM* family of shuffles requires 32-bit or 64-bit elements");
12643 
12644   // Check that both sources are extracts of the same source vector.
12645   if (!N0.hasOneUse() || !N1.hasOneUse() ||
12646       N0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12647       N1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12648       N0.getOperand(0) != N1.getOperand(0))
12649     return SDValue();
12650 
12651   SDValue WideVec = N0.getOperand(0);
12652   EVT WideVT = WideVec.getValueType();
12653   if (!WideVT.is256BitVector() || !isa<ConstantSDNode>(N0.getOperand(1)) ||
12654       !isa<ConstantSDNode>(N1.getOperand(1)))
12655     return SDValue();
12656 
12657   // Match extracts of each half of the wide source vector. Commute the shuffle
12658   // if the extract of the low half is N1.
12659   unsigned NumElts = VT.getVectorNumElements();
12660   SmallVector<int, 4> NewMask(Mask.begin(), Mask.end());
12661   const APInt &ExtIndex0 = N0.getConstantOperandAPInt(1);
12662   const APInt &ExtIndex1 = N1.getConstantOperandAPInt(1);
12663   if (ExtIndex1 == 0 && ExtIndex0 == NumElts)
12664     ShuffleVectorSDNode::commuteMask(NewMask);
12665   else if (ExtIndex0 != 0 || ExtIndex1 != NumElts)
12666     return SDValue();
12667 
12668   // Final bailout: if the mask is simple, we are better off using an extract
12669   // and a simple narrow shuffle. Prefer extract+unpack(h/l)ps to vpermps
12670   // because that avoids a constant load from memory.
12671   if (NumElts == 4 &&
12672       (isSingleSHUFPSMask(NewMask) || is128BitUnpackShuffleMask(NewMask)))
12673     return SDValue();
12674 
12675   // Extend the shuffle mask with undef elements.
12676   NewMask.append(NumElts, -1);
12677 
12678   // shuf (extract X, 0), (extract X, 4), M --> extract (shuf X, undef, M'), 0
12679   SDValue Shuf = DAG.getVectorShuffle(WideVT, DL, WideVec, DAG.getUNDEF(WideVT),
12680                                       NewMask);
12681   // This is free: ymm -> xmm.
12682   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuf,
12683                      DAG.getIntPtrConstant(0, DL));
12684 }
12685 
12686 /// Try to lower broadcast of a single element.
12687 ///
12688 /// For convenience, this code also bundles all of the subtarget feature set
12689 /// filtering. While a little annoying to re-dispatch on type here, there isn't
12690 /// a convenient way to factor it out.
12691 static SDValue lowerShuffleAsBroadcast(const SDLoc &DL, MVT VT, SDValue V1,
12692                                        SDValue V2, ArrayRef<int> Mask,
12693                                        const X86Subtarget &Subtarget,
12694                                        SelectionDAG &DAG) {
12695   if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) ||
12696         (Subtarget.hasAVX() && VT.isFloatingPoint()) ||
12697         (Subtarget.hasAVX2() && VT.isInteger())))
12698     return SDValue();
12699 
12700   // With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise
12701   // we can only broadcast from a register with AVX2.
12702   unsigned NumElts = Mask.size();
12703   unsigned NumEltBits = VT.getScalarSizeInBits();
12704   unsigned Opcode = (VT == MVT::v2f64 && !Subtarget.hasAVX2())
12705                         ? X86ISD::MOVDDUP
12706                         : X86ISD::VBROADCAST;
12707   bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2();
12708 
12709   // Check that the mask is a broadcast.
12710   int BroadcastIdx = -1;
12711   for (int i = 0; i != (int)NumElts; ++i) {
12712     SmallVector<int, 8> BroadcastMask(NumElts, i);
12713     if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) {
12714       BroadcastIdx = i;
12715       break;
12716     }
12717   }
12718 
12719   if (BroadcastIdx < 0)
12720     return SDValue();
12721   assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
12722                                             "a sorted mask where the broadcast "
12723                                             "comes from V1.");
12724 
12725   // Go up the chain of (vector) values to find a scalar load that we can
12726   // combine with the broadcast.
12727   int BitOffset = BroadcastIdx * NumEltBits;
12728   SDValue V = V1;
12729   for (;;) {
12730     switch (V.getOpcode()) {
12731     case ISD::BITCAST: {
12732       V = V.getOperand(0);
12733       continue;
12734     }
12735     case ISD::CONCAT_VECTORS: {
12736       int OpBitWidth = V.getOperand(0).getValueSizeInBits();
12737       int OpIdx = BitOffset / OpBitWidth;
12738       V = V.getOperand(OpIdx);
12739       BitOffset %= OpBitWidth;
12740       continue;
12741     }
12742     case ISD::INSERT_SUBVECTOR: {
12743       SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
12744       auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
12745       if (!ConstantIdx)
12746         break;
12747 
12748       int EltBitWidth = VOuter.getScalarValueSizeInBits();
12749       int Idx = (int)ConstantIdx->getZExtValue();
12750       int NumSubElts = (int)VInner.getSimpleValueType().getVectorNumElements();
12751       int BeginOffset = Idx * EltBitWidth;
12752       int EndOffset = BeginOffset + NumSubElts * EltBitWidth;
12753       if (BeginOffset <= BitOffset && BitOffset < EndOffset) {
12754         BitOffset -= BeginOffset;
12755         V = VInner;
12756       } else {
12757         V = VOuter;
12758       }
12759       continue;
12760     }
12761     }
12762     break;
12763   }
12764   assert((BitOffset % NumEltBits) == 0 && "Illegal bit-offset");
12765   BroadcastIdx = BitOffset / NumEltBits;
12766 
12767   // Do we need to bitcast the source to retrieve the original broadcast index?
12768   bool BitCastSrc = V.getScalarValueSizeInBits() != NumEltBits;
12769 
12770   // Check if this is a broadcast of a scalar. We special case lowering
12771   // for scalars so that we can more effectively fold with loads.
12772   // If the original value has a larger element type than the shuffle, the
12773   // broadcast element is in essence truncated. Make that explicit to ease
12774   // folding.
12775   if (BitCastSrc && VT.isInteger())
12776     if (SDValue TruncBroadcast = lowerShuffleAsTruncBroadcast(
12777             DL, VT, V, BroadcastIdx, Subtarget, DAG))
12778       return TruncBroadcast;
12779 
12780   MVT BroadcastVT = VT;
12781 
12782   // Also check the simpler case, where we can directly reuse the scalar.
12783   if (!BitCastSrc &&
12784       ((V.getOpcode() == ISD::BUILD_VECTOR && V.hasOneUse()) ||
12785        (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0))) {
12786     V = V.getOperand(BroadcastIdx);
12787 
12788     // If we can't broadcast from a register, check that the input is a load.
12789     if (!BroadcastFromReg && !isShuffleFoldableLoad(V))
12790       return SDValue();
12791   } else if (MayFoldLoad(V) && cast<LoadSDNode>(V)->isSimple()) {
12792     // 32-bit targets need to load i64 as a f64 and then bitcast the result.
12793     if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) {
12794       BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements());
12795       Opcode = (BroadcastVT.is128BitVector() && !Subtarget.hasAVX2())
12796                    ? X86ISD::MOVDDUP
12797                    : Opcode;
12798     }
12799 
12800     // If we are broadcasting a load that is only used by the shuffle
12801     // then we can reduce the vector load to the broadcasted scalar load.
12802     LoadSDNode *Ld = cast<LoadSDNode>(V);
12803     SDValue BaseAddr = Ld->getOperand(1);
12804     EVT SVT = BroadcastVT.getScalarType();
12805     unsigned Offset = BroadcastIdx * SVT.getStoreSize();
12806     assert((int)(Offset * 8) == BitOffset && "Unexpected bit-offset");
12807     SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
12808     V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
12809                     DAG.getMachineFunction().getMachineMemOperand(
12810                         Ld->getMemOperand(), Offset, SVT.getStoreSize()));
12811     DAG.makeEquivalentMemoryOrdering(Ld, V);
12812   } else if (!BroadcastFromReg) {
12813     // We can't broadcast from a vector register.
12814     return SDValue();
12815   } else if (BitOffset != 0) {
12816     // We can only broadcast from the zero-element of a vector register,
12817     // but it can be advantageous to broadcast from the zero-element of a
12818     // subvector.
12819     if (!VT.is256BitVector() && !VT.is512BitVector())
12820       return SDValue();
12821 
12822     // VPERMQ/VPERMPD can perform the cross-lane shuffle directly.
12823     if (VT == MVT::v4f64 || VT == MVT::v4i64)
12824       return SDValue();
12825 
12826     // Only broadcast the zero-element of a 128-bit subvector.
12827     if ((BitOffset % 128) != 0)
12828       return SDValue();
12829 
12830     assert((BitOffset % V.getScalarValueSizeInBits()) == 0 &&
12831            "Unexpected bit-offset");
12832     assert((V.getValueSizeInBits() == 256 || V.getValueSizeInBits() == 512) &&
12833            "Unexpected vector size");
12834     unsigned ExtractIdx = BitOffset / V.getScalarValueSizeInBits();
12835     V = extract128BitVector(V, ExtractIdx, DAG, DL);
12836   }
12837 
12838   if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector())
12839     V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
12840                     DAG.getBitcast(MVT::f64, V));
12841 
12842   // Bitcast back to the same scalar type as BroadcastVT.
12843   if (V.getValueType().getScalarType() != BroadcastVT.getScalarType()) {
12844     assert(NumEltBits == BroadcastVT.getScalarSizeInBits() &&
12845            "Unexpected vector element size");
12846     MVT ExtVT;
12847     if (V.getValueType().isVector()) {
12848       unsigned NumSrcElts = V.getValueSizeInBits() / NumEltBits;
12849       ExtVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts);
12850     } else {
12851       ExtVT = BroadcastVT.getScalarType();
12852     }
12853     V = DAG.getBitcast(ExtVT, V);
12854   }
12855 
12856   // 32-bit targets need to load i64 as a f64 and then bitcast the result.
12857   if (!Subtarget.is64Bit() && V.getValueType() == MVT::i64) {
12858     V = DAG.getBitcast(MVT::f64, V);
12859     unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements();
12860     BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts);
12861   }
12862 
12863   // We only support broadcasting from 128-bit vectors to minimize the
12864   // number of patterns we need to deal with in isel. So extract down to
12865   // 128-bits, removing as many bitcasts as possible.
12866   if (V.getValueSizeInBits() > 128) {
12867     MVT ExtVT = V.getSimpleValueType().getScalarType();
12868     ExtVT = MVT::getVectorVT(ExtVT, 128 / ExtVT.getScalarSizeInBits());
12869     V = extract128BitVector(peekThroughBitcasts(V), 0, DAG, DL);
12870     V = DAG.getBitcast(ExtVT, V);
12871   }
12872 
12873   return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V));
12874 }
12875 
12876 // Check for whether we can use INSERTPS to perform the shuffle. We only use
12877 // INSERTPS when the V1 elements are already in the correct locations
12878 // because otherwise we can just always use two SHUFPS instructions which
12879 // are much smaller to encode than a SHUFPS and an INSERTPS. We can also
12880 // perform INSERTPS if a single V1 element is out of place and all V2
12881 // elements are zeroable.
12882 static bool matchShuffleAsInsertPS(SDValue &V1, SDValue &V2,
12883                                    unsigned &InsertPSMask,
12884                                    const APInt &Zeroable,
12885                                    ArrayRef<int> Mask, SelectionDAG &DAG) {
12886   assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!");
12887   assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!");
12888   assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
12889 
12890   // Attempt to match INSERTPS with one element from VA or VB being
12891   // inserted into VA (or undef). If successful, V1, V2 and InsertPSMask
12892   // are updated.
12893   auto matchAsInsertPS = [&](SDValue VA, SDValue VB,
12894                              ArrayRef<int> CandidateMask) {
12895     unsigned ZMask = 0;
12896     int VADstIndex = -1;
12897     int VBDstIndex = -1;
12898     bool VAUsedInPlace = false;
12899 
12900     for (int i = 0; i < 4; ++i) {
12901       // Synthesize a zero mask from the zeroable elements (includes undefs).
12902       if (Zeroable[i]) {
12903         ZMask |= 1 << i;
12904         continue;
12905       }
12906 
12907       // Flag if we use any VA inputs in place.
12908       if (i == CandidateMask[i]) {
12909         VAUsedInPlace = true;
12910         continue;
12911       }
12912 
12913       // We can only insert a single non-zeroable element.
12914       if (VADstIndex >= 0 || VBDstIndex >= 0)
12915         return false;
12916 
12917       if (CandidateMask[i] < 4) {
12918         // VA input out of place for insertion.
12919         VADstIndex = i;
12920       } else {
12921         // VB input for insertion.
12922         VBDstIndex = i;
12923       }
12924     }
12925 
12926     // Don't bother if we have no (non-zeroable) element for insertion.
12927     if (VADstIndex < 0 && VBDstIndex < 0)
12928       return false;
12929 
12930     // Determine element insertion src/dst indices. The src index is from the
12931     // start of the inserted vector, not the start of the concatenated vector.
12932     unsigned VBSrcIndex = 0;
12933     if (VADstIndex >= 0) {
12934       // If we have a VA input out of place, we use VA as the V2 element
12935       // insertion and don't use the original V2 at all.
12936       VBSrcIndex = CandidateMask[VADstIndex];
12937       VBDstIndex = VADstIndex;
12938       VB = VA;
12939     } else {
12940       VBSrcIndex = CandidateMask[VBDstIndex] - 4;
12941     }
12942 
12943     // If no V1 inputs are used in place, then the result is created only from
12944     // the zero mask and the V2 insertion - so remove V1 dependency.
12945     if (!VAUsedInPlace)
12946       VA = DAG.getUNDEF(MVT::v4f32);
12947 
12948     // Update V1, V2 and InsertPSMask accordingly.
12949     V1 = VA;
12950     V2 = VB;
12951 
12952     // Insert the V2 element into the desired position.
12953     InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask;
12954     assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
12955     return true;
12956   };
12957 
12958   if (matchAsInsertPS(V1, V2, Mask))
12959     return true;
12960 
12961   // Commute and try again.
12962   SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
12963   ShuffleVectorSDNode::commuteMask(CommutedMask);
12964   if (matchAsInsertPS(V2, V1, CommutedMask))
12965     return true;
12966 
12967   return false;
12968 }
12969 
12970 static SDValue lowerShuffleAsInsertPS(const SDLoc &DL, SDValue V1, SDValue V2,
12971                                       ArrayRef<int> Mask, const APInt &Zeroable,
12972                                       SelectionDAG &DAG) {
12973   assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
12974   assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
12975 
12976   // Attempt to match the insertps pattern.
12977   unsigned InsertPSMask;
12978   if (!matchShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG))
12979     return SDValue();
12980 
12981   // Insert the V2 element into the desired position.
12982   return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
12983                      DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
12984 }
12985 
12986 /// Try to lower a shuffle as a permute of the inputs followed by an
12987 /// UNPCK instruction.
12988 ///
12989 /// This specifically targets cases where we end up with alternating between
12990 /// the two inputs, and so can permute them into something that feeds a single
12991 /// UNPCK instruction. Note that this routine only targets integer vectors
12992 /// because for floating point vectors we have a generalized SHUFPS lowering
12993 /// strategy that handles everything that doesn't *exactly* match an unpack,
12994 /// making this clever lowering unnecessary.
12995 static SDValue lowerShuffleAsPermuteAndUnpack(
12996     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
12997     const X86Subtarget &Subtarget, SelectionDAG &DAG) {
12998   assert(!VT.isFloatingPoint() &&
12999          "This routine only supports integer vectors.");
13000   assert(VT.is128BitVector() &&
13001          "This routine only works on 128-bit vectors.");
13002   assert(!V2.isUndef() &&
13003          "This routine should only be used when blending two inputs.");
13004   assert(Mask.size() >= 2 && "Single element masks are invalid.");
13005 
13006   int Size = Mask.size();
13007 
13008   int NumLoInputs =
13009       count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; });
13010   int NumHiInputs =
13011       count_if(Mask, [Size](int M) { return M % Size >= Size / 2; });
13012 
13013   bool UnpackLo = NumLoInputs >= NumHiInputs;
13014 
13015   auto TryUnpack = [&](int ScalarSize, int Scale) {
13016     SmallVector<int, 16> V1Mask((unsigned)Size, -1);
13017     SmallVector<int, 16> V2Mask((unsigned)Size, -1);
13018 
13019     for (int i = 0; i < Size; ++i) {
13020       if (Mask[i] < 0)
13021         continue;
13022 
13023       // Each element of the unpack contains Scale elements from this mask.
13024       int UnpackIdx = i / Scale;
13025 
13026       // We only handle the case where V1 feeds the first slots of the unpack.
13027       // We rely on canonicalization to ensure this is the case.
13028       if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
13029         return SDValue();
13030 
13031       // Setup the mask for this input. The indexing is tricky as we have to
13032       // handle the unpack stride.
13033       SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
13034       VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
13035           Mask[i] % Size;
13036     }
13037 
13038     // If we will have to shuffle both inputs to use the unpack, check whether
13039     // we can just unpack first and shuffle the result. If so, skip this unpack.
13040     if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
13041         !isNoopShuffleMask(V2Mask))
13042       return SDValue();
13043 
13044     // Shuffle the inputs into place.
13045     V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
13046     V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
13047 
13048     // Cast the inputs to the type we will use to unpack them.
13049     MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale);
13050     V1 = DAG.getBitcast(UnpackVT, V1);
13051     V2 = DAG.getBitcast(UnpackVT, V2);
13052 
13053     // Unpack the inputs and cast the result back to the desired type.
13054     return DAG.getBitcast(
13055         VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
13056                         UnpackVT, V1, V2));
13057   };
13058 
13059   // We try each unpack from the largest to the smallest to try and find one
13060   // that fits this mask.
13061   int OrigScalarSize = VT.getScalarSizeInBits();
13062   for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2)
13063     if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize))
13064       return Unpack;
13065 
13066   // If we're shuffling with a zero vector then we're better off not doing
13067   // VECTOR_SHUFFLE(UNPCK()) as we lose track of those zero elements.
13068   if (ISD::isBuildVectorAllZeros(V1.getNode()) ||
13069       ISD::isBuildVectorAllZeros(V2.getNode()))
13070     return SDValue();
13071 
13072   // If none of the unpack-rooted lowerings worked (or were profitable) try an
13073   // initial unpack.
13074   if (NumLoInputs == 0 || NumHiInputs == 0) {
13075     assert((NumLoInputs > 0 || NumHiInputs > 0) &&
13076            "We have to have *some* inputs!");
13077     int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
13078 
13079     // FIXME: We could consider the total complexity of the permute of each
13080     // possible unpacking. Or at the least we should consider how many
13081     // half-crossings are created.
13082     // FIXME: We could consider commuting the unpacks.
13083 
13084     SmallVector<int, 32> PermMask((unsigned)Size, -1);
13085     for (int i = 0; i < Size; ++i) {
13086       if (Mask[i] < 0)
13087         continue;
13088 
13089       assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
13090 
13091       PermMask[i] =
13092           2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
13093     }
13094     return DAG.getVectorShuffle(
13095         VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
13096                             DL, VT, V1, V2),
13097         DAG.getUNDEF(VT), PermMask);
13098   }
13099 
13100   return SDValue();
13101 }
13102 
13103 /// Handle lowering of 2-lane 64-bit floating point shuffles.
13104 ///
13105 /// This is the basis function for the 2-lane 64-bit shuffles as we have full
13106 /// support for floating point shuffles but not integer shuffles. These
13107 /// instructions will incur a domain crossing penalty on some chips though so
13108 /// it is better to avoid lowering through this for integer vectors where
13109 /// possible.
13110 static SDValue lowerV2F64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
13111                                  const APInt &Zeroable, SDValue V1, SDValue V2,
13112                                  const X86Subtarget &Subtarget,
13113                                  SelectionDAG &DAG) {
13114   assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
13115   assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
13116   assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
13117 
13118   if (V2.isUndef()) {
13119     // Check for being able to broadcast a single element.
13120     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v2f64, V1, V2,
13121                                                     Mask, Subtarget, DAG))
13122       return Broadcast;
13123 
13124     // Straight shuffle of a single input vector. Simulate this by using the
13125     // single input as both of the "inputs" to this instruction..
13126     unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
13127 
13128     if (Subtarget.hasAVX()) {
13129       // If we have AVX, we can use VPERMILPS which will allow folding a load
13130       // into the shuffle.
13131       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
13132                          DAG.getTargetConstant(SHUFPDMask, DL, MVT::i8));
13133     }
13134 
13135     return DAG.getNode(
13136         X86ISD::SHUFP, DL, MVT::v2f64,
13137         Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
13138         Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
13139         DAG.getTargetConstant(SHUFPDMask, DL, MVT::i8));
13140   }
13141   assert(Mask[0] >= 0 && "No undef lanes in multi-input v2 shuffles!");
13142   assert(Mask[1] >= 0 && "No undef lanes in multi-input v2 shuffles!");
13143   assert(Mask[0] < 2 && "We sort V1 to be the first input.");
13144   assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
13145 
13146   if (Subtarget.hasAVX2())
13147     if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
13148       return Extract;
13149 
13150   // When loading a scalar and then shuffling it into a vector we can often do
13151   // the insertion cheaply.
13152   if (SDValue Insertion = lowerShuffleAsElementInsertion(
13153           DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG))
13154     return Insertion;
13155   // Try inverting the insertion since for v2 masks it is easy to do and we
13156   // can't reliably sort the mask one way or the other.
13157   int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
13158                         Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
13159   if (SDValue Insertion = lowerShuffleAsElementInsertion(
13160           DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
13161     return Insertion;
13162 
13163   // Try to use one of the special instruction patterns to handle two common
13164   // blend patterns if a zero-blend above didn't work.
13165   if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
13166       isShuffleEquivalent(V1, V2, Mask, {1, 3}))
13167     if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
13168       // We can either use a special instruction to load over the low double or
13169       // to move just the low double.
13170       return DAG.getNode(
13171           X86ISD::MOVSD, DL, MVT::v2f64, V2,
13172           DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
13173 
13174   if (Subtarget.hasSSE41())
13175     if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
13176                                             Zeroable, Subtarget, DAG))
13177       return Blend;
13178 
13179   // Use dedicated unpack instructions for masks that match their pattern.
13180   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
13181     return V;
13182 
13183   unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
13184   return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
13185                      DAG.getTargetConstant(SHUFPDMask, DL, MVT::i8));
13186 }
13187 
13188 /// Handle lowering of 2-lane 64-bit integer shuffles.
13189 ///
13190 /// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
13191 /// the integer unit to minimize domain crossing penalties. However, for blends
13192 /// it falls back to the floating point shuffle operation with appropriate bit
13193 /// casting.
13194 static SDValue lowerV2I64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
13195                                  const APInt &Zeroable, SDValue V1, SDValue V2,
13196                                  const X86Subtarget &Subtarget,
13197                                  SelectionDAG &DAG) {
13198   assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
13199   assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
13200   assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
13201 
13202   if (V2.isUndef()) {
13203     // Check for being able to broadcast a single element.
13204     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v2i64, V1, V2,
13205                                                     Mask, Subtarget, DAG))
13206       return Broadcast;
13207 
13208     // Straight shuffle of a single input vector. For everything from SSE2
13209     // onward this has a single fast instruction with no scary immediates.
13210     // We have to map the mask as it is actually a v4i32 shuffle instruction.
13211     V1 = DAG.getBitcast(MVT::v4i32, V1);
13212     int WidenedMask[4] = {
13213         std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
13214         std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
13215     return DAG.getBitcast(
13216         MVT::v2i64,
13217         DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
13218                     getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
13219   }
13220   assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
13221   assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
13222   assert(Mask[0] < 2 && "We sort V1 to be the first input.");
13223   assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
13224 
13225   if (Subtarget.hasAVX2())
13226     if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
13227       return Extract;
13228 
13229   // Try to use shift instructions.
13230   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask,
13231                                           Zeroable, Subtarget, DAG))
13232     return Shift;
13233 
13234   // When loading a scalar and then shuffling it into a vector we can often do
13235   // the insertion cheaply.
13236   if (SDValue Insertion = lowerShuffleAsElementInsertion(
13237           DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG))
13238     return Insertion;
13239   // Try inverting the insertion since for v2 masks it is easy to do and we
13240   // can't reliably sort the mask one way or the other.
13241   int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
13242   if (SDValue Insertion = lowerShuffleAsElementInsertion(
13243           DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
13244     return Insertion;
13245 
13246   // We have different paths for blend lowering, but they all must use the
13247   // *exact* same predicate.
13248   bool IsBlendSupported = Subtarget.hasSSE41();
13249   if (IsBlendSupported)
13250     if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
13251                                             Zeroable, Subtarget, DAG))
13252       return Blend;
13253 
13254   // Use dedicated unpack instructions for masks that match their pattern.
13255   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
13256     return V;
13257 
13258   // Try to use byte rotation instructions.
13259   // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
13260   if (Subtarget.hasSSSE3()) {
13261     if (Subtarget.hasVLX())
13262       if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v2i64, V1, V2, Mask,
13263                                                 Subtarget, DAG))
13264         return Rotate;
13265 
13266     if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v2i64, V1, V2, Mask,
13267                                                   Subtarget, DAG))
13268       return Rotate;
13269   }
13270 
13271   // If we have direct support for blends, we should lower by decomposing into
13272   // a permute. That will be faster than the domain cross.
13273   if (IsBlendSupported)
13274     return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, Mask,
13275                                                 Subtarget, DAG);
13276 
13277   // We implement this with SHUFPD which is pretty lame because it will likely
13278   // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
13279   // However, all the alternatives are still more cycles and newer chips don't
13280   // have this problem. It would be really nice if x86 had better shuffles here.
13281   V1 = DAG.getBitcast(MVT::v2f64, V1);
13282   V2 = DAG.getBitcast(MVT::v2f64, V2);
13283   return DAG.getBitcast(MVT::v2i64,
13284                         DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
13285 }
13286 
13287 /// Lower a vector shuffle using the SHUFPS instruction.
13288 ///
13289 /// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
13290 /// It makes no assumptions about whether this is the *best* lowering, it simply
13291 /// uses it.
13292 static SDValue lowerShuffleWithSHUFPS(const SDLoc &DL, MVT VT,
13293                                       ArrayRef<int> Mask, SDValue V1,
13294                                       SDValue V2, SelectionDAG &DAG) {
13295   SDValue LowV = V1, HighV = V2;
13296   int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
13297 
13298   int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
13299 
13300   if (NumV2Elements == 1) {
13301     int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin();
13302 
13303     // Compute the index adjacent to V2Index and in the same half by toggling
13304     // the low bit.
13305     int V2AdjIndex = V2Index ^ 1;
13306 
13307     if (Mask[V2AdjIndex] < 0) {
13308       // Handles all the cases where we have a single V2 element and an undef.
13309       // This will only ever happen in the high lanes because we commute the
13310       // vector otherwise.
13311       if (V2Index < 2)
13312         std::swap(LowV, HighV);
13313       NewMask[V2Index] -= 4;
13314     } else {
13315       // Handle the case where the V2 element ends up adjacent to a V1 element.
13316       // To make this work, blend them together as the first step.
13317       int V1Index = V2AdjIndex;
13318       int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
13319       V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
13320                        getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
13321 
13322       // Now proceed to reconstruct the final blend as we have the necessary
13323       // high or low half formed.
13324       if (V2Index < 2) {
13325         LowV = V2;
13326         HighV = V1;
13327       } else {
13328         HighV = V2;
13329       }
13330       NewMask[V1Index] = 2; // We put the V1 element in V2[2].
13331       NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
13332     }
13333   } else if (NumV2Elements == 2) {
13334     if (Mask[0] < 4 && Mask[1] < 4) {
13335       // Handle the easy case where we have V1 in the low lanes and V2 in the
13336       // high lanes.
13337       NewMask[2] -= 4;
13338       NewMask[3] -= 4;
13339     } else if (Mask[2] < 4 && Mask[3] < 4) {
13340       // We also handle the reversed case because this utility may get called
13341       // when we detect a SHUFPS pattern but can't easily commute the shuffle to
13342       // arrange things in the right direction.
13343       NewMask[0] -= 4;
13344       NewMask[1] -= 4;
13345       HighV = V1;
13346       LowV = V2;
13347     } else {
13348       // We have a mixture of V1 and V2 in both low and high lanes. Rather than
13349       // trying to place elements directly, just blend them and set up the final
13350       // shuffle to place them.
13351 
13352       // The first two blend mask elements are for V1, the second two are for
13353       // V2.
13354       int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
13355                           Mask[2] < 4 ? Mask[2] : Mask[3],
13356                           (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
13357                           (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
13358       V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
13359                        getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
13360 
13361       // Now we do a normal shuffle of V1 by giving V1 as both operands to
13362       // a blend.
13363       LowV = HighV = V1;
13364       NewMask[0] = Mask[0] < 4 ? 0 : 2;
13365       NewMask[1] = Mask[0] < 4 ? 2 : 0;
13366       NewMask[2] = Mask[2] < 4 ? 1 : 3;
13367       NewMask[3] = Mask[2] < 4 ? 3 : 1;
13368     }
13369   }
13370   return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
13371                      getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
13372 }
13373 
13374 /// Lower 4-lane 32-bit floating point shuffles.
13375 ///
13376 /// Uses instructions exclusively from the floating point unit to minimize
13377 /// domain crossing penalties, as these are sufficient to implement all v4f32
13378 /// shuffles.
13379 static SDValue lowerV4F32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
13380                                  const APInt &Zeroable, SDValue V1, SDValue V2,
13381                                  const X86Subtarget &Subtarget,
13382                                  SelectionDAG &DAG) {
13383   assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
13384   assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
13385   assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
13386 
13387   int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
13388 
13389   if (NumV2Elements == 0) {
13390     // Check for being able to broadcast a single element.
13391     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4f32, V1, V2,
13392                                                     Mask, Subtarget, DAG))
13393       return Broadcast;
13394 
13395     // Use even/odd duplicate instructions for masks that match their pattern.
13396     if (Subtarget.hasSSE3()) {
13397       if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
13398         return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
13399       if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
13400         return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
13401     }
13402 
13403     if (Subtarget.hasAVX()) {
13404       // If we have AVX, we can use VPERMILPS which will allow folding a load
13405       // into the shuffle.
13406       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
13407                          getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
13408     }
13409 
13410     // Use MOVLHPS/MOVHLPS to simulate unary shuffles. These are only valid
13411     // in SSE1 because otherwise they are widened to v2f64 and never get here.
13412     if (!Subtarget.hasSSE2()) {
13413       if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}))
13414         return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V1);
13415       if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 2, 3}))
13416         return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V1, V1);
13417     }
13418 
13419     // Otherwise, use a straight shuffle of a single input vector. We pass the
13420     // input vector to both operands to simulate this with a SHUFPS.
13421     return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
13422                        getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
13423   }
13424 
13425   if (Subtarget.hasAVX2())
13426     if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
13427       return Extract;
13428 
13429   // There are special ways we can lower some single-element blends. However, we
13430   // have custom ways we can lower more complex single-element blends below that
13431   // we defer to if both this and BLENDPS fail to match, so restrict this to
13432   // when the V2 input is targeting element 0 of the mask -- that is the fast
13433   // case here.
13434   if (NumV2Elements == 1 && Mask[0] >= 4)
13435     if (SDValue V = lowerShuffleAsElementInsertion(
13436             DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG))
13437       return V;
13438 
13439   if (Subtarget.hasSSE41()) {
13440     if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
13441                                             Zeroable, Subtarget, DAG))
13442       return Blend;
13443 
13444     // Use INSERTPS if we can complete the shuffle efficiently.
13445     if (SDValue V = lowerShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG))
13446       return V;
13447 
13448     if (!isSingleSHUFPSMask(Mask))
13449       if (SDValue BlendPerm = lowerShuffleAsBlendAndPermute(DL, MVT::v4f32, V1,
13450                                                             V2, Mask, DAG))
13451         return BlendPerm;
13452   }
13453 
13454   // Use low/high mov instructions. These are only valid in SSE1 because
13455   // otherwise they are widened to v2f64 and never get here.
13456   if (!Subtarget.hasSSE2()) {
13457     if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5}))
13458       return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2);
13459     if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7}))
13460       return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1);
13461   }
13462 
13463   // Use dedicated unpack instructions for masks that match their pattern.
13464   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
13465     return V;
13466 
13467   // Otherwise fall back to a SHUFPS lowering strategy.
13468   return lowerShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
13469 }
13470 
13471 /// Lower 4-lane i32 vector shuffles.
13472 ///
13473 /// We try to handle these with integer-domain shuffles where we can, but for
13474 /// blends we use the floating point domain blend instructions.
13475 static SDValue lowerV4I32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
13476                                  const APInt &Zeroable, SDValue V1, SDValue V2,
13477                                  const X86Subtarget &Subtarget,
13478                                  SelectionDAG &DAG) {
13479   assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
13480   assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
13481   assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
13482 
13483   // Whenever we can lower this as a zext, that instruction is strictly faster
13484   // than any alternative. It also allows us to fold memory operands into the
13485   // shuffle in many cases.
13486   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2, Mask,
13487                                                    Zeroable, Subtarget, DAG))
13488     return ZExt;
13489 
13490   int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
13491 
13492   if (NumV2Elements == 0) {
13493     // Try to use broadcast unless the mask only has one non-undef element.
13494     if (count_if(Mask, [](int M) { return M >= 0 && M < 4; }) > 1) {
13495       if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4i32, V1, V2,
13496                                                       Mask, Subtarget, DAG))
13497         return Broadcast;
13498     }
13499 
13500     // Straight shuffle of a single input vector. For everything from SSE2
13501     // onward this has a single fast instruction with no scary immediates.
13502     // We coerce the shuffle pattern to be compatible with UNPCK instructions
13503     // but we aren't actually going to use the UNPCK instruction because doing
13504     // so prevents folding a load into this instruction or making a copy.
13505     const int UnpackLoMask[] = {0, 0, 1, 1};
13506     const int UnpackHiMask[] = {2, 2, 3, 3};
13507     if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
13508       Mask = UnpackLoMask;
13509     else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
13510       Mask = UnpackHiMask;
13511 
13512     return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
13513                        getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
13514   }
13515 
13516   if (Subtarget.hasAVX2())
13517     if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
13518       return Extract;
13519 
13520   // Try to use shift instructions.
13521   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask,
13522                                           Zeroable, Subtarget, DAG))
13523     return Shift;
13524 
13525   // There are special ways we can lower some single-element blends.
13526   if (NumV2Elements == 1)
13527     if (SDValue V = lowerShuffleAsElementInsertion(
13528             DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
13529       return V;
13530 
13531   // We have different paths for blend lowering, but they all must use the
13532   // *exact* same predicate.
13533   bool IsBlendSupported = Subtarget.hasSSE41();
13534   if (IsBlendSupported)
13535     if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
13536                                             Zeroable, Subtarget, DAG))
13537       return Blend;
13538 
13539   if (SDValue Masked = lowerShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask,
13540                                              Zeroable, Subtarget, DAG))
13541     return Masked;
13542 
13543   // Use dedicated unpack instructions for masks that match their pattern.
13544   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
13545     return V;
13546 
13547   // Try to use byte rotation instructions.
13548   // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
13549   if (Subtarget.hasSSSE3()) {
13550     if (Subtarget.hasVLX())
13551       if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v4i32, V1, V2, Mask,
13552                                                 Subtarget, DAG))
13553         return Rotate;
13554 
13555     if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v4i32, V1, V2, Mask,
13556                                                   Subtarget, DAG))
13557       return Rotate;
13558   }
13559 
13560   // Assume that a single SHUFPS is faster than an alternative sequence of
13561   // multiple instructions (even if the CPU has a domain penalty).
13562   // If some CPU is harmed by the domain switch, we can fix it in a later pass.
13563   if (!isSingleSHUFPSMask(Mask)) {
13564     // If we have direct support for blends, we should lower by decomposing into
13565     // a permute. That will be faster than the domain cross.
13566     if (IsBlendSupported)
13567       return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, Mask,
13568                                                   Subtarget, DAG);
13569 
13570     // Try to lower by permuting the inputs into an unpack instruction.
13571     if (SDValue Unpack = lowerShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1, V2,
13572                                                         Mask, Subtarget, DAG))
13573       return Unpack;
13574   }
13575 
13576   // We implement this with SHUFPS because it can blend from two vectors.
13577   // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
13578   // up the inputs, bypassing domain shift penalties that we would incur if we
13579   // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
13580   // relevant.
13581   SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1);
13582   SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2);
13583   SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask);
13584   return DAG.getBitcast(MVT::v4i32, ShufPS);
13585 }
13586 
13587 /// Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
13588 /// shuffle lowering, and the most complex part.
13589 ///
13590 /// The lowering strategy is to try to form pairs of input lanes which are
13591 /// targeted at the same half of the final vector, and then use a dword shuffle
13592 /// to place them onto the right half, and finally unpack the paired lanes into
13593 /// their final position.
13594 ///
13595 /// The exact breakdown of how to form these dword pairs and align them on the
13596 /// correct sides is really tricky. See the comments within the function for
13597 /// more of the details.
13598 ///
13599 /// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
13600 /// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
13601 /// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
13602 /// vector, form the analogous 128-bit 8-element Mask.
13603 static SDValue lowerV8I16GeneralSingleInputShuffle(
13604     const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
13605     const X86Subtarget &Subtarget, SelectionDAG &DAG) {
13606   assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
13607   MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
13608 
13609   assert(Mask.size() == 8 && "Shuffle mask length doesn't match!");
13610   MutableArrayRef<int> LoMask = Mask.slice(0, 4);
13611   MutableArrayRef<int> HiMask = Mask.slice(4, 4);
13612 
13613   // Attempt to directly match PSHUFLW or PSHUFHW.
13614   if (isUndefOrInRange(LoMask, 0, 4) &&
13615       isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
13616     return DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
13617                        getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
13618   }
13619   if (isUndefOrInRange(HiMask, 4, 8) &&
13620       isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
13621     for (int i = 0; i != 4; ++i)
13622       HiMask[i] = (HiMask[i] < 0 ? HiMask[i] : (HiMask[i] - 4));
13623     return DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
13624                        getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
13625   }
13626 
13627   SmallVector<int, 4> LoInputs;
13628   copy_if(LoMask, std::back_inserter(LoInputs), [](int M) { return M >= 0; });
13629   array_pod_sort(LoInputs.begin(), LoInputs.end());
13630   LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
13631   SmallVector<int, 4> HiInputs;
13632   copy_if(HiMask, std::back_inserter(HiInputs), [](int M) { return M >= 0; });
13633   array_pod_sort(HiInputs.begin(), HiInputs.end());
13634   HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
13635   int NumLToL = llvm::lower_bound(LoInputs, 4) - LoInputs.begin();
13636   int NumHToL = LoInputs.size() - NumLToL;
13637   int NumLToH = llvm::lower_bound(HiInputs, 4) - HiInputs.begin();
13638   int NumHToH = HiInputs.size() - NumLToH;
13639   MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
13640   MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
13641   MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
13642   MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
13643 
13644   // If we are shuffling values from one half - check how many different DWORD
13645   // pairs we need to create. If only 1 or 2 then we can perform this as a
13646   // PSHUFLW/PSHUFHW + PSHUFD instead of the PSHUFD+PSHUFLW+PSHUFHW chain below.
13647   auto ShuffleDWordPairs = [&](ArrayRef<int> PSHUFHalfMask,
13648                                ArrayRef<int> PSHUFDMask, unsigned ShufWOp) {
13649     V = DAG.getNode(ShufWOp, DL, VT, V,
13650                     getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
13651     V = DAG.getBitcast(PSHUFDVT, V);
13652     V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V,
13653                     getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
13654     return DAG.getBitcast(VT, V);
13655   };
13656 
13657   if ((NumHToL + NumHToH) == 0 || (NumLToL + NumLToH) == 0) {
13658     int PSHUFDMask[4] = { -1, -1, -1, -1 };
13659     SmallVector<std::pair<int, int>, 4> DWordPairs;
13660     int DOffset = ((NumHToL + NumHToH) == 0 ? 0 : 2);
13661 
13662     // Collect the different DWORD pairs.
13663     for (int DWord = 0; DWord != 4; ++DWord) {
13664       int M0 = Mask[2 * DWord + 0];
13665       int M1 = Mask[2 * DWord + 1];
13666       M0 = (M0 >= 0 ? M0 % 4 : M0);
13667       M1 = (M1 >= 0 ? M1 % 4 : M1);
13668       if (M0 < 0 && M1 < 0)
13669         continue;
13670 
13671       bool Match = false;
13672       for (int j = 0, e = DWordPairs.size(); j < e; ++j) {
13673         auto &DWordPair = DWordPairs[j];
13674         if ((M0 < 0 || isUndefOrEqual(DWordPair.first, M0)) &&
13675             (M1 < 0 || isUndefOrEqual(DWordPair.second, M1))) {
13676           DWordPair.first = (M0 >= 0 ? M0 : DWordPair.first);
13677           DWordPair.second = (M1 >= 0 ? M1 : DWordPair.second);
13678           PSHUFDMask[DWord] = DOffset + j;
13679           Match = true;
13680           break;
13681         }
13682       }
13683       if (!Match) {
13684         PSHUFDMask[DWord] = DOffset + DWordPairs.size();
13685         DWordPairs.push_back(std::make_pair(M0, M1));
13686       }
13687     }
13688 
13689     if (DWordPairs.size() <= 2) {
13690       DWordPairs.resize(2, std::make_pair(-1, -1));
13691       int PSHUFHalfMask[4] = {DWordPairs[0].first, DWordPairs[0].second,
13692                               DWordPairs[1].first, DWordPairs[1].second};
13693       if ((NumHToL + NumHToH) == 0)
13694         return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFLW);
13695       if ((NumLToL + NumLToH) == 0)
13696         return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFHW);
13697     }
13698   }
13699 
13700   // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
13701   // such inputs we can swap two of the dwords across the half mark and end up
13702   // with <=2 inputs to each half in each half. Once there, we can fall through
13703   // to the generic code below. For example:
13704   //
13705   // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
13706   // Mask:  [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
13707   //
13708   // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
13709   // and an existing 2-into-2 on the other half. In this case we may have to
13710   // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
13711   // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
13712   // Fortunately, we don't have to handle anything but a 2-into-2 pattern
13713   // because any other situation (including a 3-into-1 or 1-into-3 in the other
13714   // half than the one we target for fixing) will be fixed when we re-enter this
13715   // path. We will also combine away any sequence of PSHUFD instructions that
13716   // result into a single instruction. Here is an example of the tricky case:
13717   //
13718   // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
13719   // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
13720   //
13721   // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
13722   //
13723   // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
13724   // Mask:  [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
13725   //
13726   // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
13727   // Mask:  [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
13728   //
13729   // The result is fine to be handled by the generic logic.
13730   auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
13731                           ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
13732                           int AOffset, int BOffset) {
13733     assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
13734            "Must call this with A having 3 or 1 inputs from the A half.");
13735     assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
13736            "Must call this with B having 1 or 3 inputs from the B half.");
13737     assert(AToAInputs.size() + BToAInputs.size() == 4 &&
13738            "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
13739 
13740     bool ThreeAInputs = AToAInputs.size() == 3;
13741 
13742     // Compute the index of dword with only one word among the three inputs in
13743     // a half by taking the sum of the half with three inputs and subtracting
13744     // the sum of the actual three inputs. The difference is the remaining
13745     // slot.
13746     int ADWord = 0, BDWord = 0;
13747     int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
13748     int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
13749     int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
13750     ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
13751     int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
13752     int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
13753     int TripleNonInputIdx =
13754         TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
13755     TripleDWord = TripleNonInputIdx / 2;
13756 
13757     // We use xor with one to compute the adjacent DWord to whichever one the
13758     // OneInput is in.
13759     OneInputDWord = (OneInput / 2) ^ 1;
13760 
13761     // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
13762     // and BToA inputs. If there is also such a problem with the BToB and AToB
13763     // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
13764     // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
13765     // is essential that we don't *create* a 3<-1 as then we might oscillate.
13766     if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
13767       // Compute how many inputs will be flipped by swapping these DWords. We
13768       // need
13769       // to balance this to ensure we don't form a 3-1 shuffle in the other
13770       // half.
13771       int NumFlippedAToBInputs =
13772           std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
13773           std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
13774       int NumFlippedBToBInputs =
13775           std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
13776           std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
13777       if ((NumFlippedAToBInputs == 1 &&
13778            (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
13779           (NumFlippedBToBInputs == 1 &&
13780            (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
13781         // We choose whether to fix the A half or B half based on whether that
13782         // half has zero flipped inputs. At zero, we may not be able to fix it
13783         // with that half. We also bias towards fixing the B half because that
13784         // will more commonly be the high half, and we have to bias one way.
13785         auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
13786                                                        ArrayRef<int> Inputs) {
13787           int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
13788           bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1);
13789           // Determine whether the free index is in the flipped dword or the
13790           // unflipped dword based on where the pinned index is. We use this bit
13791           // in an xor to conditionally select the adjacent dword.
13792           int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
13793           bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
13794           if (IsFixIdxInput == IsFixFreeIdxInput)
13795             FixFreeIdx += 1;
13796           IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
13797           assert(IsFixIdxInput != IsFixFreeIdxInput &&
13798                  "We need to be changing the number of flipped inputs!");
13799           int PSHUFHalfMask[] = {0, 1, 2, 3};
13800           std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
13801           V = DAG.getNode(
13802               FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
13803               MVT::getVectorVT(MVT::i16, V.getValueSizeInBits() / 16), V,
13804               getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
13805 
13806           for (int &M : Mask)
13807             if (M >= 0 && M == FixIdx)
13808               M = FixFreeIdx;
13809             else if (M >= 0 && M == FixFreeIdx)
13810               M = FixIdx;
13811         };
13812         if (NumFlippedBToBInputs != 0) {
13813           int BPinnedIdx =
13814               BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
13815           FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
13816         } else {
13817           assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
13818           int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
13819           FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
13820         }
13821       }
13822     }
13823 
13824     int PSHUFDMask[] = {0, 1, 2, 3};
13825     PSHUFDMask[ADWord] = BDWord;
13826     PSHUFDMask[BDWord] = ADWord;
13827     V = DAG.getBitcast(
13828         VT,
13829         DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
13830                     getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
13831 
13832     // Adjust the mask to match the new locations of A and B.
13833     for (int &M : Mask)
13834       if (M >= 0 && M/2 == ADWord)
13835         M = 2 * BDWord + M % 2;
13836       else if (M >= 0 && M/2 == BDWord)
13837         M = 2 * ADWord + M % 2;
13838 
13839     // Recurse back into this routine to re-compute state now that this isn't
13840     // a 3 and 1 problem.
13841     return lowerV8I16GeneralSingleInputShuffle(DL, VT, V, Mask, Subtarget, DAG);
13842   };
13843   if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
13844     return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
13845   if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
13846     return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
13847 
13848   // At this point there are at most two inputs to the low and high halves from
13849   // each half. That means the inputs can always be grouped into dwords and
13850   // those dwords can then be moved to the correct half with a dword shuffle.
13851   // We use at most one low and one high word shuffle to collect these paired
13852   // inputs into dwords, and finally a dword shuffle to place them.
13853   int PSHUFLMask[4] = {-1, -1, -1, -1};
13854   int PSHUFHMask[4] = {-1, -1, -1, -1};
13855   int PSHUFDMask[4] = {-1, -1, -1, -1};
13856 
13857   // First fix the masks for all the inputs that are staying in their
13858   // original halves. This will then dictate the targets of the cross-half
13859   // shuffles.
13860   auto fixInPlaceInputs =
13861       [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
13862                     MutableArrayRef<int> SourceHalfMask,
13863                     MutableArrayRef<int> HalfMask, int HalfOffset) {
13864     if (InPlaceInputs.empty())
13865       return;
13866     if (InPlaceInputs.size() == 1) {
13867       SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
13868           InPlaceInputs[0] - HalfOffset;
13869       PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
13870       return;
13871     }
13872     if (IncomingInputs.empty()) {
13873       // Just fix all of the in place inputs.
13874       for (int Input : InPlaceInputs) {
13875         SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
13876         PSHUFDMask[Input / 2] = Input / 2;
13877       }
13878       return;
13879     }
13880 
13881     assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
13882     SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
13883         InPlaceInputs[0] - HalfOffset;
13884     // Put the second input next to the first so that they are packed into
13885     // a dword. We find the adjacent index by toggling the low bit.
13886     int AdjIndex = InPlaceInputs[0] ^ 1;
13887     SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
13888     std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
13889     PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
13890   };
13891   fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
13892   fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
13893 
13894   // Now gather the cross-half inputs and place them into a free dword of
13895   // their target half.
13896   // FIXME: This operation could almost certainly be simplified dramatically to
13897   // look more like the 3-1 fixing operation.
13898   auto moveInputsToRightHalf = [&PSHUFDMask](
13899       MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
13900       MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
13901       MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
13902       int DestOffset) {
13903     auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
13904       return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word;
13905     };
13906     auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
13907                                                int Word) {
13908       int LowWord = Word & ~1;
13909       int HighWord = Word | 1;
13910       return isWordClobbered(SourceHalfMask, LowWord) ||
13911              isWordClobbered(SourceHalfMask, HighWord);
13912     };
13913 
13914     if (IncomingInputs.empty())
13915       return;
13916 
13917     if (ExistingInputs.empty()) {
13918       // Map any dwords with inputs from them into the right half.
13919       for (int Input : IncomingInputs) {
13920         // If the source half mask maps over the inputs, turn those into
13921         // swaps and use the swapped lane.
13922         if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
13923           if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) {
13924             SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
13925                 Input - SourceOffset;
13926             // We have to swap the uses in our half mask in one sweep.
13927             for (int &M : HalfMask)
13928               if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
13929                 M = Input;
13930               else if (M == Input)
13931                 M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
13932           } else {
13933             assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
13934                        Input - SourceOffset &&
13935                    "Previous placement doesn't match!");
13936           }
13937           // Note that this correctly re-maps both when we do a swap and when
13938           // we observe the other side of the swap above. We rely on that to
13939           // avoid swapping the members of the input list directly.
13940           Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
13941         }
13942 
13943         // Map the input's dword into the correct half.
13944         if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0)
13945           PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
13946         else
13947           assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
13948                      Input / 2 &&
13949                  "Previous placement doesn't match!");
13950       }
13951 
13952       // And just directly shift any other-half mask elements to be same-half
13953       // as we will have mirrored the dword containing the element into the
13954       // same position within that half.
13955       for (int &M : HalfMask)
13956         if (M >= SourceOffset && M < SourceOffset + 4) {
13957           M = M - SourceOffset + DestOffset;
13958           assert(M >= 0 && "This should never wrap below zero!");
13959         }
13960       return;
13961     }
13962 
13963     // Ensure we have the input in a viable dword of its current half. This
13964     // is particularly tricky because the original position may be clobbered
13965     // by inputs being moved and *staying* in that half.
13966     if (IncomingInputs.size() == 1) {
13967       if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
13968         int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) +
13969                          SourceOffset;
13970         SourceHalfMask[InputFixed - SourceOffset] =
13971             IncomingInputs[0] - SourceOffset;
13972         std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
13973                      InputFixed);
13974         IncomingInputs[0] = InputFixed;
13975       }
13976     } else if (IncomingInputs.size() == 2) {
13977       if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
13978           isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
13979         // We have two non-adjacent or clobbered inputs we need to extract from
13980         // the source half. To do this, we need to map them into some adjacent
13981         // dword slot in the source mask.
13982         int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
13983                               IncomingInputs[1] - SourceOffset};
13984 
13985         // If there is a free slot in the source half mask adjacent to one of
13986         // the inputs, place the other input in it. We use (Index XOR 1) to
13987         // compute an adjacent index.
13988         if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
13989             SourceHalfMask[InputsFixed[0] ^ 1] < 0) {
13990           SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
13991           SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
13992           InputsFixed[1] = InputsFixed[0] ^ 1;
13993         } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
13994                    SourceHalfMask[InputsFixed[1] ^ 1] < 0) {
13995           SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
13996           SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
13997           InputsFixed[0] = InputsFixed[1] ^ 1;
13998         } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 &&
13999                    SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) {
14000           // The two inputs are in the same DWord but it is clobbered and the
14001           // adjacent DWord isn't used at all. Move both inputs to the free
14002           // slot.
14003           SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
14004           SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
14005           InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
14006           InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
14007         } else {
14008           // The only way we hit this point is if there is no clobbering
14009           // (because there are no off-half inputs to this half) and there is no
14010           // free slot adjacent to one of the inputs. In this case, we have to
14011           // swap an input with a non-input.
14012           for (int i = 0; i < 4; ++i)
14013             assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) &&
14014                    "We can't handle any clobbers here!");
14015           assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
14016                  "Cannot have adjacent inputs here!");
14017 
14018           SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
14019           SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
14020 
14021           // We also have to update the final source mask in this case because
14022           // it may need to undo the above swap.
14023           for (int &M : FinalSourceHalfMask)
14024             if (M == (InputsFixed[0] ^ 1) + SourceOffset)
14025               M = InputsFixed[1] + SourceOffset;
14026             else if (M == InputsFixed[1] + SourceOffset)
14027               M = (InputsFixed[0] ^ 1) + SourceOffset;
14028 
14029           InputsFixed[1] = InputsFixed[0] ^ 1;
14030         }
14031 
14032         // Point everything at the fixed inputs.
14033         for (int &M : HalfMask)
14034           if (M == IncomingInputs[0])
14035             M = InputsFixed[0] + SourceOffset;
14036           else if (M == IncomingInputs[1])
14037             M = InputsFixed[1] + SourceOffset;
14038 
14039         IncomingInputs[0] = InputsFixed[0] + SourceOffset;
14040         IncomingInputs[1] = InputsFixed[1] + SourceOffset;
14041       }
14042     } else {
14043       llvm_unreachable("Unhandled input size!");
14044     }
14045 
14046     // Now hoist the DWord down to the right half.
14047     int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2;
14048     assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free");
14049     PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
14050     for (int &M : HalfMask)
14051       for (int Input : IncomingInputs)
14052         if (M == Input)
14053           M = FreeDWord * 2 + Input % 2;
14054   };
14055   moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
14056                         /*SourceOffset*/ 4, /*DestOffset*/ 0);
14057   moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
14058                         /*SourceOffset*/ 0, /*DestOffset*/ 4);
14059 
14060   // Now enact all the shuffles we've computed to move the inputs into their
14061   // target half.
14062   if (!isNoopShuffleMask(PSHUFLMask))
14063     V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
14064                     getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
14065   if (!isNoopShuffleMask(PSHUFHMask))
14066     V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
14067                     getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
14068   if (!isNoopShuffleMask(PSHUFDMask))
14069     V = DAG.getBitcast(
14070         VT,
14071         DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
14072                     getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
14073 
14074   // At this point, each half should contain all its inputs, and we can then
14075   // just shuffle them into their final position.
14076   assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 &&
14077          "Failed to lift all the high half inputs to the low mask!");
14078   assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 &&
14079          "Failed to lift all the low half inputs to the high mask!");
14080 
14081   // Do a half shuffle for the low mask.
14082   if (!isNoopShuffleMask(LoMask))
14083     V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
14084                     getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
14085 
14086   // Do a half shuffle with the high mask after shifting its values down.
14087   for (int &M : HiMask)
14088     if (M >= 0)
14089       M -= 4;
14090   if (!isNoopShuffleMask(HiMask))
14091     V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
14092                     getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
14093 
14094   return V;
14095 }
14096 
14097 /// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the
14098 /// blend if only one input is used.
14099 static SDValue lowerShuffleAsBlendOfPSHUFBs(
14100     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
14101     const APInt &Zeroable, SelectionDAG &DAG, bool &V1InUse, bool &V2InUse) {
14102   assert(!is128BitLaneCrossingShuffleMask(VT, Mask) &&
14103          "Lane crossing shuffle masks not supported");
14104 
14105   int NumBytes = VT.getSizeInBits() / 8;
14106   int Size = Mask.size();
14107   int Scale = NumBytes / Size;
14108 
14109   SmallVector<SDValue, 64> V1Mask(NumBytes, DAG.getUNDEF(MVT::i8));
14110   SmallVector<SDValue, 64> V2Mask(NumBytes, DAG.getUNDEF(MVT::i8));
14111   V1InUse = false;
14112   V2InUse = false;
14113 
14114   for (int i = 0; i < NumBytes; ++i) {
14115     int M = Mask[i / Scale];
14116     if (M < 0)
14117       continue;
14118 
14119     const int ZeroMask = 0x80;
14120     int V1Idx = M < Size ? M * Scale + i % Scale : ZeroMask;
14121     int V2Idx = M < Size ? ZeroMask : (M - Size) * Scale + i % Scale;
14122     if (Zeroable[i / Scale])
14123       V1Idx = V2Idx = ZeroMask;
14124 
14125     V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
14126     V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
14127     V1InUse |= (ZeroMask != V1Idx);
14128     V2InUse |= (ZeroMask != V2Idx);
14129   }
14130 
14131   MVT ShufVT = MVT::getVectorVT(MVT::i8, NumBytes);
14132   if (V1InUse)
14133     V1 = DAG.getNode(X86ISD::PSHUFB, DL, ShufVT, DAG.getBitcast(ShufVT, V1),
14134                      DAG.getBuildVector(ShufVT, DL, V1Mask));
14135   if (V2InUse)
14136     V2 = DAG.getNode(X86ISD::PSHUFB, DL, ShufVT, DAG.getBitcast(ShufVT, V2),
14137                      DAG.getBuildVector(ShufVT, DL, V2Mask));
14138 
14139   // If we need shuffled inputs from both, blend the two.
14140   SDValue V;
14141   if (V1InUse && V2InUse)
14142     V = DAG.getNode(ISD::OR, DL, ShufVT, V1, V2);
14143   else
14144     V = V1InUse ? V1 : V2;
14145 
14146   // Cast the result back to the correct type.
14147   return DAG.getBitcast(VT, V);
14148 }
14149 
14150 /// Generic lowering of 8-lane i16 shuffles.
14151 ///
14152 /// This handles both single-input shuffles and combined shuffle/blends with
14153 /// two inputs. The single input shuffles are immediately delegated to
14154 /// a dedicated lowering routine.
14155 ///
14156 /// The blends are lowered in one of three fundamental ways. If there are few
14157 /// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
14158 /// of the input is significantly cheaper when lowered as an interleaving of
14159 /// the two inputs, try to interleave them. Otherwise, blend the low and high
14160 /// halves of the inputs separately (making them have relatively few inputs)
14161 /// and then concatenate them.
14162 static SDValue lowerV8I16Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
14163                                  const APInt &Zeroable, SDValue V1, SDValue V2,
14164                                  const X86Subtarget &Subtarget,
14165                                  SelectionDAG &DAG) {
14166   assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
14167   assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
14168   assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
14169 
14170   // Whenever we can lower this as a zext, that instruction is strictly faster
14171   // than any alternative.
14172   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v8i16, V1, V2, Mask,
14173                                                    Zeroable, Subtarget, DAG))
14174     return ZExt;
14175 
14176   int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; });
14177 
14178   if (NumV2Inputs == 0) {
14179     // Try to use shift instructions.
14180     if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask,
14181                                             Zeroable, Subtarget, DAG))
14182       return Shift;
14183 
14184     // Check for being able to broadcast a single element.
14185     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v8i16, V1, V2,
14186                                                     Mask, Subtarget, DAG))
14187       return Broadcast;
14188 
14189     // Use dedicated unpack instructions for masks that match their pattern.
14190     if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
14191       return V;
14192 
14193     // Use dedicated pack instructions for masks that match their pattern.
14194     if (SDValue V = lowerShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG,
14195                                          Subtarget))
14196       return V;
14197 
14198     // Try to use byte rotation instructions.
14199     if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, Mask,
14200                                                   Subtarget, DAG))
14201       return Rotate;
14202 
14203     // Make a copy of the mask so it can be modified.
14204     SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end());
14205     return lowerV8I16GeneralSingleInputShuffle(DL, MVT::v8i16, V1, MutableMask,
14206                                                Subtarget, DAG);
14207   }
14208 
14209   assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) &&
14210          "All single-input shuffles should be canonicalized to be V1-input "
14211          "shuffles.");
14212 
14213   // Try to use shift instructions.
14214   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask,
14215                                           Zeroable, Subtarget, DAG))
14216     return Shift;
14217 
14218   // See if we can use SSE4A Extraction / Insertion.
14219   if (Subtarget.hasSSE4A())
14220     if (SDValue V = lowerShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask,
14221                                           Zeroable, DAG))
14222       return V;
14223 
14224   // There are special ways we can lower some single-element blends.
14225   if (NumV2Inputs == 1)
14226     if (SDValue V = lowerShuffleAsElementInsertion(
14227             DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
14228       return V;
14229 
14230   // We have different paths for blend lowering, but they all must use the
14231   // *exact* same predicate.
14232   bool IsBlendSupported = Subtarget.hasSSE41();
14233   if (IsBlendSupported)
14234     if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
14235                                             Zeroable, Subtarget, DAG))
14236       return Blend;
14237 
14238   if (SDValue Masked = lowerShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask,
14239                                              Zeroable, Subtarget, DAG))
14240     return Masked;
14241 
14242   // Use dedicated unpack instructions for masks that match their pattern.
14243   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
14244     return V;
14245 
14246   // Use dedicated pack instructions for masks that match their pattern.
14247   if (SDValue V = lowerShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG,
14248                                        Subtarget))
14249     return V;
14250 
14251   // Try to use byte rotation instructions.
14252   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i16, V1, V2, Mask,
14253                                                 Subtarget, DAG))
14254     return Rotate;
14255 
14256   if (SDValue BitBlend =
14257           lowerShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
14258     return BitBlend;
14259 
14260   // Try to use byte shift instructions to mask.
14261   if (SDValue V = lowerShuffleAsByteShiftMask(DL, MVT::v8i16, V1, V2, Mask,
14262                                               Zeroable, Subtarget, DAG))
14263     return V;
14264 
14265   // Try to lower by permuting the inputs into an unpack instruction.
14266   if (SDValue Unpack = lowerShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, V2,
14267                                                       Mask, Subtarget, DAG))
14268     return Unpack;
14269 
14270   // If we can't directly blend but can use PSHUFB, that will be better as it
14271   // can both shuffle and set up the inefficient blend.
14272   if (!IsBlendSupported && Subtarget.hasSSSE3()) {
14273     bool V1InUse, V2InUse;
14274     return lowerShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask,
14275                                         Zeroable, DAG, V1InUse, V2InUse);
14276   }
14277 
14278   // We can always bit-blend if we have to so the fallback strategy is to
14279   // decompose into single-input permutes and blends.
14280   return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
14281                                               Mask, Subtarget, DAG);
14282 }
14283 
14284 /// Check whether a compaction lowering can be done by dropping even
14285 /// elements and compute how many times even elements must be dropped.
14286 ///
14287 /// This handles shuffles which take every Nth element where N is a power of
14288 /// two. Example shuffle masks:
14289 ///
14290 ///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14,  0,  2,  4,  6,  8, 10, 12, 14
14291 ///  N = 1:  0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
14292 ///  N = 2:  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12,  0,  4,  8, 12
14293 ///  N = 2:  0,  4,  8, 12, 16, 20, 24, 28,  0,  4,  8, 12, 16, 20, 24, 28
14294 ///  N = 3:  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8,  0,  8
14295 ///  N = 3:  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24,  0,  8, 16, 24
14296 ///
14297 /// Any of these lanes can of course be undef.
14298 ///
14299 /// This routine only supports N <= 3.
14300 /// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
14301 /// for larger N.
14302 ///
14303 /// \returns N above, or the number of times even elements must be dropped if
14304 /// there is such a number. Otherwise returns zero.
14305 static int canLowerByDroppingEvenElements(ArrayRef<int> Mask,
14306                                           bool IsSingleInput) {
14307   // The modulus for the shuffle vector entries is based on whether this is
14308   // a single input or not.
14309   int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
14310   assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
14311          "We should only be called with masks with a power-of-2 size!");
14312 
14313   uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
14314 
14315   // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
14316   // and 2^3 simultaneously. This is because we may have ambiguity with
14317   // partially undef inputs.
14318   bool ViableForN[3] = {true, true, true};
14319 
14320   for (int i = 0, e = Mask.size(); i < e; ++i) {
14321     // Ignore undef lanes, we'll optimistically collapse them to the pattern we
14322     // want.
14323     if (Mask[i] < 0)
14324       continue;
14325 
14326     bool IsAnyViable = false;
14327     for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
14328       if (ViableForN[j]) {
14329         uint64_t N = j + 1;
14330 
14331         // The shuffle mask must be equal to (i * 2^N) % M.
14332         if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
14333           IsAnyViable = true;
14334         else
14335           ViableForN[j] = false;
14336       }
14337     // Early exit if we exhaust the possible powers of two.
14338     if (!IsAnyViable)
14339       break;
14340   }
14341 
14342   for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
14343     if (ViableForN[j])
14344       return j + 1;
14345 
14346   // Return 0 as there is no viable power of two.
14347   return 0;
14348 }
14349 
14350 static SDValue lowerShuffleWithPERMV(const SDLoc &DL, MVT VT,
14351                                      ArrayRef<int> Mask, SDValue V1,
14352                                      SDValue V2, SelectionDAG &DAG) {
14353   MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
14354   MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
14355 
14356   SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
14357   if (V2.isUndef())
14358     return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
14359 
14360   return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
14361 }
14362 
14363 /// Generic lowering of v16i8 shuffles.
14364 ///
14365 /// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
14366 /// detect any complexity reducing interleaving. If that doesn't help, it uses
14367 /// UNPCK to spread the i8 elements across two i16-element vectors, and uses
14368 /// the existing lowering for v8i16 blends on each half, finally PACK-ing them
14369 /// back together.
14370 static SDValue lowerV16I8Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
14371                                  const APInt &Zeroable, SDValue V1, SDValue V2,
14372                                  const X86Subtarget &Subtarget,
14373                                  SelectionDAG &DAG) {
14374   assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
14375   assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
14376   assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
14377 
14378   // Try to use shift instructions.
14379   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask,
14380                                           Zeroable, Subtarget, DAG))
14381     return Shift;
14382 
14383   // Try to use byte rotation instructions.
14384   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v16i8, V1, V2, Mask,
14385                                                 Subtarget, DAG))
14386     return Rotate;
14387 
14388   // Use dedicated pack instructions for masks that match their pattern.
14389   if (SDValue V = lowerShuffleWithPACK(DL, MVT::v16i8, Mask, V1, V2, DAG,
14390                                        Subtarget))
14391     return V;
14392 
14393   // Try to use a zext lowering.
14394   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v16i8, V1, V2, Mask,
14395                                                    Zeroable, Subtarget, DAG))
14396     return ZExt;
14397 
14398   // See if we can use SSE4A Extraction / Insertion.
14399   if (Subtarget.hasSSE4A())
14400     if (SDValue V = lowerShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask,
14401                                           Zeroable, DAG))
14402       return V;
14403 
14404   int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; });
14405 
14406   // For single-input shuffles, there are some nicer lowering tricks we can use.
14407   if (NumV2Elements == 0) {
14408     // Check for being able to broadcast a single element.
14409     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v16i8, V1, V2,
14410                                                     Mask, Subtarget, DAG))
14411       return Broadcast;
14412 
14413     if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
14414       return V;
14415 
14416     // Check whether we can widen this to an i16 shuffle by duplicating bytes.
14417     // Notably, this handles splat and partial-splat shuffles more efficiently.
14418     // However, it only makes sense if the pre-duplication shuffle simplifies
14419     // things significantly. Currently, this means we need to be able to
14420     // express the pre-duplication shuffle as an i16 shuffle.
14421     //
14422     // FIXME: We should check for other patterns which can be widened into an
14423     // i16 shuffle as well.
14424     auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
14425       for (int i = 0; i < 16; i += 2)
14426         if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1])
14427           return false;
14428 
14429       return true;
14430     };
14431     auto tryToWidenViaDuplication = [&]() -> SDValue {
14432       if (!canWidenViaDuplication(Mask))
14433         return SDValue();
14434       SmallVector<int, 4> LoInputs;
14435       copy_if(Mask, std::back_inserter(LoInputs),
14436               [](int M) { return M >= 0 && M < 8; });
14437       array_pod_sort(LoInputs.begin(), LoInputs.end());
14438       LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
14439                      LoInputs.end());
14440       SmallVector<int, 4> HiInputs;
14441       copy_if(Mask, std::back_inserter(HiInputs), [](int M) { return M >= 8; });
14442       array_pod_sort(HiInputs.begin(), HiInputs.end());
14443       HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
14444                      HiInputs.end());
14445 
14446       bool TargetLo = LoInputs.size() >= HiInputs.size();
14447       ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
14448       ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
14449 
14450       int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
14451       SmallDenseMap<int, int, 8> LaneMap;
14452       for (int I : InPlaceInputs) {
14453         PreDupI16Shuffle[I/2] = I/2;
14454         LaneMap[I] = I;
14455       }
14456       int j = TargetLo ? 0 : 4, je = j + 4;
14457       for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
14458         // Check if j is already a shuffle of this input. This happens when
14459         // there are two adjacent bytes after we move the low one.
14460         if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
14461           // If we haven't yet mapped the input, search for a slot into which
14462           // we can map it.
14463           while (j < je && PreDupI16Shuffle[j] >= 0)
14464             ++j;
14465 
14466           if (j == je)
14467             // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
14468             return SDValue();
14469 
14470           // Map this input with the i16 shuffle.
14471           PreDupI16Shuffle[j] = MovingInputs[i] / 2;
14472         }
14473 
14474         // Update the lane map based on the mapping we ended up with.
14475         LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
14476       }
14477       V1 = DAG.getBitcast(
14478           MVT::v16i8,
14479           DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
14480                                DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
14481 
14482       // Unpack the bytes to form the i16s that will be shuffled into place.
14483       bool EvenInUse = false, OddInUse = false;
14484       for (int i = 0; i < 16; i += 2) {
14485         EvenInUse |= (Mask[i + 0] >= 0);
14486         OddInUse |= (Mask[i + 1] >= 0);
14487         if (EvenInUse && OddInUse)
14488           break;
14489       }
14490       V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
14491                        MVT::v16i8, EvenInUse ? V1 : DAG.getUNDEF(MVT::v16i8),
14492                        OddInUse ? V1 : DAG.getUNDEF(MVT::v16i8));
14493 
14494       int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
14495       for (int i = 0; i < 16; ++i)
14496         if (Mask[i] >= 0) {
14497           int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
14498           assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
14499           if (PostDupI16Shuffle[i / 2] < 0)
14500             PostDupI16Shuffle[i / 2] = MappedMask;
14501           else
14502             assert(PostDupI16Shuffle[i / 2] == MappedMask &&
14503                    "Conflicting entries in the original shuffle!");
14504         }
14505       return DAG.getBitcast(
14506           MVT::v16i8,
14507           DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
14508                                DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
14509     };
14510     if (SDValue V = tryToWidenViaDuplication())
14511       return V;
14512   }
14513 
14514   if (SDValue Masked = lowerShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask,
14515                                              Zeroable, Subtarget, DAG))
14516     return Masked;
14517 
14518   // Use dedicated unpack instructions for masks that match their pattern.
14519   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
14520     return V;
14521 
14522   // Try to use byte shift instructions to mask.
14523   if (SDValue V = lowerShuffleAsByteShiftMask(DL, MVT::v16i8, V1, V2, Mask,
14524                                               Zeroable, Subtarget, DAG))
14525     return V;
14526 
14527   // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
14528   // with PSHUFB. It is important to do this before we attempt to generate any
14529   // blends but after all of the single-input lowerings. If the single input
14530   // lowerings can find an instruction sequence that is faster than a PSHUFB, we
14531   // want to preserve that and we can DAG combine any longer sequences into
14532   // a PSHUFB in the end. But once we start blending from multiple inputs,
14533   // the complexity of DAG combining bad patterns back into PSHUFB is too high,
14534   // and there are *very* few patterns that would actually be faster than the
14535   // PSHUFB approach because of its ability to zero lanes.
14536   //
14537   // FIXME: The only exceptions to the above are blends which are exact
14538   // interleavings with direct instructions supporting them. We currently don't
14539   // handle those well here.
14540   if (Subtarget.hasSSSE3()) {
14541     bool V1InUse = false;
14542     bool V2InUse = false;
14543 
14544     SDValue PSHUFB = lowerShuffleAsBlendOfPSHUFBs(
14545         DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse);
14546 
14547     // If both V1 and V2 are in use and we can use a direct blend or an unpack,
14548     // do so. This avoids using them to handle blends-with-zero which is
14549     // important as a single pshufb is significantly faster for that.
14550     if (V1InUse && V2InUse) {
14551       if (Subtarget.hasSSE41())
14552         if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16i8, V1, V2, Mask,
14553                                                 Zeroable, Subtarget, DAG))
14554           return Blend;
14555 
14556       // We can use an unpack to do the blending rather than an or in some
14557       // cases. Even though the or may be (very minorly) more efficient, we
14558       // preference this lowering because there are common cases where part of
14559       // the complexity of the shuffles goes away when we do the final blend as
14560       // an unpack.
14561       // FIXME: It might be worth trying to detect if the unpack-feeding
14562       // shuffles will both be pshufb, in which case we shouldn't bother with
14563       // this.
14564       if (SDValue Unpack = lowerShuffleAsPermuteAndUnpack(
14565               DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
14566         return Unpack;
14567 
14568       // If we have VBMI we can use one VPERM instead of multiple PSHUFBs.
14569       if (Subtarget.hasVBMI() && Subtarget.hasVLX())
14570         return lowerShuffleWithPERMV(DL, MVT::v16i8, Mask, V1, V2, DAG);
14571 
14572       // Use PALIGNR+Permute if possible - permute might become PSHUFB but the
14573       // PALIGNR will be cheaper than the second PSHUFB+OR.
14574       if (SDValue V = lowerShuffleAsByteRotateAndPermute(
14575               DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
14576         return V;
14577     }
14578 
14579     return PSHUFB;
14580   }
14581 
14582   // There are special ways we can lower some single-element blends.
14583   if (NumV2Elements == 1)
14584     if (SDValue V = lowerShuffleAsElementInsertion(
14585             DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
14586       return V;
14587 
14588   if (SDValue Blend = lowerShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
14589     return Blend;
14590 
14591   // Check whether a compaction lowering can be done. This handles shuffles
14592   // which take every Nth element for some even N. See the helper function for
14593   // details.
14594   //
14595   // We special case these as they can be particularly efficiently handled with
14596   // the PACKUSB instruction on x86 and they show up in common patterns of
14597   // rearranging bytes to truncate wide elements.
14598   bool IsSingleInput = V2.isUndef();
14599   if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) {
14600     // NumEvenDrops is the power of two stride of the elements. Another way of
14601     // thinking about it is that we need to drop the even elements this many
14602     // times to get the original input.
14603 
14604     // First we need to zero all the dropped bytes.
14605     assert(NumEvenDrops <= 3 &&
14606            "No support for dropping even elements more than 3 times.");
14607     SmallVector<SDValue, 16> ByteClearOps(16, DAG.getConstant(0, DL, MVT::i8));
14608     for (unsigned i = 0; i != 16; i += 1 << NumEvenDrops)
14609       ByteClearOps[i] = DAG.getConstant(0xFF, DL, MVT::i8);
14610     SDValue ByteClearMask = DAG.getBuildVector(MVT::v16i8, DL, ByteClearOps);
14611     V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
14612     if (!IsSingleInput)
14613       V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
14614 
14615     // Now pack things back together.
14616     V1 = DAG.getBitcast(MVT::v8i16, V1);
14617     V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
14618     SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
14619     for (int i = 1; i < NumEvenDrops; ++i) {
14620       Result = DAG.getBitcast(MVT::v8i16, Result);
14621       Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
14622     }
14623 
14624     return Result;
14625   }
14626 
14627   // Handle multi-input cases by blending single-input shuffles.
14628   if (NumV2Elements > 0)
14629     return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, Mask,
14630                                                 Subtarget, DAG);
14631 
14632   // The fallback path for single-input shuffles widens this into two v8i16
14633   // vectors with unpacks, shuffles those, and then pulls them back together
14634   // with a pack.
14635   SDValue V = V1;
14636 
14637   std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
14638   std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
14639   for (int i = 0; i < 16; ++i)
14640     if (Mask[i] >= 0)
14641       (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
14642 
14643   SDValue VLoHalf, VHiHalf;
14644   // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
14645   // them out and avoid using UNPCK{L,H} to extract the elements of V as
14646   // i16s.
14647   if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) &&
14648       none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) {
14649     // Use a mask to drop the high bytes.
14650     VLoHalf = DAG.getBitcast(MVT::v8i16, V);
14651     VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
14652                           DAG.getConstant(0x00FF, DL, MVT::v8i16));
14653 
14654     // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
14655     VHiHalf = DAG.getUNDEF(MVT::v8i16);
14656 
14657     // Squash the masks to point directly into VLoHalf.
14658     for (int &M : LoBlendMask)
14659       if (M >= 0)
14660         M /= 2;
14661     for (int &M : HiBlendMask)
14662       if (M >= 0)
14663         M /= 2;
14664   } else {
14665     // Otherwise just unpack the low half of V into VLoHalf and the high half into
14666     // VHiHalf so that we can blend them as i16s.
14667     SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL);
14668 
14669     VLoHalf = DAG.getBitcast(
14670         MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
14671     VHiHalf = DAG.getBitcast(
14672         MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
14673   }
14674 
14675   SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
14676   SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
14677 
14678   return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
14679 }
14680 
14681 /// Dispatching routine to lower various 128-bit x86 vector shuffles.
14682 ///
14683 /// This routine breaks down the specific type of 128-bit shuffle and
14684 /// dispatches to the lowering routines accordingly.
14685 static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef<int> Mask,
14686                                   MVT VT, SDValue V1, SDValue V2,
14687                                   const APInt &Zeroable,
14688                                   const X86Subtarget &Subtarget,
14689                                   SelectionDAG &DAG) {
14690   switch (VT.SimpleTy) {
14691   case MVT::v2i64:
14692     return lowerV2I64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
14693   case MVT::v2f64:
14694     return lowerV2F64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
14695   case MVT::v4i32:
14696     return lowerV4I32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
14697   case MVT::v4f32:
14698     return lowerV4F32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
14699   case MVT::v8i16:
14700     return lowerV8I16Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
14701   case MVT::v16i8:
14702     return lowerV16I8Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
14703 
14704   default:
14705     llvm_unreachable("Unimplemented!");
14706   }
14707 }
14708 
14709 /// Generic routine to split vector shuffle into half-sized shuffles.
14710 ///
14711 /// This routine just extracts two subvectors, shuffles them independently, and
14712 /// then concatenates them back together. This should work effectively with all
14713 /// AVX vector shuffle types.
14714 static SDValue splitAndLowerShuffle(const SDLoc &DL, MVT VT, SDValue V1,
14715                                     SDValue V2, ArrayRef<int> Mask,
14716                                     SelectionDAG &DAG) {
14717   assert(VT.getSizeInBits() >= 256 &&
14718          "Only for 256-bit or wider vector shuffles!");
14719   assert(V1.getSimpleValueType() == VT && "Bad operand type!");
14720   assert(V2.getSimpleValueType() == VT && "Bad operand type!");
14721 
14722   ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
14723   ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
14724 
14725   int NumElements = VT.getVectorNumElements();
14726   int SplitNumElements = NumElements / 2;
14727   MVT ScalarVT = VT.getVectorElementType();
14728   MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
14729 
14730   // Rather than splitting build-vectors, just build two narrower build
14731   // vectors. This helps shuffling with splats and zeros.
14732   auto SplitVector = [&](SDValue V) {
14733     V = peekThroughBitcasts(V);
14734 
14735     MVT OrigVT = V.getSimpleValueType();
14736     int OrigNumElements = OrigVT.getVectorNumElements();
14737     int OrigSplitNumElements = OrigNumElements / 2;
14738     MVT OrigScalarVT = OrigVT.getVectorElementType();
14739     MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
14740 
14741     SDValue LoV, HiV;
14742 
14743     auto *BV = dyn_cast<BuildVectorSDNode>(V);
14744     if (!BV) {
14745       LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
14746                         DAG.getIntPtrConstant(0, DL));
14747       HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
14748                         DAG.getIntPtrConstant(OrigSplitNumElements, DL));
14749     } else {
14750 
14751       SmallVector<SDValue, 16> LoOps, HiOps;
14752       for (int i = 0; i < OrigSplitNumElements; ++i) {
14753         LoOps.push_back(BV->getOperand(i));
14754         HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
14755       }
14756       LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps);
14757       HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps);
14758     }
14759     return std::make_pair(DAG.getBitcast(SplitVT, LoV),
14760                           DAG.getBitcast(SplitVT, HiV));
14761   };
14762 
14763   SDValue LoV1, HiV1, LoV2, HiV2;
14764   std::tie(LoV1, HiV1) = SplitVector(V1);
14765   std::tie(LoV2, HiV2) = SplitVector(V2);
14766 
14767   // Now create two 4-way blends of these half-width vectors.
14768   auto HalfBlend = [&](ArrayRef<int> HalfMask) {
14769     bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
14770     SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1);
14771     SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1);
14772     SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1);
14773     for (int i = 0; i < SplitNumElements; ++i) {
14774       int M = HalfMask[i];
14775       if (M >= NumElements) {
14776         if (M >= NumElements + SplitNumElements)
14777           UseHiV2 = true;
14778         else
14779           UseLoV2 = true;
14780         V2BlendMask[i] = M - NumElements;
14781         BlendMask[i] = SplitNumElements + i;
14782       } else if (M >= 0) {
14783         if (M >= SplitNumElements)
14784           UseHiV1 = true;
14785         else
14786           UseLoV1 = true;
14787         V1BlendMask[i] = M;
14788         BlendMask[i] = i;
14789       }
14790     }
14791 
14792     // Because the lowering happens after all combining takes place, we need to
14793     // manually combine these blend masks as much as possible so that we create
14794     // a minimal number of high-level vector shuffle nodes.
14795 
14796     // First try just blending the halves of V1 or V2.
14797     if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
14798       return DAG.getUNDEF(SplitVT);
14799     if (!UseLoV2 && !UseHiV2)
14800       return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
14801     if (!UseLoV1 && !UseHiV1)
14802       return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
14803 
14804     SDValue V1Blend, V2Blend;
14805     if (UseLoV1 && UseHiV1) {
14806       V1Blend =
14807         DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
14808     } else {
14809       // We only use half of V1 so map the usage down into the final blend mask.
14810       V1Blend = UseLoV1 ? LoV1 : HiV1;
14811       for (int i = 0; i < SplitNumElements; ++i)
14812         if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
14813           BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
14814     }
14815     if (UseLoV2 && UseHiV2) {
14816       V2Blend =
14817         DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
14818     } else {
14819       // We only use half of V2 so map the usage down into the final blend mask.
14820       V2Blend = UseLoV2 ? LoV2 : HiV2;
14821       for (int i = 0; i < SplitNumElements; ++i)
14822         if (BlendMask[i] >= SplitNumElements)
14823           BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
14824     }
14825     return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
14826   };
14827   SDValue Lo = HalfBlend(LoMask);
14828   SDValue Hi = HalfBlend(HiMask);
14829   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
14830 }
14831 
14832 /// Either split a vector in halves or decompose the shuffles and the
14833 /// blend.
14834 ///
14835 /// This is provided as a good fallback for many lowerings of non-single-input
14836 /// shuffles with more than one 128-bit lane. In those cases, we want to select
14837 /// between splitting the shuffle into 128-bit components and stitching those
14838 /// back together vs. extracting the single-input shuffles and blending those
14839 /// results.
14840 static SDValue lowerShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT, SDValue V1,
14841                                           SDValue V2, ArrayRef<int> Mask,
14842                                           const X86Subtarget &Subtarget,
14843                                           SelectionDAG &DAG) {
14844   assert(!V2.isUndef() && "This routine must not be used to lower single-input "
14845          "shuffles as it could then recurse on itself.");
14846   int Size = Mask.size();
14847 
14848   // If this can be modeled as a broadcast of two elements followed by a blend,
14849   // prefer that lowering. This is especially important because broadcasts can
14850   // often fold with memory operands.
14851   auto DoBothBroadcast = [&] {
14852     int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
14853     for (int M : Mask)
14854       if (M >= Size) {
14855         if (V2BroadcastIdx < 0)
14856           V2BroadcastIdx = M - Size;
14857         else if (M - Size != V2BroadcastIdx)
14858           return false;
14859       } else if (M >= 0) {
14860         if (V1BroadcastIdx < 0)
14861           V1BroadcastIdx = M;
14862         else if (M != V1BroadcastIdx)
14863           return false;
14864       }
14865     return true;
14866   };
14867   if (DoBothBroadcast())
14868     return lowerShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
14869                                                 Subtarget, DAG);
14870 
14871   // If the inputs all stem from a single 128-bit lane of each input, then we
14872   // split them rather than blending because the split will decompose to
14873   // unusually few instructions.
14874   int LaneCount = VT.getSizeInBits() / 128;
14875   int LaneSize = Size / LaneCount;
14876   SmallBitVector LaneInputs[2];
14877   LaneInputs[0].resize(LaneCount, false);
14878   LaneInputs[1].resize(LaneCount, false);
14879   for (int i = 0; i < Size; ++i)
14880     if (Mask[i] >= 0)
14881       LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
14882   if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
14883     return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
14884 
14885   // Otherwise, just fall back to decomposed shuffles and a blend. This requires
14886   // that the decomposed single-input shuffles don't end up here.
14887   return lowerShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, Subtarget,
14888                                               DAG);
14889 }
14890 
14891 // Lower as SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)).
14892 // TODO: Extend to support v8f32 (+ 512-bit shuffles).
14893 static SDValue lowerShuffleAsLanePermuteAndSHUFP(const SDLoc &DL, MVT VT,
14894                                                  SDValue V1, SDValue V2,
14895                                                  ArrayRef<int> Mask,
14896                                                  SelectionDAG &DAG) {
14897   assert(VT == MVT::v4f64 && "Only for v4f64 shuffles");
14898 
14899   int LHSMask[4] = {-1, -1, -1, -1};
14900   int RHSMask[4] = {-1, -1, -1, -1};
14901   unsigned SHUFPMask = 0;
14902 
14903   // As SHUFPD uses a single LHS/RHS element per lane, we can always
14904   // perform the shuffle once the lanes have been shuffled in place.
14905   for (int i = 0; i != 4; ++i) {
14906     int M = Mask[i];
14907     if (M < 0)
14908       continue;
14909     int LaneBase = i & ~1;
14910     auto &LaneMask = (i & 1) ? RHSMask : LHSMask;
14911     LaneMask[LaneBase + (M & 1)] = M;
14912     SHUFPMask |= (M & 1) << i;
14913   }
14914 
14915   SDValue LHS = DAG.getVectorShuffle(VT, DL, V1, V2, LHSMask);
14916   SDValue RHS = DAG.getVectorShuffle(VT, DL, V1, V2, RHSMask);
14917   return DAG.getNode(X86ISD::SHUFP, DL, VT, LHS, RHS,
14918                      DAG.getTargetConstant(SHUFPMask, DL, MVT::i8));
14919 }
14920 
14921 /// Lower a vector shuffle crossing multiple 128-bit lanes as
14922 /// a lane permutation followed by a per-lane permutation.
14923 ///
14924 /// This is mainly for cases where we can have non-repeating permutes
14925 /// in each lane.
14926 ///
14927 /// TODO: This is very similar to lowerShuffleAsLanePermuteAndRepeatedMask,
14928 /// we should investigate merging them.
14929 static SDValue lowerShuffleAsLanePermuteAndPermute(
14930     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
14931     SelectionDAG &DAG, const X86Subtarget &Subtarget) {
14932   int NumElts = VT.getVectorNumElements();
14933   int NumLanes = VT.getSizeInBits() / 128;
14934   int NumEltsPerLane = NumElts / NumLanes;
14935 
14936   SmallVector<int, 4> SrcLaneMask(NumLanes, SM_SentinelUndef);
14937   SmallVector<int, 16> PermMask(NumElts, SM_SentinelUndef);
14938 
14939   for (int i = 0; i != NumElts; ++i) {
14940     int M = Mask[i];
14941     if (M < 0)
14942       continue;
14943 
14944     // Ensure that each lane comes from a single source lane.
14945     int SrcLane = M / NumEltsPerLane;
14946     int DstLane = i / NumEltsPerLane;
14947     if (!isUndefOrEqual(SrcLaneMask[DstLane], SrcLane))
14948       return SDValue();
14949     SrcLaneMask[DstLane] = SrcLane;
14950 
14951     PermMask[i] = (DstLane * NumEltsPerLane) + (M % NumEltsPerLane);
14952   }
14953 
14954   // Make sure we set all elements of the lane mask, to avoid undef propagation.
14955   SmallVector<int, 16> LaneMask(NumElts, SM_SentinelUndef);
14956   for (int DstLane = 0; DstLane != NumLanes; ++DstLane) {
14957     int SrcLane = SrcLaneMask[DstLane];
14958     if (0 <= SrcLane)
14959       for (int j = 0; j != NumEltsPerLane; ++j) {
14960         LaneMask[(DstLane * NumEltsPerLane) + j] =
14961             (SrcLane * NumEltsPerLane) + j;
14962       }
14963   }
14964 
14965   // If we're only shuffling a single lowest lane and the rest are identity
14966   // then don't bother.
14967   // TODO - isShuffleMaskInputInPlace could be extended to something like this.
14968   int NumIdentityLanes = 0;
14969   bool OnlyShuffleLowestLane = true;
14970   for (int i = 0; i != NumLanes; ++i) {
14971     if (isSequentialOrUndefInRange(PermMask, i * NumEltsPerLane, NumEltsPerLane,
14972                                    i * NumEltsPerLane))
14973       NumIdentityLanes++;
14974     else if (SrcLaneMask[i] != 0 && SrcLaneMask[i] != NumLanes)
14975       OnlyShuffleLowestLane = false;
14976   }
14977   if (OnlyShuffleLowestLane && NumIdentityLanes == (NumLanes - 1))
14978     return SDValue();
14979 
14980   SDValue LanePermute = DAG.getVectorShuffle(VT, DL, V1, V2, LaneMask);
14981   return DAG.getVectorShuffle(VT, DL, LanePermute, DAG.getUNDEF(VT), PermMask);
14982 }
14983 
14984 /// Lower a vector shuffle crossing multiple 128-bit lanes by shuffling one
14985 /// source with a lane permutation.
14986 ///
14987 /// This lowering strategy results in four instructions in the worst case for a
14988 /// single-input cross lane shuffle which is lower than any other fully general
14989 /// cross-lane shuffle strategy I'm aware of. Special cases for each particular
14990 /// shuffle pattern should be handled prior to trying this lowering.
14991 static SDValue lowerShuffleAsLanePermuteAndShuffle(
14992     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
14993     SelectionDAG &DAG, const X86Subtarget &Subtarget) {
14994   // FIXME: This should probably be generalized for 512-bit vectors as well.
14995   assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
14996   int Size = Mask.size();
14997   int LaneSize = Size / 2;
14998 
14999   // Fold to SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)).
15000   // Only do this if the elements aren't all from the lower lane,
15001   // otherwise we're (probably) better off doing a split.
15002   if (VT == MVT::v4f64 &&
15003       !all_of(Mask, [LaneSize](int M) { return M < LaneSize; }))
15004     if (SDValue V =
15005             lowerShuffleAsLanePermuteAndSHUFP(DL, VT, V1, V2, Mask, DAG))
15006       return V;
15007 
15008   // If there are only inputs from one 128-bit lane, splitting will in fact be
15009   // less expensive. The flags track whether the given lane contains an element
15010   // that crosses to another lane.
15011   if (!Subtarget.hasAVX2()) {
15012     bool LaneCrossing[2] = {false, false};
15013     for (int i = 0; i < Size; ++i)
15014       if (Mask[i] >= 0 && ((Mask[i] % Size) / LaneSize) != (i / LaneSize))
15015         LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
15016     if (!LaneCrossing[0] || !LaneCrossing[1])
15017       return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
15018   } else {
15019     bool LaneUsed[2] = {false, false};
15020     for (int i = 0; i < Size; ++i)
15021       if (Mask[i] >= 0)
15022         LaneUsed[(Mask[i] % Size) / LaneSize] = true;
15023     if (!LaneUsed[0] || !LaneUsed[1])
15024       return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
15025   }
15026 
15027   // TODO - we could support shuffling V2 in the Flipped input.
15028   assert(V2.isUndef() &&
15029          "This last part of this routine only works on single input shuffles");
15030 
15031   SmallVector<int, 32> InLaneMask(Mask.begin(), Mask.end());
15032   for (int i = 0; i < Size; ++i) {
15033     int &M = InLaneMask[i];
15034     if (M < 0)
15035       continue;
15036     if (((M % Size) / LaneSize) != (i / LaneSize))
15037       M = (M % LaneSize) + ((i / LaneSize) * LaneSize) + Size;
15038   }
15039   assert(!is128BitLaneCrossingShuffleMask(VT, InLaneMask) &&
15040          "In-lane shuffle mask expected");
15041 
15042   // Flip the lanes, and shuffle the results which should now be in-lane.
15043   MVT PVT = VT.isFloatingPoint() ? MVT::v4f64 : MVT::v4i64;
15044   SDValue Flipped = DAG.getBitcast(PVT, V1);
15045   Flipped =
15046       DAG.getVectorShuffle(PVT, DL, Flipped, DAG.getUNDEF(PVT), {2, 3, 0, 1});
15047   Flipped = DAG.getBitcast(VT, Flipped);
15048   return DAG.getVectorShuffle(VT, DL, V1, Flipped, InLaneMask);
15049 }
15050 
15051 /// Handle lowering 2-lane 128-bit shuffles.
15052 static SDValue lowerV2X128Shuffle(const SDLoc &DL, MVT VT, SDValue V1,
15053                                   SDValue V2, ArrayRef<int> Mask,
15054                                   const APInt &Zeroable,
15055                                   const X86Subtarget &Subtarget,
15056                                   SelectionDAG &DAG) {
15057   // With AVX2, use VPERMQ/VPERMPD for unary shuffles to allow memory folding.
15058   if (Subtarget.hasAVX2() && V2.isUndef())
15059     return SDValue();
15060 
15061   bool V2IsZero = !V2.isUndef() && ISD::isBuildVectorAllZeros(V2.getNode());
15062 
15063   SmallVector<int, 4> WidenedMask;
15064   if (!canWidenShuffleElements(Mask, Zeroable, V2IsZero, WidenedMask))
15065     return SDValue();
15066 
15067   bool IsLowZero = (Zeroable & 0x3) == 0x3;
15068   bool IsHighZero = (Zeroable & 0xc) == 0xc;
15069 
15070   // Try to use an insert into a zero vector.
15071   if (WidenedMask[0] == 0 && IsHighZero) {
15072     MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
15073     SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
15074                               DAG.getIntPtrConstant(0, DL));
15075     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
15076                        getZeroVector(VT, Subtarget, DAG, DL), LoV,
15077                        DAG.getIntPtrConstant(0, DL));
15078   }
15079 
15080   // TODO: If minimizing size and one of the inputs is a zero vector and the
15081   // the zero vector has only one use, we could use a VPERM2X128 to save the
15082   // instruction bytes needed to explicitly generate the zero vector.
15083 
15084   // Blends are faster and handle all the non-lane-crossing cases.
15085   if (SDValue Blend = lowerShuffleAsBlend(DL, VT, V1, V2, Mask, Zeroable,
15086                                           Subtarget, DAG))
15087     return Blend;
15088 
15089   // If either input operand is a zero vector, use VPERM2X128 because its mask
15090   // allows us to replace the zero input with an implicit zero.
15091   if (!IsLowZero && !IsHighZero) {
15092     // Check for patterns which can be matched with a single insert of a 128-bit
15093     // subvector.
15094     bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
15095     if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
15096 
15097       // With AVX1, use vperm2f128 (below) to allow load folding. Otherwise,
15098       // this will likely become vinsertf128 which can't fold a 256-bit memop.
15099       if (!isa<LoadSDNode>(peekThroughBitcasts(V1))) {
15100         MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
15101         SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
15102                                      OnlyUsesV1 ? V1 : V2,
15103                                      DAG.getIntPtrConstant(0, DL));
15104         return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec,
15105                            DAG.getIntPtrConstant(2, DL));
15106       }
15107     }
15108 
15109     // Try to use SHUF128 if possible.
15110     if (Subtarget.hasVLX()) {
15111       if (WidenedMask[0] < 2 && WidenedMask[1] >= 2) {
15112         unsigned PermMask = ((WidenedMask[0] % 2) << 0) |
15113                             ((WidenedMask[1] % 2) << 1);
15114         return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2,
15115                            DAG.getTargetConstant(PermMask, DL, MVT::i8));
15116       }
15117     }
15118   }
15119 
15120   // Otherwise form a 128-bit permutation. After accounting for undefs,
15121   // convert the 64-bit shuffle mask selection values into 128-bit
15122   // selection bits by dividing the indexes by 2 and shifting into positions
15123   // defined by a vperm2*128 instruction's immediate control byte.
15124 
15125   // The immediate permute control byte looks like this:
15126   //    [1:0] - select 128 bits from sources for low half of destination
15127   //    [2]   - ignore
15128   //    [3]   - zero low half of destination
15129   //    [5:4] - select 128 bits from sources for high half of destination
15130   //    [6]   - ignore
15131   //    [7]   - zero high half of destination
15132 
15133   assert((WidenedMask[0] >= 0 || IsLowZero) &&
15134          (WidenedMask[1] >= 0 || IsHighZero) && "Undef half?");
15135 
15136   unsigned PermMask = 0;
15137   PermMask |= IsLowZero  ? 0x08 : (WidenedMask[0] << 0);
15138   PermMask |= IsHighZero ? 0x80 : (WidenedMask[1] << 4);
15139 
15140   // Check the immediate mask and replace unused sources with undef.
15141   if ((PermMask & 0x0a) != 0x00 && (PermMask & 0xa0) != 0x00)
15142     V1 = DAG.getUNDEF(VT);
15143   if ((PermMask & 0x0a) != 0x02 && (PermMask & 0xa0) != 0x20)
15144     V2 = DAG.getUNDEF(VT);
15145 
15146   return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
15147                      DAG.getTargetConstant(PermMask, DL, MVT::i8));
15148 }
15149 
15150 /// Lower a vector shuffle by first fixing the 128-bit lanes and then
15151 /// shuffling each lane.
15152 ///
15153 /// This attempts to create a repeated lane shuffle where each lane uses one
15154 /// or two of the lanes of the inputs. The lanes of the input vectors are
15155 /// shuffled in one or two independent shuffles to get the lanes into the
15156 /// position needed by the final shuffle.
15157 static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
15158     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
15159     const X86Subtarget &Subtarget, SelectionDAG &DAG) {
15160   assert(!V2.isUndef() && "This is only useful with multiple inputs.");
15161 
15162   if (is128BitLaneRepeatedShuffleMask(VT, Mask))
15163     return SDValue();
15164 
15165   int NumElts = Mask.size();
15166   int NumLanes = VT.getSizeInBits() / 128;
15167   int NumLaneElts = 128 / VT.getScalarSizeInBits();
15168   SmallVector<int, 16> RepeatMask(NumLaneElts, -1);
15169   SmallVector<std::array<int, 2>, 2> LaneSrcs(NumLanes, {{-1, -1}});
15170 
15171   // First pass will try to fill in the RepeatMask from lanes that need two
15172   // sources.
15173   for (int Lane = 0; Lane != NumLanes; ++Lane) {
15174     int Srcs[2] = {-1, -1};
15175     SmallVector<int, 16> InLaneMask(NumLaneElts, -1);
15176     for (int i = 0; i != NumLaneElts; ++i) {
15177       int M = Mask[(Lane * NumLaneElts) + i];
15178       if (M < 0)
15179         continue;
15180       // Determine which of the possible input lanes (NumLanes from each source)
15181       // this element comes from. Assign that as one of the sources for this
15182       // lane. We can assign up to 2 sources for this lane. If we run out
15183       // sources we can't do anything.
15184       int LaneSrc = M / NumLaneElts;
15185       int Src;
15186       if (Srcs[0] < 0 || Srcs[0] == LaneSrc)
15187         Src = 0;
15188       else if (Srcs[1] < 0 || Srcs[1] == LaneSrc)
15189         Src = 1;
15190       else
15191         return SDValue();
15192 
15193       Srcs[Src] = LaneSrc;
15194       InLaneMask[i] = (M % NumLaneElts) + Src * NumElts;
15195     }
15196 
15197     // If this lane has two sources, see if it fits with the repeat mask so far.
15198     if (Srcs[1] < 0)
15199       continue;
15200 
15201     LaneSrcs[Lane][0] = Srcs[0];
15202     LaneSrcs[Lane][1] = Srcs[1];
15203 
15204     auto MatchMasks = [](ArrayRef<int> M1, ArrayRef<int> M2) {
15205       assert(M1.size() == M2.size() && "Unexpected mask size");
15206       for (int i = 0, e = M1.size(); i != e; ++i)
15207         if (M1[i] >= 0 && M2[i] >= 0 && M1[i] != M2[i])
15208           return false;
15209       return true;
15210     };
15211 
15212     auto MergeMasks = [](ArrayRef<int> Mask, MutableArrayRef<int> MergedMask) {
15213       assert(Mask.size() == MergedMask.size() && "Unexpected mask size");
15214       for (int i = 0, e = MergedMask.size(); i != e; ++i) {
15215         int M = Mask[i];
15216         if (M < 0)
15217           continue;
15218         assert((MergedMask[i] < 0 || MergedMask[i] == M) &&
15219                "Unexpected mask element");
15220         MergedMask[i] = M;
15221       }
15222     };
15223 
15224     if (MatchMasks(InLaneMask, RepeatMask)) {
15225       // Merge this lane mask into the final repeat mask.
15226       MergeMasks(InLaneMask, RepeatMask);
15227       continue;
15228     }
15229 
15230     // Didn't find a match. Swap the operands and try again.
15231     std::swap(LaneSrcs[Lane][0], LaneSrcs[Lane][1]);
15232     ShuffleVectorSDNode::commuteMask(InLaneMask);
15233 
15234     if (MatchMasks(InLaneMask, RepeatMask)) {
15235       // Merge this lane mask into the final repeat mask.
15236       MergeMasks(InLaneMask, RepeatMask);
15237       continue;
15238     }
15239 
15240     // Couldn't find a match with the operands in either order.
15241     return SDValue();
15242   }
15243 
15244   // Now handle any lanes with only one source.
15245   for (int Lane = 0; Lane != NumLanes; ++Lane) {
15246     // If this lane has already been processed, skip it.
15247     if (LaneSrcs[Lane][0] >= 0)
15248       continue;
15249 
15250     for (int i = 0; i != NumLaneElts; ++i) {
15251       int M = Mask[(Lane * NumLaneElts) + i];
15252       if (M < 0)
15253         continue;
15254 
15255       // If RepeatMask isn't defined yet we can define it ourself.
15256       if (RepeatMask[i] < 0)
15257         RepeatMask[i] = M % NumLaneElts;
15258 
15259       if (RepeatMask[i] < NumElts) {
15260         if (RepeatMask[i] != M % NumLaneElts)
15261           return SDValue();
15262         LaneSrcs[Lane][0] = M / NumLaneElts;
15263       } else {
15264         if (RepeatMask[i] != ((M % NumLaneElts) + NumElts))
15265           return SDValue();
15266         LaneSrcs[Lane][1] = M / NumLaneElts;
15267       }
15268     }
15269 
15270     if (LaneSrcs[Lane][0] < 0 && LaneSrcs[Lane][1] < 0)
15271       return SDValue();
15272   }
15273 
15274   SmallVector<int, 16> NewMask(NumElts, -1);
15275   for (int Lane = 0; Lane != NumLanes; ++Lane) {
15276     int Src = LaneSrcs[Lane][0];
15277     for (int i = 0; i != NumLaneElts; ++i) {
15278       int M = -1;
15279       if (Src >= 0)
15280         M = Src * NumLaneElts + i;
15281       NewMask[Lane * NumLaneElts + i] = M;
15282     }
15283   }
15284   SDValue NewV1 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
15285   // Ensure we didn't get back the shuffle we started with.
15286   // FIXME: This is a hack to make up for some splat handling code in
15287   // getVectorShuffle.
15288   if (isa<ShuffleVectorSDNode>(NewV1) &&
15289       cast<ShuffleVectorSDNode>(NewV1)->getMask() == Mask)
15290     return SDValue();
15291 
15292   for (int Lane = 0; Lane != NumLanes; ++Lane) {
15293     int Src = LaneSrcs[Lane][1];
15294     for (int i = 0; i != NumLaneElts; ++i) {
15295       int M = -1;
15296       if (Src >= 0)
15297         M = Src * NumLaneElts + i;
15298       NewMask[Lane * NumLaneElts + i] = M;
15299     }
15300   }
15301   SDValue NewV2 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
15302   // Ensure we didn't get back the shuffle we started with.
15303   // FIXME: This is a hack to make up for some splat handling code in
15304   // getVectorShuffle.
15305   if (isa<ShuffleVectorSDNode>(NewV2) &&
15306       cast<ShuffleVectorSDNode>(NewV2)->getMask() == Mask)
15307     return SDValue();
15308 
15309   for (int i = 0; i != NumElts; ++i) {
15310     NewMask[i] = RepeatMask[i % NumLaneElts];
15311     if (NewMask[i] < 0)
15312       continue;
15313 
15314     NewMask[i] += (i / NumLaneElts) * NumLaneElts;
15315   }
15316   return DAG.getVectorShuffle(VT, DL, NewV1, NewV2, NewMask);
15317 }
15318 
15319 /// If the input shuffle mask results in a vector that is undefined in all upper
15320 /// or lower half elements and that mask accesses only 2 halves of the
15321 /// shuffle's operands, return true. A mask of half the width with mask indexes
15322 /// adjusted to access the extracted halves of the original shuffle operands is
15323 /// returned in HalfMask. HalfIdx1 and HalfIdx2 return whether the upper or
15324 /// lower half of each input operand is accessed.
15325 static bool
15326 getHalfShuffleMask(ArrayRef<int> Mask, MutableArrayRef<int> HalfMask,
15327                    int &HalfIdx1, int &HalfIdx2) {
15328   assert((Mask.size() == HalfMask.size() * 2) &&
15329          "Expected input mask to be twice as long as output");
15330 
15331   // Exactly one half of the result must be undef to allow narrowing.
15332   bool UndefLower = isUndefLowerHalf(Mask);
15333   bool UndefUpper = isUndefUpperHalf(Mask);
15334   if (UndefLower == UndefUpper)
15335     return false;
15336 
15337   unsigned HalfNumElts = HalfMask.size();
15338   unsigned MaskIndexOffset = UndefLower ? HalfNumElts : 0;
15339   HalfIdx1 = -1;
15340   HalfIdx2 = -1;
15341   for (unsigned i = 0; i != HalfNumElts; ++i) {
15342     int M = Mask[i + MaskIndexOffset];
15343     if (M < 0) {
15344       HalfMask[i] = M;
15345       continue;
15346     }
15347 
15348     // Determine which of the 4 half vectors this element is from.
15349     // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
15350     int HalfIdx = M / HalfNumElts;
15351 
15352     // Determine the element index into its half vector source.
15353     int HalfElt = M % HalfNumElts;
15354 
15355     // We can shuffle with up to 2 half vectors, set the new 'half'
15356     // shuffle mask accordingly.
15357     if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) {
15358       HalfMask[i] = HalfElt;
15359       HalfIdx1 = HalfIdx;
15360       continue;
15361     }
15362     if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) {
15363       HalfMask[i] = HalfElt + HalfNumElts;
15364       HalfIdx2 = HalfIdx;
15365       continue;
15366     }
15367 
15368     // Too many half vectors referenced.
15369     return false;
15370   }
15371 
15372   return true;
15373 }
15374 
15375 /// Given the output values from getHalfShuffleMask(), create a half width
15376 /// shuffle of extracted vectors followed by an insert back to full width.
15377 static SDValue getShuffleHalfVectors(const SDLoc &DL, SDValue V1, SDValue V2,
15378                                      ArrayRef<int> HalfMask, int HalfIdx1,
15379                                      int HalfIdx2, bool UndefLower,
15380                                      SelectionDAG &DAG, bool UseConcat = false) {
15381   assert(V1.getValueType() == V2.getValueType() && "Different sized vectors?");
15382   assert(V1.getValueType().isSimple() && "Expecting only simple types");
15383 
15384   MVT VT = V1.getSimpleValueType();
15385   MVT HalfVT = VT.getHalfNumVectorElementsVT();
15386   unsigned HalfNumElts = HalfVT.getVectorNumElements();
15387 
15388   auto getHalfVector = [&](int HalfIdx) {
15389     if (HalfIdx < 0)
15390       return DAG.getUNDEF(HalfVT);
15391     SDValue V = (HalfIdx < 2 ? V1 : V2);
15392     HalfIdx = (HalfIdx % 2) * HalfNumElts;
15393     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
15394                        DAG.getIntPtrConstant(HalfIdx, DL));
15395   };
15396 
15397   // ins undef, (shuf (ext V1, HalfIdx1), (ext V2, HalfIdx2), HalfMask), Offset
15398   SDValue Half1 = getHalfVector(HalfIdx1);
15399   SDValue Half2 = getHalfVector(HalfIdx2);
15400   SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
15401   if (UseConcat) {
15402     SDValue Op0 = V;
15403     SDValue Op1 = DAG.getUNDEF(HalfVT);
15404     if (UndefLower)
15405       std::swap(Op0, Op1);
15406     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Op0, Op1);
15407   }
15408 
15409   unsigned Offset = UndefLower ? HalfNumElts : 0;
15410   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
15411                      DAG.getIntPtrConstant(Offset, DL));
15412 }
15413 
15414 /// Lower shuffles where an entire half of a 256 or 512-bit vector is UNDEF.
15415 /// This allows for fast cases such as subvector extraction/insertion
15416 /// or shuffling smaller vector types which can lower more efficiently.
15417 static SDValue lowerShuffleWithUndefHalf(const SDLoc &DL, MVT VT, SDValue V1,
15418                                          SDValue V2, ArrayRef<int> Mask,
15419                                          const X86Subtarget &Subtarget,
15420                                          SelectionDAG &DAG) {
15421   assert((VT.is256BitVector() || VT.is512BitVector()) &&
15422          "Expected 256-bit or 512-bit vector");
15423 
15424   bool UndefLower = isUndefLowerHalf(Mask);
15425   if (!UndefLower && !isUndefUpperHalf(Mask))
15426     return SDValue();
15427 
15428   assert((!UndefLower || !isUndefUpperHalf(Mask)) &&
15429          "Completely undef shuffle mask should have been simplified already");
15430 
15431   // Upper half is undef and lower half is whole upper subvector.
15432   // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15433   MVT HalfVT = VT.getHalfNumVectorElementsVT();
15434   unsigned HalfNumElts = HalfVT.getVectorNumElements();
15435   if (!UndefLower &&
15436       isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
15437     SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
15438                              DAG.getIntPtrConstant(HalfNumElts, DL));
15439     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
15440                        DAG.getIntPtrConstant(0, DL));
15441   }
15442 
15443   // Lower half is undef and upper half is whole lower subvector.
15444   // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15445   if (UndefLower &&
15446       isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
15447     SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
15448                              DAG.getIntPtrConstant(0, DL));
15449     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
15450                        DAG.getIntPtrConstant(HalfNumElts, DL));
15451   }
15452 
15453   int HalfIdx1, HalfIdx2;
15454   SmallVector<int, 8> HalfMask(HalfNumElts);
15455   if (!getHalfShuffleMask(Mask, HalfMask, HalfIdx1, HalfIdx2))
15456     return SDValue();
15457 
15458   assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
15459 
15460   // Only shuffle the halves of the inputs when useful.
15461   unsigned NumLowerHalves =
15462       (HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2);
15463   unsigned NumUpperHalves =
15464       (HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3);
15465   assert(NumLowerHalves + NumUpperHalves <= 2 && "Only 1 or 2 halves allowed");
15466 
15467   // Determine the larger pattern of undef/halves, then decide if it's worth
15468   // splitting the shuffle based on subtarget capabilities and types.
15469   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
15470   if (!UndefLower) {
15471     // XXXXuuuu: no insert is needed.
15472     // Always extract lowers when setting lower - these are all free subreg ops.
15473     if (NumUpperHalves == 0)
15474       return getShuffleHalfVectors(DL, V1, V2, HalfMask, HalfIdx1, HalfIdx2,
15475                                    UndefLower, DAG);
15476 
15477     if (NumUpperHalves == 1) {
15478       // AVX2 has efficient 32/64-bit element cross-lane shuffles.
15479       if (Subtarget.hasAVX2()) {
15480         // extract128 + vunpckhps/vshufps, is better than vblend + vpermps.
15481         if (EltWidth == 32 && NumLowerHalves && HalfVT.is128BitVector() &&
15482             !is128BitUnpackShuffleMask(HalfMask) &&
15483             (!isSingleSHUFPSMask(HalfMask) ||
15484              Subtarget.hasFastVariableShuffle()))
15485           return SDValue();
15486         // If this is a unary shuffle (assume that the 2nd operand is
15487         // canonicalized to undef), then we can use vpermpd. Otherwise, we
15488         // are better off extracting the upper half of 1 operand and using a
15489         // narrow shuffle.
15490         if (EltWidth == 64 && V2.isUndef())
15491           return SDValue();
15492       }
15493       // AVX512 has efficient cross-lane shuffles for all legal 512-bit types.
15494       if (Subtarget.hasAVX512() && VT.is512BitVector())
15495         return SDValue();
15496       // Extract + narrow shuffle is better than the wide alternative.
15497       return getShuffleHalfVectors(DL, V1, V2, HalfMask, HalfIdx1, HalfIdx2,
15498                                    UndefLower, DAG);
15499     }
15500 
15501     // Don't extract both uppers, instead shuffle and then extract.
15502     assert(NumUpperHalves == 2 && "Half vector count went wrong");
15503     return SDValue();
15504   }
15505 
15506   // UndefLower - uuuuXXXX: an insert to high half is required if we split this.
15507   if (NumUpperHalves == 0) {
15508     // AVX2 has efficient 64-bit element cross-lane shuffles.
15509     // TODO: Refine to account for unary shuffle, splat, and other masks?
15510     if (Subtarget.hasAVX2() && EltWidth == 64)
15511       return SDValue();
15512     // AVX512 has efficient cross-lane shuffles for all legal 512-bit types.
15513     if (Subtarget.hasAVX512() && VT.is512BitVector())
15514       return SDValue();
15515     // Narrow shuffle + insert is better than the wide alternative.
15516     return getShuffleHalfVectors(DL, V1, V2, HalfMask, HalfIdx1, HalfIdx2,
15517                                  UndefLower, DAG);
15518   }
15519 
15520   // NumUpperHalves != 0: don't bother with extract, shuffle, and then insert.
15521   return SDValue();
15522 }
15523 
15524 /// Test whether the specified input (0 or 1) is in-place blended by the
15525 /// given mask.
15526 ///
15527 /// This returns true if the elements from a particular input are already in the
15528 /// slot required by the given mask and require no permutation.
15529 static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
15530   assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
15531   int Size = Mask.size();
15532   for (int i = 0; i < Size; ++i)
15533     if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
15534       return false;
15535 
15536   return true;
15537 }
15538 
15539 /// Handle case where shuffle sources are coming from the same 128-bit lane and
15540 /// every lane can be represented as the same repeating mask - allowing us to
15541 /// shuffle the sources with the repeating shuffle and then permute the result
15542 /// to the destination lanes.
15543 static SDValue lowerShuffleAsRepeatedMaskAndLanePermute(
15544     const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
15545     const X86Subtarget &Subtarget, SelectionDAG &DAG) {
15546   int NumElts = VT.getVectorNumElements();
15547   int NumLanes = VT.getSizeInBits() / 128;
15548   int NumLaneElts = NumElts / NumLanes;
15549 
15550   // On AVX2 we may be able to just shuffle the lowest elements and then
15551   // broadcast the result.
15552   if (Subtarget.hasAVX2()) {
15553     for (unsigned BroadcastSize : {16, 32, 64}) {
15554       if (BroadcastSize <= VT.getScalarSizeInBits())
15555         continue;
15556       int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits();
15557 
15558       // Attempt to match a repeating pattern every NumBroadcastElts,
15559       // accounting for UNDEFs but only references the lowest 128-bit
15560       // lane of the inputs.
15561       auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) {
15562         for (int i = 0; i != NumElts; i += NumBroadcastElts)
15563           for (int j = 0; j != NumBroadcastElts; ++j) {
15564             int M = Mask[i + j];
15565             if (M < 0)
15566               continue;
15567             int &R = RepeatMask[j];
15568             if (0 != ((M % NumElts) / NumLaneElts))
15569               return false;
15570             if (0 <= R && R != M)
15571               return false;
15572             R = M;
15573           }
15574         return true;
15575       };
15576 
15577       SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1);
15578       if (!FindRepeatingBroadcastMask(RepeatMask))
15579         continue;
15580 
15581       // Shuffle the (lowest) repeated elements in place for broadcast.
15582       SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask);
15583 
15584       // Shuffle the actual broadcast.
15585       SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1);
15586       for (int i = 0; i != NumElts; i += NumBroadcastElts)
15587         for (int j = 0; j != NumBroadcastElts; ++j)
15588           BroadcastMask[i + j] = j;
15589       return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT),
15590                                   BroadcastMask);
15591     }
15592   }
15593 
15594   // Bail if the shuffle mask doesn't cross 128-bit lanes.
15595   if (!is128BitLaneCrossingShuffleMask(VT, Mask))
15596     return SDValue();
15597 
15598   // Bail if we already have a repeated lane shuffle mask.
15599   SmallVector<int, 8> RepeatedShuffleMask;
15600   if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask))
15601     return SDValue();
15602 
15603   // On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes
15604   // (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes.
15605   int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1;
15606   int NumSubLanes = NumLanes * SubLaneScale;
15607   int NumSubLaneElts = NumLaneElts / SubLaneScale;
15608 
15609   // Check that all the sources are coming from the same lane and see if we can
15610   // form a repeating shuffle mask (local to each sub-lane). At the same time,
15611   // determine the source sub-lane for each destination sub-lane.
15612   int TopSrcSubLane = -1;
15613   SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1);
15614   SmallVector<int, 8> RepeatedSubLaneMasks[2] = {
15615       SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef),
15616       SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)};
15617 
15618   for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) {
15619     // Extract the sub-lane mask, check that it all comes from the same lane
15620     // and normalize the mask entries to come from the first lane.
15621     int SrcLane = -1;
15622     SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1);
15623     for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
15624       int M = Mask[(DstSubLane * NumSubLaneElts) + Elt];
15625       if (M < 0)
15626         continue;
15627       int Lane = (M % NumElts) / NumLaneElts;
15628       if ((0 <= SrcLane) && (SrcLane != Lane))
15629         return SDValue();
15630       SrcLane = Lane;
15631       int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts);
15632       SubLaneMask[Elt] = LocalM;
15633     }
15634 
15635     // Whole sub-lane is UNDEF.
15636     if (SrcLane < 0)
15637       continue;
15638 
15639     // Attempt to match against the candidate repeated sub-lane masks.
15640     for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) {
15641       auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) {
15642         for (int i = 0; i != NumSubLaneElts; ++i) {
15643           if (M1[i] < 0 || M2[i] < 0)
15644             continue;
15645           if (M1[i] != M2[i])
15646             return false;
15647         }
15648         return true;
15649       };
15650 
15651       auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane];
15652       if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask))
15653         continue;
15654 
15655       // Merge the sub-lane mask into the matching repeated sub-lane mask.
15656       for (int i = 0; i != NumSubLaneElts; ++i) {
15657         int M = SubLaneMask[i];
15658         if (M < 0)
15659           continue;
15660         assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) &&
15661                "Unexpected mask element");
15662         RepeatedSubLaneMask[i] = M;
15663       }
15664 
15665       // Track the top most source sub-lane - by setting the remaining to UNDEF
15666       // we can greatly simplify shuffle matching.
15667       int SrcSubLane = (SrcLane * SubLaneScale) + SubLane;
15668       TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane);
15669       Dst2SrcSubLanes[DstSubLane] = SrcSubLane;
15670       break;
15671     }
15672 
15673     // Bail if we failed to find a matching repeated sub-lane mask.
15674     if (Dst2SrcSubLanes[DstSubLane] < 0)
15675       return SDValue();
15676   }
15677   assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes &&
15678          "Unexpected source lane");
15679 
15680   // Create a repeating shuffle mask for the entire vector.
15681   SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1);
15682   for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) {
15683     int Lane = SubLane / SubLaneScale;
15684     auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale];
15685     for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
15686       int M = RepeatedSubLaneMask[Elt];
15687       if (M < 0)
15688         continue;
15689       int Idx = (SubLane * NumSubLaneElts) + Elt;
15690       RepeatedMask[Idx] = M + (Lane * NumLaneElts);
15691     }
15692   }
15693   SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask);
15694 
15695   // Shuffle each source sub-lane to its destination.
15696   SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1);
15697   for (int i = 0; i != NumElts; i += NumSubLaneElts) {
15698     int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
15699     if (SrcSubLane < 0)
15700       continue;
15701     for (int j = 0; j != NumSubLaneElts; ++j)
15702       SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts);
15703   }
15704 
15705   return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT),
15706                               SubLaneMask);
15707 }
15708 
15709 static bool matchShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2,
15710                                    bool &ForceV1Zero, bool &ForceV2Zero,
15711                                    unsigned &ShuffleImm, ArrayRef<int> Mask,
15712                                    const APInt &Zeroable) {
15713   int NumElts = VT.getVectorNumElements();
15714   assert(VT.getScalarSizeInBits() == 64 &&
15715          (NumElts == 2 || NumElts == 4 || NumElts == 8) &&
15716          "Unexpected data type for VSHUFPD");
15717   assert(isUndefOrZeroOrInRange(Mask, 0, 2 * NumElts) &&
15718          "Illegal shuffle mask");
15719 
15720   bool ZeroLane[2] = { true, true };
15721   for (int i = 0; i < NumElts; ++i)
15722     ZeroLane[i & 1] &= Zeroable[i];
15723 
15724   // Mask for V8F64: 0/1,  8/9,  2/3,  10/11, 4/5, ..
15725   // Mask for V4F64; 0/1,  4/5,  2/3,  6/7..
15726   ShuffleImm = 0;
15727   bool ShufpdMask = true;
15728   bool CommutableMask = true;
15729   for (int i = 0; i < NumElts; ++i) {
15730     if (Mask[i] == SM_SentinelUndef || ZeroLane[i & 1])
15731       continue;
15732     if (Mask[i] < 0)
15733       return false;
15734     int Val = (i & 6) + NumElts * (i & 1);
15735     int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1);
15736     if (Mask[i] < Val || Mask[i] > Val + 1)
15737       ShufpdMask = false;
15738     if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
15739       CommutableMask = false;
15740     ShuffleImm |= (Mask[i] % 2) << i;
15741   }
15742 
15743   if (!ShufpdMask && !CommutableMask)
15744     return false;
15745 
15746   if (!ShufpdMask && CommutableMask)
15747     std::swap(V1, V2);
15748 
15749   ForceV1Zero = ZeroLane[0];
15750   ForceV2Zero = ZeroLane[1];
15751   return true;
15752 }
15753 
15754 static SDValue lowerShuffleWithSHUFPD(const SDLoc &DL, MVT VT, SDValue V1,
15755                                       SDValue V2, ArrayRef<int> Mask,
15756                                       const APInt &Zeroable,
15757                                       const X86Subtarget &Subtarget,
15758                                       SelectionDAG &DAG) {
15759   assert((VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v8f64) &&
15760          "Unexpected data type for VSHUFPD");
15761 
15762   unsigned Immediate = 0;
15763   bool ForceV1Zero = false, ForceV2Zero = false;
15764   if (!matchShuffleWithSHUFPD(VT, V1, V2, ForceV1Zero, ForceV2Zero, Immediate,
15765                               Mask, Zeroable))
15766     return SDValue();
15767 
15768   // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
15769   if (ForceV1Zero)
15770     V1 = getZeroVector(VT, Subtarget, DAG, DL);
15771   if (ForceV2Zero)
15772     V2 = getZeroVector(VT, Subtarget, DAG, DL);
15773 
15774   return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
15775                      DAG.getTargetConstant(Immediate, DL, MVT::i8));
15776 }
15777 
15778 // Look for {0, 8, 16, 24, 32, 40, 48, 56 } in the first 8 elements. Followed
15779 // by zeroable elements in the remaining 24 elements. Turn this into two
15780 // vmovqb instructions shuffled together.
15781 static SDValue lowerShuffleAsVTRUNCAndUnpack(const SDLoc &DL, MVT VT,
15782                                              SDValue V1, SDValue V2,
15783                                              ArrayRef<int> Mask,
15784                                              const APInt &Zeroable,
15785                                              SelectionDAG &DAG) {
15786   assert(VT == MVT::v32i8 && "Unexpected type!");
15787 
15788   // The first 8 indices should be every 8th element.
15789   if (!isSequentialOrUndefInRange(Mask, 0, 8, 0, 8))
15790     return SDValue();
15791 
15792   // Remaining elements need to be zeroable.
15793   if (Zeroable.countLeadingOnes() < (Mask.size() - 8))
15794     return SDValue();
15795 
15796   V1 = DAG.getBitcast(MVT::v4i64, V1);
15797   V2 = DAG.getBitcast(MVT::v4i64, V2);
15798 
15799   V1 = DAG.getNode(X86ISD::VTRUNC, DL, MVT::v16i8, V1);
15800   V2 = DAG.getNode(X86ISD::VTRUNC, DL, MVT::v16i8, V2);
15801 
15802   // The VTRUNCs will put 0s in the upper 12 bytes. Use them to put zeroes in
15803   // the upper bits of the result using an unpckldq.
15804   SDValue Unpack = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2,
15805                                         { 0, 1, 2, 3, 16, 17, 18, 19,
15806                                           4, 5, 6, 7, 20, 21, 22, 23 });
15807   // Insert the unpckldq into a zero vector to widen to v32i8.
15808   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v32i8,
15809                      DAG.getConstant(0, DL, MVT::v32i8), Unpack,
15810                      DAG.getIntPtrConstant(0, DL));
15811 }
15812 
15813 
15814 /// Handle lowering of 4-lane 64-bit floating point shuffles.
15815 ///
15816 /// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
15817 /// isn't available.
15818 static SDValue lowerV4F64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
15819                                  const APInt &Zeroable, SDValue V1, SDValue V2,
15820                                  const X86Subtarget &Subtarget,
15821                                  SelectionDAG &DAG) {
15822   assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
15823   assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
15824   assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
15825 
15826   if (SDValue V = lowerV2X128Shuffle(DL, MVT::v4f64, V1, V2, Mask, Zeroable,
15827                                      Subtarget, DAG))
15828     return V;
15829 
15830   if (V2.isUndef()) {
15831     // Check for being able to broadcast a single element.
15832     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4f64, V1, V2,
15833                                                     Mask, Subtarget, DAG))
15834       return Broadcast;
15835 
15836     // Use low duplicate instructions for masks that match their pattern.
15837     if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
15838       return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
15839 
15840     if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
15841       // Non-half-crossing single input shuffles can be lowered with an
15842       // interleaved permutation.
15843       unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
15844                               ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
15845       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
15846                          DAG.getTargetConstant(VPERMILPMask, DL, MVT::i8));
15847     }
15848 
15849     // With AVX2 we have direct support for this permutation.
15850     if (Subtarget.hasAVX2())
15851       return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
15852                          getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
15853 
15854     // Try to create an in-lane repeating shuffle mask and then shuffle the
15855     // results into the target lanes.
15856     if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
15857             DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
15858       return V;
15859 
15860     // Try to permute the lanes and then use a per-lane permute.
15861     if (SDValue V = lowerShuffleAsLanePermuteAndPermute(DL, MVT::v4f64, V1, V2,
15862                                                         Mask, DAG, Subtarget))
15863       return V;
15864 
15865     // Otherwise, fall back.
15866     return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v4f64, V1, V2, Mask,
15867                                                DAG, Subtarget);
15868   }
15869 
15870   // Use dedicated unpack instructions for masks that match their pattern.
15871   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
15872     return V;
15873 
15874   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
15875                                           Zeroable, Subtarget, DAG))
15876     return Blend;
15877 
15878   // Check if the blend happens to exactly fit that of SHUFPD.
15879   if (SDValue Op = lowerShuffleWithSHUFPD(DL, MVT::v4f64, V1, V2, Mask,
15880                                           Zeroable, Subtarget, DAG))
15881     return Op;
15882 
15883   // If we have lane crossing shuffles AND they don't all come from the lower
15884   // lane elements, lower to SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)).
15885   // TODO: Handle BUILD_VECTOR sources which getVectorShuffle currently
15886   // canonicalize to a blend of splat which isn't necessary for this combine.
15887   if (is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask) &&
15888       !all_of(Mask, [](int M) { return M < 2 || (4 <= M && M < 6); }) &&
15889       (V1.getOpcode() != ISD::BUILD_VECTOR) &&
15890       (V2.getOpcode() != ISD::BUILD_VECTOR))
15891     if (SDValue Op = lowerShuffleAsLanePermuteAndSHUFP(DL, MVT::v4f64, V1, V2,
15892                                                        Mask, DAG))
15893       return Op;
15894 
15895   // If we have one input in place, then we can permute the other input and
15896   // blend the result.
15897   if (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask))
15898     return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, Mask,
15899                                                 Subtarget, DAG);
15900 
15901   // Try to create an in-lane repeating shuffle mask and then shuffle the
15902   // results into the target lanes.
15903   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
15904           DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
15905     return V;
15906 
15907   // Try to simplify this by merging 128-bit lanes to enable a lane-based
15908   // shuffle. However, if we have AVX2 and either inputs are already in place,
15909   // we will be able to shuffle even across lanes the other input in a single
15910   // instruction so skip this pattern.
15911   if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
15912                                 isShuffleMaskInputInPlace(1, Mask))))
15913     if (SDValue V = lowerShuffleAsLanePermuteAndRepeatedMask(
15914             DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
15915       return V;
15916 
15917   // If we have VLX support, we can use VEXPAND.
15918   if (Subtarget.hasVLX())
15919     if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v4f64, Zeroable, Mask, V1, V2,
15920                                          DAG, Subtarget))
15921       return V;
15922 
15923   // If we have AVX2 then we always want to lower with a blend because an v4 we
15924   // can fully permute the elements.
15925   if (Subtarget.hasAVX2())
15926     return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, Mask,
15927                                                 Subtarget, DAG);
15928 
15929   // Otherwise fall back on generic lowering.
15930   return lowerShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask,
15931                                     Subtarget, DAG);
15932 }
15933 
15934 /// Handle lowering of 4-lane 64-bit integer shuffles.
15935 ///
15936 /// This routine is only called when we have AVX2 and thus a reasonable
15937 /// instruction set for v4i64 shuffling..
15938 static SDValue lowerV4I64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
15939                                  const APInt &Zeroable, SDValue V1, SDValue V2,
15940                                  const X86Subtarget &Subtarget,
15941                                  SelectionDAG &DAG) {
15942   assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
15943   assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
15944   assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
15945   assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!");
15946 
15947   if (SDValue V = lowerV2X128Shuffle(DL, MVT::v4i64, V1, V2, Mask, Zeroable,
15948                                      Subtarget, DAG))
15949     return V;
15950 
15951   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
15952                                           Zeroable, Subtarget, DAG))
15953     return Blend;
15954 
15955   // Check for being able to broadcast a single element.
15956   if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4i64, V1, V2, Mask,
15957                                                   Subtarget, DAG))
15958     return Broadcast;
15959 
15960   if (V2.isUndef()) {
15961     // When the shuffle is mirrored between the 128-bit lanes of the unit, we
15962     // can use lower latency instructions that will operate on both lanes.
15963     SmallVector<int, 2> RepeatedMask;
15964     if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
15965       SmallVector<int, 4> PSHUFDMask;
15966       scaleShuffleMask<int>(2, RepeatedMask, PSHUFDMask);
15967       return DAG.getBitcast(
15968           MVT::v4i64,
15969           DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
15970                       DAG.getBitcast(MVT::v8i32, V1),
15971                       getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
15972     }
15973 
15974     // AVX2 provides a direct instruction for permuting a single input across
15975     // lanes.
15976     return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
15977                        getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
15978   }
15979 
15980   // Try to use shift instructions.
15981   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask,
15982                                           Zeroable, Subtarget, DAG))
15983     return Shift;
15984 
15985   // If we have VLX support, we can use VALIGN or VEXPAND.
15986   if (Subtarget.hasVLX()) {
15987     if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v4i64, V1, V2, Mask,
15988                                               Subtarget, DAG))
15989       return Rotate;
15990 
15991     if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v4i64, Zeroable, Mask, V1, V2,
15992                                          DAG, Subtarget))
15993       return V;
15994   }
15995 
15996   // Try to use PALIGNR.
15997   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v4i64, V1, V2, Mask,
15998                                                 Subtarget, DAG))
15999     return Rotate;
16000 
16001   // Use dedicated unpack instructions for masks that match their pattern.
16002   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
16003     return V;
16004 
16005   // If we have one input in place, then we can permute the other input and
16006   // blend the result.
16007   if (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask))
16008     return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, Mask,
16009                                                 Subtarget, DAG);
16010 
16011   // Try to create an in-lane repeating shuffle mask and then shuffle the
16012   // results into the target lanes.
16013   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
16014           DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
16015     return V;
16016 
16017   // Try to simplify this by merging 128-bit lanes to enable a lane-based
16018   // shuffle. However, if we have AVX2 and either inputs are already in place,
16019   // we will be able to shuffle even across lanes the other input in a single
16020   // instruction so skip this pattern.
16021   if (!isShuffleMaskInputInPlace(0, Mask) &&
16022       !isShuffleMaskInputInPlace(1, Mask))
16023     if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
16024             DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
16025       return Result;
16026 
16027   // Otherwise fall back on generic blend lowering.
16028   return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, Mask,
16029                                               Subtarget, DAG);
16030 }
16031 
16032 /// Handle lowering of 8-lane 32-bit floating point shuffles.
16033 ///
16034 /// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
16035 /// isn't available.
16036 static SDValue lowerV8F32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16037                                  const APInt &Zeroable, SDValue V1, SDValue V2,
16038                                  const X86Subtarget &Subtarget,
16039                                  SelectionDAG &DAG) {
16040   assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
16041   assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
16042   assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
16043 
16044   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
16045                                           Zeroable, Subtarget, DAG))
16046     return Blend;
16047 
16048   // Check for being able to broadcast a single element.
16049   if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v8f32, V1, V2, Mask,
16050                                                   Subtarget, DAG))
16051     return Broadcast;
16052 
16053   // If the shuffle mask is repeated in each 128-bit lane, we have many more
16054   // options to efficiently lower the shuffle.
16055   SmallVector<int, 4> RepeatedMask;
16056   if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
16057     assert(RepeatedMask.size() == 4 &&
16058            "Repeated masks must be half the mask width!");
16059 
16060     // Use even/odd duplicate instructions for masks that match their pattern.
16061     if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
16062       return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
16063     if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
16064       return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
16065 
16066     if (V2.isUndef())
16067       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
16068                          getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
16069 
16070     // Use dedicated unpack instructions for masks that match their pattern.
16071     if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
16072       return V;
16073 
16074     // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
16075     // have already handled any direct blends.
16076     return lowerShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
16077   }
16078 
16079   // Try to create an in-lane repeating shuffle mask and then shuffle the
16080   // results into the target lanes.
16081   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
16082           DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
16083     return V;
16084 
16085   // If we have a single input shuffle with different shuffle patterns in the
16086   // two 128-bit lanes use the variable mask to VPERMILPS.
16087   if (V2.isUndef()) {
16088     SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
16089     if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
16090       return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask);
16091 
16092     if (Subtarget.hasAVX2())
16093       return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1);
16094 
16095     // Otherwise, fall back.
16096     return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v8f32, V1, V2, Mask,
16097                                                DAG, Subtarget);
16098   }
16099 
16100   // Try to simplify this by merging 128-bit lanes to enable a lane-based
16101   // shuffle.
16102   if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
16103           DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
16104     return Result;
16105 
16106   // If we have VLX support, we can use VEXPAND.
16107   if (Subtarget.hasVLX())
16108     if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8f32, Zeroable, Mask, V1, V2,
16109                                          DAG, Subtarget))
16110       return V;
16111 
16112   // For non-AVX512 if the Mask is of 16bit elements in lane then try to split
16113   // since after split we get a more efficient code using vpunpcklwd and
16114   // vpunpckhwd instrs than vblend.
16115   if (!Subtarget.hasAVX512() && isUnpackWdShuffleMask(Mask, MVT::v8f32))
16116     if (SDValue V = lowerShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask,
16117                                                Subtarget, DAG))
16118       return V;
16119 
16120   // If we have AVX2 then we always want to lower with a blend because at v8 we
16121   // can fully permute the elements.
16122   if (Subtarget.hasAVX2())
16123     return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, Mask,
16124                                                 Subtarget, DAG);
16125 
16126   // Otherwise fall back on generic lowering.
16127   return lowerShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask,
16128                                     Subtarget, DAG);
16129 }
16130 
16131 /// Handle lowering of 8-lane 32-bit integer shuffles.
16132 ///
16133 /// This routine is only called when we have AVX2 and thus a reasonable
16134 /// instruction set for v8i32 shuffling..
16135 static SDValue lowerV8I32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16136                                  const APInt &Zeroable, SDValue V1, SDValue V2,
16137                                  const X86Subtarget &Subtarget,
16138                                  SelectionDAG &DAG) {
16139   assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
16140   assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
16141   assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
16142   assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!");
16143 
16144   // Whenever we can lower this as a zext, that instruction is strictly faster
16145   // than any alternative. It also allows us to fold memory operands into the
16146   // shuffle in many cases.
16147   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2, Mask,
16148                                                    Zeroable, Subtarget, DAG))
16149     return ZExt;
16150 
16151   // For non-AVX512 if the Mask is of 16bit elements in lane then try to split
16152   // since after split we get a more efficient code than vblend by using
16153   // vpunpcklwd and vpunpckhwd instrs.
16154   if (isUnpackWdShuffleMask(Mask, MVT::v8i32) && !V2.isUndef() &&
16155       !Subtarget.hasAVX512())
16156     if (SDValue V = lowerShuffleAsSplitOrBlend(DL, MVT::v8i32, V1, V2, Mask,
16157                                                Subtarget, DAG))
16158       return V;
16159 
16160   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
16161                                           Zeroable, Subtarget, DAG))
16162     return Blend;
16163 
16164   // Check for being able to broadcast a single element.
16165   if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v8i32, V1, V2, Mask,
16166                                                   Subtarget, DAG))
16167     return Broadcast;
16168 
16169   // If the shuffle mask is repeated in each 128-bit lane we can use more
16170   // efficient instructions that mirror the shuffles across the two 128-bit
16171   // lanes.
16172   SmallVector<int, 4> RepeatedMask;
16173   bool Is128BitLaneRepeatedShuffle =
16174       is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask);
16175   if (Is128BitLaneRepeatedShuffle) {
16176     assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
16177     if (V2.isUndef())
16178       return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
16179                          getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
16180 
16181     // Use dedicated unpack instructions for masks that match their pattern.
16182     if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
16183       return V;
16184   }
16185 
16186   // Try to use shift instructions.
16187   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask,
16188                                           Zeroable, Subtarget, DAG))
16189     return Shift;
16190 
16191   // If we have VLX support, we can use VALIGN or EXPAND.
16192   if (Subtarget.hasVLX()) {
16193     if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v8i32, V1, V2, Mask,
16194                                               Subtarget, DAG))
16195       return Rotate;
16196 
16197     if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8i32, Zeroable, Mask, V1, V2,
16198                                          DAG, Subtarget))
16199       return V;
16200   }
16201 
16202   // Try to use byte rotation instructions.
16203   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i32, V1, V2, Mask,
16204                                                 Subtarget, DAG))
16205     return Rotate;
16206 
16207   // Try to create an in-lane repeating shuffle mask and then shuffle the
16208   // results into the target lanes.
16209   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
16210           DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
16211     return V;
16212 
16213   // If the shuffle patterns aren't repeated but it is a single input, directly
16214   // generate a cross-lane VPERMD instruction.
16215   if (V2.isUndef()) {
16216     SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
16217     return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1);
16218   }
16219 
16220   // Assume that a single SHUFPS is faster than an alternative sequence of
16221   // multiple instructions (even if the CPU has a domain penalty).
16222   // If some CPU is harmed by the domain switch, we can fix it in a later pass.
16223   if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
16224     SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1);
16225     SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2);
16226     SDValue ShufPS = lowerShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask,
16227                                             CastV1, CastV2, DAG);
16228     return DAG.getBitcast(MVT::v8i32, ShufPS);
16229   }
16230 
16231   // Try to simplify this by merging 128-bit lanes to enable a lane-based
16232   // shuffle.
16233   if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
16234           DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
16235     return Result;
16236 
16237   // Otherwise fall back on generic blend lowering.
16238   return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, Mask,
16239                                               Subtarget, DAG);
16240 }
16241 
16242 /// Handle lowering of 16-lane 16-bit integer shuffles.
16243 ///
16244 /// This routine is only called when we have AVX2 and thus a reasonable
16245 /// instruction set for v16i16 shuffling..
16246 static SDValue lowerV16I16Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16247                                   const APInt &Zeroable, SDValue V1, SDValue V2,
16248                                   const X86Subtarget &Subtarget,
16249                                   SelectionDAG &DAG) {
16250   assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
16251   assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
16252   assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
16253   assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!");
16254 
16255   // Whenever we can lower this as a zext, that instruction is strictly faster
16256   // than any alternative. It also allows us to fold memory operands into the
16257   // shuffle in many cases.
16258   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
16259           DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
16260     return ZExt;
16261 
16262   // Check for being able to broadcast a single element.
16263   if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v16i16, V1, V2, Mask,
16264                                                   Subtarget, DAG))
16265     return Broadcast;
16266 
16267   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
16268                                           Zeroable, Subtarget, DAG))
16269     return Blend;
16270 
16271   // Use dedicated unpack instructions for masks that match their pattern.
16272   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
16273     return V;
16274 
16275   // Use dedicated pack instructions for masks that match their pattern.
16276   if (SDValue V = lowerShuffleWithPACK(DL, MVT::v16i16, Mask, V1, V2, DAG,
16277                                        Subtarget))
16278     return V;
16279 
16280   // Try to use shift instructions.
16281   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask,
16282                                           Zeroable, Subtarget, DAG))
16283     return Shift;
16284 
16285   // Try to use byte rotation instructions.
16286   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v16i16, V1, V2, Mask,
16287                                                 Subtarget, DAG))
16288     return Rotate;
16289 
16290   // Try to create an in-lane repeating shuffle mask and then shuffle the
16291   // results into the target lanes.
16292   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
16293           DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
16294     return V;
16295 
16296   if (V2.isUndef()) {
16297     // There are no generalized cross-lane shuffle operations available on i16
16298     // element types.
16299     if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) {
16300       if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
16301               DL, MVT::v16i16, V1, V2, Mask, DAG, Subtarget))
16302         return V;
16303 
16304       return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v16i16, V1, V2, Mask,
16305                                                  DAG, Subtarget);
16306     }
16307 
16308     SmallVector<int, 8> RepeatedMask;
16309     if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
16310       // As this is a single-input shuffle, the repeated mask should be
16311       // a strictly valid v8i16 mask that we can pass through to the v8i16
16312       // lowering to handle even the v16 case.
16313       return lowerV8I16GeneralSingleInputShuffle(
16314           DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
16315     }
16316   }
16317 
16318   if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v16i16, Mask, V1, V2,
16319                                               Zeroable, Subtarget, DAG))
16320     return PSHUFB;
16321 
16322   // AVX512BWVL can lower to VPERMW.
16323   if (Subtarget.hasBWI() && Subtarget.hasVLX())
16324     return lowerShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG);
16325 
16326   // Try to simplify this by merging 128-bit lanes to enable a lane-based
16327   // shuffle.
16328   if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
16329           DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
16330     return Result;
16331 
16332   // Try to permute the lanes and then use a per-lane permute.
16333   if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
16334           DL, MVT::v16i16, V1, V2, Mask, DAG, Subtarget))
16335     return V;
16336 
16337   // Otherwise fall back on generic lowering.
16338   return lowerShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask,
16339                                     Subtarget, DAG);
16340 }
16341 
16342 /// Handle lowering of 32-lane 8-bit integer shuffles.
16343 ///
16344 /// This routine is only called when we have AVX2 and thus a reasonable
16345 /// instruction set for v32i8 shuffling..
16346 static SDValue lowerV32I8Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16347                                  const APInt &Zeroable, SDValue V1, SDValue V2,
16348                                  const X86Subtarget &Subtarget,
16349                                  SelectionDAG &DAG) {
16350   assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
16351   assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
16352   assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
16353   assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!");
16354 
16355   // Whenever we can lower this as a zext, that instruction is strictly faster
16356   // than any alternative. It also allows us to fold memory operands into the
16357   // shuffle in many cases.
16358   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2, Mask,
16359                                                    Zeroable, Subtarget, DAG))
16360     return ZExt;
16361 
16362   // Check for being able to broadcast a single element.
16363   if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v32i8, V1, V2, Mask,
16364                                                   Subtarget, DAG))
16365     return Broadcast;
16366 
16367   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
16368                                           Zeroable, Subtarget, DAG))
16369     return Blend;
16370 
16371   // Use dedicated unpack instructions for masks that match their pattern.
16372   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
16373     return V;
16374 
16375   // Use dedicated pack instructions for masks that match their pattern.
16376   if (SDValue V = lowerShuffleWithPACK(DL, MVT::v32i8, Mask, V1, V2, DAG,
16377                                        Subtarget))
16378     return V;
16379 
16380   // Try to use shift instructions.
16381   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask,
16382                                                 Zeroable, Subtarget, DAG))
16383     return Shift;
16384 
16385   // Try to use byte rotation instructions.
16386   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v32i8, V1, V2, Mask,
16387                                                 Subtarget, DAG))
16388     return Rotate;
16389 
16390   // Try to create an in-lane repeating shuffle mask and then shuffle the
16391   // results into the target lanes.
16392   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
16393           DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
16394     return V;
16395 
16396   // There are no generalized cross-lane shuffle operations available on i8
16397   // element types.
16398   if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) {
16399     if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
16400             DL, MVT::v32i8, V1, V2, Mask, DAG, Subtarget))
16401       return V;
16402 
16403     return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v32i8, V1, V2, Mask,
16404                                                DAG, Subtarget);
16405   }
16406 
16407   if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v32i8, Mask, V1, V2,
16408                                               Zeroable, Subtarget, DAG))
16409     return PSHUFB;
16410 
16411   // AVX512VBMIVL can lower to VPERMB.
16412   if (Subtarget.hasVBMI() && Subtarget.hasVLX())
16413     return lowerShuffleWithPERMV(DL, MVT::v32i8, Mask, V1, V2, DAG);
16414 
16415   // Try to simplify this by merging 128-bit lanes to enable a lane-based
16416   // shuffle.
16417   if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
16418           DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
16419     return Result;
16420 
16421   // Try to permute the lanes and then use a per-lane permute.
16422   if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
16423           DL, MVT::v32i8, V1, V2, Mask, DAG, Subtarget))
16424     return V;
16425 
16426   // Look for {0, 8, 16, 24, 32, 40, 48, 56 } in the first 8 elements. Followed
16427   // by zeroable elements in the remaining 24 elements. Turn this into two
16428   // vmovqb instructions shuffled together.
16429   if (Subtarget.hasVLX())
16430     if (SDValue V = lowerShuffleAsVTRUNCAndUnpack(DL, MVT::v32i8, V1, V2,
16431                                                   Mask, Zeroable, DAG))
16432       return V;
16433 
16434   // Otherwise fall back on generic lowering.
16435   return lowerShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask,
16436                                     Subtarget, DAG);
16437 }
16438 
16439 /// High-level routine to lower various 256-bit x86 vector shuffles.
16440 ///
16441 /// This routine either breaks down the specific type of a 256-bit x86 vector
16442 /// shuffle or splits it into two 128-bit shuffles and fuses the results back
16443 /// together based on the available instructions.
16444 static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef<int> Mask, MVT VT,
16445                                   SDValue V1, SDValue V2, const APInt &Zeroable,
16446                                   const X86Subtarget &Subtarget,
16447                                   SelectionDAG &DAG) {
16448   // If we have a single input to the zero element, insert that into V1 if we
16449   // can do so cheaply.
16450   int NumElts = VT.getVectorNumElements();
16451   int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
16452 
16453   if (NumV2Elements == 1 && Mask[0] >= NumElts)
16454     if (SDValue Insertion = lowerShuffleAsElementInsertion(
16455             DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
16456       return Insertion;
16457 
16458   // Handle special cases where the lower or upper half is UNDEF.
16459   if (SDValue V =
16460           lowerShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
16461     return V;
16462 
16463   // There is a really nice hard cut-over between AVX1 and AVX2 that means we
16464   // can check for those subtargets here and avoid much of the subtarget
16465   // querying in the per-vector-type lowering routines. With AVX1 we have
16466   // essentially *zero* ability to manipulate a 256-bit vector with integer
16467   // types. Since we'll use floating point types there eventually, just
16468   // immediately cast everything to a float and operate entirely in that domain.
16469   if (VT.isInteger() && !Subtarget.hasAVX2()) {
16470     int ElementBits = VT.getScalarSizeInBits();
16471     if (ElementBits < 32) {
16472       // No floating point type available, if we can't use the bit operations
16473       // for masking/blending then decompose into 128-bit vectors.
16474       if (SDValue V = lowerShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable,
16475                                             Subtarget, DAG))
16476         return V;
16477       if (SDValue V = lowerShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG))
16478         return V;
16479       return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
16480     }
16481 
16482     MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
16483                                 VT.getVectorNumElements());
16484     V1 = DAG.getBitcast(FpVT, V1);
16485     V2 = DAG.getBitcast(FpVT, V2);
16486     return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
16487   }
16488 
16489   switch (VT.SimpleTy) {
16490   case MVT::v4f64:
16491     return lowerV4F64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
16492   case MVT::v4i64:
16493     return lowerV4I64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
16494   case MVT::v8f32:
16495     return lowerV8F32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
16496   case MVT::v8i32:
16497     return lowerV8I32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
16498   case MVT::v16i16:
16499     return lowerV16I16Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
16500   case MVT::v32i8:
16501     return lowerV32I8Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
16502 
16503   default:
16504     llvm_unreachable("Not a valid 256-bit x86 vector type!");
16505   }
16506 }
16507 
16508 /// Try to lower a vector shuffle as a 128-bit shuffles.
16509 static SDValue lowerV4X128Shuffle(const SDLoc &DL, MVT VT, ArrayRef<int> Mask,
16510                                   const APInt &Zeroable, SDValue V1, SDValue V2,
16511                                   const X86Subtarget &Subtarget,
16512                                   SelectionDAG &DAG) {
16513   assert(VT.getScalarSizeInBits() == 64 &&
16514          "Unexpected element type size for 128bit shuffle.");
16515 
16516   // To handle 256 bit vector requires VLX and most probably
16517   // function lowerV2X128VectorShuffle() is better solution.
16518   assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle.");
16519 
16520   // TODO - use Zeroable like we do for lowerV2X128VectorShuffle?
16521   SmallVector<int, 4> WidenedMask;
16522   if (!canWidenShuffleElements(Mask, WidenedMask))
16523     return SDValue();
16524 
16525   // Try to use an insert into a zero vector.
16526   if (WidenedMask[0] == 0 && (Zeroable & 0xf0) == 0xf0 &&
16527       (WidenedMask[1] == 1 || (Zeroable & 0x0c) == 0x0c)) {
16528     unsigned NumElts = ((Zeroable & 0x0c) == 0x0c) ? 2 : 4;
16529     MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
16530     SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
16531                               DAG.getIntPtrConstant(0, DL));
16532     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
16533                        getZeroVector(VT, Subtarget, DAG, DL), LoV,
16534                        DAG.getIntPtrConstant(0, DL));
16535   }
16536 
16537   // Check for patterns which can be matched with a single insert of a 256-bit
16538   // subvector.
16539   bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask,
16540                                         {0, 1, 2, 3, 0, 1, 2, 3});
16541   if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask,
16542                                         {0, 1, 2, 3, 8, 9, 10, 11})) {
16543     MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4);
16544     SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
16545                                  OnlyUsesV1 ? V1 : V2,
16546                               DAG.getIntPtrConstant(0, DL));
16547     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec,
16548                        DAG.getIntPtrConstant(4, DL));
16549   }
16550 
16551   assert(WidenedMask.size() == 4);
16552 
16553   // See if this is an insertion of the lower 128-bits of V2 into V1.
16554   bool IsInsert = true;
16555   int V2Index = -1;
16556   for (int i = 0; i < 4; ++i) {
16557     assert(WidenedMask[i] >= -1);
16558     if (WidenedMask[i] < 0)
16559       continue;
16560 
16561     // Make sure all V1 subvectors are in place.
16562     if (WidenedMask[i] < 4) {
16563       if (WidenedMask[i] != i) {
16564         IsInsert = false;
16565         break;
16566       }
16567     } else {
16568       // Make sure we only have a single V2 index and its the lowest 128-bits.
16569       if (V2Index >= 0 || WidenedMask[i] != 4) {
16570         IsInsert = false;
16571         break;
16572       }
16573       V2Index = i;
16574     }
16575   }
16576   if (IsInsert && V2Index >= 0) {
16577     MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
16578     SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
16579                                  DAG.getIntPtrConstant(0, DL));
16580     return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL);
16581   }
16582 
16583   // Try to lower to vshuf64x2/vshuf32x4.
16584   SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
16585   unsigned PermMask = 0;
16586   // Insure elements came from the same Op.
16587   for (int i = 0; i < 4; ++i) {
16588     assert(WidenedMask[i] >= -1);
16589     if (WidenedMask[i] < 0)
16590       continue;
16591 
16592     SDValue Op = WidenedMask[i] >= 4 ? V2 : V1;
16593     unsigned OpIndex = i / 2;
16594     if (Ops[OpIndex].isUndef())
16595       Ops[OpIndex] = Op;
16596     else if (Ops[OpIndex] != Op)
16597       return SDValue();
16598 
16599     // Convert the 128-bit shuffle mask selection values into 128-bit selection
16600     // bits defined by a vshuf64x2 instruction's immediate control byte.
16601     PermMask |= (WidenedMask[i] % 4) << (i * 2);
16602   }
16603 
16604   return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1],
16605                      DAG.getTargetConstant(PermMask, DL, MVT::i8));
16606 }
16607 
16608 /// Handle lowering of 8-lane 64-bit floating point shuffles.
16609 static SDValue lowerV8F64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16610                                  const APInt &Zeroable, SDValue V1, SDValue V2,
16611                                  const X86Subtarget &Subtarget,
16612                                  SelectionDAG &DAG) {
16613   assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
16614   assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
16615   assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
16616 
16617   if (V2.isUndef()) {
16618     // Use low duplicate instructions for masks that match their pattern.
16619     if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
16620       return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1);
16621 
16622     if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) {
16623       // Non-half-crossing single input shuffles can be lowered with an
16624       // interleaved permutation.
16625       unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
16626                               ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) |
16627                               ((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) |
16628                               ((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7);
16629       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1,
16630                          DAG.getTargetConstant(VPERMILPMask, DL, MVT::i8));
16631     }
16632 
16633     SmallVector<int, 4> RepeatedMask;
16634     if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask))
16635       return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1,
16636                          getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
16637   }
16638 
16639   if (SDValue Shuf128 = lowerV4X128Shuffle(DL, MVT::v8f64, Mask, Zeroable, V1,
16640                                            V2, Subtarget, DAG))
16641     return Shuf128;
16642 
16643   if (SDValue Unpck = lowerShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
16644     return Unpck;
16645 
16646   // Check if the blend happens to exactly fit that of SHUFPD.
16647   if (SDValue Op = lowerShuffleWithSHUFPD(DL, MVT::v8f64, V1, V2, Mask,
16648                                           Zeroable, Subtarget, DAG))
16649     return Op;
16650 
16651   if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8f64, Zeroable, Mask, V1, V2,
16652                                        DAG, Subtarget))
16653     return V;
16654 
16655   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8f64, V1, V2, Mask,
16656                                           Zeroable, Subtarget, DAG))
16657     return Blend;
16658 
16659   return lowerShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
16660 }
16661 
16662 /// Handle lowering of 16-lane 32-bit floating point shuffles.
16663 static SDValue lowerV16F32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16664                                   const APInt &Zeroable, SDValue V1, SDValue V2,
16665                                   const X86Subtarget &Subtarget,
16666                                   SelectionDAG &DAG) {
16667   assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
16668   assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
16669   assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
16670 
16671   // If the shuffle mask is repeated in each 128-bit lane, we have many more
16672   // options to efficiently lower the shuffle.
16673   SmallVector<int, 4> RepeatedMask;
16674   if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) {
16675     assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
16676 
16677     // Use even/odd duplicate instructions for masks that match their pattern.
16678     if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
16679       return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1);
16680     if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
16681       return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1);
16682 
16683     if (V2.isUndef())
16684       return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1,
16685                          getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
16686 
16687     // Use dedicated unpack instructions for masks that match their pattern.
16688     if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
16689       return V;
16690 
16691     if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16f32, V1, V2, Mask,
16692                                             Zeroable, Subtarget, DAG))
16693       return Blend;
16694 
16695     // Otherwise, fall back to a SHUFPS sequence.
16696     return lowerShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG);
16697   }
16698 
16699   // If we have a single input shuffle with different shuffle patterns in the
16700   // 128-bit lanes and don't lane cross, use variable mask VPERMILPS.
16701   if (V2.isUndef() &&
16702       !is128BitLaneCrossingShuffleMask(MVT::v16f32, Mask)) {
16703     SDValue VPermMask = getConstVector(Mask, MVT::v16i32, DAG, DL, true);
16704     return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v16f32, V1, VPermMask);
16705   }
16706 
16707   // If we have AVX512F support, we can use VEXPAND.
16708   if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v16f32, Zeroable, Mask,
16709                                              V1, V2, DAG, Subtarget))
16710     return V;
16711 
16712   return lowerShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
16713 }
16714 
16715 /// Handle lowering of 8-lane 64-bit integer shuffles.
16716 static SDValue lowerV8I64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16717                                  const APInt &Zeroable, SDValue V1, SDValue V2,
16718                                  const X86Subtarget &Subtarget,
16719                                  SelectionDAG &DAG) {
16720   assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
16721   assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
16722   assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
16723 
16724   if (V2.isUndef()) {
16725     // When the shuffle is mirrored between the 128-bit lanes of the unit, we
16726     // can use lower latency instructions that will operate on all four
16727     // 128-bit lanes.
16728     SmallVector<int, 2> Repeated128Mask;
16729     if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) {
16730       SmallVector<int, 4> PSHUFDMask;
16731       scaleShuffleMask<int>(2, Repeated128Mask, PSHUFDMask);
16732       return DAG.getBitcast(
16733           MVT::v8i64,
16734           DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32,
16735                       DAG.getBitcast(MVT::v16i32, V1),
16736                       getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
16737     }
16738 
16739     SmallVector<int, 4> Repeated256Mask;
16740     if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask))
16741       return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1,
16742                          getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG));
16743   }
16744 
16745   if (SDValue Shuf128 = lowerV4X128Shuffle(DL, MVT::v8i64, Mask, Zeroable, V1,
16746                                            V2, Subtarget, DAG))
16747     return Shuf128;
16748 
16749   // Try to use shift instructions.
16750   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask,
16751                                           Zeroable, Subtarget, DAG))
16752     return Shift;
16753 
16754   // Try to use VALIGN.
16755   if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v8i64, V1, V2, Mask,
16756                                             Subtarget, DAG))
16757     return Rotate;
16758 
16759   // Try to use PALIGNR.
16760   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i64, V1, V2, Mask,
16761                                                 Subtarget, DAG))
16762     return Rotate;
16763 
16764   if (SDValue Unpck = lowerShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
16765     return Unpck;
16766   // If we have AVX512F support, we can use VEXPAND.
16767   if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8i64, Zeroable, Mask, V1, V2,
16768                                        DAG, Subtarget))
16769     return V;
16770 
16771   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8i64, V1, V2, Mask,
16772                                           Zeroable, Subtarget, DAG))
16773     return Blend;
16774 
16775   return lowerShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
16776 }
16777 
16778 /// Handle lowering of 16-lane 32-bit integer shuffles.
16779 static SDValue lowerV16I32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16780                                   const APInt &Zeroable, SDValue V1, SDValue V2,
16781                                   const X86Subtarget &Subtarget,
16782                                   SelectionDAG &DAG) {
16783   assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
16784   assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
16785   assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
16786 
16787   // Whenever we can lower this as a zext, that instruction is strictly faster
16788   // than any alternative. It also allows us to fold memory operands into the
16789   // shuffle in many cases.
16790   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
16791           DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
16792     return ZExt;
16793 
16794   // If the shuffle mask is repeated in each 128-bit lane we can use more
16795   // efficient instructions that mirror the shuffles across the four 128-bit
16796   // lanes.
16797   SmallVector<int, 4> RepeatedMask;
16798   bool Is128BitLaneRepeatedShuffle =
16799       is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask);
16800   if (Is128BitLaneRepeatedShuffle) {
16801     assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
16802     if (V2.isUndef())
16803       return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1,
16804                          getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
16805 
16806     // Use dedicated unpack instructions for masks that match their pattern.
16807     if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
16808       return V;
16809   }
16810 
16811   // Try to use shift instructions.
16812   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask,
16813                                           Zeroable, Subtarget, DAG))
16814     return Shift;
16815 
16816   // Try to use VALIGN.
16817   if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v16i32, V1, V2, Mask,
16818                                             Subtarget, DAG))
16819     return Rotate;
16820 
16821   // Try to use byte rotation instructions.
16822   if (Subtarget.hasBWI())
16823     if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v16i32, V1, V2, Mask,
16824                                                   Subtarget, DAG))
16825       return Rotate;
16826 
16827   // Assume that a single SHUFPS is faster than using a permv shuffle.
16828   // If some CPU is harmed by the domain switch, we can fix it in a later pass.
16829   if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
16830     SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1);
16831     SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2);
16832     SDValue ShufPS = lowerShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask,
16833                                             CastV1, CastV2, DAG);
16834     return DAG.getBitcast(MVT::v16i32, ShufPS);
16835   }
16836   // If we have AVX512F support, we can use VEXPAND.
16837   if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v16i32, Zeroable, Mask, V1, V2,
16838                                        DAG, Subtarget))
16839     return V;
16840 
16841   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16i32, V1, V2, Mask,
16842                                           Zeroable, Subtarget, DAG))
16843     return Blend;
16844   return lowerShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
16845 }
16846 
16847 /// Handle lowering of 32-lane 16-bit integer shuffles.
16848 static SDValue lowerV32I16Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16849                                   const APInt &Zeroable, SDValue V1, SDValue V2,
16850                                   const X86Subtarget &Subtarget,
16851                                   SelectionDAG &DAG) {
16852   assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
16853   assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
16854   assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
16855   assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
16856 
16857   // Whenever we can lower this as a zext, that instruction is strictly faster
16858   // than any alternative. It also allows us to fold memory operands into the
16859   // shuffle in many cases.
16860   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
16861           DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
16862     return ZExt;
16863 
16864   // Use dedicated unpack instructions for masks that match their pattern.
16865   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG))
16866     return V;
16867 
16868   // Try to use shift instructions.
16869   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask,
16870                                           Zeroable, Subtarget, DAG))
16871     return Shift;
16872 
16873   // Try to use byte rotation instructions.
16874   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v32i16, V1, V2, Mask,
16875                                                 Subtarget, DAG))
16876     return Rotate;
16877 
16878   if (V2.isUndef()) {
16879     SmallVector<int, 8> RepeatedMask;
16880     if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) {
16881       // As this is a single-input shuffle, the repeated mask should be
16882       // a strictly valid v8i16 mask that we can pass through to the v8i16
16883       // lowering to handle even the v32 case.
16884       return lowerV8I16GeneralSingleInputShuffle(
16885           DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG);
16886     }
16887   }
16888 
16889   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v32i16, V1, V2, Mask,
16890                                                 Zeroable, Subtarget, DAG))
16891     return Blend;
16892 
16893   if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v32i16, Mask, V1, V2,
16894                                               Zeroable, Subtarget, DAG))
16895     return PSHUFB;
16896 
16897   return lowerShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
16898 }
16899 
16900 /// Handle lowering of 64-lane 8-bit integer shuffles.
16901 static SDValue lowerV64I8Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
16902                                  const APInt &Zeroable, SDValue V1, SDValue V2,
16903                                  const X86Subtarget &Subtarget,
16904                                  SelectionDAG &DAG) {
16905   assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
16906   assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
16907   assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
16908   assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
16909 
16910   // Whenever we can lower this as a zext, that instruction is strictly faster
16911   // than any alternative. It also allows us to fold memory operands into the
16912   // shuffle in many cases.
16913   if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
16914           DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
16915     return ZExt;
16916 
16917   // Use dedicated unpack instructions for masks that match their pattern.
16918   if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG))
16919     return V;
16920 
16921   // Use dedicated pack instructions for masks that match their pattern.
16922   if (SDValue V = lowerShuffleWithPACK(DL, MVT::v64i8, Mask, V1, V2, DAG,
16923                                        Subtarget))
16924     return V;
16925 
16926   // Try to use shift instructions.
16927   if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask,
16928                                           Zeroable, Subtarget, DAG))
16929     return Shift;
16930 
16931   // Try to use byte rotation instructions.
16932   if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v64i8, V1, V2, Mask,
16933                                                 Subtarget, DAG))
16934     return Rotate;
16935 
16936   if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v64i8, Mask, V1, V2,
16937                                               Zeroable, Subtarget, DAG))
16938     return PSHUFB;
16939 
16940   // VBMI can use VPERMV/VPERMV3 byte shuffles.
16941   if (Subtarget.hasVBMI())
16942     return lowerShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG);
16943 
16944   // Try to create an in-lane repeating shuffle mask and then shuffle the
16945   // results into the target lanes.
16946   if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
16947           DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
16948     return V;
16949 
16950   if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v64i8, V1, V2, Mask,
16951                                           Zeroable, Subtarget, DAG))
16952     return Blend;
16953 
16954   // Try to simplify this by merging 128-bit lanes to enable a lane-based
16955   // shuffle.
16956   if (!V2.isUndef())
16957     if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
16958             DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
16959       return Result;
16960 
16961   // FIXME: Implement direct support for this type!
16962   return splitAndLowerShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
16963 }
16964 
16965 /// High-level routine to lower various 512-bit x86 vector shuffles.
16966 ///
16967 /// This routine either breaks down the specific type of a 512-bit x86 vector
16968 /// shuffle or splits it into two 256-bit shuffles and fuses the results back
16969 /// together based on the available instructions.
16970 static SDValue lower512BitShuffle(const SDLoc &DL, ArrayRef<int> Mask,
16971                                   MVT VT, SDValue V1, SDValue V2,
16972                                   const APInt &Zeroable,
16973                                   const X86Subtarget &Subtarget,
16974                                   SelectionDAG &DAG) {
16975   assert(Subtarget.hasAVX512() &&
16976          "Cannot lower 512-bit vectors w/ basic ISA!");
16977 
16978   // If we have a single input to the zero element, insert that into V1 if we
16979   // can do so cheaply.
16980   int NumElts = Mask.size();
16981   int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
16982 
16983   if (NumV2Elements == 1 && Mask[0] >= NumElts)
16984     if (SDValue Insertion = lowerShuffleAsElementInsertion(
16985             DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
16986       return Insertion;
16987 
16988   // Handle special cases where the lower or upper half is UNDEF.
16989   if (SDValue V =
16990           lowerShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
16991     return V;
16992 
16993   // Check for being able to broadcast a single element.
16994   if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, VT, V1, V2, Mask,
16995                                                   Subtarget, DAG))
16996     return Broadcast;
16997 
16998   // Dispatch to each element type for lowering. If we don't have support for
16999   // specific element type shuffles at 512 bits, immediately split them and
17000   // lower them. Each lowering routine of a given type is allowed to assume that
17001   // the requisite ISA extensions for that element type are available.
17002   switch (VT.SimpleTy) {
17003   case MVT::v8f64:
17004     return lowerV8F64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
17005   case MVT::v16f32:
17006     return lowerV16F32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
17007   case MVT::v8i64:
17008     return lowerV8I64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
17009   case MVT::v16i32:
17010     return lowerV16I32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
17011   case MVT::v32i16:
17012     return lowerV32I16Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
17013   case MVT::v64i8:
17014     return lowerV64I8Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
17015 
17016   default:
17017     llvm_unreachable("Not a valid 512-bit x86 vector type!");
17018   }
17019 }
17020 
17021 static SDValue lower1BitShuffleAsKSHIFTR(const SDLoc &DL, ArrayRef<int> Mask,
17022                                          MVT VT, SDValue V1, SDValue V2,
17023                                          const X86Subtarget &Subtarget,
17024                                          SelectionDAG &DAG) {
17025   // Shuffle should be unary.
17026   if (!V2.isUndef())
17027     return SDValue();
17028 
17029   int ShiftAmt = -1;
17030   int NumElts = Mask.size();
17031   for (int i = 0; i != NumElts; ++i) {
17032     int M = Mask[i];
17033     assert((M == SM_SentinelUndef || (0 <= M && M < NumElts)) &&
17034            "Unexpected mask index.");
17035     if (M < 0)
17036       continue;
17037 
17038     // The first non-undef element determines our shift amount.
17039     if (ShiftAmt < 0) {
17040       ShiftAmt = M - i;
17041       // Need to be shifting right.
17042       if (ShiftAmt <= 0)
17043         return SDValue();
17044     }
17045     // All non-undef elements must shift by the same amount.
17046     if (ShiftAmt != M - i)
17047       return SDValue();
17048   }
17049   assert(ShiftAmt >= 0 && "All undef?");
17050 
17051   // Great we found a shift right.
17052   MVT WideVT = VT;
17053   if ((!Subtarget.hasDQI() && NumElts == 8) || NumElts < 8)
17054     WideVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
17055   SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideVT,
17056                             DAG.getUNDEF(WideVT), V1,
17057                             DAG.getIntPtrConstant(0, DL));
17058   Res = DAG.getNode(X86ISD::KSHIFTR, DL, WideVT, Res,
17059                     DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
17060   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
17061                      DAG.getIntPtrConstant(0, DL));
17062 }
17063 
17064 // Determine if this shuffle can be implemented with a KSHIFT instruction.
17065 // Returns the shift amount if possible or -1 if not. This is a simplified
17066 // version of matchShuffleAsShift.
17067 static int match1BitShuffleAsKSHIFT(unsigned &Opcode, ArrayRef<int> Mask,
17068                                     int MaskOffset, const APInt &Zeroable) {
17069   int Size = Mask.size();
17070 
17071   auto CheckZeros = [&](int Shift, bool Left) {
17072     for (int j = 0; j < Shift; ++j)
17073       if (!Zeroable[j + (Left ? 0 : (Size - Shift))])
17074         return false;
17075 
17076     return true;
17077   };
17078 
17079   auto MatchShift = [&](int Shift, bool Left) {
17080     unsigned Pos = Left ? Shift : 0;
17081     unsigned Low = Left ? 0 : Shift;
17082     unsigned Len = Size - Shift;
17083     return isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset);
17084   };
17085 
17086   for (int Shift = 1; Shift != Size; ++Shift)
17087     for (bool Left : {true, false})
17088       if (CheckZeros(Shift, Left) && MatchShift(Shift, Left)) {
17089         Opcode = Left ? X86ISD::KSHIFTL : X86ISD::KSHIFTR;
17090         return Shift;
17091       }
17092 
17093   return -1;
17094 }
17095 
17096 
17097 // Lower vXi1 vector shuffles.
17098 // There is no a dedicated instruction on AVX-512 that shuffles the masks.
17099 // The only way to shuffle bits is to sign-extend the mask vector to SIMD
17100 // vector, shuffle and then truncate it back.
17101 static SDValue lower1BitShuffle(const SDLoc &DL, ArrayRef<int> Mask,
17102                                 MVT VT, SDValue V1, SDValue V2,
17103                                 const APInt &Zeroable,
17104                                 const X86Subtarget &Subtarget,
17105                                 SelectionDAG &DAG) {
17106   assert(Subtarget.hasAVX512() &&
17107          "Cannot lower 512-bit vectors w/o basic ISA!");
17108 
17109   int NumElts = Mask.size();
17110 
17111   // Try to recognize shuffles that are just padding a subvector with zeros.
17112   int SubvecElts = 0;
17113   int Src = -1;
17114   for (int i = 0; i != NumElts; ++i) {
17115     if (Mask[i] >= 0) {
17116       // Grab the source from the first valid mask. All subsequent elements need
17117       // to use this same source.
17118       if (Src < 0)
17119         Src = Mask[i] / NumElts;
17120       if (Src != (Mask[i] / NumElts) || (Mask[i] % NumElts) != i)
17121         break;
17122     }
17123 
17124     ++SubvecElts;
17125   }
17126   assert(SubvecElts != NumElts && "Identity shuffle?");
17127 
17128   // Clip to a power 2.
17129   SubvecElts = PowerOf2Floor(SubvecElts);
17130 
17131   // Make sure the number of zeroable bits in the top at least covers the bits
17132   // not covered by the subvector.
17133   if ((int)Zeroable.countLeadingOnes() >= (NumElts - SubvecElts)) {
17134     assert(Src >= 0 && "Expected a source!");
17135     MVT ExtractVT = MVT::getVectorVT(MVT::i1, SubvecElts);
17136     SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT,
17137                                   Src == 0 ? V1 : V2,
17138                                   DAG.getIntPtrConstant(0, DL));
17139     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
17140                        DAG.getConstant(0, DL, VT),
17141                        Extract, DAG.getIntPtrConstant(0, DL));
17142   }
17143 
17144   // Try a simple shift right with undef elements. Later we'll try with zeros.
17145   if (SDValue Shift = lower1BitShuffleAsKSHIFTR(DL, Mask, VT, V1, V2, Subtarget,
17146                                                 DAG))
17147     return Shift;
17148 
17149   // Try to match KSHIFTs.
17150   unsigned Offset = 0;
17151   for (SDValue V : { V1, V2 }) {
17152     unsigned Opcode;
17153     int ShiftAmt = match1BitShuffleAsKSHIFT(Opcode, Mask, Offset, Zeroable);
17154     if (ShiftAmt >= 0) {
17155       MVT WideVT = VT;
17156       if ((!Subtarget.hasDQI() && NumElts == 8) || NumElts < 8)
17157         WideVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
17158       SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideVT,
17159                                 DAG.getUNDEF(WideVT), V,
17160                                 DAG.getIntPtrConstant(0, DL));
17161       // Widened right shifts need two shifts to ensure we shift in zeroes.
17162       if (Opcode == X86ISD::KSHIFTR && WideVT != VT) {
17163         int WideElts = WideVT.getVectorNumElements();
17164         // Shift left to put the original vector in the MSBs of the new size.
17165         Res = DAG.getNode(X86ISD::KSHIFTL, DL, WideVT, Res,
17166                           DAG.getTargetConstant(WideElts - NumElts, DL, MVT::i8));
17167         // Increase the shift amount to account for the left shift.
17168         ShiftAmt += WideElts - NumElts;
17169       }
17170 
17171       Res = DAG.getNode(Opcode, DL, WideVT, Res,
17172                         DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
17173       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
17174                          DAG.getIntPtrConstant(0, DL));
17175     }
17176     Offset += NumElts; // Increment for next iteration.
17177   }
17178 
17179 
17180 
17181   MVT ExtVT;
17182   switch (VT.SimpleTy) {
17183   default:
17184     llvm_unreachable("Expected a vector of i1 elements");
17185   case MVT::v2i1:
17186     ExtVT = MVT::v2i64;
17187     break;
17188   case MVT::v4i1:
17189     ExtVT = MVT::v4i32;
17190     break;
17191   case MVT::v8i1:
17192     // Take 512-bit type, more shuffles on KNL. If we have VLX use a 256-bit
17193     // shuffle.
17194     ExtVT = Subtarget.hasVLX() ? MVT::v8i32 : MVT::v8i64;
17195     break;
17196   case MVT::v16i1:
17197     // Take 512-bit type, unless we are avoiding 512-bit types and have the
17198     // 256-bit operation available.
17199     ExtVT = Subtarget.canExtendTo512DQ() ? MVT::v16i32 : MVT::v16i16;
17200     break;
17201   case MVT::v32i1:
17202     // Take 512-bit type, unless we are avoiding 512-bit types and have the
17203     // 256-bit operation available.
17204     assert(Subtarget.hasBWI() && "Expected AVX512BW support");
17205     ExtVT = Subtarget.canExtendTo512BW() ? MVT::v32i16 : MVT::v32i8;
17206     break;
17207   case MVT::v64i1:
17208     // Fall back to scalarization. FIXME: We can do better if the shuffle
17209     // can be partitioned cleanly.
17210     if (!Subtarget.useBWIRegs())
17211       return SDValue();
17212     ExtVT = MVT::v64i8;
17213     break;
17214   }
17215 
17216   V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
17217   V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
17218 
17219   SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask);
17220   // i1 was sign extended we can use X86ISD::CVT2MASK.
17221   int NumElems = VT.getVectorNumElements();
17222   if ((Subtarget.hasBWI() && (NumElems >= 32)) ||
17223       (Subtarget.hasDQI() && (NumElems < 32)))
17224     return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, ExtVT),
17225                        Shuffle, ISD::SETGT);
17226 
17227   return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle);
17228 }
17229 
17230 /// Helper function that returns true if the shuffle mask should be
17231 /// commuted to improve canonicalization.
17232 static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) {
17233   int NumElements = Mask.size();
17234 
17235   int NumV1Elements = 0, NumV2Elements = 0;
17236   for (int M : Mask)
17237     if (M < 0)
17238       continue;
17239     else if (M < NumElements)
17240       ++NumV1Elements;
17241     else
17242       ++NumV2Elements;
17243 
17244   // Commute the shuffle as needed such that more elements come from V1 than
17245   // V2. This allows us to match the shuffle pattern strictly on how many
17246   // elements come from V1 without handling the symmetric cases.
17247   if (NumV2Elements > NumV1Elements)
17248     return true;
17249 
17250   assert(NumV1Elements > 0 && "No V1 indices");
17251 
17252   if (NumV2Elements == 0)
17253     return false;
17254 
17255   // When the number of V1 and V2 elements are the same, try to minimize the
17256   // number of uses of V2 in the low half of the vector. When that is tied,
17257   // ensure that the sum of indices for V1 is equal to or lower than the sum
17258   // indices for V2. When those are equal, try to ensure that the number of odd
17259   // indices for V1 is lower than the number of odd indices for V2.
17260   if (NumV1Elements == NumV2Elements) {
17261     int LowV1Elements = 0, LowV2Elements = 0;
17262     for (int M : Mask.slice(0, NumElements / 2))
17263       if (M >= NumElements)
17264         ++LowV2Elements;
17265       else if (M >= 0)
17266         ++LowV1Elements;
17267     if (LowV2Elements > LowV1Elements)
17268       return true;
17269     if (LowV2Elements == LowV1Elements) {
17270       int SumV1Indices = 0, SumV2Indices = 0;
17271       for (int i = 0, Size = Mask.size(); i < Size; ++i)
17272         if (Mask[i] >= NumElements)
17273           SumV2Indices += i;
17274         else if (Mask[i] >= 0)
17275           SumV1Indices += i;
17276       if (SumV2Indices < SumV1Indices)
17277         return true;
17278       if (SumV2Indices == SumV1Indices) {
17279         int NumV1OddIndices = 0, NumV2OddIndices = 0;
17280         for (int i = 0, Size = Mask.size(); i < Size; ++i)
17281           if (Mask[i] >= NumElements)
17282             NumV2OddIndices += i % 2;
17283           else if (Mask[i] >= 0)
17284             NumV1OddIndices += i % 2;
17285         if (NumV2OddIndices < NumV1OddIndices)
17286           return true;
17287       }
17288     }
17289   }
17290 
17291   return false;
17292 }
17293 
17294 /// Top-level lowering for x86 vector shuffles.
17295 ///
17296 /// This handles decomposition, canonicalization, and lowering of all x86
17297 /// vector shuffles. Most of the specific lowering strategies are encapsulated
17298 /// above in helper routines. The canonicalization attempts to widen shuffles
17299 /// to involve fewer lanes of wider elements, consolidate symmetric patterns
17300 /// s.t. only one of the two inputs needs to be tested, etc.
17301 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, const X86Subtarget &Subtarget,
17302                                    SelectionDAG &DAG) {
17303   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
17304   ArrayRef<int> OrigMask = SVOp->getMask();
17305   SDValue V1 = Op.getOperand(0);
17306   SDValue V2 = Op.getOperand(1);
17307   MVT VT = Op.getSimpleValueType();
17308   int NumElements = VT.getVectorNumElements();
17309   SDLoc DL(Op);
17310   bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
17311 
17312   assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
17313          "Can't lower MMX shuffles");
17314 
17315   bool V1IsUndef = V1.isUndef();
17316   bool V2IsUndef = V2.isUndef();
17317   if (V1IsUndef && V2IsUndef)
17318     return DAG.getUNDEF(VT);
17319 
17320   // When we create a shuffle node we put the UNDEF node to second operand,
17321   // but in some cases the first operand may be transformed to UNDEF.
17322   // In this case we should just commute the node.
17323   if (V1IsUndef)
17324     return DAG.getCommutedVectorShuffle(*SVOp);
17325 
17326   // Check for non-undef masks pointing at an undef vector and make the masks
17327   // undef as well. This makes it easier to match the shuffle based solely on
17328   // the mask.
17329   if (V2IsUndef &&
17330       any_of(OrigMask, [NumElements](int M) { return M >= NumElements; })) {
17331     SmallVector<int, 8> NewMask(OrigMask.begin(), OrigMask.end());
17332     for (int &M : NewMask)
17333       if (M >= NumElements)
17334         M = -1;
17335     return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
17336   }
17337 
17338   // Check for illegal shuffle mask element index values.
17339   int MaskUpperLimit = OrigMask.size() * (V2IsUndef ? 1 : 2);
17340   (void)MaskUpperLimit;
17341   assert(llvm::all_of(OrigMask,
17342                       [&](int M) { return -1 <= M && M < MaskUpperLimit; }) &&
17343          "Out of bounds shuffle index");
17344 
17345   // We actually see shuffles that are entirely re-arrangements of a set of
17346   // zero inputs. This mostly happens while decomposing complex shuffles into
17347   // simple ones. Directly lower these as a buildvector of zeros.
17348   APInt KnownUndef, KnownZero;
17349   computeZeroableShuffleElements(OrigMask, V1, V2, KnownUndef, KnownZero);
17350 
17351   APInt Zeroable = KnownUndef | KnownZero;
17352   if (Zeroable.isAllOnesValue())
17353     return getZeroVector(VT, Subtarget, DAG, DL);
17354 
17355   bool V2IsZero = !V2IsUndef && ISD::isBuildVectorAllZeros(V2.getNode());
17356 
17357   // Try to collapse shuffles into using a vector type with fewer elements but
17358   // wider element types. We cap this to not form integers or floating point
17359   // elements wider than 64 bits, but it might be interesting to form i128
17360   // integers to handle flipping the low and high halves of AVX 256-bit vectors.
17361   SmallVector<int, 16> WidenedMask;
17362   if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
17363       canWidenShuffleElements(OrigMask, Zeroable, V2IsZero, WidenedMask)) {
17364     // Shuffle mask widening should not interfere with a broadcast opportunity
17365     // by obfuscating the operands with bitcasts.
17366     // TODO: Avoid lowering directly from this top-level function: make this
17367     // a query (canLowerAsBroadcast) and defer lowering to the type-based calls.
17368     if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, VT, V1, V2, OrigMask,
17369                                                     Subtarget, DAG))
17370       return Broadcast;
17371 
17372     MVT NewEltVT = VT.isFloatingPoint()
17373                        ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
17374                        : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
17375     int NewNumElts = NumElements / 2;
17376     MVT NewVT = MVT::getVectorVT(NewEltVT, NewNumElts);
17377     // Make sure that the new vector type is legal. For example, v2f64 isn't
17378     // legal on SSE1.
17379     if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
17380       if (V2IsZero) {
17381         // Modify the new Mask to take all zeros from the all-zero vector.
17382         // Choose indices that are blend-friendly.
17383         bool UsedZeroVector = false;
17384         assert(find(WidenedMask, SM_SentinelZero) != WidenedMask.end() &&
17385                "V2's non-undef elements are used?!");
17386         for (int i = 0; i != NewNumElts; ++i)
17387           if (WidenedMask[i] == SM_SentinelZero) {
17388             WidenedMask[i] = i + NewNumElts;
17389             UsedZeroVector = true;
17390           }
17391         // Ensure all elements of V2 are zero - isBuildVectorAllZeros permits
17392         // some elements to be undef.
17393         if (UsedZeroVector)
17394           V2 = getZeroVector(NewVT, Subtarget, DAG, DL);
17395       }
17396       V1 = DAG.getBitcast(NewVT, V1);
17397       V2 = DAG.getBitcast(NewVT, V2);
17398       return DAG.getBitcast(
17399           VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask));
17400     }
17401   }
17402 
17403   // Commute the shuffle if it will improve canonicalization.
17404   SmallVector<int, 64> Mask(OrigMask.begin(), OrigMask.end());
17405   if (canonicalizeShuffleMaskWithCommute(Mask)) {
17406     ShuffleVectorSDNode::commuteMask(Mask);
17407     std::swap(V1, V2);
17408   }
17409 
17410   if (SDValue V = lowerShuffleWithVPMOV(DL, Mask, VT, V1, V2, DAG, Subtarget))
17411     return V;
17412 
17413   // For each vector width, delegate to a specialized lowering routine.
17414   if (VT.is128BitVector())
17415     return lower128BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
17416 
17417   if (VT.is256BitVector())
17418     return lower256BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
17419 
17420   if (VT.is512BitVector())
17421     return lower512BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
17422 
17423   if (Is1BitVector)
17424     return lower1BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
17425 
17426   llvm_unreachable("Unimplemented!");
17427 }
17428 
17429 /// Try to lower a VSELECT instruction to a vector shuffle.
17430 static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
17431                                            const X86Subtarget &Subtarget,
17432                                            SelectionDAG &DAG) {
17433   SDValue Cond = Op.getOperand(0);
17434   SDValue LHS = Op.getOperand(1);
17435   SDValue RHS = Op.getOperand(2);
17436   MVT VT = Op.getSimpleValueType();
17437 
17438   // Only non-legal VSELECTs reach this lowering, convert those into generic
17439   // shuffles and re-use the shuffle lowering path for blends.
17440   SmallVector<int, 32> Mask;
17441   if (createShuffleMaskFromVSELECT(Mask, Cond))
17442     return DAG.getVectorShuffle(VT, SDLoc(Op), LHS, RHS, Mask);
17443 
17444   return SDValue();
17445 }
17446 
17447 SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
17448   SDValue Cond = Op.getOperand(0);
17449   SDValue LHS = Op.getOperand(1);
17450   SDValue RHS = Op.getOperand(2);
17451 
17452   // A vselect where all conditions and data are constants can be optimized into
17453   // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
17454   if (ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()) &&
17455       ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
17456       ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
17457     return SDValue();
17458 
17459   // Try to lower this to a blend-style vector shuffle. This can handle all
17460   // constant condition cases.
17461   if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
17462     return BlendOp;
17463 
17464   // If this VSELECT has a vector if i1 as a mask, it will be directly matched
17465   // with patterns on the mask registers on AVX-512.
17466   MVT CondVT = Cond.getSimpleValueType();
17467   unsigned CondEltSize = Cond.getScalarValueSizeInBits();
17468   if (CondEltSize == 1)
17469     return Op;
17470 
17471   // Variable blends are only legal from SSE4.1 onward.
17472   if (!Subtarget.hasSSE41())
17473     return SDValue();
17474 
17475   SDLoc dl(Op);
17476   MVT VT = Op.getSimpleValueType();
17477   unsigned EltSize = VT.getScalarSizeInBits();
17478   unsigned NumElts = VT.getVectorNumElements();
17479 
17480   // If the VSELECT is on a 512-bit type, we have to convert a non-i1 condition
17481   // into an i1 condition so that we can use the mask-based 512-bit blend
17482   // instructions.
17483   if (VT.getSizeInBits() == 512) {
17484     // Build a mask by testing the condition against zero.
17485     MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
17486     SDValue Mask = DAG.getSetCC(dl, MaskVT, Cond,
17487                                 DAG.getConstant(0, dl, CondVT),
17488                                 ISD::SETNE);
17489     // Now return a new VSELECT using the mask.
17490     return DAG.getSelect(dl, VT, Mask, LHS, RHS);
17491   }
17492 
17493   // SEXT/TRUNC cases where the mask doesn't match the destination size.
17494   if (CondEltSize != EltSize) {
17495     // If we don't have a sign splat, rely on the expansion.
17496     if (CondEltSize != DAG.ComputeNumSignBits(Cond))
17497       return SDValue();
17498 
17499     MVT NewCondSVT = MVT::getIntegerVT(EltSize);
17500     MVT NewCondVT = MVT::getVectorVT(NewCondSVT, NumElts);
17501     Cond = DAG.getSExtOrTrunc(Cond, dl, NewCondVT);
17502     return DAG.getNode(ISD::VSELECT, dl, VT, Cond, LHS, RHS);
17503   }
17504 
17505   // Only some types will be legal on some subtargets. If we can emit a legal
17506   // VSELECT-matching blend, return Op, and but if we need to expand, return
17507   // a null value.
17508   switch (VT.SimpleTy) {
17509   default:
17510     // Most of the vector types have blends past SSE4.1.
17511     return Op;
17512 
17513   case MVT::v32i8:
17514     // The byte blends for AVX vectors were introduced only in AVX2.
17515     if (Subtarget.hasAVX2())
17516       return Op;
17517 
17518     return SDValue();
17519 
17520   case MVT::v8i16:
17521   case MVT::v16i16: {
17522     // Bitcast everything to the vXi8 type and use a vXi8 vselect.
17523     MVT CastVT = MVT::getVectorVT(MVT::i8, NumElts * 2);
17524     Cond = DAG.getBitcast(CastVT, Cond);
17525     LHS = DAG.getBitcast(CastVT, LHS);
17526     RHS = DAG.getBitcast(CastVT, RHS);
17527     SDValue Select = DAG.getNode(ISD::VSELECT, dl, CastVT, Cond, LHS, RHS);
17528     return DAG.getBitcast(VT, Select);
17529   }
17530   }
17531 }
17532 
17533 static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
17534   MVT VT = Op.getSimpleValueType();
17535   SDLoc dl(Op);
17536 
17537   if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
17538     return SDValue();
17539 
17540   if (VT.getSizeInBits() == 8) {
17541     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
17542                                   Op.getOperand(0), Op.getOperand(1));
17543     return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
17544   }
17545 
17546   if (VT == MVT::f32) {
17547     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
17548     // the result back to FR32 register. It's only worth matching if the
17549     // result has a single use which is a store or a bitcast to i32.  And in
17550     // the case of a store, it's not worth it if the index is a constant 0,
17551     // because a MOVSSmr can be used instead, which is smaller and faster.
17552     if (!Op.hasOneUse())
17553       return SDValue();
17554     SDNode *User = *Op.getNode()->use_begin();
17555     if ((User->getOpcode() != ISD::STORE ||
17556          isNullConstant(Op.getOperand(1))) &&
17557         (User->getOpcode() != ISD::BITCAST ||
17558          User->getValueType(0) != MVT::i32))
17559       return SDValue();
17560     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
17561                                   DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
17562                                   Op.getOperand(1));
17563     return DAG.getBitcast(MVT::f32, Extract);
17564   }
17565 
17566   if (VT == MVT::i32 || VT == MVT::i64) {
17567     // ExtractPS/pextrq works with constant index.
17568     if (isa<ConstantSDNode>(Op.getOperand(1)))
17569       return Op;
17570   }
17571 
17572   return SDValue();
17573 }
17574 
17575 /// Extract one bit from mask vector, like v16i1 or v8i1.
17576 /// AVX-512 feature.
17577 static SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG,
17578                                         const X86Subtarget &Subtarget) {
17579   SDValue Vec = Op.getOperand(0);
17580   SDLoc dl(Vec);
17581   MVT VecVT = Vec.getSimpleValueType();
17582   SDValue Idx = Op.getOperand(1);
17583   MVT EltVT = Op.getSimpleValueType();
17584 
17585   assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) &&
17586          "Unexpected vector type in ExtractBitFromMaskVector");
17587 
17588   // variable index can't be handled in mask registers,
17589   // extend vector to VR512/128
17590   if (!isa<ConstantSDNode>(Idx)) {
17591     unsigned NumElts = VecVT.getVectorNumElements();
17592     // Extending v8i1/v16i1 to 512-bit get better performance on KNL
17593     // than extending to 128/256bit.
17594     MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
17595     MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
17596     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec);
17597     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtEltVT, Ext, Idx);
17598     return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
17599   }
17600 
17601   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
17602   if (IdxVal == 0) // the operation is legal
17603     return Op;
17604 
17605   // Extend to natively supported kshift.
17606   unsigned NumElems = VecVT.getVectorNumElements();
17607   MVT WideVecVT = VecVT;
17608   if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) {
17609     WideVecVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
17610     Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVecVT,
17611                       DAG.getUNDEF(WideVecVT), Vec,
17612                       DAG.getIntPtrConstant(0, dl));
17613   }
17614 
17615   // Use kshiftr instruction to move to the lower element.
17616   Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideVecVT, Vec,
17617                     DAG.getTargetConstant(IdxVal, dl, MVT::i8));
17618 
17619   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
17620                      DAG.getIntPtrConstant(0, dl));
17621 }
17622 
17623 SDValue
17624 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
17625                                            SelectionDAG &DAG) const {
17626   SDLoc dl(Op);
17627   SDValue Vec = Op.getOperand(0);
17628   MVT VecVT = Vec.getSimpleValueType();
17629   SDValue Idx = Op.getOperand(1);
17630 
17631   if (VecVT.getVectorElementType() == MVT::i1)
17632     return ExtractBitFromMaskVector(Op, DAG, Subtarget);
17633 
17634   if (!isa<ConstantSDNode>(Idx)) {
17635     // Its more profitable to go through memory (1 cycles throughput)
17636     // than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput)
17637     // IACA tool was used to get performance estimation
17638     // (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer)
17639     //
17640     // example : extractelement <16 x i8> %a, i32 %i
17641     //
17642     // Block Throughput: 3.00 Cycles
17643     // Throughput Bottleneck: Port5
17644     //
17645     // | Num Of |   Ports pressure in cycles  |    |
17646     // |  Uops  |  0  - DV  |  5  |  6  |  7  |    |
17647     // ---------------------------------------------
17648     // |   1    |           | 1.0 |     |     | CP | vmovd xmm1, edi
17649     // |   1    |           | 1.0 |     |     | CP | vpshufb xmm0, xmm0, xmm1
17650     // |   2    | 1.0       | 1.0 |     |     | CP | vpextrb eax, xmm0, 0x0
17651     // Total Num Of Uops: 4
17652     //
17653     //
17654     // Block Throughput: 1.00 Cycles
17655     // Throughput Bottleneck: PORT2_AGU, PORT3_AGU, Port4
17656     //
17657     // |    |  Ports pressure in cycles   |  |
17658     // |Uops| 1 | 2 - D  |3 -  D  | 4 | 5 |  |
17659     // ---------------------------------------------------------
17660     // |2^  |   | 0.5    | 0.5    |1.0|   |CP| vmovaps xmmword ptr [rsp-0x18], xmm0
17661     // |1   |0.5|        |        |   |0.5|  | lea rax, ptr [rsp-0x18]
17662     // |1   |   |0.5, 0.5|0.5, 0.5|   |   |CP| mov al, byte ptr [rdi+rax*1]
17663     // Total Num Of Uops: 4
17664 
17665     return SDValue();
17666   }
17667 
17668   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
17669 
17670   // If this is a 256-bit vector result, first extract the 128-bit vector and
17671   // then extract the element from the 128-bit vector.
17672   if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
17673     // Get the 128-bit vector.
17674     Vec = extract128BitVector(Vec, IdxVal, DAG, dl);
17675     MVT EltVT = VecVT.getVectorElementType();
17676 
17677     unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
17678     assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
17679 
17680     // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
17681     // this can be done with a mask.
17682     IdxVal &= ElemsPerChunk - 1;
17683     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
17684                        DAG.getIntPtrConstant(IdxVal, dl));
17685   }
17686 
17687   assert(VecVT.is128BitVector() && "Unexpected vector length");
17688 
17689   MVT VT = Op.getSimpleValueType();
17690 
17691   if (VT.getSizeInBits() == 16) {
17692     // If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless
17693     // we're going to zero extend the register or fold the store (SSE41 only).
17694     if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) &&
17695         !(Subtarget.hasSSE41() && MayFoldIntoStore(Op)))
17696       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
17697                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
17698                                      DAG.getBitcast(MVT::v4i32, Vec), Idx));
17699 
17700     // Transform it so it match pextrw which produces a 32-bit result.
17701     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
17702                                   Op.getOperand(0), Op.getOperand(1));
17703     return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
17704   }
17705 
17706   if (Subtarget.hasSSE41())
17707     if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
17708       return Res;
17709 
17710   // TODO: We only extract a single element from v16i8, we can probably afford
17711   // to be more aggressive here before using the default approach of spilling to
17712   // stack.
17713   if (VT.getSizeInBits() == 8 && Op->isOnlyUserOf(Vec.getNode())) {
17714     // Extract either the lowest i32 or any i16, and extract the sub-byte.
17715     int DWordIdx = IdxVal / 4;
17716     if (DWordIdx == 0) {
17717       SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
17718                                 DAG.getBitcast(MVT::v4i32, Vec),
17719                                 DAG.getIntPtrConstant(DWordIdx, dl));
17720       int ShiftVal = (IdxVal % 4) * 8;
17721       if (ShiftVal != 0)
17722         Res = DAG.getNode(ISD::SRL, dl, MVT::i32, Res,
17723                           DAG.getConstant(ShiftVal, dl, MVT::i8));
17724       return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
17725     }
17726 
17727     int WordIdx = IdxVal / 2;
17728     SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
17729                               DAG.getBitcast(MVT::v8i16, Vec),
17730                               DAG.getIntPtrConstant(WordIdx, dl));
17731     int ShiftVal = (IdxVal % 2) * 8;
17732     if (ShiftVal != 0)
17733       Res = DAG.getNode(ISD::SRL, dl, MVT::i16, Res,
17734                         DAG.getConstant(ShiftVal, dl, MVT::i8));
17735     return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
17736   }
17737 
17738   if (VT.getSizeInBits() == 32) {
17739     if (IdxVal == 0)
17740       return Op;
17741 
17742     // SHUFPS the element to the lowest double word, then movss.
17743     int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 };
17744     Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
17745     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
17746                        DAG.getIntPtrConstant(0, dl));
17747   }
17748 
17749   if (VT.getSizeInBits() == 64) {
17750     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
17751     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
17752     //        to match extract_elt for f64.
17753     if (IdxVal == 0)
17754       return Op;
17755 
17756     // UNPCKHPD the element to the lowest double word, then movsd.
17757     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
17758     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
17759     int Mask[2] = { 1, -1 };
17760     Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
17761     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
17762                        DAG.getIntPtrConstant(0, dl));
17763   }
17764 
17765   return SDValue();
17766 }
17767 
17768 /// Insert one bit to mask vector, like v16i1 or v8i1.
17769 /// AVX-512 feature.
17770 static SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG,
17771                                      const X86Subtarget &Subtarget) {
17772   SDLoc dl(Op);
17773   SDValue Vec = Op.getOperand(0);
17774   SDValue Elt = Op.getOperand(1);
17775   SDValue Idx = Op.getOperand(2);
17776   MVT VecVT = Vec.getSimpleValueType();
17777 
17778   if (!isa<ConstantSDNode>(Idx)) {
17779     // Non constant index. Extend source and destination,
17780     // insert element and then truncate the result.
17781     unsigned NumElts = VecVT.getVectorNumElements();
17782     MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
17783     MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
17784     SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
17785       DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec),
17786       DAG.getNode(ISD::SIGN_EXTEND, dl, ExtEltVT, Elt), Idx);
17787     return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
17788   }
17789 
17790   // Copy into a k-register, extract to v1i1 and insert_subvector.
17791   SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Elt);
17792 
17793   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT, Vec, EltInVec,
17794                      Op.getOperand(2));
17795 }
17796 
17797 SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
17798                                                   SelectionDAG &DAG) const {
17799   MVT VT = Op.getSimpleValueType();
17800   MVT EltVT = VT.getVectorElementType();
17801   unsigned NumElts = VT.getVectorNumElements();
17802 
17803   if (EltVT == MVT::i1)
17804     return InsertBitToMaskVector(Op, DAG, Subtarget);
17805 
17806   SDLoc dl(Op);
17807   SDValue N0 = Op.getOperand(0);
17808   SDValue N1 = Op.getOperand(1);
17809   SDValue N2 = Op.getOperand(2);
17810 
17811   auto *N2C = dyn_cast<ConstantSDNode>(N2);
17812   if (!N2C || N2C->getAPIntValue().uge(NumElts))
17813     return SDValue();
17814   uint64_t IdxVal = N2C->getZExtValue();
17815 
17816   bool IsZeroElt = X86::isZeroNode(N1);
17817   bool IsAllOnesElt = VT.isInteger() && llvm::isAllOnesConstant(N1);
17818 
17819   // If we are inserting a element, see if we can do this more efficiently with
17820   // a blend shuffle with a rematerializable vector than a costly integer
17821   // insertion.
17822   if ((IsZeroElt || IsAllOnesElt) && Subtarget.hasSSE41() &&
17823       16 <= EltVT.getSizeInBits()) {
17824     SmallVector<int, 8> BlendMask;
17825     for (unsigned i = 0; i != NumElts; ++i)
17826       BlendMask.push_back(i == IdxVal ? i + NumElts : i);
17827     SDValue CstVector = IsZeroElt ? getZeroVector(VT, Subtarget, DAG, dl)
17828                                   : getOnesVector(VT, DAG, dl);
17829     return DAG.getVectorShuffle(VT, dl, N0, CstVector, BlendMask);
17830   }
17831 
17832   // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
17833   // into that, and then insert the subvector back into the result.
17834   if (VT.is256BitVector() || VT.is512BitVector()) {
17835     // With a 256-bit vector, we can insert into the zero element efficiently
17836     // using a blend if we have AVX or AVX2 and the right data type.
17837     if (VT.is256BitVector() && IdxVal == 0) {
17838       // TODO: It is worthwhile to cast integer to floating point and back
17839       // and incur a domain crossing penalty if that's what we'll end up
17840       // doing anyway after extracting to a 128-bit vector.
17841       if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
17842           (Subtarget.hasAVX2() && EltVT == MVT::i32)) {
17843         SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
17844         return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec,
17845                            DAG.getTargetConstant(1, dl, MVT::i8));
17846       }
17847     }
17848 
17849     // Get the desired 128-bit vector chunk.
17850     SDValue V = extract128BitVector(N0, IdxVal, DAG, dl);
17851 
17852     // Insert the element into the desired chunk.
17853     unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
17854     assert(isPowerOf2_32(NumEltsIn128));
17855     // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
17856     unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
17857 
17858     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
17859                     DAG.getIntPtrConstant(IdxIn128, dl));
17860 
17861     // Insert the changed part back into the bigger vector
17862     return insert128BitVector(N0, V, IdxVal, DAG, dl);
17863   }
17864   assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
17865 
17866   // This will be just movd/movq/movss/movsd.
17867   if (IdxVal == 0 && ISD::isBuildVectorAllZeros(N0.getNode()) &&
17868       (EltVT == MVT::i32 || EltVT == MVT::f32 || EltVT == MVT::f64 ||
17869        EltVT == MVT::i64)) {
17870     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
17871     return getShuffleVectorZeroOrUndef(N1, 0, true, Subtarget, DAG);
17872   }
17873 
17874   // Transform it so it match pinsr{b,w} which expects a GR32 as its second
17875   // argument. SSE41 required for pinsrb.
17876   if (VT == MVT::v8i16 || (VT == MVT::v16i8 && Subtarget.hasSSE41())) {
17877     unsigned Opc;
17878     if (VT == MVT::v8i16) {
17879       assert(Subtarget.hasSSE2() && "SSE2 required for PINSRW");
17880       Opc = X86ISD::PINSRW;
17881     } else {
17882       assert(VT == MVT::v16i8 && "PINSRB requires v16i8 vector");
17883       assert(Subtarget.hasSSE41() && "SSE41 required for PINSRB");
17884       Opc = X86ISD::PINSRB;
17885     }
17886 
17887     if (N1.getValueType() != MVT::i32)
17888       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
17889     if (N2.getValueType() != MVT::i32)
17890       N2 = DAG.getIntPtrConstant(IdxVal, dl);
17891     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
17892   }
17893 
17894   if (Subtarget.hasSSE41()) {
17895     if (EltVT == MVT::f32) {
17896       // Bits [7:6] of the constant are the source select. This will always be
17897       //   zero here. The DAG Combiner may combine an extract_elt index into
17898       //   these bits. For example (insert (extract, 3), 2) could be matched by
17899       //   putting the '3' into bits [7:6] of X86ISD::INSERTPS.
17900       // Bits [5:4] of the constant are the destination select. This is the
17901       //   value of the incoming immediate.
17902       // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
17903       //   combine either bitwise AND or insert of float 0.0 to set these bits.
17904 
17905       bool MinSize = DAG.getMachineFunction().getFunction().hasMinSize();
17906       if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
17907         // If this is an insertion of 32-bits into the low 32-bits of
17908         // a vector, we prefer to generate a blend with immediate rather
17909         // than an insertps. Blends are simpler operations in hardware and so
17910         // will always have equal or better performance than insertps.
17911         // But if optimizing for size and there's a load folding opportunity,
17912         // generate insertps because blendps does not have a 32-bit memory
17913         // operand form.
17914         N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
17915         return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1,
17916                            DAG.getTargetConstant(1, dl, MVT::i8));
17917       }
17918       // Create this as a scalar to vector..
17919       N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
17920       return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1,
17921                          DAG.getTargetConstant(IdxVal << 4, dl, MVT::i8));
17922     }
17923 
17924     // PINSR* works with constant index.
17925     if (EltVT == MVT::i32 || EltVT == MVT::i64)
17926       return Op;
17927   }
17928 
17929   return SDValue();
17930 }
17931 
17932 static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, const X86Subtarget &Subtarget,
17933                                      SelectionDAG &DAG) {
17934   SDLoc dl(Op);
17935   MVT OpVT = Op.getSimpleValueType();
17936 
17937   // It's always cheaper to replace a xor+movd with xorps and simplifies further
17938   // combines.
17939   if (X86::isZeroNode(Op.getOperand(0)))
17940     return getZeroVector(OpVT, Subtarget, DAG, dl);
17941 
17942   // If this is a 256-bit vector result, first insert into a 128-bit
17943   // vector and then insert into the 256-bit vector.
17944   if (!OpVT.is128BitVector()) {
17945     // Insert into a 128-bit vector.
17946     unsigned SizeFactor = OpVT.getSizeInBits() / 128;
17947     MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
17948                                  OpVT.getVectorNumElements() / SizeFactor);
17949 
17950     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
17951 
17952     // Insert the 128-bit vector.
17953     return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
17954   }
17955   assert(OpVT.is128BitVector() && OpVT.isInteger() && OpVT != MVT::v2i64 &&
17956          "Expected an SSE type!");
17957 
17958   // Pass through a v4i32 SCALAR_TO_VECTOR as that's what we use in tblgen.
17959   if (OpVT == MVT::v4i32)
17960     return Op;
17961 
17962   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
17963   return DAG.getBitcast(
17964       OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
17965 }
17966 
17967 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
17968 // simple superregister reference or explicit instructions to insert
17969 // the upper bits of a vector.
17970 static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
17971                                      SelectionDAG &DAG) {
17972   assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1);
17973 
17974   return insert1BitVector(Op, DAG, Subtarget);
17975 }
17976 
17977 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
17978                                       SelectionDAG &DAG) {
17979   assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
17980          "Only vXi1 extract_subvectors need custom lowering");
17981 
17982   SDLoc dl(Op);
17983   SDValue Vec = Op.getOperand(0);
17984   SDValue Idx = Op.getOperand(1);
17985 
17986   if (!isa<ConstantSDNode>(Idx))
17987     return SDValue();
17988 
17989   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
17990   if (IdxVal == 0) // the operation is legal
17991     return Op;
17992 
17993   MVT VecVT = Vec.getSimpleValueType();
17994   unsigned NumElems = VecVT.getVectorNumElements();
17995 
17996   // Extend to natively supported kshift.
17997   MVT WideVecVT = VecVT;
17998   if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) {
17999     WideVecVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
18000     Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVecVT,
18001                       DAG.getUNDEF(WideVecVT), Vec,
18002                       DAG.getIntPtrConstant(0, dl));
18003   }
18004 
18005   // Shift to the LSB.
18006   Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideVecVT, Vec,
18007                     DAG.getTargetConstant(IdxVal, dl, MVT::i8));
18008 
18009   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, Op.getValueType(), Vec,
18010                      DAG.getIntPtrConstant(0, dl));
18011 }
18012 
18013 // Returns the appropriate wrapper opcode for a global reference.
18014 unsigned X86TargetLowering::getGlobalWrapperKind(
18015     const GlobalValue *GV, const unsigned char OpFlags) const {
18016   // References to absolute symbols are never PC-relative.
18017   if (GV && GV->isAbsoluteSymbolRef())
18018     return X86ISD::Wrapper;
18019 
18020   CodeModel::Model M = getTargetMachine().getCodeModel();
18021   if (Subtarget.isPICStyleRIPRel() &&
18022       (M == CodeModel::Small || M == CodeModel::Kernel))
18023     return X86ISD::WrapperRIP;
18024 
18025   // GOTPCREL references must always use RIP.
18026   if (OpFlags == X86II::MO_GOTPCREL)
18027     return X86ISD::WrapperRIP;
18028 
18029   return X86ISD::Wrapper;
18030 }
18031 
18032 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
18033 // their target counterpart wrapped in the X86ISD::Wrapper node. Suppose N is
18034 // one of the above mentioned nodes. It has to be wrapped because otherwise
18035 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
18036 // be used to form addressing mode. These wrapped nodes will be selected
18037 // into MOV32ri.
18038 SDValue
18039 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
18040   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
18041 
18042   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
18043   // global base reg.
18044   unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
18045 
18046   auto PtrVT = getPointerTy(DAG.getDataLayout());
18047   SDValue Result = DAG.getTargetConstantPool(
18048       CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
18049   SDLoc DL(CP);
18050   Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
18051   // With PIC, the address is actually $g + Offset.
18052   if (OpFlag) {
18053     Result =
18054         DAG.getNode(ISD::ADD, DL, PtrVT,
18055                     DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
18056   }
18057 
18058   return Result;
18059 }
18060 
18061 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
18062   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
18063 
18064   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
18065   // global base reg.
18066   unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
18067 
18068   auto PtrVT = getPointerTy(DAG.getDataLayout());
18069   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
18070   SDLoc DL(JT);
18071   Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
18072 
18073   // With PIC, the address is actually $g + Offset.
18074   if (OpFlag)
18075     Result =
18076         DAG.getNode(ISD::ADD, DL, PtrVT,
18077                     DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
18078 
18079   return Result;
18080 }
18081 
18082 SDValue X86TargetLowering::LowerExternalSymbol(SDValue Op,
18083                                                SelectionDAG &DAG) const {
18084   return LowerGlobalOrExternal(Op, DAG, /*ForCall=*/false);
18085 }
18086 
18087 SDValue
18088 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
18089   // Create the TargetBlockAddressAddress node.
18090   unsigned char OpFlags =
18091     Subtarget.classifyBlockAddressReference();
18092   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
18093   int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
18094   SDLoc dl(Op);
18095   auto PtrVT = getPointerTy(DAG.getDataLayout());
18096   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
18097   Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result);
18098 
18099   // With PIC, the address is actually $g + Offset.
18100   if (isGlobalRelativeToPICBase(OpFlags)) {
18101     Result = DAG.getNode(ISD::ADD, dl, PtrVT,
18102                          DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
18103   }
18104 
18105   return Result;
18106 }
18107 
18108 /// Creates target global address or external symbol nodes for calls or
18109 /// other uses.
18110 SDValue X86TargetLowering::LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
18111                                                  bool ForCall) const {
18112   // Unpack the global address or external symbol.
18113   const SDLoc &dl = SDLoc(Op);
18114   const GlobalValue *GV = nullptr;
18115   int64_t Offset = 0;
18116   const char *ExternalSym = nullptr;
18117   if (const auto *G = dyn_cast<GlobalAddressSDNode>(Op)) {
18118     GV = G->getGlobal();
18119     Offset = G->getOffset();
18120   } else {
18121     const auto *ES = cast<ExternalSymbolSDNode>(Op);
18122     ExternalSym = ES->getSymbol();
18123   }
18124 
18125   // Calculate some flags for address lowering.
18126   const Module &Mod = *DAG.getMachineFunction().getFunction().getParent();
18127   unsigned char OpFlags;
18128   if (ForCall)
18129     OpFlags = Subtarget.classifyGlobalFunctionReference(GV, Mod);
18130   else
18131     OpFlags = Subtarget.classifyGlobalReference(GV, Mod);
18132   bool HasPICReg = isGlobalRelativeToPICBase(OpFlags);
18133   bool NeedsLoad = isGlobalStubReference(OpFlags);
18134 
18135   CodeModel::Model M = DAG.getTarget().getCodeModel();
18136   auto PtrVT = getPointerTy(DAG.getDataLayout());
18137   SDValue Result;
18138 
18139   if (GV) {
18140     // Create a target global address if this is a global. If possible, fold the
18141     // offset into the global address reference. Otherwise, ADD it on later.
18142     int64_t GlobalOffset = 0;
18143     if (OpFlags == X86II::MO_NO_FLAG &&
18144         X86::isOffsetSuitableForCodeModel(Offset, M)) {
18145       std::swap(GlobalOffset, Offset);
18146     }
18147     Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, GlobalOffset, OpFlags);
18148   } else {
18149     // If this is not a global address, this must be an external symbol.
18150     Result = DAG.getTargetExternalSymbol(ExternalSym, PtrVT, OpFlags);
18151   }
18152 
18153   // If this is a direct call, avoid the wrapper if we don't need to do any
18154   // loads or adds. This allows SDAG ISel to match direct calls.
18155   if (ForCall && !NeedsLoad && !HasPICReg && Offset == 0)
18156     return Result;
18157 
18158   Result = DAG.getNode(getGlobalWrapperKind(GV, OpFlags), dl, PtrVT, Result);
18159 
18160   // With PIC, the address is actually $g + Offset.
18161   if (HasPICReg) {
18162     Result = DAG.getNode(ISD::ADD, dl, PtrVT,
18163                          DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
18164   }
18165 
18166   // For globals that require a load from a stub to get the address, emit the
18167   // load.
18168   if (NeedsLoad)
18169     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
18170                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
18171 
18172   // If there was a non-zero offset that we didn't fold, create an explicit
18173   // addition for it.
18174   if (Offset != 0)
18175     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
18176                          DAG.getConstant(Offset, dl, PtrVT));
18177 
18178   return Result;
18179 }
18180 
18181 SDValue
18182 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
18183   return LowerGlobalOrExternal(Op, DAG, /*ForCall=*/false);
18184 }
18185 
18186 static SDValue
18187 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
18188            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
18189            unsigned char OperandFlags, bool LocalDynamic = false) {
18190   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
18191   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
18192   SDLoc dl(GA);
18193   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
18194                                            GA->getValueType(0),
18195                                            GA->getOffset(),
18196                                            OperandFlags);
18197 
18198   X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
18199                                            : X86ISD::TLSADDR;
18200 
18201   if (InFlag) {
18202     SDValue Ops[] = { Chain,  TGA, *InFlag };
18203     Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
18204   } else {
18205     SDValue Ops[]  = { Chain, TGA };
18206     Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
18207   }
18208 
18209   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
18210   MFI.setAdjustsStack(true);
18211   MFI.setHasCalls(true);
18212 
18213   SDValue Flag = Chain.getValue(1);
18214   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
18215 }
18216 
18217 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
18218 static SDValue
18219 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
18220                                 const EVT PtrVT) {
18221   SDValue InFlag;
18222   SDLoc dl(GA);  // ? function entry point might be better
18223   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
18224                                    DAG.getNode(X86ISD::GlobalBaseReg,
18225                                                SDLoc(), PtrVT), InFlag);
18226   InFlag = Chain.getValue(1);
18227 
18228   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
18229 }
18230 
18231 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
18232 static SDValue
18233 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
18234                                 const EVT PtrVT) {
18235   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
18236                     X86::RAX, X86II::MO_TLSGD);
18237 }
18238 
18239 static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
18240                                            SelectionDAG &DAG,
18241                                            const EVT PtrVT,
18242                                            bool is64Bit) {
18243   SDLoc dl(GA);
18244 
18245   // Get the start address of the TLS block for this module.
18246   X86MachineFunctionInfo *MFI = DAG.getMachineFunction()
18247       .getInfo<X86MachineFunctionInfo>();
18248   MFI->incNumLocalDynamicTLSAccesses();
18249 
18250   SDValue Base;
18251   if (is64Bit) {
18252     Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
18253                       X86II::MO_TLSLD, /*LocalDynamic=*/true);
18254   } else {
18255     SDValue InFlag;
18256     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
18257         DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
18258     InFlag = Chain.getValue(1);
18259     Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
18260                       X86II::MO_TLSLDM, /*LocalDynamic=*/true);
18261   }
18262 
18263   // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
18264   // of Base.
18265 
18266   // Build x@dtpoff.
18267   unsigned char OperandFlags = X86II::MO_DTPOFF;
18268   unsigned WrapperKind = X86ISD::Wrapper;
18269   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
18270                                            GA->getValueType(0),
18271                                            GA->getOffset(), OperandFlags);
18272   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
18273 
18274   // Add x@dtpoff with the base.
18275   return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
18276 }
18277 
18278 // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
18279 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
18280                                    const EVT PtrVT, TLSModel::Model model,
18281                                    bool is64Bit, bool isPIC) {
18282   SDLoc dl(GA);
18283 
18284   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
18285   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
18286                                                          is64Bit ? 257 : 256));
18287 
18288   SDValue ThreadPointer =
18289       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
18290                   MachinePointerInfo(Ptr));
18291 
18292   unsigned char OperandFlags = 0;
18293   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
18294   // initialexec.
18295   unsigned WrapperKind = X86ISD::Wrapper;
18296   if (model == TLSModel::LocalExec) {
18297     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
18298   } else if (model == TLSModel::InitialExec) {
18299     if (is64Bit) {
18300       OperandFlags = X86II::MO_GOTTPOFF;
18301       WrapperKind = X86ISD::WrapperRIP;
18302     } else {
18303       OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
18304     }
18305   } else {
18306     llvm_unreachable("Unexpected model");
18307   }
18308 
18309   // emit "addl x@ntpoff,%eax" (local exec)
18310   // or "addl x@indntpoff,%eax" (initial exec)
18311   // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
18312   SDValue TGA =
18313       DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
18314                                  GA->getOffset(), OperandFlags);
18315   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
18316 
18317   if (model == TLSModel::InitialExec) {
18318     if (isPIC && !is64Bit) {
18319       Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
18320                            DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
18321                            Offset);
18322     }
18323 
18324     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
18325                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
18326   }
18327 
18328   // The address of the thread local variable is the add of the thread
18329   // pointer with the offset of the variable.
18330   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
18331 }
18332 
18333 SDValue
18334 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
18335 
18336   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
18337 
18338   if (DAG.getTarget().useEmulatedTLS())
18339     return LowerToTLSEmulatedModel(GA, DAG);
18340 
18341   const GlobalValue *GV = GA->getGlobal();
18342   auto PtrVT = getPointerTy(DAG.getDataLayout());
18343   bool PositionIndependent = isPositionIndependent();
18344 
18345   if (Subtarget.isTargetELF()) {
18346     TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
18347     switch (model) {
18348       case TLSModel::GeneralDynamic:
18349         if (Subtarget.is64Bit())
18350           return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
18351         return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
18352       case TLSModel::LocalDynamic:
18353         return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
18354                                            Subtarget.is64Bit());
18355       case TLSModel::InitialExec:
18356       case TLSModel::LocalExec:
18357         return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(),
18358                                    PositionIndependent);
18359     }
18360     llvm_unreachable("Unknown TLS model.");
18361   }
18362 
18363   if (Subtarget.isTargetDarwin()) {
18364     // Darwin only has one model of TLS.  Lower to that.
18365     unsigned char OpFlag = 0;
18366     unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ?
18367                            X86ISD::WrapperRIP : X86ISD::Wrapper;
18368 
18369     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
18370     // global base reg.
18371     bool PIC32 = PositionIndependent && !Subtarget.is64Bit();
18372     if (PIC32)
18373       OpFlag = X86II::MO_TLVP_PIC_BASE;
18374     else
18375       OpFlag = X86II::MO_TLVP;
18376     SDLoc DL(Op);
18377     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
18378                                                 GA->getValueType(0),
18379                                                 GA->getOffset(), OpFlag);
18380     SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
18381 
18382     // With PIC32, the address is actually $g + Offset.
18383     if (PIC32)
18384       Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
18385                            DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
18386                            Offset);
18387 
18388     // Lowering the machine isd will make sure everything is in the right
18389     // location.
18390     SDValue Chain = DAG.getEntryNode();
18391     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
18392     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
18393     SDValue Args[] = { Chain, Offset };
18394     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
18395     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
18396                                DAG.getIntPtrConstant(0, DL, true),
18397                                Chain.getValue(1), DL);
18398 
18399     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
18400     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
18401     MFI.setAdjustsStack(true);
18402 
18403     // And our return value (tls address) is in the standard call return value
18404     // location.
18405     unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
18406     return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
18407   }
18408 
18409   if (Subtarget.isOSWindows()) {
18410     // Just use the implicit TLS architecture
18411     // Need to generate something similar to:
18412     //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
18413     //                                  ; from TEB
18414     //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
18415     //   mov     rcx, qword [rdx+rcx*8]
18416     //   mov     eax, .tls$:tlsvar
18417     //   [rax+rcx] contains the address
18418     // Windows 64bit: gs:0x58
18419     // Windows 32bit: fs:__tls_array
18420 
18421     SDLoc dl(GA);
18422     SDValue Chain = DAG.getEntryNode();
18423 
18424     // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
18425     // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
18426     // use its literal value of 0x2C.
18427     Value *Ptr = Constant::getNullValue(Subtarget.is64Bit()
18428                                         ? Type::getInt8PtrTy(*DAG.getContext(),
18429                                                              256)
18430                                         : Type::getInt32PtrTy(*DAG.getContext(),
18431                                                               257));
18432 
18433     SDValue TlsArray = Subtarget.is64Bit()
18434                            ? DAG.getIntPtrConstant(0x58, dl)
18435                            : (Subtarget.isTargetWindowsGNU()
18436                                   ? DAG.getIntPtrConstant(0x2C, dl)
18437                                   : DAG.getExternalSymbol("_tls_array", PtrVT));
18438 
18439     SDValue ThreadPointer =
18440         DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr));
18441 
18442     SDValue res;
18443     if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
18444       res = ThreadPointer;
18445     } else {
18446       // Load the _tls_index variable
18447       SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
18448       if (Subtarget.is64Bit())
18449         IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
18450                              MachinePointerInfo(), MVT::i32);
18451       else
18452         IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo());
18453 
18454       auto &DL = DAG.getDataLayout();
18455       SDValue Scale =
18456           DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, MVT::i8);
18457       IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
18458 
18459       res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
18460     }
18461 
18462     res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo());
18463 
18464     // Get the offset of start of .tls section
18465     SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
18466                                              GA->getValueType(0),
18467                                              GA->getOffset(), X86II::MO_SECREL);
18468     SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
18469 
18470     // The address of the thread local variable is the add of the thread
18471     // pointer with the offset of the variable.
18472     return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
18473   }
18474 
18475   llvm_unreachable("TLS not implemented for this target.");
18476 }
18477 
18478 /// Lower SRA_PARTS and friends, which return two i32 values
18479 /// and take a 2 x i32 value to shift plus a shift amount.
18480 /// TODO: Can this be moved to general expansion code?
18481 static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
18482   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
18483   MVT VT = Op.getSimpleValueType();
18484   unsigned VTBits = VT.getSizeInBits();
18485   SDLoc dl(Op);
18486   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
18487   SDValue ShOpLo = Op.getOperand(0);
18488   SDValue ShOpHi = Op.getOperand(1);
18489   SDValue ShAmt  = Op.getOperand(2);
18490   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
18491   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's optimized away
18492   // during isel.
18493   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
18494                                   DAG.getConstant(VTBits - 1, dl, MVT::i8));
18495   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
18496                                      DAG.getConstant(VTBits - 1, dl, MVT::i8))
18497                        : DAG.getConstant(0, dl, VT);
18498 
18499   SDValue Tmp2, Tmp3;
18500   if (Op.getOpcode() == ISD::SHL_PARTS) {
18501     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
18502     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
18503   } else {
18504     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
18505     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
18506   }
18507 
18508   // If the shift amount is larger or equal than the width of a part we can't
18509   // rely on the results of shld/shrd. Insert a test and select the appropriate
18510   // values for large shift amounts.
18511   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
18512                                 DAG.getConstant(VTBits, dl, MVT::i8));
18513   SDValue Cond = DAG.getSetCC(dl, MVT::i8, AndNode,
18514                              DAG.getConstant(0, dl, MVT::i8), ISD::SETNE);
18515 
18516   SDValue Hi, Lo;
18517   if (Op.getOpcode() == ISD::SHL_PARTS) {
18518     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
18519     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
18520   } else {
18521     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
18522     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
18523   }
18524 
18525   return DAG.getMergeValues({ Lo, Hi }, dl);
18526 }
18527 
18528 static SDValue LowerFunnelShift(SDValue Op, const X86Subtarget &Subtarget,
18529                                 SelectionDAG &DAG) {
18530   MVT VT = Op.getSimpleValueType();
18531   assert((Op.getOpcode() == ISD::FSHL || Op.getOpcode() == ISD::FSHR) &&
18532          "Unexpected funnel shift opcode!");
18533 
18534   SDLoc DL(Op);
18535   SDValue Op0 = Op.getOperand(0);
18536   SDValue Op1 = Op.getOperand(1);
18537   SDValue Amt = Op.getOperand(2);
18538 
18539   bool IsFSHR = Op.getOpcode() == ISD::FSHR;
18540 
18541   if (VT.isVector()) {
18542     assert(Subtarget.hasVBMI2() && "Expected VBMI2");
18543 
18544     if (IsFSHR)
18545       std::swap(Op0, Op1);
18546 
18547     APInt APIntShiftAmt;
18548     if (X86::isConstantSplat(Amt, APIntShiftAmt)) {
18549       uint64_t ShiftAmt = APIntShiftAmt.urem(VT.getScalarSizeInBits());
18550       return DAG.getNode(IsFSHR ? X86ISD::VSHRD : X86ISD::VSHLD, DL, VT, Op0,
18551                          Op1, DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
18552     }
18553 
18554     return DAG.getNode(IsFSHR ? X86ISD::VSHRDV : X86ISD::VSHLDV, DL, VT,
18555                        Op0, Op1, Amt);
18556   }
18557 
18558   assert((VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) &&
18559          "Unexpected funnel shift type!");
18560 
18561   // Expand slow SHLD/SHRD cases if we are not optimizing for size.
18562   bool OptForSize = DAG.shouldOptForSize();
18563   if (!OptForSize && Subtarget.isSHLDSlow())
18564     return SDValue();
18565 
18566   if (IsFSHR)
18567     std::swap(Op0, Op1);
18568 
18569   // i16 needs to modulo the shift amount, but i32/i64 have implicit modulo.
18570   if (VT == MVT::i16)
18571     Amt = DAG.getNode(ISD::AND, DL, Amt.getValueType(), Amt,
18572                       DAG.getConstant(15, DL, Amt.getValueType()));
18573 
18574   unsigned SHDOp = (IsFSHR ? X86ISD::SHRD : X86ISD::SHLD);
18575   return DAG.getNode(SHDOp, DL, VT, Op0, Op1, Amt);
18576 }
18577 
18578 // Try to use a packed vector operation to handle i64 on 32-bit targets when
18579 // AVX512DQ is enabled.
18580 static SDValue LowerI64IntToFP_AVX512DQ(SDValue Op, SelectionDAG &DAG,
18581                                         const X86Subtarget &Subtarget) {
18582   assert((Op.getOpcode() == ISD::SINT_TO_FP ||
18583           Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
18584           Op.getOpcode() == ISD::STRICT_UINT_TO_FP ||
18585           Op.getOpcode() == ISD::UINT_TO_FP) &&
18586          "Unexpected opcode!");
18587   bool IsStrict = Op->isStrictFPOpcode();
18588   unsigned OpNo = IsStrict ? 1 : 0;
18589   SDValue Src = Op.getOperand(OpNo);
18590   MVT SrcVT = Src.getSimpleValueType();
18591   MVT VT = Op.getSimpleValueType();
18592 
18593    if (!Subtarget.hasDQI() || SrcVT != MVT::i64 || Subtarget.is64Bit() ||
18594        (VT != MVT::f32 && VT != MVT::f64))
18595     return SDValue();
18596 
18597   // Pack the i64 into a vector, do the operation and extract.
18598 
18599   // Using 256-bit to ensure result is 128-bits for f32 case.
18600   unsigned NumElts = Subtarget.hasVLX() ? 4 : 8;
18601   MVT VecInVT = MVT::getVectorVT(MVT::i64, NumElts);
18602   MVT VecVT = MVT::getVectorVT(VT, NumElts);
18603 
18604   SDLoc dl(Op);
18605   SDValue InVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecInVT, Src);
18606   if (IsStrict) {
18607     SDValue CvtVec = DAG.getNode(Op.getOpcode(), dl, {VecVT, MVT::Other},
18608                                  {Op.getOperand(0), InVec});
18609     SDValue Chain = CvtVec.getValue(1);
18610     SDValue Value = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, CvtVec,
18611                                 DAG.getIntPtrConstant(0, dl));
18612     return DAG.getMergeValues({Value, Chain}, dl);
18613   }
18614 
18615   SDValue CvtVec = DAG.getNode(Op.getOpcode(), dl, VecVT, InVec);
18616 
18617   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, CvtVec,
18618                      DAG.getIntPtrConstant(0, dl));
18619 }
18620 
18621 static bool useVectorCast(unsigned Opcode, MVT FromVT, MVT ToVT,
18622                           const X86Subtarget &Subtarget) {
18623   switch (Opcode) {
18624     case ISD::SINT_TO_FP:
18625       // TODO: Handle wider types with AVX/AVX512.
18626       if (!Subtarget.hasSSE2() || FromVT != MVT::v4i32)
18627         return false;
18628       // CVTDQ2PS or (V)CVTDQ2PD
18629       return ToVT == MVT::v4f32 || (Subtarget.hasAVX() && ToVT == MVT::v4f64);
18630 
18631     case ISD::UINT_TO_FP:
18632       // TODO: Handle wider types and i64 elements.
18633       if (!Subtarget.hasAVX512() || FromVT != MVT::v4i32)
18634         return false;
18635       // VCVTUDQ2PS or VCVTUDQ2PD
18636       return ToVT == MVT::v4f32 || ToVT == MVT::v4f64;
18637 
18638     default:
18639       return false;
18640   }
18641 }
18642 
18643 /// Given a scalar cast operation that is extracted from a vector, try to
18644 /// vectorize the cast op followed by extraction. This will avoid an expensive
18645 /// round-trip between XMM and GPR.
18646 static SDValue vectorizeExtractedCast(SDValue Cast, SelectionDAG &DAG,
18647                                       const X86Subtarget &Subtarget) {
18648   // TODO: This could be enhanced to handle smaller integer types by peeking
18649   // through an extend.
18650   SDValue Extract = Cast.getOperand(0);
18651   MVT DestVT = Cast.getSimpleValueType();
18652   if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
18653       !isa<ConstantSDNode>(Extract.getOperand(1)))
18654     return SDValue();
18655 
18656   // See if we have a 128-bit vector cast op for this type of cast.
18657   SDValue VecOp = Extract.getOperand(0);
18658   MVT FromVT = VecOp.getSimpleValueType();
18659   unsigned NumEltsInXMM = 128 / FromVT.getScalarSizeInBits();
18660   MVT Vec128VT = MVT::getVectorVT(FromVT.getScalarType(), NumEltsInXMM);
18661   MVT ToVT = MVT::getVectorVT(DestVT, NumEltsInXMM);
18662   if (!useVectorCast(Cast.getOpcode(), Vec128VT, ToVT, Subtarget))
18663     return SDValue();
18664 
18665   // If we are extracting from a non-zero element, first shuffle the source
18666   // vector to allow extracting from element zero.
18667   SDLoc DL(Cast);
18668   if (!isNullConstant(Extract.getOperand(1))) {
18669     SmallVector<int, 16> Mask(FromVT.getVectorNumElements(), -1);
18670     Mask[0] = Extract.getConstantOperandVal(1);
18671     VecOp = DAG.getVectorShuffle(FromVT, DL, VecOp, DAG.getUNDEF(FromVT), Mask);
18672   }
18673   // If the source vector is wider than 128-bits, extract the low part. Do not
18674   // create an unnecessarily wide vector cast op.
18675   if (FromVT != Vec128VT)
18676     VecOp = extract128BitVector(VecOp, 0, DAG, DL);
18677 
18678   // cast (extelt V, 0) --> extelt (cast (extract_subv V)), 0
18679   // cast (extelt V, C) --> extelt (cast (extract_subv (shuffle V, [C...]))), 0
18680   SDValue VCast = DAG.getNode(Cast.getOpcode(), DL, ToVT, VecOp);
18681   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, DestVT, VCast,
18682                      DAG.getIntPtrConstant(0, DL));
18683 }
18684 
18685 static SDValue lowerINT_TO_FP_vXi64(SDValue Op, SelectionDAG &DAG,
18686                                     const X86Subtarget &Subtarget) {
18687   SDLoc DL(Op);
18688   bool IsStrict = Op->isStrictFPOpcode();
18689   MVT VT = Op->getSimpleValueType(0);
18690   SDValue Src = Op->getOperand(IsStrict ? 1 : 0);
18691 
18692   if (Subtarget.hasDQI()) {
18693     assert(!Subtarget.hasVLX() && "Unexpected features");
18694 
18695     assert((Src.getSimpleValueType() == MVT::v2i64 ||
18696             Src.getSimpleValueType() == MVT::v4i64) &&
18697            "Unsupported custom type");
18698 
18699     // With AVX512DQ, but not VLX we need to widen to get a 512-bit result type.
18700     assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v4f64) &&
18701            "Unexpected VT!");
18702     MVT WideVT = VT == MVT::v4f32 ? MVT::v8f32 : MVT::v8f64;
18703 
18704     // Need to concat with zero vector for strict fp to avoid spurious
18705     // exceptions.
18706     SDValue Tmp = IsStrict ? DAG.getConstant(0, DL, MVT::v8i64)
18707                            : DAG.getUNDEF(MVT::v8i64);
18708     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i64, Tmp, Src,
18709                       DAG.getIntPtrConstant(0, DL));
18710     SDValue Res, Chain;
18711     if (IsStrict) {
18712       Res = DAG.getNode(Op.getOpcode(), DL, {WideVT, MVT::Other},
18713                         {Op->getOperand(0), Src});
18714       Chain = Res.getValue(1);
18715     } else {
18716       Res = DAG.getNode(Op.getOpcode(), DL, WideVT, Src);
18717     }
18718 
18719     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
18720                       DAG.getIntPtrConstant(0, DL));
18721 
18722     if (IsStrict)
18723       return DAG.getMergeValues({Res, Chain}, DL);
18724     return Res;
18725   }
18726 
18727   bool IsSigned = Op->getOpcode() == ISD::SINT_TO_FP ||
18728                   Op->getOpcode() == ISD::STRICT_SINT_TO_FP;
18729   if (VT != MVT::v4f32 || IsSigned)
18730     return SDValue();
18731 
18732   SDValue Zero = DAG.getConstant(0, DL, MVT::v4i64);
18733   SDValue One  = DAG.getConstant(1, DL, MVT::v4i64);
18734   SDValue Sign = DAG.getNode(ISD::OR, DL, MVT::v4i64,
18735                              DAG.getNode(ISD::SRL, DL, MVT::v4i64, Src, One),
18736                              DAG.getNode(ISD::AND, DL, MVT::v4i64, Src, One));
18737   SDValue IsNeg = DAG.getSetCC(DL, MVT::v4i64, Src, Zero, ISD::SETLT);
18738   SDValue SignSrc = DAG.getSelect(DL, MVT::v4i64, IsNeg, Sign, Src);
18739   SmallVector<SDValue, 4> SignCvts(4);
18740   SmallVector<SDValue, 4> Chains(4);
18741   for (int i = 0; i != 4; ++i) {
18742     SDValue Src = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, SignSrc,
18743                               DAG.getIntPtrConstant(i, DL));
18744     if (IsStrict) {
18745       SignCvts[i] =
18746           DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {MVT::f32, MVT::Other},
18747                       {Op.getOperand(0), Src});
18748       Chains[i] = SignCvts[i].getValue(1);
18749     } else {
18750       SignCvts[i] = DAG.getNode(ISD::SINT_TO_FP, DL, MVT::f32, Src);
18751     }
18752   }
18753   SDValue SignCvt = DAG.getBuildVector(VT, DL, SignCvts);
18754 
18755   SDValue Slow, Chain;
18756   if (IsStrict) {
18757     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18758     Slow = DAG.getNode(ISD::STRICT_FADD, DL, {MVT::v4f32, MVT::Other},
18759                        {Chain, SignCvt, SignCvt});
18760     Chain = Slow.getValue(1);
18761   } else {
18762     Slow = DAG.getNode(ISD::FADD, DL, MVT::v4f32, SignCvt, SignCvt);
18763   }
18764 
18765   IsNeg = DAG.getNode(ISD::TRUNCATE, DL, MVT::v4i32, IsNeg);
18766   SDValue Cvt = DAG.getSelect(DL, MVT::v4f32, IsNeg, Slow, SignCvt);
18767 
18768   if (IsStrict)
18769     return DAG.getMergeValues({Cvt, Chain}, DL);
18770 
18771   return Cvt;
18772 }
18773 
18774 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
18775                                            SelectionDAG &DAG) const {
18776   bool IsStrict = Op->isStrictFPOpcode();
18777   unsigned OpNo = IsStrict ? 1 : 0;
18778   SDValue Src = Op.getOperand(OpNo);
18779   SDValue Chain = IsStrict ? Op->getOperand(0) : DAG.getEntryNode();
18780   MVT SrcVT = Src.getSimpleValueType();
18781   MVT VT = Op.getSimpleValueType();
18782   SDLoc dl(Op);
18783 
18784   if (SDValue Extract = vectorizeExtractedCast(Op, DAG, Subtarget))
18785     return Extract;
18786 
18787   if (SrcVT.isVector()) {
18788     if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
18789       // Note: Since v2f64 is a legal type. We don't need to zero extend the
18790       // source for strict FP.
18791       if (IsStrict)
18792         return DAG.getNode(
18793             X86ISD::STRICT_CVTSI2P, dl, {VT, MVT::Other},
18794             {Chain, DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
18795                                 DAG.getUNDEF(SrcVT))});
18796       return DAG.getNode(X86ISD::CVTSI2P, dl, VT,
18797                          DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
18798                                      DAG.getUNDEF(SrcVT)));
18799     }
18800     if (SrcVT == MVT::v2i64 || SrcVT == MVT::v4i64)
18801       return lowerINT_TO_FP_vXi64(Op, DAG, Subtarget);
18802 
18803     return SDValue();
18804   }
18805 
18806   assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
18807          "Unknown SINT_TO_FP to lower!");
18808 
18809   bool UseSSEReg = isScalarFPTypeInSSEReg(VT);
18810 
18811   // These are really Legal; return the operand so the caller accepts it as
18812   // Legal.
18813   if (SrcVT == MVT::i32 && UseSSEReg)
18814     return Op;
18815   if (SrcVT == MVT::i64 && UseSSEReg && Subtarget.is64Bit())
18816     return Op;
18817 
18818   if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget))
18819     return V;
18820 
18821   // SSE doesn't have an i16 conversion so we need to promote.
18822   if (SrcVT == MVT::i16 && (UseSSEReg || VT == MVT::f128)) {
18823     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, Src);
18824     if (IsStrict)
18825       return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
18826                          {Chain, Ext});
18827 
18828     return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Ext);
18829   }
18830 
18831   if (VT == MVT::f128)
18832     return LowerF128Call(Op, DAG, RTLIB::getSINTTOFP(SrcVT, VT));
18833 
18834   SDValue ValueToStore = Src;
18835   if (SrcVT == MVT::i64 && UseSSEReg && !Subtarget.is64Bit())
18836     // Bitcasting to f64 here allows us to do a single 64-bit store from
18837     // an SSE register, avoiding the store forwarding penalty that would come
18838     // with two 32-bit stores.
18839     ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
18840 
18841   unsigned Size = SrcVT.getSizeInBits()/8;
18842   MachineFunction &MF = DAG.getMachineFunction();
18843   auto PtrVT = getPointerTy(MF.getDataLayout());
18844   int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false);
18845   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
18846   Chain = DAG.getStore(
18847       Chain, dl, ValueToStore, StackSlot,
18848       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
18849   std::pair<SDValue, SDValue> Tmp = BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
18850 
18851   if (IsStrict)
18852     return DAG.getMergeValues({Tmp.first, Tmp.second}, dl);
18853 
18854   return Tmp.first;
18855 }
18856 
18857 std::pair<SDValue, SDValue> X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
18858                                      SDValue StackSlot,
18859                                      SelectionDAG &DAG) const {
18860   // Build the FILD
18861   SDLoc DL(Op);
18862   SDVTList Tys;
18863   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
18864   if (useSSE)
18865     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
18866   else
18867     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
18868 
18869   unsigned ByteSize = SrcVT.getSizeInBits() / 8;
18870 
18871   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
18872   MachineMemOperand *LoadMMO;
18873   if (FI) {
18874     int SSFI = FI->getIndex();
18875     LoadMMO = DAG.getMachineFunction().getMachineMemOperand(
18876         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
18877         MachineMemOperand::MOLoad, ByteSize, ByteSize);
18878   } else {
18879     LoadMMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
18880     StackSlot = StackSlot.getOperand(1);
18881   }
18882   SDValue FILDOps[] = {Chain, StackSlot};
18883   SDValue Result =
18884       DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, DL,
18885                               Tys, FILDOps, SrcVT, LoadMMO);
18886   Chain = Result.getValue(1);
18887 
18888   if (useSSE) {
18889     SDValue InFlag = Result.getValue(2);
18890 
18891     // FIXME: Currently the FST is glued to the FILD_FLAG. This
18892     // shouldn't be necessary except that RFP cannot be live across
18893     // multiple blocks. When stackifier is fixed, they can be uncoupled.
18894     MachineFunction &MF = DAG.getMachineFunction();
18895     unsigned SSFISize = Op.getValueSizeInBits() / 8;
18896     int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false);
18897     auto PtrVT = getPointerTy(MF.getDataLayout());
18898     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
18899     Tys = DAG.getVTList(MVT::Other);
18900     SDValue FSTOps[] = {Chain, Result, StackSlot, InFlag};
18901     MachineMemOperand *StoreMMO = DAG.getMachineFunction().getMachineMemOperand(
18902         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
18903         MachineMemOperand::MOStore, SSFISize, SSFISize);
18904 
18905     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, FSTOps,
18906                                     Op.getValueType(), StoreMMO);
18907     Result = DAG.getLoad(
18908         Op.getValueType(), DL, Chain, StackSlot,
18909         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
18910     Chain = Result.getValue(1);
18911   }
18912 
18913   return { Result, Chain };
18914 }
18915 
18916 /// Horizontal vector math instructions may be slower than normal math with
18917 /// shuffles. Limit horizontal op codegen based on size/speed trade-offs, uarch
18918 /// implementation, and likely shuffle complexity of the alternate sequence.
18919 static bool shouldUseHorizontalOp(bool IsSingleSource, SelectionDAG &DAG,
18920                                   const X86Subtarget &Subtarget) {
18921   bool IsOptimizingSize = DAG.shouldOptForSize();
18922   bool HasFastHOps = Subtarget.hasFastHorizontalOps();
18923   return !IsSingleSource || IsOptimizingSize || HasFastHOps;
18924 }
18925 
18926 /// 64-bit unsigned integer to double expansion.
18927 static SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG,
18928                                    const X86Subtarget &Subtarget) {
18929   // This algorithm is not obvious. Here it is what we're trying to output:
18930   /*
18931      movq       %rax,  %xmm0
18932      punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
18933      subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
18934      #ifdef __SSE3__
18935        haddpd   %xmm0, %xmm0
18936      #else
18937        pshufd   $0x4e, %xmm0, %xmm1
18938        addpd    %xmm1, %xmm0
18939      #endif
18940   */
18941 
18942   bool IsStrict = Op->isStrictFPOpcode();
18943   unsigned OpNo = IsStrict ? 1 : 0;
18944   SDLoc dl(Op);
18945   LLVMContext *Context = DAG.getContext();
18946 
18947   // Build some magic constants.
18948   static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
18949   Constant *C0 = ConstantDataVector::get(*Context, CV0);
18950   auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
18951   SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
18952 
18953   SmallVector<Constant*,2> CV1;
18954   CV1.push_back(
18955     ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
18956                                       APInt(64, 0x4330000000000000ULL))));
18957   CV1.push_back(
18958     ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
18959                                       APInt(64, 0x4530000000000000ULL))));
18960   Constant *C1 = ConstantVector::get(CV1);
18961   SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
18962 
18963   // Load the 64-bit value into an XMM register.
18964   SDValue XR1 =
18965       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Op.getOperand(OpNo));
18966   SDValue CLod0 =
18967       DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
18968                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
18969                   /* Alignment = */ 16);
18970   SDValue Unpck1 =
18971       getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
18972 
18973   SDValue CLod1 =
18974       DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
18975                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
18976                   /* Alignment = */ 16);
18977   SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
18978   SDValue Sub;
18979   SDValue Chain;
18980   // TODO: Are there any fast-math-flags to propagate here?
18981   if (IsStrict) {
18982     Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::v2f64, MVT::Other},
18983                       {Op.getOperand(0), XR2F, CLod1});
18984     Chain = Sub.getValue(1);
18985   } else
18986     Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
18987   SDValue Result;
18988 
18989   if (!IsStrict && Subtarget.hasSSE3() &&
18990       shouldUseHorizontalOp(true, DAG, Subtarget)) {
18991     // FIXME: Do we need a STRICT version of FHADD?
18992     Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
18993   } else {
18994     SDValue Shuffle = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, Sub, {1,-1});
18995     if (IsStrict) {
18996       Result = DAG.getNode(ISD::STRICT_FADD, dl, {MVT::v2f64, MVT::Other},
18997                            {Chain, Shuffle, Sub});
18998       Chain = Result.getValue(1);
18999     } else
19000       Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuffle, Sub);
19001   }
19002   Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
19003                        DAG.getIntPtrConstant(0, dl));
19004   if (IsStrict)
19005     return DAG.getMergeValues({Result, Chain}, dl);
19006 
19007   return Result;
19008 }
19009 
19010 /// 32-bit unsigned integer to float expansion.
19011 static SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG,
19012                                    const X86Subtarget &Subtarget) {
19013   unsigned OpNo = Op.getNode()->isStrictFPOpcode() ? 1 : 0;
19014   SDLoc dl(Op);
19015   // FP constant to bias correct the final result.
19016   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
19017                                    MVT::f64);
19018 
19019   // Load the 32-bit value into an XMM register.
19020   SDValue Load =
19021       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Op.getOperand(OpNo));
19022 
19023   // Zero out the upper parts of the register.
19024   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
19025 
19026   // Or the load with the bias.
19027   SDValue Or = DAG.getNode(
19028       ISD::OR, dl, MVT::v2i64,
19029       DAG.getBitcast(MVT::v2i64, Load),
19030       DAG.getBitcast(MVT::v2i64,
19031                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
19032   Or =
19033       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
19034                   DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
19035 
19036   if (Op.getNode()->isStrictFPOpcode()) {
19037     // Subtract the bias.
19038     // TODO: Are there any fast-math-flags to propagate here?
19039     SDValue Chain = Op.getOperand(0);
19040     SDValue Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
19041                               {Chain, Or, Bias});
19042 
19043     if (Op.getValueType() == Sub.getValueType())
19044       return Sub;
19045 
19046     // Handle final rounding.
19047     std::pair<SDValue, SDValue> ResultPair = DAG.getStrictFPExtendOrRound(
19048         Sub, Sub.getValue(1), dl, Op.getSimpleValueType());
19049 
19050     return DAG.getMergeValues({ResultPair.first, ResultPair.second}, dl);
19051   }
19052 
19053   // Subtract the bias.
19054   // TODO: Are there any fast-math-flags to propagate here?
19055   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
19056 
19057   // Handle final rounding.
19058   return DAG.getFPExtendOrRound(Sub, dl, Op.getSimpleValueType());
19059 }
19060 
19061 static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG,
19062                                      const X86Subtarget &Subtarget,
19063                                      const SDLoc &DL) {
19064   if (Op.getSimpleValueType() != MVT::v2f64)
19065     return SDValue();
19066 
19067   bool IsStrict = Op->isStrictFPOpcode();
19068 
19069   SDValue N0 = Op.getOperand(IsStrict ? 1 : 0);
19070   assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type");
19071 
19072   if (Subtarget.hasAVX512()) {
19073     if (!Subtarget.hasVLX()) {
19074       // Let generic type legalization widen this.
19075       if (!IsStrict)
19076         return SDValue();
19077       // Otherwise pad the integer input with 0s and widen the operation.
19078       N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
19079                        DAG.getConstant(0, DL, MVT::v2i32));
19080       SDValue Res = DAG.getNode(Op->getOpcode(), DL, {MVT::v4f64, MVT::Other},
19081                                 {Op.getOperand(0), N0});
19082       SDValue Chain = Res.getValue(1);
19083       Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2f64, Res,
19084                         DAG.getIntPtrConstant(0, DL));
19085       return DAG.getMergeValues({Res, Chain}, DL);
19086     }
19087 
19088     // Legalize to v4i32 type.
19089     N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
19090                      DAG.getUNDEF(MVT::v2i32));
19091     if (IsStrict)
19092       return DAG.getNode(X86ISD::STRICT_CVTUI2P, DL, {MVT::v2f64, MVT::Other},
19093                          {Op.getOperand(0), N0});
19094     return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0);
19095   }
19096 
19097   // Zero extend to 2i64, OR with the floating point representation of 2^52.
19098   // This gives us the floating point equivalent of 2^52 + the i32 integer
19099   // since double has 52-bits of mantissa. Then subtract 2^52 in floating
19100   // point leaving just our i32 integers in double format.
19101   SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i64, N0);
19102   SDValue VBias =
19103       DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), DL, MVT::v2f64);
19104   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::v2i64, ZExtIn,
19105                            DAG.getBitcast(MVT::v2i64, VBias));
19106   Or = DAG.getBitcast(MVT::v2f64, Or);
19107 
19108   if (IsStrict)
19109     return DAG.getNode(ISD::STRICT_FSUB, DL, {MVT::v2f64, MVT::Other},
19110                        {Op.getOperand(0), Or, VBias});
19111   return DAG.getNode(ISD::FSUB, DL, MVT::v2f64, Or, VBias);
19112 }
19113 
19114 static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
19115                                      const X86Subtarget &Subtarget) {
19116   SDLoc DL(Op);
19117   bool IsStrict = Op->isStrictFPOpcode();
19118   SDValue V = Op->getOperand(IsStrict ? 1 : 0);
19119   MVT VecIntVT = V.getSimpleValueType();
19120   assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
19121          "Unsupported custom type");
19122 
19123   if (Subtarget.hasAVX512()) {
19124     // With AVX512, but not VLX we need to widen to get a 512-bit result type.
19125     assert(!Subtarget.hasVLX() && "Unexpected features");
19126     MVT VT = Op->getSimpleValueType(0);
19127 
19128     // v8i32->v8f64 is legal with AVX512 so just return it.
19129     if (VT == MVT::v8f64)
19130       return Op;
19131 
19132     assert((VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v4f64) &&
19133            "Unexpected VT!");
19134     MVT WideVT = VT == MVT::v4f64 ? MVT::v8f64 : MVT::v16f32;
19135     MVT WideIntVT = VT == MVT::v4f64 ? MVT::v8i32 : MVT::v16i32;
19136     // Need to concat with zero vector for strict fp to avoid spurious
19137     // exceptions.
19138     SDValue Tmp =
19139         IsStrict ? DAG.getConstant(0, DL, WideIntVT) : DAG.getUNDEF(WideIntVT);
19140     V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideIntVT, Tmp, V,
19141                     DAG.getIntPtrConstant(0, DL));
19142     SDValue Res, Chain;
19143     if (IsStrict) {
19144       Res = DAG.getNode(ISD::STRICT_UINT_TO_FP, DL, {WideVT, MVT::Other},
19145                         {Op->getOperand(0), V});
19146       Chain = Res.getValue(1);
19147     } else {
19148       Res = DAG.getNode(ISD::UINT_TO_FP, DL, WideVT, V);
19149     }
19150 
19151     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
19152                       DAG.getIntPtrConstant(0, DL));
19153 
19154     if (IsStrict)
19155       return DAG.getMergeValues({Res, Chain}, DL);
19156     return Res;
19157   }
19158 
19159   if (Subtarget.hasAVX() && VecIntVT == MVT::v4i32 &&
19160       Op->getSimpleValueType(0) == MVT::v4f64) {
19161     SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i64, V);
19162     Constant *Bias = ConstantFP::get(
19163         *DAG.getContext(),
19164         APFloat(APFloat::IEEEdouble(), APInt(64, 0x4330000000000000ULL)));
19165     auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
19166     SDValue CPIdx = DAG.getConstantPool(Bias, PtrVT, /*Alignment*/ 8);
19167     SDVTList Tys = DAG.getVTList(MVT::v4f64, MVT::Other);
19168     SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
19169     SDValue VBias = DAG.getMemIntrinsicNode(
19170         X86ISD::VBROADCAST_LOAD, DL, Tys, Ops, MVT::f64,
19171         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
19172         /*Alignment*/ 8, MachineMemOperand::MOLoad);
19173 
19174     SDValue Or = DAG.getNode(ISD::OR, DL, MVT::v4i64, ZExtIn,
19175                              DAG.getBitcast(MVT::v4i64, VBias));
19176     Or = DAG.getBitcast(MVT::v4f64, Or);
19177 
19178     if (IsStrict)
19179       return DAG.getNode(ISD::STRICT_FSUB, DL, {MVT::v4f64, MVT::Other},
19180                          {Op.getOperand(0), Or, VBias});
19181     return DAG.getNode(ISD::FSUB, DL, MVT::v4f64, Or, VBias);
19182   }
19183 
19184   // The algorithm is the following:
19185   // #ifdef __SSE4_1__
19186   //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
19187   //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
19188   //                                 (uint4) 0x53000000, 0xaa);
19189   // #else
19190   //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
19191   //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
19192   // #endif
19193   //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
19194   //     return (float4) lo + fhi;
19195 
19196   bool Is128 = VecIntVT == MVT::v4i32;
19197   MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
19198   // If we convert to something else than the supported type, e.g., to v4f64,
19199   // abort early.
19200   if (VecFloatVT != Op->getSimpleValueType(0))
19201     return SDValue();
19202 
19203   // In the #idef/#else code, we have in common:
19204   // - The vector of constants:
19205   // -- 0x4b000000
19206   // -- 0x53000000
19207   // - A shift:
19208   // -- v >> 16
19209 
19210   // Create the splat vector for 0x4b000000.
19211   SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT);
19212   // Create the splat vector for 0x53000000.
19213   SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT);
19214 
19215   // Create the right shift.
19216   SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT);
19217   SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
19218 
19219   SDValue Low, High;
19220   if (Subtarget.hasSSE41()) {
19221     MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
19222     //     uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
19223     SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
19224     SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
19225     // Low will be bitcasted right away, so do not bother bitcasting back to its
19226     // original type.
19227     Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
19228                       VecCstLowBitcast, DAG.getTargetConstant(0xaa, DL, MVT::i8));
19229     //     uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
19230     //                                 (uint4) 0x53000000, 0xaa);
19231     SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
19232     SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
19233     // High will be bitcasted right away, so do not bother bitcasting back to
19234     // its original type.
19235     High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
19236                        VecCstHighBitcast, DAG.getTargetConstant(0xaa, DL, MVT::i8));
19237   } else {
19238     SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT);
19239     //     uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
19240     SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
19241     Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
19242 
19243     //     uint4 hi = (v >> 16) | (uint4) 0x53000000;
19244     High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
19245   }
19246 
19247   // Create the vector constant for (0x1.0p39f + 0x1.0p23f).
19248   SDValue VecCstFSub = DAG.getConstantFP(
19249       APFloat(APFloat::IEEEsingle(), APInt(32, 0x53000080)), DL, VecFloatVT);
19250 
19251   //     float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
19252   // NOTE: By using fsub of a positive constant instead of fadd of a negative
19253   // constant, we avoid reassociation in MachineCombiner when unsafe-fp-math is
19254   // enabled. See PR24512.
19255   SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
19256   // TODO: Are there any fast-math-flags to propagate here?
19257   //     (float4) lo;
19258   SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
19259   //     return (float4) lo + fhi;
19260   if (IsStrict) {
19261     SDValue FHigh = DAG.getNode(ISD::STRICT_FSUB, DL, {VecFloatVT, MVT::Other},
19262                                 {Op.getOperand(0), HighBitcast, VecCstFSub});
19263     return DAG.getNode(ISD::STRICT_FADD, DL, {VecFloatVT, MVT::Other},
19264                        {FHigh.getValue(1), LowBitcast, FHigh});
19265   }
19266 
19267   SDValue FHigh =
19268       DAG.getNode(ISD::FSUB, DL, VecFloatVT, HighBitcast, VecCstFSub);
19269   return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
19270 }
19271 
19272 static SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG,
19273                                    const X86Subtarget &Subtarget) {
19274   unsigned OpNo = Op.getNode()->isStrictFPOpcode() ? 1 : 0;
19275   SDValue N0 = Op.getOperand(OpNo);
19276   MVT SrcVT = N0.getSimpleValueType();
19277   SDLoc dl(Op);
19278 
19279   switch (SrcVT.SimpleTy) {
19280   default:
19281     llvm_unreachable("Custom UINT_TO_FP is not supported!");
19282   case MVT::v2i32:
19283     return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl);
19284   case MVT::v4i32:
19285   case MVT::v8i32:
19286     return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget);
19287   case MVT::v2i64:
19288   case MVT::v4i64:
19289     return lowerINT_TO_FP_vXi64(Op, DAG, Subtarget);
19290   }
19291 }
19292 
19293 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
19294                                            SelectionDAG &DAG) const {
19295   bool IsStrict = Op->isStrictFPOpcode();
19296   unsigned OpNo = IsStrict ? 1 : 0;
19297   SDValue Src = Op.getOperand(OpNo);
19298   SDLoc dl(Op);
19299   auto PtrVT = getPointerTy(DAG.getDataLayout());
19300   MVT SrcVT = Src.getSimpleValueType();
19301   MVT DstVT = Op->getSimpleValueType(0);
19302   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
19303 
19304   if (DstVT == MVT::f128)
19305     return LowerF128Call(Op, DAG, RTLIB::getUINTTOFP(SrcVT, DstVT));
19306 
19307   if (DstVT.isVector())
19308     return lowerUINT_TO_FP_vec(Op, DAG, Subtarget);
19309 
19310   if (SDValue Extract = vectorizeExtractedCast(Op, DAG, Subtarget))
19311     return Extract;
19312 
19313   if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
19314       (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) {
19315     // Conversions from unsigned i32 to f32/f64 are legal,
19316     // using VCVTUSI2SS/SD.  Same for i64 in 64-bit mode.
19317     return Op;
19318   }
19319 
19320   // Promote i32 to i64 and use a signed conversion on 64-bit targets.
19321   if (SrcVT == MVT::i32 && Subtarget.is64Bit()) {
19322     Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Src);
19323     if (IsStrict)
19324       return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {DstVT, MVT::Other},
19325                          {Chain, Src});
19326     return DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
19327   }
19328 
19329   if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget))
19330     return V;
19331 
19332   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
19333     return LowerUINT_TO_FP_i64(Op, DAG, Subtarget);
19334   if (SrcVT == MVT::i32 && X86ScalarSSEf64 && DstVT != MVT::f80)
19335     return LowerUINT_TO_FP_i32(Op, DAG, Subtarget);
19336   if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
19337     return SDValue();
19338 
19339   // Make a 64-bit buffer, and use it to build an FILD.
19340   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
19341   if (SrcVT == MVT::i32) {
19342     SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
19343     SDValue Store1 =
19344         DAG.getStore(Chain, dl, Src, StackSlot, MachinePointerInfo());
19345     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
19346                                   OffsetSlot, MachinePointerInfo());
19347     std::pair<SDValue, SDValue> Tmp =
19348         BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
19349     if (IsStrict)
19350       return DAG.getMergeValues({Tmp.first, Tmp.second}, dl);
19351 
19352     return Tmp.first;
19353   }
19354 
19355   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
19356   SDValue ValueToStore = Src;
19357   if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit()) {
19358     // Bitcasting to f64 here allows us to do a single 64-bit store from
19359     // an SSE register, avoiding the store forwarding penalty that would come
19360     // with two 32-bit stores.
19361     ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
19362   }
19363   SDValue Store =
19364       DAG.getStore(Chain, dl, ValueToStore, StackSlot, MachinePointerInfo());
19365   // For i64 source, we need to add the appropriate power of 2 if the input
19366   // was negative.  This is the same as the optimization in
19367   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
19368   // we must be careful to do the computation in x87 extended precision, not
19369   // in SSE. (The generic code can't know it's OK to do this, or how to.)
19370   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
19371   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
19372       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
19373       MachineMemOperand::MOLoad, 8, 8);
19374 
19375   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
19376   SDValue Ops[] = { Store, StackSlot };
19377   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
19378                                          MVT::i64, MMO);
19379   Chain = Fild.getValue(1);
19380 
19381 
19382   // Check whether the sign bit is set.
19383   SDValue SignSet = DAG.getSetCC(
19384       dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
19385       Op.getOperand(OpNo), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
19386 
19387   // Build a 64 bit pair (FF, 0) in the constant pool, with FF in the hi bits.
19388   APInt FF(64, 0x5F80000000000000ULL);
19389   SDValue FudgePtr = DAG.getConstantPool(
19390       ConstantInt::get(*DAG.getContext(), FF), PtrVT);
19391 
19392   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
19393   SDValue Zero = DAG.getIntPtrConstant(0, dl);
19394   SDValue Four = DAG.getIntPtrConstant(4, dl);
19395   SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Four, Zero);
19396   FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
19397 
19398   // Load the value out, extending it from f32 to f80.
19399   SDValue Fudge = DAG.getExtLoad(
19400       ISD::EXTLOAD, dl, MVT::f80, Chain, FudgePtr,
19401       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
19402       /* Alignment = */ 4);
19403   Chain = Fudge.getValue(1);
19404   // Extend everything to 80 bits to force it to be done on x87.
19405   // TODO: Are there any fast-math-flags to propagate here?
19406   if (IsStrict) {
19407     SDValue Add = DAG.getNode(ISD::STRICT_FADD, dl, {MVT::f80, MVT::Other},
19408                               {Chain, Fild, Fudge});
19409     // STRICT_FP_ROUND can't handle equal types.
19410     if (DstVT == MVT::f80)
19411       return Add;
19412     return DAG.getNode(ISD::STRICT_FP_ROUND, dl, {DstVT, MVT::Other},
19413                        {Add.getValue(1), Add, DAG.getIntPtrConstant(0, dl)});
19414   }
19415   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
19416   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
19417                      DAG.getIntPtrConstant(0, dl));
19418 }
19419 
19420 // If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
19421 // is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
19422 // just return an SDValue().
19423 // Otherwise it is assumed to be a conversion from one of f32, f64 or f80
19424 // to i16, i32 or i64, and we lower it to a legal sequence and return the
19425 // result.
19426 SDValue
19427 X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
19428                                    bool IsSigned, SDValue &Chain) const {
19429   bool IsStrict = Op->isStrictFPOpcode();
19430   SDLoc DL(Op);
19431 
19432   EVT DstTy = Op.getValueType();
19433   SDValue Value = Op.getOperand(IsStrict ? 1 : 0);
19434   EVT TheVT = Value.getValueType();
19435   auto PtrVT = getPointerTy(DAG.getDataLayout());
19436 
19437   if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
19438     // f16 must be promoted before using the lowering in this routine.
19439     // fp128 does not use this lowering.
19440     return SDValue();
19441   }
19442 
19443   // If using FIST to compute an unsigned i64, we'll need some fixup
19444   // to handle values above the maximum signed i64.  A FIST is always
19445   // used for the 32-bit subtarget, but also for f80 on a 64-bit target.
19446   bool UnsignedFixup = !IsSigned && DstTy == MVT::i64;
19447 
19448   // FIXME: This does not generate an invalid exception if the input does not
19449   // fit in i32. PR44019
19450   if (!IsSigned && DstTy != MVT::i64) {
19451     // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
19452     // The low 32 bits of the fist result will have the correct uint32 result.
19453     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
19454     DstTy = MVT::i64;
19455   }
19456 
19457   assert(DstTy.getSimpleVT() <= MVT::i64 &&
19458          DstTy.getSimpleVT() >= MVT::i16 &&
19459          "Unknown FP_TO_INT to lower!");
19460 
19461   // We lower FP->int64 into FISTP64 followed by a load from a temporary
19462   // stack slot.
19463   MachineFunction &MF = DAG.getMachineFunction();
19464   unsigned MemSize = DstTy.getStoreSize();
19465   int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
19466   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
19467 
19468   Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
19469 
19470   SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
19471 
19472   if (UnsignedFixup) {
19473     //
19474     // Conversion to unsigned i64 is implemented with a select,
19475     // depending on whether the source value fits in the range
19476     // of a signed i64.  Let Thresh be the FP equivalent of
19477     // 0x8000000000000000ULL.
19478     //
19479     //  Adjust = (Value < Thresh) ? 0 : 0x80000000;
19480     //  FltOfs = (Value < Thresh) ? 0 : 0x80000000;
19481     //  FistSrc = (Value - FltOfs);
19482     //  Fist-to-mem64 FistSrc
19483     //  Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
19484     //  to XOR'ing the high 32 bits with Adjust.
19485     //
19486     // Being a power of 2, Thresh is exactly representable in all FP formats.
19487     // For X87 we'd like to use the smallest FP type for this constant, but
19488     // for DAG type consistency we have to match the FP operand type.
19489 
19490     APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000));
19491     LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
19492     bool LosesInfo = false;
19493     if (TheVT == MVT::f64)
19494       // The rounding mode is irrelevant as the conversion should be exact.
19495       Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
19496                               &LosesInfo);
19497     else if (TheVT == MVT::f80)
19498       Status = Thresh.convert(APFloat::x87DoubleExtended(),
19499                               APFloat::rmNearestTiesToEven, &LosesInfo);
19500 
19501     assert(Status == APFloat::opOK && !LosesInfo &&
19502            "FP conversion should have been exact");
19503 
19504     SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
19505 
19506     EVT ResVT = getSetCCResultType(DAG.getDataLayout(),
19507                                    *DAG.getContext(), TheVT);
19508     SDValue Cmp;
19509     if (IsStrict) {
19510       Cmp = DAG.getSetCC(DL, ResVT, Value, ThreshVal, ISD::SETLT,
19511                          Chain, /*IsSignaling*/ true);
19512       Chain = Cmp.getValue(1);
19513     } else {
19514       Cmp = DAG.getSetCC(DL, ResVT, Value, ThreshVal, ISD::SETLT);
19515     }
19516 
19517     Adjust = DAG.getSelect(DL, MVT::i64, Cmp,
19518                            DAG.getConstant(0, DL, MVT::i64),
19519                            DAG.getConstant(APInt::getSignMask(64),
19520                                            DL, MVT::i64));
19521     SDValue FltOfs = DAG.getSelect(DL, TheVT, Cmp,
19522                                    DAG.getConstantFP(0.0, DL, TheVT),
19523                                    ThreshVal);
19524 
19525     if (IsStrict) {
19526       Value = DAG.getNode(ISD::STRICT_FSUB, DL, { TheVT, MVT::Other},
19527                           { Chain, Value, FltOfs });
19528       Chain = Value.getValue(1);
19529     } else
19530       Value = DAG.getNode(ISD::FSUB, DL, TheVT, Value, FltOfs);
19531   }
19532 
19533   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, SSFI);
19534 
19535   // FIXME This causes a redundant load/store if the SSE-class value is already
19536   // in memory, such as if it is on the callstack.
19537   if (isScalarFPTypeInSSEReg(TheVT)) {
19538     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
19539     Chain = DAG.getStore(Chain, DL, Value, StackSlot, MPI);
19540     SDVTList Tys = DAG.getVTList(TheVT, MVT::Other);
19541     SDValue Ops[] = { Chain, StackSlot };
19542 
19543     unsigned FLDSize = TheVT.getStoreSize();
19544     assert(FLDSize <= MemSize && "Stack slot not big enough");
19545     MachineMemOperand *MMO = MF.getMachineMemOperand(
19546         MPI, MachineMemOperand::MOLoad, FLDSize, FLDSize);
19547     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, TheVT, MMO);
19548     Chain = Value.getValue(1);
19549   }
19550 
19551   // Build the FP_TO_INT*_IN_MEM
19552   MachineMemOperand *MMO = MF.getMachineMemOperand(
19553       MPI, MachineMemOperand::MOStore, MemSize, MemSize);
19554   SDValue Ops[] = { Chain, Value, StackSlot };
19555   SDValue FIST = DAG.getMemIntrinsicNode(X86ISD::FP_TO_INT_IN_MEM, DL,
19556                                          DAG.getVTList(MVT::Other),
19557                                          Ops, DstTy, MMO);
19558 
19559   SDValue Res = DAG.getLoad(Op.getValueType(), SDLoc(Op), FIST, StackSlot, MPI);
19560   Chain = Res.getValue(1);
19561 
19562   // If we need an unsigned fixup, XOR the result with adjust.
19563   if (UnsignedFixup)
19564     Res = DAG.getNode(ISD::XOR, DL, MVT::i64, Res, Adjust);
19565 
19566   return Res;
19567 }
19568 
19569 static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
19570                               const X86Subtarget &Subtarget) {
19571   MVT VT = Op.getSimpleValueType();
19572   SDValue In = Op.getOperand(0);
19573   MVT InVT = In.getSimpleValueType();
19574   SDLoc dl(Op);
19575   unsigned Opc = Op.getOpcode();
19576 
19577   assert(VT.isVector() && InVT.isVector() && "Expected vector type");
19578   assert((Opc == ISD::ANY_EXTEND || Opc == ISD::ZERO_EXTEND) &&
19579          "Unexpected extension opcode");
19580   assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
19581          "Expected same number of elements");
19582   assert((VT.getVectorElementType() == MVT::i16 ||
19583           VT.getVectorElementType() == MVT::i32 ||
19584           VT.getVectorElementType() == MVT::i64) &&
19585          "Unexpected element type");
19586   assert((InVT.getVectorElementType() == MVT::i8 ||
19587           InVT.getVectorElementType() == MVT::i16 ||
19588           InVT.getVectorElementType() == MVT::i32) &&
19589          "Unexpected element type");
19590 
19591   unsigned ExtendInVecOpc = getOpcode_EXTEND_VECTOR_INREG(Opc);
19592 
19593   // Custom legalize v8i8->v8i64 on CPUs without avx512bw.
19594   if (InVT == MVT::v8i8) {
19595     if (VT != MVT::v8i64)
19596       return SDValue();
19597 
19598     In = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op),
19599                      MVT::v16i8, In, DAG.getUNDEF(MVT::v8i8));
19600     return DAG.getNode(ExtendInVecOpc, dl, VT, In);
19601   }
19602 
19603   if (Subtarget.hasInt256())
19604     return Op;
19605 
19606   // Optimize vectors in AVX mode:
19607   //
19608   //   v8i16 -> v8i32
19609   //   Use vpmovzwd for 4 lower elements  v8i16 -> v4i32.
19610   //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
19611   //   Concat upper and lower parts.
19612   //
19613   //   v4i32 -> v4i64
19614   //   Use vpmovzdq for 4 lower elements  v4i32 -> v2i64.
19615   //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
19616   //   Concat upper and lower parts.
19617   //
19618   MVT HalfVT = VT.getHalfNumVectorElementsVT();
19619   SDValue OpLo = DAG.getNode(ExtendInVecOpc, dl, HalfVT, In);
19620 
19621   // Short-circuit if we can determine that each 128-bit half is the same value.
19622   // Otherwise, this is difficult to match and optimize.
19623   if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(In))
19624     if (hasIdenticalHalvesShuffleMask(Shuf->getMask()))
19625       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpLo);
19626 
19627   SDValue ZeroVec = DAG.getConstant(0, dl, InVT);
19628   SDValue Undef = DAG.getUNDEF(InVT);
19629   bool NeedZero = Opc == ISD::ZERO_EXTEND;
19630   SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
19631   OpHi = DAG.getBitcast(HalfVT, OpHi);
19632 
19633   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
19634 }
19635 
19636 // Helper to split and extend a v16i1 mask to v16i8 or v16i16.
19637 static SDValue SplitAndExtendv16i1(unsigned ExtOpc, MVT VT, SDValue In,
19638                                    const SDLoc &dl, SelectionDAG &DAG) {
19639   assert((VT == MVT::v16i8 || VT == MVT::v16i16) && "Unexpected VT.");
19640   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In,
19641                            DAG.getIntPtrConstant(0, dl));
19642   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In,
19643                            DAG.getIntPtrConstant(8, dl));
19644   Lo = DAG.getNode(ExtOpc, dl, MVT::v8i16, Lo);
19645   Hi = DAG.getNode(ExtOpc, dl, MVT::v8i16, Hi);
19646   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i16, Lo, Hi);
19647   return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
19648 }
19649 
19650 static  SDValue LowerZERO_EXTEND_Mask(SDValue Op,
19651                                       const X86Subtarget &Subtarget,
19652                                       SelectionDAG &DAG) {
19653   MVT VT = Op->getSimpleValueType(0);
19654   SDValue In = Op->getOperand(0);
19655   MVT InVT = In.getSimpleValueType();
19656   assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
19657   SDLoc DL(Op);
19658   unsigned NumElts = VT.getVectorNumElements();
19659 
19660   // For all vectors, but vXi8 we can just emit a sign_extend and a shift. This
19661   // avoids a constant pool load.
19662   if (VT.getVectorElementType() != MVT::i8) {
19663     SDValue Extend = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, In);
19664     return DAG.getNode(ISD::SRL, DL, VT, Extend,
19665                        DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
19666   }
19667 
19668   // Extend VT if BWI is not supported.
19669   MVT ExtVT = VT;
19670   if (!Subtarget.hasBWI()) {
19671     // If v16i32 is to be avoided, we'll need to split and concatenate.
19672     if (NumElts == 16 && !Subtarget.canExtendTo512DQ())
19673       return SplitAndExtendv16i1(ISD::ZERO_EXTEND, VT, In, DL, DAG);
19674 
19675     ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
19676   }
19677 
19678   // Widen to 512-bits if VLX is not supported.
19679   MVT WideVT = ExtVT;
19680   if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
19681     NumElts *= 512 / ExtVT.getSizeInBits();
19682     InVT = MVT::getVectorVT(MVT::i1, NumElts);
19683     In = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT, DAG.getUNDEF(InVT),
19684                      In, DAG.getIntPtrConstant(0, DL));
19685     WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(),
19686                               NumElts);
19687   }
19688 
19689   SDValue One = DAG.getConstant(1, DL, WideVT);
19690   SDValue Zero = DAG.getConstant(0, DL, WideVT);
19691 
19692   SDValue SelectedVal = DAG.getSelect(DL, WideVT, In, One, Zero);
19693 
19694   // Truncate if we had to extend above.
19695   if (VT != ExtVT) {
19696     WideVT = MVT::getVectorVT(MVT::i8, NumElts);
19697     SelectedVal = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SelectedVal);
19698   }
19699 
19700   // Extract back to 128/256-bit if we widened.
19701   if (WideVT != VT)
19702     SelectedVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SelectedVal,
19703                               DAG.getIntPtrConstant(0, DL));
19704 
19705   return SelectedVal;
19706 }
19707 
19708 static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
19709                                 SelectionDAG &DAG) {
19710   SDValue In = Op.getOperand(0);
19711   MVT SVT = In.getSimpleValueType();
19712 
19713   if (SVT.getVectorElementType() == MVT::i1)
19714     return LowerZERO_EXTEND_Mask(Op, Subtarget, DAG);
19715 
19716   assert(Subtarget.hasAVX() && "Expected AVX support");
19717   return LowerAVXExtend(Op, DAG, Subtarget);
19718 }
19719 
19720 /// Helper to recursively truncate vector elements in half with PACKSS/PACKUS.
19721 /// It makes use of the fact that vectors with enough leading sign/zero bits
19722 /// prevent the PACKSS/PACKUS from saturating the results.
19723 /// AVX2 (Int256) sub-targets require extra shuffling as the PACK*S operates
19724 /// within each 128-bit lane.
19725 static SDValue truncateVectorWithPACK(unsigned Opcode, EVT DstVT, SDValue In,
19726                                       const SDLoc &DL, SelectionDAG &DAG,
19727                                       const X86Subtarget &Subtarget) {
19728   assert((Opcode == X86ISD::PACKSS || Opcode == X86ISD::PACKUS) &&
19729          "Unexpected PACK opcode");
19730   assert(DstVT.isVector() && "VT not a vector?");
19731 
19732   // Requires SSE2 but AVX512 has fast vector truncate.
19733   if (!Subtarget.hasSSE2())
19734     return SDValue();
19735 
19736   EVT SrcVT = In.getValueType();
19737 
19738   // No truncation required, we might get here due to recursive calls.
19739   if (SrcVT == DstVT)
19740     return In;
19741 
19742   // We only support vector truncation to 64bits or greater from a
19743   // 128bits or greater source.
19744   unsigned DstSizeInBits = DstVT.getSizeInBits();
19745   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
19746   if ((DstSizeInBits % 64) != 0 || (SrcSizeInBits % 128) != 0)
19747     return SDValue();
19748 
19749   unsigned NumElems = SrcVT.getVectorNumElements();
19750   if (!isPowerOf2_32(NumElems))
19751     return SDValue();
19752 
19753   LLVMContext &Ctx = *DAG.getContext();
19754   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
19755   assert(SrcSizeInBits > DstSizeInBits && "Illegal truncation");
19756 
19757   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
19758 
19759   // Pack to the largest type possible:
19760   // vXi64/vXi32 -> PACK*SDW and vXi16 -> PACK*SWB.
19761   EVT InVT = MVT::i16, OutVT = MVT::i8;
19762   if (SrcVT.getScalarSizeInBits() > 16 &&
19763       (Opcode == X86ISD::PACKSS || Subtarget.hasSSE41())) {
19764     InVT = MVT::i32;
19765     OutVT = MVT::i16;
19766   }
19767 
19768   // 128bit -> 64bit truncate - PACK 128-bit src in the lower subvector.
19769   if (SrcVT.is128BitVector()) {
19770     InVT = EVT::getVectorVT(Ctx, InVT, 128 / InVT.getSizeInBits());
19771     OutVT = EVT::getVectorVT(Ctx, OutVT, 128 / OutVT.getSizeInBits());
19772     In = DAG.getBitcast(InVT, In);
19773     SDValue Res = DAG.getNode(Opcode, DL, OutVT, In, In);
19774     Res = extractSubVector(Res, 0, DAG, DL, 64);
19775     return DAG.getBitcast(DstVT, Res);
19776   }
19777 
19778   // Extract lower/upper subvectors.
19779   unsigned NumSubElts = NumElems / 2;
19780   SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
19781   SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
19782 
19783   unsigned SubSizeInBits = SrcSizeInBits / 2;
19784   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
19785   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
19786 
19787   // 256bit -> 128bit truncate - PACK lower/upper 128-bit subvectors.
19788   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
19789     Lo = DAG.getBitcast(InVT, Lo);
19790     Hi = DAG.getBitcast(InVT, Hi);
19791     SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
19792     return DAG.getBitcast(DstVT, Res);
19793   }
19794 
19795   // AVX2: 512bit -> 256bit truncate - PACK lower/upper 256-bit subvectors.
19796   // AVX2: 512bit -> 128bit truncate - PACK(PACK, PACK).
19797   if (SrcVT.is512BitVector() && Subtarget.hasInt256()) {
19798     Lo = DAG.getBitcast(InVT, Lo);
19799     Hi = DAG.getBitcast(InVT, Hi);
19800     SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
19801 
19802     // 256-bit PACK(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)),
19803     // so we need to shuffle to get ((LO0,HI0),(LO1,HI1)).
19804     // Scale shuffle mask to avoid bitcasts and help ComputeNumSignBits.
19805     SmallVector<int, 64> Mask;
19806     int Scale = 64 / OutVT.getScalarSizeInBits();
19807     scaleShuffleMask<int>(Scale, ArrayRef<int>({ 0, 2, 1, 3 }), Mask);
19808     Res = DAG.getVectorShuffle(OutVT, DL, Res, Res, Mask);
19809 
19810     if (DstVT.is256BitVector())
19811       return DAG.getBitcast(DstVT, Res);
19812 
19813     // If 512bit -> 128bit truncate another stage.
19814     EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
19815     Res = DAG.getBitcast(PackedVT, Res);
19816     return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
19817   }
19818 
19819   // Recursively pack lower/upper subvectors, concat result and pack again.
19820   assert(SrcSizeInBits >= 256 && "Expected 256-bit vector or greater");
19821   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumSubElts);
19822   Lo = truncateVectorWithPACK(Opcode, PackedVT, Lo, DL, DAG, Subtarget);
19823   Hi = truncateVectorWithPACK(Opcode, PackedVT, Hi, DL, DAG, Subtarget);
19824 
19825   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
19826   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
19827   return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
19828 }
19829 
19830 static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
19831                                   const X86Subtarget &Subtarget) {
19832 
19833   SDLoc DL(Op);
19834   MVT VT = Op.getSimpleValueType();
19835   SDValue In = Op.getOperand(0);
19836   MVT InVT = In.getSimpleValueType();
19837 
19838   assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type.");
19839 
19840   // Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q.
19841   unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
19842   if (InVT.getScalarSizeInBits() <= 16) {
19843     if (Subtarget.hasBWI()) {
19844       // legal, will go to VPMOVB2M, VPMOVW2M
19845       if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) {
19846         // We need to shift to get the lsb into sign position.
19847         // Shift packed bytes not supported natively, bitcast to word
19848         MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
19849         In = DAG.getNode(ISD::SHL, DL, ExtVT,
19850                          DAG.getBitcast(ExtVT, In),
19851                          DAG.getConstant(ShiftInx, DL, ExtVT));
19852         In = DAG.getBitcast(InVT, In);
19853       }
19854       return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT),
19855                           In, ISD::SETGT);
19856     }
19857     // Use TESTD/Q, extended vector to packed dword/qword.
19858     assert((InVT.is256BitVector() || InVT.is128BitVector()) &&
19859            "Unexpected vector type.");
19860     unsigned NumElts = InVT.getVectorNumElements();
19861     assert((NumElts == 8 || NumElts == 16) && "Unexpected number of elements");
19862     // We need to change to a wider element type that we have support for.
19863     // For 8 element vectors this is easy, we either extend to v8i32 or v8i64.
19864     // For 16 element vectors we extend to v16i32 unless we are explicitly
19865     // trying to avoid 512-bit vectors. If we are avoiding 512-bit vectors
19866     // we need to split into two 8 element vectors which we can extend to v8i32,
19867     // truncate and concat the results. There's an additional complication if
19868     // the original type is v16i8. In that case we can't split the v16i8 so
19869     // first we pre-extend it to v16i16 which we can split to v8i16, then extend
19870     // to v8i32, truncate that to v8i1 and concat the two halves.
19871     if (NumElts == 16 && !Subtarget.canExtendTo512DQ()) {
19872       if (InVT == MVT::v16i8) {
19873         // First we need to sign extend up to 256-bits so we can split that.
19874         InVT = MVT::v16i16;
19875         In = DAG.getNode(ISD::SIGN_EXTEND, DL, InVT, In);
19876       }
19877       SDValue Lo = extract128BitVector(In, 0, DAG, DL);
19878       SDValue Hi = extract128BitVector(In, 8, DAG, DL);
19879       // We're split now, just emit two truncates and a concat. The two
19880       // truncates will trigger legalization to come back to this function.
19881       Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Lo);
19882       Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Hi);
19883       return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
19884     }
19885     // We either have 8 elements or we're allowed to use 512-bit vectors.
19886     // If we have VLX, we want to use the narrowest vector that can get the
19887     // job done so we use vXi32.
19888     MVT EltVT = Subtarget.hasVLX() ? MVT::i32 : MVT::getIntegerVT(512/NumElts);
19889     MVT ExtVT = MVT::getVectorVT(EltVT, NumElts);
19890     In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
19891     InVT = ExtVT;
19892     ShiftInx = InVT.getScalarSizeInBits() - 1;
19893   }
19894 
19895   if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) {
19896     // We need to shift to get the lsb into sign position.
19897     In = DAG.getNode(ISD::SHL, DL, InVT, In,
19898                      DAG.getConstant(ShiftInx, DL, InVT));
19899   }
19900   // If we have DQI, emit a pattern that will be iseled as vpmovq2m/vpmovd2m.
19901   if (Subtarget.hasDQI())
19902     return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT), In, ISD::SETGT);
19903   return DAG.getSetCC(DL, VT, In, DAG.getConstant(0, DL, InVT), ISD::SETNE);
19904 }
19905 
19906 SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
19907   SDLoc DL(Op);
19908   MVT VT = Op.getSimpleValueType();
19909   SDValue In = Op.getOperand(0);
19910   MVT InVT = In.getSimpleValueType();
19911   unsigned InNumEltBits = InVT.getScalarSizeInBits();
19912 
19913   assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
19914          "Invalid TRUNCATE operation");
19915 
19916   // If we're called by the type legalizer, handle a few cases.
19917   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19918   if (!TLI.isTypeLegal(InVT)) {
19919     if ((InVT == MVT::v8i64 || InVT == MVT::v16i32 || InVT == MVT::v16i64) &&
19920         VT.is128BitVector()) {
19921       assert(Subtarget.hasVLX() && "Unexpected subtarget!");
19922       // The default behavior is to truncate one step, concatenate, and then
19923       // truncate the remainder. We'd rather produce two 64-bit results and
19924       // concatenate those.
19925       SDValue Lo, Hi;
19926       std::tie(Lo, Hi) = DAG.SplitVector(In, DL);
19927 
19928       EVT LoVT, HiVT;
19929       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
19930 
19931       Lo = DAG.getNode(ISD::TRUNCATE, DL, LoVT, Lo);
19932       Hi = DAG.getNode(ISD::TRUNCATE, DL, HiVT, Hi);
19933       return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
19934     }
19935 
19936     // Otherwise let default legalization handle it.
19937     return SDValue();
19938   }
19939 
19940   if (VT.getVectorElementType() == MVT::i1)
19941     return LowerTruncateVecI1(Op, DAG, Subtarget);
19942 
19943   // vpmovqb/w/d, vpmovdb/w, vpmovwb
19944   if (Subtarget.hasAVX512()) {
19945     // word to byte only under BWI. Otherwise we have to promoted to v16i32
19946     // and then truncate that. But we should only do that if we haven't been
19947     // asked to avoid 512-bit vectors. The actual promotion to v16i32 will be
19948     // handled by isel patterns.
19949     if (InVT != MVT::v16i16 || Subtarget.hasBWI() ||
19950         Subtarget.canExtendTo512DQ())
19951       return Op;
19952   }
19953 
19954   unsigned NumPackedSignBits = std::min<unsigned>(VT.getScalarSizeInBits(), 16);
19955   unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8;
19956 
19957   // Truncate with PACKUS if we are truncating a vector with leading zero bits
19958   // that extend all the way to the packed/truncated value.
19959   // Pre-SSE41 we can only use PACKUSWB.
19960   KnownBits Known = DAG.computeKnownBits(In);
19961   if ((InNumEltBits - NumPackedZeroBits) <= Known.countMinLeadingZeros())
19962     if (SDValue V =
19963             truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget))
19964       return V;
19965 
19966   // Truncate with PACKSS if we are truncating a vector with sign-bits that
19967   // extend all the way to the packed/truncated value.
19968   if ((InNumEltBits - NumPackedSignBits) < DAG.ComputeNumSignBits(In))
19969     if (SDValue V =
19970             truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget))
19971       return V;
19972 
19973   // Handle truncation of V256 to V128 using shuffles.
19974   assert(VT.is128BitVector() && InVT.is256BitVector() && "Unexpected types!");
19975 
19976   if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
19977     // On AVX2, v4i64 -> v4i32 becomes VPERMD.
19978     if (Subtarget.hasInt256()) {
19979       static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
19980       In = DAG.getBitcast(MVT::v8i32, In);
19981       In = DAG.getVectorShuffle(MVT::v8i32, DL, In, In, ShufMask);
19982       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
19983                          DAG.getIntPtrConstant(0, DL));
19984     }
19985 
19986     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
19987                                DAG.getIntPtrConstant(0, DL));
19988     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
19989                                DAG.getIntPtrConstant(2, DL));
19990     OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
19991     OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
19992     static const int ShufMask[] = {0, 2, 4, 6};
19993     return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
19994   }
19995 
19996   if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
19997     // On AVX2, v8i32 -> v8i16 becomes PSHUFB.
19998     if (Subtarget.hasInt256()) {
19999       In = DAG.getBitcast(MVT::v32i8, In);
20000 
20001       // The PSHUFB mask:
20002       static const int ShufMask1[] = { 0,  1,  4,  5,  8,  9, 12, 13,
20003                                       -1, -1, -1, -1, -1, -1, -1, -1,
20004                                       16, 17, 20, 21, 24, 25, 28, 29,
20005                                       -1, -1, -1, -1, -1, -1, -1, -1 };
20006       In = DAG.getVectorShuffle(MVT::v32i8, DL, In, In, ShufMask1);
20007       In = DAG.getBitcast(MVT::v4i64, In);
20008 
20009       static const int ShufMask2[] = {0,  2,  -1,  -1};
20010       In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, In, ShufMask2);
20011       In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
20012                        DAG.getIntPtrConstant(0, DL));
20013       return DAG.getBitcast(VT, In);
20014     }
20015 
20016     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
20017                                DAG.getIntPtrConstant(0, DL));
20018 
20019     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
20020                                DAG.getIntPtrConstant(4, DL));
20021 
20022     OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
20023     OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
20024 
20025     // The PSHUFB mask:
20026     static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
20027                                    -1, -1, -1, -1, -1, -1, -1, -1};
20028 
20029     OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, OpLo, ShufMask1);
20030     OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, OpHi, ShufMask1);
20031 
20032     OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
20033     OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
20034 
20035     // The MOVLHPS Mask:
20036     static const int ShufMask2[] = {0, 1, 4, 5};
20037     SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
20038     return DAG.getBitcast(MVT::v8i16, res);
20039   }
20040 
20041   if (VT == MVT::v16i8 && InVT == MVT::v16i16) {
20042     // Use an AND to zero uppper bits for PACKUS.
20043     In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(255, DL, InVT));
20044 
20045     SDValue InLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i16, In,
20046                                DAG.getIntPtrConstant(0, DL));
20047     SDValue InHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i16, In,
20048                                DAG.getIntPtrConstant(8, DL));
20049     return DAG.getNode(X86ISD::PACKUS, DL, VT, InLo, InHi);
20050   }
20051 
20052   llvm_unreachable("All 256->128 cases should have been handled above!");
20053 }
20054 
20055 SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
20056   bool IsStrict = Op->isStrictFPOpcode();
20057   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
20058                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
20059   MVT VT = Op->getSimpleValueType(0);
20060   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
20061   MVT SrcVT = Src.getSimpleValueType();
20062   SDLoc dl(Op);
20063 
20064   if (VT.isVector()) {
20065     if (VT == MVT::v2i1 && SrcVT == MVT::v2f64) {
20066       MVT ResVT = MVT::v4i32;
20067       MVT TruncVT = MVT::v4i1;
20068       unsigned Opc;
20069       if (IsStrict)
20070         Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI : X86ISD::STRICT_CVTTP2UI;
20071       else
20072         Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
20073 
20074       if (!IsSigned && !Subtarget.hasVLX()) {
20075         assert(Subtarget.useAVX512Regs() && "Unexpected features!");
20076         // Widen to 512-bits.
20077         ResVT = MVT::v8i32;
20078         TruncVT = MVT::v8i1;
20079         Opc = Op.getOpcode();
20080         // Need to concat with zero vector for strict fp to avoid spurious
20081         // exceptions.
20082         // TODO: Should we just do this for non-strict as well?
20083         SDValue Tmp = IsStrict ? DAG.getConstantFP(0.0, dl, MVT::v8f64)
20084                                : DAG.getUNDEF(MVT::v8f64);
20085         Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64, Tmp, Src,
20086                           DAG.getIntPtrConstant(0, dl));
20087       }
20088       SDValue Res, Chain;
20089       if (IsStrict) {
20090         Res =
20091             DAG.getNode(Opc, dl, {ResVT, MVT::Other}, {Op->getOperand(0), Src});
20092         Chain = Res.getValue(1);
20093       } else {
20094         Res = DAG.getNode(Opc, dl, ResVT, Src);
20095       }
20096 
20097       Res = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Res);
20098       Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i1, Res,
20099                         DAG.getIntPtrConstant(0, dl));
20100       if (IsStrict)
20101         return DAG.getMergeValues({Res, Chain}, dl);
20102       return Res;
20103     }
20104 
20105     // v8f64->v8i32 is legal, but we need v8i32 to be custom for v8f32.
20106     if (VT == MVT::v8i32 && SrcVT == MVT::v8f64) {
20107       assert(!IsSigned && "Expected unsigned conversion!");
20108       assert(Subtarget.useAVX512Regs() && "Requires avx512f");
20109       return Op;
20110     }
20111 
20112     // Widen vXi32 fp_to_uint with avx512f to 512-bit source.
20113     if ((VT == MVT::v4i32 || VT == MVT::v8i32) &&
20114         (SrcVT == MVT::v4f64 || SrcVT == MVT::v4f32 || SrcVT == MVT::v8f32)) {
20115       assert(!IsSigned && "Expected unsigned conversion!");
20116       assert(Subtarget.useAVX512Regs() && !Subtarget.hasVLX() &&
20117              "Unexpected features!");
20118       MVT WideVT = SrcVT == MVT::v4f64 ? MVT::v8f64 : MVT::v16f32;
20119       MVT ResVT = SrcVT == MVT::v4f64 ? MVT::v8i32 : MVT::v16i32;
20120       // Need to concat with zero vector for strict fp to avoid spurious
20121       // exceptions.
20122       // TODO: Should we just do this for non-strict as well?
20123       SDValue Tmp =
20124           IsStrict ? DAG.getConstantFP(0.0, dl, WideVT) : DAG.getUNDEF(WideVT);
20125       Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVT, Tmp, Src,
20126                         DAG.getIntPtrConstant(0, dl));
20127 
20128       SDValue Res, Chain;
20129       if (IsStrict) {
20130         Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, dl, {ResVT, MVT::Other},
20131                           {Op->getOperand(0), Src});
20132         Chain = Res.getValue(1);
20133       } else {
20134         Res = DAG.getNode(ISD::FP_TO_UINT, dl, ResVT, Src);
20135       }
20136 
20137       Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Res,
20138                         DAG.getIntPtrConstant(0, dl));
20139 
20140       if (IsStrict)
20141         return DAG.getMergeValues({Res, Chain}, dl);
20142       return Res;
20143     }
20144 
20145     // Widen vXi64 fp_to_uint/fp_to_sint with avx512dq to 512-bit source.
20146     if ((VT == MVT::v2i64 || VT == MVT::v4i64) &&
20147         (SrcVT == MVT::v2f64 || SrcVT == MVT::v4f64 || SrcVT == MVT::v4f32)) {
20148       assert(Subtarget.useAVX512Regs() && Subtarget.hasDQI() &&
20149              !Subtarget.hasVLX() && "Unexpected features!");
20150       MVT WideVT = SrcVT == MVT::v4f32 ? MVT::v8f32 : MVT::v8f64;
20151       // Need to concat with zero vector for strict fp to avoid spurious
20152       // exceptions.
20153       // TODO: Should we just do this for non-strict as well?
20154       SDValue Tmp =
20155           IsStrict ? DAG.getConstantFP(0.0, dl, WideVT) : DAG.getUNDEF(WideVT);
20156       Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVT, Tmp, Src,
20157                         DAG.getIntPtrConstant(0, dl));
20158 
20159       SDValue Res, Chain;
20160       if (IsStrict) {
20161         Res = DAG.getNode(Op.getOpcode(), dl, {MVT::v8i64, MVT::Other},
20162                           {Op->getOperand(0), Src});
20163         Chain = Res.getValue(1);
20164       } else {
20165         Res = DAG.getNode(Op.getOpcode(), dl, MVT::v8i64, Src);
20166       }
20167 
20168       Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Res,
20169                         DAG.getIntPtrConstant(0, dl));
20170 
20171       if (IsStrict)
20172         return DAG.getMergeValues({Res, Chain}, dl);
20173       return Res;
20174     }
20175 
20176     if (VT == MVT::v2i64 && SrcVT  == MVT::v2f32) {
20177       assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL");
20178       SDValue Tmp = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
20179                                 DAG.getUNDEF(MVT::v2f32));
20180       if (IsStrict) {
20181         unsigned Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI
20182                                 : X86ISD::STRICT_CVTTP2UI;
20183         return DAG.getNode(Opc, dl, {VT, MVT::Other}, {Op->getOperand(0), Tmp});
20184       }
20185       unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
20186       return DAG.getNode(Opc, dl, VT, Tmp);
20187     }
20188 
20189     return SDValue();
20190   }
20191 
20192   assert(!VT.isVector());
20193 
20194   bool UseSSEReg = isScalarFPTypeInSSEReg(SrcVT);
20195 
20196   if (!IsSigned && UseSSEReg) {
20197     // Conversions from f32/f64 with AVX512 should be legal.
20198     if (Subtarget.hasAVX512())
20199       return Op;
20200 
20201     // Use default expansion for i64.
20202     if (VT == MVT::i64)
20203       return SDValue();
20204 
20205     assert(VT == MVT::i32 && "Unexpected VT!");
20206 
20207     // Promote i32 to i64 and use a signed operation on 64-bit targets.
20208     // FIXME: This does not generate an invalid exception if the input does not
20209     // fit in i32. PR44019
20210     if (Subtarget.is64Bit()) {
20211       SDValue Res, Chain;
20212       if (IsStrict) {
20213         Res = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { MVT::i64, MVT::Other},
20214                           { Op.getOperand(0), Src });
20215         Chain = Res.getValue(1);
20216       } else
20217         Res = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i64, Src);
20218 
20219       Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
20220       if (IsStrict)
20221         return DAG.getMergeValues({ Res, Chain }, dl);
20222       return Res;
20223     }
20224 
20225     // Use default expansion for SSE1/2 targets without SSE3. With SSE3 we can
20226     // use fisttp which will be handled later.
20227     if (!Subtarget.hasSSE3())
20228       return SDValue();
20229   }
20230 
20231   // Promote i16 to i32 if we can use a SSE operation or the type is f128.
20232   // FIXME: This does not generate an invalid exception if the input does not
20233   // fit in i16. PR44019
20234   if (VT == MVT::i16 && (UseSSEReg || SrcVT == MVT::f128)) {
20235     assert(IsSigned && "Expected i16 FP_TO_UINT to have been promoted!");
20236     SDValue Res, Chain;
20237     if (IsStrict) {
20238       Res = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { MVT::i32, MVT::Other},
20239                         { Op.getOperand(0), Src });
20240       Chain = Res.getValue(1);
20241     } else
20242       Res = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
20243 
20244     Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
20245     if (IsStrict)
20246       return DAG.getMergeValues({ Res, Chain }, dl);
20247     return Res;
20248   }
20249 
20250   // If this is a FP_TO_SINT using SSEReg we're done.
20251   if (UseSSEReg && IsSigned)
20252     return Op;
20253 
20254   // fp128 needs to use a libcall.
20255   if (SrcVT == MVT::f128) {
20256     RTLIB::Libcall LC;
20257     if (IsSigned)
20258       LC = RTLIB::getFPTOSINT(SrcVT, VT);
20259     else
20260       LC = RTLIB::getFPTOUINT(SrcVT, VT);
20261 
20262     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20263     MakeLibCallOptions CallOptions;
20264     std::pair<SDValue, SDValue> Tmp = makeLibCall(DAG, LC, VT, Src, CallOptions,
20265                                                   SDLoc(Op), Chain);
20266 
20267     if (IsStrict)
20268       return DAG.getMergeValues({ Tmp.first, Tmp.second }, dl);
20269 
20270     return Tmp.first;
20271   }
20272 
20273   // Fall back to X87.
20274   SDValue Chain;
20275   if (SDValue V = FP_TO_INTHelper(Op, DAG, IsSigned, Chain)) {
20276     if (IsStrict)
20277       return DAG.getMergeValues({V, Chain}, dl);
20278     return V;
20279   }
20280 
20281   llvm_unreachable("Expected FP_TO_INTHelper to handle all remaining cases.");
20282 }
20283 
20284 SDValue X86TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
20285   bool IsStrict = Op->isStrictFPOpcode();
20286 
20287   SDLoc DL(Op);
20288   MVT VT = Op.getSimpleValueType();
20289   SDValue In = Op.getOperand(IsStrict ? 1 : 0);
20290   MVT SVT = In.getSimpleValueType();
20291 
20292   if (VT == MVT::f128) {
20293     RTLIB::Libcall LC = RTLIB::getFPEXT(SVT, VT);
20294     return LowerF128Call(Op, DAG, LC);
20295   }
20296 
20297   assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
20298 
20299   SDValue Res =
20300       DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, In, DAG.getUNDEF(SVT));
20301   if (IsStrict)
20302     return DAG.getNode(X86ISD::STRICT_VFPEXT, DL, {VT, MVT::Other},
20303                        {Op->getOperand(0), Res});
20304   return DAG.getNode(X86ISD::VFPEXT, DL, VT, Res);
20305 }
20306 
20307 SDValue X86TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
20308   bool IsStrict = Op->isStrictFPOpcode();
20309 
20310   MVT VT = Op.getSimpleValueType();
20311   SDValue In = Op.getOperand(IsStrict ? 1 : 0);
20312   MVT SVT = In.getSimpleValueType();
20313 
20314   // It's legal except when f128 is involved
20315   if (SVT != MVT::f128)
20316     return Op;
20317 
20318   RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, VT);
20319 
20320   // FP_ROUND node has a second operand indicating whether it is known to be
20321   // precise. That doesn't take part in the LibCall so we can't directly use
20322   // LowerF128Call.
20323 
20324   SDLoc dl(Op);
20325   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20326   MakeLibCallOptions CallOptions;
20327   std::pair<SDValue, SDValue> Tmp = makeLibCall(DAG, LC, VT, In, CallOptions,
20328                                                 dl, Chain);
20329 
20330   if (IsStrict)
20331     return DAG.getMergeValues({ Tmp.first, Tmp.second }, dl);
20332 
20333   return Tmp.first;
20334 }
20335 
20336 /// Depending on uarch and/or optimizing for size, we might prefer to use a
20337 /// vector operation in place of the typical scalar operation.
20338 static SDValue lowerAddSubToHorizontalOp(SDValue Op, SelectionDAG &DAG,
20339                                          const X86Subtarget &Subtarget) {
20340   // If both operands have other uses, this is probably not profitable.
20341   SDValue LHS = Op.getOperand(0);
20342   SDValue RHS = Op.getOperand(1);
20343   if (!LHS.hasOneUse() && !RHS.hasOneUse())
20344     return Op;
20345 
20346   // FP horizontal add/sub were added with SSE3. Integer with SSSE3.
20347   bool IsFP = Op.getSimpleValueType().isFloatingPoint();
20348   if (IsFP && !Subtarget.hasSSE3())
20349     return Op;
20350   if (!IsFP && !Subtarget.hasSSSE3())
20351     return Op;
20352 
20353   // Extract from a common vector.
20354   if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
20355       RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
20356       LHS.getOperand(0) != RHS.getOperand(0) ||
20357       !isa<ConstantSDNode>(LHS.getOperand(1)) ||
20358       !isa<ConstantSDNode>(RHS.getOperand(1)) ||
20359       !shouldUseHorizontalOp(true, DAG, Subtarget))
20360     return Op;
20361 
20362   // Allow commuted 'hadd' ops.
20363   // TODO: Allow commuted (f)sub by negating the result of (F)HSUB?
20364   unsigned HOpcode;
20365   switch (Op.getOpcode()) {
20366     case ISD::ADD: HOpcode = X86ISD::HADD; break;
20367     case ISD::SUB: HOpcode = X86ISD::HSUB; break;
20368     case ISD::FADD: HOpcode = X86ISD::FHADD; break;
20369     case ISD::FSUB: HOpcode = X86ISD::FHSUB; break;
20370     default:
20371       llvm_unreachable("Trying to lower unsupported opcode to horizontal op");
20372   }
20373   unsigned LExtIndex = LHS.getConstantOperandVal(1);
20374   unsigned RExtIndex = RHS.getConstantOperandVal(1);
20375   if ((LExtIndex & 1) == 1 && (RExtIndex & 1) == 0 &&
20376       (HOpcode == X86ISD::HADD || HOpcode == X86ISD::FHADD))
20377     std::swap(LExtIndex, RExtIndex);
20378 
20379   if ((LExtIndex & 1) != 0 || RExtIndex != (LExtIndex + 1))
20380     return Op;
20381 
20382   SDValue X = LHS.getOperand(0);
20383   EVT VecVT = X.getValueType();
20384   unsigned BitWidth = VecVT.getSizeInBits();
20385   unsigned NumLanes = BitWidth / 128;
20386   unsigned NumEltsPerLane = VecVT.getVectorNumElements() / NumLanes;
20387   assert((BitWidth == 128 || BitWidth == 256 || BitWidth == 512) &&
20388          "Not expecting illegal vector widths here");
20389 
20390   // Creating a 256-bit horizontal op would be wasteful, and there is no 512-bit
20391   // equivalent, so extract the 256/512-bit source op to 128-bit if we can.
20392   SDLoc DL(Op);
20393   if (BitWidth == 256 || BitWidth == 512) {
20394     unsigned LaneIdx = LExtIndex / NumEltsPerLane;
20395     X = extract128BitVector(X, LaneIdx * NumEltsPerLane, DAG, DL);
20396     LExtIndex %= NumEltsPerLane;
20397   }
20398 
20399   // add (extractelt (X, 0), extractelt (X, 1)) --> extractelt (hadd X, X), 0
20400   // add (extractelt (X, 1), extractelt (X, 0)) --> extractelt (hadd X, X), 0
20401   // add (extractelt (X, 2), extractelt (X, 3)) --> extractelt (hadd X, X), 1
20402   // sub (extractelt (X, 0), extractelt (X, 1)) --> extractelt (hsub X, X), 0
20403   SDValue HOp = DAG.getNode(HOpcode, DL, X.getValueType(), X, X);
20404   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getSimpleValueType(), HOp,
20405                      DAG.getIntPtrConstant(LExtIndex / 2, DL));
20406 }
20407 
20408 /// Depending on uarch and/or optimizing for size, we might prefer to use a
20409 /// vector operation in place of the typical scalar operation.
20410 SDValue X86TargetLowering::lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const {
20411   assert((Op.getValueType() == MVT::f32 || Op.getValueType() == MVT::f64) &&
20412          "Only expecting float/double");
20413   return lowerAddSubToHorizontalOp(Op, DAG, Subtarget);
20414 }
20415 
20416 /// The only differences between FABS and FNEG are the mask and the logic op.
20417 /// FNEG also has a folding opportunity for FNEG(FABS(x)).
20418 static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
20419   assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
20420          "Wrong opcode for lowering FABS or FNEG.");
20421 
20422   bool IsFABS = (Op.getOpcode() == ISD::FABS);
20423 
20424   // If this is a FABS and it has an FNEG user, bail out to fold the combination
20425   // into an FNABS. We'll lower the FABS after that if it is still in use.
20426   if (IsFABS)
20427     for (SDNode *User : Op->uses())
20428       if (User->getOpcode() == ISD::FNEG)
20429         return Op;
20430 
20431   SDLoc dl(Op);
20432   MVT VT = Op.getSimpleValueType();
20433 
20434   bool IsF128 = (VT == MVT::f128);
20435   assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
20436           VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
20437           VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
20438          "Unexpected type in LowerFABSorFNEG");
20439 
20440   // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
20441   // decide if we should generate a 16-byte constant mask when we only need 4 or
20442   // 8 bytes for the scalar case.
20443 
20444   // There are no scalar bitwise logical SSE/AVX instructions, so we
20445   // generate a 16-byte vector constant and logic op even for the scalar case.
20446   // Using a 16-byte mask allows folding the load of the mask with
20447   // the logic op, so it can save (~4 bytes) on code size.
20448   bool IsFakeVector = !VT.isVector() && !IsF128;
20449   MVT LogicVT = VT;
20450   if (IsFakeVector)
20451     LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
20452 
20453   unsigned EltBits = VT.getScalarSizeInBits();
20454   // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
20455   APInt MaskElt = IsFABS ? APInt::getSignedMaxValue(EltBits) :
20456                            APInt::getSignMask(EltBits);
20457   const fltSemantics &Sem = SelectionDAG::EVTToAPFloatSemantics(VT);
20458   SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT);
20459 
20460   SDValue Op0 = Op.getOperand(0);
20461   bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
20462   unsigned LogicOp = IsFABS  ? X86ISD::FAND :
20463                      IsFNABS ? X86ISD::FOR  :
20464                                X86ISD::FXOR;
20465   SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
20466 
20467   if (VT.isVector() || IsF128)
20468     return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
20469 
20470   // For the scalar case extend to a 128-bit vector, perform the logic op,
20471   // and extract the scalar result back out.
20472   Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
20473   SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
20474   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
20475                      DAG.getIntPtrConstant(0, dl));
20476 }
20477 
20478 static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
20479   SDValue Mag = Op.getOperand(0);
20480   SDValue Sign = Op.getOperand(1);
20481   SDLoc dl(Op);
20482 
20483   // If the sign operand is smaller, extend it first.
20484   MVT VT = Op.getSimpleValueType();
20485   if (Sign.getSimpleValueType().bitsLT(VT))
20486     Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign);
20487 
20488   // And if it is bigger, shrink it first.
20489   if (Sign.getSimpleValueType().bitsGT(VT))
20490     Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl));
20491 
20492   // At this point the operands and the result should have the same
20493   // type, and that won't be f80 since that is not custom lowered.
20494   bool IsF128 = (VT == MVT::f128);
20495   assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
20496           VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
20497           VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
20498          "Unexpected type in LowerFCOPYSIGN");
20499 
20500   const fltSemantics &Sem = SelectionDAG::EVTToAPFloatSemantics(VT);
20501 
20502   // Perform all scalar logic operations as 16-byte vectors because there are no
20503   // scalar FP logic instructions in SSE.
20504   // TODO: This isn't necessary. If we used scalar types, we might avoid some
20505   // unnecessary splats, but we might miss load folding opportunities. Should
20506   // this decision be based on OptimizeForSize?
20507   bool IsFakeVector = !VT.isVector() && !IsF128;
20508   MVT LogicVT = VT;
20509   if (IsFakeVector)
20510     LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
20511 
20512   // The mask constants are automatically splatted for vector types.
20513   unsigned EltSizeInBits = VT.getScalarSizeInBits();
20514   SDValue SignMask = DAG.getConstantFP(
20515       APFloat(Sem, APInt::getSignMask(EltSizeInBits)), dl, LogicVT);
20516   SDValue MagMask = DAG.getConstantFP(
20517       APFloat(Sem, APInt::getSignedMaxValue(EltSizeInBits)), dl, LogicVT);
20518 
20519   // First, clear all bits but the sign bit from the second operand (sign).
20520   if (IsFakeVector)
20521     Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign);
20522   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask);
20523 
20524   // Next, clear the sign bit from the first operand (magnitude).
20525   // TODO: If we had general constant folding for FP logic ops, this check
20526   // wouldn't be necessary.
20527   SDValue MagBits;
20528   if (ConstantFPSDNode *Op0CN = isConstOrConstSplatFP(Mag)) {
20529     APFloat APF = Op0CN->getValueAPF();
20530     APF.clearSign();
20531     MagBits = DAG.getConstantFP(APF, dl, LogicVT);
20532   } else {
20533     // If the magnitude operand wasn't a constant, we need to AND out the sign.
20534     if (IsFakeVector)
20535       Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag);
20536     MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask);
20537   }
20538 
20539   // OR the magnitude value with the sign bit.
20540   SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit);
20541   return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or,
20542                                           DAG.getIntPtrConstant(0, dl));
20543 }
20544 
20545 static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
20546   SDValue N0 = Op.getOperand(0);
20547   SDLoc dl(Op);
20548   MVT VT = Op.getSimpleValueType();
20549 
20550   MVT OpVT = N0.getSimpleValueType();
20551   assert((OpVT == MVT::f32 || OpVT == MVT::f64) &&
20552          "Unexpected type for FGETSIGN");
20553 
20554   // Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1).
20555   MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64);
20556   SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0);
20557   Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res);
20558   Res = DAG.getZExtOrTrunc(Res, dl, VT);
20559   Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT));
20560   return Res;
20561 }
20562 
20563 /// Helper for creating a X86ISD::SETCC node.
20564 static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl,
20565                         SelectionDAG &DAG) {
20566   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
20567                      DAG.getTargetConstant(Cond, dl, MVT::i8), EFLAGS);
20568 }
20569 
20570 /// Helper for matching OR(EXTRACTELT(X,0),OR(EXTRACTELT(X,1),...))
20571 /// style scalarized (associative) reduction patterns.
20572 static bool matchScalarReduction(SDValue Op, ISD::NodeType BinOp,
20573                                  SmallVectorImpl<SDValue> &SrcOps) {
20574   SmallVector<SDValue, 8> Opnds;
20575   DenseMap<SDValue, APInt> SrcOpMap;
20576   EVT VT = MVT::Other;
20577 
20578   // Recognize a special case where a vector is casted into wide integer to
20579   // test all 0s.
20580   assert(Op.getOpcode() == unsigned(BinOp) &&
20581          "Unexpected bit reduction opcode");
20582   Opnds.push_back(Op.getOperand(0));
20583   Opnds.push_back(Op.getOperand(1));
20584 
20585   for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
20586     SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
20587     // BFS traverse all BinOp operands.
20588     if (I->getOpcode() == unsigned(BinOp)) {
20589       Opnds.push_back(I->getOperand(0));
20590       Opnds.push_back(I->getOperand(1));
20591       // Re-evaluate the number of nodes to be traversed.
20592       e += 2; // 2 more nodes (LHS and RHS) are pushed.
20593       continue;
20594     }
20595 
20596     // Quit if a non-EXTRACT_VECTOR_ELT
20597     if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
20598       return false;
20599 
20600     // Quit if without a constant index.
20601     SDValue Idx = I->getOperand(1);
20602     if (!isa<ConstantSDNode>(Idx))
20603       return false;
20604 
20605     SDValue Src = I->getOperand(0);
20606     DenseMap<SDValue, APInt>::iterator M = SrcOpMap.find(Src);
20607     if (M == SrcOpMap.end()) {
20608       VT = Src.getValueType();
20609       // Quit if not the same type.
20610       if (SrcOpMap.begin() != SrcOpMap.end() &&
20611           VT != SrcOpMap.begin()->first.getValueType())
20612         return false;
20613       unsigned NumElts = VT.getVectorNumElements();
20614       APInt EltCount = APInt::getNullValue(NumElts);
20615       M = SrcOpMap.insert(std::make_pair(Src, EltCount)).first;
20616       SrcOps.push_back(Src);
20617     }
20618     // Quit if element already used.
20619     unsigned CIdx = cast<ConstantSDNode>(Idx)->getZExtValue();
20620     if (M->second[CIdx])
20621       return false;
20622     M->second.setBit(CIdx);
20623   }
20624 
20625   // Quit if not all elements are used.
20626   for (DenseMap<SDValue, APInt>::const_iterator I = SrcOpMap.begin(),
20627                                                 E = SrcOpMap.end();
20628        I != E; ++I) {
20629     if (!I->second.isAllOnesValue())
20630       return false;
20631   }
20632 
20633   return true;
20634 }
20635 
20636 // Check whether an OR'd tree is PTEST-able.
20637 static SDValue LowerVectorAllZeroTest(SDValue Op, ISD::CondCode CC,
20638                                       const X86Subtarget &Subtarget,
20639                                       SelectionDAG &DAG, SDValue &X86CC) {
20640   assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
20641 
20642   if (!Subtarget.hasSSE41() || !Op->hasOneUse())
20643     return SDValue();
20644 
20645   SmallVector<SDValue, 8> VecIns;
20646   if (!matchScalarReduction(Op, ISD::OR, VecIns))
20647     return SDValue();
20648 
20649   // Quit if not 128/256-bit vector.
20650   EVT VT = VecIns[0].getValueType();
20651   if (!VT.is128BitVector() && !VT.is256BitVector())
20652     return SDValue();
20653 
20654   SDLoc DL(Op);
20655   MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
20656 
20657   // Cast all vectors into TestVT for PTEST.
20658   for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
20659     VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
20660 
20661   // If more than one full vector is evaluated, OR them first before PTEST.
20662   for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
20663     // Each iteration will OR 2 nodes and append the result until there is only
20664     // 1 node left, i.e. the final OR'd value of all vectors.
20665     SDValue LHS = VecIns[Slot];
20666     SDValue RHS = VecIns[Slot + 1];
20667     VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
20668   }
20669 
20670   X86CC = DAG.getTargetConstant(CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE,
20671                                 DL, MVT::i8);
20672   return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back());
20673 }
20674 
20675 /// return true if \c Op has a use that doesn't just read flags.
20676 static bool hasNonFlagsUse(SDValue Op) {
20677   for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
20678        ++UI) {
20679     SDNode *User = *UI;
20680     unsigned UOpNo = UI.getOperandNo();
20681     if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
20682       // Look pass truncate.
20683       UOpNo = User->use_begin().getOperandNo();
20684       User = *User->use_begin();
20685     }
20686 
20687     if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
20688         !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
20689       return true;
20690   }
20691   return false;
20692 }
20693 
20694 // Transform to an x86-specific ALU node with flags if there is a chance of
20695 // using an RMW op or only the flags are used. Otherwise, leave
20696 // the node alone and emit a 'cmp' or 'test' instruction.
20697 static bool isProfitableToUseFlagOp(SDValue Op) {
20698   for (SDNode *U : Op->uses())
20699     if (U->getOpcode() != ISD::CopyToReg &&
20700         U->getOpcode() != ISD::SETCC &&
20701         U->getOpcode() != ISD::STORE)
20702       return false;
20703 
20704   return true;
20705 }
20706 
20707 /// Emit nodes that will be selected as "test Op0,Op0", or something
20708 /// equivalent.
20709 static SDValue EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl,
20710                         SelectionDAG &DAG, const X86Subtarget &Subtarget) {
20711   // CF and OF aren't always set the way we want. Determine which
20712   // of these we need.
20713   bool NeedCF = false;
20714   bool NeedOF = false;
20715   switch (X86CC) {
20716   default: break;
20717   case X86::COND_A: case X86::COND_AE:
20718   case X86::COND_B: case X86::COND_BE:
20719     NeedCF = true;
20720     break;
20721   case X86::COND_G: case X86::COND_GE:
20722   case X86::COND_L: case X86::COND_LE:
20723   case X86::COND_O: case X86::COND_NO: {
20724     // Check if we really need to set the
20725     // Overflow flag. If NoSignedWrap is present
20726     // that is not actually needed.
20727     switch (Op->getOpcode()) {
20728     case ISD::ADD:
20729     case ISD::SUB:
20730     case ISD::MUL:
20731     case ISD::SHL:
20732       if (Op.getNode()->getFlags().hasNoSignedWrap())
20733         break;
20734       LLVM_FALLTHROUGH;
20735     default:
20736       NeedOF = true;
20737       break;
20738     }
20739     break;
20740   }
20741   }
20742   // See if we can use the EFLAGS value from the operand instead of
20743   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
20744   // we prove that the arithmetic won't overflow, we can't use OF or CF.
20745   if (Op.getResNo() != 0 || NeedOF || NeedCF) {
20746     // Emit a CMP with 0, which is the TEST pattern.
20747     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
20748                        DAG.getConstant(0, dl, Op.getValueType()));
20749   }
20750   unsigned Opcode = 0;
20751   unsigned NumOperands = 0;
20752 
20753   SDValue ArithOp = Op;
20754 
20755   // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
20756   // which may be the result of a CAST.  We use the variable 'Op', which is the
20757   // non-casted variable when we check for possible users.
20758   switch (ArithOp.getOpcode()) {
20759   case ISD::AND:
20760     // If the primary 'and' result isn't used, don't bother using X86ISD::AND,
20761     // because a TEST instruction will be better.
20762     if (!hasNonFlagsUse(Op))
20763       break;
20764 
20765     LLVM_FALLTHROUGH;
20766   case ISD::ADD:
20767   case ISD::SUB:
20768   case ISD::OR:
20769   case ISD::XOR:
20770     if (!isProfitableToUseFlagOp(Op))
20771       break;
20772 
20773     // Otherwise use a regular EFLAGS-setting instruction.
20774     switch (ArithOp.getOpcode()) {
20775     default: llvm_unreachable("unexpected operator!");
20776     case ISD::ADD: Opcode = X86ISD::ADD; break;
20777     case ISD::SUB: Opcode = X86ISD::SUB; break;
20778     case ISD::XOR: Opcode = X86ISD::XOR; break;
20779     case ISD::AND: Opcode = X86ISD::AND; break;
20780     case ISD::OR:  Opcode = X86ISD::OR;  break;
20781     }
20782 
20783     NumOperands = 2;
20784     break;
20785   case X86ISD::ADD:
20786   case X86ISD::SUB:
20787   case X86ISD::OR:
20788   case X86ISD::XOR:
20789   case X86ISD::AND:
20790     return SDValue(Op.getNode(), 1);
20791   case ISD::SSUBO:
20792   case ISD::USUBO: {
20793     // /USUBO/SSUBO will become a X86ISD::SUB and we can use its Z flag.
20794     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
20795     return DAG.getNode(X86ISD::SUB, dl, VTs, Op->getOperand(0),
20796                        Op->getOperand(1)).getValue(1);
20797   }
20798   default:
20799     break;
20800   }
20801 
20802   if (Opcode == 0) {
20803     // Emit a CMP with 0, which is the TEST pattern.
20804     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
20805                        DAG.getConstant(0, dl, Op.getValueType()));
20806   }
20807   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
20808   SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
20809 
20810   SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
20811   DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), New);
20812   return SDValue(New.getNode(), 1);
20813 }
20814 
20815 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
20816 /// equivalent.
20817 static std::pair<SDValue, SDValue> EmitCmp(SDValue Op0, SDValue Op1,
20818                                            unsigned X86CC, const SDLoc &dl,
20819                                            SelectionDAG &DAG,
20820                                            const X86Subtarget &Subtarget,
20821                                            SDValue Chain, bool IsSignaling) {
20822   if (isNullConstant(Op1))
20823     return std::make_pair(EmitTest(Op0, X86CC, dl, DAG, Subtarget), Chain);
20824 
20825   EVT CmpVT = Op0.getValueType();
20826 
20827   if (CmpVT.isFloatingPoint()) {
20828     if (Chain) {
20829       SDValue Res =
20830           DAG.getNode(IsSignaling ? X86ISD::STRICT_FCMPS : X86ISD::STRICT_FCMP,
20831                       dl, {MVT::i32, MVT::Other}, {Chain, Op0, Op1});
20832       return std::make_pair(Res, Res.getValue(1));
20833     }
20834     return std::make_pair(DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1),
20835                           SDValue());
20836   }
20837 
20838   assert((CmpVT == MVT::i8 || CmpVT == MVT::i16 ||
20839           CmpVT == MVT::i32 || CmpVT == MVT::i64) && "Unexpected VT!");
20840 
20841   // Only promote the compare up to I32 if it is a 16 bit operation
20842   // with an immediate.  16 bit immediates are to be avoided.
20843   if (CmpVT == MVT::i16 && !Subtarget.isAtom() &&
20844       !DAG.getMachineFunction().getFunction().hasMinSize()) {
20845     ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
20846     ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
20847     // Don't do this if the immediate can fit in 8-bits.
20848     if ((COp0 && !COp0->getAPIntValue().isSignedIntN(8)) ||
20849         (COp1 && !COp1->getAPIntValue().isSignedIntN(8))) {
20850       unsigned ExtendOp =
20851           isX86CCSigned(X86CC) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
20852       if (X86CC == X86::COND_E || X86CC == X86::COND_NE) {
20853         // For equality comparisons try to use SIGN_EXTEND if the input was
20854         // truncate from something with enough sign bits.
20855         if (Op0.getOpcode() == ISD::TRUNCATE) {
20856           SDValue In = Op0.getOperand(0);
20857           unsigned EffBits =
20858               In.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(In) + 1;
20859           if (EffBits <= 16)
20860             ExtendOp = ISD::SIGN_EXTEND;
20861         } else if (Op1.getOpcode() == ISD::TRUNCATE) {
20862           SDValue In = Op1.getOperand(0);
20863           unsigned EffBits =
20864               In.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(In) + 1;
20865           if (EffBits <= 16)
20866             ExtendOp = ISD::SIGN_EXTEND;
20867         }
20868       }
20869 
20870       CmpVT = MVT::i32;
20871       Op0 = DAG.getNode(ExtendOp, dl, CmpVT, Op0);
20872       Op1 = DAG.getNode(ExtendOp, dl, CmpVT, Op1);
20873     }
20874   }
20875 
20876   // Try to shrink i64 compares if the input has enough zero bits.
20877   // FIXME: Do this for non-constant compares for constant on LHS?
20878   if (CmpVT == MVT::i64 && isa<ConstantSDNode>(Op1) && !isX86CCSigned(X86CC) &&
20879       Op0.hasOneUse() && // Hacky way to not break CSE opportunities with sub.
20880       cast<ConstantSDNode>(Op1)->getAPIntValue().getActiveBits() <= 32 &&
20881       DAG.MaskedValueIsZero(Op0, APInt::getHighBitsSet(64, 32))) {
20882     CmpVT = MVT::i32;
20883     Op0 = DAG.getNode(ISD::TRUNCATE, dl, CmpVT, Op0);
20884     Op1 = DAG.getNode(ISD::TRUNCATE, dl, CmpVT, Op1);
20885   }
20886 
20887   // Use SUB instead of CMP to enable CSE between SUB and CMP.
20888   SDVTList VTs = DAG.getVTList(CmpVT, MVT::i32);
20889   SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1);
20890   return std::make_pair(Sub.getValue(1), SDValue());
20891 }
20892 
20893 /// Convert a comparison if required by the subtarget.
20894 SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
20895                                                  SelectionDAG &DAG) const {
20896   // If the subtarget does not support the FUCOMI instruction, floating-point
20897   // comparisons have to be converted.
20898   bool IsCmp = Cmp.getOpcode() == X86ISD::CMP;
20899   bool IsStrictCmp = Cmp.getOpcode() == X86ISD::STRICT_FCMP ||
20900                      Cmp.getOpcode() == X86ISD::STRICT_FCMPS;
20901 
20902   if (Subtarget.hasCMov() || (!IsCmp && !IsStrictCmp) ||
20903       !Cmp.getOperand(IsStrictCmp ? 1 : 0).getValueType().isFloatingPoint() ||
20904       !Cmp.getOperand(IsStrictCmp ? 2 : 1).getValueType().isFloatingPoint())
20905     return Cmp;
20906 
20907   // The instruction selector will select an FUCOM instruction instead of
20908   // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
20909   // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
20910   // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86any_fcmp ...)), 8))))
20911   SDLoc dl(Cmp);
20912   SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
20913   SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
20914   SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
20915                             DAG.getConstant(8, dl, MVT::i8));
20916   SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
20917 
20918   // Some 64-bit targets lack SAHF support, but they do support FCOMI.
20919   assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
20920   return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
20921 }
20922 
20923 /// Check if replacement of SQRT with RSQRT should be disabled.
20924 bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const {
20925   EVT VT = Op.getValueType();
20926 
20927   // We never want to use both SQRT and RSQRT instructions for the same input.
20928   if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op))
20929     return false;
20930 
20931   if (VT.isVector())
20932     return Subtarget.hasFastVectorFSQRT();
20933   return Subtarget.hasFastScalarFSQRT();
20934 }
20935 
20936 /// The minimum architected relative accuracy is 2^-12. We need one
20937 /// Newton-Raphson step to have a good float result (24 bits of precision).
20938 SDValue X86TargetLowering::getSqrtEstimate(SDValue Op,
20939                                            SelectionDAG &DAG, int Enabled,
20940                                            int &RefinementSteps,
20941                                            bool &UseOneConstNR,
20942                                            bool Reciprocal) const {
20943   EVT VT = Op.getValueType();
20944 
20945   // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
20946   // It is likely not profitable to do this for f64 because a double-precision
20947   // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
20948   // instructions: convert to single, rsqrtss, convert back to double, refine
20949   // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
20950   // along with FMA, this could be a throughput win.
20951   // TODO: SQRT requires SSE2 to prevent the introduction of an illegal v4i32
20952   // after legalize types.
20953   if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
20954       (VT == MVT::v4f32 && Subtarget.hasSSE1() && Reciprocal) ||
20955       (VT == MVT::v4f32 && Subtarget.hasSSE2() && !Reciprocal) ||
20956       (VT == MVT::v8f32 && Subtarget.hasAVX()) ||
20957       (VT == MVT::v16f32 && Subtarget.useAVX512Regs())) {
20958     if (RefinementSteps == ReciprocalEstimate::Unspecified)
20959       RefinementSteps = 1;
20960 
20961     UseOneConstNR = false;
20962     // There is no FSQRT for 512-bits, but there is RSQRT14.
20963     unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RSQRT14 : X86ISD::FRSQRT;
20964     return DAG.getNode(Opcode, SDLoc(Op), VT, Op);
20965   }
20966   return SDValue();
20967 }
20968 
20969 /// The minimum architected relative accuracy is 2^-12. We need one
20970 /// Newton-Raphson step to have a good float result (24 bits of precision).
20971 SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG,
20972                                             int Enabled,
20973                                             int &RefinementSteps) const {
20974   EVT VT = Op.getValueType();
20975 
20976   // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
20977   // It is likely not profitable to do this for f64 because a double-precision
20978   // reciprocal estimate with refinement on x86 prior to FMA requires
20979   // 15 instructions: convert to single, rcpss, convert back to double, refine
20980   // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
20981   // along with FMA, this could be a throughput win.
20982 
20983   if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
20984       (VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
20985       (VT == MVT::v8f32 && Subtarget.hasAVX()) ||
20986       (VT == MVT::v16f32 && Subtarget.useAVX512Regs())) {
20987     // Enable estimate codegen with 1 refinement step for vector division.
20988     // Scalar division estimates are disabled because they break too much
20989     // real-world code. These defaults are intended to match GCC behavior.
20990     if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified)
20991       return SDValue();
20992 
20993     if (RefinementSteps == ReciprocalEstimate::Unspecified)
20994       RefinementSteps = 1;
20995 
20996     // There is no FSQRT for 512-bits, but there is RCP14.
20997     unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RCP14 : X86ISD::FRCP;
20998     return DAG.getNode(Opcode, SDLoc(Op), VT, Op);
20999   }
21000   return SDValue();
21001 }
21002 
21003 /// If we have at least two divisions that use the same divisor, convert to
21004 /// multiplication by a reciprocal. This may need to be adjusted for a given
21005 /// CPU if a division's cost is not at least twice the cost of a multiplication.
21006 /// This is because we still need one division to calculate the reciprocal and
21007 /// then we need two multiplies by that reciprocal as replacements for the
21008 /// original divisions.
21009 unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
21010   return 2;
21011 }
21012 
21013 SDValue
21014 X86TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
21015                                  SelectionDAG &DAG,
21016                                  SmallVectorImpl<SDNode *> &Created) const {
21017   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
21018   if (isIntDivCheap(N->getValueType(0), Attr))
21019     return SDValue(N,0); // Lower SDIV as SDIV
21020 
21021   assert((Divisor.isPowerOf2() || (-Divisor).isPowerOf2()) &&
21022          "Unexpected divisor!");
21023 
21024   // Only perform this transform if CMOV is supported otherwise the select
21025   // below will become a branch.
21026   if (!Subtarget.hasCMov())
21027     return SDValue();
21028 
21029   // fold (sdiv X, pow2)
21030   EVT VT = N->getValueType(0);
21031   // FIXME: Support i8.
21032   if (VT != MVT::i16 && VT != MVT::i32 &&
21033       !(Subtarget.is64Bit() && VT == MVT::i64))
21034     return SDValue();
21035 
21036   unsigned Lg2 = Divisor.countTrailingZeros();
21037 
21038   // If the divisor is 2 or -2, the default expansion is better.
21039   if (Lg2 == 1)
21040     return SDValue();
21041 
21042   SDLoc DL(N);
21043   SDValue N0 = N->getOperand(0);
21044   SDValue Zero = DAG.getConstant(0, DL, VT);
21045   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
21046   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
21047 
21048   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
21049   SDValue Cmp = DAG.getSetCC(DL, MVT::i8, N0, Zero, ISD::SETLT);
21050   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
21051   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
21052 
21053   Created.push_back(Cmp.getNode());
21054   Created.push_back(Add.getNode());
21055   Created.push_back(CMov.getNode());
21056 
21057   // Divide by pow2.
21058   SDValue SRA =
21059       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, MVT::i8));
21060 
21061   // If we're dividing by a positive value, we're done.  Otherwise, we must
21062   // negate the result.
21063   if (Divisor.isNonNegative())
21064     return SRA;
21065 
21066   Created.push_back(SRA.getNode());
21067   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
21068 }
21069 
21070 /// Result of 'and' is compared against zero. Change to a BT node if possible.
21071 /// Returns the BT node and the condition code needed to use it.
21072 static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC,
21073                             const SDLoc &dl, SelectionDAG &DAG,
21074                             SDValue &X86CC) {
21075   assert(And.getOpcode() == ISD::AND && "Expected AND node!");
21076   SDValue Op0 = And.getOperand(0);
21077   SDValue Op1 = And.getOperand(1);
21078   if (Op0.getOpcode() == ISD::TRUNCATE)
21079     Op0 = Op0.getOperand(0);
21080   if (Op1.getOpcode() == ISD::TRUNCATE)
21081     Op1 = Op1.getOperand(0);
21082 
21083   SDValue Src, BitNo;
21084   if (Op1.getOpcode() == ISD::SHL)
21085     std::swap(Op0, Op1);
21086   if (Op0.getOpcode() == ISD::SHL) {
21087     if (isOneConstant(Op0.getOperand(0))) {
21088       // If we looked past a truncate, check that it's only truncating away
21089       // known zeros.
21090       unsigned BitWidth = Op0.getValueSizeInBits();
21091       unsigned AndBitWidth = And.getValueSizeInBits();
21092       if (BitWidth > AndBitWidth) {
21093         KnownBits Known = DAG.computeKnownBits(Op0);
21094         if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
21095           return SDValue();
21096       }
21097       Src = Op1;
21098       BitNo = Op0.getOperand(1);
21099     }
21100   } else if (Op1.getOpcode() == ISD::Constant) {
21101     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
21102     uint64_t AndRHSVal = AndRHS->getZExtValue();
21103     SDValue AndLHS = Op0;
21104 
21105     if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
21106       Src = AndLHS.getOperand(0);
21107       BitNo = AndLHS.getOperand(1);
21108     } else {
21109       // Use BT if the immediate can't be encoded in a TEST instruction or we
21110       // are optimizing for size and the immedaite won't fit in a byte.
21111       bool OptForSize = DAG.shouldOptForSize();
21112       if ((!isUInt<32>(AndRHSVal) || (OptForSize && !isUInt<8>(AndRHSVal))) &&
21113           isPowerOf2_64(AndRHSVal)) {
21114         Src = AndLHS;
21115         BitNo = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl,
21116                                 Src.getValueType());
21117       }
21118     }
21119   }
21120 
21121   // No patterns found, give up.
21122   if (!Src.getNode())
21123     return SDValue();
21124 
21125   // If Src is i8, promote it to i32 with any_extend.  There is no i8 BT
21126   // instruction.  Since the shift amount is in-range-or-undefined, we know
21127   // that doing a bittest on the i32 value is ok.  We extend to i32 because
21128   // the encoding for the i16 version is larger than the i32 version.
21129   // Also promote i16 to i32 for performance / code size reason.
21130   if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
21131     Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src);
21132 
21133   // See if we can use the 32-bit instruction instead of the 64-bit one for a
21134   // shorter encoding. Since the former takes the modulo 32 of BitNo and the
21135   // latter takes the modulo 64, this is only valid if the 5th bit of BitNo is
21136   // known to be zero.
21137   if (Src.getValueType() == MVT::i64 &&
21138       DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32)))
21139     Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
21140 
21141   // If the operand types disagree, extend the shift amount to match.  Since
21142   // BT ignores high bits (like shifts) we can use anyextend.
21143   if (Src.getValueType() != BitNo.getValueType())
21144     BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo);
21145 
21146   X86CC = DAG.getTargetConstant(CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B,
21147                                 dl, MVT::i8);
21148   return DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo);
21149 }
21150 
21151 /// Turns an ISD::CondCode into a value suitable for SSE floating-point mask
21152 /// CMPs.
21153 static unsigned translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
21154                                    SDValue &Op1, bool &IsAlwaysSignaling) {
21155   unsigned SSECC;
21156   bool Swap = false;
21157 
21158   // SSE Condition code mapping:
21159   //  0 - EQ
21160   //  1 - LT
21161   //  2 - LE
21162   //  3 - UNORD
21163   //  4 - NEQ
21164   //  5 - NLT
21165   //  6 - NLE
21166   //  7 - ORD
21167   switch (SetCCOpcode) {
21168   default: llvm_unreachable("Unexpected SETCC condition");
21169   case ISD::SETOEQ:
21170   case ISD::SETEQ:  SSECC = 0; break;
21171   case ISD::SETOGT:
21172   case ISD::SETGT:  Swap = true; LLVM_FALLTHROUGH;
21173   case ISD::SETLT:
21174   case ISD::SETOLT: SSECC = 1; break;
21175   case ISD::SETOGE:
21176   case ISD::SETGE:  Swap = true; LLVM_FALLTHROUGH;
21177   case ISD::SETLE:
21178   case ISD::SETOLE: SSECC = 2; break;
21179   case ISD::SETUO:  SSECC = 3; break;
21180   case ISD::SETUNE:
21181   case ISD::SETNE:  SSECC = 4; break;
21182   case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
21183   case ISD::SETUGE: SSECC = 5; break;
21184   case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
21185   case ISD::SETUGT: SSECC = 6; break;
21186   case ISD::SETO:   SSECC = 7; break;
21187   case ISD::SETUEQ: SSECC = 8; break;
21188   case ISD::SETONE: SSECC = 12; break;
21189   }
21190   if (Swap)
21191     std::swap(Op0, Op1);
21192 
21193   switch (SetCCOpcode) {
21194   default:
21195     IsAlwaysSignaling = true;
21196     break;
21197   case ISD::SETEQ:
21198   case ISD::SETOEQ:
21199   case ISD::SETUEQ:
21200   case ISD::SETNE:
21201   case ISD::SETONE:
21202   case ISD::SETUNE:
21203   case ISD::SETO:
21204   case ISD::SETUO:
21205     IsAlwaysSignaling = false;
21206     break;
21207   }
21208 
21209   return SSECC;
21210 }
21211 
21212 /// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then
21213 /// concatenate the result back.
21214 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
21215   MVT VT = Op.getSimpleValueType();
21216 
21217   assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
21218          "Unsupported value type for operation");
21219 
21220   unsigned NumElems = VT.getVectorNumElements();
21221   SDLoc dl(Op);
21222   SDValue CC = Op.getOperand(2);
21223 
21224   // Extract the LHS vectors
21225   SDValue LHS = Op.getOperand(0);
21226   SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
21227   SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
21228 
21229   // Extract the RHS vectors
21230   SDValue RHS = Op.getOperand(1);
21231   SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
21232   SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
21233 
21234   // Issue the operation on the smaller types and concatenate the result back
21235   MVT EltVT = VT.getVectorElementType();
21236   MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
21237   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
21238                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
21239                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
21240 }
21241 
21242 static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
21243 
21244   SDValue Op0 = Op.getOperand(0);
21245   SDValue Op1 = Op.getOperand(1);
21246   SDValue CC = Op.getOperand(2);
21247   MVT VT = Op.getSimpleValueType();
21248   SDLoc dl(Op);
21249 
21250   assert(VT.getVectorElementType() == MVT::i1 &&
21251          "Cannot set masked compare for this operation");
21252 
21253   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
21254 
21255   // Prefer SETGT over SETLT.
21256   if (SetCCOpcode == ISD::SETLT) {
21257     SetCCOpcode = ISD::getSetCCSwappedOperands(SetCCOpcode);
21258     std::swap(Op0, Op1);
21259   }
21260 
21261   return DAG.getSetCC(dl, VT, Op0, Op1, SetCCOpcode);
21262 }
21263 
21264 /// Given a buildvector constant, return a new vector constant with each element
21265 /// incremented or decremented. If incrementing or decrementing would result in
21266 /// unsigned overflow or underflow or this is not a simple vector constant,
21267 /// return an empty value.
21268 static SDValue incDecVectorConstant(SDValue V, SelectionDAG &DAG, bool IsInc) {
21269   auto *BV = dyn_cast<BuildVectorSDNode>(V.getNode());
21270   if (!BV)
21271     return SDValue();
21272 
21273   MVT VT = V.getSimpleValueType();
21274   MVT EltVT = VT.getVectorElementType();
21275   unsigned NumElts = VT.getVectorNumElements();
21276   SmallVector<SDValue, 8> NewVecC;
21277   SDLoc DL(V);
21278   for (unsigned i = 0; i < NumElts; ++i) {
21279     auto *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
21280     if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EltVT)
21281       return SDValue();
21282 
21283     // Avoid overflow/underflow.
21284     const APInt &EltC = Elt->getAPIntValue();
21285     if ((IsInc && EltC.isMaxValue()) || (!IsInc && EltC.isNullValue()))
21286       return SDValue();
21287 
21288     NewVecC.push_back(DAG.getConstant(EltC + (IsInc ? 1 : -1), DL, EltVT));
21289   }
21290 
21291   return DAG.getBuildVector(VT, DL, NewVecC);
21292 }
21293 
21294 /// As another special case, use PSUBUS[BW] when it's profitable. E.g. for
21295 /// Op0 u<= Op1:
21296 ///   t = psubus Op0, Op1
21297 ///   pcmpeq t, <0..0>
21298 static SDValue LowerVSETCCWithSUBUS(SDValue Op0, SDValue Op1, MVT VT,
21299                                     ISD::CondCode Cond, const SDLoc &dl,
21300                                     const X86Subtarget &Subtarget,
21301                                     SelectionDAG &DAG) {
21302   if (!Subtarget.hasSSE2())
21303     return SDValue();
21304 
21305   MVT VET = VT.getVectorElementType();
21306   if (VET != MVT::i8 && VET != MVT::i16)
21307     return SDValue();
21308 
21309   switch (Cond) {
21310   default:
21311     return SDValue();
21312   case ISD::SETULT: {
21313     // If the comparison is against a constant we can turn this into a
21314     // setule.  With psubus, setule does not require a swap.  This is
21315     // beneficial because the constant in the register is no longer
21316     // destructed as the destination so it can be hoisted out of a loop.
21317     // Only do this pre-AVX since vpcmp* is no longer destructive.
21318     if (Subtarget.hasAVX())
21319       return SDValue();
21320     SDValue ULEOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/false);
21321     if (!ULEOp1)
21322       return SDValue();
21323     Op1 = ULEOp1;
21324     break;
21325   }
21326   case ISD::SETUGT: {
21327     // If the comparison is against a constant, we can turn this into a setuge.
21328     // This is beneficial because materializing a constant 0 for the PCMPEQ is
21329     // probably cheaper than XOR+PCMPGT using 2 different vector constants:
21330     // cmpgt (xor X, SignMaskC) CmpC --> cmpeq (usubsat (CmpC+1), X), 0
21331     SDValue UGEOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/true);
21332     if (!UGEOp1)
21333       return SDValue();
21334     Op1 = Op0;
21335     Op0 = UGEOp1;
21336     break;
21337   }
21338   // Psubus is better than flip-sign because it requires no inversion.
21339   case ISD::SETUGE:
21340     std::swap(Op0, Op1);
21341     break;
21342   case ISD::SETULE:
21343     break;
21344   }
21345 
21346   SDValue Result = DAG.getNode(ISD::USUBSAT, dl, VT, Op0, Op1);
21347   return DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
21348                      DAG.getConstant(0, dl, VT));
21349 }
21350 
21351 static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
21352                            SelectionDAG &DAG) {
21353   bool IsStrict = Op.getOpcode() == ISD::STRICT_FSETCC ||
21354                   Op.getOpcode() == ISD::STRICT_FSETCCS;
21355   SDValue Op0 = Op.getOperand(IsStrict ? 1 : 0);
21356   SDValue Op1 = Op.getOperand(IsStrict ? 2 : 1);
21357   SDValue CC = Op.getOperand(IsStrict ? 3 : 2);
21358   MVT VT = Op->getSimpleValueType(0);
21359   ISD::CondCode Cond = cast<CondCodeSDNode>(CC)->get();
21360   bool isFP = Op1.getSimpleValueType().isFloatingPoint();
21361   SDLoc dl(Op);
21362 
21363   if (isFP) {
21364 #ifndef NDEBUG
21365     MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
21366     assert(EltVT == MVT::f32 || EltVT == MVT::f64);
21367 #endif
21368 
21369     bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
21370     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
21371 
21372     unsigned Opc;
21373     if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
21374       assert(VT.getVectorNumElements() <= 16);
21375       Opc = IsStrict ? X86ISD::STRICT_CMPM : X86ISD::CMPM;
21376     } else {
21377       Opc = IsStrict ? X86ISD::STRICT_CMPP : X86ISD::CMPP;
21378       // The SSE/AVX packed FP comparison nodes are defined with a
21379       // floating-point vector result that matches the operand type. This allows
21380       // them to work with an SSE1 target (integer vector types are not legal).
21381       VT = Op0.getSimpleValueType();
21382     }
21383 
21384     SDValue Cmp;
21385     bool IsAlwaysSignaling;
21386     unsigned SSECC = translateX86FSETCC(Cond, Op0, Op1, IsAlwaysSignaling);
21387     if (!Subtarget.hasAVX()) {
21388       // TODO: We could use following steps to handle a quiet compare with
21389       // signaling encodings.
21390       // 1. Get ordered masks from a quiet ISD::SETO
21391       // 2. Use the masks to mask potential unordered elements in operand A, B
21392       // 3. Get the compare results of masked A, B
21393       // 4. Calculating final result using the mask and result from 3
21394       // But currently, we just fall back to scalar operations.
21395       if (IsStrict && IsAlwaysSignaling && !IsSignaling)
21396         return SDValue();
21397 
21398       // Insert an extra signaling instruction to raise exception.
21399       if (IsStrict && !IsAlwaysSignaling && IsSignaling) {
21400         SDValue SignalCmp = DAG.getNode(
21401             Opc, dl, {VT, MVT::Other},
21402             {Chain, Op0, Op1, DAG.getTargetConstant(1, dl, MVT::i8)}); // LT_OS
21403         // FIXME: It seems we need to update the flags of all new strict nodes.
21404         // Otherwise, mayRaiseFPException in MI will return false due to
21405         // NoFPExcept = false by default. However, I didn't find it in other
21406         // patches.
21407         SignalCmp->setFlags(Op->getFlags());
21408         Chain = SignalCmp.getValue(1);
21409       }
21410 
21411       // In the two cases not handled by SSE compare predicates (SETUEQ/SETONE),
21412       // emit two comparisons and a logic op to tie them together.
21413       if (SSECC >= 8) {
21414         // LLVM predicate is SETUEQ or SETONE.
21415         unsigned CC0, CC1;
21416         unsigned CombineOpc;
21417         if (Cond == ISD::SETUEQ) {
21418           CC0 = 3; // UNORD
21419           CC1 = 0; // EQ
21420           CombineOpc = X86ISD::FOR;
21421         } else {
21422           assert(Cond == ISD::SETONE);
21423           CC0 = 7; // ORD
21424           CC1 = 4; // NEQ
21425           CombineOpc = X86ISD::FAND;
21426         }
21427 
21428         SDValue Cmp0, Cmp1;
21429         if (IsStrict) {
21430           Cmp0 = DAG.getNode(
21431               Opc, dl, {VT, MVT::Other},
21432               {Chain, Op0, Op1, DAG.getTargetConstant(CC0, dl, MVT::i8)});
21433           Cmp1 = DAG.getNode(
21434               Opc, dl, {VT, MVT::Other},
21435               {Chain, Op0, Op1, DAG.getTargetConstant(CC1, dl, MVT::i8)});
21436           Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Cmp0.getValue(1),
21437                               Cmp1.getValue(1));
21438         } else {
21439           Cmp0 = DAG.getNode(
21440               Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(CC0, dl, MVT::i8));
21441           Cmp1 = DAG.getNode(
21442               Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(CC1, dl, MVT::i8));
21443         }
21444         Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
21445       } else {
21446         if (IsStrict) {
21447           Cmp = DAG.getNode(
21448               Opc, dl, {VT, MVT::Other},
21449               {Chain, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8)});
21450           Chain = Cmp.getValue(1);
21451         } else
21452           Cmp = DAG.getNode(
21453               Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8));
21454       }
21455     } else {
21456       // Handle all other FP comparisons here.
21457       if (IsStrict) {
21458         // Make a flip on already signaling CCs before setting bit 4 of AVX CC.
21459         SSECC |= (IsAlwaysSignaling ^ IsSignaling) << 4;
21460         Cmp = DAG.getNode(
21461             Opc, dl, {VT, MVT::Other},
21462             {Chain, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8)});
21463         Chain = Cmp.getValue(1);
21464       } else
21465         Cmp = DAG.getNode(
21466             Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8));
21467     }
21468 
21469     // If this is SSE/AVX CMPP, bitcast the result back to integer to match the
21470     // result type of SETCC. The bitcast is expected to be optimized away
21471     // during combining/isel.
21472     Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp);
21473 
21474     if (IsStrict)
21475       return DAG.getMergeValues({Cmp, Chain}, dl);
21476 
21477     return Cmp;
21478   }
21479 
21480   assert(!IsStrict && "Strict SETCC only handles FP operands.");
21481 
21482   MVT VTOp0 = Op0.getSimpleValueType();
21483   (void)VTOp0;
21484   assert(VTOp0 == Op1.getSimpleValueType() &&
21485          "Expected operands with same type!");
21486   assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
21487          "Invalid number of packed elements for source and destination!");
21488 
21489   // The non-AVX512 code below works under the assumption that source and
21490   // destination types are the same.
21491   assert((Subtarget.hasAVX512() || (VT == VTOp0)) &&
21492          "Value types for source and destination must be the same!");
21493 
21494   // The result is boolean, but operands are int/float
21495   if (VT.getVectorElementType() == MVT::i1) {
21496     // In AVX-512 architecture setcc returns mask with i1 elements,
21497     // But there is no compare instruction for i8 and i16 elements in KNL.
21498     assert((VTOp0.getScalarSizeInBits() >= 32 || Subtarget.hasBWI()) &&
21499            "Unexpected operand type");
21500     return LowerIntVSETCC_AVX512(Op, DAG);
21501   }
21502 
21503   // Lower using XOP integer comparisons.
21504   if (VT.is128BitVector() && Subtarget.hasXOP()) {
21505     // Translate compare code to XOP PCOM compare mode.
21506     unsigned CmpMode = 0;
21507     switch (Cond) {
21508     default: llvm_unreachable("Unexpected SETCC condition");
21509     case ISD::SETULT:
21510     case ISD::SETLT: CmpMode = 0x00; break;
21511     case ISD::SETULE:
21512     case ISD::SETLE: CmpMode = 0x01; break;
21513     case ISD::SETUGT:
21514     case ISD::SETGT: CmpMode = 0x02; break;
21515     case ISD::SETUGE:
21516     case ISD::SETGE: CmpMode = 0x03; break;
21517     case ISD::SETEQ: CmpMode = 0x04; break;
21518     case ISD::SETNE: CmpMode = 0x05; break;
21519     }
21520 
21521     // Are we comparing unsigned or signed integers?
21522     unsigned Opc =
21523         ISD::isUnsignedIntSetCC(Cond) ? X86ISD::VPCOMU : X86ISD::VPCOM;
21524 
21525     return DAG.getNode(Opc, dl, VT, Op0, Op1,
21526                        DAG.getTargetConstant(CmpMode, dl, MVT::i8));
21527   }
21528 
21529   // (X & Y) != 0 --> (X & Y) == Y iff Y is power-of-2.
21530   // Revert part of the simplifySetCCWithAnd combine, to avoid an invert.
21531   if (Cond == ISD::SETNE && ISD::isBuildVectorAllZeros(Op1.getNode())) {
21532     SDValue BC0 = peekThroughBitcasts(Op0);
21533     if (BC0.getOpcode() == ISD::AND) {
21534       APInt UndefElts;
21535       SmallVector<APInt, 64> EltBits;
21536       if (getTargetConstantBitsFromNode(BC0.getOperand(1),
21537                                         VT.getScalarSizeInBits(), UndefElts,
21538                                         EltBits, false, false)) {
21539         if (llvm::all_of(EltBits, [](APInt &V) { return V.isPowerOf2(); })) {
21540           Cond = ISD::SETEQ;
21541           Op1 = DAG.getBitcast(VT, BC0.getOperand(1));
21542         }
21543       }
21544     }
21545   }
21546 
21547   // ICMP_EQ(AND(X,C),C) -> SRA(SHL(X,LOG2(C)),BW-1) iff C is power-of-2.
21548   if (Cond == ISD::SETEQ && Op0.getOpcode() == ISD::AND &&
21549       Op0.getOperand(1) == Op1 && Op0.hasOneUse()) {
21550     ConstantSDNode *C1 = isConstOrConstSplat(Op1);
21551     if (C1 && C1->getAPIntValue().isPowerOf2()) {
21552       unsigned BitWidth = VT.getScalarSizeInBits();
21553       unsigned ShiftAmt = BitWidth - C1->getAPIntValue().logBase2() - 1;
21554 
21555       SDValue Result = Op0.getOperand(0);
21556       Result = DAG.getNode(ISD::SHL, dl, VT, Result,
21557                            DAG.getConstant(ShiftAmt, dl, VT));
21558       Result = DAG.getNode(ISD::SRA, dl, VT, Result,
21559                            DAG.getConstant(BitWidth - 1, dl, VT));
21560       return Result;
21561     }
21562   }
21563 
21564   // Break 256-bit integer vector compare into smaller ones.
21565   if (VT.is256BitVector() && !Subtarget.hasInt256())
21566     return Lower256IntVSETCC(Op, DAG);
21567 
21568   // If this is a SETNE against the signed minimum value, change it to SETGT.
21569   // If this is a SETNE against the signed maximum value, change it to SETLT.
21570   // which will be swapped to SETGT.
21571   // Otherwise we use PCMPEQ+invert.
21572   APInt ConstValue;
21573   if (Cond == ISD::SETNE &&
21574       ISD::isConstantSplatVector(Op1.getNode(), ConstValue)) {
21575     if (ConstValue.isMinSignedValue())
21576       Cond = ISD::SETGT;
21577     else if (ConstValue.isMaxSignedValue())
21578       Cond = ISD::SETLT;
21579   }
21580 
21581   // If both operands are known non-negative, then an unsigned compare is the
21582   // same as a signed compare and there's no need to flip signbits.
21583   // TODO: We could check for more general simplifications here since we're
21584   // computing known bits.
21585   bool FlipSigns = ISD::isUnsignedIntSetCC(Cond) &&
21586                    !(DAG.SignBitIsZero(Op0) && DAG.SignBitIsZero(Op1));
21587 
21588   // Special case: Use min/max operations for unsigned compares.
21589   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21590   if (ISD::isUnsignedIntSetCC(Cond) &&
21591       (FlipSigns || ISD::isTrueWhenEqual(Cond)) &&
21592       TLI.isOperationLegal(ISD::UMIN, VT)) {
21593     // If we have a constant operand, increment/decrement it and change the
21594     // condition to avoid an invert.
21595     if (Cond == ISD::SETUGT) {
21596       // X > C --> X >= (C+1) --> X == umax(X, C+1)
21597       if (SDValue UGTOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/true)) {
21598         Op1 = UGTOp1;
21599         Cond = ISD::SETUGE;
21600       }
21601     }
21602     if (Cond == ISD::SETULT) {
21603       // X < C --> X <= (C-1) --> X == umin(X, C-1)
21604       if (SDValue ULTOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/false)) {
21605         Op1 = ULTOp1;
21606         Cond = ISD::SETULE;
21607       }
21608     }
21609     bool Invert = false;
21610     unsigned Opc;
21611     switch (Cond) {
21612     default: llvm_unreachable("Unexpected condition code");
21613     case ISD::SETUGT: Invert = true; LLVM_FALLTHROUGH;
21614     case ISD::SETULE: Opc = ISD::UMIN; break;
21615     case ISD::SETULT: Invert = true; LLVM_FALLTHROUGH;
21616     case ISD::SETUGE: Opc = ISD::UMAX; break;
21617     }
21618 
21619     SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
21620     Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
21621 
21622     // If the logical-not of the result is required, perform that now.
21623     if (Invert)
21624       Result = DAG.getNOT(dl, Result, VT);
21625 
21626     return Result;
21627   }
21628 
21629   // Try to use SUBUS and PCMPEQ.
21630   if (SDValue V = LowerVSETCCWithSUBUS(Op0, Op1, VT, Cond, dl, Subtarget, DAG))
21631     return V;
21632 
21633   // We are handling one of the integer comparisons here. Since SSE only has
21634   // GT and EQ comparisons for integer, swapping operands and multiple
21635   // operations may be required for some comparisons.
21636   unsigned Opc = (Cond == ISD::SETEQ || Cond == ISD::SETNE) ? X86ISD::PCMPEQ
21637                                                             : X86ISD::PCMPGT;
21638   bool Swap = Cond == ISD::SETLT || Cond == ISD::SETULT ||
21639               Cond == ISD::SETGE || Cond == ISD::SETUGE;
21640   bool Invert = Cond == ISD::SETNE ||
21641                 (Cond != ISD::SETEQ && ISD::isTrueWhenEqual(Cond));
21642 
21643   if (Swap)
21644     std::swap(Op0, Op1);
21645 
21646   // Check that the operation in question is available (most are plain SSE2,
21647   // but PCMPGTQ and PCMPEQQ have different requirements).
21648   if (VT == MVT::v2i64) {
21649     if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) {
21650       assert(Subtarget.hasSSE2() && "Don't know how to lower!");
21651 
21652       // Special case for sign bit test. We can use a v4i32 PCMPGT and shuffle
21653       // the odd elements over the even elements.
21654       if (!FlipSigns && !Invert && ISD::isBuildVectorAllZeros(Op0.getNode())) {
21655         Op0 = DAG.getConstant(0, dl, MVT::v4i32);
21656         Op1 = DAG.getBitcast(MVT::v4i32, Op1);
21657 
21658         SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
21659         static const int MaskHi[] = { 1, 1, 3, 3 };
21660         SDValue Result = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
21661 
21662         return DAG.getBitcast(VT, Result);
21663       }
21664 
21665       if (!FlipSigns && !Invert && ISD::isBuildVectorAllOnes(Op1.getNode())) {
21666         Op0 = DAG.getBitcast(MVT::v4i32, Op0);
21667         Op1 = DAG.getConstant(-1, dl, MVT::v4i32);
21668 
21669         SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
21670         static const int MaskHi[] = { 1, 1, 3, 3 };
21671         SDValue Result = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
21672 
21673         return DAG.getBitcast(VT, Result);
21674       }
21675 
21676       // Since SSE has no unsigned integer comparisons, we need to flip the sign
21677       // bits of the inputs before performing those operations. The lower
21678       // compare is always unsigned.
21679       SDValue SB;
21680       if (FlipSigns) {
21681         SB = DAG.getConstant(0x8000000080000000ULL, dl, MVT::v2i64);
21682       } else {
21683         SB = DAG.getConstant(0x0000000080000000ULL, dl, MVT::v2i64);
21684       }
21685       Op0 = DAG.getNode(ISD::XOR, dl, MVT::v2i64, Op0, SB);
21686       Op1 = DAG.getNode(ISD::XOR, dl, MVT::v2i64, Op1, SB);
21687 
21688       // Cast everything to the right type.
21689       Op0 = DAG.getBitcast(MVT::v4i32, Op0);
21690       Op1 = DAG.getBitcast(MVT::v4i32, Op1);
21691 
21692       // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
21693       SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
21694       SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
21695 
21696       // Create masks for only the low parts/high parts of the 64 bit integers.
21697       static const int MaskHi[] = { 1, 1, 3, 3 };
21698       static const int MaskLo[] = { 0, 0, 2, 2 };
21699       SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
21700       SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
21701       SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
21702 
21703       SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
21704       Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
21705 
21706       if (Invert)
21707         Result = DAG.getNOT(dl, Result, MVT::v4i32);
21708 
21709       return DAG.getBitcast(VT, Result);
21710     }
21711 
21712     if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) {
21713       // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
21714       // pcmpeqd + pshufd + pand.
21715       assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!");
21716 
21717       // First cast everything to the right type.
21718       Op0 = DAG.getBitcast(MVT::v4i32, Op0);
21719       Op1 = DAG.getBitcast(MVT::v4i32, Op1);
21720 
21721       // Do the compare.
21722       SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
21723 
21724       // Make sure the lower and upper halves are both all-ones.
21725       static const int Mask[] = { 1, 0, 3, 2 };
21726       SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
21727       Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
21728 
21729       if (Invert)
21730         Result = DAG.getNOT(dl, Result, MVT::v4i32);
21731 
21732       return DAG.getBitcast(VT, Result);
21733     }
21734   }
21735 
21736   // Since SSE has no unsigned integer comparisons, we need to flip the sign
21737   // bits of the inputs before performing those operations.
21738   if (FlipSigns) {
21739     MVT EltVT = VT.getVectorElementType();
21740     SDValue SM = DAG.getConstant(APInt::getSignMask(EltVT.getSizeInBits()), dl,
21741                                  VT);
21742     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SM);
21743     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SM);
21744   }
21745 
21746   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
21747 
21748   // If the logical-not of the result is required, perform that now.
21749   if (Invert)
21750     Result = DAG.getNOT(dl, Result, VT);
21751 
21752   return Result;
21753 }
21754 
21755 // Try to select this as a KORTEST+SETCC or KTEST+SETCC if possible.
21756 static SDValue EmitAVX512Test(SDValue Op0, SDValue Op1, ISD::CondCode CC,
21757                               const SDLoc &dl, SelectionDAG &DAG,
21758                               const X86Subtarget &Subtarget,
21759                               SDValue &X86CC) {
21760   // Only support equality comparisons.
21761   if (CC != ISD::SETEQ && CC != ISD::SETNE)
21762     return SDValue();
21763 
21764   // Must be a bitcast from vXi1.
21765   if (Op0.getOpcode() != ISD::BITCAST)
21766     return SDValue();
21767 
21768   Op0 = Op0.getOperand(0);
21769   MVT VT = Op0.getSimpleValueType();
21770   if (!(Subtarget.hasAVX512() && VT == MVT::v16i1) &&
21771       !(Subtarget.hasDQI() && VT == MVT::v8i1) &&
21772       !(Subtarget.hasBWI() && (VT == MVT::v32i1 || VT == MVT::v64i1)))
21773     return SDValue();
21774 
21775   X86::CondCode X86Cond;
21776   if (isNullConstant(Op1)) {
21777     X86Cond = CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE;
21778   } else if (isAllOnesConstant(Op1)) {
21779     // C flag is set for all ones.
21780     X86Cond = CC == ISD::SETEQ ? X86::COND_B : X86::COND_AE;
21781   } else
21782     return SDValue();
21783 
21784   // If the input is an AND, we can combine it's operands into the KTEST.
21785   bool KTestable = false;
21786   if (Subtarget.hasDQI() && (VT == MVT::v8i1 || VT == MVT::v16i1))
21787     KTestable = true;
21788   if (Subtarget.hasBWI() && (VT == MVT::v32i1 || VT == MVT::v64i1))
21789     KTestable = true;
21790   if (!isNullConstant(Op1))
21791     KTestable = false;
21792   if (KTestable && Op0.getOpcode() == ISD::AND && Op0.hasOneUse()) {
21793     SDValue LHS = Op0.getOperand(0);
21794     SDValue RHS = Op0.getOperand(1);
21795     X86CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
21796     return DAG.getNode(X86ISD::KTEST, dl, MVT::i32, LHS, RHS);
21797   }
21798 
21799   // If the input is an OR, we can combine it's operands into the KORTEST.
21800   SDValue LHS = Op0;
21801   SDValue RHS = Op0;
21802   if (Op0.getOpcode() == ISD::OR && Op0.hasOneUse()) {
21803     LHS = Op0.getOperand(0);
21804     RHS = Op0.getOperand(1);
21805   }
21806 
21807   X86CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
21808   return DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
21809 }
21810 
21811 /// Emit flags for the given setcc condition and operands. Also returns the
21812 /// corresponding X86 condition code constant in X86CC.
21813 SDValue X86TargetLowering::emitFlagsForSetcc(SDValue Op0, SDValue Op1,
21814                                              ISD::CondCode CC, const SDLoc &dl,
21815                                              SelectionDAG &DAG, SDValue &X86CC,
21816                                              SDValue &Chain,
21817                                              bool IsSignaling) const {
21818   // Optimize to BT if possible.
21819   // Lower (X & (1 << N)) == 0 to BT(X, N).
21820   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
21821   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
21822   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) &&
21823       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
21824     if (SDValue BT = LowerAndToBT(Op0, CC, dl, DAG, X86CC))
21825       return BT;
21826   }
21827 
21828   // Try to use PTEST for a tree ORs equality compared with 0.
21829   // TODO: We could do AND tree with all 1s as well by using the C flag.
21830   if (Op0.getOpcode() == ISD::OR && isNullConstant(Op1) &&
21831       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
21832     if (SDValue PTEST = LowerVectorAllZeroTest(Op0, CC, Subtarget, DAG, X86CC))
21833       return PTEST;
21834   }
21835 
21836   // Try to lower using KORTEST or KTEST.
21837   if (SDValue Test = EmitAVX512Test(Op0, Op1, CC, dl, DAG, Subtarget, X86CC))
21838     return Test;
21839 
21840   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
21841   // these.
21842   if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
21843       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
21844     // If the input is a setcc, then reuse the input setcc or use a new one with
21845     // the inverted condition.
21846     if (Op0.getOpcode() == X86ISD::SETCC) {
21847       bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
21848 
21849       X86CC = Op0.getOperand(0);
21850       if (Invert) {
21851         X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
21852         CCode = X86::GetOppositeBranchCondition(CCode);
21853         X86CC = DAG.getTargetConstant(CCode, dl, MVT::i8);
21854       }
21855 
21856       return Op0.getOperand(1);
21857     }
21858   }
21859 
21860   // Try to use the carry flag from the add in place of an separate CMP for:
21861   // (seteq (add X, -1), -1). Similar for setne.
21862   if (isAllOnesConstant(Op1) && Op0.getOpcode() == ISD::ADD &&
21863       Op0.getOperand(1) == Op1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
21864     if (isProfitableToUseFlagOp(Op0)) {
21865       SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
21866 
21867       SDValue New = DAG.getNode(X86ISD::ADD, dl, VTs, Op0.getOperand(0),
21868                                 Op0.getOperand(1));
21869       DAG.ReplaceAllUsesOfValueWith(SDValue(Op0.getNode(), 0), New);
21870       X86::CondCode CCode = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
21871       X86CC = DAG.getTargetConstant(CCode, dl, MVT::i8);
21872       return SDValue(New.getNode(), 1);
21873     }
21874   }
21875 
21876   bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
21877   X86::CondCode CondCode = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG);
21878   if (CondCode == X86::COND_INVALID)
21879     return SDValue();
21880 
21881   std::pair<SDValue, SDValue> Tmp =
21882       EmitCmp(Op0, Op1, CondCode, dl, DAG, Subtarget, Chain, IsSignaling);
21883   SDValue EFLAGS = Tmp.first;
21884   if (Chain)
21885     Chain = Tmp.second;
21886   EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
21887   X86CC = DAG.getTargetConstant(CondCode, dl, MVT::i8);
21888   return EFLAGS;
21889 }
21890 
21891 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
21892 
21893   bool IsStrict = Op.getOpcode() == ISD::STRICT_FSETCC ||
21894                   Op.getOpcode() == ISD::STRICT_FSETCCS;
21895   MVT VT = Op->getSimpleValueType(0);
21896 
21897   if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
21898 
21899   assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
21900   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
21901   SDValue Op0 = Op.getOperand(IsStrict ? 1 : 0);
21902   SDValue Op1 = Op.getOperand(IsStrict ? 2 : 1);
21903   SDLoc dl(Op);
21904   ISD::CondCode CC =
21905       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
21906 
21907   // Handle f128 first, since one possible outcome is a normal integer
21908   // comparison which gets handled by emitFlagsForSetcc.
21909   if (Op0.getValueType() == MVT::f128) {
21910     softenSetCCOperands(DAG, MVT::f128, Op0, Op1, CC, dl, Op0, Op1, Chain,
21911                         Op.getOpcode() == ISD::STRICT_FSETCCS);
21912 
21913     // If softenSetCCOperands returned a scalar, use it.
21914     if (!Op1.getNode()) {
21915       assert(Op0.getValueType() == Op.getValueType() &&
21916              "Unexpected setcc expansion!");
21917       if (IsStrict)
21918         return DAG.getMergeValues({Op0, Chain}, dl);
21919       return Op0;
21920     }
21921   }
21922 
21923   SDValue X86CC;
21924   SDValue EFLAGS = emitFlagsForSetcc(Op0, Op1, CC, dl, DAG, X86CC, Chain,
21925                                      Op.getOpcode() == ISD::STRICT_FSETCCS);
21926   if (!EFLAGS)
21927     return SDValue();
21928 
21929   SDValue Res = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, X86CC, EFLAGS);
21930 
21931   if (IsStrict)
21932     return DAG.getMergeValues({Res, Chain}, dl);
21933 
21934   return Res;
21935 }
21936 
21937 SDValue X86TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const {
21938   SDValue LHS = Op.getOperand(0);
21939   SDValue RHS = Op.getOperand(1);
21940   SDValue Carry = Op.getOperand(2);
21941   SDValue Cond = Op.getOperand(3);
21942   SDLoc DL(Op);
21943 
21944   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
21945   X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
21946 
21947   // Recreate the carry if needed.
21948   EVT CarryVT = Carry.getValueType();
21949   APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
21950   Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
21951                       Carry, DAG.getConstant(NegOne, DL, CarryVT));
21952 
21953   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
21954   SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry.getValue(1));
21955   return getSETCC(CC, Cmp.getValue(1), DL, DAG);
21956 }
21957 
21958 // This function returns three things: the arithmetic computation itself
21959 // (Value), an EFLAGS result (Overflow), and a condition code (Cond).  The
21960 // flag and the condition code define the case in which the arithmetic
21961 // computation overflows.
21962 static std::pair<SDValue, SDValue>
21963 getX86XALUOOp(X86::CondCode &Cond, SDValue Op, SelectionDAG &DAG) {
21964   assert(Op.getResNo() == 0 && "Unexpected result number!");
21965   SDValue Value, Overflow;
21966   SDValue LHS = Op.getOperand(0);
21967   SDValue RHS = Op.getOperand(1);
21968   unsigned BaseOp = 0;
21969   SDLoc DL(Op);
21970   switch (Op.getOpcode()) {
21971   default: llvm_unreachable("Unknown ovf instruction!");
21972   case ISD::SADDO:
21973     BaseOp = X86ISD::ADD;
21974     Cond = X86::COND_O;
21975     break;
21976   case ISD::UADDO:
21977     BaseOp = X86ISD::ADD;
21978     Cond = isOneConstant(RHS) ? X86::COND_E : X86::COND_B;
21979     break;
21980   case ISD::SSUBO:
21981     BaseOp = X86ISD::SUB;
21982     Cond = X86::COND_O;
21983     break;
21984   case ISD::USUBO:
21985     BaseOp = X86ISD::SUB;
21986     Cond = X86::COND_B;
21987     break;
21988   case ISD::SMULO:
21989     BaseOp = X86ISD::SMUL;
21990     Cond = X86::COND_O;
21991     break;
21992   case ISD::UMULO:
21993     BaseOp = X86ISD::UMUL;
21994     Cond = X86::COND_O;
21995     break;
21996   }
21997 
21998   if (BaseOp) {
21999     // Also sets EFLAGS.
22000     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
22001     Value = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
22002     Overflow = Value.getValue(1);
22003   }
22004 
22005   return std::make_pair(Value, Overflow);
22006 }
22007 
22008 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
22009   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
22010   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
22011   // looks for this combo and may remove the "setcc" instruction if the "setcc"
22012   // has only one use.
22013   SDLoc DL(Op);
22014   X86::CondCode Cond;
22015   SDValue Value, Overflow;
22016   std::tie(Value, Overflow) = getX86XALUOOp(Cond, Op, DAG);
22017 
22018   SDValue SetCC = getSETCC(Cond, Overflow, DL, DAG);
22019   assert(Op->getValueType(1) == MVT::i8 && "Unexpected VT!");
22020   return DAG.getNode(ISD::MERGE_VALUES, DL, Op->getVTList(), Value, SetCC);
22021 }
22022 
22023 /// Return true if opcode is a X86 logical comparison.
22024 static bool isX86LogicalCmp(SDValue Op) {
22025   unsigned Opc = Op.getOpcode();
22026   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
22027       Opc == X86ISD::SAHF)
22028     return true;
22029   if (Op.getResNo() == 1 &&
22030       (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC ||
22031        Opc == X86ISD::SBB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL ||
22032        Opc == X86ISD::OR || Opc == X86ISD::XOR || Opc == X86ISD::AND))
22033     return true;
22034 
22035   return false;
22036 }
22037 
22038 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
22039   if (V.getOpcode() != ISD::TRUNCATE)
22040     return false;
22041 
22042   SDValue VOp0 = V.getOperand(0);
22043   unsigned InBits = VOp0.getValueSizeInBits();
22044   unsigned Bits = V.getValueSizeInBits();
22045   return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
22046 }
22047 
22048 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
22049   bool AddTest = true;
22050   SDValue Cond  = Op.getOperand(0);
22051   SDValue Op1 = Op.getOperand(1);
22052   SDValue Op2 = Op.getOperand(2);
22053   SDLoc DL(Op);
22054   MVT VT = Op1.getSimpleValueType();
22055   SDValue CC;
22056 
22057   // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
22058   // are available or VBLENDV if AVX is available.
22059   // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
22060   if (Cond.getOpcode() == ISD::SETCC &&
22061       ((Subtarget.hasSSE2() && VT == MVT::f64) ||
22062        (Subtarget.hasSSE1() && VT == MVT::f32)) &&
22063       VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
22064     SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
22065     bool IsAlwaysSignaling;
22066     unsigned SSECC =
22067         translateX86FSETCC(cast<CondCodeSDNode>(Cond.getOperand(2))->get(),
22068                            CondOp0, CondOp1, IsAlwaysSignaling);
22069 
22070     if (Subtarget.hasAVX512()) {
22071       SDValue Cmp =
22072           DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CondOp0, CondOp1,
22073                       DAG.getTargetConstant(SSECC, DL, MVT::i8));
22074       assert(!VT.isVector() && "Not a scalar type?");
22075       return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
22076     }
22077 
22078     if (SSECC < 8 || Subtarget.hasAVX()) {
22079       SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
22080                                 DAG.getTargetConstant(SSECC, DL, MVT::i8));
22081 
22082       // If we have AVX, we can use a variable vector select (VBLENDV) instead
22083       // of 3 logic instructions for size savings and potentially speed.
22084       // Unfortunately, there is no scalar form of VBLENDV.
22085 
22086       // If either operand is a +0.0 constant, don't try this. We can expect to
22087       // optimize away at least one of the logic instructions later in that
22088       // case, so that sequence would be faster than a variable blend.
22089 
22090       // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
22091       // uses XMM0 as the selection register. That may need just as many
22092       // instructions as the AND/ANDN/OR sequence due to register moves, so
22093       // don't bother.
22094       if (Subtarget.hasAVX() && !isNullFPConstant(Op1) &&
22095           !isNullFPConstant(Op2)) {
22096         // Convert to vectors, do a VSELECT, and convert back to scalar.
22097         // All of the conversions should be optimized away.
22098         MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
22099         SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
22100         SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
22101         SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
22102 
22103         MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
22104         VCmp = DAG.getBitcast(VCmpVT, VCmp);
22105 
22106         SDValue VSel = DAG.getSelect(DL, VecVT, VCmp, VOp1, VOp2);
22107 
22108         return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
22109                            VSel, DAG.getIntPtrConstant(0, DL));
22110       }
22111       SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
22112       SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
22113       return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
22114     }
22115   }
22116 
22117   // AVX512 fallback is to lower selects of scalar floats to masked moves.
22118   if ((VT == MVT::f64 || VT == MVT::f32) && Subtarget.hasAVX512()) {
22119     SDValue Cmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, Cond);
22120     return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
22121   }
22122 
22123   // For v64i1 without 64-bit support we need to split and rejoin.
22124   if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
22125     assert(Subtarget.hasBWI() && "Expected BWI to be legal");
22126     SDValue Op1Lo = extractSubVector(Op1, 0, DAG, DL, 32);
22127     SDValue Op2Lo = extractSubVector(Op2, 0, DAG, DL, 32);
22128     SDValue Op1Hi = extractSubVector(Op1, 32, DAG, DL, 32);
22129     SDValue Op2Hi = extractSubVector(Op2, 32, DAG, DL, 32);
22130     SDValue Lo = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Lo, Op2Lo);
22131     SDValue Hi = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Hi, Op2Hi);
22132     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
22133   }
22134 
22135   if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
22136     SDValue Op1Scalar;
22137     if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
22138       Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
22139     else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
22140       Op1Scalar = Op1.getOperand(0);
22141     SDValue Op2Scalar;
22142     if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
22143       Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
22144     else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
22145       Op2Scalar = Op2.getOperand(0);
22146     if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
22147       SDValue newSelect = DAG.getSelect(DL, Op1Scalar.getValueType(), Cond,
22148                                         Op1Scalar, Op2Scalar);
22149       if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
22150         return DAG.getBitcast(VT, newSelect);
22151       SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
22152       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
22153                          DAG.getIntPtrConstant(0, DL));
22154     }
22155   }
22156 
22157   if (Cond.getOpcode() == ISD::SETCC) {
22158     if (SDValue NewCond = LowerSETCC(Cond, DAG)) {
22159       Cond = NewCond;
22160       // If the condition was updated, it's possible that the operands of the
22161       // select were also updated (for example, EmitTest has a RAUW). Refresh
22162       // the local references to the select operands in case they got stale.
22163       Op1 = Op.getOperand(1);
22164       Op2 = Op.getOperand(2);
22165     }
22166   }
22167 
22168   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
22169   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
22170   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
22171   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
22172   // (select (and (x , 0x1) == 0), y, (z ^ y) ) -> (-(and (x , 0x1)) & z ) ^ y
22173   // (select (and (x , 0x1) == 0), y, (z | y) ) -> (-(and (x , 0x1)) & z ) | y
22174   if (Cond.getOpcode() == X86ISD::SETCC &&
22175       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
22176       isNullConstant(Cond.getOperand(1).getOperand(1))) {
22177     SDValue Cmp = Cond.getOperand(1);
22178     unsigned CondCode = Cond.getConstantOperandVal(0);
22179 
22180     if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
22181         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
22182       SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
22183       SDValue CmpOp0 = Cmp.getOperand(0);
22184 
22185       // Apply further optimizations for special cases
22186       // (select (x != 0), -1, 0) -> neg & sbb
22187       // (select (x == 0), 0, -1) -> neg & sbb
22188       if (isNullConstant(Y) &&
22189           (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
22190         SDValue Zero = DAG.getConstant(0, DL, CmpOp0.getValueType());
22191         SDValue CmpZero = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Zero, CmpOp0);
22192         SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
22193         Zero = DAG.getConstant(0, DL, Op.getValueType());
22194         return DAG.getNode(X86ISD::SBB, DL, VTs, Zero, Zero, CmpZero);
22195       }
22196 
22197       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
22198                         CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
22199       Cmp = ConvertCmpIfNecessary(Cmp, DAG);
22200 
22201       SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
22202       SDValue Zero = DAG.getConstant(0, DL, Op.getValueType());
22203       SDValue Res =   // Res = 0 or -1.
22204         DAG.getNode(X86ISD::SBB, DL, VTs, Zero, Zero, Cmp);
22205 
22206       if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
22207         Res = DAG.getNOT(DL, Res, Res.getValueType());
22208 
22209       if (!isNullConstant(Op2))
22210         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
22211       return Res;
22212     } else if (!Subtarget.hasCMov() && CondCode == X86::COND_E &&
22213                Cmp.getOperand(0).getOpcode() == ISD::AND &&
22214                isOneConstant(Cmp.getOperand(0).getOperand(1))) {
22215       SDValue CmpOp0 = Cmp.getOperand(0);
22216       SDValue Src1, Src2;
22217       // true if Op2 is XOR or OR operator and one of its operands
22218       // is equal to Op1
22219       // ( a , a op b) || ( b , a op b)
22220       auto isOrXorPattern = [&]() {
22221         if ((Op2.getOpcode() == ISD::XOR || Op2.getOpcode() == ISD::OR) &&
22222             (Op2.getOperand(0) == Op1 || Op2.getOperand(1) == Op1)) {
22223           Src1 =
22224               Op2.getOperand(0) == Op1 ? Op2.getOperand(1) : Op2.getOperand(0);
22225           Src2 = Op1;
22226           return true;
22227         }
22228         return false;
22229       };
22230 
22231       if (isOrXorPattern()) {
22232         SDValue Neg;
22233         unsigned int CmpSz = CmpOp0.getSimpleValueType().getSizeInBits();
22234         // we need mask of all zeros or ones with same size of the other
22235         // operands.
22236         if (CmpSz > VT.getSizeInBits())
22237           Neg = DAG.getNode(ISD::TRUNCATE, DL, VT, CmpOp0);
22238         else if (CmpSz < VT.getSizeInBits())
22239           Neg = DAG.getNode(ISD::AND, DL, VT,
22240               DAG.getNode(ISD::ANY_EXTEND, DL, VT, CmpOp0.getOperand(0)),
22241               DAG.getConstant(1, DL, VT));
22242         else
22243           Neg = CmpOp0;
22244         SDValue Mask = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
22245                                    Neg); // -(and (x, 0x1))
22246         SDValue And = DAG.getNode(ISD::AND, DL, VT, Mask, Src1); // Mask & z
22247         return DAG.getNode(Op2.getOpcode(), DL, VT, And, Src2);  // And Op y
22248       }
22249     }
22250   }
22251 
22252   // Look past (and (setcc_carry (cmp ...)), 1).
22253   if (Cond.getOpcode() == ISD::AND &&
22254       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
22255       isOneConstant(Cond.getOperand(1)))
22256     Cond = Cond.getOperand(0);
22257 
22258   // If condition flag is set by a X86ISD::CMP, then use it as the condition
22259   // setting operand in place of the X86ISD::SETCC.
22260   unsigned CondOpcode = Cond.getOpcode();
22261   if (CondOpcode == X86ISD::SETCC ||
22262       CondOpcode == X86ISD::SETCC_CARRY) {
22263     CC = Cond.getOperand(0);
22264 
22265     SDValue Cmp = Cond.getOperand(1);
22266     bool IllegalFPCMov = false;
22267     if (VT.isFloatingPoint() && !VT.isVector() &&
22268         !isScalarFPTypeInSSEReg(VT))  // FPStack?
22269       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
22270 
22271     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
22272         Cmp.getOpcode() == X86ISD::BT) { // FIXME
22273       Cond = Cmp;
22274       AddTest = false;
22275     }
22276   } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
22277              CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
22278              CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) {
22279     SDValue Value;
22280     X86::CondCode X86Cond;
22281     std::tie(Value, Cond) = getX86XALUOOp(X86Cond, Cond.getValue(0), DAG);
22282 
22283     CC = DAG.getTargetConstant(X86Cond, DL, MVT::i8);
22284     AddTest = false;
22285   }
22286 
22287   if (AddTest) {
22288     // Look past the truncate if the high bits are known zero.
22289     if (isTruncWithZeroHighBitsInput(Cond, DAG))
22290       Cond = Cond.getOperand(0);
22291 
22292     // We know the result of AND is compared against zero. Try to match
22293     // it to BT.
22294     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
22295       SDValue BTCC;
22296       if (SDValue BT = LowerAndToBT(Cond, ISD::SETNE, DL, DAG, BTCC)) {
22297         CC = BTCC;
22298         Cond = BT;
22299         AddTest = false;
22300       }
22301     }
22302   }
22303 
22304   if (AddTest) {
22305     CC = DAG.getTargetConstant(X86::COND_NE, DL, MVT::i8);
22306     Cond = EmitTest(Cond, X86::COND_NE, DL, DAG, Subtarget);
22307   }
22308 
22309   // a <  b ? -1 :  0 -> RES = ~setcc_carry
22310   // a <  b ?  0 : -1 -> RES = setcc_carry
22311   // a >= b ? -1 :  0 -> RES = setcc_carry
22312   // a >= b ?  0 : -1 -> RES = ~setcc_carry
22313   if (Cond.getOpcode() == X86ISD::SUB) {
22314     Cond = ConvertCmpIfNecessary(Cond, DAG);
22315     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
22316 
22317     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
22318         (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
22319         (isNullConstant(Op1) || isNullConstant(Op2))) {
22320       SDValue Res =
22321           DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
22322                       DAG.getTargetConstant(X86::COND_B, DL, MVT::i8), Cond);
22323       if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
22324         return DAG.getNOT(DL, Res, Res.getValueType());
22325       return Res;
22326     }
22327   }
22328 
22329   // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
22330   // widen the cmov and push the truncate through. This avoids introducing a new
22331   // branch during isel and doesn't add any extensions.
22332   if (Op.getValueType() == MVT::i8 &&
22333       Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
22334     SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
22335     if (T1.getValueType() == T2.getValueType() &&
22336         // Blacklist CopyFromReg to avoid partial register stalls.
22337         T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
22338       SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, T1.getValueType(), T2, T1,
22339                                  CC, Cond);
22340       return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
22341     }
22342   }
22343 
22344   // Or finally, promote i8 cmovs if we have CMOV,
22345   //                 or i16 cmovs if it won't prevent folding a load.
22346   // FIXME: we should not limit promotion of i8 case to only when the CMOV is
22347   //        legal, but EmitLoweredSelect() can not deal with these extensions
22348   //        being inserted between two CMOV's. (in i16 case too TBN)
22349   //        https://bugs.llvm.org/show_bug.cgi?id=40974
22350   if ((Op.getValueType() == MVT::i8 && Subtarget.hasCMov()) ||
22351       (Op.getValueType() == MVT::i16 && !MayFoldLoad(Op1) &&
22352        !MayFoldLoad(Op2))) {
22353     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
22354     Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
22355     SDValue Ops[] = { Op2, Op1, CC, Cond };
22356     SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, MVT::i32, Ops);
22357     return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
22358   }
22359 
22360   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
22361   // condition is true.
22362   SDValue Ops[] = { Op2, Op1, CC, Cond };
22363   return DAG.getNode(X86ISD::CMOV, DL, Op.getValueType(), Ops);
22364 }
22365 
22366 static SDValue LowerSIGN_EXTEND_Mask(SDValue Op,
22367                                      const X86Subtarget &Subtarget,
22368                                      SelectionDAG &DAG) {
22369   MVT VT = Op->getSimpleValueType(0);
22370   SDValue In = Op->getOperand(0);
22371   MVT InVT = In.getSimpleValueType();
22372   assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
22373   MVT VTElt = VT.getVectorElementType();
22374   SDLoc dl(Op);
22375 
22376   unsigned NumElts = VT.getVectorNumElements();
22377 
22378   // Extend VT if the scalar type is i8/i16 and BWI is not supported.
22379   MVT ExtVT = VT;
22380   if (!Subtarget.hasBWI() && VTElt.getSizeInBits() <= 16) {
22381     // If v16i32 is to be avoided, we'll need to split and concatenate.
22382     if (NumElts == 16 && !Subtarget.canExtendTo512DQ())
22383       return SplitAndExtendv16i1(Op.getOpcode(), VT, In, dl, DAG);
22384 
22385     ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
22386   }
22387 
22388   // Widen to 512-bits if VLX is not supported.
22389   MVT WideVT = ExtVT;
22390   if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
22391     NumElts *= 512 / ExtVT.getSizeInBits();
22392     InVT = MVT::getVectorVT(MVT::i1, NumElts);
22393     In = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, InVT, DAG.getUNDEF(InVT),
22394                      In, DAG.getIntPtrConstant(0, dl));
22395     WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), NumElts);
22396   }
22397 
22398   SDValue V;
22399   MVT WideEltVT = WideVT.getVectorElementType();
22400   if ((Subtarget.hasDQI() && WideEltVT.getSizeInBits() >= 32) ||
22401       (Subtarget.hasBWI() && WideEltVT.getSizeInBits() <= 16)) {
22402     V = DAG.getNode(Op.getOpcode(), dl, WideVT, In);
22403   } else {
22404     SDValue NegOne = DAG.getConstant(-1, dl, WideVT);
22405     SDValue Zero = DAG.getConstant(0, dl, WideVT);
22406     V = DAG.getSelect(dl, WideVT, In, NegOne, Zero);
22407   }
22408 
22409   // Truncate if we had to extend i16/i8 above.
22410   if (VT != ExtVT) {
22411     WideVT = MVT::getVectorVT(VTElt, NumElts);
22412     V = DAG.getNode(ISD::TRUNCATE, dl, WideVT, V);
22413   }
22414 
22415   // Extract back to 128/256-bit if we widened.
22416   if (WideVT != VT)
22417     V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, V,
22418                     DAG.getIntPtrConstant(0, dl));
22419 
22420   return V;
22421 }
22422 
22423 static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
22424                                SelectionDAG &DAG) {
22425   SDValue In = Op->getOperand(0);
22426   MVT InVT = In.getSimpleValueType();
22427 
22428   if (InVT.getVectorElementType() == MVT::i1)
22429     return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
22430 
22431   assert(Subtarget.hasAVX() && "Expected AVX support");
22432   return LowerAVXExtend(Op, DAG, Subtarget);
22433 }
22434 
22435 // Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG.
22436 // For sign extend this needs to handle all vector sizes and SSE4.1 and
22437 // non-SSE4.1 targets. For zero extend this should only handle inputs of
22438 // MVT::v64i8 when BWI is not supported, but AVX512 is.
22439 static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op,
22440                                         const X86Subtarget &Subtarget,
22441                                         SelectionDAG &DAG) {
22442   SDValue In = Op->getOperand(0);
22443   MVT VT = Op->getSimpleValueType(0);
22444   MVT InVT = In.getSimpleValueType();
22445 
22446   MVT SVT = VT.getVectorElementType();
22447   MVT InSVT = InVT.getVectorElementType();
22448   assert(SVT.getSizeInBits() > InSVT.getSizeInBits());
22449 
22450   if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
22451     return SDValue();
22452   if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
22453     return SDValue();
22454   if (!(VT.is128BitVector() && Subtarget.hasSSE2()) &&
22455       !(VT.is256BitVector() && Subtarget.hasAVX()) &&
22456       !(VT.is512BitVector() && Subtarget.hasAVX512()))
22457     return SDValue();
22458 
22459   SDLoc dl(Op);
22460   unsigned Opc = Op.getOpcode();
22461   unsigned NumElts = VT.getVectorNumElements();
22462 
22463   // For 256-bit vectors, we only need the lower (128-bit) half of the input.
22464   // For 512-bit vectors, we need 128-bits or 256-bits.
22465   if (InVT.getSizeInBits() > 128) {
22466     // Input needs to be at least the same number of elements as output, and
22467     // at least 128-bits.
22468     int InSize = InSVT.getSizeInBits() * NumElts;
22469     In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128));
22470     InVT = In.getSimpleValueType();
22471   }
22472 
22473   // SSE41 targets can use the pmov[sz]x* instructions directly for 128-bit results,
22474   // so are legal and shouldn't occur here. AVX2/AVX512 pmovsx* instructions still
22475   // need to be handled here for 256/512-bit results.
22476   if (Subtarget.hasInt256()) {
22477     assert(VT.getSizeInBits() > 128 && "Unexpected 128-bit vector extension");
22478 
22479     if (InVT.getVectorNumElements() != NumElts)
22480       return DAG.getNode(Op.getOpcode(), dl, VT, In);
22481 
22482     // FIXME: Apparently we create inreg operations that could be regular
22483     // extends.
22484     unsigned ExtOpc =
22485         Opc == ISD::SIGN_EXTEND_VECTOR_INREG ? ISD::SIGN_EXTEND
22486                                              : ISD::ZERO_EXTEND;
22487     return DAG.getNode(ExtOpc, dl, VT, In);
22488   }
22489 
22490   // pre-AVX2 256-bit extensions need to be split into 128-bit instructions.
22491   if (Subtarget.hasAVX()) {
22492     assert(VT.is256BitVector() && "256-bit vector expected");
22493     MVT HalfVT = VT.getHalfNumVectorElementsVT();
22494     int HalfNumElts = HalfVT.getVectorNumElements();
22495 
22496     unsigned NumSrcElts = InVT.getVectorNumElements();
22497     SmallVector<int, 16> HiMask(NumSrcElts, SM_SentinelUndef);
22498     for (int i = 0; i != HalfNumElts; ++i)
22499       HiMask[i] = HalfNumElts + i;
22500 
22501     SDValue Lo = DAG.getNode(Opc, dl, HalfVT, In);
22502     SDValue Hi = DAG.getVectorShuffle(InVT, dl, In, DAG.getUNDEF(InVT), HiMask);
22503     Hi = DAG.getNode(Opc, dl, HalfVT, Hi);
22504     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
22505   }
22506 
22507   // We should only get here for sign extend.
22508   assert(Opc == ISD::SIGN_EXTEND_VECTOR_INREG && "Unexpected opcode!");
22509   assert(VT.is128BitVector() && InVT.is128BitVector() && "Unexpected VTs");
22510 
22511   // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
22512   SDValue Curr = In;
22513   SDValue SignExt = Curr;
22514 
22515   // As SRAI is only available on i16/i32 types, we expand only up to i32
22516   // and handle i64 separately.
22517   if (InVT != MVT::v4i32) {
22518     MVT DestVT = VT == MVT::v2i64 ? MVT::v4i32 : VT;
22519 
22520     unsigned DestWidth = DestVT.getScalarSizeInBits();
22521     unsigned Scale = DestWidth / InSVT.getSizeInBits();
22522 
22523     unsigned InNumElts = InVT.getVectorNumElements();
22524     unsigned DestElts = DestVT.getVectorNumElements();
22525 
22526     // Build a shuffle mask that takes each input element and places it in the
22527     // MSBs of the new element size.
22528     SmallVector<int, 16> Mask(InNumElts, SM_SentinelUndef);
22529     for (unsigned i = 0; i != DestElts; ++i)
22530       Mask[i * Scale + (Scale - 1)] = i;
22531 
22532     Curr = DAG.getVectorShuffle(InVT, dl, In, In, Mask);
22533     Curr = DAG.getBitcast(DestVT, Curr);
22534 
22535     unsigned SignExtShift = DestWidth - InSVT.getSizeInBits();
22536     SignExt = DAG.getNode(X86ISD::VSRAI, dl, DestVT, Curr,
22537                           DAG.getTargetConstant(SignExtShift, dl, MVT::i8));
22538   }
22539 
22540   if (VT == MVT::v2i64) {
22541     assert(Curr.getValueType() == MVT::v4i32 && "Unexpected input VT");
22542     SDValue Zero = DAG.getConstant(0, dl, MVT::v4i32);
22543     SDValue Sign = DAG.getSetCC(dl, MVT::v4i32, Zero, Curr, ISD::SETGT);
22544     SignExt = DAG.getVectorShuffle(MVT::v4i32, dl, SignExt, Sign, {0, 4, 1, 5});
22545     SignExt = DAG.getBitcast(VT, SignExt);
22546   }
22547 
22548   return SignExt;
22549 }
22550 
22551 static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
22552                                 SelectionDAG &DAG) {
22553   MVT VT = Op->getSimpleValueType(0);
22554   SDValue In = Op->getOperand(0);
22555   MVT InVT = In.getSimpleValueType();
22556   SDLoc dl(Op);
22557 
22558   if (InVT.getVectorElementType() == MVT::i1)
22559     return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
22560 
22561   assert(VT.isVector() && InVT.isVector() && "Expected vector type");
22562   assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
22563          "Expected same number of elements");
22564   assert((VT.getVectorElementType() == MVT::i16 ||
22565           VT.getVectorElementType() == MVT::i32 ||
22566           VT.getVectorElementType() == MVT::i64) &&
22567          "Unexpected element type");
22568   assert((InVT.getVectorElementType() == MVT::i8 ||
22569           InVT.getVectorElementType() == MVT::i16 ||
22570           InVT.getVectorElementType() == MVT::i32) &&
22571          "Unexpected element type");
22572 
22573   // Custom legalize v8i8->v8i64 on CPUs without avx512bw.
22574   if (InVT == MVT::v8i8) {
22575     if (VT != MVT::v8i64)
22576       return SDValue();
22577 
22578     In = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op),
22579                      MVT::v16i8, In, DAG.getUNDEF(MVT::v8i8));
22580     return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, VT, In);
22581   }
22582 
22583   if (Subtarget.hasInt256())
22584     return Op;
22585 
22586   // Optimize vectors in AVX mode
22587   // Sign extend  v8i16 to v8i32 and
22588   //              v4i32 to v4i64
22589   //
22590   // Divide input vector into two parts
22591   // for v4i32 the high shuffle mask will be {2, 3, -1, -1}
22592   // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
22593   // concat the vectors to original VT
22594   MVT HalfVT = VT.getHalfNumVectorElementsVT();
22595   SDValue OpLo = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, HalfVT, In);
22596 
22597   unsigned NumElems = InVT.getVectorNumElements();
22598   SmallVector<int,8> ShufMask(NumElems, -1);
22599   for (unsigned i = 0; i != NumElems/2; ++i)
22600     ShufMask[i] = i + NumElems/2;
22601 
22602   SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, In, ShufMask);
22603   OpHi = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, HalfVT, OpHi);
22604 
22605   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
22606 }
22607 
22608 /// Change a vector store into a pair of half-size vector stores.
22609 static SDValue splitVectorStore(StoreSDNode *Store, SelectionDAG &DAG) {
22610   SDValue StoredVal = Store->getValue();
22611   assert((StoredVal.getValueType().is256BitVector() ||
22612           StoredVal.getValueType().is512BitVector()) &&
22613          "Expecting 256/512-bit op");
22614 
22615   // Splitting volatile memory ops is not allowed unless the operation was not
22616   // legal to begin with. Assume the input store is legal (this transform is
22617   // only used for targets with AVX). Note: It is possible that we have an
22618   // illegal type like v2i128, and so we could allow splitting a volatile store
22619   // in that case if that is important.
22620   if (!Store->isSimple())
22621     return SDValue();
22622 
22623   EVT StoreVT = StoredVal.getValueType();
22624   unsigned NumElems = StoreVT.getVectorNumElements();
22625   unsigned HalfSize = StoredVal.getValueSizeInBits() / 2;
22626   unsigned HalfAlign = (128 == HalfSize ? 16 : 32);
22627 
22628   SDLoc DL(Store);
22629   SDValue Value0 = extractSubVector(StoredVal, 0, DAG, DL, HalfSize);
22630   SDValue Value1 = extractSubVector(StoredVal, NumElems / 2, DAG, DL, HalfSize);
22631   SDValue Ptr0 = Store->getBasePtr();
22632   SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, HalfAlign, DL);
22633   unsigned Alignment = Store->getAlignment();
22634   SDValue Ch0 =
22635       DAG.getStore(Store->getChain(), DL, Value0, Ptr0, Store->getPointerInfo(),
22636                    Alignment, Store->getMemOperand()->getFlags());
22637   SDValue Ch1 = DAG.getStore(Store->getChain(), DL, Value1, Ptr1,
22638                              Store->getPointerInfo().getWithOffset(HalfAlign),
22639                              MinAlign(Alignment, HalfAlign),
22640                              Store->getMemOperand()->getFlags());
22641   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Ch0, Ch1);
22642 }
22643 
22644 /// Scalarize a vector store, bitcasting to TargetVT to determine the scalar
22645 /// type.
22646 static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT,
22647                                     SelectionDAG &DAG) {
22648   SDValue StoredVal = Store->getValue();
22649   assert(StoreVT.is128BitVector() &&
22650          StoredVal.getValueType().is128BitVector() && "Expecting 128-bit op");
22651   StoredVal = DAG.getBitcast(StoreVT, StoredVal);
22652 
22653   // Splitting volatile memory ops is not allowed unless the operation was not
22654   // legal to begin with. We are assuming the input op is legal (this transform
22655   // is only used for targets with AVX).
22656   if (!Store->isSimple())
22657     return SDValue();
22658 
22659   MVT StoreSVT = StoreVT.getScalarType();
22660   unsigned NumElems = StoreVT.getVectorNumElements();
22661   unsigned ScalarSize = StoreSVT.getStoreSize();
22662   unsigned Alignment = Store->getAlignment();
22663 
22664   SDLoc DL(Store);
22665   SmallVector<SDValue, 4> Stores;
22666   for (unsigned i = 0; i != NumElems; ++i) {
22667     unsigned Offset = i * ScalarSize;
22668     SDValue Ptr = DAG.getMemBasePlusOffset(Store->getBasePtr(), Offset, DL);
22669     SDValue Scl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreSVT, StoredVal,
22670                               DAG.getIntPtrConstant(i, DL));
22671     SDValue Ch = DAG.getStore(Store->getChain(), DL, Scl, Ptr,
22672                               Store->getPointerInfo().getWithOffset(Offset),
22673                               MinAlign(Alignment, Offset),
22674                               Store->getMemOperand()->getFlags());
22675     Stores.push_back(Ch);
22676   }
22677   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
22678 }
22679 
22680 static SDValue LowerStore(SDValue Op, const X86Subtarget &Subtarget,
22681                           SelectionDAG &DAG) {
22682   StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
22683   SDLoc dl(St);
22684   SDValue StoredVal = St->getValue();
22685 
22686   // Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 stores.
22687   if (StoredVal.getValueType().isVector() &&
22688       StoredVal.getValueType().getVectorElementType() == MVT::i1) {
22689     assert(StoredVal.getValueType().getVectorNumElements() <= 8 &&
22690            "Unexpected VT");
22691     assert(!St->isTruncatingStore() && "Expected non-truncating store");
22692     assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() &&
22693            "Expected AVX512F without AVX512DQI");
22694 
22695     StoredVal = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
22696                             DAG.getUNDEF(MVT::v16i1), StoredVal,
22697                             DAG.getIntPtrConstant(0, dl));
22698     StoredVal = DAG.getBitcast(MVT::i16, StoredVal);
22699     StoredVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, StoredVal);
22700 
22701     return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
22702                         St->getPointerInfo(), St->getAlignment(),
22703                         St->getMemOperand()->getFlags());
22704   }
22705 
22706   if (St->isTruncatingStore())
22707     return SDValue();
22708 
22709   // If this is a 256-bit store of concatenated ops, we are better off splitting
22710   // that store into two 128-bit stores. This avoids spurious use of 256-bit ops
22711   // and each half can execute independently. Some cores would split the op into
22712   // halves anyway, so the concat (vinsertf128) is purely an extra op.
22713   MVT StoreVT = StoredVal.getSimpleValueType();
22714   if (StoreVT.is256BitVector()) {
22715     SmallVector<SDValue, 4> CatOps;
22716     if (StoredVal.hasOneUse() && collectConcatOps(StoredVal.getNode(), CatOps))
22717       return splitVectorStore(St, DAG);
22718     return SDValue();
22719   }
22720 
22721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22722   assert(StoreVT.isVector() && StoreVT.getSizeInBits() == 64 &&
22723          "Unexpected VT");
22724   assert(TLI.getTypeAction(*DAG.getContext(), StoreVT) ==
22725              TargetLowering::TypeWidenVector && "Unexpected type action!");
22726 
22727   EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), StoreVT);
22728   StoredVal = DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, StoredVal,
22729                           DAG.getUNDEF(StoreVT));
22730 
22731   if (Subtarget.hasSSE2()) {
22732     // Widen the vector, cast to a v2x64 type, extract the single 64-bit element
22733     // and store it.
22734     MVT StVT = Subtarget.is64Bit() && StoreVT.isInteger() ? MVT::i64 : MVT::f64;
22735     MVT CastVT = MVT::getVectorVT(StVT, 2);
22736     StoredVal = DAG.getBitcast(CastVT, StoredVal);
22737     StoredVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, StVT, StoredVal,
22738                             DAG.getIntPtrConstant(0, dl));
22739 
22740     return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
22741                         St->getPointerInfo(), St->getAlignment(),
22742                         St->getMemOperand()->getFlags());
22743   }
22744   assert(Subtarget.hasSSE1() && "Expected SSE");
22745   SDVTList Tys = DAG.getVTList(MVT::Other);
22746   SDValue Ops[] = {St->getChain(), StoredVal, St->getBasePtr()};
22747   return DAG.getMemIntrinsicNode(X86ISD::VEXTRACT_STORE, dl, Tys, Ops, MVT::i64,
22748                                  St->getMemOperand());
22749 }
22750 
22751 // Lower vector extended loads using a shuffle. If SSSE3 is not available we
22752 // may emit an illegal shuffle but the expansion is still better than scalar
22753 // code. We generate sext/sext_invec for SEXTLOADs if it's available, otherwise
22754 // we'll emit a shuffle and a arithmetic shift.
22755 // FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
22756 // TODO: It is possible to support ZExt by zeroing the undef values during
22757 // the shuffle phase or after the shuffle.
22758 static SDValue LowerLoad(SDValue Op, const X86Subtarget &Subtarget,
22759                                  SelectionDAG &DAG) {
22760   MVT RegVT = Op.getSimpleValueType();
22761   assert(RegVT.isVector() && "We only custom lower vector loads.");
22762   assert(RegVT.isInteger() &&
22763          "We only custom lower integer vector loads.");
22764 
22765   LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
22766   SDLoc dl(Ld);
22767 
22768   // Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 loads.
22769   if (RegVT.getVectorElementType() == MVT::i1) {
22770     assert(EVT(RegVT) == Ld->getMemoryVT() && "Expected non-extending load");
22771     assert(RegVT.getVectorNumElements() <= 8 && "Unexpected VT");
22772     assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() &&
22773            "Expected AVX512F without AVX512DQI");
22774 
22775     SDValue NewLd = DAG.getLoad(MVT::i8, dl, Ld->getChain(), Ld->getBasePtr(),
22776                                 Ld->getPointerInfo(), Ld->getAlignment(),
22777                                 Ld->getMemOperand()->getFlags());
22778 
22779     // Replace chain users with the new chain.
22780     assert(NewLd->getNumValues() == 2 && "Loads must carry a chain!");
22781 
22782     SDValue Val = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, NewLd);
22783     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RegVT,
22784                       DAG.getBitcast(MVT::v16i1, Val),
22785                       DAG.getIntPtrConstant(0, dl));
22786     return DAG.getMergeValues({Val, NewLd.getValue(1)}, dl);
22787   }
22788 
22789   return SDValue();
22790 }
22791 
22792 /// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes
22793 /// each of which has no other use apart from the AND / OR.
22794 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
22795   Opc = Op.getOpcode();
22796   if (Opc != ISD::OR && Opc != ISD::AND)
22797     return false;
22798   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
22799           Op.getOperand(0).hasOneUse() &&
22800           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
22801           Op.getOperand(1).hasOneUse());
22802 }
22803 
22804 /// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the
22805 /// SETCC node has a single use.
22806 static bool isXor1OfSetCC(SDValue Op) {
22807   if (Op.getOpcode() != ISD::XOR)
22808     return false;
22809   if (isOneConstant(Op.getOperand(1)))
22810     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
22811            Op.getOperand(0).hasOneUse();
22812   return false;
22813 }
22814 
22815 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
22816   bool addTest = true;
22817   SDValue Chain = Op.getOperand(0);
22818   SDValue Cond  = Op.getOperand(1);
22819   SDValue Dest  = Op.getOperand(2);
22820   SDLoc dl(Op);
22821   SDValue CC;
22822   bool Inverted = false;
22823 
22824   if (Cond.getOpcode() == ISD::SETCC) {
22825     // Check for setcc([su]{add,sub,mul}o == 0).
22826     if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
22827         isNullConstant(Cond.getOperand(1)) &&
22828         Cond.getOperand(0).getResNo() == 1 &&
22829         (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
22830          Cond.getOperand(0).getOpcode() == ISD::UADDO ||
22831          Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
22832          Cond.getOperand(0).getOpcode() == ISD::USUBO ||
22833          Cond.getOperand(0).getOpcode() == ISD::SMULO ||
22834          Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
22835       Inverted = true;
22836       Cond = Cond.getOperand(0);
22837     } else {
22838       if (SDValue NewCond = LowerSETCC(Cond, DAG))
22839         Cond = NewCond;
22840     }
22841   }
22842 #if 0
22843   // FIXME: LowerXALUO doesn't handle these!!
22844   else if (Cond.getOpcode() == X86ISD::ADD  ||
22845            Cond.getOpcode() == X86ISD::SUB  ||
22846            Cond.getOpcode() == X86ISD::SMUL ||
22847            Cond.getOpcode() == X86ISD::UMUL)
22848     Cond = LowerXALUO(Cond, DAG);
22849 #endif
22850 
22851   // Look pass (and (setcc_carry (cmp ...)), 1).
22852   if (Cond.getOpcode() == ISD::AND &&
22853       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
22854       isOneConstant(Cond.getOperand(1)))
22855     Cond = Cond.getOperand(0);
22856 
22857   // If condition flag is set by a X86ISD::CMP, then use it as the condition
22858   // setting operand in place of the X86ISD::SETCC.
22859   unsigned CondOpcode = Cond.getOpcode();
22860   if (CondOpcode == X86ISD::SETCC ||
22861       CondOpcode == X86ISD::SETCC_CARRY) {
22862     CC = Cond.getOperand(0);
22863 
22864     SDValue Cmp = Cond.getOperand(1);
22865     unsigned Opc = Cmp.getOpcode();
22866     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
22867     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
22868       Cond = Cmp;
22869       addTest = false;
22870     } else {
22871       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
22872       default: break;
22873       case X86::COND_O:
22874       case X86::COND_B:
22875         // These can only come from an arithmetic instruction with overflow,
22876         // e.g. SADDO, UADDO.
22877         Cond = Cond.getOperand(1);
22878         addTest = false;
22879         break;
22880       }
22881     }
22882   }
22883   CondOpcode = Cond.getOpcode();
22884   if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
22885       CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
22886       CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) {
22887     SDValue Value;
22888     X86::CondCode X86Cond;
22889     std::tie(Value, Cond) = getX86XALUOOp(X86Cond, Cond.getValue(0), DAG);
22890 
22891     if (Inverted)
22892       X86Cond = X86::GetOppositeBranchCondition(X86Cond);
22893 
22894     CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
22895     addTest = false;
22896   } else {
22897     unsigned CondOpc;
22898     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
22899       SDValue Cmp = Cond.getOperand(0).getOperand(1);
22900       if (CondOpc == ISD::OR) {
22901         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
22902         // two branches instead of an explicit OR instruction with a
22903         // separate test.
22904         if (Cmp == Cond.getOperand(1).getOperand(1) &&
22905             isX86LogicalCmp(Cmp)) {
22906           CC = Cond.getOperand(0).getOperand(0);
22907           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
22908                               Chain, Dest, CC, Cmp);
22909           CC = Cond.getOperand(1).getOperand(0);
22910           Cond = Cmp;
22911           addTest = false;
22912         }
22913       } else { // ISD::AND
22914         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
22915         // two branches instead of an explicit AND instruction with a
22916         // separate test. However, we only do this if this block doesn't
22917         // have a fall-through edge, because this requires an explicit
22918         // jmp when the condition is false.
22919         if (Cmp == Cond.getOperand(1).getOperand(1) &&
22920             isX86LogicalCmp(Cmp) &&
22921             Op.getNode()->hasOneUse()) {
22922           X86::CondCode CCode0 =
22923               (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
22924           CCode0 = X86::GetOppositeBranchCondition(CCode0);
22925           CC = DAG.getTargetConstant(CCode0, dl, MVT::i8);
22926           SDNode *User = *Op.getNode()->use_begin();
22927           // Look for an unconditional branch following this conditional branch.
22928           // We need this because we need to reverse the successors in order
22929           // to implement FCMP_OEQ.
22930           if (User->getOpcode() == ISD::BR) {
22931             SDValue FalseBB = User->getOperand(1);
22932             SDNode *NewBR =
22933               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
22934             assert(NewBR == User);
22935             (void)NewBR;
22936             Dest = FalseBB;
22937 
22938             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain,
22939                                 Dest, CC, Cmp);
22940             X86::CondCode CCode1 =
22941                 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
22942             CCode1 = X86::GetOppositeBranchCondition(CCode1);
22943             CC = DAG.getTargetConstant(CCode1, dl, MVT::i8);
22944             Cond = Cmp;
22945             addTest = false;
22946           }
22947         }
22948       }
22949     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
22950       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
22951       // It should be transformed during dag combiner except when the condition
22952       // is set by a arithmetics with overflow node.
22953       X86::CondCode CCode =
22954         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
22955       CCode = X86::GetOppositeBranchCondition(CCode);
22956       CC = DAG.getTargetConstant(CCode, dl, MVT::i8);
22957       Cond = Cond.getOperand(0).getOperand(1);
22958       addTest = false;
22959     } else if (Cond.getOpcode() == ISD::SETCC &&
22960                cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
22961       // For FCMP_OEQ, we can emit
22962       // two branches instead of an explicit AND instruction with a
22963       // separate test. However, we only do this if this block doesn't
22964       // have a fall-through edge, because this requires an explicit
22965       // jmp when the condition is false.
22966       if (Op.getNode()->hasOneUse()) {
22967         SDNode *User = *Op.getNode()->use_begin();
22968         // Look for an unconditional branch following this conditional branch.
22969         // We need this because we need to reverse the successors in order
22970         // to implement FCMP_OEQ.
22971         if (User->getOpcode() == ISD::BR) {
22972           SDValue FalseBB = User->getOperand(1);
22973           SDNode *NewBR =
22974             DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
22975           assert(NewBR == User);
22976           (void)NewBR;
22977           Dest = FalseBB;
22978 
22979           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
22980                                     Cond.getOperand(0), Cond.getOperand(1));
22981           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
22982           CC = DAG.getTargetConstant(X86::COND_NE, dl, MVT::i8);
22983           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
22984                               Chain, Dest, CC, Cmp);
22985           CC = DAG.getTargetConstant(X86::COND_P, dl, MVT::i8);
22986           Cond = Cmp;
22987           addTest = false;
22988         }
22989       }
22990     } else if (Cond.getOpcode() == ISD::SETCC &&
22991                cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
22992       // For FCMP_UNE, we can emit
22993       // two branches instead of an explicit OR instruction with a
22994       // separate test.
22995       SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
22996                                 Cond.getOperand(0), Cond.getOperand(1));
22997       Cmp = ConvertCmpIfNecessary(Cmp, DAG);
22998       CC = DAG.getTargetConstant(X86::COND_NE, dl, MVT::i8);
22999       Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
23000                           Chain, Dest, CC, Cmp);
23001       CC = DAG.getTargetConstant(X86::COND_P, dl, MVT::i8);
23002       Cond = Cmp;
23003       addTest = false;
23004     }
23005   }
23006 
23007   if (addTest) {
23008     // Look pass the truncate if the high bits are known zero.
23009     if (isTruncWithZeroHighBitsInput(Cond, DAG))
23010         Cond = Cond.getOperand(0);
23011 
23012     // We know the result of AND is compared against zero. Try to match
23013     // it to BT.
23014     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
23015       SDValue BTCC;
23016       if (SDValue BT = LowerAndToBT(Cond, ISD::SETNE, dl, DAG, BTCC)) {
23017         CC = BTCC;
23018         Cond = BT;
23019         addTest = false;
23020       }
23021     }
23022   }
23023 
23024   if (addTest) {
23025     X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
23026     CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
23027     Cond = EmitTest(Cond, X86Cond, dl, DAG, Subtarget);
23028   }
23029   Cond = ConvertCmpIfNecessary(Cond, DAG);
23030   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
23031                      Chain, Dest, CC, Cond);
23032 }
23033 
23034 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
23035 // Calls to _alloca are needed to probe the stack when allocating more than 4k
23036 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
23037 // that the guard pages used by the OS virtual memory manager are allocated in
23038 // correct sequence.
23039 SDValue
23040 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
23041                                            SelectionDAG &DAG) const {
23042   MachineFunction &MF = DAG.getMachineFunction();
23043   bool SplitStack = MF.shouldSplitStack();
23044   bool EmitStackProbe = !getStackProbeSymbolName(MF).empty();
23045   bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) ||
23046                SplitStack || EmitStackProbe;
23047   SDLoc dl(Op);
23048 
23049   // Get the inputs.
23050   SDNode *Node = Op.getNode();
23051   SDValue Chain = Op.getOperand(0);
23052   SDValue Size  = Op.getOperand(1);
23053   MaybeAlign Alignment(Op.getConstantOperandVal(2));
23054   EVT VT = Node->getValueType(0);
23055 
23056   // Chain the dynamic stack allocation so that it doesn't modify the stack
23057   // pointer when other instructions are using the stack.
23058   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
23059 
23060   bool Is64Bit = Subtarget.is64Bit();
23061   MVT SPTy = getPointerTy(DAG.getDataLayout());
23062 
23063   SDValue Result;
23064   if (!Lower) {
23065     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23066     unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
23067     assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
23068                     " not tell us which reg is the stack pointer!");
23069 
23070     SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
23071     Chain = SP.getValue(1);
23072     const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
23073     const Align StackAlign(TFI.getStackAlignment());
23074     Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
23075     if (Alignment && Alignment > StackAlign)
23076       Result =
23077           DAG.getNode(ISD::AND, dl, VT, Result,
23078                       DAG.getConstant(~(Alignment->value() - 1ULL), dl, VT));
23079     Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
23080   } else if (SplitStack) {
23081     MachineRegisterInfo &MRI = MF.getRegInfo();
23082 
23083     if (Is64Bit) {
23084       // The 64 bit implementation of segmented stacks needs to clobber both r10
23085       // r11. This makes it impossible to use it along with nested parameters.
23086       const Function &F = MF.getFunction();
23087       for (const auto &A : F.args()) {
23088         if (A.hasNestAttr())
23089           report_fatal_error("Cannot use segmented stacks with functions that "
23090                              "have nested arguments.");
23091       }
23092     }
23093 
23094     const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
23095     Register Vreg = MRI.createVirtualRegister(AddrRegClass);
23096     Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
23097     Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
23098                                 DAG.getRegister(Vreg, SPTy));
23099   } else {
23100     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
23101     Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size);
23102     MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true);
23103 
23104     const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
23105     Register SPReg = RegInfo->getStackRegister();
23106     SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
23107     Chain = SP.getValue(1);
23108 
23109     if (Alignment) {
23110       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
23111                        DAG.getConstant(~(Alignment->value() - 1ULL), dl, VT));
23112       Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
23113     }
23114 
23115     Result = SP;
23116   }
23117 
23118   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
23119                              DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
23120 
23121   SDValue Ops[2] = {Result, Chain};
23122   return DAG.getMergeValues(Ops, dl);
23123 }
23124 
23125 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
23126   MachineFunction &MF = DAG.getMachineFunction();
23127   auto PtrVT = getPointerTy(MF.getDataLayout());
23128   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
23129 
23130   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
23131   SDLoc DL(Op);
23132 
23133   if (!Subtarget.is64Bit() ||
23134       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) {
23135     // vastart just stores the address of the VarArgsFrameIndex slot into the
23136     // memory location argument.
23137     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
23138     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
23139                         MachinePointerInfo(SV));
23140   }
23141 
23142   // __va_list_tag:
23143   //   gp_offset         (0 - 6 * 8)
23144   //   fp_offset         (48 - 48 + 8 * 16)
23145   //   overflow_arg_area (point to parameters coming in memory).
23146   //   reg_save_area
23147   SmallVector<SDValue, 8> MemOps;
23148   SDValue FIN = Op.getOperand(1);
23149   // Store gp_offset
23150   SDValue Store = DAG.getStore(
23151       Op.getOperand(0), DL,
23152       DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN,
23153       MachinePointerInfo(SV));
23154   MemOps.push_back(Store);
23155 
23156   // Store fp_offset
23157   FIN = DAG.getMemBasePlusOffset(FIN, 4, DL);
23158   Store = DAG.getStore(
23159       Op.getOperand(0), DL,
23160       DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN,
23161       MachinePointerInfo(SV, 4));
23162   MemOps.push_back(Store);
23163 
23164   // Store ptr to overflow_arg_area
23165   FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
23166   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
23167   Store =
23168       DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8));
23169   MemOps.push_back(Store);
23170 
23171   // Store ptr to reg_save_area.
23172   FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
23173       Subtarget.isTarget64BitLP64() ? 8 : 4, DL));
23174   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
23175   Store = DAG.getStore(
23176       Op.getOperand(0), DL, RSFIN, FIN,
23177       MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12));
23178   MemOps.push_back(Store);
23179   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
23180 }
23181 
23182 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
23183   assert(Subtarget.is64Bit() &&
23184          "LowerVAARG only handles 64-bit va_arg!");
23185   assert(Op.getNumOperands() == 4);
23186 
23187   MachineFunction &MF = DAG.getMachineFunction();
23188   if (Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()))
23189     // The Win64 ABI uses char* instead of a structure.
23190     return DAG.expandVAArg(Op.getNode());
23191 
23192   SDValue Chain = Op.getOperand(0);
23193   SDValue SrcPtr = Op.getOperand(1);
23194   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
23195   unsigned Align = Op.getConstantOperandVal(3);
23196   SDLoc dl(Op);
23197 
23198   EVT ArgVT = Op.getNode()->getValueType(0);
23199   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
23200   uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
23201   uint8_t ArgMode;
23202 
23203   // Decide which area this value should be read from.
23204   // TODO: Implement the AMD64 ABI in its entirety. This simple
23205   // selection mechanism works only for the basic types.
23206   if (ArgVT == MVT::f80) {
23207     llvm_unreachable("va_arg for f80 not yet implemented");
23208   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
23209     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
23210   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
23211     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
23212   } else {
23213     llvm_unreachable("Unhandled argument type in LowerVAARG");
23214   }
23215 
23216   if (ArgMode == 2) {
23217     // Sanity Check: Make sure using fp_offset makes sense.
23218     assert(!Subtarget.useSoftFloat() &&
23219            !(MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) &&
23220            Subtarget.hasSSE1());
23221   }
23222 
23223   // Insert VAARG_64 node into the DAG
23224   // VAARG_64 returns two values: Variable Argument Address, Chain
23225   SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
23226                        DAG.getConstant(ArgMode, dl, MVT::i8),
23227                        DAG.getConstant(Align, dl, MVT::i32)};
23228   SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
23229   SDValue VAARG = DAG.getMemIntrinsicNode(
23230     X86ISD::VAARG_64, dl,
23231     VTs, InstOps, MVT::i64,
23232     MachinePointerInfo(SV),
23233     /*Align=*/0,
23234     MachineMemOperand::MOLoad | MachineMemOperand::MOStore);
23235   Chain = VAARG.getValue(1);
23236 
23237   // Load the next argument and return it
23238   return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo());
23239 }
23240 
23241 static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget,
23242                            SelectionDAG &DAG) {
23243   // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
23244   // where a va_list is still an i8*.
23245   assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!");
23246   if (Subtarget.isCallingConvWin64(
23247         DAG.getMachineFunction().getFunction().getCallingConv()))
23248     // Probably a Win64 va_copy.
23249     return DAG.expandVACopy(Op.getNode());
23250 
23251   SDValue Chain = Op.getOperand(0);
23252   SDValue DstPtr = Op.getOperand(1);
23253   SDValue SrcPtr = Op.getOperand(2);
23254   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
23255   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
23256   SDLoc DL(Op);
23257 
23258   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
23259                        DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
23260                        false, false,
23261                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
23262 }
23263 
23264 // Helper to get immediate/variable SSE shift opcode from other shift opcodes.
23265 static unsigned getTargetVShiftUniformOpcode(unsigned Opc, bool IsVariable) {
23266   switch (Opc) {
23267   case ISD::SHL:
23268   case X86ISD::VSHL:
23269   case X86ISD::VSHLI:
23270     return IsVariable ? X86ISD::VSHL : X86ISD::VSHLI;
23271   case ISD::SRL:
23272   case X86ISD::VSRL:
23273   case X86ISD::VSRLI:
23274     return IsVariable ? X86ISD::VSRL : X86ISD::VSRLI;
23275   case ISD::SRA:
23276   case X86ISD::VSRA:
23277   case X86ISD::VSRAI:
23278     return IsVariable ? X86ISD::VSRA : X86ISD::VSRAI;
23279   }
23280   llvm_unreachable("Unknown target vector shift node");
23281 }
23282 
23283 /// Handle vector element shifts where the shift amount is a constant.
23284 /// Takes immediate version of shift as input.
23285 static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT,
23286                                           SDValue SrcOp, uint64_t ShiftAmt,
23287                                           SelectionDAG &DAG) {
23288   MVT ElementType = VT.getVectorElementType();
23289 
23290   // Bitcast the source vector to the output type, this is mainly necessary for
23291   // vXi8/vXi64 shifts.
23292   if (VT != SrcOp.getSimpleValueType())
23293     SrcOp = DAG.getBitcast(VT, SrcOp);
23294 
23295   // Fold this packed shift into its first operand if ShiftAmt is 0.
23296   if (ShiftAmt == 0)
23297     return SrcOp;
23298 
23299   // Check for ShiftAmt >= element width
23300   if (ShiftAmt >= ElementType.getSizeInBits()) {
23301     if (Opc == X86ISD::VSRAI)
23302       ShiftAmt = ElementType.getSizeInBits() - 1;
23303     else
23304       return DAG.getConstant(0, dl, VT);
23305   }
23306 
23307   assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
23308          && "Unknown target vector shift-by-constant node");
23309 
23310   // Fold this packed vector shift into a build vector if SrcOp is a
23311   // vector of Constants or UNDEFs.
23312   if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
23313     SmallVector<SDValue, 8> Elts;
23314     unsigned NumElts = SrcOp->getNumOperands();
23315 
23316     switch (Opc) {
23317     default: llvm_unreachable("Unknown opcode!");
23318     case X86ISD::VSHLI:
23319       for (unsigned i = 0; i != NumElts; ++i) {
23320         SDValue CurrentOp = SrcOp->getOperand(i);
23321         if (CurrentOp->isUndef()) {
23322           // Must produce 0s in the correct bits.
23323           Elts.push_back(DAG.getConstant(0, dl, ElementType));
23324           continue;
23325         }
23326         auto *ND = cast<ConstantSDNode>(CurrentOp);
23327         const APInt &C = ND->getAPIntValue();
23328         Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
23329       }
23330       break;
23331     case X86ISD::VSRLI:
23332       for (unsigned i = 0; i != NumElts; ++i) {
23333         SDValue CurrentOp = SrcOp->getOperand(i);
23334         if (CurrentOp->isUndef()) {
23335           // Must produce 0s in the correct bits.
23336           Elts.push_back(DAG.getConstant(0, dl, ElementType));
23337           continue;
23338         }
23339         auto *ND = cast<ConstantSDNode>(CurrentOp);
23340         const APInt &C = ND->getAPIntValue();
23341         Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
23342       }
23343       break;
23344     case X86ISD::VSRAI:
23345       for (unsigned i = 0; i != NumElts; ++i) {
23346         SDValue CurrentOp = SrcOp->getOperand(i);
23347         if (CurrentOp->isUndef()) {
23348           // All shifted in bits must be the same so use 0.
23349           Elts.push_back(DAG.getConstant(0, dl, ElementType));
23350           continue;
23351         }
23352         auto *ND = cast<ConstantSDNode>(CurrentOp);
23353         const APInt &C = ND->getAPIntValue();
23354         Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
23355       }
23356       break;
23357     }
23358 
23359     return DAG.getBuildVector(VT, dl, Elts);
23360   }
23361 
23362   return DAG.getNode(Opc, dl, VT, SrcOp,
23363                      DAG.getTargetConstant(ShiftAmt, dl, MVT::i8));
23364 }
23365 
23366 /// Handle vector element shifts where the shift amount may or may not be a
23367 /// constant. Takes immediate version of shift as input.
23368 static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT,
23369                                    SDValue SrcOp, SDValue ShAmt,
23370                                    const X86Subtarget &Subtarget,
23371                                    SelectionDAG &DAG) {
23372   MVT SVT = ShAmt.getSimpleValueType();
23373   assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
23374 
23375   // Catch shift-by-constant.
23376   if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
23377     return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
23378                                       CShAmt->getZExtValue(), DAG);
23379 
23380   // Change opcode to non-immediate version.
23381   Opc = getTargetVShiftUniformOpcode(Opc, true);
23382 
23383   // Need to build a vector containing shift amount.
23384   // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
23385   // +====================+============+=======================================+
23386   // | ShAmt is           | HasSSE4.1? | Construct ShAmt vector as             |
23387   // +====================+============+=======================================+
23388   // | i64                | Yes, No    | Use ShAmt as lowest elt               |
23389   // | i32                | Yes        | zero-extend in-reg                    |
23390   // | (i32 zext(i16/i8)) | Yes        | zero-extend in-reg                    |
23391   // | (i32 zext(i16/i8)) | No         | byte-shift-in-reg                     |
23392   // | i16/i32            | No         | v4i32 build_vector(ShAmt, 0, ud, ud)) |
23393   // +====================+============+=======================================+
23394 
23395   if (SVT == MVT::i64)
23396     ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt);
23397   else if (ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
23398            ShAmt.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23399            (ShAmt.getOperand(0).getSimpleValueType() == MVT::i16 ||
23400             ShAmt.getOperand(0).getSimpleValueType() == MVT::i8)) {
23401     ShAmt = ShAmt.getOperand(0);
23402     MVT AmtTy = ShAmt.getSimpleValueType() == MVT::i8 ? MVT::v16i8 : MVT::v8i16;
23403     ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), AmtTy, ShAmt);
23404     if (Subtarget.hasSSE41())
23405       ShAmt = DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(ShAmt),
23406                           MVT::v2i64, ShAmt);
23407     else {
23408       SDValue ByteShift = DAG.getTargetConstant(
23409           (128 - AmtTy.getScalarSizeInBits()) / 8, SDLoc(ShAmt), MVT::i8);
23410       ShAmt = DAG.getBitcast(MVT::v16i8, ShAmt);
23411       ShAmt = DAG.getNode(X86ISD::VSHLDQ, SDLoc(ShAmt), MVT::v16i8, ShAmt,
23412                           ByteShift);
23413       ShAmt = DAG.getNode(X86ISD::VSRLDQ, SDLoc(ShAmt), MVT::v16i8, ShAmt,
23414                           ByteShift);
23415     }
23416   } else if (Subtarget.hasSSE41() &&
23417              ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
23418     ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt);
23419     ShAmt = DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(ShAmt),
23420                         MVT::v2i64, ShAmt);
23421   } else {
23422     SDValue ShOps[4] = {ShAmt, DAG.getConstant(0, dl, SVT), DAG.getUNDEF(SVT),
23423                         DAG.getUNDEF(SVT)};
23424     ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps);
23425   }
23426 
23427   // The return type has to be a 128-bit type with the same element
23428   // type as the input type.
23429   MVT EltVT = VT.getVectorElementType();
23430   MVT ShVT = MVT::getVectorVT(EltVT, 128 / EltVT.getSizeInBits());
23431 
23432   ShAmt = DAG.getBitcast(ShVT, ShAmt);
23433   return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
23434 }
23435 
23436 /// Return Mask with the necessary casting or extending
23437 /// for \p Mask according to \p MaskVT when lowering masking intrinsics
23438 static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
23439                            const X86Subtarget &Subtarget, SelectionDAG &DAG,
23440                            const SDLoc &dl) {
23441 
23442   if (isAllOnesConstant(Mask))
23443     return DAG.getConstant(1, dl, MaskVT);
23444   if (X86::isZeroNode(Mask))
23445     return DAG.getConstant(0, dl, MaskVT);
23446 
23447   assert(MaskVT.bitsLE(Mask.getSimpleValueType()) && "Unexpected mask size!");
23448 
23449   if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) {
23450     assert(MaskVT == MVT::v64i1 && "Expected v64i1 mask!");
23451     assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
23452     // In case 32bit mode, bitcast i64 is illegal, extend/split it.
23453     SDValue Lo, Hi;
23454     Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
23455                         DAG.getConstant(0, dl, MVT::i32));
23456     Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
23457                         DAG.getConstant(1, dl, MVT::i32));
23458 
23459     Lo = DAG.getBitcast(MVT::v32i1, Lo);
23460     Hi = DAG.getBitcast(MVT::v32i1, Hi);
23461 
23462     return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
23463   } else {
23464     MVT BitcastVT = MVT::getVectorVT(MVT::i1,
23465                                      Mask.getSimpleValueType().getSizeInBits());
23466     // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
23467     // are extracted by EXTRACT_SUBVECTOR.
23468     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
23469                        DAG.getBitcast(BitcastVT, Mask),
23470                        DAG.getIntPtrConstant(0, dl));
23471   }
23472 }
23473 
23474 /// Return (and \p Op, \p Mask) for compare instructions or
23475 /// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
23476 /// necessary casting or extending for \p Mask when lowering masking intrinsics
23477 static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
23478                   SDValue PreservedSrc,
23479                   const X86Subtarget &Subtarget,
23480                   SelectionDAG &DAG) {
23481   MVT VT = Op.getSimpleValueType();
23482   MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
23483   unsigned OpcodeSelect = ISD::VSELECT;
23484   SDLoc dl(Op);
23485 
23486   if (isAllOnesConstant(Mask))
23487     return Op;
23488 
23489   SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
23490 
23491   if (PreservedSrc.isUndef())
23492     PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
23493   return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
23494 }
23495 
23496 /// Creates an SDNode for a predicated scalar operation.
23497 /// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
23498 /// The mask is coming as MVT::i8 and it should be transformed
23499 /// to MVT::v1i1 while lowering masking intrinsics.
23500 /// The main difference between ScalarMaskingNode and VectorMaskingNode is using
23501 /// "X86select" instead of "vselect". We just can't create the "vselect" node
23502 /// for a scalar instruction.
23503 static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
23504                                     SDValue PreservedSrc,
23505                                     const X86Subtarget &Subtarget,
23506                                     SelectionDAG &DAG) {
23507 
23508   if (auto *MaskConst = dyn_cast<ConstantSDNode>(Mask))
23509     if (MaskConst->getZExtValue() & 0x1)
23510       return Op;
23511 
23512   MVT VT = Op.getSimpleValueType();
23513   SDLoc dl(Op);
23514 
23515   assert(Mask.getValueType() == MVT::i8 && "Unexpect type");
23516   SDValue IMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i1,
23517                               DAG.getBitcast(MVT::v8i1, Mask),
23518                               DAG.getIntPtrConstant(0, dl));
23519   if (Op.getOpcode() == X86ISD::FSETCCM ||
23520       Op.getOpcode() == X86ISD::FSETCCM_SAE ||
23521       Op.getOpcode() == X86ISD::VFPCLASSS)
23522     return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
23523 
23524   if (PreservedSrc.isUndef())
23525     PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
23526   return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc);
23527 }
23528 
23529 static int getSEHRegistrationNodeSize(const Function *Fn) {
23530   if (!Fn->hasPersonalityFn())
23531     report_fatal_error(
23532         "querying registration node size for function without personality");
23533   // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
23534   // WinEHStatePass for the full struct definition.
23535   switch (classifyEHPersonality(Fn->getPersonalityFn())) {
23536   case EHPersonality::MSVC_X86SEH: return 24;
23537   case EHPersonality::MSVC_CXX: return 16;
23538   default: break;
23539   }
23540   report_fatal_error(
23541       "can only recover FP for 32-bit MSVC EH personality functions");
23542 }
23543 
23544 /// When the MSVC runtime transfers control to us, either to an outlined
23545 /// function or when returning to a parent frame after catching an exception, we
23546 /// recover the parent frame pointer by doing arithmetic on the incoming EBP.
23547 /// Here's the math:
23548 ///   RegNodeBase = EntryEBP - RegNodeSize
23549 ///   ParentFP = RegNodeBase - ParentFrameOffset
23550 /// Subtracting RegNodeSize takes us to the offset of the registration node, and
23551 /// subtracting the offset (negative on x86) takes us back to the parent FP.
23552 static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
23553                                    SDValue EntryEBP) {
23554   MachineFunction &MF = DAG.getMachineFunction();
23555   SDLoc dl;
23556 
23557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23558   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
23559 
23560   // It's possible that the parent function no longer has a personality function
23561   // if the exceptional code was optimized away, in which case we just return
23562   // the incoming EBP.
23563   if (!Fn->hasPersonalityFn())
23564     return EntryEBP;
23565 
23566   // Get an MCSymbol that will ultimately resolve to the frame offset of the EH
23567   // registration, or the .set_setframe offset.
23568   MCSymbol *OffsetSym =
23569       MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
23570           GlobalValue::dropLLVMManglingEscape(Fn->getName()));
23571   SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
23572   SDValue ParentFrameOffset =
23573       DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
23574 
23575   // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
23576   // prologue to RBP in the parent function.
23577   const X86Subtarget &Subtarget =
23578       static_cast<const X86Subtarget &>(DAG.getSubtarget());
23579   if (Subtarget.is64Bit())
23580     return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
23581 
23582   int RegNodeSize = getSEHRegistrationNodeSize(Fn);
23583   // RegNodeBase = EntryEBP - RegNodeSize
23584   // ParentFP = RegNodeBase - ParentFrameOffset
23585   SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
23586                                     DAG.getConstant(RegNodeSize, dl, PtrVT));
23587   return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
23588 }
23589 
23590 SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
23591                                                    SelectionDAG &DAG) const {
23592   // Helper to detect if the operand is CUR_DIRECTION rounding mode.
23593   auto isRoundModeCurDirection = [](SDValue Rnd) {
23594     if (auto *C = dyn_cast<ConstantSDNode>(Rnd))
23595       return C->getAPIntValue() == X86::STATIC_ROUNDING::CUR_DIRECTION;
23596 
23597     return false;
23598   };
23599   auto isRoundModeSAE = [](SDValue Rnd) {
23600     if (auto *C = dyn_cast<ConstantSDNode>(Rnd)) {
23601       unsigned RC = C->getZExtValue();
23602       if (RC & X86::STATIC_ROUNDING::NO_EXC) {
23603         // Clear the NO_EXC bit and check remaining bits.
23604         RC ^= X86::STATIC_ROUNDING::NO_EXC;
23605         // As a convenience we allow no other bits or explicitly
23606         // current direction.
23607         return RC == 0 || RC == X86::STATIC_ROUNDING::CUR_DIRECTION;
23608       }
23609     }
23610 
23611     return false;
23612   };
23613   auto isRoundModeSAEToX = [](SDValue Rnd, unsigned &RC) {
23614     if (auto *C = dyn_cast<ConstantSDNode>(Rnd)) {
23615       RC = C->getZExtValue();
23616       if (RC & X86::STATIC_ROUNDING::NO_EXC) {
23617         // Clear the NO_EXC bit and check remaining bits.
23618         RC ^= X86::STATIC_ROUNDING::NO_EXC;
23619         return RC == X86::STATIC_ROUNDING::TO_NEAREST_INT ||
23620                RC == X86::STATIC_ROUNDING::TO_NEG_INF ||
23621                RC == X86::STATIC_ROUNDING::TO_POS_INF ||
23622                RC == X86::STATIC_ROUNDING::TO_ZERO;
23623       }
23624     }
23625 
23626     return false;
23627   };
23628 
23629   SDLoc dl(Op);
23630   unsigned IntNo = Op.getConstantOperandVal(0);
23631   MVT VT = Op.getSimpleValueType();
23632   const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
23633 
23634   if (IntrData) {
23635     switch(IntrData->Type) {
23636     case INTR_TYPE_1OP: {
23637       // We specify 2 possible opcodes for intrinsics with rounding modes.
23638       // First, we check if the intrinsic may have non-default rounding mode,
23639       // (IntrData->Opc1 != 0), then we check the rounding mode operand.
23640       unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
23641       if (IntrWithRoundingModeOpcode != 0) {
23642         SDValue Rnd = Op.getOperand(2);
23643         unsigned RC = 0;
23644         if (isRoundModeSAEToX(Rnd, RC))
23645           return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
23646                              Op.getOperand(1),
23647                              DAG.getTargetConstant(RC, dl, MVT::i32));
23648         if (!isRoundModeCurDirection(Rnd))
23649           return SDValue();
23650       }
23651       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
23652                          Op.getOperand(1));
23653     }
23654     case INTR_TYPE_1OP_SAE: {
23655       SDValue Sae = Op.getOperand(2);
23656 
23657       unsigned Opc;
23658       if (isRoundModeCurDirection(Sae))
23659         Opc = IntrData->Opc0;
23660       else if (isRoundModeSAE(Sae))
23661         Opc = IntrData->Opc1;
23662       else
23663         return SDValue();
23664 
23665       return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1));
23666     }
23667     case INTR_TYPE_2OP: {
23668       SDValue Src2 = Op.getOperand(2);
23669 
23670       // We specify 2 possible opcodes for intrinsics with rounding modes.
23671       // First, we check if the intrinsic may have non-default rounding mode,
23672       // (IntrData->Opc1 != 0), then we check the rounding mode operand.
23673       unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
23674       if (IntrWithRoundingModeOpcode != 0) {
23675         SDValue Rnd = Op.getOperand(3);
23676         unsigned RC = 0;
23677         if (isRoundModeSAEToX(Rnd, RC))
23678           return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
23679                              Op.getOperand(1), Src2,
23680                              DAG.getTargetConstant(RC, dl, MVT::i32));
23681         if (!isRoundModeCurDirection(Rnd))
23682           return SDValue();
23683       }
23684 
23685       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
23686                          Op.getOperand(1), Src2);
23687     }
23688     case INTR_TYPE_2OP_SAE: {
23689       SDValue Sae = Op.getOperand(3);
23690 
23691       unsigned Opc;
23692       if (isRoundModeCurDirection(Sae))
23693         Opc = IntrData->Opc0;
23694       else if (isRoundModeSAE(Sae))
23695         Opc = IntrData->Opc1;
23696       else
23697         return SDValue();
23698 
23699       return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
23700                          Op.getOperand(2));
23701     }
23702     case INTR_TYPE_3OP:
23703     case INTR_TYPE_3OP_IMM8: {
23704       SDValue Src1 = Op.getOperand(1);
23705       SDValue Src2 = Op.getOperand(2);
23706       SDValue Src3 = Op.getOperand(3);
23707 
23708       // We specify 2 possible opcodes for intrinsics with rounding modes.
23709       // First, we check if the intrinsic may have non-default rounding mode,
23710       // (IntrData->Opc1 != 0), then we check the rounding mode operand.
23711       unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
23712       if (IntrWithRoundingModeOpcode != 0) {
23713         SDValue Rnd = Op.getOperand(4);
23714         unsigned RC = 0;
23715         if (isRoundModeSAEToX(Rnd, RC))
23716           return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
23717                              Src1, Src2, Src3,
23718                              DAG.getTargetConstant(RC, dl, MVT::i32));
23719         if (!isRoundModeCurDirection(Rnd))
23720           return SDValue();
23721       }
23722 
23723       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
23724                          {Src1, Src2, Src3});
23725     }
23726     case INTR_TYPE_4OP:
23727       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
23728         Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
23729     case INTR_TYPE_1OP_MASK: {
23730       SDValue Src = Op.getOperand(1);
23731       SDValue PassThru = Op.getOperand(2);
23732       SDValue Mask = Op.getOperand(3);
23733       // We add rounding mode to the Node when
23734       //   - RC Opcode is specified and
23735       //   - RC is not "current direction".
23736       unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
23737       if (IntrWithRoundingModeOpcode != 0) {
23738         SDValue Rnd = Op.getOperand(4);
23739         unsigned RC = 0;
23740         if (isRoundModeSAEToX(Rnd, RC))
23741           return getVectorMaskingNode(
23742               DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
23743                           Src, DAG.getTargetConstant(RC, dl, MVT::i32)),
23744               Mask, PassThru, Subtarget, DAG);
23745         if (!isRoundModeCurDirection(Rnd))
23746           return SDValue();
23747       }
23748       return getVectorMaskingNode(
23749           DAG.getNode(IntrData->Opc0, dl, VT, Src), Mask, PassThru,
23750           Subtarget, DAG);
23751     }
23752     case INTR_TYPE_1OP_MASK_SAE: {
23753       SDValue Src = Op.getOperand(1);
23754       SDValue PassThru = Op.getOperand(2);
23755       SDValue Mask = Op.getOperand(3);
23756       SDValue Rnd = Op.getOperand(4);
23757 
23758       unsigned Opc;
23759       if (isRoundModeCurDirection(Rnd))
23760         Opc = IntrData->Opc0;
23761       else if (isRoundModeSAE(Rnd))
23762         Opc = IntrData->Opc1;
23763       else
23764         return SDValue();
23765 
23766       return getVectorMaskingNode(DAG.getNode(Opc, dl, VT, Src), Mask, PassThru,
23767                                   Subtarget, DAG);
23768     }
23769     case INTR_TYPE_SCALAR_MASK: {
23770       SDValue Src1 = Op.getOperand(1);
23771       SDValue Src2 = Op.getOperand(2);
23772       SDValue passThru = Op.getOperand(3);
23773       SDValue Mask = Op.getOperand(4);
23774       unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
23775       // There are 2 kinds of intrinsics in this group:
23776       // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
23777       // (2) With rounding mode and sae - 7 operands.
23778       bool HasRounding = IntrWithRoundingModeOpcode != 0;
23779       if (Op.getNumOperands() == (5U + HasRounding)) {
23780         if (HasRounding) {
23781           SDValue Rnd = Op.getOperand(5);
23782           unsigned RC = 0;
23783           if (isRoundModeSAEToX(Rnd, RC))
23784             return getScalarMaskingNode(
23785                 DAG.getNode(IntrWithRoundingModeOpcode, dl, VT, Src1, Src2,
23786                             DAG.getTargetConstant(RC, dl, MVT::i32)),
23787                 Mask, passThru, Subtarget, DAG);
23788           if (!isRoundModeCurDirection(Rnd))
23789             return SDValue();
23790         }
23791         return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
23792                                                 Src2),
23793                                     Mask, passThru, Subtarget, DAG);
23794       }
23795 
23796       assert(Op.getNumOperands() == (6U + HasRounding) &&
23797              "Unexpected intrinsic form");
23798       SDValue RoundingMode = Op.getOperand(5);
23799       unsigned Opc = IntrData->Opc0;
23800       if (HasRounding) {
23801         SDValue Sae = Op.getOperand(6);
23802         if (isRoundModeSAE(Sae))
23803           Opc = IntrWithRoundingModeOpcode;
23804         else if (!isRoundModeCurDirection(Sae))
23805           return SDValue();
23806       }
23807       return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1,
23808                                               Src2, RoundingMode),
23809                                   Mask, passThru, Subtarget, DAG);
23810     }
23811     case INTR_TYPE_SCALAR_MASK_RND: {
23812       SDValue Src1 = Op.getOperand(1);
23813       SDValue Src2 = Op.getOperand(2);
23814       SDValue passThru = Op.getOperand(3);
23815       SDValue Mask = Op.getOperand(4);
23816       SDValue Rnd = Op.getOperand(5);
23817 
23818       SDValue NewOp;
23819       unsigned RC = 0;
23820       if (isRoundModeCurDirection(Rnd))
23821         NewOp = DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2);
23822       else if (isRoundModeSAEToX(Rnd, RC))
23823         NewOp = DAG.getNode(IntrData->Opc1, dl, VT, Src1, Src2,
23824                             DAG.getTargetConstant(RC, dl, MVT::i32));
23825       else
23826         return SDValue();
23827 
23828       return getScalarMaskingNode(NewOp, Mask, passThru, Subtarget, DAG);
23829     }
23830     case INTR_TYPE_SCALAR_MASK_SAE: {
23831       SDValue Src1 = Op.getOperand(1);
23832       SDValue Src2 = Op.getOperand(2);
23833       SDValue passThru = Op.getOperand(3);
23834       SDValue Mask = Op.getOperand(4);
23835       SDValue Sae = Op.getOperand(5);
23836       unsigned Opc;
23837       if (isRoundModeCurDirection(Sae))
23838         Opc = IntrData->Opc0;
23839       else if (isRoundModeSAE(Sae))
23840         Opc = IntrData->Opc1;
23841       else
23842         return SDValue();
23843 
23844       return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2),
23845                                   Mask, passThru, Subtarget, DAG);
23846     }
23847     case INTR_TYPE_2OP_MASK: {
23848       SDValue Src1 = Op.getOperand(1);
23849       SDValue Src2 = Op.getOperand(2);
23850       SDValue PassThru = Op.getOperand(3);
23851       SDValue Mask = Op.getOperand(4);
23852       SDValue NewOp;
23853       if (IntrData->Opc1 != 0) {
23854         SDValue Rnd = Op.getOperand(5);
23855         unsigned RC = 0;
23856         if (isRoundModeSAEToX(Rnd, RC))
23857           NewOp = DAG.getNode(IntrData->Opc1, dl, VT, Src1, Src2,
23858                               DAG.getTargetConstant(RC, dl, MVT::i32));
23859         else if (!isRoundModeCurDirection(Rnd))
23860           return SDValue();
23861       }
23862       if (!NewOp)
23863         NewOp = DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2);
23864       return getVectorMaskingNode(NewOp, Mask, PassThru, Subtarget, DAG);
23865     }
23866     case INTR_TYPE_2OP_MASK_SAE: {
23867       SDValue Src1 = Op.getOperand(1);
23868       SDValue Src2 = Op.getOperand(2);
23869       SDValue PassThru = Op.getOperand(3);
23870       SDValue Mask = Op.getOperand(4);
23871 
23872       unsigned Opc = IntrData->Opc0;
23873       if (IntrData->Opc1 != 0) {
23874         SDValue Sae = Op.getOperand(5);
23875         if (isRoundModeSAE(Sae))
23876           Opc = IntrData->Opc1;
23877         else if (!isRoundModeCurDirection(Sae))
23878           return SDValue();
23879       }
23880 
23881       return getVectorMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2),
23882                                   Mask, PassThru, Subtarget, DAG);
23883     }
23884     case INTR_TYPE_3OP_SCALAR_MASK_SAE: {
23885       SDValue Src1 = Op.getOperand(1);
23886       SDValue Src2 = Op.getOperand(2);
23887       SDValue Src3 = Op.getOperand(3);
23888       SDValue PassThru = Op.getOperand(4);
23889       SDValue Mask = Op.getOperand(5);
23890       SDValue Sae = Op.getOperand(6);
23891       unsigned Opc;
23892       if (isRoundModeCurDirection(Sae))
23893         Opc = IntrData->Opc0;
23894       else if (isRoundModeSAE(Sae))
23895         Opc = IntrData->Opc1;
23896       else
23897         return SDValue();
23898 
23899       return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, Src3),
23900                                   Mask, PassThru, Subtarget, DAG);
23901     }
23902     case INTR_TYPE_3OP_MASK_SAE: {
23903       SDValue Src1 = Op.getOperand(1);
23904       SDValue Src2 = Op.getOperand(2);
23905       SDValue Src3 = Op.getOperand(3);
23906       SDValue PassThru = Op.getOperand(4);
23907       SDValue Mask = Op.getOperand(5);
23908 
23909       unsigned Opc = IntrData->Opc0;
23910       if (IntrData->Opc1 != 0) {
23911         SDValue Sae = Op.getOperand(6);
23912         if (isRoundModeSAE(Sae))
23913           Opc = IntrData->Opc1;
23914         else if (!isRoundModeCurDirection(Sae))
23915           return SDValue();
23916       }
23917       return getVectorMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, Src3),
23918                                   Mask, PassThru, Subtarget, DAG);
23919     }
23920     case BLENDV: {
23921       SDValue Src1 = Op.getOperand(1);
23922       SDValue Src2 = Op.getOperand(2);
23923       SDValue Src3 = Op.getOperand(3);
23924 
23925       EVT MaskVT = Src3.getValueType().changeVectorElementTypeToInteger();
23926       Src3 = DAG.getBitcast(MaskVT, Src3);
23927 
23928       // Reverse the operands to match VSELECT order.
23929       return DAG.getNode(IntrData->Opc0, dl, VT, Src3, Src2, Src1);
23930     }
23931     case VPERM_2OP : {
23932       SDValue Src1 = Op.getOperand(1);
23933       SDValue Src2 = Op.getOperand(2);
23934 
23935       // Swap Src1 and Src2 in the node creation
23936       return DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1);
23937     }
23938     case IFMA_OP:
23939       // NOTE: We need to swizzle the operands to pass the multiply operands
23940       // first.
23941       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
23942                          Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
23943     case FPCLASSS: {
23944       SDValue Src1 = Op.getOperand(1);
23945       SDValue Imm = Op.getOperand(2);
23946       SDValue Mask = Op.getOperand(3);
23947       SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Imm);
23948       SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, SDValue(),
23949                                                  Subtarget, DAG);
23950       // Need to fill with zeros to ensure the bitcast will produce zeroes
23951       // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
23952       SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
23953                                 DAG.getConstant(0, dl, MVT::v8i1),
23954                                 FPclassMask, DAG.getIntPtrConstant(0, dl));
23955       return DAG.getBitcast(MVT::i8, Ins);
23956     }
23957 
23958     case CMP_MASK_CC: {
23959       MVT MaskVT = Op.getSimpleValueType();
23960       SDValue CC = Op.getOperand(3);
23961       // We specify 2 possible opcodes for intrinsics with rounding modes.
23962       // First, we check if the intrinsic may have non-default rounding mode,
23963       // (IntrData->Opc1 != 0), then we check the rounding mode operand.
23964       if (IntrData->Opc1 != 0) {
23965         SDValue Sae = Op.getOperand(4);
23966         if (isRoundModeSAE(Sae))
23967           return DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
23968                              Op.getOperand(2), CC, Sae);
23969         if (!isRoundModeCurDirection(Sae))
23970           return SDValue();
23971       }
23972       //default rounding mode
23973       return DAG.getNode(IntrData->Opc0, dl, MaskVT,
23974                          {Op.getOperand(1), Op.getOperand(2), CC});
23975     }
23976     case CMP_MASK_SCALAR_CC: {
23977       SDValue Src1 = Op.getOperand(1);
23978       SDValue Src2 = Op.getOperand(2);
23979       SDValue CC = Op.getOperand(3);
23980       SDValue Mask = Op.getOperand(4);
23981 
23982       SDValue Cmp;
23983       if (IntrData->Opc1 != 0) {
23984         SDValue Sae = Op.getOperand(5);
23985         if (isRoundModeSAE(Sae))
23986           Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::v1i1, Src1, Src2, CC, Sae);
23987         else if (!isRoundModeCurDirection(Sae))
23988           return SDValue();
23989       }
23990       //default rounding mode
23991       if (!Cmp.getNode())
23992         Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Src2, CC);
23993 
23994       SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, SDValue(),
23995                                              Subtarget, DAG);
23996       // Need to fill with zeros to ensure the bitcast will produce zeroes
23997       // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
23998       SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
23999                                 DAG.getConstant(0, dl, MVT::v8i1),
24000                                 CmpMask, DAG.getIntPtrConstant(0, dl));
24001       return DAG.getBitcast(MVT::i8, Ins);
24002     }
24003     case COMI: { // Comparison intrinsics
24004       ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
24005       SDValue LHS = Op.getOperand(1);
24006       SDValue RHS = Op.getOperand(2);
24007       SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
24008       SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS);
24009       SDValue SetCC;
24010       switch (CC) {
24011       case ISD::SETEQ: { // (ZF = 0 and PF = 0)
24012         SetCC = getSETCC(X86::COND_E, Comi, dl, DAG);
24013         SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG);
24014         SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP);
24015         break;
24016       }
24017       case ISD::SETNE: { // (ZF = 1 or PF = 1)
24018         SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG);
24019         SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG);
24020         SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP);
24021         break;
24022       }
24023       case ISD::SETGT: // (CF = 0 and ZF = 0)
24024         SetCC = getSETCC(X86::COND_A, Comi, dl, DAG);
24025         break;
24026       case ISD::SETLT: { // The condition is opposite to GT. Swap the operands.
24027         SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG);
24028         break;
24029       }
24030       case ISD::SETGE: // CF = 0
24031         SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG);
24032         break;
24033       case ISD::SETLE: // The condition is opposite to GE. Swap the operands.
24034         SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG);
24035         break;
24036       default:
24037         llvm_unreachable("Unexpected illegal condition!");
24038       }
24039       return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
24040     }
24041     case COMI_RM: { // Comparison intrinsics with Sae
24042       SDValue LHS = Op.getOperand(1);
24043       SDValue RHS = Op.getOperand(2);
24044       unsigned CondVal = Op.getConstantOperandVal(3);
24045       SDValue Sae = Op.getOperand(4);
24046 
24047       SDValue FCmp;
24048       if (isRoundModeCurDirection(Sae))
24049         FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::v1i1, LHS, RHS,
24050                            DAG.getTargetConstant(CondVal, dl, MVT::i8));
24051       else if (isRoundModeSAE(Sae))
24052         FCmp = DAG.getNode(X86ISD::FSETCCM_SAE, dl, MVT::v1i1, LHS, RHS,
24053                            DAG.getTargetConstant(CondVal, dl, MVT::i8), Sae);
24054       else
24055         return SDValue();
24056       // Need to fill with zeros to ensure the bitcast will produce zeroes
24057       // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
24058       SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
24059                                 DAG.getConstant(0, dl, MVT::v16i1),
24060                                 FCmp, DAG.getIntPtrConstant(0, dl));
24061       return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32,
24062                          DAG.getBitcast(MVT::i16, Ins));
24063     }
24064     case VSHIFT:
24065       return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
24066                                  Op.getOperand(1), Op.getOperand(2), Subtarget,
24067                                  DAG);
24068     case COMPRESS_EXPAND_IN_REG: {
24069       SDValue Mask = Op.getOperand(3);
24070       SDValue DataToCompress = Op.getOperand(1);
24071       SDValue PassThru = Op.getOperand(2);
24072       if (ISD::isBuildVectorAllOnes(Mask.getNode())) // return data as is
24073         return Op.getOperand(1);
24074 
24075       // Avoid false dependency.
24076       if (PassThru.isUndef())
24077         PassThru = DAG.getConstant(0, dl, VT);
24078 
24079       return DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress, PassThru,
24080                          Mask);
24081     }
24082     case FIXUPIMM:
24083     case FIXUPIMM_MASKZ: {
24084       SDValue Src1 = Op.getOperand(1);
24085       SDValue Src2 = Op.getOperand(2);
24086       SDValue Src3 = Op.getOperand(3);
24087       SDValue Imm = Op.getOperand(4);
24088       SDValue Mask = Op.getOperand(5);
24089       SDValue Passthru = (IntrData->Type == FIXUPIMM)
24090                              ? Src1
24091                              : getZeroVector(VT, Subtarget, DAG, dl);
24092 
24093       unsigned Opc = IntrData->Opc0;
24094       if (IntrData->Opc1 != 0) {
24095         SDValue Sae = Op.getOperand(6);
24096         if (isRoundModeSAE(Sae))
24097           Opc = IntrData->Opc1;
24098         else if (!isRoundModeCurDirection(Sae))
24099           return SDValue();
24100       }
24101 
24102       SDValue FixupImm = DAG.getNode(Opc, dl, VT, Src1, Src2, Src3, Imm);
24103 
24104       if (Opc == X86ISD::VFIXUPIMM || Opc == X86ISD::VFIXUPIMM_SAE)
24105         return getVectorMaskingNode(FixupImm, Mask, Passthru, Subtarget, DAG);
24106 
24107       return getScalarMaskingNode(FixupImm, Mask, Passthru, Subtarget, DAG);
24108     }
24109     case ROUNDP: {
24110       assert(IntrData->Opc0 == X86ISD::VRNDSCALE && "Unexpected opcode");
24111       // Clear the upper bits of the rounding immediate so that the legacy
24112       // intrinsic can't trigger the scaling behavior of VRNDSCALE.
24113       auto Round = cast<ConstantSDNode>(Op.getOperand(2));
24114       SDValue RoundingMode =
24115           DAG.getTargetConstant(Round->getZExtValue() & 0xf, dl, MVT::i32);
24116       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
24117                          Op.getOperand(1), RoundingMode);
24118     }
24119     case ROUNDS: {
24120       assert(IntrData->Opc0 == X86ISD::VRNDSCALES && "Unexpected opcode");
24121       // Clear the upper bits of the rounding immediate so that the legacy
24122       // intrinsic can't trigger the scaling behavior of VRNDSCALE.
24123       auto Round = cast<ConstantSDNode>(Op.getOperand(3));
24124       SDValue RoundingMode =
24125           DAG.getTargetConstant(Round->getZExtValue() & 0xf, dl, MVT::i32);
24126       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
24127                          Op.getOperand(1), Op.getOperand(2), RoundingMode);
24128     }
24129     case BEXTRI: {
24130       assert(IntrData->Opc0 == X86ISD::BEXTR && "Unexpected opcode");
24131 
24132       // The control is a TargetConstant, but we need to convert it to a
24133       // ConstantSDNode.
24134       uint64_t Imm = Op.getConstantOperandVal(2);
24135       SDValue Control = DAG.getConstant(Imm, dl, Op.getValueType());
24136       return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
24137                          Op.getOperand(1), Control);
24138     }
24139     // ADC/ADCX/SBB
24140     case ADX: {
24141       SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
24142       SDVTList VTs = DAG.getVTList(Op.getOperand(2).getValueType(), MVT::i32);
24143 
24144       SDValue Res;
24145       // If the carry in is zero, then we should just use ADD/SUB instead of
24146       // ADC/SBB.
24147       if (isNullConstant(Op.getOperand(1))) {
24148         Res = DAG.getNode(IntrData->Opc1, dl, VTs, Op.getOperand(2),
24149                           Op.getOperand(3));
24150       } else {
24151         SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(1),
24152                                     DAG.getConstant(-1, dl, MVT::i8));
24153         Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(2),
24154                           Op.getOperand(3), GenCF.getValue(1));
24155       }
24156       SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG);
24157       SDValue Results[] = { SetCC, Res };
24158       return DAG.getMergeValues(Results, dl);
24159     }
24160     case CVTPD2PS_MASK:
24161     case CVTPD2DQ_MASK:
24162     case CVTQQ2PS_MASK:
24163     case TRUNCATE_TO_REG: {
24164       SDValue Src = Op.getOperand(1);
24165       SDValue PassThru = Op.getOperand(2);
24166       SDValue Mask = Op.getOperand(3);
24167 
24168       if (isAllOnesConstant(Mask))
24169         return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src);
24170 
24171       MVT SrcVT = Src.getSimpleValueType();
24172       MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
24173       Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
24174       return DAG.getNode(IntrData->Opc1, dl, Op.getValueType(),
24175                          {Src, PassThru, Mask});
24176     }
24177     case CVTPS2PH_MASK: {
24178       SDValue Src = Op.getOperand(1);
24179       SDValue Rnd = Op.getOperand(2);
24180       SDValue PassThru = Op.getOperand(3);
24181       SDValue Mask = Op.getOperand(4);
24182 
24183       if (isAllOnesConstant(Mask))
24184         return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src, Rnd);
24185 
24186       MVT SrcVT = Src.getSimpleValueType();
24187       MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
24188       Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
24189       return DAG.getNode(IntrData->Opc1, dl, Op.getValueType(), Src, Rnd,
24190                          PassThru, Mask);
24191 
24192     }
24193     case CVTNEPS2BF16_MASK: {
24194       SDValue Src = Op.getOperand(1);
24195       SDValue PassThru = Op.getOperand(2);
24196       SDValue Mask = Op.getOperand(3);
24197 
24198       if (ISD::isBuildVectorAllOnes(Mask.getNode()))
24199         return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src);
24200 
24201       // Break false dependency.
24202       if (PassThru.isUndef())
24203         PassThru = DAG.getConstant(0, dl, PassThru.getValueType());
24204 
24205       return DAG.getNode(IntrData->Opc1, dl, Op.getValueType(), Src, PassThru,
24206                          Mask);
24207     }
24208     default:
24209       break;
24210     }
24211   }
24212 
24213   switch (IntNo) {
24214   default: return SDValue();    // Don't custom lower most intrinsics.
24215 
24216   // ptest and testp intrinsics. The intrinsic these come from are designed to
24217   // return an integer value, not just an instruction so lower it to the ptest
24218   // or testp pattern and a setcc for the result.
24219   case Intrinsic::x86_avx512_ktestc_b:
24220   case Intrinsic::x86_avx512_ktestc_w:
24221   case Intrinsic::x86_avx512_ktestc_d:
24222   case Intrinsic::x86_avx512_ktestc_q:
24223   case Intrinsic::x86_avx512_ktestz_b:
24224   case Intrinsic::x86_avx512_ktestz_w:
24225   case Intrinsic::x86_avx512_ktestz_d:
24226   case Intrinsic::x86_avx512_ktestz_q:
24227   case Intrinsic::x86_sse41_ptestz:
24228   case Intrinsic::x86_sse41_ptestc:
24229   case Intrinsic::x86_sse41_ptestnzc:
24230   case Intrinsic::x86_avx_ptestz_256:
24231   case Intrinsic::x86_avx_ptestc_256:
24232   case Intrinsic::x86_avx_ptestnzc_256:
24233   case Intrinsic::x86_avx_vtestz_ps:
24234   case Intrinsic::x86_avx_vtestc_ps:
24235   case Intrinsic::x86_avx_vtestnzc_ps:
24236   case Intrinsic::x86_avx_vtestz_pd:
24237   case Intrinsic::x86_avx_vtestc_pd:
24238   case Intrinsic::x86_avx_vtestnzc_pd:
24239   case Intrinsic::x86_avx_vtestz_ps_256:
24240   case Intrinsic::x86_avx_vtestc_ps_256:
24241   case Intrinsic::x86_avx_vtestnzc_ps_256:
24242   case Intrinsic::x86_avx_vtestz_pd_256:
24243   case Intrinsic::x86_avx_vtestc_pd_256:
24244   case Intrinsic::x86_avx_vtestnzc_pd_256: {
24245     unsigned TestOpc = X86ISD::PTEST;
24246     X86::CondCode X86CC;
24247     switch (IntNo) {
24248     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
24249     case Intrinsic::x86_avx512_ktestc_b:
24250     case Intrinsic::x86_avx512_ktestc_w:
24251     case Intrinsic::x86_avx512_ktestc_d:
24252     case Intrinsic::x86_avx512_ktestc_q:
24253       // CF = 1
24254       TestOpc = X86ISD::KTEST;
24255       X86CC = X86::COND_B;
24256       break;
24257     case Intrinsic::x86_avx512_ktestz_b:
24258     case Intrinsic::x86_avx512_ktestz_w:
24259     case Intrinsic::x86_avx512_ktestz_d:
24260     case Intrinsic::x86_avx512_ktestz_q:
24261       TestOpc = X86ISD::KTEST;
24262       X86CC = X86::COND_E;
24263       break;
24264     case Intrinsic::x86_avx_vtestz_ps:
24265     case Intrinsic::x86_avx_vtestz_pd:
24266     case Intrinsic::x86_avx_vtestz_ps_256:
24267     case Intrinsic::x86_avx_vtestz_pd_256:
24268       TestOpc = X86ISD::TESTP;
24269       LLVM_FALLTHROUGH;
24270     case Intrinsic::x86_sse41_ptestz:
24271     case Intrinsic::x86_avx_ptestz_256:
24272       // ZF = 1
24273       X86CC = X86::COND_E;
24274       break;
24275     case Intrinsic::x86_avx_vtestc_ps:
24276     case Intrinsic::x86_avx_vtestc_pd:
24277     case Intrinsic::x86_avx_vtestc_ps_256:
24278     case Intrinsic::x86_avx_vtestc_pd_256:
24279       TestOpc = X86ISD::TESTP;
24280       LLVM_FALLTHROUGH;
24281     case Intrinsic::x86_sse41_ptestc:
24282     case Intrinsic::x86_avx_ptestc_256:
24283       // CF = 1
24284       X86CC = X86::COND_B;
24285       break;
24286     case Intrinsic::x86_avx_vtestnzc_ps:
24287     case Intrinsic::x86_avx_vtestnzc_pd:
24288     case Intrinsic::x86_avx_vtestnzc_ps_256:
24289     case Intrinsic::x86_avx_vtestnzc_pd_256:
24290       TestOpc = X86ISD::TESTP;
24291       LLVM_FALLTHROUGH;
24292     case Intrinsic::x86_sse41_ptestnzc:
24293     case Intrinsic::x86_avx_ptestnzc_256:
24294       // ZF and CF = 0
24295       X86CC = X86::COND_A;
24296       break;
24297     }
24298 
24299     SDValue LHS = Op.getOperand(1);
24300     SDValue RHS = Op.getOperand(2);
24301     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
24302     SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
24303     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
24304   }
24305 
24306   case Intrinsic::x86_sse42_pcmpistria128:
24307   case Intrinsic::x86_sse42_pcmpestria128:
24308   case Intrinsic::x86_sse42_pcmpistric128:
24309   case Intrinsic::x86_sse42_pcmpestric128:
24310   case Intrinsic::x86_sse42_pcmpistrio128:
24311   case Intrinsic::x86_sse42_pcmpestrio128:
24312   case Intrinsic::x86_sse42_pcmpistris128:
24313   case Intrinsic::x86_sse42_pcmpestris128:
24314   case Intrinsic::x86_sse42_pcmpistriz128:
24315   case Intrinsic::x86_sse42_pcmpestriz128: {
24316     unsigned Opcode;
24317     X86::CondCode X86CC;
24318     switch (IntNo) {
24319     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
24320     case Intrinsic::x86_sse42_pcmpistria128:
24321       Opcode = X86ISD::PCMPISTR;
24322       X86CC = X86::COND_A;
24323       break;
24324     case Intrinsic::x86_sse42_pcmpestria128:
24325       Opcode = X86ISD::PCMPESTR;
24326       X86CC = X86::COND_A;
24327       break;
24328     case Intrinsic::x86_sse42_pcmpistric128:
24329       Opcode = X86ISD::PCMPISTR;
24330       X86CC = X86::COND_B;
24331       break;
24332     case Intrinsic::x86_sse42_pcmpestric128:
24333       Opcode = X86ISD::PCMPESTR;
24334       X86CC = X86::COND_B;
24335       break;
24336     case Intrinsic::x86_sse42_pcmpistrio128:
24337       Opcode = X86ISD::PCMPISTR;
24338       X86CC = X86::COND_O;
24339       break;
24340     case Intrinsic::x86_sse42_pcmpestrio128:
24341       Opcode = X86ISD::PCMPESTR;
24342       X86CC = X86::COND_O;
24343       break;
24344     case Intrinsic::x86_sse42_pcmpistris128:
24345       Opcode = X86ISD::PCMPISTR;
24346       X86CC = X86::COND_S;
24347       break;
24348     case Intrinsic::x86_sse42_pcmpestris128:
24349       Opcode = X86ISD::PCMPESTR;
24350       X86CC = X86::COND_S;
24351       break;
24352     case Intrinsic::x86_sse42_pcmpistriz128:
24353       Opcode = X86ISD::PCMPISTR;
24354       X86CC = X86::COND_E;
24355       break;
24356     case Intrinsic::x86_sse42_pcmpestriz128:
24357       Opcode = X86ISD::PCMPESTR;
24358       X86CC = X86::COND_E;
24359       break;
24360     }
24361     SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
24362     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
24363     SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps).getValue(2);
24364     SDValue SetCC = getSETCC(X86CC, PCMP, dl, DAG);
24365     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
24366   }
24367 
24368   case Intrinsic::x86_sse42_pcmpistri128:
24369   case Intrinsic::x86_sse42_pcmpestri128: {
24370     unsigned Opcode;
24371     if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
24372       Opcode = X86ISD::PCMPISTR;
24373     else
24374       Opcode = X86ISD::PCMPESTR;
24375 
24376     SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
24377     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
24378     return DAG.getNode(Opcode, dl, VTs, NewOps);
24379   }
24380 
24381   case Intrinsic::x86_sse42_pcmpistrm128:
24382   case Intrinsic::x86_sse42_pcmpestrm128: {
24383     unsigned Opcode;
24384     if (IntNo == Intrinsic::x86_sse42_pcmpistrm128)
24385       Opcode = X86ISD::PCMPISTR;
24386     else
24387       Opcode = X86ISD::PCMPESTR;
24388 
24389     SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
24390     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
24391     return DAG.getNode(Opcode, dl, VTs, NewOps).getValue(1);
24392   }
24393 
24394   case Intrinsic::eh_sjlj_lsda: {
24395     MachineFunction &MF = DAG.getMachineFunction();
24396     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24397     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
24398     auto &Context = MF.getMMI().getContext();
24399     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
24400                                             Twine(MF.getFunctionNumber()));
24401     return DAG.getNode(getGlobalWrapperKind(), dl, VT,
24402                        DAG.getMCSymbol(S, PtrVT));
24403   }
24404 
24405   case Intrinsic::x86_seh_lsda: {
24406     // Compute the symbol for the LSDA. We know it'll get emitted later.
24407     MachineFunction &MF = DAG.getMachineFunction();
24408     SDValue Op1 = Op.getOperand(1);
24409     auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
24410     MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
24411         GlobalValue::dropLLVMManglingEscape(Fn->getName()));
24412 
24413     // Generate a simple absolute symbol reference. This intrinsic is only
24414     // supported on 32-bit Windows, which isn't PIC.
24415     SDValue Result = DAG.getMCSymbol(LSDASym, VT);
24416     return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
24417   }
24418 
24419   case Intrinsic::eh_recoverfp: {
24420     SDValue FnOp = Op.getOperand(1);
24421     SDValue IncomingFPOp = Op.getOperand(2);
24422     GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
24423     auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
24424     if (!Fn)
24425       report_fatal_error(
24426           "llvm.eh.recoverfp must take a function as the first argument");
24427     return recoverFramePointer(DAG, Fn, IncomingFPOp);
24428   }
24429 
24430   case Intrinsic::localaddress: {
24431     // Returns one of the stack, base, or frame pointer registers, depending on
24432     // which is used to reference local variables.
24433     MachineFunction &MF = DAG.getMachineFunction();
24434     const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
24435     unsigned Reg;
24436     if (RegInfo->hasBasePointer(MF))
24437       Reg = RegInfo->getBaseRegister();
24438     else { // Handles the SP or FP case.
24439       bool CantUseFP = RegInfo->needsStackRealignment(MF);
24440       if (CantUseFP)
24441         Reg = RegInfo->getPtrSizedStackRegister(MF);
24442       else
24443         Reg = RegInfo->getPtrSizedFrameRegister(MF);
24444     }
24445     return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
24446   }
24447 
24448   case Intrinsic::x86_avx512_vp2intersect_q_512:
24449   case Intrinsic::x86_avx512_vp2intersect_q_256:
24450   case Intrinsic::x86_avx512_vp2intersect_q_128:
24451   case Intrinsic::x86_avx512_vp2intersect_d_512:
24452   case Intrinsic::x86_avx512_vp2intersect_d_256:
24453   case Intrinsic::x86_avx512_vp2intersect_d_128: {
24454     MVT MaskVT = Op.getSimpleValueType();
24455 
24456     SDVTList VTs = DAG.getVTList(MVT::Untyped, MVT::Other);
24457     SDLoc DL(Op);
24458 
24459     SDValue Operation =
24460         DAG.getNode(X86ISD::VP2INTERSECT, DL, VTs,
24461                     Op->getOperand(1), Op->getOperand(2));
24462 
24463     SDValue Result0 = DAG.getTargetExtractSubreg(X86::sub_mask_0, DL,
24464                                                  MaskVT, Operation);
24465     SDValue Result1 = DAG.getTargetExtractSubreg(X86::sub_mask_1, DL,
24466                                                  MaskVT, Operation);
24467     return DAG.getMergeValues({Result0, Result1}, DL);
24468   }
24469   case Intrinsic::x86_mmx_pslli_w:
24470   case Intrinsic::x86_mmx_pslli_d:
24471   case Intrinsic::x86_mmx_pslli_q:
24472   case Intrinsic::x86_mmx_psrli_w:
24473   case Intrinsic::x86_mmx_psrli_d:
24474   case Intrinsic::x86_mmx_psrli_q:
24475   case Intrinsic::x86_mmx_psrai_w:
24476   case Intrinsic::x86_mmx_psrai_d: {
24477     SDLoc DL(Op);
24478     SDValue ShAmt = Op.getOperand(2);
24479     // If the argument is a constant, convert it to a target constant.
24480     if (auto *C = dyn_cast<ConstantSDNode>(ShAmt)) {
24481       // Clamp out of bounds shift amounts since they will otherwise be masked
24482       // to 8-bits which may make it no longer out of bounds.
24483       unsigned ShiftAmount = C->getAPIntValue().getLimitedValue(255);
24484       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
24485                          Op.getOperand(0), Op.getOperand(1),
24486                          DAG.getTargetConstant(ShiftAmount, DL, MVT::i32));
24487     }
24488 
24489     unsigned NewIntrinsic;
24490     switch (IntNo) {
24491     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
24492     case Intrinsic::x86_mmx_pslli_w:
24493       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
24494       break;
24495     case Intrinsic::x86_mmx_pslli_d:
24496       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
24497       break;
24498     case Intrinsic::x86_mmx_pslli_q:
24499       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
24500       break;
24501     case Intrinsic::x86_mmx_psrli_w:
24502       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
24503       break;
24504     case Intrinsic::x86_mmx_psrli_d:
24505       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
24506       break;
24507     case Intrinsic::x86_mmx_psrli_q:
24508       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
24509       break;
24510     case Intrinsic::x86_mmx_psrai_w:
24511       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
24512       break;
24513     case Intrinsic::x86_mmx_psrai_d:
24514       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
24515       break;
24516     }
24517 
24518     // The vector shift intrinsics with scalars uses 32b shift amounts but
24519     // the sse2/mmx shift instructions reads 64 bits. Copy the 32 bits to an
24520     // MMX register.
24521     ShAmt = DAG.getNode(X86ISD::MMX_MOVW2D, DL, MVT::x86mmx, ShAmt);
24522     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
24523                        DAG.getConstant(NewIntrinsic, DL, MVT::i32),
24524                        Op.getOperand(1), ShAmt);
24525 
24526   }
24527   }
24528 }
24529 
24530 static SDValue getAVX2GatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
24531                                  SDValue Src, SDValue Mask, SDValue Base,
24532                                  SDValue Index, SDValue ScaleOp, SDValue Chain,
24533                                  const X86Subtarget &Subtarget) {
24534   SDLoc dl(Op);
24535   auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
24536   // Scale must be constant.
24537   if (!C)
24538     return SDValue();
24539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24540   SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
24541                                         TLI.getPointerTy(DAG.getDataLayout()));
24542   EVT MaskVT = Mask.getValueType().changeVectorElementTypeToInteger();
24543   SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
24544   // If source is undef or we know it won't be used, use a zero vector
24545   // to break register dependency.
24546   // TODO: use undef instead and let BreakFalseDeps deal with it?
24547   if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode()))
24548     Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
24549 
24550   MemIntrinsicSDNode *MemIntr = cast<MemIntrinsicSDNode>(Op);
24551 
24552   SDValue Ops[] = {Chain, Src, Mask, Base, Index, Scale };
24553   SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
24554     VTs, Ops, dl, MemIntr->getMemoryVT(), MemIntr->getMemOperand());
24555   return DAG.getMergeValues({ Res, Res.getValue(2) }, dl);
24556 }
24557 
24558 static SDValue getGatherNode(SDValue Op, SelectionDAG &DAG,
24559                              SDValue Src, SDValue Mask, SDValue Base,
24560                              SDValue Index, SDValue ScaleOp, SDValue Chain,
24561                              const X86Subtarget &Subtarget) {
24562   MVT VT = Op.getSimpleValueType();
24563   SDLoc dl(Op);
24564   auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
24565   // Scale must be constant.
24566   if (!C)
24567     return SDValue();
24568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24569   SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
24570                                         TLI.getPointerTy(DAG.getDataLayout()));
24571   unsigned MinElts = std::min(Index.getSimpleValueType().getVectorNumElements(),
24572                               VT.getVectorNumElements());
24573   MVT MaskVT = MVT::getVectorVT(MVT::i1, MinElts);
24574 
24575   // We support two versions of the gather intrinsics. One with scalar mask and
24576   // one with vXi1 mask. Convert scalar to vXi1 if necessary.
24577   if (Mask.getValueType() != MaskVT)
24578     Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
24579 
24580   SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
24581   // If source is undef or we know it won't be used, use a zero vector
24582   // to break register dependency.
24583   // TODO: use undef instead and let BreakFalseDeps deal with it?
24584   if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode()))
24585     Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
24586 
24587   MemIntrinsicSDNode *MemIntr = cast<MemIntrinsicSDNode>(Op);
24588 
24589   SDValue Ops[] = {Chain, Src, Mask, Base, Index, Scale };
24590   SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
24591     VTs, Ops, dl, MemIntr->getMemoryVT(), MemIntr->getMemOperand());
24592   return DAG.getMergeValues({ Res, Res.getValue(2) }, dl);
24593 }
24594 
24595 static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
24596                                SDValue Src, SDValue Mask, SDValue Base,
24597                                SDValue Index, SDValue ScaleOp, SDValue Chain,
24598                                const X86Subtarget &Subtarget) {
24599   SDLoc dl(Op);
24600   auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
24601   // Scale must be constant.
24602   if (!C)
24603     return SDValue();
24604   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24605   SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
24606                                         TLI.getPointerTy(DAG.getDataLayout()));
24607   unsigned MinElts = std::min(Index.getSimpleValueType().getVectorNumElements(),
24608                               Src.getSimpleValueType().getVectorNumElements());
24609   MVT MaskVT = MVT::getVectorVT(MVT::i1, MinElts);
24610 
24611   // We support two versions of the scatter intrinsics. One with scalar mask and
24612   // one with vXi1 mask. Convert scalar to vXi1 if necessary.
24613   if (Mask.getValueType() != MaskVT)
24614     Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
24615 
24616   MemIntrinsicSDNode *MemIntr = cast<MemIntrinsicSDNode>(Op);
24617 
24618   SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
24619   SDValue Ops[] = {Chain, Src, Mask, Base, Index, Scale};
24620   SDValue Res = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
24621       VTs, Ops, dl, MemIntr->getMemoryVT(), MemIntr->getMemOperand());
24622   return Res.getValue(1);
24623 }
24624 
24625 static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
24626                                SDValue Mask, SDValue Base, SDValue Index,
24627                                SDValue ScaleOp, SDValue Chain,
24628                                const X86Subtarget &Subtarget) {
24629   SDLoc dl(Op);
24630   auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
24631   // Scale must be constant.
24632   if (!C)
24633     return SDValue();
24634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24635   SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
24636                                         TLI.getPointerTy(DAG.getDataLayout()));
24637   SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
24638   SDValue Segment = DAG.getRegister(0, MVT::i32);
24639   MVT MaskVT =
24640     MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
24641   SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
24642   SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain};
24643   SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
24644   return SDValue(Res, 0);
24645 }
24646 
24647 /// Handles the lowering of builtin intrinsics with chain that return their
24648 /// value into registers EDX:EAX.
24649 /// If operand ScrReg is a valid register identifier, then operand 2 of N is
24650 /// copied to SrcReg. The assumption is that SrcReg is an implicit input to
24651 /// TargetOpcode.
24652 /// Returns a Glue value which can be used to add extra copy-from-reg if the
24653 /// expanded intrinsics implicitly defines extra registers (i.e. not just
24654 /// EDX:EAX).
24655 static SDValue expandIntrinsicWChainHelper(SDNode *N, const SDLoc &DL,
24656                                         SelectionDAG &DAG,
24657                                         unsigned TargetOpcode,
24658                                         unsigned SrcReg,
24659                                         const X86Subtarget &Subtarget,
24660                                         SmallVectorImpl<SDValue> &Results) {
24661   SDValue Chain = N->getOperand(0);
24662   SDValue Glue;
24663 
24664   if (SrcReg) {
24665     assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
24666     Chain = DAG.getCopyToReg(Chain, DL, SrcReg, N->getOperand(2), Glue);
24667     Glue = Chain.getValue(1);
24668   }
24669 
24670   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
24671   SDValue N1Ops[] = {Chain, Glue};
24672   SDNode *N1 = DAG.getMachineNode(
24673       TargetOpcode, DL, Tys, ArrayRef<SDValue>(N1Ops, Glue.getNode() ? 2 : 1));
24674   Chain = SDValue(N1, 0);
24675 
24676   // Reads the content of XCR and returns it in registers EDX:EAX.
24677   SDValue LO, HI;
24678   if (Subtarget.is64Bit()) {
24679     LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1));
24680     HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
24681                             LO.getValue(2));
24682   } else {
24683     LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1));
24684     HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
24685                             LO.getValue(2));
24686   }
24687   Chain = HI.getValue(1);
24688   Glue = HI.getValue(2);
24689 
24690   if (Subtarget.is64Bit()) {
24691     // Merge the two 32-bit values into a 64-bit one.
24692     SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
24693                               DAG.getConstant(32, DL, MVT::i8));
24694     Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
24695     Results.push_back(Chain);
24696     return Glue;
24697   }
24698 
24699   // Use a buildpair to merge the two 32-bit values into a 64-bit one.
24700   SDValue Ops[] = { LO, HI };
24701   SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
24702   Results.push_back(Pair);
24703   Results.push_back(Chain);
24704   return Glue;
24705 }
24706 
24707 /// Handles the lowering of builtin intrinsics that read the time stamp counter
24708 /// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower
24709 /// READCYCLECOUNTER nodes.
24710 static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode,
24711                                     SelectionDAG &DAG,
24712                                     const X86Subtarget &Subtarget,
24713                                     SmallVectorImpl<SDValue> &Results) {
24714   // The processor's time-stamp counter (a 64-bit MSR) is stored into the
24715   // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
24716   // and the EAX register is loaded with the low-order 32 bits.
24717   SDValue Glue = expandIntrinsicWChainHelper(N, DL, DAG, Opcode,
24718                                              /* NoRegister */0, Subtarget,
24719                                              Results);
24720   if (Opcode != X86::RDTSCP)
24721     return;
24722 
24723   SDValue Chain = Results[1];
24724   // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
24725   // the ECX register. Add 'ecx' explicitly to the chain.
24726   SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, Glue);
24727   Results[1] = ecx;
24728   Results.push_back(ecx.getValue(1));
24729 }
24730 
24731 static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget,
24732                                      SelectionDAG &DAG) {
24733   SmallVector<SDValue, 3> Results;
24734   SDLoc DL(Op);
24735   getReadTimeStampCounter(Op.getNode(), DL, X86::RDTSC, DAG, Subtarget,
24736                           Results);
24737   return DAG.getMergeValues(Results, DL);
24738 }
24739 
24740 static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
24741   MachineFunction &MF = DAG.getMachineFunction();
24742   SDValue Chain = Op.getOperand(0);
24743   SDValue RegNode = Op.getOperand(2);
24744   WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
24745   if (!EHInfo)
24746     report_fatal_error("EH registrations only live in functions using WinEH");
24747 
24748   // Cast the operand to an alloca, and remember the frame index.
24749   auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
24750   if (!FINode)
24751     report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
24752   EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
24753 
24754   // Return the chain operand without making any DAG nodes.
24755   return Chain;
24756 }
24757 
24758 static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) {
24759   MachineFunction &MF = DAG.getMachineFunction();
24760   SDValue Chain = Op.getOperand(0);
24761   SDValue EHGuard = Op.getOperand(2);
24762   WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
24763   if (!EHInfo)
24764     report_fatal_error("EHGuard only live in functions using WinEH");
24765 
24766   // Cast the operand to an alloca, and remember the frame index.
24767   auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard);
24768   if (!FINode)
24769     report_fatal_error("llvm.x86.seh.ehguard expects a static alloca");
24770   EHInfo->EHGuardFrameIndex = FINode->getIndex();
24771 
24772   // Return the chain operand without making any DAG nodes.
24773   return Chain;
24774 }
24775 
24776 /// Emit Truncating Store with signed or unsigned saturation.
24777 static SDValue
24778 EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val,
24779                 SDValue Ptr, EVT MemVT, MachineMemOperand *MMO,
24780                 SelectionDAG &DAG) {
24781 
24782   SDVTList VTs = DAG.getVTList(MVT::Other);
24783   SDValue Undef = DAG.getUNDEF(Ptr.getValueType());
24784   SDValue Ops[] = { Chain, Val, Ptr, Undef };
24785   return SignedSat ?
24786     DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
24787     DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
24788 }
24789 
24790 /// Emit Masked Truncating Store with signed or unsigned saturation.
24791 static SDValue
24792 EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl,
24793                       SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT,
24794                       MachineMemOperand *MMO, SelectionDAG &DAG) {
24795 
24796   SDVTList VTs = DAG.getVTList(MVT::Other);
24797   SDValue Ops[] = { Chain, Val, Ptr, Mask };
24798   return SignedSat ?
24799     DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
24800     DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
24801 }
24802 
24803 static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
24804                                       SelectionDAG &DAG) {
24805   unsigned IntNo = Op.getConstantOperandVal(1);
24806   const IntrinsicData *IntrData = getIntrinsicWithChain(IntNo);
24807   if (!IntrData) {
24808     switch (IntNo) {
24809     case llvm::Intrinsic::x86_seh_ehregnode:
24810       return MarkEHRegistrationNode(Op, DAG);
24811     case llvm::Intrinsic::x86_seh_ehguard:
24812       return MarkEHGuard(Op, DAG);
24813     case llvm::Intrinsic::x86_rdpkru: {
24814       SDLoc dl(Op);
24815       SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
24816       // Create a RDPKRU node and pass 0 to the ECX parameter.
24817       return DAG.getNode(X86ISD::RDPKRU, dl, VTs, Op.getOperand(0),
24818                          DAG.getConstant(0, dl, MVT::i32));
24819     }
24820     case llvm::Intrinsic::x86_wrpkru: {
24821       SDLoc dl(Op);
24822       // Create a WRPKRU node, pass the input to the EAX parameter,  and pass 0
24823       // to the EDX and ECX parameters.
24824       return DAG.getNode(X86ISD::WRPKRU, dl, MVT::Other,
24825                          Op.getOperand(0), Op.getOperand(2),
24826                          DAG.getConstant(0, dl, MVT::i32),
24827                          DAG.getConstant(0, dl, MVT::i32));
24828     }
24829     case llvm::Intrinsic::x86_flags_read_u32:
24830     case llvm::Intrinsic::x86_flags_read_u64:
24831     case llvm::Intrinsic::x86_flags_write_u32:
24832     case llvm::Intrinsic::x86_flags_write_u64: {
24833       // We need a frame pointer because this will get lowered to a PUSH/POP
24834       // sequence.
24835       MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
24836       MFI.setHasCopyImplyingStackAdjustment(true);
24837       // Don't do anything here, we will expand these intrinsics out later
24838       // during FinalizeISel in EmitInstrWithCustomInserter.
24839       return Op;
24840     }
24841     case Intrinsic::x86_lwpins32:
24842     case Intrinsic::x86_lwpins64:
24843     case Intrinsic::x86_umwait:
24844     case Intrinsic::x86_tpause: {
24845       SDLoc dl(Op);
24846       SDValue Chain = Op->getOperand(0);
24847       SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
24848       unsigned Opcode;
24849 
24850       switch (IntNo) {
24851       default: llvm_unreachable("Impossible intrinsic");
24852       case Intrinsic::x86_umwait:
24853         Opcode = X86ISD::UMWAIT;
24854         break;
24855       case Intrinsic::x86_tpause:
24856         Opcode = X86ISD::TPAUSE;
24857         break;
24858       case Intrinsic::x86_lwpins32:
24859       case Intrinsic::x86_lwpins64:
24860         Opcode = X86ISD::LWPINS;
24861         break;
24862       }
24863 
24864       SDValue Operation =
24865           DAG.getNode(Opcode, dl, VTs, Chain, Op->getOperand(2),
24866                       Op->getOperand(3), Op->getOperand(4));
24867       SDValue SetCC = getSETCC(X86::COND_B, Operation.getValue(0), dl, DAG);
24868       return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), SetCC,
24869                          Operation.getValue(1));
24870     }
24871     case Intrinsic::x86_enqcmd:
24872     case Intrinsic::x86_enqcmds: {
24873       SDLoc dl(Op);
24874       SDValue Chain = Op.getOperand(0);
24875       SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
24876       unsigned Opcode;
24877       switch (IntNo) {
24878       default: llvm_unreachable("Impossible intrinsic!");
24879       case Intrinsic::x86_enqcmd:
24880         Opcode = X86ISD::ENQCMD;
24881         break;
24882       case Intrinsic::x86_enqcmds:
24883         Opcode = X86ISD::ENQCMDS;
24884         break;
24885       }
24886       SDValue Operation = DAG.getNode(Opcode, dl, VTs, Chain, Op.getOperand(2),
24887                                       Op.getOperand(3));
24888       SDValue SetCC = getSETCC(X86::COND_E, Operation.getValue(0), dl, DAG);
24889       return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), SetCC,
24890                          Operation.getValue(1));
24891     }
24892     }
24893     return SDValue();
24894   }
24895 
24896   SDLoc dl(Op);
24897   switch(IntrData->Type) {
24898   default: llvm_unreachable("Unknown Intrinsic Type");
24899   case RDSEED:
24900   case RDRAND: {
24901     // Emit the node with the right value type.
24902     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32, MVT::Other);
24903     SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
24904 
24905     // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
24906     // Otherwise return the value from Rand, which is always 0, casted to i32.
24907     SDValue Ops[] = {DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
24908                      DAG.getConstant(1, dl, Op->getValueType(1)),
24909                      DAG.getTargetConstant(X86::COND_B, dl, MVT::i8),
24910                      SDValue(Result.getNode(), 1)};
24911     SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, Op->getValueType(1), Ops);
24912 
24913     // Return { result, isValid, chain }.
24914     return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
24915                        SDValue(Result.getNode(), 2));
24916   }
24917   case GATHER_AVX2: {
24918     SDValue Chain = Op.getOperand(0);
24919     SDValue Src   = Op.getOperand(2);
24920     SDValue Base  = Op.getOperand(3);
24921     SDValue Index = Op.getOperand(4);
24922     SDValue Mask  = Op.getOperand(5);
24923     SDValue Scale = Op.getOperand(6);
24924     return getAVX2GatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
24925                              Scale, Chain, Subtarget);
24926   }
24927   case GATHER: {
24928   //gather(v1, mask, index, base, scale);
24929     SDValue Chain = Op.getOperand(0);
24930     SDValue Src   = Op.getOperand(2);
24931     SDValue Base  = Op.getOperand(3);
24932     SDValue Index = Op.getOperand(4);
24933     SDValue Mask  = Op.getOperand(5);
24934     SDValue Scale = Op.getOperand(6);
24935     return getGatherNode(Op, DAG, Src, Mask, Base, Index, Scale,
24936                          Chain, Subtarget);
24937   }
24938   case SCATTER: {
24939   //scatter(base, mask, index, v1, scale);
24940     SDValue Chain = Op.getOperand(0);
24941     SDValue Base  = Op.getOperand(2);
24942     SDValue Mask  = Op.getOperand(3);
24943     SDValue Index = Op.getOperand(4);
24944     SDValue Src   = Op.getOperand(5);
24945     SDValue Scale = Op.getOperand(6);
24946     return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
24947                           Scale, Chain, Subtarget);
24948   }
24949   case PREFETCH: {
24950     const APInt &HintVal = Op.getConstantOperandAPInt(6);
24951     assert((HintVal == 2 || HintVal == 3) &&
24952            "Wrong prefetch hint in intrinsic: should be 2 or 3");
24953     unsigned Opcode = (HintVal == 2 ? IntrData->Opc1 : IntrData->Opc0);
24954     SDValue Chain = Op.getOperand(0);
24955     SDValue Mask  = Op.getOperand(2);
24956     SDValue Index = Op.getOperand(3);
24957     SDValue Base  = Op.getOperand(4);
24958     SDValue Scale = Op.getOperand(5);
24959     return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain,
24960                            Subtarget);
24961   }
24962   // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
24963   case RDTSC: {
24964     SmallVector<SDValue, 2> Results;
24965     getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
24966                             Results);
24967     return DAG.getMergeValues(Results, dl);
24968   }
24969   // Read Performance Monitoring Counters.
24970   case RDPMC:
24971   // GetExtended Control Register.
24972   case XGETBV: {
24973     SmallVector<SDValue, 2> Results;
24974 
24975     // RDPMC uses ECX to select the index of the performance counter to read.
24976     // XGETBV uses ECX to select the index of the XCR register to return.
24977     // The result is stored into registers EDX:EAX.
24978     expandIntrinsicWChainHelper(Op.getNode(), dl, DAG, IntrData->Opc0, X86::ECX,
24979                                 Subtarget, Results);
24980     return DAG.getMergeValues(Results, dl);
24981   }
24982   // XTEST intrinsics.
24983   case XTEST: {
24984     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
24985     SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
24986 
24987     SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG);
24988     SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
24989     return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
24990                        Ret, SDValue(InTrans.getNode(), 1));
24991   }
24992   case TRUNCATE_TO_MEM_VI8:
24993   case TRUNCATE_TO_MEM_VI16:
24994   case TRUNCATE_TO_MEM_VI32: {
24995     SDValue Mask = Op.getOperand(4);
24996     SDValue DataToTruncate = Op.getOperand(3);
24997     SDValue Addr = Op.getOperand(2);
24998     SDValue Chain = Op.getOperand(0);
24999 
25000     MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
25001     assert(MemIntr && "Expected MemIntrinsicSDNode!");
25002 
25003     EVT MemVT  = MemIntr->getMemoryVT();
25004 
25005     uint16_t TruncationOp = IntrData->Opc0;
25006     switch (TruncationOp) {
25007     case X86ISD::VTRUNC: {
25008       if (isAllOnesConstant(Mask)) // return just a truncate store
25009         return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT,
25010                                  MemIntr->getMemOperand());
25011 
25012       MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
25013       SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
25014       SDValue Offset = DAG.getUNDEF(VMask.getValueType());
25015 
25016       return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, Offset, VMask,
25017                                 MemVT, MemIntr->getMemOperand(), ISD::UNINDEXED,
25018                                 true /* truncating */);
25019     }
25020     case X86ISD::VTRUNCUS:
25021     case X86ISD::VTRUNCS: {
25022       bool IsSigned = (TruncationOp == X86ISD::VTRUNCS);
25023       if (isAllOnesConstant(Mask))
25024         return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT,
25025                                MemIntr->getMemOperand(), DAG);
25026 
25027       MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
25028       SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
25029 
25030       return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr,
25031                                    VMask, MemVT, MemIntr->getMemOperand(), DAG);
25032     }
25033     default:
25034       llvm_unreachable("Unsupported truncstore intrinsic");
25035     }
25036   }
25037   }
25038 }
25039 
25040 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
25041                                            SelectionDAG &DAG) const {
25042   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
25043   MFI.setReturnAddressIsTaken(true);
25044 
25045   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
25046     return SDValue();
25047 
25048   unsigned Depth = Op.getConstantOperandVal(0);
25049   SDLoc dl(Op);
25050   EVT PtrVT = getPointerTy(DAG.getDataLayout());
25051 
25052   if (Depth > 0) {
25053     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
25054     const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
25055     SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
25056     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
25057                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
25058                        MachinePointerInfo());
25059   }
25060 
25061   // Just load the return address.
25062   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
25063   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
25064                      MachinePointerInfo());
25065 }
25066 
25067 SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
25068                                                  SelectionDAG &DAG) const {
25069   DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true);
25070   return getReturnAddressFrameIndex(DAG);
25071 }
25072 
25073 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
25074   MachineFunction &MF = DAG.getMachineFunction();
25075   MachineFrameInfo &MFI = MF.getFrameInfo();
25076   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
25077   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
25078   EVT VT = Op.getValueType();
25079 
25080   MFI.setFrameAddressIsTaken(true);
25081 
25082   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
25083     // Depth > 0 makes no sense on targets which use Windows unwind codes.  It
25084     // is not possible to crawl up the stack without looking at the unwind codes
25085     // simultaneously.
25086     int FrameAddrIndex = FuncInfo->getFAIndex();
25087     if (!FrameAddrIndex) {
25088       // Set up a frame object for the return address.
25089       unsigned SlotSize = RegInfo->getSlotSize();
25090       FrameAddrIndex = MF.getFrameInfo().CreateFixedObject(
25091           SlotSize, /*SPOffset=*/0, /*IsImmutable=*/false);
25092       FuncInfo->setFAIndex(FrameAddrIndex);
25093     }
25094     return DAG.getFrameIndex(FrameAddrIndex, VT);
25095   }
25096 
25097   unsigned FrameReg =
25098       RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
25099   SDLoc dl(Op);  // FIXME probably not meaningful
25100   unsigned Depth = Op.getConstantOperandVal(0);
25101   assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
25102           (FrameReg == X86::EBP && VT == MVT::i32)) &&
25103          "Invalid Frame Register!");
25104   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
25105   while (Depth--)
25106     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
25107                             MachinePointerInfo());
25108   return FrameAddr;
25109 }
25110 
25111 // FIXME? Maybe this could be a TableGen attribute on some registers and
25112 // this table could be generated automatically from RegInfo.
25113 Register X86TargetLowering::getRegisterByName(const char* RegName, LLT VT,
25114                                               const MachineFunction &MF) const {
25115   const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
25116 
25117   Register Reg = StringSwitch<unsigned>(RegName)
25118                        .Case("esp", X86::ESP)
25119                        .Case("rsp", X86::RSP)
25120                        .Case("ebp", X86::EBP)
25121                        .Case("rbp", X86::RBP)
25122                        .Default(0);
25123 
25124   if (Reg == X86::EBP || Reg == X86::RBP) {
25125     if (!TFI.hasFP(MF))
25126       report_fatal_error("register " + StringRef(RegName) +
25127                          " is allocatable: function has no frame pointer");
25128 #ifndef NDEBUG
25129     else {
25130       const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
25131       Register FrameReg = RegInfo->getPtrSizedFrameRegister(MF);
25132       assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
25133              "Invalid Frame Register!");
25134     }
25135 #endif
25136   }
25137 
25138   if (Reg)
25139     return Reg;
25140 
25141   report_fatal_error("Invalid register name global variable");
25142 }
25143 
25144 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
25145                                                      SelectionDAG &DAG) const {
25146   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
25147   return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
25148 }
25149 
25150 unsigned X86TargetLowering::getExceptionPointerRegister(
25151     const Constant *PersonalityFn) const {
25152   if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
25153     return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
25154 
25155   return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX;
25156 }
25157 
25158 unsigned X86TargetLowering::getExceptionSelectorRegister(
25159     const Constant *PersonalityFn) const {
25160   // Funclet personalities don't use selectors (the runtime does the selection).
25161   assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
25162   return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
25163 }
25164 
25165 bool X86TargetLowering::needsFixedCatchObjects() const {
25166   return Subtarget.isTargetWin64();
25167 }
25168 
25169 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
25170   SDValue Chain     = Op.getOperand(0);
25171   SDValue Offset    = Op.getOperand(1);
25172   SDValue Handler   = Op.getOperand(2);
25173   SDLoc dl      (Op);
25174 
25175   EVT PtrVT = getPointerTy(DAG.getDataLayout());
25176   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
25177   Register FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
25178   assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
25179           (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
25180          "Invalid Frame Register!");
25181   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
25182   unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
25183 
25184   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
25185                                  DAG.getIntPtrConstant(RegInfo->getSlotSize(),
25186                                                        dl));
25187   StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
25188   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
25189   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
25190 
25191   return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
25192                      DAG.getRegister(StoreAddrReg, PtrVT));
25193 }
25194 
25195 SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
25196                                                SelectionDAG &DAG) const {
25197   SDLoc DL(Op);
25198   // If the subtarget is not 64bit, we may need the global base reg
25199   // after isel expand pseudo, i.e., after CGBR pass ran.
25200   // Therefore, ask for the GlobalBaseReg now, so that the pass
25201   // inserts the code for us in case we need it.
25202   // Otherwise, we will end up in a situation where we will
25203   // reference a virtual register that is not defined!
25204   if (!Subtarget.is64Bit()) {
25205     const X86InstrInfo *TII = Subtarget.getInstrInfo();
25206     (void)TII->getGlobalBaseReg(&DAG.getMachineFunction());
25207   }
25208   return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
25209                      DAG.getVTList(MVT::i32, MVT::Other),
25210                      Op.getOperand(0), Op.getOperand(1));
25211 }
25212 
25213 SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
25214                                                 SelectionDAG &DAG) const {
25215   SDLoc DL(Op);
25216   return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
25217                      Op.getOperand(0), Op.getOperand(1));
25218 }
25219 
25220 SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
25221                                                        SelectionDAG &DAG) const {
25222   SDLoc DL(Op);
25223   return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
25224                      Op.getOperand(0));
25225 }
25226 
25227 static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
25228   return Op.getOperand(0);
25229 }
25230 
25231 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
25232                                                 SelectionDAG &DAG) const {
25233   SDValue Root = Op.getOperand(0);
25234   SDValue Trmp = Op.getOperand(1); // trampoline
25235   SDValue FPtr = Op.getOperand(2); // nested function
25236   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
25237   SDLoc dl (Op);
25238 
25239   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
25240   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
25241 
25242   if (Subtarget.is64Bit()) {
25243     SDValue OutChains[6];
25244 
25245     // Large code-model.
25246     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
25247     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
25248 
25249     const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
25250     const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
25251 
25252     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
25253 
25254     // Load the pointer to the nested function into R11.
25255     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
25256     SDValue Addr = Trmp;
25257     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
25258                                 Addr, MachinePointerInfo(TrmpAddr));
25259 
25260     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
25261                        DAG.getConstant(2, dl, MVT::i64));
25262     OutChains[1] =
25263         DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2),
25264                      /* Alignment = */ 2);
25265 
25266     // Load the 'nest' parameter value into R10.
25267     // R10 is specified in X86CallingConv.td
25268     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
25269     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
25270                        DAG.getConstant(10, dl, MVT::i64));
25271     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
25272                                 Addr, MachinePointerInfo(TrmpAddr, 10));
25273 
25274     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
25275                        DAG.getConstant(12, dl, MVT::i64));
25276     OutChains[3] =
25277         DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12),
25278                      /* Alignment = */ 2);
25279 
25280     // Jump to the nested function.
25281     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
25282     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
25283                        DAG.getConstant(20, dl, MVT::i64));
25284     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
25285                                 Addr, MachinePointerInfo(TrmpAddr, 20));
25286 
25287     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
25288     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
25289                        DAG.getConstant(22, dl, MVT::i64));
25290     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
25291                                 Addr, MachinePointerInfo(TrmpAddr, 22));
25292 
25293     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
25294   } else {
25295     const Function *Func =
25296       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
25297     CallingConv::ID CC = Func->getCallingConv();
25298     unsigned NestReg;
25299 
25300     switch (CC) {
25301     default:
25302       llvm_unreachable("Unsupported calling convention");
25303     case CallingConv::C:
25304     case CallingConv::X86_StdCall: {
25305       // Pass 'nest' parameter in ECX.
25306       // Must be kept in sync with X86CallingConv.td
25307       NestReg = X86::ECX;
25308 
25309       // Check that ECX wasn't needed by an 'inreg' parameter.
25310       FunctionType *FTy = Func->getFunctionType();
25311       const AttributeList &Attrs = Func->getAttributes();
25312 
25313       if (!Attrs.isEmpty() && !Func->isVarArg()) {
25314         unsigned InRegCount = 0;
25315         unsigned Idx = 1;
25316 
25317         for (FunctionType::param_iterator I = FTy->param_begin(),
25318              E = FTy->param_end(); I != E; ++I, ++Idx)
25319           if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
25320             auto &DL = DAG.getDataLayout();
25321             // FIXME: should only count parameters that are lowered to integers.
25322             InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
25323           }
25324 
25325         if (InRegCount > 2) {
25326           report_fatal_error("Nest register in use - reduce number of inreg"
25327                              " parameters!");
25328         }
25329       }
25330       break;
25331     }
25332     case CallingConv::X86_FastCall:
25333     case CallingConv::X86_ThisCall:
25334     case CallingConv::Fast:
25335     case CallingConv::Tail:
25336       // Pass 'nest' parameter in EAX.
25337       // Must be kept in sync with X86CallingConv.td
25338       NestReg = X86::EAX;
25339       break;
25340     }
25341 
25342     SDValue OutChains[4];
25343     SDValue Addr, Disp;
25344 
25345     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
25346                        DAG.getConstant(10, dl, MVT::i32));
25347     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
25348 
25349     // This is storing the opcode for MOV32ri.
25350     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
25351     const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
25352     OutChains[0] =
25353         DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8),
25354                      Trmp, MachinePointerInfo(TrmpAddr));
25355 
25356     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
25357                        DAG.getConstant(1, dl, MVT::i32));
25358     OutChains[1] =
25359         DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1),
25360                      /* Alignment = */ 1);
25361 
25362     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
25363     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
25364                        DAG.getConstant(5, dl, MVT::i32));
25365     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
25366                                 Addr, MachinePointerInfo(TrmpAddr, 5),
25367                                 /* Alignment = */ 1);
25368 
25369     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
25370                        DAG.getConstant(6, dl, MVT::i32));
25371     OutChains[3] =
25372         DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6),
25373                      /* Alignment = */ 1);
25374 
25375     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
25376   }
25377 }
25378 
25379 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
25380                                             SelectionDAG &DAG) const {
25381   /*
25382    The rounding mode is in bits 11:10 of FPSR, and has the following
25383    settings:
25384      00 Round to nearest
25385      01 Round to -inf
25386      10 Round to +inf
25387      11 Round to 0
25388 
25389   FLT_ROUNDS, on the other hand, expects the following:
25390     -1 Undefined
25391      0 Round to 0
25392      1 Round to nearest
25393      2 Round to +inf
25394      3 Round to -inf
25395 
25396   To perform the conversion, we do:
25397     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
25398   */
25399 
25400   MachineFunction &MF = DAG.getMachineFunction();
25401   const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
25402   const Align StackAlignment(TFI.getStackAlignment());
25403   MVT VT = Op.getSimpleValueType();
25404   SDLoc DL(Op);
25405 
25406   // Save FP Control Word to stack slot
25407   int SSFI =
25408       MF.getFrameInfo().CreateStackObject(2, StackAlignment.value(), false);
25409   SDValue StackSlot =
25410       DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
25411 
25412   MachineMemOperand *MMO =
25413       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
25414                               MachineMemOperand::MOStore, 2, 2);
25415 
25416   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
25417   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
25418                                           DAG.getVTList(MVT::Other),
25419                                           Ops, MVT::i16, MMO);
25420 
25421   // Load FP Control Word from stack slot
25422   SDValue CWD =
25423       DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo());
25424 
25425   // Transform as necessary
25426   SDValue CWD1 =
25427     DAG.getNode(ISD::SRL, DL, MVT::i16,
25428                 DAG.getNode(ISD::AND, DL, MVT::i16,
25429                             CWD, DAG.getConstant(0x800, DL, MVT::i16)),
25430                 DAG.getConstant(11, DL, MVT::i8));
25431   SDValue CWD2 =
25432     DAG.getNode(ISD::SRL, DL, MVT::i16,
25433                 DAG.getNode(ISD::AND, DL, MVT::i16,
25434                             CWD, DAG.getConstant(0x400, DL, MVT::i16)),
25435                 DAG.getConstant(9, DL, MVT::i8));
25436 
25437   SDValue RetVal =
25438     DAG.getNode(ISD::AND, DL, MVT::i16,
25439                 DAG.getNode(ISD::ADD, DL, MVT::i16,
25440                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
25441                             DAG.getConstant(1, DL, MVT::i16)),
25442                 DAG.getConstant(3, DL, MVT::i16));
25443 
25444   return DAG.getNode((VT.getSizeInBits() < 16 ?
25445                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
25446 }
25447 
25448 // Split an unary integer op into 2 half sized ops.
25449 static SDValue LowerVectorIntUnary(SDValue Op, SelectionDAG &DAG) {
25450   MVT VT = Op.getSimpleValueType();
25451   unsigned NumElems = VT.getVectorNumElements();
25452   unsigned SizeInBits = VT.getSizeInBits();
25453   MVT EltVT = VT.getVectorElementType();
25454   SDValue Src = Op.getOperand(0);
25455   assert(EltVT == Src.getSimpleValueType().getVectorElementType() &&
25456          "Src and Op should have the same element type!");
25457 
25458   // Extract the Lo/Hi vectors
25459   SDLoc dl(Op);
25460   SDValue Lo = extractSubVector(Src, 0, DAG, dl, SizeInBits / 2);
25461   SDValue Hi = extractSubVector(Src, NumElems / 2, DAG, dl, SizeInBits / 2);
25462 
25463   MVT NewVT = MVT::getVectorVT(EltVT, NumElems / 2);
25464   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
25465                      DAG.getNode(Op.getOpcode(), dl, NewVT, Lo),
25466                      DAG.getNode(Op.getOpcode(), dl, NewVT, Hi));
25467 }
25468 
25469 // Decompose 256-bit ops into smaller 128-bit ops.
25470 static SDValue Lower256IntUnary(SDValue Op, SelectionDAG &DAG) {
25471   assert(Op.getSimpleValueType().is256BitVector() &&
25472          Op.getSimpleValueType().isInteger() &&
25473          "Only handle AVX 256-bit vector integer operation");
25474   return LowerVectorIntUnary(Op, DAG);
25475 }
25476 
25477 // Decompose 512-bit ops into smaller 256-bit ops.
25478 static SDValue Lower512IntUnary(SDValue Op, SelectionDAG &DAG) {
25479   assert(Op.getSimpleValueType().is512BitVector() &&
25480          Op.getSimpleValueType().isInteger() &&
25481          "Only handle AVX 512-bit vector integer operation");
25482   return LowerVectorIntUnary(Op, DAG);
25483 }
25484 
25485 /// Lower a vector CTLZ using native supported vector CTLZ instruction.
25486 //
25487 // i8/i16 vector implemented using dword LZCNT vector instruction
25488 // ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
25489 // split the vector, perform operation on it's Lo a Hi part and
25490 // concatenate the results.
25491 static SDValue LowerVectorCTLZ_AVX512CDI(SDValue Op, SelectionDAG &DAG,
25492                                          const X86Subtarget &Subtarget) {
25493   assert(Op.getOpcode() == ISD::CTLZ);
25494   SDLoc dl(Op);
25495   MVT VT = Op.getSimpleValueType();
25496   MVT EltVT = VT.getVectorElementType();
25497   unsigned NumElems = VT.getVectorNumElements();
25498 
25499   assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
25500           "Unsupported element type");
25501 
25502   // Split vector, it's Lo and Hi parts will be handled in next iteration.
25503   if (NumElems > 16 ||
25504       (NumElems == 16 && !Subtarget.canExtendTo512DQ()))
25505     return LowerVectorIntUnary(Op, DAG);
25506 
25507   MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
25508   assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
25509           "Unsupported value type for operation");
25510 
25511   // Use native supported vector instruction vplzcntd.
25512   Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
25513   SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
25514   SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
25515   SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
25516 
25517   return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
25518 }
25519 
25520 // Lower CTLZ using a PSHUFB lookup table implementation.
25521 static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL,
25522                                        const X86Subtarget &Subtarget,
25523                                        SelectionDAG &DAG) {
25524   MVT VT = Op.getSimpleValueType();
25525   int NumElts = VT.getVectorNumElements();
25526   int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8);
25527   MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes);
25528 
25529   // Per-nibble leading zero PSHUFB lookup table.
25530   const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2,
25531                        /* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1,
25532                        /* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0,
25533                        /* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0};
25534 
25535   SmallVector<SDValue, 64> LUTVec;
25536   for (int i = 0; i < NumBytes; ++i)
25537     LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
25538   SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec);
25539 
25540   // Begin by bitcasting the input to byte vector, then split those bytes
25541   // into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them.
25542   // If the hi input nibble is zero then we add both results together, otherwise
25543   // we just take the hi result (by masking the lo result to zero before the
25544   // add).
25545   SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0));
25546   SDValue Zero = DAG.getConstant(0, DL, CurrVT);
25547 
25548   SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT);
25549   SDValue Lo = Op0;
25550   SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift);
25551   SDValue HiZ;
25552   if (CurrVT.is512BitVector()) {
25553     MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
25554     HiZ = DAG.getSetCC(DL, MaskVT, Hi, Zero, ISD::SETEQ);
25555     HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
25556   } else {
25557     HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ);
25558   }
25559 
25560   Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo);
25561   Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi);
25562   Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ);
25563   SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi);
25564 
25565   // Merge result back from vXi8 back to VT, working on the lo/hi halves
25566   // of the current vector width in the same way we did for the nibbles.
25567   // If the upper half of the input element is zero then add the halves'
25568   // leading zero counts together, otherwise just use the upper half's.
25569   // Double the width of the result until we are at target width.
25570   while (CurrVT != VT) {
25571     int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits();
25572     int CurrNumElts = CurrVT.getVectorNumElements();
25573     MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2);
25574     MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2);
25575     SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT);
25576 
25577     // Check if the upper half of the input element is zero.
25578     if (CurrVT.is512BitVector()) {
25579       MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
25580       HiZ = DAG.getSetCC(DL, MaskVT, DAG.getBitcast(CurrVT, Op0),
25581                          DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
25582       HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
25583     } else {
25584       HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0),
25585                          DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
25586     }
25587     HiZ = DAG.getBitcast(NextVT, HiZ);
25588 
25589     // Move the upper/lower halves to the lower bits as we'll be extending to
25590     // NextVT. Mask the lower result to zero if HiZ is true and add the results
25591     // together.
25592     SDValue ResNext = Res = DAG.getBitcast(NextVT, Res);
25593     SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift);
25594     SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift);
25595     R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1);
25596     Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1);
25597     CurrVT = NextVT;
25598   }
25599 
25600   return Res;
25601 }
25602 
25603 static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL,
25604                                const X86Subtarget &Subtarget,
25605                                SelectionDAG &DAG) {
25606   MVT VT = Op.getSimpleValueType();
25607 
25608   if (Subtarget.hasCDI() &&
25609       // vXi8 vectors need to be promoted to 512-bits for vXi32.
25610       (Subtarget.canExtendTo512DQ() || VT.getVectorElementType() != MVT::i8))
25611     return LowerVectorCTLZ_AVX512CDI(Op, DAG, Subtarget);
25612 
25613   // Decompose 256-bit ops into smaller 128-bit ops.
25614   if (VT.is256BitVector() && !Subtarget.hasInt256())
25615     return Lower256IntUnary(Op, DAG);
25616 
25617   // Decompose 512-bit ops into smaller 256-bit ops.
25618   if (VT.is512BitVector() && !Subtarget.hasBWI())
25619     return Lower512IntUnary(Op, DAG);
25620 
25621   assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB");
25622   return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG);
25623 }
25624 
25625 static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget,
25626                          SelectionDAG &DAG) {
25627   MVT VT = Op.getSimpleValueType();
25628   MVT OpVT = VT;
25629   unsigned NumBits = VT.getSizeInBits();
25630   SDLoc dl(Op);
25631   unsigned Opc = Op.getOpcode();
25632 
25633   if (VT.isVector())
25634     return LowerVectorCTLZ(Op, dl, Subtarget, DAG);
25635 
25636   Op = Op.getOperand(0);
25637   if (VT == MVT::i8) {
25638     // Zero extend to i32 since there is not an i8 bsr.
25639     OpVT = MVT::i32;
25640     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
25641   }
25642 
25643   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
25644   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
25645   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
25646 
25647   if (Opc == ISD::CTLZ) {
25648     // If src is zero (i.e. bsr sets ZF), returns NumBits.
25649     SDValue Ops[] = {Op, DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
25650                      DAG.getTargetConstant(X86::COND_E, dl, MVT::i8),
25651                      Op.getValue(1)};
25652     Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
25653   }
25654 
25655   // Finally xor with NumBits-1.
25656   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
25657                    DAG.getConstant(NumBits - 1, dl, OpVT));
25658 
25659   if (VT == MVT::i8)
25660     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
25661   return Op;
25662 }
25663 
25664 static SDValue LowerCTTZ(SDValue Op, const X86Subtarget &Subtarget,
25665                          SelectionDAG &DAG) {
25666   MVT VT = Op.getSimpleValueType();
25667   unsigned NumBits = VT.getScalarSizeInBits();
25668   SDValue N0 = Op.getOperand(0);
25669   SDLoc dl(Op);
25670 
25671   assert(!VT.isVector() && Op.getOpcode() == ISD::CTTZ &&
25672          "Only scalar CTTZ requires custom lowering");
25673 
25674   // Issue a bsf (scan bits forward) which also sets EFLAGS.
25675   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
25676   Op = DAG.getNode(X86ISD::BSF, dl, VTs, N0);
25677 
25678   // If src is zero (i.e. bsf sets ZF), returns NumBits.
25679   SDValue Ops[] = {Op, DAG.getConstant(NumBits, dl, VT),
25680                    DAG.getTargetConstant(X86::COND_E, dl, MVT::i8),
25681                    Op.getValue(1)};
25682   return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
25683 }
25684 
25685 /// Break a 256-bit integer operation into two new 128-bit ones and then
25686 /// concatenate the result back.
25687 static SDValue split256IntArith(SDValue Op, SelectionDAG &DAG) {
25688   MVT VT = Op.getSimpleValueType();
25689 
25690   assert(VT.is256BitVector() && VT.isInteger() &&
25691          "Unsupported value type for operation");
25692 
25693   unsigned NumElems = VT.getVectorNumElements();
25694   SDLoc dl(Op);
25695 
25696   // Extract the LHS vectors
25697   SDValue LHS = Op.getOperand(0);
25698   SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
25699   SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
25700 
25701   // Extract the RHS vectors
25702   SDValue RHS = Op.getOperand(1);
25703   SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
25704   SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
25705 
25706   MVT EltVT = VT.getVectorElementType();
25707   MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
25708 
25709   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
25710                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
25711                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
25712 }
25713 
25714 /// Break a 512-bit integer operation into two new 256-bit ones and then
25715 /// concatenate the result back.
25716 static SDValue split512IntArith(SDValue Op, SelectionDAG &DAG) {
25717   MVT VT = Op.getSimpleValueType();
25718 
25719   assert(VT.is512BitVector() && VT.isInteger() &&
25720          "Unsupported value type for operation");
25721 
25722   unsigned NumElems = VT.getVectorNumElements();
25723   SDLoc dl(Op);
25724 
25725   // Extract the LHS vectors
25726   SDValue LHS = Op.getOperand(0);
25727   SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl);
25728   SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl);
25729 
25730   // Extract the RHS vectors
25731   SDValue RHS = Op.getOperand(1);
25732   SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl);
25733   SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl);
25734 
25735   MVT EltVT = VT.getVectorElementType();
25736   MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
25737 
25738   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
25739                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
25740                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
25741 }
25742 
25743 static SDValue lowerAddSub(SDValue Op, SelectionDAG &DAG,
25744                            const X86Subtarget &Subtarget) {
25745   MVT VT = Op.getSimpleValueType();
25746   if (VT == MVT::i16 || VT == MVT::i32)
25747     return lowerAddSubToHorizontalOp(Op, DAG, Subtarget);
25748 
25749   if (VT.getScalarType() == MVT::i1)
25750     return DAG.getNode(ISD::XOR, SDLoc(Op), VT,
25751                        Op.getOperand(0), Op.getOperand(1));
25752 
25753   assert(Op.getSimpleValueType().is256BitVector() &&
25754          Op.getSimpleValueType().isInteger() &&
25755          "Only handle AVX 256-bit vector integer operation");
25756   return split256IntArith(Op, DAG);
25757 }
25758 
25759 static SDValue LowerADDSAT_SUBSAT(SDValue Op, SelectionDAG &DAG,
25760                                   const X86Subtarget &Subtarget) {
25761   MVT VT = Op.getSimpleValueType();
25762   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
25763   unsigned Opcode = Op.getOpcode();
25764   if (VT.getScalarType() == MVT::i1) {
25765     SDLoc dl(Op);
25766     switch (Opcode) {
25767     default: llvm_unreachable("Expected saturated arithmetic opcode");
25768     case ISD::UADDSAT:
25769     case ISD::SADDSAT:
25770       // *addsat i1 X, Y --> X | Y
25771       return DAG.getNode(ISD::OR, dl, VT, X, Y);
25772     case ISD::USUBSAT:
25773     case ISD::SSUBSAT:
25774       // *subsat i1 X, Y --> X & ~Y
25775       return DAG.getNode(ISD::AND, dl, VT, X, DAG.getNOT(dl, Y, VT));
25776     }
25777   }
25778 
25779   if (VT.is128BitVector()) {
25780     // Avoid the generic expansion with min/max if we don't have pminu*/pmaxu*.
25781     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25782     EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
25783                                                  *DAG.getContext(), VT);
25784     SDLoc DL(Op);
25785     if (Opcode == ISD::UADDSAT && !TLI.isOperationLegal(ISD::UMIN, VT)) {
25786       // uaddsat X, Y --> (X >u (X + Y)) ? -1 : X + Y
25787       SDValue Add = DAG.getNode(ISD::ADD, DL, VT, X, Y);
25788       SDValue Cmp = DAG.getSetCC(DL, SetCCResultType, X, Add, ISD::SETUGT);
25789       return DAG.getSelect(DL, VT, Cmp, DAG.getAllOnesConstant(DL, VT), Add);
25790     }
25791     if (Opcode == ISD::USUBSAT && !TLI.isOperationLegal(ISD::UMAX, VT)) {
25792       // usubsat X, Y --> (X >u Y) ? X - Y : 0
25793       SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, X, Y);
25794       SDValue Cmp = DAG.getSetCC(DL, SetCCResultType, X, Y, ISD::SETUGT);
25795       return DAG.getSelect(DL, VT, Cmp, Sub, DAG.getConstant(0, DL, VT));
25796     }
25797     // Use default expansion.
25798     return SDValue();
25799   }
25800 
25801   assert(Op.getSimpleValueType().is256BitVector() &&
25802          Op.getSimpleValueType().isInteger() &&
25803          "Only handle AVX 256-bit vector integer operation");
25804   return split256IntArith(Op, DAG);
25805 }
25806 
25807 static SDValue LowerABS(SDValue Op, const X86Subtarget &Subtarget,
25808                         SelectionDAG &DAG) {
25809   MVT VT = Op.getSimpleValueType();
25810   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) {
25811     // Since X86 does not have CMOV for 8-bit integer, we don't convert
25812     // 8-bit integer abs to NEG and CMOV.
25813     SDLoc DL(Op);
25814     SDValue N0 = Op.getOperand(0);
25815     SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
25816                               DAG.getConstant(0, DL, VT), N0);
25817     SDValue Ops[] = {N0, Neg, DAG.getTargetConstant(X86::COND_GE, DL, MVT::i8),
25818                      SDValue(Neg.getNode(), 1)};
25819     return DAG.getNode(X86ISD::CMOV, DL, VT, Ops);
25820   }
25821 
25822   // ABS(vXi64 X) --> VPBLENDVPD(X, 0-X, X).
25823   if ((VT == MVT::v2i64 || VT == MVT::v4i64) && Subtarget.hasSSE41()) {
25824     SDLoc DL(Op);
25825     SDValue Src = Op.getOperand(0);
25826     SDValue Sub =
25827         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
25828     return DAG.getNode(X86ISD::BLENDV, DL, VT, Src, Sub, Src);
25829   }
25830 
25831   if (VT.is256BitVector() && !Subtarget.hasInt256()) {
25832     assert(VT.isInteger() &&
25833            "Only handle AVX 256-bit vector integer operation");
25834     return Lower256IntUnary(Op, DAG);
25835   }
25836 
25837   // Default to expand.
25838   return SDValue();
25839 }
25840 
25841 static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
25842   MVT VT = Op.getSimpleValueType();
25843 
25844   // For AVX1 cases, split to use legal ops (everything but v4i64).
25845   if (VT.getScalarType() != MVT::i64 && VT.is256BitVector())
25846     return split256IntArith(Op, DAG);
25847 
25848   SDLoc DL(Op);
25849   unsigned Opcode = Op.getOpcode();
25850   SDValue N0 = Op.getOperand(0);
25851   SDValue N1 = Op.getOperand(1);
25852 
25853   // For pre-SSE41, we can perform UMIN/UMAX v8i16 by flipping the signbit,
25854   // using the SMIN/SMAX instructions and flipping the signbit back.
25855   if (VT == MVT::v8i16) {
25856     assert((Opcode == ISD::UMIN || Opcode == ISD::UMAX) &&
25857            "Unexpected MIN/MAX opcode");
25858     SDValue Sign = DAG.getConstant(APInt::getSignedMinValue(16), DL, VT);
25859     N0 = DAG.getNode(ISD::XOR, DL, VT, N0, Sign);
25860     N1 = DAG.getNode(ISD::XOR, DL, VT, N1, Sign);
25861     Opcode = (Opcode == ISD::UMIN ? ISD::SMIN : ISD::SMAX);
25862     SDValue Result = DAG.getNode(Opcode, DL, VT, N0, N1);
25863     return DAG.getNode(ISD::XOR, DL, VT, Result, Sign);
25864   }
25865 
25866   // Else, expand to a compare/select.
25867   ISD::CondCode CC;
25868   switch (Opcode) {
25869   case ISD::SMIN: CC = ISD::CondCode::SETLT;  break;
25870   case ISD::SMAX: CC = ISD::CondCode::SETGT;  break;
25871   case ISD::UMIN: CC = ISD::CondCode::SETULT; break;
25872   case ISD::UMAX: CC = ISD::CondCode::SETUGT; break;
25873   default: llvm_unreachable("Unknown MINMAX opcode");
25874   }
25875 
25876   SDValue Cond = DAG.getSetCC(DL, VT, N0, N1, CC);
25877   return DAG.getSelect(DL, VT, Cond, N0, N1);
25878 }
25879 
25880 static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
25881                         SelectionDAG &DAG) {
25882   SDLoc dl(Op);
25883   MVT VT = Op.getSimpleValueType();
25884 
25885   if (VT.getScalarType() == MVT::i1)
25886     return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
25887 
25888   // Decompose 256-bit ops into 128-bit ops.
25889   if (VT.is256BitVector() && !Subtarget.hasInt256())
25890     return split256IntArith(Op, DAG);
25891 
25892   SDValue A = Op.getOperand(0);
25893   SDValue B = Op.getOperand(1);
25894 
25895   // Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16
25896   // vector pairs, multiply and truncate.
25897   if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) {
25898     unsigned NumElts = VT.getVectorNumElements();
25899 
25900     if ((VT == MVT::v16i8 && Subtarget.hasInt256()) ||
25901         (VT == MVT::v32i8 && Subtarget.canExtendTo512BW())) {
25902       MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
25903       return DAG.getNode(
25904           ISD::TRUNCATE, dl, VT,
25905           DAG.getNode(ISD::MUL, dl, ExVT,
25906                       DAG.getNode(ISD::ANY_EXTEND, dl, ExVT, A),
25907                       DAG.getNode(ISD::ANY_EXTEND, dl, ExVT, B)));
25908     }
25909 
25910     MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
25911 
25912     // Extract the lo/hi parts to any extend to i16.
25913     // We're going to mask off the low byte of each result element of the
25914     // pmullw, so it doesn't matter what's in the high byte of each 16-bit
25915     // element.
25916     SDValue Undef = DAG.getUNDEF(VT);
25917     SDValue ALo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, A, Undef));
25918     SDValue AHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, A, Undef));
25919 
25920     SDValue BLo, BHi;
25921     if (ISD::isBuildVectorOfConstantSDNodes(B.getNode())) {
25922       // If the LHS is a constant, manually unpackl/unpackh.
25923       SmallVector<SDValue, 16> LoOps, HiOps;
25924       for (unsigned i = 0; i != NumElts; i += 16) {
25925         for (unsigned j = 0; j != 8; ++j) {
25926           LoOps.push_back(DAG.getAnyExtOrTrunc(B.getOperand(i + j), dl,
25927                                                MVT::i16));
25928           HiOps.push_back(DAG.getAnyExtOrTrunc(B.getOperand(i + j + 8), dl,
25929                                                MVT::i16));
25930         }
25931       }
25932 
25933       BLo = DAG.getBuildVector(ExVT, dl, LoOps);
25934       BHi = DAG.getBuildVector(ExVT, dl, HiOps);
25935     } else {
25936       BLo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, B, Undef));
25937       BHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, B, Undef));
25938     }
25939 
25940     // Multiply, mask the lower 8bits of the lo/hi results and pack.
25941     SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
25942     SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
25943     RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
25944     RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
25945     return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
25946   }
25947 
25948   // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
25949   if (VT == MVT::v4i32) {
25950     assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() &&
25951            "Should not custom lower when pmulld is available!");
25952 
25953     // Extract the odd parts.
25954     static const int UnpackMask[] = { 1, -1, 3, -1 };
25955     SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
25956     SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
25957 
25958     // Multiply the even parts.
25959     SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64,
25960                                 DAG.getBitcast(MVT::v2i64, A),
25961                                 DAG.getBitcast(MVT::v2i64, B));
25962     // Now multiply odd parts.
25963     SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64,
25964                                DAG.getBitcast(MVT::v2i64, Aodds),
25965                                DAG.getBitcast(MVT::v2i64, Bodds));
25966 
25967     Evens = DAG.getBitcast(VT, Evens);
25968     Odds = DAG.getBitcast(VT, Odds);
25969 
25970     // Merge the two vectors back together with a shuffle. This expands into 2
25971     // shuffles.
25972     static const int ShufMask[] = { 0, 4, 2, 6 };
25973     return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
25974   }
25975 
25976   assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
25977          "Only know how to lower V2I64/V4I64/V8I64 multiply");
25978   assert(!Subtarget.hasDQI() && "DQI should use MULLQ");
25979 
25980   //  Ahi = psrlqi(a, 32);
25981   //  Bhi = psrlqi(b, 32);
25982   //
25983   //  AloBlo = pmuludq(a, b);
25984   //  AloBhi = pmuludq(a, Bhi);
25985   //  AhiBlo = pmuludq(Ahi, b);
25986   //
25987   //  Hi = psllqi(AloBhi + AhiBlo, 32);
25988   //  return AloBlo + Hi;
25989   KnownBits AKnown = DAG.computeKnownBits(A);
25990   KnownBits BKnown = DAG.computeKnownBits(B);
25991 
25992   APInt LowerBitsMask = APInt::getLowBitsSet(64, 32);
25993   bool ALoIsZero = LowerBitsMask.isSubsetOf(AKnown.Zero);
25994   bool BLoIsZero = LowerBitsMask.isSubsetOf(BKnown.Zero);
25995 
25996   APInt UpperBitsMask = APInt::getHighBitsSet(64, 32);
25997   bool AHiIsZero = UpperBitsMask.isSubsetOf(AKnown.Zero);
25998   bool BHiIsZero = UpperBitsMask.isSubsetOf(BKnown.Zero);
25999 
26000   SDValue Zero = DAG.getConstant(0, dl, VT);
26001 
26002   // Only multiply lo/hi halves that aren't known to be zero.
26003   SDValue AloBlo = Zero;
26004   if (!ALoIsZero && !BLoIsZero)
26005     AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
26006 
26007   SDValue AloBhi = Zero;
26008   if (!ALoIsZero && !BHiIsZero) {
26009     SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
26010     AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
26011   }
26012 
26013   SDValue AhiBlo = Zero;
26014   if (!AHiIsZero && !BLoIsZero) {
26015     SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
26016     AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
26017   }
26018 
26019   SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo);
26020   Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG);
26021 
26022   return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi);
26023 }
26024 
26025 static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
26026                          SelectionDAG &DAG) {
26027   SDLoc dl(Op);
26028   MVT VT = Op.getSimpleValueType();
26029   bool IsSigned = Op->getOpcode() == ISD::MULHS;
26030   unsigned NumElts = VT.getVectorNumElements();
26031   SDValue A = Op.getOperand(0);
26032   SDValue B = Op.getOperand(1);
26033 
26034   // Decompose 256-bit ops into 128-bit ops.
26035   if (VT.is256BitVector() && !Subtarget.hasInt256())
26036     return split256IntArith(Op, DAG);
26037 
26038   if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) {
26039     assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
26040            (VT == MVT::v8i32 && Subtarget.hasInt256()) ||
26041            (VT == MVT::v16i32 && Subtarget.hasAVX512()));
26042 
26043     // PMULxD operations multiply each even value (starting at 0) of LHS with
26044     // the related value of RHS and produce a widen result.
26045     // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
26046     // => <2 x i64> <ae|cg>
26047     //
26048     // In other word, to have all the results, we need to perform two PMULxD:
26049     // 1. one with the even values.
26050     // 2. one with the odd values.
26051     // To achieve #2, with need to place the odd values at an even position.
26052     //
26053     // Place the odd value at an even position (basically, shift all values 1
26054     // step to the left):
26055     const int Mask[] = {1, -1,  3, -1,  5, -1,  7, -1,
26056                         9, -1, 11, -1, 13, -1, 15, -1};
26057     // <a|b|c|d> => <b|undef|d|undef>
26058     SDValue Odd0 = DAG.getVectorShuffle(VT, dl, A, A,
26059                                         makeArrayRef(&Mask[0], NumElts));
26060     // <e|f|g|h> => <f|undef|h|undef>
26061     SDValue Odd1 = DAG.getVectorShuffle(VT, dl, B, B,
26062                                         makeArrayRef(&Mask[0], NumElts));
26063 
26064     // Emit two multiplies, one for the lower 2 ints and one for the higher 2
26065     // ints.
26066     MVT MulVT = MVT::getVectorVT(MVT::i64, NumElts / 2);
26067     unsigned Opcode =
26068         (IsSigned && Subtarget.hasSSE41()) ? X86ISD::PMULDQ : X86ISD::PMULUDQ;
26069     // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
26070     // => <2 x i64> <ae|cg>
26071     SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT,
26072                                                   DAG.getBitcast(MulVT, A),
26073                                                   DAG.getBitcast(MulVT, B)));
26074     // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
26075     // => <2 x i64> <bf|dh>
26076     SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT,
26077                                                   DAG.getBitcast(MulVT, Odd0),
26078                                                   DAG.getBitcast(MulVT, Odd1)));
26079 
26080     // Shuffle it back into the right order.
26081     SmallVector<int, 16> ShufMask(NumElts);
26082     for (int i = 0; i != (int)NumElts; ++i)
26083       ShufMask[i] = (i / 2) * 2 + ((i % 2) * NumElts) + 1;
26084 
26085     SDValue Res = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, ShufMask);
26086 
26087     // If we have a signed multiply but no PMULDQ fix up the result of an
26088     // unsigned multiply.
26089     if (IsSigned && !Subtarget.hasSSE41()) {
26090       SDValue Zero = DAG.getConstant(0, dl, VT);
26091       SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
26092                                DAG.getSetCC(dl, VT, Zero, A, ISD::SETGT), B);
26093       SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
26094                                DAG.getSetCC(dl, VT, Zero, B, ISD::SETGT), A);
26095 
26096       SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
26097       Res = DAG.getNode(ISD::SUB, dl, VT, Res, Fixup);
26098     }
26099 
26100     return Res;
26101   }
26102 
26103   // Only i8 vectors should need custom lowering after this.
26104   assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256()) ||
26105          (VT == MVT::v64i8 && Subtarget.hasBWI())) &&
26106          "Unsupported vector type");
26107 
26108   // Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply,
26109   // logical shift down the upper half and pack back to i8.
26110 
26111   // With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack
26112   // and then ashr/lshr the upper bits down to the lower bits before multiply.
26113   unsigned ExAVX = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
26114 
26115   if ((VT == MVT::v16i8 && Subtarget.hasInt256()) ||
26116       (VT == MVT::v32i8 && Subtarget.canExtendTo512BW())) {
26117     MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts);
26118     SDValue ExA = DAG.getNode(ExAVX, dl, ExVT, A);
26119     SDValue ExB = DAG.getNode(ExAVX, dl, ExVT, B);
26120     SDValue Mul = DAG.getNode(ISD::MUL, dl, ExVT, ExA, ExB);
26121     Mul = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, Mul, 8, DAG);
26122     return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
26123   }
26124 
26125   // For signed 512-bit vectors, split into 256-bit vectors to allow the
26126   // sign-extension to occur.
26127   if (VT == MVT::v64i8 && IsSigned)
26128     return split512IntArith(Op, DAG);
26129 
26130   // Signed AVX2 implementation - extend xmm subvectors to ymm.
26131   if (VT == MVT::v32i8 && IsSigned) {
26132     MVT ExVT = MVT::v16i16;
26133     SDValue ALo = extract128BitVector(A, 0, DAG, dl);
26134     SDValue BLo = extract128BitVector(B, 0, DAG, dl);
26135     SDValue AHi = extract128BitVector(A, NumElts / 2, DAG, dl);
26136     SDValue BHi = extract128BitVector(B, NumElts / 2, DAG, dl);
26137     ALo = DAG.getNode(ExAVX, dl, ExVT, ALo);
26138     BLo = DAG.getNode(ExAVX, dl, ExVT, BLo);
26139     AHi = DAG.getNode(ExAVX, dl, ExVT, AHi);
26140     BHi = DAG.getNode(ExAVX, dl, ExVT, BHi);
26141     SDValue Lo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
26142     SDValue Hi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
26143     Lo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, Lo, 8, DAG);
26144     Hi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, Hi, 8, DAG);
26145 
26146     // Bitcast back to VT and then pack all the even elements from Lo and Hi.
26147     // Shuffle lowering should turn this into PACKUS+PERMQ
26148     Lo = DAG.getBitcast(VT, Lo);
26149     Hi = DAG.getBitcast(VT, Hi);
26150     return DAG.getVectorShuffle(VT, dl, Lo, Hi,
26151                                 { 0,  2,  4,  6,  8, 10, 12, 14,
26152                                  16, 18, 20, 22, 24, 26, 28, 30,
26153                                  32, 34, 36, 38, 40, 42, 44, 46,
26154                                  48, 50, 52, 54, 56, 58, 60, 62});
26155   }
26156 
26157   // For signed v16i8 and all unsigned vXi8 we will unpack the low and high
26158   // half of each 128 bit lane to widen to a vXi16 type. Do the multiplies,
26159   // shift the results and pack the half lane results back together.
26160 
26161   MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
26162 
26163   static const int PSHUFDMask[] = { 8,  9, 10, 11, 12, 13, 14, 15,
26164                                    -1, -1, -1, -1, -1, -1, -1, -1};
26165 
26166   // Extract the lo parts and zero/sign extend to i16.
26167   // Only use SSE4.1 instructions for signed v16i8 where using unpack requires
26168   // shifts to sign extend. Using unpack for unsigned only requires an xor to
26169   // create zeros and a copy due to tied registers contraints pre-avx. But using
26170   // zero_extend_vector_inreg would require an additional pshufd for the high
26171   // part.
26172 
26173   SDValue ALo, AHi;
26174   if (IsSigned && VT == MVT::v16i8 && Subtarget.hasSSE41()) {
26175     ALo = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, A);
26176 
26177     AHi = DAG.getVectorShuffle(VT, dl, A, A, PSHUFDMask);
26178     AHi = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, AHi);
26179   } else if (IsSigned) {
26180     ALo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), A));
26181     AHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), A));
26182 
26183     ALo = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, ALo, 8, DAG);
26184     AHi = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, AHi, 8, DAG);
26185   } else {
26186     ALo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, A,
26187                                           DAG.getConstant(0, dl, VT)));
26188     AHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, A,
26189                                           DAG.getConstant(0, dl, VT)));
26190   }
26191 
26192   SDValue BLo, BHi;
26193   if (ISD::isBuildVectorOfConstantSDNodes(B.getNode())) {
26194     // If the LHS is a constant, manually unpackl/unpackh and extend.
26195     SmallVector<SDValue, 16> LoOps, HiOps;
26196     for (unsigned i = 0; i != NumElts; i += 16) {
26197       for (unsigned j = 0; j != 8; ++j) {
26198         SDValue LoOp = B.getOperand(i + j);
26199         SDValue HiOp = B.getOperand(i + j + 8);
26200 
26201         if (IsSigned) {
26202           LoOp = DAG.getSExtOrTrunc(LoOp, dl, MVT::i16);
26203           HiOp = DAG.getSExtOrTrunc(HiOp, dl, MVT::i16);
26204         } else {
26205           LoOp = DAG.getZExtOrTrunc(LoOp, dl, MVT::i16);
26206           HiOp = DAG.getZExtOrTrunc(HiOp, dl, MVT::i16);
26207         }
26208 
26209         LoOps.push_back(LoOp);
26210         HiOps.push_back(HiOp);
26211       }
26212     }
26213 
26214     BLo = DAG.getBuildVector(ExVT, dl, LoOps);
26215     BHi = DAG.getBuildVector(ExVT, dl, HiOps);
26216   } else if (IsSigned && VT == MVT::v16i8 && Subtarget.hasSSE41()) {
26217     BLo = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, B);
26218 
26219     BHi = DAG.getVectorShuffle(VT, dl, B, B, PSHUFDMask);
26220     BHi = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, BHi);
26221   } else if (IsSigned) {
26222     BLo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), B));
26223     BHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), B));
26224 
26225     BLo = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, BLo, 8, DAG);
26226     BHi = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, BHi, 8, DAG);
26227   } else {
26228     BLo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, B,
26229                                           DAG.getConstant(0, dl, VT)));
26230     BHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, B,
26231                                           DAG.getConstant(0, dl, VT)));
26232   }
26233 
26234   // Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and
26235   // pack back to vXi8.
26236   SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
26237   SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
26238   RLo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, RLo, 8, DAG);
26239   RHi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, RHi, 8, DAG);
26240 
26241   // Bitcast back to VT and then pack all the even elements from Lo and Hi.
26242   return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
26243 }
26244 
26245 SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
26246   assert(Subtarget.isTargetWin64() && "Unexpected target");
26247   EVT VT = Op.getValueType();
26248   assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
26249          "Unexpected return type for lowering");
26250 
26251   RTLIB::Libcall LC;
26252   bool isSigned;
26253   switch (Op->getOpcode()) {
26254   default: llvm_unreachable("Unexpected request for libcall!");
26255   case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
26256   case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
26257   case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
26258   case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
26259   case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
26260   case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
26261   }
26262 
26263   SDLoc dl(Op);
26264   SDValue InChain = DAG.getEntryNode();
26265 
26266   TargetLowering::ArgListTy Args;
26267   TargetLowering::ArgListEntry Entry;
26268   for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
26269     EVT ArgVT = Op->getOperand(i).getValueType();
26270     assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
26271            "Unexpected argument type for lowering");
26272     SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
26273     Entry.Node = StackPtr;
26274     InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr,
26275                            MachinePointerInfo(), /* Alignment = */ 16);
26276     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
26277     Entry.Ty = PointerType::get(ArgTy,0);
26278     Entry.IsSExt = false;
26279     Entry.IsZExt = false;
26280     Args.push_back(Entry);
26281   }
26282 
26283   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
26284                                          getPointerTy(DAG.getDataLayout()));
26285 
26286   TargetLowering::CallLoweringInfo CLI(DAG);
26287   CLI.setDebugLoc(dl)
26288       .setChain(InChain)
26289       .setLibCallee(
26290           getLibcallCallingConv(LC),
26291           static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee,
26292           std::move(Args))
26293       .setInRegister()
26294       .setSExtResult(isSigned)
26295       .setZExtResult(!isSigned);
26296 
26297   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
26298   return DAG.getBitcast(VT, CallInfo.first);
26299 }
26300 
26301 // Return true if the required (according to Opcode) shift-imm form is natively
26302 // supported by the Subtarget
26303 static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget,
26304                                         unsigned Opcode) {
26305   if (VT.getScalarSizeInBits() < 16)
26306     return false;
26307 
26308   if (VT.is512BitVector() && Subtarget.hasAVX512() &&
26309       (VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI()))
26310     return true;
26311 
26312   bool LShift = (VT.is128BitVector() && Subtarget.hasSSE2()) ||
26313                 (VT.is256BitVector() && Subtarget.hasInt256());
26314 
26315   bool AShift = LShift && (Subtarget.hasAVX512() ||
26316                            (VT != MVT::v2i64 && VT != MVT::v4i64));
26317   return (Opcode == ISD::SRA) ? AShift : LShift;
26318 }
26319 
26320 // The shift amount is a variable, but it is the same for all vector lanes.
26321 // These instructions are defined together with shift-immediate.
26322 static
26323 bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget,
26324                                       unsigned Opcode) {
26325   return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
26326 }
26327 
26328 // Return true if the required (according to Opcode) variable-shift form is
26329 // natively supported by the Subtarget
26330 static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget,
26331                                     unsigned Opcode) {
26332 
26333   if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16)
26334     return false;
26335 
26336   // vXi16 supported only on AVX-512, BWI
26337   if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI())
26338     return false;
26339 
26340   if (Subtarget.hasAVX512())
26341     return true;
26342 
26343   bool LShift = VT.is128BitVector() || VT.is256BitVector();
26344   bool AShift = LShift &&  VT != MVT::v2i64 && VT != MVT::v4i64;
26345   return (Opcode == ISD::SRA) ? AShift : LShift;
26346 }
26347 
26348 static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
26349                                          const X86Subtarget &Subtarget) {
26350   MVT VT = Op.getSimpleValueType();
26351   SDLoc dl(Op);
26352   SDValue R = Op.getOperand(0);
26353   SDValue Amt = Op.getOperand(1);
26354   unsigned X86Opc = getTargetVShiftUniformOpcode(Op.getOpcode(), false);
26355 
26356   auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
26357     assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
26358     MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
26359     SDValue Ex = DAG.getBitcast(ExVT, R);
26360 
26361     // ashr(R, 63) === cmp_slt(R, 0)
26362     if (ShiftAmt == 63 && Subtarget.hasSSE42()) {
26363       assert((VT != MVT::v4i64 || Subtarget.hasInt256()) &&
26364              "Unsupported PCMPGT op");
26365       return DAG.getNode(X86ISD::PCMPGT, dl, VT, DAG.getConstant(0, dl, VT), R);
26366     }
26367 
26368     if (ShiftAmt >= 32) {
26369       // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
26370       SDValue Upper =
26371           getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
26372       SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
26373                                                  ShiftAmt - 32, DAG);
26374       if (VT == MVT::v2i64)
26375         Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
26376       if (VT == MVT::v4i64)
26377         Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
26378                                   {9, 1, 11, 3, 13, 5, 15, 7});
26379     } else {
26380       // SRA upper i32, SRL whole i64 and select lower i32.
26381       SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
26382                                                  ShiftAmt, DAG);
26383       SDValue Lower =
26384           getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
26385       Lower = DAG.getBitcast(ExVT, Lower);
26386       if (VT == MVT::v2i64)
26387         Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
26388       if (VT == MVT::v4i64)
26389         Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
26390                                   {8, 1, 10, 3, 12, 5, 14, 7});
26391     }
26392     return DAG.getBitcast(VT, Ex);
26393   };
26394 
26395   // Optimize shl/srl/sra with constant shift amount.
26396   APInt APIntShiftAmt;
26397   if (!X86::isConstantSplat(Amt, APIntShiftAmt))
26398     return SDValue();
26399 
26400   // If the shift amount is out of range, return undef.
26401   if (APIntShiftAmt.uge(VT.getScalarSizeInBits()))
26402     return DAG.getUNDEF(VT);
26403 
26404   uint64_t ShiftAmt = APIntShiftAmt.getZExtValue();
26405 
26406   if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
26407     return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
26408 
26409   // i64 SRA needs to be performed as partial shifts.
26410   if (((!Subtarget.hasXOP() && VT == MVT::v2i64) ||
26411        (Subtarget.hasInt256() && VT == MVT::v4i64)) &&
26412       Op.getOpcode() == ISD::SRA)
26413     return ArithmeticShiftRight64(ShiftAmt);
26414 
26415   if (VT == MVT::v16i8 || (Subtarget.hasInt256() && VT == MVT::v32i8) ||
26416       VT == MVT::v64i8) {
26417     unsigned NumElts = VT.getVectorNumElements();
26418     MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
26419 
26420     // Simple i8 add case
26421     if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
26422       return DAG.getNode(ISD::ADD, dl, VT, R, R);
26423 
26424     // ashr(R, 7)  === cmp_slt(R, 0)
26425     if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
26426       SDValue Zeros = DAG.getConstant(0, dl, VT);
26427       if (VT.is512BitVector()) {
26428         assert(VT == MVT::v64i8 && "Unexpected element type!");
26429         SDValue CMP = DAG.getSetCC(dl, MVT::v64i1, Zeros, R, ISD::SETGT);
26430         return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP);
26431       }
26432       return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
26433     }
26434 
26435     // XOP can shift v16i8 directly instead of as shift v8i16 + mask.
26436     if (VT == MVT::v16i8 && Subtarget.hasXOP())
26437       return SDValue();
26438 
26439     if (Op.getOpcode() == ISD::SHL) {
26440       // Make a large shift.
26441       SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, R,
26442                                                ShiftAmt, DAG);
26443       SHL = DAG.getBitcast(VT, SHL);
26444       // Zero out the rightmost bits.
26445       APInt Mask = APInt::getHighBitsSet(8, 8 - ShiftAmt);
26446       return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getConstant(Mask, dl, VT));
26447     }
26448     if (Op.getOpcode() == ISD::SRL) {
26449       // Make a large shift.
26450       SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, R,
26451                                                ShiftAmt, DAG);
26452       SRL = DAG.getBitcast(VT, SRL);
26453       // Zero out the leftmost bits.
26454       return DAG.getNode(ISD::AND, dl, VT, SRL,
26455                          DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
26456     }
26457     if (Op.getOpcode() == ISD::SRA) {
26458       // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
26459       SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
26460 
26461       SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
26462       Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
26463       Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
26464       return Res;
26465     }
26466     llvm_unreachable("Unknown shift opcode.");
26467   }
26468 
26469   return SDValue();
26470 }
26471 
26472 static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
26473                                         const X86Subtarget &Subtarget) {
26474   MVT VT = Op.getSimpleValueType();
26475   SDLoc dl(Op);
26476   SDValue R = Op.getOperand(0);
26477   SDValue Amt = Op.getOperand(1);
26478   unsigned Opcode = Op.getOpcode();
26479   unsigned X86OpcI = getTargetVShiftUniformOpcode(Opcode, false);
26480   unsigned X86OpcV = getTargetVShiftUniformOpcode(Opcode, true);
26481 
26482   if (SDValue BaseShAmt = DAG.getSplatValue(Amt)) {
26483     if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Opcode)) {
26484       MVT EltVT = VT.getVectorElementType();
26485       assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
26486       if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
26487         BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
26488       else if (EltVT.bitsLT(MVT::i32))
26489         BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
26490 
26491       return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG);
26492     }
26493 
26494     // vXi8 shifts - shift as v8i16 + mask result.
26495     if (((VT == MVT::v16i8 && !Subtarget.canExtendTo512DQ()) ||
26496          (VT == MVT::v32i8 && !Subtarget.canExtendTo512BW()) ||
26497          VT == MVT::v64i8) &&
26498         !Subtarget.hasXOP()) {
26499       unsigned NumElts = VT.getVectorNumElements();
26500       MVT ExtVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
26501       if (SupportedVectorShiftWithBaseAmnt(ExtVT, Subtarget, Opcode)) {
26502         unsigned LogicalOp = (Opcode == ISD::SHL ? ISD::SHL : ISD::SRL);
26503         unsigned LogicalX86Op = getTargetVShiftUniformOpcode(LogicalOp, false);
26504         BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
26505 
26506         // Create the mask using vXi16 shifts. For shift-rights we need to move
26507         // the upper byte down before splatting the vXi8 mask.
26508         SDValue BitMask = DAG.getConstant(-1, dl, ExtVT);
26509         BitMask = getTargetVShiftNode(LogicalX86Op, dl, ExtVT, BitMask,
26510                                       BaseShAmt, Subtarget, DAG);
26511         if (Opcode != ISD::SHL)
26512           BitMask = getTargetVShiftByConstNode(LogicalX86Op, dl, ExtVT, BitMask,
26513                                                8, DAG);
26514         BitMask = DAG.getBitcast(VT, BitMask);
26515         BitMask = DAG.getVectorShuffle(VT, dl, BitMask, BitMask,
26516                                        SmallVector<int, 64>(NumElts, 0));
26517 
26518         SDValue Res = getTargetVShiftNode(LogicalX86Op, dl, ExtVT,
26519                                           DAG.getBitcast(ExtVT, R), BaseShAmt,
26520                                           Subtarget, DAG);
26521         Res = DAG.getBitcast(VT, Res);
26522         Res = DAG.getNode(ISD::AND, dl, VT, Res, BitMask);
26523 
26524         if (Opcode == ISD::SRA) {
26525           // ashr(R, Amt) === sub(xor(lshr(R, Amt), SignMask), SignMask)
26526           // SignMask = lshr(SignBit, Amt) - safe to do this with PSRLW.
26527           SDValue SignMask = DAG.getConstant(0x8080, dl, ExtVT);
26528           SignMask = getTargetVShiftNode(LogicalX86Op, dl, ExtVT, SignMask,
26529                                          BaseShAmt, Subtarget, DAG);
26530           SignMask = DAG.getBitcast(VT, SignMask);
26531           Res = DAG.getNode(ISD::XOR, dl, VT, Res, SignMask);
26532           Res = DAG.getNode(ISD::SUB, dl, VT, Res, SignMask);
26533         }
26534         return Res;
26535       }
26536     }
26537   }
26538 
26539   // Check cases (mainly 32-bit) where i64 is expanded into high and low parts.
26540   if (VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST &&
26541       Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
26542     Amt = Amt.getOperand(0);
26543     unsigned Ratio = 64 / Amt.getScalarValueSizeInBits();
26544     std::vector<SDValue> Vals(Ratio);
26545     for (unsigned i = 0; i != Ratio; ++i)
26546       Vals[i] = Amt.getOperand(i);
26547     for (unsigned i = Ratio, e = Amt.getNumOperands(); i != e; i += Ratio) {
26548       for (unsigned j = 0; j != Ratio; ++j)
26549         if (Vals[j] != Amt.getOperand(i + j))
26550           return SDValue();
26551     }
26552 
26553     if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
26554       return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
26555   }
26556   return SDValue();
26557 }
26558 
26559 // Convert a shift/rotate left amount to a multiplication scale factor.
26560 static SDValue convertShiftLeftToScale(SDValue Amt, const SDLoc &dl,
26561                                        const X86Subtarget &Subtarget,
26562                                        SelectionDAG &DAG) {
26563   MVT VT = Amt.getSimpleValueType();
26564   if (!(VT == MVT::v8i16 || VT == MVT::v4i32 ||
26565         (Subtarget.hasInt256() && VT == MVT::v16i16) ||
26566         (!Subtarget.hasAVX512() && VT == MVT::v16i8)))
26567     return SDValue();
26568 
26569   if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
26570     SmallVector<SDValue, 8> Elts;
26571     MVT SVT = VT.getVectorElementType();
26572     unsigned SVTBits = SVT.getSizeInBits();
26573     APInt One(SVTBits, 1);
26574     unsigned NumElems = VT.getVectorNumElements();
26575 
26576     for (unsigned i = 0; i != NumElems; ++i) {
26577       SDValue Op = Amt->getOperand(i);
26578       if (Op->isUndef()) {
26579         Elts.push_back(Op);
26580         continue;
26581       }
26582 
26583       ConstantSDNode *ND = cast<ConstantSDNode>(Op);
26584       APInt C(SVTBits, ND->getZExtValue());
26585       uint64_t ShAmt = C.getZExtValue();
26586       if (ShAmt >= SVTBits) {
26587         Elts.push_back(DAG.getUNDEF(SVT));
26588         continue;
26589       }
26590       Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
26591     }
26592     return DAG.getBuildVector(VT, dl, Elts);
26593   }
26594 
26595   // If the target doesn't support variable shifts, use either FP conversion
26596   // or integer multiplication to avoid shifting each element individually.
26597   if (VT == MVT::v4i32) {
26598     Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
26599     Amt = DAG.getNode(ISD::ADD, dl, VT, Amt,
26600                       DAG.getConstant(0x3f800000U, dl, VT));
26601     Amt = DAG.getBitcast(MVT::v4f32, Amt);
26602     return DAG.getNode(ISD::FP_TO_SINT, dl, VT, Amt);
26603   }
26604 
26605   // AVX2 can more effectively perform this as a zext/trunc to/from v8i32.
26606   if (VT == MVT::v8i16 && !Subtarget.hasAVX2()) {
26607     SDValue Z = DAG.getConstant(0, dl, VT);
26608     SDValue Lo = DAG.getBitcast(MVT::v4i32, getUnpackl(DAG, dl, VT, Amt, Z));
26609     SDValue Hi = DAG.getBitcast(MVT::v4i32, getUnpackh(DAG, dl, VT, Amt, Z));
26610     Lo = convertShiftLeftToScale(Lo, dl, Subtarget, DAG);
26611     Hi = convertShiftLeftToScale(Hi, dl, Subtarget, DAG);
26612     if (Subtarget.hasSSE41())
26613       return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
26614 
26615     return DAG.getVectorShuffle(VT, dl, DAG.getBitcast(VT, Lo),
26616                                         DAG.getBitcast(VT, Hi),
26617                                         {0, 2, 4, 6, 8, 10, 12, 14});
26618   }
26619 
26620   return SDValue();
26621 }
26622 
26623 static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
26624                           SelectionDAG &DAG) {
26625   MVT VT = Op.getSimpleValueType();
26626   SDLoc dl(Op);
26627   SDValue R = Op.getOperand(0);
26628   SDValue Amt = Op.getOperand(1);
26629   unsigned EltSizeInBits = VT.getScalarSizeInBits();
26630   bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
26631 
26632   unsigned Opc = Op.getOpcode();
26633   unsigned X86OpcV = getTargetVShiftUniformOpcode(Opc, true);
26634   unsigned X86OpcI = getTargetVShiftUniformOpcode(Opc, false);
26635 
26636   assert(VT.isVector() && "Custom lowering only for vector shifts!");
26637   assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!");
26638 
26639   if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
26640     return V;
26641 
26642   if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
26643     return V;
26644 
26645   if (SupportedVectorVarShift(VT, Subtarget, Opc))
26646     return Op;
26647 
26648   // XOP has 128-bit variable logical/arithmetic shifts.
26649   // +ve/-ve Amt = shift left/right.
26650   if (Subtarget.hasXOP() && (VT == MVT::v2i64 || VT == MVT::v4i32 ||
26651                              VT == MVT::v8i16 || VT == MVT::v16i8)) {
26652     if (Opc == ISD::SRL || Opc == ISD::SRA) {
26653       SDValue Zero = DAG.getConstant(0, dl, VT);
26654       Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
26655     }
26656     if (Opc == ISD::SHL || Opc == ISD::SRL)
26657       return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
26658     if (Opc == ISD::SRA)
26659       return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
26660   }
26661 
26662   // 2i64 vector logical shifts can efficiently avoid scalarization - do the
26663   // shifts per-lane and then shuffle the partial results back together.
26664   if (VT == MVT::v2i64 && Opc != ISD::SRA) {
26665     // Splat the shift amounts so the scalar shifts above will catch it.
26666     SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
26667     SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
26668     SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
26669     SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
26670     return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
26671   }
26672 
26673   // i64 vector arithmetic shift can be emulated with the transform:
26674   // M = lshr(SIGN_MASK, Amt)
26675   // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
26676   if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) &&
26677       Opc == ISD::SRA) {
26678     SDValue S = DAG.getConstant(APInt::getSignMask(64), dl, VT);
26679     SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
26680     R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
26681     R = DAG.getNode(ISD::XOR, dl, VT, R, M);
26682     R = DAG.getNode(ISD::SUB, dl, VT, R, M);
26683     return R;
26684   }
26685 
26686   // If possible, lower this shift as a sequence of two shifts by
26687   // constant plus a BLENDing shuffle instead of scalarizing it.
26688   // Example:
26689   //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
26690   //
26691   // Could be rewritten as:
26692   //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
26693   //
26694   // The advantage is that the two shifts from the example would be
26695   // lowered as X86ISD::VSRLI nodes in parallel before blending.
26696   if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32 ||
26697                       (VT == MVT::v16i16 && Subtarget.hasInt256()))) {
26698     SDValue Amt1, Amt2;
26699     unsigned NumElts = VT.getVectorNumElements();
26700     SmallVector<int, 8> ShuffleMask;
26701     for (unsigned i = 0; i != NumElts; ++i) {
26702       SDValue A = Amt->getOperand(i);
26703       if (A.isUndef()) {
26704         ShuffleMask.push_back(SM_SentinelUndef);
26705         continue;
26706       }
26707       if (!Amt1 || Amt1 == A) {
26708         ShuffleMask.push_back(i);
26709         Amt1 = A;
26710         continue;
26711       }
26712       if (!Amt2 || Amt2 == A) {
26713         ShuffleMask.push_back(i + NumElts);
26714         Amt2 = A;
26715         continue;
26716       }
26717       break;
26718     }
26719 
26720     // Only perform this blend if we can perform it without loading a mask.
26721     if (ShuffleMask.size() == NumElts && Amt1 && Amt2 &&
26722         (VT != MVT::v16i16 ||
26723          is128BitLaneRepeatedShuffleMask(VT, ShuffleMask)) &&
26724         (VT == MVT::v4i32 || Subtarget.hasSSE41() || Opc != ISD::SHL ||
26725          canWidenShuffleElements(ShuffleMask))) {
26726       auto *Cst1 = dyn_cast<ConstantSDNode>(Amt1);
26727       auto *Cst2 = dyn_cast<ConstantSDNode>(Amt2);
26728       if (Cst1 && Cst2 && Cst1->getAPIntValue().ult(EltSizeInBits) &&
26729           Cst2->getAPIntValue().ult(EltSizeInBits)) {
26730         SDValue Shift1 = getTargetVShiftByConstNode(X86OpcI, dl, VT, R,
26731                                                     Cst1->getZExtValue(), DAG);
26732         SDValue Shift2 = getTargetVShiftByConstNode(X86OpcI, dl, VT, R,
26733                                                     Cst2->getZExtValue(), DAG);
26734         return DAG.getVectorShuffle(VT, dl, Shift1, Shift2, ShuffleMask);
26735       }
26736     }
26737   }
26738 
26739   // If possible, lower this packed shift into a vector multiply instead of
26740   // expanding it into a sequence of scalar shifts.
26741   if (Opc == ISD::SHL)
26742     if (SDValue Scale = convertShiftLeftToScale(Amt, dl, Subtarget, DAG))
26743       return DAG.getNode(ISD::MUL, dl, VT, R, Scale);
26744 
26745   // Constant ISD::SRL can be performed efficiently on vXi16 vectors as we
26746   // can replace with ISD::MULHU, creating scale factor from (NumEltBits - Amt).
26747   if (Opc == ISD::SRL && ConstantAmt &&
26748       (VT == MVT::v8i16 || (VT == MVT::v16i16 && Subtarget.hasInt256()))) {
26749     SDValue EltBits = DAG.getConstant(EltSizeInBits, dl, VT);
26750     SDValue RAmt = DAG.getNode(ISD::SUB, dl, VT, EltBits, Amt);
26751     if (SDValue Scale = convertShiftLeftToScale(RAmt, dl, Subtarget, DAG)) {
26752       SDValue Zero = DAG.getConstant(0, dl, VT);
26753       SDValue ZAmt = DAG.getSetCC(dl, VT, Amt, Zero, ISD::SETEQ);
26754       SDValue Res = DAG.getNode(ISD::MULHU, dl, VT, R, Scale);
26755       return DAG.getSelect(dl, VT, ZAmt, R, Res);
26756     }
26757   }
26758 
26759   // Constant ISD::SRA can be performed efficiently on vXi16 vectors as we
26760   // can replace with ISD::MULHS, creating scale factor from (NumEltBits - Amt).
26761   // TODO: Special case handling for shift by 0/1, really we can afford either
26762   // of these cases in pre-SSE41/XOP/AVX512 but not both.
26763   if (Opc == ISD::SRA && ConstantAmt &&
26764       (VT == MVT::v8i16 || (VT == MVT::v16i16 && Subtarget.hasInt256())) &&
26765       ((Subtarget.hasSSE41() && !Subtarget.hasXOP() &&
26766         !Subtarget.hasAVX512()) ||
26767        DAG.isKnownNeverZero(Amt))) {
26768     SDValue EltBits = DAG.getConstant(EltSizeInBits, dl, VT);
26769     SDValue RAmt = DAG.getNode(ISD::SUB, dl, VT, EltBits, Amt);
26770     if (SDValue Scale = convertShiftLeftToScale(RAmt, dl, Subtarget, DAG)) {
26771       SDValue Amt0 =
26772           DAG.getSetCC(dl, VT, Amt, DAG.getConstant(0, dl, VT), ISD::SETEQ);
26773       SDValue Amt1 =
26774           DAG.getSetCC(dl, VT, Amt, DAG.getConstant(1, dl, VT), ISD::SETEQ);
26775       SDValue Sra1 =
26776           getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, 1, DAG);
26777       SDValue Res = DAG.getNode(ISD::MULHS, dl, VT, R, Scale);
26778       Res = DAG.getSelect(dl, VT, Amt0, R, Res);
26779       return DAG.getSelect(dl, VT, Amt1, Sra1, Res);
26780     }
26781   }
26782 
26783   // v4i32 Non Uniform Shifts.
26784   // If the shift amount is constant we can shift each lane using the SSE2
26785   // immediate shifts, else we need to zero-extend each lane to the lower i64
26786   // and shift using the SSE2 variable shifts.
26787   // The separate results can then be blended together.
26788   if (VT == MVT::v4i32) {
26789     SDValue Amt0, Amt1, Amt2, Amt3;
26790     if (ConstantAmt) {
26791       Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
26792       Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
26793       Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
26794       Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
26795     } else {
26796       // The SSE2 shifts use the lower i64 as the same shift amount for
26797       // all lanes and the upper i64 is ignored. On AVX we're better off
26798       // just zero-extending, but for SSE just duplicating the top 16-bits is
26799       // cheaper and has the same effect for out of range values.
26800       if (Subtarget.hasAVX()) {
26801         SDValue Z = DAG.getConstant(0, dl, VT);
26802         Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
26803         Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
26804         Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
26805         Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
26806       } else {
26807         SDValue Amt01 = DAG.getBitcast(MVT::v8i16, Amt);
26808         SDValue Amt23 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
26809                                              {4, 5, 6, 7, -1, -1, -1, -1});
26810         Amt0 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
26811                                     {0, 1, 1, 1, -1, -1, -1, -1});
26812         Amt1 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
26813                                     {2, 3, 3, 3, -1, -1, -1, -1});
26814         Amt2 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23,
26815                                     {0, 1, 1, 1, -1, -1, -1, -1});
26816         Amt3 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23,
26817                                     {2, 3, 3, 3, -1, -1, -1, -1});
26818       }
26819     }
26820 
26821     unsigned ShOpc = ConstantAmt ? Opc : X86OpcV;
26822     SDValue R0 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt0));
26823     SDValue R1 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt1));
26824     SDValue R2 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt2));
26825     SDValue R3 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt3));
26826 
26827     // Merge the shifted lane results optimally with/without PBLENDW.
26828     // TODO - ideally shuffle combining would handle this.
26829     if (Subtarget.hasSSE41()) {
26830       SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
26831       SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
26832       return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
26833     }
26834     SDValue R01 = DAG.getVectorShuffle(VT, dl, R0, R1, {0, -1, -1, 5});
26835     SDValue R23 = DAG.getVectorShuffle(VT, dl, R2, R3, {2, -1, -1, 7});
26836     return DAG.getVectorShuffle(VT, dl, R01, R23, {0, 3, 4, 7});
26837   }
26838 
26839   // It's worth extending once and using the vXi16/vXi32 shifts for smaller
26840   // types, but without AVX512 the extra overheads to get from vXi8 to vXi32
26841   // make the existing SSE solution better.
26842   // NOTE: We honor prefered vector width before promoting to 512-bits.
26843   if ((Subtarget.hasInt256() && VT == MVT::v8i16) ||
26844       (Subtarget.canExtendTo512DQ() && VT == MVT::v16i16) ||
26845       (Subtarget.canExtendTo512DQ() && VT == MVT::v16i8) ||
26846       (Subtarget.canExtendTo512BW() && VT == MVT::v32i8) ||
26847       (Subtarget.hasBWI() && Subtarget.hasVLX() && VT == MVT::v16i8)) {
26848     assert((!Subtarget.hasBWI() || VT == MVT::v32i8 || VT == MVT::v16i8) &&
26849            "Unexpected vector type");
26850     MVT EvtSVT = Subtarget.hasBWI() ? MVT::i16 : MVT::i32;
26851     MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements());
26852     unsigned ExtOpc = Opc == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
26853     R = DAG.getNode(ExtOpc, dl, ExtVT, R);
26854     Amt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Amt);
26855     return DAG.getNode(ISD::TRUNCATE, dl, VT,
26856                        DAG.getNode(Opc, dl, ExtVT, R, Amt));
26857   }
26858 
26859   // Constant ISD::SRA/SRL can be performed efficiently on vXi8 vectors as we
26860   // extend to vXi16 to perform a MUL scale effectively as a MUL_LOHI.
26861   if (ConstantAmt && (Opc == ISD::SRA || Opc == ISD::SRL) &&
26862       (VT == MVT::v16i8 || VT == MVT::v64i8 ||
26863        (VT == MVT::v32i8 && Subtarget.hasInt256())) &&
26864       !Subtarget.hasXOP()) {
26865     int NumElts = VT.getVectorNumElements();
26866     SDValue Cst8 = DAG.getTargetConstant(8, dl, MVT::i8);
26867 
26868     // Extend constant shift amount to vXi16 (it doesn't matter if the type
26869     // isn't legal).
26870     MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts);
26871     Amt = DAG.getZExtOrTrunc(Amt, dl, ExVT);
26872     Amt = DAG.getNode(ISD::SUB, dl, ExVT, DAG.getConstant(8, dl, ExVT), Amt);
26873     Amt = DAG.getNode(ISD::SHL, dl, ExVT, DAG.getConstant(1, dl, ExVT), Amt);
26874     assert(ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()) &&
26875            "Constant build vector expected");
26876 
26877     if (VT == MVT::v16i8 && Subtarget.hasInt256()) {
26878       R = Opc == ISD::SRA ? DAG.getSExtOrTrunc(R, dl, ExVT)
26879                           : DAG.getZExtOrTrunc(R, dl, ExVT);
26880       R = DAG.getNode(ISD::MUL, dl, ExVT, R, Amt);
26881       R = DAG.getNode(X86ISD::VSRLI, dl, ExVT, R, Cst8);
26882       return DAG.getZExtOrTrunc(R, dl, VT);
26883     }
26884 
26885     SmallVector<SDValue, 16> LoAmt, HiAmt;
26886     for (int i = 0; i != NumElts; i += 16) {
26887       for (int j = 0; j != 8; ++j) {
26888         LoAmt.push_back(Amt.getOperand(i + j));
26889         HiAmt.push_back(Amt.getOperand(i + j + 8));
26890       }
26891     }
26892 
26893     MVT VT16 = MVT::getVectorVT(MVT::i16, NumElts / 2);
26894     SDValue LoA = DAG.getBuildVector(VT16, dl, LoAmt);
26895     SDValue HiA = DAG.getBuildVector(VT16, dl, HiAmt);
26896 
26897     SDValue LoR = DAG.getBitcast(VT16, getUnpackl(DAG, dl, VT, R, R));
26898     SDValue HiR = DAG.getBitcast(VT16, getUnpackh(DAG, dl, VT, R, R));
26899     LoR = DAG.getNode(X86OpcI, dl, VT16, LoR, Cst8);
26900     HiR = DAG.getNode(X86OpcI, dl, VT16, HiR, Cst8);
26901     LoR = DAG.getNode(ISD::MUL, dl, VT16, LoR, LoA);
26902     HiR = DAG.getNode(ISD::MUL, dl, VT16, HiR, HiA);
26903     LoR = DAG.getNode(X86ISD::VSRLI, dl, VT16, LoR, Cst8);
26904     HiR = DAG.getNode(X86ISD::VSRLI, dl, VT16, HiR, Cst8);
26905     return DAG.getNode(X86ISD::PACKUS, dl, VT, LoR, HiR);
26906   }
26907 
26908   if (VT == MVT::v16i8 ||
26909       (VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP()) ||
26910       (VT == MVT::v64i8 && Subtarget.hasBWI())) {
26911     MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
26912 
26913     auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
26914       if (VT.is512BitVector()) {
26915         // On AVX512BW targets we make use of the fact that VSELECT lowers
26916         // to a masked blend which selects bytes based just on the sign bit
26917         // extracted to a mask.
26918         MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
26919         V0 = DAG.getBitcast(VT, V0);
26920         V1 = DAG.getBitcast(VT, V1);
26921         Sel = DAG.getBitcast(VT, Sel);
26922         Sel = DAG.getSetCC(dl, MaskVT, DAG.getConstant(0, dl, VT), Sel,
26923                            ISD::SETGT);
26924         return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
26925       } else if (Subtarget.hasSSE41()) {
26926         // On SSE41 targets we make use of the fact that VSELECT lowers
26927         // to PBLENDVB which selects bytes based just on the sign bit.
26928         V0 = DAG.getBitcast(VT, V0);
26929         V1 = DAG.getBitcast(VT, V1);
26930         Sel = DAG.getBitcast(VT, Sel);
26931         return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
26932       }
26933       // On pre-SSE41 targets we test for the sign bit by comparing to
26934       // zero - a negative value will set all bits of the lanes to true
26935       // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
26936       SDValue Z = DAG.getConstant(0, dl, SelVT);
26937       SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
26938       return DAG.getSelect(dl, SelVT, C, V0, V1);
26939     };
26940 
26941     // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
26942     // We can safely do this using i16 shifts as we're only interested in
26943     // the 3 lower bits of each byte.
26944     Amt = DAG.getBitcast(ExtVT, Amt);
26945     Amt = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ExtVT, Amt, 5, DAG);
26946     Amt = DAG.getBitcast(VT, Amt);
26947 
26948     if (Opc == ISD::SHL || Opc == ISD::SRL) {
26949       // r = VSELECT(r, shift(r, 4), a);
26950       SDValue M = DAG.getNode(Opc, dl, VT, R, DAG.getConstant(4, dl, VT));
26951       R = SignBitSelect(VT, Amt, M, R);
26952 
26953       // a += a
26954       Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
26955 
26956       // r = VSELECT(r, shift(r, 2), a);
26957       M = DAG.getNode(Opc, dl, VT, R, DAG.getConstant(2, dl, VT));
26958       R = SignBitSelect(VT, Amt, M, R);
26959 
26960       // a += a
26961       Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
26962 
26963       // return VSELECT(r, shift(r, 1), a);
26964       M = DAG.getNode(Opc, dl, VT, R, DAG.getConstant(1, dl, VT));
26965       R = SignBitSelect(VT, Amt, M, R);
26966       return R;
26967     }
26968 
26969     if (Opc == ISD::SRA) {
26970       // For SRA we need to unpack each byte to the higher byte of a i16 vector
26971       // so we can correctly sign extend. We don't care what happens to the
26972       // lower byte.
26973       SDValue ALo = getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), Amt);
26974       SDValue AHi = getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), Amt);
26975       SDValue RLo = getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), R);
26976       SDValue RHi = getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), R);
26977       ALo = DAG.getBitcast(ExtVT, ALo);
26978       AHi = DAG.getBitcast(ExtVT, AHi);
26979       RLo = DAG.getBitcast(ExtVT, RLo);
26980       RHi = DAG.getBitcast(ExtVT, RHi);
26981 
26982       // r = VSELECT(r, shift(r, 4), a);
26983       SDValue MLo = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RLo, 4, DAG);
26984       SDValue MHi = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RHi, 4, DAG);
26985       RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
26986       RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
26987 
26988       // a += a
26989       ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
26990       AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
26991 
26992       // r = VSELECT(r, shift(r, 2), a);
26993       MLo = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RLo, 2, DAG);
26994       MHi = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RHi, 2, DAG);
26995       RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
26996       RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
26997 
26998       // a += a
26999       ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
27000       AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
27001 
27002       // r = VSELECT(r, shift(r, 1), a);
27003       MLo = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RLo, 1, DAG);
27004       MHi = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RHi, 1, DAG);
27005       RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
27006       RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
27007 
27008       // Logical shift the result back to the lower byte, leaving a zero upper
27009       // byte meaning that we can safely pack with PACKUSWB.
27010       RLo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, RLo, 8, DAG);
27011       RHi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, RHi, 8, DAG);
27012       return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
27013     }
27014   }
27015 
27016   if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) {
27017     MVT ExtVT = MVT::v8i32;
27018     SDValue Z = DAG.getConstant(0, dl, VT);
27019     SDValue ALo = getUnpackl(DAG, dl, VT, Amt, Z);
27020     SDValue AHi = getUnpackh(DAG, dl, VT, Amt, Z);
27021     SDValue RLo = getUnpackl(DAG, dl, VT, Z, R);
27022     SDValue RHi = getUnpackh(DAG, dl, VT, Z, R);
27023     ALo = DAG.getBitcast(ExtVT, ALo);
27024     AHi = DAG.getBitcast(ExtVT, AHi);
27025     RLo = DAG.getBitcast(ExtVT, RLo);
27026     RHi = DAG.getBitcast(ExtVT, RHi);
27027     SDValue Lo = DAG.getNode(Opc, dl, ExtVT, RLo, ALo);
27028     SDValue Hi = DAG.getNode(Opc, dl, ExtVT, RHi, AHi);
27029     Lo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, Lo, 16, DAG);
27030     Hi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, Hi, 16, DAG);
27031     return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
27032   }
27033 
27034   if (VT == MVT::v8i16) {
27035     // If we have a constant shift amount, the non-SSE41 path is best as
27036     // avoiding bitcasts make it easier to constant fold and reduce to PBLENDW.
27037     bool UseSSE41 = Subtarget.hasSSE41() &&
27038                     !ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
27039 
27040     auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
27041       // On SSE41 targets we make use of the fact that VSELECT lowers
27042       // to PBLENDVB which selects bytes based just on the sign bit.
27043       if (UseSSE41) {
27044         MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
27045         V0 = DAG.getBitcast(ExtVT, V0);
27046         V1 = DAG.getBitcast(ExtVT, V1);
27047         Sel = DAG.getBitcast(ExtVT, Sel);
27048         return DAG.getBitcast(VT, DAG.getSelect(dl, ExtVT, Sel, V0, V1));
27049       }
27050       // On pre-SSE41 targets we splat the sign bit - a negative value will
27051       // set all bits of the lanes to true and VSELECT uses that in
27052       // its OR(AND(V0,C),AND(V1,~C)) lowering.
27053       SDValue C =
27054           getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Sel, 15, DAG);
27055       return DAG.getSelect(dl, VT, C, V0, V1);
27056     };
27057 
27058     // Turn 'a' into a mask suitable for VSELECT: a = a << 12;
27059     if (UseSSE41) {
27060       // On SSE41 targets we need to replicate the shift mask in both
27061       // bytes for PBLENDVB.
27062       Amt = DAG.getNode(
27063           ISD::OR, dl, VT,
27064           getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Amt, 4, DAG),
27065           getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Amt, 12, DAG));
27066     } else {
27067       Amt = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Amt, 12, DAG);
27068     }
27069 
27070     // r = VSELECT(r, shift(r, 8), a);
27071     SDValue M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 8, DAG);
27072     R = SignBitSelect(Amt, M, R);
27073 
27074     // a += a
27075     Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
27076 
27077     // r = VSELECT(r, shift(r, 4), a);
27078     M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 4, DAG);
27079     R = SignBitSelect(Amt, M, R);
27080 
27081     // a += a
27082     Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
27083 
27084     // r = VSELECT(r, shift(r, 2), a);
27085     M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 2, DAG);
27086     R = SignBitSelect(Amt, M, R);
27087 
27088     // a += a
27089     Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
27090 
27091     // return VSELECT(r, shift(r, 1), a);
27092     M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 1, DAG);
27093     R = SignBitSelect(Amt, M, R);
27094     return R;
27095   }
27096 
27097   // Decompose 256-bit shifts into 128-bit shifts.
27098   if (VT.is256BitVector())
27099     return split256IntArith(Op, DAG);
27100 
27101   return SDValue();
27102 }
27103 
27104 static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
27105                            SelectionDAG &DAG) {
27106   MVT VT = Op.getSimpleValueType();
27107   assert(VT.isVector() && "Custom lowering only for vector rotates!");
27108 
27109   SDLoc DL(Op);
27110   SDValue R = Op.getOperand(0);
27111   SDValue Amt = Op.getOperand(1);
27112   unsigned Opcode = Op.getOpcode();
27113   unsigned EltSizeInBits = VT.getScalarSizeInBits();
27114   int NumElts = VT.getVectorNumElements();
27115 
27116   // Check for constant splat rotation amount.
27117   APInt UndefElts;
27118   SmallVector<APInt, 32> EltBits;
27119   int CstSplatIndex = -1;
27120   if (getTargetConstantBitsFromNode(Amt, EltSizeInBits, UndefElts, EltBits))
27121     for (int i = 0; i != NumElts; ++i)
27122       if (!UndefElts[i]) {
27123         if (CstSplatIndex < 0 || EltBits[i] == EltBits[CstSplatIndex]) {
27124           CstSplatIndex = i;
27125           continue;
27126         }
27127         CstSplatIndex = -1;
27128         break;
27129       }
27130 
27131   // AVX512 implicitly uses modulo rotation amounts.
27132   if (Subtarget.hasAVX512() && 32 <= EltSizeInBits) {
27133     // Attempt to rotate by immediate.
27134     if (0 <= CstSplatIndex) {
27135       unsigned Op = (Opcode == ISD::ROTL ? X86ISD::VROTLI : X86ISD::VROTRI);
27136       uint64_t RotateAmt = EltBits[CstSplatIndex].urem(EltSizeInBits);
27137       return DAG.getNode(Op, DL, VT, R,
27138                          DAG.getTargetConstant(RotateAmt, DL, MVT::i8));
27139     }
27140 
27141     // Else, fall-back on VPROLV/VPRORV.
27142     return Op;
27143   }
27144 
27145   assert((Opcode == ISD::ROTL) && "Only ROTL supported");
27146 
27147   // XOP has 128-bit vector variable + immediate rotates.
27148   // +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL.
27149   // XOP implicitly uses modulo rotation amounts.
27150   if (Subtarget.hasXOP()) {
27151     if (VT.is256BitVector())
27152       return split256IntArith(Op, DAG);
27153     assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
27154 
27155     // Attempt to rotate by immediate.
27156     if (0 <= CstSplatIndex) {
27157       uint64_t RotateAmt = EltBits[CstSplatIndex].urem(EltSizeInBits);
27158       return DAG.getNode(X86ISD::VROTLI, DL, VT, R,
27159                          DAG.getTargetConstant(RotateAmt, DL, MVT::i8));
27160     }
27161 
27162     // Use general rotate by variable (per-element).
27163     return Op;
27164   }
27165 
27166   // Split 256-bit integers on pre-AVX2 targets.
27167   if (VT.is256BitVector() && !Subtarget.hasAVX2())
27168     return split256IntArith(Op, DAG);
27169 
27170   assert((VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8 ||
27171           ((VT == MVT::v8i32 || VT == MVT::v16i16 || VT == MVT::v32i8) &&
27172            Subtarget.hasAVX2())) &&
27173          "Only vXi32/vXi16/vXi8 vector rotates supported");
27174 
27175   // Rotate by an uniform constant - expand back to shifts.
27176   if (0 <= CstSplatIndex)
27177     return SDValue();
27178 
27179   bool IsSplatAmt = DAG.isSplatValue(Amt);
27180 
27181   // v16i8/v32i8: Split rotation into rot4/rot2/rot1 stages and select by
27182   // the amount bit.
27183   if (EltSizeInBits == 8 && !IsSplatAmt) {
27184     if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()))
27185       return SDValue();
27186 
27187     // We don't need ModuloAmt here as we just peek at individual bits.
27188     MVT ExtVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
27189 
27190     auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
27191       if (Subtarget.hasSSE41()) {
27192         // On SSE41 targets we make use of the fact that VSELECT lowers
27193         // to PBLENDVB which selects bytes based just on the sign bit.
27194         V0 = DAG.getBitcast(VT, V0);
27195         V1 = DAG.getBitcast(VT, V1);
27196         Sel = DAG.getBitcast(VT, Sel);
27197         return DAG.getBitcast(SelVT, DAG.getSelect(DL, VT, Sel, V0, V1));
27198       }
27199       // On pre-SSE41 targets we test for the sign bit by comparing to
27200       // zero - a negative value will set all bits of the lanes to true
27201       // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
27202       SDValue Z = DAG.getConstant(0, DL, SelVT);
27203       SDValue C = DAG.getNode(X86ISD::PCMPGT, DL, SelVT, Z, Sel);
27204       return DAG.getSelect(DL, SelVT, C, V0, V1);
27205     };
27206 
27207     // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
27208     // We can safely do this using i16 shifts as we're only interested in
27209     // the 3 lower bits of each byte.
27210     Amt = DAG.getBitcast(ExtVT, Amt);
27211     Amt = DAG.getNode(ISD::SHL, DL, ExtVT, Amt, DAG.getConstant(5, DL, ExtVT));
27212     Amt = DAG.getBitcast(VT, Amt);
27213 
27214     // r = VSELECT(r, rot(r, 4), a);
27215     SDValue M;
27216     M = DAG.getNode(
27217         ISD::OR, DL, VT,
27218         DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(4, DL, VT)),
27219         DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(4, DL, VT)));
27220     R = SignBitSelect(VT, Amt, M, R);
27221 
27222     // a += a
27223     Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt);
27224 
27225     // r = VSELECT(r, rot(r, 2), a);
27226     M = DAG.getNode(
27227         ISD::OR, DL, VT,
27228         DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(2, DL, VT)),
27229         DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(6, DL, VT)));
27230     R = SignBitSelect(VT, Amt, M, R);
27231 
27232     // a += a
27233     Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt);
27234 
27235     // return VSELECT(r, rot(r, 1), a);
27236     M = DAG.getNode(
27237         ISD::OR, DL, VT,
27238         DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(1, DL, VT)),
27239         DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(7, DL, VT)));
27240     return SignBitSelect(VT, Amt, M, R);
27241   }
27242 
27243   // ISD::ROT* uses modulo rotate amounts.
27244   Amt = DAG.getNode(ISD::AND, DL, VT, Amt,
27245                     DAG.getConstant(EltSizeInBits - 1, DL, VT));
27246 
27247   bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
27248   bool LegalVarShifts = SupportedVectorVarShift(VT, Subtarget, ISD::SHL) &&
27249                         SupportedVectorVarShift(VT, Subtarget, ISD::SRL);
27250 
27251   // Fallback for splats + all supported variable shifts.
27252   // Fallback for non-constants AVX2 vXi16 as well.
27253   if (IsSplatAmt || LegalVarShifts || (Subtarget.hasAVX2() && !ConstantAmt)) {
27254     SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT);
27255     AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt);
27256     SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt);
27257     SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR);
27258     return DAG.getNode(ISD::OR, DL, VT, SHL, SRL);
27259   }
27260 
27261   // As with shifts, convert the rotation amount to a multiplication factor.
27262   SDValue Scale = convertShiftLeftToScale(Amt, DL, Subtarget, DAG);
27263   assert(Scale && "Failed to convert ROTL amount to scale");
27264 
27265   // v8i16/v16i16: perform unsigned multiply hi/lo and OR the results.
27266   if (EltSizeInBits == 16) {
27267     SDValue Lo = DAG.getNode(ISD::MUL, DL, VT, R, Scale);
27268     SDValue Hi = DAG.getNode(ISD::MULHU, DL, VT, R, Scale);
27269     return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
27270   }
27271 
27272   // v4i32: make use of the PMULUDQ instruction to multiply 2 lanes of v4i32
27273   // to v2i64 results at a time. The upper 32-bits contain the wrapped bits
27274   // that can then be OR'd with the lower 32-bits.
27275   assert(VT == MVT::v4i32 && "Only v4i32 vector rotate expected");
27276   static const int OddMask[] = {1, -1, 3, -1};
27277   SDValue R13 = DAG.getVectorShuffle(VT, DL, R, R, OddMask);
27278   SDValue Scale13 = DAG.getVectorShuffle(VT, DL, Scale, Scale, OddMask);
27279 
27280   SDValue Res02 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64,
27281                               DAG.getBitcast(MVT::v2i64, R),
27282                               DAG.getBitcast(MVT::v2i64, Scale));
27283   SDValue Res13 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64,
27284                               DAG.getBitcast(MVT::v2i64, R13),
27285                               DAG.getBitcast(MVT::v2i64, Scale13));
27286   Res02 = DAG.getBitcast(VT, Res02);
27287   Res13 = DAG.getBitcast(VT, Res13);
27288 
27289   return DAG.getNode(ISD::OR, DL, VT,
27290                      DAG.getVectorShuffle(VT, DL, Res02, Res13, {0, 4, 2, 6}),
27291                      DAG.getVectorShuffle(VT, DL, Res02, Res13, {1, 5, 3, 7}));
27292 }
27293 
27294 /// Returns true if the operand type is exactly twice the native width, and
27295 /// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
27296 /// Used to know whether to use cmpxchg8/16b when expanding atomic operations
27297 /// (otherwise we leave them alone to become __sync_fetch_and_... calls).
27298 bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
27299   unsigned OpWidth = MemType->getPrimitiveSizeInBits();
27300 
27301   if (OpWidth == 64)
27302     return Subtarget.hasCmpxchg8b() && !Subtarget.is64Bit();
27303   if (OpWidth == 128)
27304     return Subtarget.hasCmpxchg16b();
27305 
27306   return false;
27307 }
27308 
27309 // TODO: In 32-bit mode, use MOVLPS when SSE1 is available?
27310 // TODO: In 32-bit mode, use FISTP when X87 is available?
27311 bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
27312   Type *MemType = SI->getValueOperand()->getType();
27313 
27314   bool NoImplicitFloatOps =
27315       SI->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat);
27316   if (MemType->getPrimitiveSizeInBits() == 64 && !Subtarget.is64Bit() &&
27317       !Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2())
27318     return false;
27319 
27320   return needsCmpXchgNb(MemType);
27321 }
27322 
27323 // Note: this turns large loads into lock cmpxchg8b/16b.
27324 // TODO: In 32-bit mode, use MOVLPS when SSE1 is available?
27325 TargetLowering::AtomicExpansionKind
27326 X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
27327   Type *MemType = LI->getType();
27328 
27329   // If this a 64 bit atomic load on a 32-bit target and SSE2 is enabled, we
27330   // can use movq to do the load. If we have X87 we can load into an 80-bit
27331   // X87 register and store it to a stack temporary.
27332   bool NoImplicitFloatOps =
27333       LI->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat);
27334   if (MemType->getPrimitiveSizeInBits() == 64 && !Subtarget.is64Bit() &&
27335       !Subtarget.useSoftFloat() && !NoImplicitFloatOps &&
27336       (Subtarget.hasSSE2() || Subtarget.hasX87()))
27337     return AtomicExpansionKind::None;
27338 
27339   return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
27340                                  : AtomicExpansionKind::None;
27341 }
27342 
27343 TargetLowering::AtomicExpansionKind
27344 X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
27345   unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
27346   Type *MemType = AI->getType();
27347 
27348   // If the operand is too big, we must see if cmpxchg8/16b is available
27349   // and default to library calls otherwise.
27350   if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
27351     return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
27352                                    : AtomicExpansionKind::None;
27353   }
27354 
27355   AtomicRMWInst::BinOp Op = AI->getOperation();
27356   switch (Op) {
27357   default:
27358     llvm_unreachable("Unknown atomic operation");
27359   case AtomicRMWInst::Xchg:
27360   case AtomicRMWInst::Add:
27361   case AtomicRMWInst::Sub:
27362     // It's better to use xadd, xsub or xchg for these in all cases.
27363     return AtomicExpansionKind::None;
27364   case AtomicRMWInst::Or:
27365   case AtomicRMWInst::And:
27366   case AtomicRMWInst::Xor:
27367     // If the atomicrmw's result isn't actually used, we can just add a "lock"
27368     // prefix to a normal instruction for these operations.
27369     return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
27370                             : AtomicExpansionKind::None;
27371   case AtomicRMWInst::Nand:
27372   case AtomicRMWInst::Max:
27373   case AtomicRMWInst::Min:
27374   case AtomicRMWInst::UMax:
27375   case AtomicRMWInst::UMin:
27376   case AtomicRMWInst::FAdd:
27377   case AtomicRMWInst::FSub:
27378     // These always require a non-trivial set of data operations on x86. We must
27379     // use a cmpxchg loop.
27380     return AtomicExpansionKind::CmpXChg;
27381   }
27382 }
27383 
27384 LoadInst *
27385 X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
27386   unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
27387   Type *MemType = AI->getType();
27388   // Accesses larger than the native width are turned into cmpxchg/libcalls, so
27389   // there is no benefit in turning such RMWs into loads, and it is actually
27390   // harmful as it introduces a mfence.
27391   if (MemType->getPrimitiveSizeInBits() > NativeWidth)
27392     return nullptr;
27393 
27394   // If this is a canonical idempotent atomicrmw w/no uses, we have a better
27395   // lowering available in lowerAtomicArith.
27396   // TODO: push more cases through this path.
27397   if (auto *C = dyn_cast<ConstantInt>(AI->getValOperand()))
27398     if (AI->getOperation() == AtomicRMWInst::Or && C->isZero() &&
27399         AI->use_empty())
27400       return nullptr;
27401 
27402   auto Builder = IRBuilder<>(AI);
27403   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
27404   auto SSID = AI->getSyncScopeID();
27405   // We must restrict the ordering to avoid generating loads with Release or
27406   // ReleaseAcquire orderings.
27407   auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
27408 
27409   // Before the load we need a fence. Here is an example lifted from
27410   // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
27411   // is required:
27412   // Thread 0:
27413   //   x.store(1, relaxed);
27414   //   r1 = y.fetch_add(0, release);
27415   // Thread 1:
27416   //   y.fetch_add(42, acquire);
27417   //   r2 = x.load(relaxed);
27418   // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
27419   // lowered to just a load without a fence. A mfence flushes the store buffer,
27420   // making the optimization clearly correct.
27421   // FIXME: it is required if isReleaseOrStronger(Order) but it is not clear
27422   // otherwise, we might be able to be more aggressive on relaxed idempotent
27423   // rmw. In practice, they do not look useful, so we don't try to be
27424   // especially clever.
27425   if (SSID == SyncScope::SingleThread)
27426     // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
27427     // the IR level, so we must wrap it in an intrinsic.
27428     return nullptr;
27429 
27430   if (!Subtarget.hasMFence())
27431     // FIXME: it might make sense to use a locked operation here but on a
27432     // different cache-line to prevent cache-line bouncing. In practice it
27433     // is probably a small win, and x86 processors without mfence are rare
27434     // enough that we do not bother.
27435     return nullptr;
27436 
27437   Function *MFence =
27438       llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
27439   Builder.CreateCall(MFence, {});
27440 
27441   // Finally we can emit the atomic load.
27442   LoadInst *Loaded =
27443       Builder.CreateAlignedLoad(AI->getType(), AI->getPointerOperand(),
27444                                 AI->getType()->getPrimitiveSizeInBits());
27445   Loaded->setAtomic(Order, SSID);
27446   AI->replaceAllUsesWith(Loaded);
27447   AI->eraseFromParent();
27448   return Loaded;
27449 }
27450 
27451 bool X86TargetLowering::lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
27452   if (!SI.isUnordered())
27453     return false;
27454   return ExperimentalUnorderedISEL;
27455 }
27456 bool X86TargetLowering::lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
27457   if (!LI.isUnordered())
27458     return false;
27459   return ExperimentalUnorderedISEL;
27460 }
27461 
27462 
27463 /// Emit a locked operation on a stack location which does not change any
27464 /// memory location, but does involve a lock prefix.  Location is chosen to be
27465 /// a) very likely accessed only by a single thread to minimize cache traffic,
27466 /// and b) definitely dereferenceable.  Returns the new Chain result.
27467 static SDValue emitLockedStackOp(SelectionDAG &DAG,
27468                                  const X86Subtarget &Subtarget,
27469                                  SDValue Chain, SDLoc DL) {
27470   // Implementation notes:
27471   // 1) LOCK prefix creates a full read/write reordering barrier for memory
27472   // operations issued by the current processor.  As such, the location
27473   // referenced is not relevant for the ordering properties of the instruction.
27474   // See: Intel® 64 and IA-32 ArchitecturesSoftware Developer’s Manual,
27475   // 8.2.3.9  Loads and Stores Are Not Reordered with Locked Instructions
27476   // 2) Using an immediate operand appears to be the best encoding choice
27477   // here since it doesn't require an extra register.
27478   // 3) OR appears to be very slightly faster than ADD. (Though, the difference
27479   // is small enough it might just be measurement noise.)
27480   // 4) When choosing offsets, there are several contributing factors:
27481   //   a) If there's no redzone, we default to TOS.  (We could allocate a cache
27482   //      line aligned stack object to improve this case.)
27483   //   b) To minimize our chances of introducing a false dependence, we prefer
27484   //      to offset the stack usage from TOS slightly.
27485   //   c) To minimize concerns about cross thread stack usage - in particular,
27486   //      the idiomatic MyThreadPool.run([&StackVars]() {...}) pattern which
27487   //      captures state in the TOS frame and accesses it from many threads -
27488   //      we want to use an offset such that the offset is in a distinct cache
27489   //      line from the TOS frame.
27490   //
27491   // For a general discussion of the tradeoffs and benchmark results, see:
27492   // https://shipilev.net/blog/2014/on-the-fence-with-dependencies/
27493 
27494   auto &MF = DAG.getMachineFunction();
27495   auto &TFL = *Subtarget.getFrameLowering();
27496   const unsigned SPOffset = TFL.has128ByteRedZone(MF) ? -64 : 0;
27497 
27498   if (Subtarget.is64Bit()) {
27499     SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
27500     SDValue Ops[] = {
27501       DAG.getRegister(X86::RSP, MVT::i64),                  // Base
27502       DAG.getTargetConstant(1, DL, MVT::i8),                // Scale
27503       DAG.getRegister(0, MVT::i64),                         // Index
27504       DAG.getTargetConstant(SPOffset, DL, MVT::i32),        // Disp
27505       DAG.getRegister(0, MVT::i16),                         // Segment.
27506       Zero,
27507       Chain};
27508     SDNode *Res = DAG.getMachineNode(X86::OR32mi8Locked, DL, MVT::i32,
27509                                      MVT::Other, Ops);
27510     return SDValue(Res, 1);
27511   }
27512 
27513   SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
27514   SDValue Ops[] = {
27515     DAG.getRegister(X86::ESP, MVT::i32),            // Base
27516     DAG.getTargetConstant(1, DL, MVT::i8),          // Scale
27517     DAG.getRegister(0, MVT::i32),                   // Index
27518     DAG.getTargetConstant(SPOffset, DL, MVT::i32),  // Disp
27519     DAG.getRegister(0, MVT::i16),                   // Segment.
27520     Zero,
27521     Chain
27522   };
27523   SDNode *Res = DAG.getMachineNode(X86::OR32mi8Locked, DL, MVT::i32,
27524                                    MVT::Other, Ops);
27525   return SDValue(Res, 1);
27526 }
27527 
27528 static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget,
27529                                  SelectionDAG &DAG) {
27530   SDLoc dl(Op);
27531   AtomicOrdering FenceOrdering =
27532       static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
27533   SyncScope::ID FenceSSID =
27534       static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
27535 
27536   // The only fence that needs an instruction is a sequentially-consistent
27537   // cross-thread fence.
27538   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
27539       FenceSSID == SyncScope::System) {
27540     if (Subtarget.hasMFence())
27541       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
27542 
27543     SDValue Chain = Op.getOperand(0);
27544     return emitLockedStackOp(DAG, Subtarget, Chain, dl);
27545   }
27546 
27547   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
27548   return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
27549 }
27550 
27551 static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget,
27552                              SelectionDAG &DAG) {
27553   MVT T = Op.getSimpleValueType();
27554   SDLoc DL(Op);
27555   unsigned Reg = 0;
27556   unsigned size = 0;
27557   switch(T.SimpleTy) {
27558   default: llvm_unreachable("Invalid value type!");
27559   case MVT::i8:  Reg = X86::AL;  size = 1; break;
27560   case MVT::i16: Reg = X86::AX;  size = 2; break;
27561   case MVT::i32: Reg = X86::EAX; size = 4; break;
27562   case MVT::i64:
27563     assert(Subtarget.is64Bit() && "Node not type legal!");
27564     Reg = X86::RAX; size = 8;
27565     break;
27566   }
27567   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
27568                                   Op.getOperand(2), SDValue());
27569   SDValue Ops[] = { cpIn.getValue(0),
27570                     Op.getOperand(1),
27571                     Op.getOperand(3),
27572                     DAG.getTargetConstant(size, DL, MVT::i8),
27573                     cpIn.getValue(1) };
27574   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
27575   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
27576   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
27577                                            Ops, T, MMO);
27578 
27579   SDValue cpOut =
27580     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
27581   SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
27582                                       MVT::i32, cpOut.getValue(2));
27583   SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG);
27584 
27585   return DAG.getNode(ISD::MERGE_VALUES, DL, Op->getVTList(),
27586                      cpOut, Success, EFLAGS.getValue(1));
27587 }
27588 
27589 // Create MOVMSKB, taking into account whether we need to split for AVX1.
27590 static SDValue getPMOVMSKB(const SDLoc &DL, SDValue V, SelectionDAG &DAG,
27591                            const X86Subtarget &Subtarget) {
27592   MVT InVT = V.getSimpleValueType();
27593 
27594   if (InVT == MVT::v64i8) {
27595     SDValue Lo, Hi;
27596     std::tie(Lo, Hi) = DAG.SplitVector(V, DL);
27597     Lo = getPMOVMSKB(DL, Lo, DAG, Subtarget);
27598     Hi = getPMOVMSKB(DL, Hi, DAG, Subtarget);
27599     Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Lo);
27600     Hi = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Hi);
27601     Hi = DAG.getNode(ISD::SHL, DL, MVT::i64, Hi,
27602                      DAG.getConstant(32, DL, MVT::i8));
27603     return DAG.getNode(ISD::OR, DL, MVT::i64, Lo, Hi);
27604   }
27605   if (InVT == MVT::v32i8 && !Subtarget.hasInt256()) {
27606     SDValue Lo, Hi;
27607     std::tie(Lo, Hi) = DAG.SplitVector(V, DL);
27608     Lo = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Lo);
27609     Hi = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Hi);
27610     Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
27611                      DAG.getConstant(16, DL, MVT::i8));
27612     return DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi);
27613   }
27614 
27615   return DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
27616 }
27617 
27618 static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget,
27619                             SelectionDAG &DAG) {
27620   SDValue Src = Op.getOperand(0);
27621   MVT SrcVT = Src.getSimpleValueType();
27622   MVT DstVT = Op.getSimpleValueType();
27623 
27624   // Legalize (v64i1 (bitcast i64 (X))) by splitting the i64, bitcasting each
27625   // half to v32i1 and concatenating the result.
27626   if (SrcVT == MVT::i64 && DstVT == MVT::v64i1) {
27627     assert(!Subtarget.is64Bit() && "Expected 32-bit mode");
27628     assert(Subtarget.hasBWI() && "Expected BWI target");
27629     SDLoc dl(Op);
27630     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
27631                              DAG.getIntPtrConstant(0, dl));
27632     Lo = DAG.getBitcast(MVT::v32i1, Lo);
27633     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
27634                              DAG.getIntPtrConstant(1, dl));
27635     Hi = DAG.getBitcast(MVT::v32i1, Hi);
27636     return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
27637   }
27638 
27639   // Custom splitting for BWI types when AVX512F is available but BWI isn't.
27640   if ((SrcVT == MVT::v32i16 || SrcVT == MVT::v64i8) && DstVT.isVector() &&
27641     DAG.getTargetLoweringInfo().isTypeLegal(DstVT)) {
27642     SDLoc dl(Op);
27643     SDValue Lo, Hi;
27644     std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
27645     MVT CastVT = DstVT.getHalfNumVectorElementsVT();
27646     Lo = DAG.getBitcast(CastVT, Lo);
27647     Hi = DAG.getBitcast(CastVT, Hi);
27648     return DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi);
27649   }
27650 
27651   // Use MOVMSK for vector to scalar conversion to prevent scalarization.
27652   if ((SrcVT == MVT::v16i1 || SrcVT == MVT::v32i1) && DstVT.isScalarInteger()) {
27653     assert(!Subtarget.hasAVX512() && "Should use K-registers with AVX512");
27654     MVT SExtVT = SrcVT == MVT::v16i1 ? MVT::v16i8 : MVT::v32i8;
27655     SDLoc DL(Op);
27656     SDValue V = DAG.getSExtOrTrunc(Src, DL, SExtVT);
27657     V = getPMOVMSKB(DL, V, DAG, Subtarget);
27658     return DAG.getZExtOrTrunc(V, DL, DstVT);
27659   }
27660 
27661   assert((SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 ||
27662           SrcVT == MVT::i64) && "Unexpected VT!");
27663 
27664   assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
27665   if (!(DstVT == MVT::f64 && SrcVT == MVT::i64) &&
27666       !(DstVT == MVT::x86mmx && SrcVT.isVector()))
27667     // This conversion needs to be expanded.
27668     return SDValue();
27669 
27670   SDLoc dl(Op);
27671   if (SrcVT.isVector()) {
27672     // Widen the vector in input in the case of MVT::v2i32.
27673     // Example: from MVT::v2i32 to MVT::v4i32.
27674     MVT NewVT = MVT::getVectorVT(SrcVT.getVectorElementType(),
27675                                  SrcVT.getVectorNumElements() * 2);
27676     Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT, Src,
27677                       DAG.getUNDEF(SrcVT));
27678   } else {
27679     assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() &&
27680            "Unexpected source type in LowerBITCAST");
27681     Src = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Src);
27682   }
27683 
27684   MVT V2X64VT = DstVT == MVT::f64 ? MVT::v2f64 : MVT::v2i64;
27685   Src = DAG.getNode(ISD::BITCAST, dl, V2X64VT, Src);
27686 
27687   if (DstVT == MVT::x86mmx)
27688     return DAG.getNode(X86ISD::MOVDQ2Q, dl, DstVT, Src);
27689 
27690   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, DstVT, Src,
27691                      DAG.getIntPtrConstant(0, dl));
27692 }
27693 
27694 /// Compute the horizontal sum of bytes in V for the elements of VT.
27695 ///
27696 /// Requires V to be a byte vector and VT to be an integer vector type with
27697 /// wider elements than V's type. The width of the elements of VT determines
27698 /// how many bytes of V are summed horizontally to produce each element of the
27699 /// result.
27700 static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
27701                                       const X86Subtarget &Subtarget,
27702                                       SelectionDAG &DAG) {
27703   SDLoc DL(V);
27704   MVT ByteVecVT = V.getSimpleValueType();
27705   MVT EltVT = VT.getVectorElementType();
27706   assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
27707          "Expected value to have byte element type.");
27708   assert(EltVT != MVT::i8 &&
27709          "Horizontal byte sum only makes sense for wider elements!");
27710   unsigned VecSize = VT.getSizeInBits();
27711   assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
27712 
27713   // PSADBW instruction horizontally add all bytes and leave the result in i64
27714   // chunks, thus directly computes the pop count for v2i64 and v4i64.
27715   if (EltVT == MVT::i64) {
27716     SDValue Zeros = DAG.getConstant(0, DL, ByteVecVT);
27717     MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
27718     V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
27719     return DAG.getBitcast(VT, V);
27720   }
27721 
27722   if (EltVT == MVT::i32) {
27723     // We unpack the low half and high half into i32s interleaved with zeros so
27724     // that we can use PSADBW to horizontally sum them. The most useful part of
27725     // this is that it lines up the results of two PSADBW instructions to be
27726     // two v2i64 vectors which concatenated are the 4 population counts. We can
27727     // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
27728     SDValue Zeros = DAG.getConstant(0, DL, VT);
27729     SDValue V32 = DAG.getBitcast(VT, V);
27730     SDValue Low = getUnpackl(DAG, DL, VT, V32, Zeros);
27731     SDValue High = getUnpackh(DAG, DL, VT, V32, Zeros);
27732 
27733     // Do the horizontal sums into two v2i64s.
27734     Zeros = DAG.getConstant(0, DL, ByteVecVT);
27735     MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
27736     Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
27737                       DAG.getBitcast(ByteVecVT, Low), Zeros);
27738     High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
27739                        DAG.getBitcast(ByteVecVT, High), Zeros);
27740 
27741     // Merge them together.
27742     MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
27743     V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
27744                     DAG.getBitcast(ShortVecVT, Low),
27745                     DAG.getBitcast(ShortVecVT, High));
27746 
27747     return DAG.getBitcast(VT, V);
27748   }
27749 
27750   // The only element type left is i16.
27751   assert(EltVT == MVT::i16 && "Unknown how to handle type");
27752 
27753   // To obtain pop count for each i16 element starting from the pop count for
27754   // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
27755   // right by 8. It is important to shift as i16s as i8 vector shift isn't
27756   // directly supported.
27757   SDValue ShifterV = DAG.getConstant(8, DL, VT);
27758   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
27759   V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
27760                   DAG.getBitcast(ByteVecVT, V));
27761   return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
27762 }
27763 
27764 static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL,
27765                                         const X86Subtarget &Subtarget,
27766                                         SelectionDAG &DAG) {
27767   MVT VT = Op.getSimpleValueType();
27768   MVT EltVT = VT.getVectorElementType();
27769   int NumElts = VT.getVectorNumElements();
27770   (void)EltVT;
27771   assert(EltVT == MVT::i8 && "Only vXi8 vector CTPOP lowering supported.");
27772 
27773   // Implement a lookup table in register by using an algorithm based on:
27774   // http://wm.ite.pl/articles/sse-popcount.html
27775   //
27776   // The general idea is that every lower byte nibble in the input vector is an
27777   // index into a in-register pre-computed pop count table. We then split up the
27778   // input vector in two new ones: (1) a vector with only the shifted-right
27779   // higher nibbles for each byte and (2) a vector with the lower nibbles (and
27780   // masked out higher ones) for each byte. PSHUFB is used separately with both
27781   // to index the in-register table. Next, both are added and the result is a
27782   // i8 vector where each element contains the pop count for input byte.
27783   const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
27784                        /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
27785                        /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
27786                        /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
27787 
27788   SmallVector<SDValue, 64> LUTVec;
27789   for (int i = 0; i < NumElts; ++i)
27790     LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
27791   SDValue InRegLUT = DAG.getBuildVector(VT, DL, LUTVec);
27792   SDValue M0F = DAG.getConstant(0x0F, DL, VT);
27793 
27794   // High nibbles
27795   SDValue FourV = DAG.getConstant(4, DL, VT);
27796   SDValue HiNibbles = DAG.getNode(ISD::SRL, DL, VT, Op, FourV);
27797 
27798   // Low nibbles
27799   SDValue LoNibbles = DAG.getNode(ISD::AND, DL, VT, Op, M0F);
27800 
27801   // The input vector is used as the shuffle mask that index elements into the
27802   // LUT. After counting low and high nibbles, add the vector to obtain the
27803   // final pop count per i8 element.
27804   SDValue HiPopCnt = DAG.getNode(X86ISD::PSHUFB, DL, VT, InRegLUT, HiNibbles);
27805   SDValue LoPopCnt = DAG.getNode(X86ISD::PSHUFB, DL, VT, InRegLUT, LoNibbles);
27806   return DAG.getNode(ISD::ADD, DL, VT, HiPopCnt, LoPopCnt);
27807 }
27808 
27809 // Please ensure that any codegen change from LowerVectorCTPOP is reflected in
27810 // updated cost models in X86TTIImpl::getIntrinsicInstrCost.
27811 static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget,
27812                                 SelectionDAG &DAG) {
27813   MVT VT = Op.getSimpleValueType();
27814   assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) &&
27815          "Unknown CTPOP type to handle");
27816   SDLoc DL(Op.getNode());
27817   SDValue Op0 = Op.getOperand(0);
27818 
27819   // TRUNC(CTPOP(ZEXT(X))) to make use of vXi32/vXi64 VPOPCNT instructions.
27820   if (Subtarget.hasVPOPCNTDQ()) {
27821     unsigned NumElems = VT.getVectorNumElements();
27822     assert((VT.getVectorElementType() == MVT::i8 ||
27823             VT.getVectorElementType() == MVT::i16) && "Unexpected type");
27824     if (NumElems < 16 || (NumElems == 16 && Subtarget.canExtendTo512DQ())) {
27825       MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
27826       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, Op0);
27827       Op = DAG.getNode(ISD::CTPOP, DL, NewVT, Op);
27828       return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
27829     }
27830   }
27831 
27832   // Decompose 256-bit ops into smaller 128-bit ops.
27833   if (VT.is256BitVector() && !Subtarget.hasInt256())
27834     return Lower256IntUnary(Op, DAG);
27835 
27836   // Decompose 512-bit ops into smaller 256-bit ops.
27837   if (VT.is512BitVector() && !Subtarget.hasBWI())
27838     return Lower512IntUnary(Op, DAG);
27839 
27840   // For element types greater than i8, do vXi8 pop counts and a bytesum.
27841   if (VT.getScalarType() != MVT::i8) {
27842     MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
27843     SDValue ByteOp = DAG.getBitcast(ByteVT, Op0);
27844     SDValue PopCnt8 = DAG.getNode(ISD::CTPOP, DL, ByteVT, ByteOp);
27845     return LowerHorizontalByteSum(PopCnt8, VT, Subtarget, DAG);
27846   }
27847 
27848   // We can't use the fast LUT approach, so fall back on LegalizeDAG.
27849   if (!Subtarget.hasSSSE3())
27850     return SDValue();
27851 
27852   return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
27853 }
27854 
27855 static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget,
27856                           SelectionDAG &DAG) {
27857   assert(Op.getSimpleValueType().isVector() &&
27858          "We only do custom lowering for vector population count.");
27859   return LowerVectorCTPOP(Op, Subtarget, DAG);
27860 }
27861 
27862 static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) {
27863   MVT VT = Op.getSimpleValueType();
27864   SDValue In = Op.getOperand(0);
27865   SDLoc DL(Op);
27866 
27867   // For scalars, its still beneficial to transfer to/from the SIMD unit to
27868   // perform the BITREVERSE.
27869   if (!VT.isVector()) {
27870     MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits());
27871     SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In);
27872     Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res);
27873     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res,
27874                        DAG.getIntPtrConstant(0, DL));
27875   }
27876 
27877   int NumElts = VT.getVectorNumElements();
27878   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
27879 
27880   // Decompose 256-bit ops into smaller 128-bit ops.
27881   if (VT.is256BitVector())
27882     return Lower256IntUnary(Op, DAG);
27883 
27884   assert(VT.is128BitVector() &&
27885          "Only 128-bit vector bitreverse lowering supported.");
27886 
27887   // VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we
27888   // perform the BSWAP in the shuffle.
27889   // Its best to shuffle using the second operand as this will implicitly allow
27890   // memory folding for multiple vectors.
27891   SmallVector<SDValue, 16> MaskElts;
27892   for (int i = 0; i != NumElts; ++i) {
27893     for (int j = ScalarSizeInBytes - 1; j >= 0; --j) {
27894       int SourceByte = 16 + (i * ScalarSizeInBytes) + j;
27895       int PermuteByte = SourceByte | (2 << 5);
27896       MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8));
27897     }
27898   }
27899 
27900   SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts);
27901   SDValue Res = DAG.getBitcast(MVT::v16i8, In);
27902   Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8),
27903                     Res, Mask);
27904   return DAG.getBitcast(VT, Res);
27905 }
27906 
27907 static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget,
27908                                SelectionDAG &DAG) {
27909   MVT VT = Op.getSimpleValueType();
27910 
27911   if (Subtarget.hasXOP() && !VT.is512BitVector())
27912     return LowerBITREVERSE_XOP(Op, DAG);
27913 
27914   assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE");
27915 
27916   SDValue In = Op.getOperand(0);
27917   SDLoc DL(Op);
27918 
27919   // Split v8i64/v16i32 without BWI so that we can still use the PSHUFB
27920   // lowering.
27921   if (VT == MVT::v8i64 || VT == MVT::v16i32) {
27922     assert(!Subtarget.hasBWI() && "BWI should Expand BITREVERSE");
27923     return Lower512IntUnary(Op, DAG);
27924   }
27925 
27926   unsigned NumElts = VT.getVectorNumElements();
27927   assert(VT.getScalarType() == MVT::i8 &&
27928          "Only byte vector BITREVERSE supported");
27929 
27930   // Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2.
27931   if (VT.is256BitVector() && !Subtarget.hasInt256())
27932     return Lower256IntUnary(Op, DAG);
27933 
27934   // Perform BITREVERSE using PSHUFB lookups. Each byte is split into
27935   // two nibbles and a PSHUFB lookup to find the bitreverse of each
27936   // 0-15 value (moved to the other nibble).
27937   SDValue NibbleMask = DAG.getConstant(0xF, DL, VT);
27938   SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask);
27939   SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT));
27940 
27941   const int LoLUT[16] = {
27942       /* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0,
27943       /* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0,
27944       /* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0,
27945       /* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0};
27946   const int HiLUT[16] = {
27947       /* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C,
27948       /* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E,
27949       /* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D,
27950       /* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F};
27951 
27952   SmallVector<SDValue, 16> LoMaskElts, HiMaskElts;
27953   for (unsigned i = 0; i < NumElts; ++i) {
27954     LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8));
27955     HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8));
27956   }
27957 
27958   SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts);
27959   SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts);
27960   Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo);
27961   Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi);
27962   return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
27963 }
27964 
27965 static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG,
27966                                         const X86Subtarget &Subtarget) {
27967   unsigned NewOpc = 0;
27968   switch (N->getOpcode()) {
27969   case ISD::ATOMIC_LOAD_ADD:
27970     NewOpc = X86ISD::LADD;
27971     break;
27972   case ISD::ATOMIC_LOAD_SUB:
27973     NewOpc = X86ISD::LSUB;
27974     break;
27975   case ISD::ATOMIC_LOAD_OR:
27976     NewOpc = X86ISD::LOR;
27977     break;
27978   case ISD::ATOMIC_LOAD_XOR:
27979     NewOpc = X86ISD::LXOR;
27980     break;
27981   case ISD::ATOMIC_LOAD_AND:
27982     NewOpc = X86ISD::LAND;
27983     break;
27984   default:
27985     llvm_unreachable("Unknown ATOMIC_LOAD_ opcode");
27986   }
27987 
27988   MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
27989 
27990   return DAG.getMemIntrinsicNode(
27991       NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other),
27992       {N->getOperand(0), N->getOperand(1), N->getOperand(2)},
27993       /*MemVT=*/N->getSimpleValueType(0), MMO);
27994 }
27995 
27996 /// Lower atomic_load_ops into LOCK-prefixed operations.
27997 static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG,
27998                                 const X86Subtarget &Subtarget) {
27999   AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode());
28000   SDValue Chain = N->getOperand(0);
28001   SDValue LHS = N->getOperand(1);
28002   SDValue RHS = N->getOperand(2);
28003   unsigned Opc = N->getOpcode();
28004   MVT VT = N->getSimpleValueType(0);
28005   SDLoc DL(N);
28006 
28007   // We can lower atomic_load_add into LXADD. However, any other atomicrmw op
28008   // can only be lowered when the result is unused.  They should have already
28009   // been transformed into a cmpxchg loop in AtomicExpand.
28010   if (N->hasAnyUseOfValue(0)) {
28011     // Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to
28012     // select LXADD if LOCK_SUB can't be selected.
28013     if (Opc == ISD::ATOMIC_LOAD_SUB) {
28014       RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS);
28015       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS,
28016                            RHS, AN->getMemOperand());
28017     }
28018     assert(Opc == ISD::ATOMIC_LOAD_ADD &&
28019            "Used AtomicRMW ops other than Add should have been expanded!");
28020     return N;
28021   }
28022 
28023   // Specialized lowering for the canonical form of an idemptotent atomicrmw.
28024   // The core idea here is that since the memory location isn't actually
28025   // changing, all we need is a lowering for the *ordering* impacts of the
28026   // atomicrmw.  As such, we can chose a different operation and memory
28027   // location to minimize impact on other code.
28028   if (Opc == ISD::ATOMIC_LOAD_OR && isNullConstant(RHS)) {
28029     // On X86, the only ordering which actually requires an instruction is
28030     // seq_cst which isn't SingleThread, everything just needs to be preserved
28031     // during codegen and then dropped. Note that we expect (but don't assume),
28032     // that orderings other than seq_cst and acq_rel have been canonicalized to
28033     // a store or load.
28034     if (AN->getOrdering() == AtomicOrdering::SequentiallyConsistent &&
28035         AN->getSyncScopeID() == SyncScope::System) {
28036       // Prefer a locked operation against a stack location to minimize cache
28037       // traffic.  This assumes that stack locations are very likely to be
28038       // accessed only by the owning thread.
28039       SDValue NewChain = emitLockedStackOp(DAG, Subtarget, Chain, DL);
28040       assert(!N->hasAnyUseOfValue(0));
28041       // NOTE: The getUNDEF is needed to give something for the unused result 0.
28042       return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(),
28043                          DAG.getUNDEF(VT), NewChain);
28044     }
28045     // MEMBARRIER is a compiler barrier; it codegens to a no-op.
28046     SDValue NewChain = DAG.getNode(X86ISD::MEMBARRIER, DL, MVT::Other, Chain);
28047     assert(!N->hasAnyUseOfValue(0));
28048     // NOTE: The getUNDEF is needed to give something for the unused result 0.
28049     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(),
28050                        DAG.getUNDEF(VT), NewChain);
28051   }
28052 
28053   SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG, Subtarget);
28054   // RAUW the chain, but don't worry about the result, as it's unused.
28055   assert(!N->hasAnyUseOfValue(0));
28056   // NOTE: The getUNDEF is needed to give something for the unused result 0.
28057   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(),
28058                      DAG.getUNDEF(VT), LockOp.getValue(1));
28059 }
28060 
28061 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG,
28062                                  const X86Subtarget &Subtarget) {
28063   auto *Node = cast<AtomicSDNode>(Op.getNode());
28064   SDLoc dl(Node);
28065   EVT VT = Node->getMemoryVT();
28066 
28067   bool IsSeqCst = Node->getOrdering() == AtomicOrdering::SequentiallyConsistent;
28068   bool IsTypeLegal = DAG.getTargetLoweringInfo().isTypeLegal(VT);
28069 
28070   // If this store is not sequentially consistent and the type is legal
28071   // we can just keep it.
28072   if (!IsSeqCst && IsTypeLegal)
28073     return Op;
28074 
28075   if (VT == MVT::i64 && !IsTypeLegal) {
28076     // For illegal i64 atomic_stores, we can try to use MOVQ if SSE2 is enabled.
28077     // FIXME: Use movlps with SSE1.
28078     // FIXME: Use fist with X87.
28079     bool NoImplicitFloatOps =
28080         DAG.getMachineFunction().getFunction().hasFnAttribute(
28081             Attribute::NoImplicitFloat);
28082     if (!Subtarget.useSoftFloat() && !NoImplicitFloatOps &&
28083         Subtarget.hasSSE2()) {
28084       SDValue SclToVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
28085                                      Node->getOperand(2));
28086       SDVTList Tys = DAG.getVTList(MVT::Other);
28087       SDValue Ops[] = { Node->getChain(), SclToVec, Node->getBasePtr() };
28088       SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::VEXTRACT_STORE, dl, Tys,
28089                                               Ops, MVT::i64,
28090                                               Node->getMemOperand());
28091 
28092       // If this is a sequentially consistent store, also emit an appropriate
28093       // barrier.
28094       if (IsSeqCst)
28095         Chain = emitLockedStackOp(DAG, Subtarget, Chain, dl);
28096 
28097       return Chain;
28098     }
28099   }
28100 
28101   // Convert seq_cst store -> xchg
28102   // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
28103   // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
28104   SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
28105                                Node->getMemoryVT(),
28106                                Node->getOperand(0),
28107                                Node->getOperand(1), Node->getOperand(2),
28108                                Node->getMemOperand());
28109   return Swap.getValue(1);
28110 }
28111 
28112 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
28113   SDNode *N = Op.getNode();
28114   MVT VT = N->getSimpleValueType(0);
28115 
28116   // Let legalize expand this if it isn't a legal type yet.
28117   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
28118     return SDValue();
28119 
28120   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
28121   SDLoc DL(N);
28122 
28123   // Set the carry flag.
28124   SDValue Carry = Op.getOperand(2);
28125   EVT CarryVT = Carry.getValueType();
28126   APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
28127   Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
28128                       Carry, DAG.getConstant(NegOne, DL, CarryVT));
28129 
28130   unsigned Opc = Op.getOpcode() == ISD::ADDCARRY ? X86ISD::ADC : X86ISD::SBB;
28131   SDValue Sum = DAG.getNode(Opc, DL, VTs, Op.getOperand(0),
28132                             Op.getOperand(1), Carry.getValue(1));
28133 
28134   SDValue SetCC = getSETCC(X86::COND_B, Sum.getValue(1), DL, DAG);
28135   if (N->getValueType(1) == MVT::i1)
28136     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
28137 
28138   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
28139 }
28140 
28141 static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget,
28142                             SelectionDAG &DAG) {
28143   assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit());
28144 
28145   // For MacOSX, we want to call an alternative entry point: __sincos_stret,
28146   // which returns the values as { float, float } (in XMM0) or
28147   // { double, double } (which is returned in XMM0, XMM1).
28148   SDLoc dl(Op);
28149   SDValue Arg = Op.getOperand(0);
28150   EVT ArgVT = Arg.getValueType();
28151   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
28152 
28153   TargetLowering::ArgListTy Args;
28154   TargetLowering::ArgListEntry Entry;
28155 
28156   Entry.Node = Arg;
28157   Entry.Ty = ArgTy;
28158   Entry.IsSExt = false;
28159   Entry.IsZExt = false;
28160   Args.push_back(Entry);
28161 
28162   bool isF64 = ArgVT == MVT::f64;
28163   // Only optimize x86_64 for now. i386 is a bit messy. For f32,
28164   // the small struct {f32, f32} is returned in (eax, edx). For f64,
28165   // the results are returned via SRet in memory.
28166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28167   RTLIB::Libcall LC = isF64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
28168   const char *LibcallName = TLI.getLibcallName(LC);
28169   SDValue Callee =
28170       DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
28171 
28172   Type *RetTy = isF64 ? (Type *)StructType::get(ArgTy, ArgTy)
28173                       : (Type *)VectorType::get(ArgTy, 4);
28174 
28175   TargetLowering::CallLoweringInfo CLI(DAG);
28176   CLI.setDebugLoc(dl)
28177       .setChain(DAG.getEntryNode())
28178       .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args));
28179 
28180   std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
28181 
28182   if (isF64)
28183     // Returned in xmm0 and xmm1.
28184     return CallResult.first;
28185 
28186   // Returned in bits 0:31 and 32:64 xmm0.
28187   SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
28188                                CallResult.first, DAG.getIntPtrConstant(0, dl));
28189   SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
28190                                CallResult.first, DAG.getIntPtrConstant(1, dl));
28191   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
28192   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
28193 }
28194 
28195 /// Widen a vector input to a vector of NVT.  The
28196 /// input vector must have the same element type as NVT.
28197 static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
28198                             bool FillWithZeroes = false) {
28199   // Check if InOp already has the right width.
28200   MVT InVT = InOp.getSimpleValueType();
28201   if (InVT == NVT)
28202     return InOp;
28203 
28204   if (InOp.isUndef())
28205     return DAG.getUNDEF(NVT);
28206 
28207   assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
28208          "input and widen element type must match");
28209 
28210   unsigned InNumElts = InVT.getVectorNumElements();
28211   unsigned WidenNumElts = NVT.getVectorNumElements();
28212   assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
28213          "Unexpected request for vector widening");
28214 
28215   SDLoc dl(InOp);
28216   if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
28217       InOp.getNumOperands() == 2) {
28218     SDValue N1 = InOp.getOperand(1);
28219     if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
28220         N1.isUndef()) {
28221       InOp = InOp.getOperand(0);
28222       InVT = InOp.getSimpleValueType();
28223       InNumElts = InVT.getVectorNumElements();
28224     }
28225   }
28226   if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
28227       ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
28228     SmallVector<SDValue, 16> Ops;
28229     for (unsigned i = 0; i < InNumElts; ++i)
28230       Ops.push_back(InOp.getOperand(i));
28231 
28232     EVT EltVT = InOp.getOperand(0).getValueType();
28233 
28234     SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
28235       DAG.getUNDEF(EltVT);
28236     for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
28237       Ops.push_back(FillVal);
28238     return DAG.getBuildVector(NVT, dl, Ops);
28239   }
28240   SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
28241     DAG.getUNDEF(NVT);
28242   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
28243                      InOp, DAG.getIntPtrConstant(0, dl));
28244 }
28245 
28246 static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget,
28247                              SelectionDAG &DAG) {
28248   assert(Subtarget.hasAVX512() &&
28249          "MGATHER/MSCATTER are supported on AVX-512 arch only");
28250 
28251   MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
28252   SDValue Src = N->getValue();
28253   MVT VT = Src.getSimpleValueType();
28254   assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
28255   SDLoc dl(Op);
28256 
28257   SDValue Scale = N->getScale();
28258   SDValue Index = N->getIndex();
28259   SDValue Mask = N->getMask();
28260   SDValue Chain = N->getChain();
28261   SDValue BasePtr = N->getBasePtr();
28262 
28263   if (VT == MVT::v2f32 || VT == MVT::v2i32) {
28264     assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
28265     // If the index is v2i64 and we have VLX we can use xmm for data and index.
28266     if (Index.getValueType() == MVT::v2i64 && Subtarget.hasVLX()) {
28267       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28268       EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
28269       Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Src, DAG.getUNDEF(VT));
28270       SDVTList VTs = DAG.getVTList(MVT::v2i1, MVT::Other);
28271       SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
28272       SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
28273           VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
28274       return SDValue(NewScatter.getNode(), 1);
28275     }
28276     return SDValue();
28277   }
28278 
28279   MVT IndexVT = Index.getSimpleValueType();
28280   MVT MaskVT = Mask.getSimpleValueType();
28281 
28282   // If the index is v2i32, we're being called by type legalization and we
28283   // should just let the default handling take care of it.
28284   if (IndexVT == MVT::v2i32)
28285     return SDValue();
28286 
28287   // If we don't have VLX and neither the passthru or index is 512-bits, we
28288   // need to widen until one is.
28289   if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
28290       !Index.getSimpleValueType().is512BitVector()) {
28291     // Determine how much we need to widen by to get a 512-bit type.
28292     unsigned Factor = std::min(512/VT.getSizeInBits(),
28293                                512/IndexVT.getSizeInBits());
28294     unsigned NumElts = VT.getVectorNumElements() * Factor;
28295 
28296     VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
28297     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts);
28298     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
28299 
28300     Src = ExtendToType(Src, VT, DAG);
28301     Index = ExtendToType(Index, IndexVT, DAG);
28302     Mask = ExtendToType(Mask, MaskVT, DAG, true);
28303   }
28304 
28305   SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
28306   SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
28307   SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
28308       VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
28309   return SDValue(NewScatter.getNode(), 1);
28310 }
28311 
28312 static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget,
28313                           SelectionDAG &DAG) {
28314 
28315   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
28316   MVT VT = Op.getSimpleValueType();
28317   MVT ScalarVT = VT.getScalarType();
28318   SDValue Mask = N->getMask();
28319   MVT MaskVT = Mask.getSimpleValueType();
28320   SDValue PassThru = N->getPassThru();
28321   SDLoc dl(Op);
28322 
28323   // Handle AVX masked loads which don't support passthru other than 0.
28324   if (MaskVT.getVectorElementType() != MVT::i1) {
28325     // We also allow undef in the isel pattern.
28326     if (PassThru.isUndef() || ISD::isBuildVectorAllZeros(PassThru.getNode()))
28327       return Op;
28328 
28329     SDValue NewLoad = DAG.getMaskedLoad(
28330         VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask,
28331         getZeroVector(VT, Subtarget, DAG, dl), N->getMemoryVT(),
28332         N->getMemOperand(), N->getAddressingMode(), N->getExtensionType(),
28333         N->isExpandingLoad());
28334     // Emit a blend.
28335     SDValue Select = DAG.getNode(ISD::VSELECT, dl, MaskVT, Mask, NewLoad,
28336                                  PassThru);
28337     return DAG.getMergeValues({ Select, NewLoad.getValue(1) }, dl);
28338   }
28339 
28340   assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) &&
28341          "Expanding masked load is supported on AVX-512 target only!");
28342 
28343   assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) &&
28344          "Expanding masked load is supported for 32 and 64-bit types only!");
28345 
28346   assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
28347          "Cannot lower masked load op.");
28348 
28349   assert((ScalarVT.getSizeInBits() >= 32 ||
28350           (Subtarget.hasBWI() &&
28351               (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
28352          "Unsupported masked load op.");
28353 
28354   // This operation is legal for targets with VLX, but without
28355   // VLX the vector should be widened to 512 bit
28356   unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits();
28357   MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
28358   PassThru = ExtendToType(PassThru, WideDataVT, DAG);
28359 
28360   // Mask element has to be i1.
28361   assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 &&
28362          "Unexpected mask type");
28363 
28364   MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
28365 
28366   Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
28367   SDValue NewLoad = DAG.getMaskedLoad(
28368       WideDataVT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask,
28369       PassThru, N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
28370       N->getExtensionType(), N->isExpandingLoad());
28371 
28372   SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
28373                                NewLoad.getValue(0),
28374                                DAG.getIntPtrConstant(0, dl));
28375   SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
28376   return DAG.getMergeValues(RetOps, dl);
28377 }
28378 
28379 static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget,
28380                            SelectionDAG &DAG) {
28381   MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
28382   SDValue DataToStore = N->getValue();
28383   MVT VT = DataToStore.getSimpleValueType();
28384   MVT ScalarVT = VT.getScalarType();
28385   SDValue Mask = N->getMask();
28386   SDLoc dl(Op);
28387 
28388   assert((!N->isCompressingStore() || Subtarget.hasAVX512()) &&
28389          "Expanding masked load is supported on AVX-512 target only!");
28390 
28391   assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) &&
28392          "Expanding masked load is supported for 32 and 64-bit types only!");
28393 
28394   assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
28395          "Cannot lower masked store op.");
28396 
28397   assert((ScalarVT.getSizeInBits() >= 32 ||
28398           (Subtarget.hasBWI() &&
28399               (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
28400           "Unsupported masked store op.");
28401 
28402   // This operation is legal for targets with VLX, but without
28403   // VLX the vector should be widened to 512 bit
28404   unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
28405   MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
28406 
28407   // Mask element has to be i1.
28408   assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 &&
28409          "Unexpected mask type");
28410 
28411   MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
28412 
28413   DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
28414   Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
28415   return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
28416                             N->getOffset(), Mask, N->getMemoryVT(),
28417                             N->getMemOperand(), N->getAddressingMode(),
28418                             N->isTruncatingStore(), N->isCompressingStore());
28419 }
28420 
28421 static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget,
28422                             SelectionDAG &DAG) {
28423   assert(Subtarget.hasAVX2() &&
28424          "MGATHER/MSCATTER are supported on AVX-512/AVX-2 arch only");
28425 
28426   MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
28427   SDLoc dl(Op);
28428   MVT VT = Op.getSimpleValueType();
28429   SDValue Index = N->getIndex();
28430   SDValue Mask = N->getMask();
28431   SDValue PassThru = N->getPassThru();
28432   MVT IndexVT = Index.getSimpleValueType();
28433   MVT MaskVT = Mask.getSimpleValueType();
28434 
28435   assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
28436 
28437   // If the index is v2i32, we're being called by type legalization.
28438   if (IndexVT == MVT::v2i32)
28439     return SDValue();
28440 
28441   // If we don't have VLX and neither the passthru or index is 512-bits, we
28442   // need to widen until one is.
28443   MVT OrigVT = VT;
28444   if (Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
28445       !IndexVT.is512BitVector()) {
28446     // Determine how much we need to widen by to get a 512-bit type.
28447     unsigned Factor = std::min(512/VT.getSizeInBits(),
28448                                512/IndexVT.getSizeInBits());
28449 
28450     unsigned NumElts = VT.getVectorNumElements() * Factor;
28451 
28452     VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
28453     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts);
28454     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
28455 
28456     PassThru = ExtendToType(PassThru, VT, DAG);
28457     Index = ExtendToType(Index, IndexVT, DAG);
28458     Mask = ExtendToType(Mask, MaskVT, DAG, true);
28459   }
28460 
28461   SDValue Ops[] = { N->getChain(), PassThru, Mask, N->getBasePtr(), Index,
28462                     N->getScale() };
28463   SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
28464       DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(),
28465       N->getMemOperand());
28466   SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OrigVT,
28467                                 NewGather, DAG.getIntPtrConstant(0, dl));
28468   return DAG.getMergeValues({Extract, NewGather.getValue(2)}, dl);
28469 }
28470 
28471 static SDValue LowerADDRSPACECAST(SDValue Op, SelectionDAG &DAG) {
28472   SDLoc dl(Op);
28473   SDValue Src = Op.getOperand(0);
28474   MVT DstVT = Op.getSimpleValueType();
28475 
28476   AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Op.getNode());
28477   unsigned SrcAS = N->getSrcAddressSpace();
28478 
28479   assert(SrcAS != N->getDestAddressSpace() &&
28480          "addrspacecast must be between different address spaces");
28481 
28482   if (SrcAS == X86AS::PTR32_UPTR && DstVT == MVT::i64) {
28483     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Src);
28484   } else if (DstVT == MVT::i64) {
28485     Op = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Src);
28486   } else if (DstVT == MVT::i32) {
28487     Op = DAG.getNode(ISD::TRUNCATE, dl, DstVT, Src);
28488   } else {
28489     report_fatal_error("Bad address space in addrspacecast");
28490   }
28491   return Op;
28492 }
28493 
28494 SDValue X86TargetLowering::LowerGC_TRANSITION(SDValue Op,
28495                                               SelectionDAG &DAG) const {
28496   // TODO: Eventually, the lowering of these nodes should be informed by or
28497   // deferred to the GC strategy for the function in which they appear. For
28498   // now, however, they must be lowered to something. Since they are logically
28499   // no-ops in the case of a null GC strategy (or a GC strategy which does not
28500   // require special handling for these nodes), lower them as literal NOOPs for
28501   // the time being.
28502   SmallVector<SDValue, 2> Ops;
28503 
28504   Ops.push_back(Op.getOperand(0));
28505   if (Op->getGluedNode())
28506     Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
28507 
28508   SDLoc OpDL(Op);
28509   SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
28510   SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
28511 
28512   return NOOP;
28513 }
28514 
28515 SDValue X86TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
28516                                          RTLIB::Libcall Call) const {
28517 
28518   bool IsStrict = Op->isStrictFPOpcode();
28519   unsigned Offset = IsStrict ? 1 : 0;
28520   SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end());
28521 
28522   SDLoc dl(Op);
28523   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
28524   MakeLibCallOptions CallOptions;
28525   std::pair<SDValue, SDValue> Tmp = makeLibCall(DAG, Call, MVT::f128, Ops,
28526                                                 CallOptions, dl, Chain);
28527 
28528   if (IsStrict)
28529     return DAG.getMergeValues({ Tmp.first, Tmp.second }, dl);
28530 
28531   return Tmp.first;
28532 }
28533 
28534 /// Provide custom lowering hooks for some operations.
28535 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
28536   switch (Op.getOpcode()) {
28537   default: llvm_unreachable("Should not custom lower this!");
28538   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
28539   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
28540     return LowerCMP_SWAP(Op, Subtarget, DAG);
28541   case ISD::CTPOP:              return LowerCTPOP(Op, Subtarget, DAG);
28542   case ISD::ATOMIC_LOAD_ADD:
28543   case ISD::ATOMIC_LOAD_SUB:
28544   case ISD::ATOMIC_LOAD_OR:
28545   case ISD::ATOMIC_LOAD_XOR:
28546   case ISD::ATOMIC_LOAD_AND:    return lowerAtomicArith(Op, DAG, Subtarget);
28547   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG, Subtarget);
28548   case ISD::BITREVERSE:         return LowerBITREVERSE(Op, Subtarget, DAG);
28549   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
28550   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
28551   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, Subtarget, DAG);
28552   case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
28553   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
28554   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
28555   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
28556   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
28557   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, Subtarget,DAG);
28558   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
28559   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
28560   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
28561   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
28562   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
28563   case ISD::SHL_PARTS:
28564   case ISD::SRA_PARTS:
28565   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
28566   case ISD::FSHL:
28567   case ISD::FSHR:               return LowerFunnelShift(Op, Subtarget, DAG);
28568   case ISD::STRICT_SINT_TO_FP:
28569   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
28570   case ISD::STRICT_UINT_TO_FP:
28571   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
28572   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
28573   case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
28574   case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
28575   case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
28576   case ISD::ZERO_EXTEND_VECTOR_INREG:
28577   case ISD::SIGN_EXTEND_VECTOR_INREG:
28578     return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG);
28579   case ISD::FP_TO_SINT:
28580   case ISD::STRICT_FP_TO_SINT:
28581   case ISD::FP_TO_UINT:
28582   case ISD::STRICT_FP_TO_UINT:  return LowerFP_TO_INT(Op, DAG);
28583   case ISD::FP_EXTEND:
28584   case ISD::STRICT_FP_EXTEND:   return LowerFP_EXTEND(Op, DAG);
28585   case ISD::FP_ROUND:
28586   case ISD::STRICT_FP_ROUND:    return LowerFP_ROUND(Op, DAG);
28587   case ISD::LOAD:               return LowerLoad(Op, Subtarget, DAG);
28588   case ISD::STORE:              return LowerStore(Op, Subtarget, DAG);
28589   case ISD::FADD:
28590   case ISD::FSUB:               return lowerFaddFsub(Op, DAG);
28591   case ISD::FABS:
28592   case ISD::FNEG:               return LowerFABSorFNEG(Op, DAG);
28593   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
28594   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
28595   case ISD::SETCC:
28596   case ISD::STRICT_FSETCC:
28597   case ISD::STRICT_FSETCCS:     return LowerSETCC(Op, DAG);
28598   case ISD::SETCCCARRY:         return LowerSETCCCARRY(Op, DAG);
28599   case ISD::SELECT:             return LowerSELECT(Op, DAG);
28600   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
28601   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
28602   case ISD::VASTART:            return LowerVASTART(Op, DAG);
28603   case ISD::VAARG:              return LowerVAARG(Op, DAG);
28604   case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
28605   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
28606   case ISD::INTRINSIC_VOID:
28607   case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
28608   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
28609   case ISD::ADDROFRETURNADDR:   return LowerADDROFRETURNADDR(Op, DAG);
28610   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
28611   case ISD::FRAME_TO_ARGS_OFFSET:
28612                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
28613   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
28614   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
28615   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
28616   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
28617   case ISD::EH_SJLJ_SETUP_DISPATCH:
28618     return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
28619   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
28620   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
28621   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
28622   case ISD::CTLZ:
28623   case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ(Op, Subtarget, DAG);
28624   case ISD::CTTZ:
28625   case ISD::CTTZ_ZERO_UNDEF:    return LowerCTTZ(Op, Subtarget, DAG);
28626   case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
28627   case ISD::MULHS:
28628   case ISD::MULHU:              return LowerMULH(Op, Subtarget, DAG);
28629   case ISD::ROTL:
28630   case ISD::ROTR:               return LowerRotate(Op, Subtarget, DAG);
28631   case ISD::SRA:
28632   case ISD::SRL:
28633   case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
28634   case ISD::SADDO:
28635   case ISD::UADDO:
28636   case ISD::SSUBO:
28637   case ISD::USUBO:
28638   case ISD::SMULO:
28639   case ISD::UMULO:              return LowerXALUO(Op, DAG);
28640   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
28641   case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
28642   case ISD::ADDCARRY:
28643   case ISD::SUBCARRY:           return LowerADDSUBCARRY(Op, DAG);
28644   case ISD::ADD:
28645   case ISD::SUB:                return lowerAddSub(Op, DAG, Subtarget);
28646   case ISD::UADDSAT:
28647   case ISD::SADDSAT:
28648   case ISD::USUBSAT:
28649   case ISD::SSUBSAT:            return LowerADDSAT_SUBSAT(Op, DAG, Subtarget);
28650   case ISD::SMAX:
28651   case ISD::SMIN:
28652   case ISD::UMAX:
28653   case ISD::UMIN:               return LowerMINMAX(Op, DAG);
28654   case ISD::ABS:                return LowerABS(Op, Subtarget, DAG);
28655   case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
28656   case ISD::MLOAD:              return LowerMLOAD(Op, Subtarget, DAG);
28657   case ISD::MSTORE:             return LowerMSTORE(Op, Subtarget, DAG);
28658   case ISD::MGATHER:            return LowerMGATHER(Op, Subtarget, DAG);
28659   case ISD::MSCATTER:           return LowerMSCATTER(Op, Subtarget, DAG);
28660   case ISD::GC_TRANSITION_START:
28661   case ISD::GC_TRANSITION_END:  return LowerGC_TRANSITION(Op, DAG);
28662   case ISD::ADDRSPACECAST:
28663     return LowerADDRSPACECAST(Op, DAG);
28664   }
28665 }
28666 
28667 /// Places new result values for the node in Results (their number
28668 /// and types must exactly match those of the original return values of
28669 /// the node), or leaves Results empty, which indicates that the node is not
28670 /// to be custom lowered after all.
28671 void X86TargetLowering::LowerOperationWrapper(SDNode *N,
28672                                               SmallVectorImpl<SDValue> &Results,
28673                                               SelectionDAG &DAG) const {
28674   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
28675 
28676   if (!Res.getNode())
28677     return;
28678 
28679   // If the original node has one result, take the return value from
28680   // LowerOperation as is. It might not be result number 0.
28681   if (N->getNumValues() == 1) {
28682     Results.push_back(Res);
28683     return;
28684   }
28685 
28686   // If the original node has multiple results, then the return node should
28687   // have the same number of results.
28688   assert((N->getNumValues() == Res->getNumValues()) &&
28689       "Lowering returned the wrong number of results!");
28690 
28691   // Places new result values base on N result number.
28692   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
28693     Results.push_back(Res.getValue(I));
28694 }
28695 
28696 /// Replace a node with an illegal result type with a new node built out of
28697 /// custom code.
28698 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
28699                                            SmallVectorImpl<SDValue>&Results,
28700                                            SelectionDAG &DAG) const {
28701   SDLoc dl(N);
28702   switch (N->getOpcode()) {
28703   default:
28704 #ifndef NDEBUG
28705     dbgs() << "ReplaceNodeResults: ";
28706     N->dump(&DAG);
28707 #endif
28708     llvm_unreachable("Do not know how to custom type legalize this operation!");
28709   case ISD::CTPOP: {
28710     assert(N->getValueType(0) == MVT::i64 && "Unexpected VT!");
28711     // Use a v2i64 if possible.
28712     bool NoImplicitFloatOps =
28713         DAG.getMachineFunction().getFunction().hasFnAttribute(
28714             Attribute::NoImplicitFloat);
28715     if (isTypeLegal(MVT::v2i64) && !NoImplicitFloatOps) {
28716       SDValue Wide =
28717           DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, N->getOperand(0));
28718       Wide = DAG.getNode(ISD::CTPOP, dl, MVT::v2i64, Wide);
28719       // Bit count should fit in 32-bits, extract it as that and then zero
28720       // extend to i64. Otherwise we end up extracting bits 63:32 separately.
28721       Wide = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Wide);
28722       Wide = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Wide,
28723                          DAG.getIntPtrConstant(0, dl));
28724       Wide = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Wide);
28725       Results.push_back(Wide);
28726     }
28727     return;
28728   }
28729   case ISD::MUL: {
28730     EVT VT = N->getValueType(0);
28731     assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
28732            VT.getVectorElementType() == MVT::i8 && "Unexpected VT!");
28733     // Pre-promote these to vXi16 to avoid op legalization thinking all 16
28734     // elements are needed.
28735     MVT MulVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
28736     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, dl, MulVT, N->getOperand(0));
28737     SDValue Op1 = DAG.getNode(ISD::ANY_EXTEND, dl, MulVT, N->getOperand(1));
28738     SDValue Res = DAG.getNode(ISD::MUL, dl, MulVT, Op0, Op1);
28739     Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
28740     unsigned NumConcats = 16 / VT.getVectorNumElements();
28741     SmallVector<SDValue, 8> ConcatOps(NumConcats, DAG.getUNDEF(VT));
28742     ConcatOps[0] = Res;
28743     Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, ConcatOps);
28744     Results.push_back(Res);
28745     return;
28746   }
28747   case X86ISD::VPMADDWD:
28748   case X86ISD::AVG: {
28749     // Legalize types for X86ISD::AVG/VPMADDWD by widening.
28750     assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
28751 
28752     EVT VT = N->getValueType(0);
28753     EVT InVT = N->getOperand(0).getValueType();
28754     assert(VT.getSizeInBits() < 128 && 128 % VT.getSizeInBits() == 0 &&
28755            "Expected a VT that divides into 128 bits.");
28756     assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
28757            "Unexpected type action!");
28758     unsigned NumConcat = 128 / InVT.getSizeInBits();
28759 
28760     EVT InWideVT = EVT::getVectorVT(*DAG.getContext(),
28761                                     InVT.getVectorElementType(),
28762                                     NumConcat * InVT.getVectorNumElements());
28763     EVT WideVT = EVT::getVectorVT(*DAG.getContext(),
28764                                   VT.getVectorElementType(),
28765                                   NumConcat * VT.getVectorNumElements());
28766 
28767     SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
28768     Ops[0] = N->getOperand(0);
28769     SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWideVT, Ops);
28770     Ops[0] = N->getOperand(1);
28771     SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWideVT, Ops);
28772 
28773     SDValue Res = DAG.getNode(N->getOpcode(), dl, WideVT, InVec0, InVec1);
28774     Results.push_back(Res);
28775     return;
28776   }
28777   case ISD::ABS: {
28778     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28779     assert(N->getValueType(0) == MVT::i64 &&
28780            "Unexpected type (!= i64) on ABS.");
28781     MVT HalfT = MVT::i32;
28782     SDValue Lo, Hi, Tmp;
28783     SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
28784 
28785     Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
28786                      DAG.getConstant(0, dl, HalfT));
28787     Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
28788                      DAG.getConstant(1, dl, HalfT));
28789     Tmp = DAG.getNode(
28790         ISD::SRA, dl, HalfT, Hi,
28791         DAG.getConstant(HalfT.getSizeInBits() - 1, dl,
28792                         TLI.getShiftAmountTy(HalfT, DAG.getDataLayout())));
28793     Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
28794     Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
28795                      SDValue(Lo.getNode(), 1));
28796     Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
28797     Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
28798     Results.push_back(Lo);
28799     Results.push_back(Hi);
28800     return;
28801   }
28802   // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
28803   case X86ISD::FMINC:
28804   case X86ISD::FMIN:
28805   case X86ISD::FMAXC:
28806   case X86ISD::FMAX: {
28807     EVT VT = N->getValueType(0);
28808     assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
28809     SDValue UNDEF = DAG.getUNDEF(VT);
28810     SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
28811                               N->getOperand(0), UNDEF);
28812     SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
28813                               N->getOperand(1), UNDEF);
28814     Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
28815     return;
28816   }
28817   case ISD::SDIV:
28818   case ISD::UDIV:
28819   case ISD::SREM:
28820   case ISD::UREM: {
28821     EVT VT = N->getValueType(0);
28822     if (VT.isVector()) {
28823       assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
28824              "Unexpected type action!");
28825       // If this RHS is a constant splat vector we can widen this and let
28826       // division/remainder by constant optimize it.
28827       // TODO: Can we do something for non-splat?
28828       APInt SplatVal;
28829       if (ISD::isConstantSplatVector(N->getOperand(1).getNode(), SplatVal)) {
28830         unsigned NumConcats = 128 / VT.getSizeInBits();
28831         SmallVector<SDValue, 8> Ops0(NumConcats, DAG.getUNDEF(VT));
28832         Ops0[0] = N->getOperand(0);
28833         EVT ResVT = getTypeToTransformTo(*DAG.getContext(), VT);
28834         SDValue N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Ops0);
28835         SDValue N1 = DAG.getConstant(SplatVal, dl, ResVT);
28836         SDValue Res = DAG.getNode(N->getOpcode(), dl, ResVT, N0, N1);
28837         Results.push_back(Res);
28838       }
28839       return;
28840     }
28841 
28842     LLVM_FALLTHROUGH;
28843   }
28844   case ISD::SDIVREM:
28845   case ISD::UDIVREM: {
28846     SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
28847     Results.push_back(V);
28848     return;
28849   }
28850   case ISD::TRUNCATE: {
28851     MVT VT = N->getSimpleValueType(0);
28852     if (getTypeAction(*DAG.getContext(), VT) != TypeWidenVector)
28853       return;
28854 
28855     // The generic legalizer will try to widen the input type to the same
28856     // number of elements as the widened result type. But this isn't always
28857     // the best thing so do some custom legalization to avoid some cases.
28858     MVT WidenVT = getTypeToTransformTo(*DAG.getContext(), VT).getSimpleVT();
28859     SDValue In = N->getOperand(0);
28860     EVT InVT = In.getValueType();
28861 
28862     unsigned InBits = InVT.getSizeInBits();
28863     if (128 % InBits == 0) {
28864       // 128 bit and smaller inputs should avoid truncate all together and
28865       // just use a build_vector that will become a shuffle.
28866       // TODO: Widen and use a shuffle directly?
28867       MVT InEltVT = InVT.getSimpleVT().getVectorElementType();
28868       EVT EltVT = VT.getVectorElementType();
28869       unsigned WidenNumElts = WidenVT.getVectorNumElements();
28870       SmallVector<SDValue, 16> Ops(WidenNumElts, DAG.getUNDEF(EltVT));
28871       // Use the original element count so we don't do more scalar opts than
28872       // necessary.
28873       unsigned MinElts = VT.getVectorNumElements();
28874       for (unsigned i=0; i < MinElts; ++i) {
28875         SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, In,
28876                                   DAG.getIntPtrConstant(i, dl));
28877         Ops[i] = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Val);
28878       }
28879       Results.push_back(DAG.getBuildVector(WidenVT, dl, Ops));
28880       return;
28881     }
28882     // With AVX512 there are some cases that can use a target specific
28883     // truncate node to go from 256/512 to less than 128 with zeros in the
28884     // upper elements of the 128 bit result.
28885     if (Subtarget.hasAVX512() && isTypeLegal(InVT)) {
28886       // We can use VTRUNC directly if for 256 bits with VLX or for any 512.
28887       if ((InBits == 256 && Subtarget.hasVLX()) || InBits == 512) {
28888         Results.push_back(DAG.getNode(X86ISD::VTRUNC, dl, WidenVT, In));
28889         return;
28890       }
28891       // There's one case we can widen to 512 bits and use VTRUNC.
28892       if (InVT == MVT::v4i64 && VT == MVT::v4i8 && isTypeLegal(MVT::v8i64)) {
28893         In = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i64, In,
28894                          DAG.getUNDEF(MVT::v4i64));
28895         Results.push_back(DAG.getNode(X86ISD::VTRUNC, dl, WidenVT, In));
28896         return;
28897       }
28898     }
28899     if (Subtarget.hasVLX() && InVT == MVT::v8i64 && VT == MVT::v8i8 &&
28900         getTypeAction(*DAG.getContext(), InVT) == TypeSplitVector &&
28901         isTypeLegal(MVT::v4i64)) {
28902       // Input needs to be split and output needs to widened. Let's use two
28903       // VTRUNCs, and shuffle their results together into the wider type.
28904       SDValue Lo, Hi;
28905       std::tie(Lo, Hi) = DAG.SplitVector(In, dl);
28906 
28907       Lo = DAG.getNode(X86ISD::VTRUNC, dl, MVT::v16i8, Lo);
28908       Hi = DAG.getNode(X86ISD::VTRUNC, dl, MVT::v16i8, Hi);
28909       SDValue Res = DAG.getVectorShuffle(MVT::v16i8, dl, Lo, Hi,
28910                                          { 0,  1,  2,  3, 16, 17, 18, 19,
28911                                           -1, -1, -1, -1, -1, -1, -1, -1 });
28912       Results.push_back(Res);
28913       return;
28914     }
28915 
28916     return;
28917   }
28918   case ISD::ANY_EXTEND:
28919     // Right now, only MVT::v8i8 has Custom action for an illegal type.
28920     // It's intended to custom handle the input type.
28921     assert(N->getValueType(0) == MVT::v8i8 &&
28922            "Do not know how to legalize this Node");
28923     return;
28924   case ISD::SIGN_EXTEND:
28925   case ISD::ZERO_EXTEND: {
28926     EVT VT = N->getValueType(0);
28927     SDValue In = N->getOperand(0);
28928     EVT InVT = In.getValueType();
28929     if (!Subtarget.hasSSE41() && VT == MVT::v4i64 &&
28930         (InVT == MVT::v4i16 || InVT == MVT::v4i8)){
28931       assert(getTypeAction(*DAG.getContext(), InVT) == TypeWidenVector &&
28932              "Unexpected type action!");
28933       assert(N->getOpcode() == ISD::SIGN_EXTEND && "Unexpected opcode");
28934       // Custom split this so we can extend i8/i16->i32 invec. This is better
28935       // since sign_extend_inreg i8/i16->i64 requires an extend to i32 using
28936       // sra. Then extending from i32 to i64 using pcmpgt. By custom splitting
28937       // we allow the sra from the extend to i32 to be shared by the split.
28938       In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, In);
28939 
28940       // Fill a vector with sign bits for each element.
28941       SDValue Zero = DAG.getConstant(0, dl, MVT::v4i32);
28942       SDValue SignBits = DAG.getSetCC(dl, MVT::v4i32, Zero, In, ISD::SETGT);
28943 
28944       // Create an unpackl and unpackh to interleave the sign bits then bitcast
28945       // to v2i64.
28946       SDValue Lo = DAG.getVectorShuffle(MVT::v4i32, dl, In, SignBits,
28947                                         {0, 4, 1, 5});
28948       Lo = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Lo);
28949       SDValue Hi = DAG.getVectorShuffle(MVT::v4i32, dl, In, SignBits,
28950                                         {2, 6, 3, 7});
28951       Hi = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Hi);
28952 
28953       SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
28954       Results.push_back(Res);
28955       return;
28956     }
28957 
28958     if (VT == MVT::v16i32 || VT == MVT::v8i64) {
28959       if (!InVT.is128BitVector()) {
28960         // Not a 128 bit vector, but maybe type legalization will promote
28961         // it to 128 bits.
28962         if (getTypeAction(*DAG.getContext(), InVT) != TypePromoteInteger)
28963           return;
28964         InVT = getTypeToTransformTo(*DAG.getContext(), InVT);
28965         if (!InVT.is128BitVector())
28966           return;
28967 
28968         // Promote the input to 128 bits. Type legalization will turn this into
28969         // zext_inreg/sext_inreg.
28970         In = DAG.getNode(N->getOpcode(), dl, InVT, In);
28971       }
28972 
28973       // Perform custom splitting instead of the two stage extend we would get
28974       // by default.
28975       EVT LoVT, HiVT;
28976       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
28977       assert(isTypeLegal(LoVT) && "Split VT not legal?");
28978 
28979       SDValue Lo = getExtendInVec(N->getOpcode(), dl, LoVT, In, DAG);
28980 
28981       // We need to shift the input over by half the number of elements.
28982       unsigned NumElts = InVT.getVectorNumElements();
28983       unsigned HalfNumElts = NumElts / 2;
28984       SmallVector<int, 16> ShufMask(NumElts, SM_SentinelUndef);
28985       for (unsigned i = 0; i != HalfNumElts; ++i)
28986         ShufMask[i] = i + HalfNumElts;
28987 
28988       SDValue Hi = DAG.getVectorShuffle(InVT, dl, In, In, ShufMask);
28989       Hi = getExtendInVec(N->getOpcode(), dl, HiVT, Hi, DAG);
28990 
28991       SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
28992       Results.push_back(Res);
28993     }
28994     return;
28995   }
28996   case ISD::FP_TO_SINT:
28997   case ISD::STRICT_FP_TO_SINT:
28998   case ISD::FP_TO_UINT:
28999   case ISD::STRICT_FP_TO_UINT: {
29000     bool IsStrict = N->isStrictFPOpcode();
29001     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
29002                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
29003     EVT VT = N->getValueType(0);
29004     SDValue Src = N->getOperand(IsStrict ? 1 : 0);
29005     EVT SrcVT = Src.getValueType();
29006 
29007     if (VT.isVector() && VT.getScalarSizeInBits() < 32) {
29008       assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
29009              "Unexpected type action!");
29010 
29011       // Try to create a 128 bit vector, but don't exceed a 32 bit element.
29012       unsigned NewEltWidth = std::min(128 / VT.getVectorNumElements(), 32U);
29013       MVT PromoteVT = MVT::getVectorVT(MVT::getIntegerVT(NewEltWidth),
29014                                        VT.getVectorNumElements());
29015       SDValue Res;
29016       SDValue Chain;
29017       if (IsStrict) {
29018         Res = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, {PromoteVT, MVT::Other},
29019                           {N->getOperand(0), Src});
29020         Chain = Res.getValue(1);
29021       } else
29022         Res = DAG.getNode(ISD::FP_TO_SINT, dl, PromoteVT, Src);
29023 
29024       // Preserve what we know about the size of the original result. Except
29025       // when the result is v2i32 since we can't widen the assert.
29026       if (PromoteVT != MVT::v2i32)
29027         Res = DAG.getNode(!IsSigned ? ISD::AssertZext : ISD::AssertSext,
29028                           dl, PromoteVT, Res,
29029                           DAG.getValueType(VT.getVectorElementType()));
29030 
29031       // Truncate back to the original width.
29032       Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
29033 
29034       // Now widen to 128 bits.
29035       unsigned NumConcats = 128 / VT.getSizeInBits();
29036       MVT ConcatVT = MVT::getVectorVT(VT.getSimpleVT().getVectorElementType(),
29037                                       VT.getVectorNumElements() * NumConcats);
29038       SmallVector<SDValue, 8> ConcatOps(NumConcats, DAG.getUNDEF(VT));
29039       ConcatOps[0] = Res;
29040       Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatVT, ConcatOps);
29041       Results.push_back(Res);
29042       if (IsStrict)
29043         Results.push_back(Chain);
29044       return;
29045     }
29046 
29047 
29048     if (VT == MVT::v2i32) {
29049       assert((IsSigned || Subtarget.hasAVX512()) &&
29050              "Can only handle signed conversion without AVX512");
29051       assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
29052       assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
29053              "Unexpected type action!");
29054       if (Src.getValueType() == MVT::v2f64) {
29055         unsigned Opc;
29056         if (IsStrict)
29057           Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI : X86ISD::STRICT_CVTTP2UI;
29058         else
29059           Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
29060 
29061         // If we have VLX we can emit a target specific FP_TO_UINT node,.
29062         if (!IsSigned && !Subtarget.hasVLX()) {
29063           // Otherwise we can defer to the generic legalizer which will widen
29064           // the input as well. This will be further widened during op
29065           // legalization to v8i32<-v8f64.
29066           // For strict nodes we'll need to widen ourselves.
29067           // FIXME: Fix the type legalizer to safely widen strict nodes?
29068           if (!IsStrict)
29069             return;
29070           Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f64, Src,
29071                             DAG.getConstantFP(0.0, dl, MVT::v2f64));
29072           Opc = N->getOpcode();
29073         }
29074         SDValue Res;
29075         SDValue Chain;
29076         if (IsStrict) {
29077           Res = DAG.getNode(Opc, dl, {MVT::v4i32, MVT::Other},
29078                             {N->getOperand(0), Src});
29079           Chain = Res.getValue(1);
29080         } else {
29081           Res = DAG.getNode(Opc, dl, MVT::v4i32, Src);
29082         }
29083         Results.push_back(Res);
29084         if (IsStrict)
29085           Results.push_back(Chain);
29086         return;
29087       }
29088 
29089       // Custom widen strict v2f32->v2i32 by padding with zeros.
29090       // FIXME: Should generic type legalizer do this?
29091       if (Src.getValueType() == MVT::v2f32 && IsStrict) {
29092         Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
29093                           DAG.getConstantFP(0.0, dl, MVT::v2f32));
29094         SDValue Res = DAG.getNode(N->getOpcode(), dl, {MVT::v4i32, MVT::Other},
29095                                   {N->getOperand(0), Src});
29096         Results.push_back(Res);
29097         Results.push_back(Res.getValue(1));
29098         return;
29099       }
29100 
29101       // The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs,
29102       // so early out here.
29103       return;
29104     }
29105 
29106     assert(!VT.isVector() && "Vectors should have been handled above!");
29107 
29108     if (Subtarget.hasDQI() && VT == MVT::i64 &&
29109         (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
29110       assert(!Subtarget.is64Bit() && "i64 should be legal");
29111       unsigned NumElts = Subtarget.hasVLX() ? 2 : 8;
29112       // If we use a 128-bit result we might need to use a target specific node.
29113       unsigned SrcElts =
29114           std::max(NumElts, 128U / (unsigned)SrcVT.getSizeInBits());
29115       MVT VecVT = MVT::getVectorVT(MVT::i64, NumElts);
29116       MVT VecInVT = MVT::getVectorVT(SrcVT.getSimpleVT(), SrcElts);
29117       unsigned Opc = N->getOpcode();
29118       if (NumElts != SrcElts) {
29119         if (IsStrict)
29120           Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI : X86ISD::STRICT_CVTTP2UI;
29121         else
29122           Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
29123       }
29124 
29125       SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
29126       SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecInVT,
29127                                 DAG.getConstantFP(0.0, dl, VecInVT), Src,
29128                                 ZeroIdx);
29129       SDValue Chain;
29130       if (IsStrict) {
29131         SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
29132         Res = DAG.getNode(Opc, SDLoc(N), Tys, N->getOperand(0), Res);
29133         Chain = Res.getValue(1);
29134       } else
29135         Res = DAG.getNode(Opc, SDLoc(N), VecVT, Res);
29136       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res, ZeroIdx);
29137       Results.push_back(Res);
29138       if (IsStrict)
29139         Results.push_back(Chain);
29140       return;
29141     }
29142 
29143     SDValue Chain;
29144     if (SDValue V = FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, Chain)) {
29145       Results.push_back(V);
29146       if (IsStrict)
29147         Results.push_back(Chain);
29148     }
29149     return;
29150   }
29151   case ISD::SINT_TO_FP:
29152   case ISD::STRICT_SINT_TO_FP:
29153   case ISD::UINT_TO_FP:
29154   case ISD::STRICT_UINT_TO_FP: {
29155     bool IsStrict = N->isStrictFPOpcode();
29156     bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
29157                     N->getOpcode() == ISD::STRICT_SINT_TO_FP;
29158     EVT VT = N->getValueType(0);
29159     if (VT != MVT::v2f32)
29160       return;
29161     SDValue Src = N->getOperand(IsStrict ? 1 : 0);
29162     EVT SrcVT = Src.getValueType();
29163     if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) {
29164       if (IsStrict) {
29165         unsigned Opc = IsSigned ? X86ISD::STRICT_CVTSI2P
29166                                 : X86ISD::STRICT_CVTUI2P;
29167         SDValue Res = DAG.getNode(Opc, dl, {MVT::v4f32, MVT::Other},
29168                                   {N->getOperand(0), Src});
29169         Results.push_back(Res);
29170         Results.push_back(Res.getValue(1));
29171       } else {
29172         unsigned Opc = IsSigned ? X86ISD::CVTSI2P : X86ISD::CVTUI2P;
29173         Results.push_back(DAG.getNode(Opc, dl, MVT::v4f32, Src));
29174       }
29175       return;
29176     }
29177     if (SrcVT == MVT::v2i64 && !IsSigned && Subtarget.is64Bit() &&
29178         Subtarget.hasSSE41() && !Subtarget.hasAVX512()) {
29179       SDValue Zero = DAG.getConstant(0, dl, SrcVT);
29180       SDValue One  = DAG.getConstant(1, dl, SrcVT);
29181       SDValue Sign = DAG.getNode(ISD::OR, dl, SrcVT,
29182                                  DAG.getNode(ISD::SRL, dl, SrcVT, Src, One),
29183                                  DAG.getNode(ISD::AND, dl, SrcVT, Src, One));
29184       SDValue IsNeg = DAG.getSetCC(dl, MVT::v2i64, Src, Zero, ISD::SETLT);
29185       SDValue SignSrc = DAG.getSelect(dl, SrcVT, IsNeg, Sign, Src);
29186       SmallVector<SDValue, 4> SignCvts(4, DAG.getConstantFP(0.0, dl, MVT::f32));
29187       for (int i = 0; i != 2; ++i) {
29188         SDValue Src = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
29189                                   SignSrc, DAG.getIntPtrConstant(i, dl));
29190         if (IsStrict)
29191           SignCvts[i] =
29192               DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {MVT::f32, MVT::Other},
29193                           {N->getOperand(0), Src});
29194         else
29195           SignCvts[i] = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Src);
29196       };
29197       SDValue SignCvt = DAG.getBuildVector(MVT::v4f32, dl, SignCvts);
29198       SDValue Slow, Chain;
29199       if (IsStrict) {
29200         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
29201                             SignCvts[0].getValue(1), SignCvts[1].getValue(1));
29202         Slow = DAG.getNode(ISD::STRICT_FADD, dl, {MVT::v4f32, MVT::Other},
29203                            {Chain, SignCvt, SignCvt});
29204         Chain = Slow.getValue(1);
29205       } else {
29206         Slow = DAG.getNode(ISD::FADD, dl, MVT::v4f32, SignCvt, SignCvt);
29207       }
29208       IsNeg = DAG.getBitcast(MVT::v4i32, IsNeg);
29209       IsNeg =
29210           DAG.getVectorShuffle(MVT::v4i32, dl, IsNeg, IsNeg, {1, 3, -1, -1});
29211       SDValue Cvt = DAG.getSelect(dl, MVT::v4f32, IsNeg, Slow, SignCvt);
29212       Results.push_back(Cvt);
29213       if (IsStrict)
29214         Results.push_back(Chain);
29215       return;
29216     }
29217 
29218     if (SrcVT != MVT::v2i32)
29219       return;
29220 
29221     if (IsSigned || Subtarget.hasAVX512()) {
29222       if (!IsStrict)
29223         return;
29224 
29225       // Custom widen strict v2i32->v2f32 to avoid scalarization.
29226       // FIXME: Should generic type legalizer do this?
29227       Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
29228                         DAG.getConstant(0, dl, MVT::v2i32));
29229       SDValue Res = DAG.getNode(N->getOpcode(), dl, {MVT::v4f32, MVT::Other},
29230                                 {N->getOperand(0), Src});
29231       Results.push_back(Res);
29232       Results.push_back(Res.getValue(1));
29233       return;
29234     }
29235 
29236     assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
29237     SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src);
29238     SDValue VBias =
29239         DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64);
29240     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
29241                              DAG.getBitcast(MVT::v2i64, VBias));
29242     Or = DAG.getBitcast(MVT::v2f64, Or);
29243     if (IsStrict) {
29244       SDValue Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::v2f64, MVT::Other},
29245                                 {N->getOperand(0), Or, VBias});
29246       SDValue Res = DAG.getNode(X86ISD::STRICT_VFPROUND, dl,
29247                                 {MVT::v4f32, MVT::Other},
29248                                 {Sub.getValue(1), Sub});
29249       Results.push_back(Res);
29250       Results.push_back(Res.getValue(1));
29251     } else {
29252       // TODO: Are there any fast-math-flags to propagate here?
29253       SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
29254       Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
29255     }
29256     return;
29257   }
29258   case ISD::STRICT_FP_ROUND:
29259   case ISD::FP_ROUND: {
29260     bool IsStrict = N->isStrictFPOpcode();
29261     SDValue Src = N->getOperand(IsStrict ? 1 : 0);
29262     if (!isTypeLegal(Src.getValueType()))
29263       return;
29264     SDValue V;
29265     if (IsStrict)
29266       V = DAG.getNode(X86ISD::STRICT_VFPROUND, dl, {MVT::v4f32, MVT::Other},
29267                       {N->getOperand(0), N->getOperand(1)});
29268     else
29269       V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
29270     Results.push_back(V);
29271     if (IsStrict)
29272       Results.push_back(V.getValue(1));
29273     return;
29274   }
29275   case ISD::FP_EXTEND: {
29276     // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
29277     // No other ValueType for FP_EXTEND should reach this point.
29278     assert(N->getValueType(0) == MVT::v2f32 &&
29279            "Do not know how to legalize this Node");
29280     return;
29281   }
29282   case ISD::INTRINSIC_W_CHAIN: {
29283     unsigned IntNo = N->getConstantOperandVal(1);
29284     switch (IntNo) {
29285     default : llvm_unreachable("Do not know how to custom type "
29286                                "legalize this intrinsic operation!");
29287     case Intrinsic::x86_rdtsc:
29288       return getReadTimeStampCounter(N, dl, X86::RDTSC, DAG, Subtarget,
29289                                      Results);
29290     case Intrinsic::x86_rdtscp:
29291       return getReadTimeStampCounter(N, dl, X86::RDTSCP, DAG, Subtarget,
29292                                      Results);
29293     case Intrinsic::x86_rdpmc:
29294       expandIntrinsicWChainHelper(N, dl, DAG, X86::RDPMC, X86::ECX, Subtarget,
29295                                   Results);
29296       return;
29297     case Intrinsic::x86_xgetbv:
29298       expandIntrinsicWChainHelper(N, dl, DAG, X86::XGETBV, X86::ECX, Subtarget,
29299                                   Results);
29300       return;
29301     }
29302   }
29303   case ISD::READCYCLECOUNTER: {
29304     return getReadTimeStampCounter(N, dl, X86::RDTSC, DAG, Subtarget, Results);
29305   }
29306   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
29307     EVT T = N->getValueType(0);
29308     assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
29309     bool Regs64bit = T == MVT::i128;
29310     assert((!Regs64bit || Subtarget.hasCmpxchg16b()) &&
29311            "64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS requires CMPXCHG16B");
29312     MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
29313     SDValue cpInL, cpInH;
29314     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
29315                         DAG.getConstant(0, dl, HalfT));
29316     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
29317                         DAG.getConstant(1, dl, HalfT));
29318     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
29319                              Regs64bit ? X86::RAX : X86::EAX,
29320                              cpInL, SDValue());
29321     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
29322                              Regs64bit ? X86::RDX : X86::EDX,
29323                              cpInH, cpInL.getValue(1));
29324     SDValue swapInL, swapInH;
29325     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
29326                           DAG.getConstant(0, dl, HalfT));
29327     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
29328                           DAG.getConstant(1, dl, HalfT));
29329     swapInH =
29330         DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX,
29331                          swapInH, cpInH.getValue(1));
29332     // If the current function needs the base pointer, RBX,
29333     // we shouldn't use cmpxchg directly.
29334     // Indeed the lowering of that instruction will clobber
29335     // that register and since RBX will be a reserved register
29336     // the register allocator will not make sure its value will
29337     // be properly saved and restored around this live-range.
29338     const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
29339     SDValue Result;
29340     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
29341     Register BasePtr = TRI->getBaseRegister();
29342     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
29343     if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
29344         (BasePtr == X86::RBX || BasePtr == X86::EBX)) {
29345       // ISel prefers the LCMPXCHG64 variant.
29346       // If that assert breaks, that means it is not the case anymore,
29347       // and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX,
29348       // not just EBX. This is a matter of accepting i64 input for that
29349       // pseudo, and restoring into the register of the right wide
29350       // in expand pseudo. Everything else should just work.
29351       assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) &&
29352              "Saving only half of the RBX");
29353       unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG
29354                                   : X86ISD::LCMPXCHG8_SAVE_EBX_DAG;
29355       SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl,
29356                                            Regs64bit ? X86::RBX : X86::EBX,
29357                                            HalfT, swapInH.getValue(1));
29358       SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL,
29359                        RBXSave,
29360                        /*Glue*/ RBXSave.getValue(2)};
29361       Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
29362     } else {
29363       unsigned Opcode =
29364           Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG;
29365       swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl,
29366                                  Regs64bit ? X86::RBX : X86::EBX, swapInL,
29367                                  swapInH.getValue(1));
29368       SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1),
29369                        swapInL.getValue(1)};
29370       Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
29371     }
29372     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
29373                                         Regs64bit ? X86::RAX : X86::EAX,
29374                                         HalfT, Result.getValue(1));
29375     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
29376                                         Regs64bit ? X86::RDX : X86::EDX,
29377                                         HalfT, cpOutL.getValue(2));
29378     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
29379 
29380     SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
29381                                         MVT::i32, cpOutH.getValue(2));
29382     SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG);
29383     Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
29384 
29385     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
29386     Results.push_back(Success);
29387     Results.push_back(EFLAGS.getValue(1));
29388     return;
29389   }
29390   case ISD::ATOMIC_LOAD: {
29391     assert(N->getValueType(0) == MVT::i64 && "Unexpected VT!");
29392     bool NoImplicitFloatOps =
29393         DAG.getMachineFunction().getFunction().hasFnAttribute(
29394             Attribute::NoImplicitFloat);
29395     if (!Subtarget.useSoftFloat() && !NoImplicitFloatOps) {
29396       auto *Node = cast<AtomicSDNode>(N);
29397       if (Subtarget.hasSSE2()) {
29398         // Use a VZEXT_LOAD which will be selected as MOVQ. Then extract the
29399         // lower 64-bits.
29400         SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
29401         SDValue Ops[] = { Node->getChain(), Node->getBasePtr() };
29402         SDValue Ld = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
29403                                              MVT::i64, Node->getMemOperand());
29404         SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Ld,
29405                                   DAG.getIntPtrConstant(0, dl));
29406         Results.push_back(Res);
29407         Results.push_back(Ld.getValue(1));
29408         return;
29409       }
29410       if (Subtarget.hasX87()) {
29411         // First load this into an 80-bit X87 register. This will put the whole
29412         // integer into the significand.
29413         // FIXME: Do we need to glue? See FIXME comment in BuildFILD.
29414         SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other, MVT::Glue);
29415         SDValue Ops[] = { Node->getChain(), Node->getBasePtr() };
29416         SDValue Result = DAG.getMemIntrinsicNode(X86ISD::FILD_FLAG,
29417                                                  dl, Tys, Ops, MVT::i64,
29418                                                  Node->getMemOperand());
29419         SDValue Chain = Result.getValue(1);
29420         SDValue InFlag = Result.getValue(2);
29421 
29422         // Now store the X87 register to a stack temporary and convert to i64.
29423         // This store is not atomic and doesn't need to be.
29424         // FIXME: We don't need a stack temporary if the result of the load
29425         // is already being stored. We could just directly store there.
29426         SDValue StackPtr = DAG.CreateStackTemporary(MVT::i64);
29427         int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
29428         MachinePointerInfo MPI =
29429             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
29430         SDValue StoreOps[] = { Chain, Result, StackPtr, InFlag };
29431         Chain = DAG.getMemIntrinsicNode(X86ISD::FIST, dl,
29432                                         DAG.getVTList(MVT::Other), StoreOps,
29433                                         MVT::i64, MPI, 0 /*Align*/,
29434                                         MachineMemOperand::MOStore);
29435 
29436         // Finally load the value back from the stack temporary and return it.
29437         // This load is not atomic and doesn't need to be.
29438         // This load will be further type legalized.
29439         Result = DAG.getLoad(MVT::i64, dl, Chain, StackPtr, MPI);
29440         Results.push_back(Result);
29441         Results.push_back(Result.getValue(1));
29442         return;
29443       }
29444     }
29445     // TODO: Use MOVLPS when SSE1 is available?
29446     // Delegate to generic TypeLegalization. Situations we can really handle
29447     // should have already been dealt with by AtomicExpandPass.cpp.
29448     break;
29449   }
29450   case ISD::ATOMIC_SWAP:
29451   case ISD::ATOMIC_LOAD_ADD:
29452   case ISD::ATOMIC_LOAD_SUB:
29453   case ISD::ATOMIC_LOAD_AND:
29454   case ISD::ATOMIC_LOAD_OR:
29455   case ISD::ATOMIC_LOAD_XOR:
29456   case ISD::ATOMIC_LOAD_NAND:
29457   case ISD::ATOMIC_LOAD_MIN:
29458   case ISD::ATOMIC_LOAD_MAX:
29459   case ISD::ATOMIC_LOAD_UMIN:
29460   case ISD::ATOMIC_LOAD_UMAX:
29461     // Delegate to generic TypeLegalization. Situations we can really handle
29462     // should have already been dealt with by AtomicExpandPass.cpp.
29463     break;
29464 
29465   case ISD::BITCAST: {
29466     assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
29467     EVT DstVT = N->getValueType(0);
29468     EVT SrcVT = N->getOperand(0).getValueType();
29469 
29470     // If this is a bitcast from a v64i1 k-register to a i64 on a 32-bit target
29471     // we can split using the k-register rather than memory.
29472     if (SrcVT == MVT::v64i1 && DstVT == MVT::i64 && Subtarget.hasBWI()) {
29473       assert(!Subtarget.is64Bit() && "Expected 32-bit mode");
29474       SDValue Lo, Hi;
29475       std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
29476       Lo = DAG.getBitcast(MVT::i32, Lo);
29477       Hi = DAG.getBitcast(MVT::i32, Hi);
29478       SDValue Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
29479       Results.push_back(Res);
29480       return;
29481     }
29482 
29483     // Custom splitting for BWI types when AVX512F is available but BWI isn't.
29484     if ((DstVT == MVT::v32i16 || DstVT == MVT::v64i8) &&
29485         SrcVT.isVector() && isTypeLegal(SrcVT)) {
29486       SDValue Lo, Hi;
29487       std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
29488       MVT CastVT = (DstVT == MVT::v32i16) ? MVT::v16i16 : MVT::v32i8;
29489       Lo = DAG.getBitcast(CastVT, Lo);
29490       Hi = DAG.getBitcast(CastVT, Hi);
29491       SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi);
29492       Results.push_back(Res);
29493       return;
29494     }
29495 
29496     if (DstVT.isVector() && SrcVT == MVT::x86mmx) {
29497       assert(getTypeAction(*DAG.getContext(), DstVT) == TypeWidenVector &&
29498              "Unexpected type action!");
29499       EVT WideVT = getTypeToTransformTo(*DAG.getContext(), DstVT);
29500       SDValue Res = DAG.getNode(X86ISD::MOVQ2DQ, dl, WideVT, N->getOperand(0));
29501       Results.push_back(Res);
29502       return;
29503     }
29504 
29505     return;
29506   }
29507   case ISD::MGATHER: {
29508     EVT VT = N->getValueType(0);
29509     if ((VT == MVT::v2f32 || VT == MVT::v2i32) &&
29510         (Subtarget.hasVLX() || !Subtarget.hasAVX512())) {
29511       auto *Gather = cast<MaskedGatherSDNode>(N);
29512       SDValue Index = Gather->getIndex();
29513       if (Index.getValueType() != MVT::v2i64)
29514         return;
29515       assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
29516              "Unexpected type action!");
29517       EVT WideVT = getTypeToTransformTo(*DAG.getContext(), VT);
29518       SDValue Mask = Gather->getMask();
29519       assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
29520       SDValue PassThru = DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT,
29521                                      Gather->getPassThru(),
29522                                      DAG.getUNDEF(VT));
29523       if (!Subtarget.hasVLX()) {
29524         // We need to widen the mask, but the instruction will only use 2
29525         // of its elements. So we can use undef.
29526         Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
29527                            DAG.getUNDEF(MVT::v2i1));
29528         Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask);
29529       }
29530       SDValue Ops[] = { Gather->getChain(), PassThru, Mask,
29531                         Gather->getBasePtr(), Index, Gather->getScale() };
29532       SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
29533         DAG.getVTList(WideVT, Mask.getValueType(), MVT::Other), Ops, dl,
29534         Gather->getMemoryVT(), Gather->getMemOperand());
29535       Results.push_back(Res);
29536       Results.push_back(Res.getValue(2));
29537       return;
29538     }
29539     return;
29540   }
29541   case ISD::LOAD: {
29542     // Use an f64/i64 load and a scalar_to_vector for v2f32/v2i32 loads. This
29543     // avoids scalarizing in 32-bit mode. In 64-bit mode this avoids a int->fp
29544     // cast since type legalization will try to use an i64 load.
29545     MVT VT = N->getSimpleValueType(0);
29546     assert(VT.isVector() && VT.getSizeInBits() == 64 && "Unexpected VT");
29547     assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
29548            "Unexpected type action!");
29549     if (!ISD::isNON_EXTLoad(N))
29550       return;
29551     auto *Ld = cast<LoadSDNode>(N);
29552     if (Subtarget.hasSSE2()) {
29553       MVT LdVT = Subtarget.is64Bit() && VT.isInteger() ? MVT::i64 : MVT::f64;
29554       SDValue Res = DAG.getLoad(LdVT, dl, Ld->getChain(), Ld->getBasePtr(),
29555                                 Ld->getPointerInfo(), Ld->getAlignment(),
29556                                 Ld->getMemOperand()->getFlags());
29557       SDValue Chain = Res.getValue(1);
29558       MVT VecVT = MVT::getVectorVT(LdVT, 2);
29559       Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Res);
29560       EVT WideVT = getTypeToTransformTo(*DAG.getContext(), VT);
29561       Res = DAG.getBitcast(WideVT, Res);
29562       Results.push_back(Res);
29563       Results.push_back(Chain);
29564       return;
29565     }
29566     assert(Subtarget.hasSSE1() && "Expected SSE");
29567     SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
29568     SDValue Ops[] = {Ld->getChain(), Ld->getBasePtr()};
29569     SDValue Res = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
29570                                           MVT::i64, Ld->getMemOperand());
29571     Results.push_back(Res);
29572     Results.push_back(Res.getValue(1));
29573     return;
29574   }
29575   case ISD::ADDRSPACECAST: {
29576     SDValue Src = N->getOperand(0);
29577     EVT DstVT = N->getValueType(0);
29578     AddrSpaceCastSDNode *CastN = cast<AddrSpaceCastSDNode>(N);
29579     unsigned SrcAS = CastN->getSrcAddressSpace();
29580 
29581     assert(SrcAS != CastN->getDestAddressSpace() &&
29582            "addrspacecast must be between different address spaces");
29583 
29584     SDValue Res;
29585     if (SrcAS == X86AS::PTR32_UPTR && DstVT == MVT::i64)
29586       Res = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Src);
29587     else if (DstVT == MVT::i64)
29588       Res = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Src);
29589     else if (DstVT == MVT::i32)
29590       Res = DAG.getNode(ISD::TRUNCATE, dl, DstVT, Src);
29591     else
29592       report_fatal_error("Unrecognized addrspacecast type legalization");
29593 
29594     Results.push_back(Res);
29595     return;
29596   }
29597   }
29598 }
29599 
29600 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
29601   switch ((X86ISD::NodeType)Opcode) {
29602   case X86ISD::FIRST_NUMBER:       break;
29603   case X86ISD::BSF:                return "X86ISD::BSF";
29604   case X86ISD::BSR:                return "X86ISD::BSR";
29605   case X86ISD::SHLD:               return "X86ISD::SHLD";
29606   case X86ISD::SHRD:               return "X86ISD::SHRD";
29607   case X86ISD::FAND:               return "X86ISD::FAND";
29608   case X86ISD::FANDN:              return "X86ISD::FANDN";
29609   case X86ISD::FOR:                return "X86ISD::FOR";
29610   case X86ISD::FXOR:               return "X86ISD::FXOR";
29611   case X86ISD::FILD:               return "X86ISD::FILD";
29612   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
29613   case X86ISD::FIST:               return "X86ISD::FIST";
29614   case X86ISD::FP_TO_INT_IN_MEM:   return "X86ISD::FP_TO_INT_IN_MEM";
29615   case X86ISD::FLD:                return "X86ISD::FLD";
29616   case X86ISD::FST:                return "X86ISD::FST";
29617   case X86ISD::CALL:               return "X86ISD::CALL";
29618   case X86ISD::BT:                 return "X86ISD::BT";
29619   case X86ISD::CMP:                return "X86ISD::CMP";
29620   case X86ISD::STRICT_FCMP:        return "X86ISD::STRICT_FCMP";
29621   case X86ISD::STRICT_FCMPS:       return "X86ISD::STRICT_FCMPS";
29622   case X86ISD::COMI:               return "X86ISD::COMI";
29623   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
29624   case X86ISD::CMPM:               return "X86ISD::CMPM";
29625   case X86ISD::STRICT_CMPM:        return "X86ISD::STRICT_CMPM";
29626   case X86ISD::CMPM_SAE:           return "X86ISD::CMPM_SAE";
29627   case X86ISD::SETCC:              return "X86ISD::SETCC";
29628   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
29629   case X86ISD::FSETCC:             return "X86ISD::FSETCC";
29630   case X86ISD::FSETCCM:            return "X86ISD::FSETCCM";
29631   case X86ISD::FSETCCM_SAE:        return "X86ISD::FSETCCM_SAE";
29632   case X86ISD::CMOV:               return "X86ISD::CMOV";
29633   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
29634   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
29635   case X86ISD::IRET:               return "X86ISD::IRET";
29636   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
29637   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
29638   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
29639   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
29640   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
29641   case X86ISD::MOVQ2DQ:            return "X86ISD::MOVQ2DQ";
29642   case X86ISD::MOVDQ2Q:            return "X86ISD::MOVDQ2Q";
29643   case X86ISD::MMX_MOVD2W:         return "X86ISD::MMX_MOVD2W";
29644   case X86ISD::MMX_MOVW2D:         return "X86ISD::MMX_MOVW2D";
29645   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
29646   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
29647   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
29648   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
29649   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
29650   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
29651   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
29652   case X86ISD::BLENDI:             return "X86ISD::BLENDI";
29653   case X86ISD::BLENDV:             return "X86ISD::BLENDV";
29654   case X86ISD::HADD:               return "X86ISD::HADD";
29655   case X86ISD::HSUB:               return "X86ISD::HSUB";
29656   case X86ISD::FHADD:              return "X86ISD::FHADD";
29657   case X86ISD::FHSUB:              return "X86ISD::FHSUB";
29658   case X86ISD::CONFLICT:           return "X86ISD::CONFLICT";
29659   case X86ISD::FMAX:               return "X86ISD::FMAX";
29660   case X86ISD::FMAXS:              return "X86ISD::FMAXS";
29661   case X86ISD::FMAX_SAE:           return "X86ISD::FMAX_SAE";
29662   case X86ISD::FMAXS_SAE:          return "X86ISD::FMAXS_SAE";
29663   case X86ISD::FMIN:               return "X86ISD::FMIN";
29664   case X86ISD::FMINS:              return "X86ISD::FMINS";
29665   case X86ISD::FMIN_SAE:           return "X86ISD::FMIN_SAE";
29666   case X86ISD::FMINS_SAE:          return "X86ISD::FMINS_SAE";
29667   case X86ISD::FMAXC:              return "X86ISD::FMAXC";
29668   case X86ISD::FMINC:              return "X86ISD::FMINC";
29669   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
29670   case X86ISD::FRCP:               return "X86ISD::FRCP";
29671   case X86ISD::EXTRQI:             return "X86ISD::EXTRQI";
29672   case X86ISD::INSERTQI:           return "X86ISD::INSERTQI";
29673   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
29674   case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
29675   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
29676   case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
29677   case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
29678   case X86ISD::EH_SJLJ_SETUP_DISPATCH:
29679     return "X86ISD::EH_SJLJ_SETUP_DISPATCH";
29680   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
29681   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
29682   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
29683   case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
29684   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
29685   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
29686   case X86ISD::LCMPXCHG16_DAG:     return "X86ISD::LCMPXCHG16_DAG";
29687   case X86ISD::LCMPXCHG8_SAVE_EBX_DAG:
29688     return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG";
29689   case X86ISD::LCMPXCHG16_SAVE_RBX_DAG:
29690     return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG";
29691   case X86ISD::LADD:               return "X86ISD::LADD";
29692   case X86ISD::LSUB:               return "X86ISD::LSUB";
29693   case X86ISD::LOR:                return "X86ISD::LOR";
29694   case X86ISD::LXOR:               return "X86ISD::LXOR";
29695   case X86ISD::LAND:               return "X86ISD::LAND";
29696   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
29697   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
29698   case X86ISD::VEXTRACT_STORE:     return "X86ISD::VEXTRACT_STORE";
29699   case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
29700   case X86ISD::VTRUNCS:            return "X86ISD::VTRUNCS";
29701   case X86ISD::VTRUNCUS:           return "X86ISD::VTRUNCUS";
29702   case X86ISD::VMTRUNC:            return "X86ISD::VMTRUNC";
29703   case X86ISD::VMTRUNCS:           return "X86ISD::VMTRUNCS";
29704   case X86ISD::VMTRUNCUS:          return "X86ISD::VMTRUNCUS";
29705   case X86ISD::VTRUNCSTORES:       return "X86ISD::VTRUNCSTORES";
29706   case X86ISD::VTRUNCSTOREUS:      return "X86ISD::VTRUNCSTOREUS";
29707   case X86ISD::VMTRUNCSTORES:      return "X86ISD::VMTRUNCSTORES";
29708   case X86ISD::VMTRUNCSTOREUS:     return "X86ISD::VMTRUNCSTOREUS";
29709   case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
29710   case X86ISD::STRICT_VFPEXT:      return "X86ISD::STRICT_VFPEXT";
29711   case X86ISD::VFPEXT_SAE:         return "X86ISD::VFPEXT_SAE";
29712   case X86ISD::VFPEXTS:            return "X86ISD::VFPEXTS";
29713   case X86ISD::VFPEXTS_SAE:        return "X86ISD::VFPEXTS_SAE";
29714   case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
29715   case X86ISD::STRICT_VFPROUND:    return "X86ISD::STRICT_VFPROUND";
29716   case X86ISD::VMFPROUND:          return "X86ISD::VMFPROUND";
29717   case X86ISD::VFPROUND_RND:       return "X86ISD::VFPROUND_RND";
29718   case X86ISD::VFPROUNDS:          return "X86ISD::VFPROUNDS";
29719   case X86ISD::VFPROUNDS_RND:      return "X86ISD::VFPROUNDS_RND";
29720   case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
29721   case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
29722   case X86ISD::VSHL:               return "X86ISD::VSHL";
29723   case X86ISD::VSRL:               return "X86ISD::VSRL";
29724   case X86ISD::VSRA:               return "X86ISD::VSRA";
29725   case X86ISD::VSHLI:              return "X86ISD::VSHLI";
29726   case X86ISD::VSRLI:              return "X86ISD::VSRLI";
29727   case X86ISD::VSRAI:              return "X86ISD::VSRAI";
29728   case X86ISD::VSHLV:              return "X86ISD::VSHLV";
29729   case X86ISD::VSRLV:              return "X86ISD::VSRLV";
29730   case X86ISD::VSRAV:              return "X86ISD::VSRAV";
29731   case X86ISD::VROTLI:             return "X86ISD::VROTLI";
29732   case X86ISD::VROTRI:             return "X86ISD::VROTRI";
29733   case X86ISD::VPPERM:             return "X86ISD::VPPERM";
29734   case X86ISD::CMPP:               return "X86ISD::CMPP";
29735   case X86ISD::STRICT_CMPP:        return "X86ISD::STRICT_CMPP";
29736   case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
29737   case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
29738   case X86ISD::PHMINPOS:           return "X86ISD::PHMINPOS";
29739   case X86ISD::ADD:                return "X86ISD::ADD";
29740   case X86ISD::SUB:                return "X86ISD::SUB";
29741   case X86ISD::ADC:                return "X86ISD::ADC";
29742   case X86ISD::SBB:                return "X86ISD::SBB";
29743   case X86ISD::SMUL:               return "X86ISD::SMUL";
29744   case X86ISD::UMUL:               return "X86ISD::UMUL";
29745   case X86ISD::OR:                 return "X86ISD::OR";
29746   case X86ISD::XOR:                return "X86ISD::XOR";
29747   case X86ISD::AND:                return "X86ISD::AND";
29748   case X86ISD::BEXTR:              return "X86ISD::BEXTR";
29749   case X86ISD::BZHI:               return "X86ISD::BZHI";
29750   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
29751   case X86ISD::MOVMSK:             return "X86ISD::MOVMSK";
29752   case X86ISD::PTEST:              return "X86ISD::PTEST";
29753   case X86ISD::TESTP:              return "X86ISD::TESTP";
29754   case X86ISD::KORTEST:            return "X86ISD::KORTEST";
29755   case X86ISD::KTEST:              return "X86ISD::KTEST";
29756   case X86ISD::KADD:               return "X86ISD::KADD";
29757   case X86ISD::KSHIFTL:            return "X86ISD::KSHIFTL";
29758   case X86ISD::KSHIFTR:            return "X86ISD::KSHIFTR";
29759   case X86ISD::PACKSS:             return "X86ISD::PACKSS";
29760   case X86ISD::PACKUS:             return "X86ISD::PACKUS";
29761   case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
29762   case X86ISD::VALIGN:             return "X86ISD::VALIGN";
29763   case X86ISD::VSHLD:              return "X86ISD::VSHLD";
29764   case X86ISD::VSHRD:              return "X86ISD::VSHRD";
29765   case X86ISD::VSHLDV:             return "X86ISD::VSHLDV";
29766   case X86ISD::VSHRDV:             return "X86ISD::VSHRDV";
29767   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
29768   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
29769   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
29770   case X86ISD::SHUFP:              return "X86ISD::SHUFP";
29771   case X86ISD::SHUF128:            return "X86ISD::SHUF128";
29772   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
29773   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
29774   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
29775   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
29776   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
29777   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
29778   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
29779   case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
29780   case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
29781   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
29782   case X86ISD::VBROADCAST_LOAD:    return "X86ISD::VBROADCAST_LOAD";
29783   case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
29784   case X86ISD::SUBV_BROADCAST:     return "X86ISD::SUBV_BROADCAST";
29785   case X86ISD::VPERMILPV:          return "X86ISD::VPERMILPV";
29786   case X86ISD::VPERMILPI:          return "X86ISD::VPERMILPI";
29787   case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
29788   case X86ISD::VPERMV:             return "X86ISD::VPERMV";
29789   case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
29790   case X86ISD::VPERMI:             return "X86ISD::VPERMI";
29791   case X86ISD::VPTERNLOG:          return "X86ISD::VPTERNLOG";
29792   case X86ISD::VFIXUPIMM:          return "X86ISD::VFIXUPIMM";
29793   case X86ISD::VFIXUPIMM_SAE:      return "X86ISD::VFIXUPIMM_SAE";
29794   case X86ISD::VFIXUPIMMS:         return "X86ISD::VFIXUPIMMS";
29795   case X86ISD::VFIXUPIMMS_SAE:     return "X86ISD::VFIXUPIMMS_SAE";
29796   case X86ISD::VRANGE:             return "X86ISD::VRANGE";
29797   case X86ISD::VRANGE_SAE:         return "X86ISD::VRANGE_SAE";
29798   case X86ISD::VRANGES:            return "X86ISD::VRANGES";
29799   case X86ISD::VRANGES_SAE:        return "X86ISD::VRANGES_SAE";
29800   case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
29801   case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
29802   case X86ISD::PSADBW:             return "X86ISD::PSADBW";
29803   case X86ISD::DBPSADBW:           return "X86ISD::DBPSADBW";
29804   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
29805   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
29806   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
29807   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
29808   case X86ISD::MFENCE:             return "X86ISD::MFENCE";
29809   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
29810   case X86ISD::SAHF:               return "X86ISD::SAHF";
29811   case X86ISD::RDRAND:             return "X86ISD::RDRAND";
29812   case X86ISD::RDSEED:             return "X86ISD::RDSEED";
29813   case X86ISD::RDPKRU:             return "X86ISD::RDPKRU";
29814   case X86ISD::WRPKRU:             return "X86ISD::WRPKRU";
29815   case X86ISD::VPMADDUBSW:         return "X86ISD::VPMADDUBSW";
29816   case X86ISD::VPMADDWD:           return "X86ISD::VPMADDWD";
29817   case X86ISD::VPSHA:              return "X86ISD::VPSHA";
29818   case X86ISD::VPSHL:              return "X86ISD::VPSHL";
29819   case X86ISD::VPCOM:              return "X86ISD::VPCOM";
29820   case X86ISD::VPCOMU:             return "X86ISD::VPCOMU";
29821   case X86ISD::VPERMIL2:           return "X86ISD::VPERMIL2";
29822   case X86ISD::FMSUB:              return "X86ISD::FMSUB";
29823   case X86ISD::FNMADD:             return "X86ISD::FNMADD";
29824   case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
29825   case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
29826   case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
29827   case X86ISD::FMADD_RND:          return "X86ISD::FMADD_RND";
29828   case X86ISD::FNMADD_RND:         return "X86ISD::FNMADD_RND";
29829   case X86ISD::FMSUB_RND:          return "X86ISD::FMSUB_RND";
29830   case X86ISD::FNMSUB_RND:         return "X86ISD::FNMSUB_RND";
29831   case X86ISD::FMADDSUB_RND:       return "X86ISD::FMADDSUB_RND";
29832   case X86ISD::FMSUBADD_RND:       return "X86ISD::FMSUBADD_RND";
29833   case X86ISD::VPMADD52H:          return "X86ISD::VPMADD52H";
29834   case X86ISD::VPMADD52L:          return "X86ISD::VPMADD52L";
29835   case X86ISD::VRNDSCALE:          return "X86ISD::VRNDSCALE";
29836   case X86ISD::STRICT_VRNDSCALE:   return "X86ISD::STRICT_VRNDSCALE";
29837   case X86ISD::VRNDSCALE_SAE:      return "X86ISD::VRNDSCALE_SAE";
29838   case X86ISD::VRNDSCALES:         return "X86ISD::VRNDSCALES";
29839   case X86ISD::VRNDSCALES_SAE:     return "X86ISD::VRNDSCALES_SAE";
29840   case X86ISD::VREDUCE:            return "X86ISD::VREDUCE";
29841   case X86ISD::VREDUCE_SAE:        return "X86ISD::VREDUCE_SAE";
29842   case X86ISD::VREDUCES:           return "X86ISD::VREDUCES";
29843   case X86ISD::VREDUCES_SAE:       return "X86ISD::VREDUCES_SAE";
29844   case X86ISD::VGETMANT:           return "X86ISD::VGETMANT";
29845   case X86ISD::VGETMANT_SAE:       return "X86ISD::VGETMANT_SAE";
29846   case X86ISD::VGETMANTS:          return "X86ISD::VGETMANTS";
29847   case X86ISD::VGETMANTS_SAE:      return "X86ISD::VGETMANTS_SAE";
29848   case X86ISD::PCMPESTR:           return "X86ISD::PCMPESTR";
29849   case X86ISD::PCMPISTR:           return "X86ISD::PCMPISTR";
29850   case X86ISD::XTEST:              return "X86ISD::XTEST";
29851   case X86ISD::COMPRESS:           return "X86ISD::COMPRESS";
29852   case X86ISD::EXPAND:             return "X86ISD::EXPAND";
29853   case X86ISD::SELECTS:            return "X86ISD::SELECTS";
29854   case X86ISD::ADDSUB:             return "X86ISD::ADDSUB";
29855   case X86ISD::RCP14:              return "X86ISD::RCP14";
29856   case X86ISD::RCP14S:             return "X86ISD::RCP14S";
29857   case X86ISD::RCP28:              return "X86ISD::RCP28";
29858   case X86ISD::RCP28_SAE:          return "X86ISD::RCP28_SAE";
29859   case X86ISD::RCP28S:             return "X86ISD::RCP28S";
29860   case X86ISD::RCP28S_SAE:         return "X86ISD::RCP28S_SAE";
29861   case X86ISD::EXP2:               return "X86ISD::EXP2";
29862   case X86ISD::EXP2_SAE:           return "X86ISD::EXP2_SAE";
29863   case X86ISD::RSQRT14:            return "X86ISD::RSQRT14";
29864   case X86ISD::RSQRT14S:           return "X86ISD::RSQRT14S";
29865   case X86ISD::RSQRT28:            return "X86ISD::RSQRT28";
29866   case X86ISD::RSQRT28_SAE:        return "X86ISD::RSQRT28_SAE";
29867   case X86ISD::RSQRT28S:           return "X86ISD::RSQRT28S";
29868   case X86ISD::RSQRT28S_SAE:       return "X86ISD::RSQRT28S_SAE";
29869   case X86ISD::FADD_RND:           return "X86ISD::FADD_RND";
29870   case X86ISD::FADDS:              return "X86ISD::FADDS";
29871   case X86ISD::FADDS_RND:          return "X86ISD::FADDS_RND";
29872   case X86ISD::FSUB_RND:           return "X86ISD::FSUB_RND";
29873   case X86ISD::FSUBS:              return "X86ISD::FSUBS";
29874   case X86ISD::FSUBS_RND:          return "X86ISD::FSUBS_RND";
29875   case X86ISD::FMUL_RND:           return "X86ISD::FMUL_RND";
29876   case X86ISD::FMULS:              return "X86ISD::FMULS";
29877   case X86ISD::FMULS_RND:          return "X86ISD::FMULS_RND";
29878   case X86ISD::FDIV_RND:           return "X86ISD::FDIV_RND";
29879   case X86ISD::FDIVS:              return "X86ISD::FDIVS";
29880   case X86ISD::FDIVS_RND:          return "X86ISD::FDIVS_RND";
29881   case X86ISD::FSQRT_RND:          return "X86ISD::FSQRT_RND";
29882   case X86ISD::FSQRTS:             return "X86ISD::FSQRTS";
29883   case X86ISD::FSQRTS_RND:         return "X86ISD::FSQRTS_RND";
29884   case X86ISD::FGETEXP:            return "X86ISD::FGETEXP";
29885   case X86ISD::FGETEXP_SAE:        return "X86ISD::FGETEXP_SAE";
29886   case X86ISD::FGETEXPS:           return "X86ISD::FGETEXPS";
29887   case X86ISD::FGETEXPS_SAE:       return "X86ISD::FGETEXPS_SAE";
29888   case X86ISD::SCALEF:             return "X86ISD::SCALEF";
29889   case X86ISD::SCALEF_RND:         return "X86ISD::SCALEF_RND";
29890   case X86ISD::SCALEFS:            return "X86ISD::SCALEFS";
29891   case X86ISD::SCALEFS_RND:        return "X86ISD::SCALEFS_RND";
29892   case X86ISD::AVG:                return "X86ISD::AVG";
29893   case X86ISD::MULHRS:             return "X86ISD::MULHRS";
29894   case X86ISD::SINT_TO_FP_RND:     return "X86ISD::SINT_TO_FP_RND";
29895   case X86ISD::UINT_TO_FP_RND:     return "X86ISD::UINT_TO_FP_RND";
29896   case X86ISD::CVTTP2SI:           return "X86ISD::CVTTP2SI";
29897   case X86ISD::CVTTP2UI:           return "X86ISD::CVTTP2UI";
29898   case X86ISD::STRICT_CVTTP2SI:    return "X86ISD::STRICT_CVTTP2SI";
29899   case X86ISD::STRICT_CVTTP2UI:    return "X86ISD::STRICT_CVTTP2UI";
29900   case X86ISD::MCVTTP2SI:          return "X86ISD::MCVTTP2SI";
29901   case X86ISD::MCVTTP2UI:          return "X86ISD::MCVTTP2UI";
29902   case X86ISD::CVTTP2SI_SAE:       return "X86ISD::CVTTP2SI_SAE";
29903   case X86ISD::CVTTP2UI_SAE:       return "X86ISD::CVTTP2UI_SAE";
29904   case X86ISD::CVTTS2SI:           return "X86ISD::CVTTS2SI";
29905   case X86ISD::CVTTS2UI:           return "X86ISD::CVTTS2UI";
29906   case X86ISD::CVTTS2SI_SAE:       return "X86ISD::CVTTS2SI_SAE";
29907   case X86ISD::CVTTS2UI_SAE:       return "X86ISD::CVTTS2UI_SAE";
29908   case X86ISD::CVTSI2P:            return "X86ISD::CVTSI2P";
29909   case X86ISD::CVTUI2P:            return "X86ISD::CVTUI2P";
29910   case X86ISD::STRICT_CVTSI2P:     return "X86ISD::STRICT_CVTSI2P";
29911   case X86ISD::STRICT_CVTUI2P:     return "X86ISD::STRICT_CVTUI2P";
29912   case X86ISD::MCVTSI2P:           return "X86ISD::MCVTSI2P";
29913   case X86ISD::MCVTUI2P:           return "X86ISD::MCVTUI2P";
29914   case X86ISD::VFPCLASS:           return "X86ISD::VFPCLASS";
29915   case X86ISD::VFPCLASSS:          return "X86ISD::VFPCLASSS";
29916   case X86ISD::MULTISHIFT:         return "X86ISD::MULTISHIFT";
29917   case X86ISD::SCALAR_SINT_TO_FP:     return "X86ISD::SCALAR_SINT_TO_FP";
29918   case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND";
29919   case X86ISD::SCALAR_UINT_TO_FP:     return "X86ISD::SCALAR_UINT_TO_FP";
29920   case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND";
29921   case X86ISD::CVTPS2PH:           return "X86ISD::CVTPS2PH";
29922   case X86ISD::MCVTPS2PH:          return "X86ISD::MCVTPS2PH";
29923   case X86ISD::CVTPH2PS:           return "X86ISD::CVTPH2PS";
29924   case X86ISD::CVTPH2PS_SAE:       return "X86ISD::CVTPH2PS_SAE";
29925   case X86ISD::CVTP2SI:            return "X86ISD::CVTP2SI";
29926   case X86ISD::CVTP2UI:            return "X86ISD::CVTP2UI";
29927   case X86ISD::MCVTP2SI:           return "X86ISD::MCVTP2SI";
29928   case X86ISD::MCVTP2UI:           return "X86ISD::MCVTP2UI";
29929   case X86ISD::CVTP2SI_RND:        return "X86ISD::CVTP2SI_RND";
29930   case X86ISD::CVTP2UI_RND:        return "X86ISD::CVTP2UI_RND";
29931   case X86ISD::CVTS2SI:            return "X86ISD::CVTS2SI";
29932   case X86ISD::CVTS2UI:            return "X86ISD::CVTS2UI";
29933   case X86ISD::CVTS2SI_RND:        return "X86ISD::CVTS2SI_RND";
29934   case X86ISD::CVTS2UI_RND:        return "X86ISD::CVTS2UI_RND";
29935   case X86ISD::CVTNE2PS2BF16:      return "X86ISD::CVTNE2PS2BF16";
29936   case X86ISD::CVTNEPS2BF16:       return "X86ISD::CVTNEPS2BF16";
29937   case X86ISD::MCVTNEPS2BF16:      return "X86ISD::MCVTNEPS2BF16";
29938   case X86ISD::DPBF16PS:           return "X86ISD::DPBF16PS";
29939   case X86ISD::LWPINS:             return "X86ISD::LWPINS";
29940   case X86ISD::MGATHER:            return "X86ISD::MGATHER";
29941   case X86ISD::MSCATTER:           return "X86ISD::MSCATTER";
29942   case X86ISD::VPDPBUSD:           return "X86ISD::VPDPBUSD";
29943   case X86ISD::VPDPBUSDS:          return "X86ISD::VPDPBUSDS";
29944   case X86ISD::VPDPWSSD:           return "X86ISD::VPDPWSSD";
29945   case X86ISD::VPDPWSSDS:          return "X86ISD::VPDPWSSDS";
29946   case X86ISD::VPSHUFBITQMB:       return "X86ISD::VPSHUFBITQMB";
29947   case X86ISD::GF2P8MULB:          return "X86ISD::GF2P8MULB";
29948   case X86ISD::GF2P8AFFINEQB:      return "X86ISD::GF2P8AFFINEQB";
29949   case X86ISD::GF2P8AFFINEINVQB:   return "X86ISD::GF2P8AFFINEINVQB";
29950   case X86ISD::NT_CALL:            return "X86ISD::NT_CALL";
29951   case X86ISD::NT_BRIND:           return "X86ISD::NT_BRIND";
29952   case X86ISD::UMWAIT:             return "X86ISD::UMWAIT";
29953   case X86ISD::TPAUSE:             return "X86ISD::TPAUSE";
29954   case X86ISD::ENQCMD:             return "X86ISD:ENQCMD";
29955   case X86ISD::ENQCMDS:            return "X86ISD:ENQCMDS";
29956   case X86ISD::VP2INTERSECT:       return "X86ISD::VP2INTERSECT";
29957   }
29958   return nullptr;
29959 }
29960 
29961 /// Return true if the addressing mode represented by AM is legal for this
29962 /// target, for a load/store of the specified type.
29963 bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
29964                                               const AddrMode &AM, Type *Ty,
29965                                               unsigned AS,
29966                                               Instruction *I) const {
29967   // X86 supports extremely general addressing modes.
29968   CodeModel::Model M = getTargetMachine().getCodeModel();
29969 
29970   // X86 allows a sign-extended 32-bit immediate field as a displacement.
29971   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
29972     return false;
29973 
29974   if (AM.BaseGV) {
29975     unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV);
29976 
29977     // If a reference to this global requires an extra load, we can't fold it.
29978     if (isGlobalStubReference(GVFlags))
29979       return false;
29980 
29981     // If BaseGV requires a register for the PIC base, we cannot also have a
29982     // BaseReg specified.
29983     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
29984       return false;
29985 
29986     // If lower 4G is not available, then we must use rip-relative addressing.
29987     if ((M != CodeModel::Small || isPositionIndependent()) &&
29988         Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1))
29989       return false;
29990   }
29991 
29992   switch (AM.Scale) {
29993   case 0:
29994   case 1:
29995   case 2:
29996   case 4:
29997   case 8:
29998     // These scales always work.
29999     break;
30000   case 3:
30001   case 5:
30002   case 9:
30003     // These scales are formed with basereg+scalereg.  Only accept if there is
30004     // no basereg yet.
30005     if (AM.HasBaseReg)
30006       return false;
30007     break;
30008   default:  // Other stuff never works.
30009     return false;
30010   }
30011 
30012   return true;
30013 }
30014 
30015 bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
30016   unsigned Bits = Ty->getScalarSizeInBits();
30017 
30018   // 8-bit shifts are always expensive, but versions with a scalar amount aren't
30019   // particularly cheaper than those without.
30020   if (Bits == 8)
30021     return false;
30022 
30023   // XOP has v16i8/v8i16/v4i32/v2i64 variable vector shifts.
30024   if (Subtarget.hasXOP() && Ty->getPrimitiveSizeInBits() == 128 &&
30025       (Bits == 8 || Bits == 16 || Bits == 32 || Bits == 64))
30026     return false;
30027 
30028   // AVX2 has vpsllv[dq] instructions (and other shifts) that make variable
30029   // shifts just as cheap as scalar ones.
30030   if (Subtarget.hasAVX2() && (Bits == 32 || Bits == 64))
30031     return false;
30032 
30033   // AVX512BW has shifts such as vpsllvw.
30034   if (Subtarget.hasBWI() && Bits == 16)
30035       return false;
30036 
30037   // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
30038   // fully general vector.
30039   return true;
30040 }
30041 
30042 bool X86TargetLowering::isBinOp(unsigned Opcode) const {
30043   switch (Opcode) {
30044   // These are non-commutative binops.
30045   // TODO: Add more X86ISD opcodes once we have test coverage.
30046   case X86ISD::ANDNP:
30047   case X86ISD::PCMPGT:
30048   case X86ISD::FMAX:
30049   case X86ISD::FMIN:
30050   case X86ISD::FANDN:
30051     return true;
30052   }
30053 
30054   return TargetLoweringBase::isBinOp(Opcode);
30055 }
30056 
30057 bool X86TargetLowering::isCommutativeBinOp(unsigned Opcode) const {
30058   switch (Opcode) {
30059   // TODO: Add more X86ISD opcodes once we have test coverage.
30060   case X86ISD::PCMPEQ:
30061   case X86ISD::PMULDQ:
30062   case X86ISD::PMULUDQ:
30063   case X86ISD::FMAXC:
30064   case X86ISD::FMINC:
30065   case X86ISD::FAND:
30066   case X86ISD::FOR:
30067   case X86ISD::FXOR:
30068     return true;
30069   }
30070 
30071   return TargetLoweringBase::isCommutativeBinOp(Opcode);
30072 }
30073 
30074 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
30075   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
30076     return false;
30077   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
30078   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
30079   return NumBits1 > NumBits2;
30080 }
30081 
30082 bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
30083   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
30084     return false;
30085 
30086   if (!isTypeLegal(EVT::getEVT(Ty1)))
30087     return false;
30088 
30089   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
30090 
30091   // Assuming the caller doesn't have a zeroext or signext return parameter,
30092   // truncation all the way down to i1 is valid.
30093   return true;
30094 }
30095 
30096 bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
30097   return isInt<32>(Imm);
30098 }
30099 
30100 bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
30101   // Can also use sub to handle negated immediates.
30102   return isInt<32>(Imm);
30103 }
30104 
30105 bool X86TargetLowering::isLegalStoreImmediate(int64_t Imm) const {
30106   return isInt<32>(Imm);
30107 }
30108 
30109 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
30110   if (!VT1.isInteger() || !VT2.isInteger())
30111     return false;
30112   unsigned NumBits1 = VT1.getSizeInBits();
30113   unsigned NumBits2 = VT2.getSizeInBits();
30114   return NumBits1 > NumBits2;
30115 }
30116 
30117 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
30118   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
30119   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit();
30120 }
30121 
30122 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
30123   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
30124   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit();
30125 }
30126 
30127 bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
30128   EVT VT1 = Val.getValueType();
30129   if (isZExtFree(VT1, VT2))
30130     return true;
30131 
30132   if (Val.getOpcode() != ISD::LOAD)
30133     return false;
30134 
30135   if (!VT1.isSimple() || !VT1.isInteger() ||
30136       !VT2.isSimple() || !VT2.isInteger())
30137     return false;
30138 
30139   switch (VT1.getSimpleVT().SimpleTy) {
30140   default: break;
30141   case MVT::i8:
30142   case MVT::i16:
30143   case MVT::i32:
30144     // X86 has 8, 16, and 32-bit zero-extending loads.
30145     return true;
30146   }
30147 
30148   return false;
30149 }
30150 
30151 bool X86TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
30152   if (isa<MaskedLoadSDNode>(ExtVal.getOperand(0)))
30153     return false;
30154 
30155   EVT SrcVT = ExtVal.getOperand(0).getValueType();
30156 
30157   // There is no extending load for vXi1.
30158   if (SrcVT.getScalarType() == MVT::i1)
30159     return false;
30160 
30161   return true;
30162 }
30163 
30164 bool X86TargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
30165                                                    EVT VT) const {
30166   if (!Subtarget.hasAnyFMA())
30167     return false;
30168 
30169   VT = VT.getScalarType();
30170 
30171   if (!VT.isSimple())
30172     return false;
30173 
30174   switch (VT.getSimpleVT().SimpleTy) {
30175   case MVT::f32:
30176   case MVT::f64:
30177     return true;
30178   default:
30179     break;
30180   }
30181 
30182   return false;
30183 }
30184 
30185 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
30186   // i16 instructions are longer (0x66 prefix) and potentially slower.
30187   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
30188 }
30189 
30190 /// Targets can use this to indicate that they only support *some*
30191 /// VECTOR_SHUFFLE operations, those with specific masks.
30192 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
30193 /// are assumed to be legal.
30194 bool X86TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
30195   if (!VT.isSimple())
30196     return false;
30197 
30198   // Not for i1 vectors
30199   if (VT.getSimpleVT().getScalarType() == MVT::i1)
30200     return false;
30201 
30202   // Very little shuffling can be done for 64-bit vectors right now.
30203   if (VT.getSimpleVT().getSizeInBits() == 64)
30204     return false;
30205 
30206   // We only care that the types being shuffled are legal. The lowering can
30207   // handle any possible shuffle mask that results.
30208   return isTypeLegal(VT.getSimpleVT());
30209 }
30210 
30211 bool X86TargetLowering::isVectorClearMaskLegal(ArrayRef<int> Mask,
30212                                                EVT VT) const {
30213   // Don't convert an 'and' into a shuffle that we don't directly support.
30214   // vpblendw and vpshufb for 256-bit vectors are not available on AVX1.
30215   if (!Subtarget.hasAVX2())
30216     if (VT == MVT::v32i8 || VT == MVT::v16i16)
30217       return false;
30218 
30219   // Just delegate to the generic legality, clear masks aren't special.
30220   return isShuffleMaskLegal(Mask, VT);
30221 }
30222 
30223 bool X86TargetLowering::areJTsAllowed(const Function *Fn) const {
30224   // If the subtarget is using thunks, we need to not generate jump tables.
30225   if (Subtarget.useIndirectThunkBranches())
30226     return false;
30227 
30228   // Otherwise, fallback on the generic logic.
30229   return TargetLowering::areJTsAllowed(Fn);
30230 }
30231 
30232 //===----------------------------------------------------------------------===//
30233 //                           X86 Scheduler Hooks
30234 //===----------------------------------------------------------------------===//
30235 
30236 /// Utility function to emit xbegin specifying the start of an RTM region.
30237 static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB,
30238                                      const TargetInstrInfo *TII) {
30239   DebugLoc DL = MI.getDebugLoc();
30240 
30241   const BasicBlock *BB = MBB->getBasicBlock();
30242   MachineFunction::iterator I = ++MBB->getIterator();
30243 
30244   // For the v = xbegin(), we generate
30245   //
30246   // thisMBB:
30247   //  xbegin sinkMBB
30248   //
30249   // mainMBB:
30250   //  s0 = -1
30251   //
30252   // fallBB:
30253   //  eax = # XABORT_DEF
30254   //  s1 = eax
30255   //
30256   // sinkMBB:
30257   //  v = phi(s0/mainBB, s1/fallBB)
30258 
30259   MachineBasicBlock *thisMBB = MBB;
30260   MachineFunction *MF = MBB->getParent();
30261   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
30262   MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
30263   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
30264   MF->insert(I, mainMBB);
30265   MF->insert(I, fallMBB);
30266   MF->insert(I, sinkMBB);
30267 
30268   // Transfer the remainder of BB and its successor edges to sinkMBB.
30269   sinkMBB->splice(sinkMBB->begin(), MBB,
30270                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
30271   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
30272 
30273   MachineRegisterInfo &MRI = MF->getRegInfo();
30274   Register DstReg = MI.getOperand(0).getReg();
30275   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
30276   Register mainDstReg = MRI.createVirtualRegister(RC);
30277   Register fallDstReg = MRI.createVirtualRegister(RC);
30278 
30279   // thisMBB:
30280   //  xbegin fallMBB
30281   //  # fallthrough to mainMBB
30282   //  # abortion to fallMBB
30283   BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(fallMBB);
30284   thisMBB->addSuccessor(mainMBB);
30285   thisMBB->addSuccessor(fallMBB);
30286 
30287   // mainMBB:
30288   //  mainDstReg := -1
30289   BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), mainDstReg).addImm(-1);
30290   BuildMI(mainMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
30291   mainMBB->addSuccessor(sinkMBB);
30292 
30293   // fallMBB:
30294   //  ; pseudo instruction to model hardware's definition from XABORT
30295   //  EAX := XABORT_DEF
30296   //  fallDstReg := EAX
30297   BuildMI(fallMBB, DL, TII->get(X86::XABORT_DEF));
30298   BuildMI(fallMBB, DL, TII->get(TargetOpcode::COPY), fallDstReg)
30299       .addReg(X86::EAX);
30300   fallMBB->addSuccessor(sinkMBB);
30301 
30302   // sinkMBB:
30303   //  DstReg := phi(mainDstReg/mainBB, fallDstReg/fallBB)
30304   BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg)
30305       .addReg(mainDstReg).addMBB(mainMBB)
30306       .addReg(fallDstReg).addMBB(fallMBB);
30307 
30308   MI.eraseFromParent();
30309   return sinkMBB;
30310 }
30311 
30312 
30313 
30314 MachineBasicBlock *
30315 X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI,
30316                                                  MachineBasicBlock *MBB) const {
30317   // Emit va_arg instruction on X86-64.
30318 
30319   // Operands to this pseudo-instruction:
30320   // 0  ) Output        : destination address (reg)
30321   // 1-5) Input         : va_list address (addr, i64mem)
30322   // 6  ) ArgSize       : Size (in bytes) of vararg type
30323   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
30324   // 8  ) Align         : Alignment of type
30325   // 9  ) EFLAGS (implicit-def)
30326 
30327   assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
30328   static_assert(X86::AddrNumOperands == 5,
30329                 "VAARG_64 assumes 5 address operands");
30330 
30331   Register DestReg = MI.getOperand(0).getReg();
30332   MachineOperand &Base = MI.getOperand(1);
30333   MachineOperand &Scale = MI.getOperand(2);
30334   MachineOperand &Index = MI.getOperand(3);
30335   MachineOperand &Disp = MI.getOperand(4);
30336   MachineOperand &Segment = MI.getOperand(5);
30337   unsigned ArgSize = MI.getOperand(6).getImm();
30338   unsigned ArgMode = MI.getOperand(7).getImm();
30339   unsigned Align = MI.getOperand(8).getImm();
30340 
30341   MachineFunction *MF = MBB->getParent();
30342 
30343   // Memory Reference
30344   assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
30345 
30346   MachineMemOperand *OldMMO = MI.memoperands().front();
30347 
30348   // Clone the MMO into two separate MMOs for loading and storing
30349   MachineMemOperand *LoadOnlyMMO = MF->getMachineMemOperand(
30350       OldMMO, OldMMO->getFlags() & ~MachineMemOperand::MOStore);
30351   MachineMemOperand *StoreOnlyMMO = MF->getMachineMemOperand(
30352       OldMMO, OldMMO->getFlags() & ~MachineMemOperand::MOLoad);
30353 
30354   // Machine Information
30355   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
30356   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
30357   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
30358   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
30359   DebugLoc DL = MI.getDebugLoc();
30360 
30361   // struct va_list {
30362   //   i32   gp_offset
30363   //   i32   fp_offset
30364   //   i64   overflow_area (address)
30365   //   i64   reg_save_area (address)
30366   // }
30367   // sizeof(va_list) = 24
30368   // alignment(va_list) = 8
30369 
30370   unsigned TotalNumIntRegs = 6;
30371   unsigned TotalNumXMMRegs = 8;
30372   bool UseGPOffset = (ArgMode == 1);
30373   bool UseFPOffset = (ArgMode == 2);
30374   unsigned MaxOffset = TotalNumIntRegs * 8 +
30375                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
30376 
30377   /* Align ArgSize to a multiple of 8 */
30378   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
30379   bool NeedsAlign = (Align > 8);
30380 
30381   MachineBasicBlock *thisMBB = MBB;
30382   MachineBasicBlock *overflowMBB;
30383   MachineBasicBlock *offsetMBB;
30384   MachineBasicBlock *endMBB;
30385 
30386   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
30387   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
30388   unsigned OffsetReg = 0;
30389 
30390   if (!UseGPOffset && !UseFPOffset) {
30391     // If we only pull from the overflow region, we don't create a branch.
30392     // We don't need to alter control flow.
30393     OffsetDestReg = 0; // unused
30394     OverflowDestReg = DestReg;
30395 
30396     offsetMBB = nullptr;
30397     overflowMBB = thisMBB;
30398     endMBB = thisMBB;
30399   } else {
30400     // First emit code to check if gp_offset (or fp_offset) is below the bound.
30401     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
30402     // If not, pull from overflow_area. (branch to overflowMBB)
30403     //
30404     //       thisMBB
30405     //         |     .
30406     //         |        .
30407     //     offsetMBB   overflowMBB
30408     //         |        .
30409     //         |     .
30410     //        endMBB
30411 
30412     // Registers for the PHI in endMBB
30413     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
30414     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
30415 
30416     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
30417     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
30418     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
30419     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
30420 
30421     MachineFunction::iterator MBBIter = ++MBB->getIterator();
30422 
30423     // Insert the new basic blocks
30424     MF->insert(MBBIter, offsetMBB);
30425     MF->insert(MBBIter, overflowMBB);
30426     MF->insert(MBBIter, endMBB);
30427 
30428     // Transfer the remainder of MBB and its successor edges to endMBB.
30429     endMBB->splice(endMBB->begin(), thisMBB,
30430                    std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
30431     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
30432 
30433     // Make offsetMBB and overflowMBB successors of thisMBB
30434     thisMBB->addSuccessor(offsetMBB);
30435     thisMBB->addSuccessor(overflowMBB);
30436 
30437     // endMBB is a successor of both offsetMBB and overflowMBB
30438     offsetMBB->addSuccessor(endMBB);
30439     overflowMBB->addSuccessor(endMBB);
30440 
30441     // Load the offset value into a register
30442     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
30443     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
30444         .add(Base)
30445         .add(Scale)
30446         .add(Index)
30447         .addDisp(Disp, UseFPOffset ? 4 : 0)
30448         .add(Segment)
30449         .setMemRefs(LoadOnlyMMO);
30450 
30451     // Check if there is enough room left to pull this argument.
30452     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
30453       .addReg(OffsetReg)
30454       .addImm(MaxOffset + 8 - ArgSizeA8);
30455 
30456     // Branch to "overflowMBB" if offset >= max
30457     // Fall through to "offsetMBB" otherwise
30458     BuildMI(thisMBB, DL, TII->get(X86::JCC_1))
30459       .addMBB(overflowMBB).addImm(X86::COND_AE);
30460   }
30461 
30462   // In offsetMBB, emit code to use the reg_save_area.
30463   if (offsetMBB) {
30464     assert(OffsetReg != 0);
30465 
30466     // Read the reg_save_area address.
30467     Register RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
30468     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
30469         .add(Base)
30470         .add(Scale)
30471         .add(Index)
30472         .addDisp(Disp, 16)
30473         .add(Segment)
30474         .setMemRefs(LoadOnlyMMO);
30475 
30476     // Zero-extend the offset
30477     Register OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
30478     BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
30479         .addImm(0)
30480         .addReg(OffsetReg)
30481         .addImm(X86::sub_32bit);
30482 
30483     // Add the offset to the reg_save_area to get the final address.
30484     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
30485       .addReg(OffsetReg64)
30486       .addReg(RegSaveReg);
30487 
30488     // Compute the offset for the next argument
30489     Register NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
30490     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
30491       .addReg(OffsetReg)
30492       .addImm(UseFPOffset ? 16 : 8);
30493 
30494     // Store it back into the va_list.
30495     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
30496         .add(Base)
30497         .add(Scale)
30498         .add(Index)
30499         .addDisp(Disp, UseFPOffset ? 4 : 0)
30500         .add(Segment)
30501         .addReg(NextOffsetReg)
30502         .setMemRefs(StoreOnlyMMO);
30503 
30504     // Jump to endMBB
30505     BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
30506       .addMBB(endMBB);
30507   }
30508 
30509   //
30510   // Emit code to use overflow area
30511   //
30512 
30513   // Load the overflow_area address into a register.
30514   Register OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
30515   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
30516       .add(Base)
30517       .add(Scale)
30518       .add(Index)
30519       .addDisp(Disp, 8)
30520       .add(Segment)
30521       .setMemRefs(LoadOnlyMMO);
30522 
30523   // If we need to align it, do so. Otherwise, just copy the address
30524   // to OverflowDestReg.
30525   if (NeedsAlign) {
30526     // Align the overflow address
30527     assert(isPowerOf2_32(Align) && "Alignment must be a power of 2");
30528     Register TmpReg = MRI.createVirtualRegister(AddrRegClass);
30529 
30530     // aligned_addr = (addr + (align-1)) & ~(align-1)
30531     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
30532       .addReg(OverflowAddrReg)
30533       .addImm(Align-1);
30534 
30535     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
30536       .addReg(TmpReg)
30537       .addImm(~(uint64_t)(Align-1));
30538   } else {
30539     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
30540       .addReg(OverflowAddrReg);
30541   }
30542 
30543   // Compute the next overflow address after this argument.
30544   // (the overflow address should be kept 8-byte aligned)
30545   Register NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
30546   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
30547     .addReg(OverflowDestReg)
30548     .addImm(ArgSizeA8);
30549 
30550   // Store the new overflow address.
30551   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
30552       .add(Base)
30553       .add(Scale)
30554       .add(Index)
30555       .addDisp(Disp, 8)
30556       .add(Segment)
30557       .addReg(NextAddrReg)
30558       .setMemRefs(StoreOnlyMMO);
30559 
30560   // If we branched, emit the PHI to the front of endMBB.
30561   if (offsetMBB) {
30562     BuildMI(*endMBB, endMBB->begin(), DL,
30563             TII->get(X86::PHI), DestReg)
30564       .addReg(OffsetDestReg).addMBB(offsetMBB)
30565       .addReg(OverflowDestReg).addMBB(overflowMBB);
30566   }
30567 
30568   // Erase the pseudo instruction
30569   MI.eraseFromParent();
30570 
30571   return endMBB;
30572 }
30573 
30574 MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
30575     MachineInstr &MI, MachineBasicBlock *MBB) const {
30576   // Emit code to save XMM registers to the stack. The ABI says that the
30577   // number of registers to save is given in %al, so it's theoretically
30578   // possible to do an indirect jump trick to avoid saving all of them,
30579   // however this code takes a simpler approach and just executes all
30580   // of the stores if %al is non-zero. It's less code, and it's probably
30581   // easier on the hardware branch predictor, and stores aren't all that
30582   // expensive anyway.
30583 
30584   // Create the new basic blocks. One block contains all the XMM stores,
30585   // and one block is the final destination regardless of whether any
30586   // stores were performed.
30587   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
30588   MachineFunction *F = MBB->getParent();
30589   MachineFunction::iterator MBBIter = ++MBB->getIterator();
30590   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
30591   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
30592   F->insert(MBBIter, XMMSaveMBB);
30593   F->insert(MBBIter, EndMBB);
30594 
30595   // Transfer the remainder of MBB and its successor edges to EndMBB.
30596   EndMBB->splice(EndMBB->begin(), MBB,
30597                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
30598   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
30599 
30600   // The original block will now fall through to the XMM save block.
30601   MBB->addSuccessor(XMMSaveMBB);
30602   // The XMMSaveMBB will fall through to the end block.
30603   XMMSaveMBB->addSuccessor(EndMBB);
30604 
30605   // Now add the instructions.
30606   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
30607   DebugLoc DL = MI.getDebugLoc();
30608 
30609   Register CountReg = MI.getOperand(0).getReg();
30610   int64_t RegSaveFrameIndex = MI.getOperand(1).getImm();
30611   int64_t VarArgsFPOffset = MI.getOperand(2).getImm();
30612 
30613   if (!Subtarget.isCallingConvWin64(F->getFunction().getCallingConv())) {
30614     // If %al is 0, branch around the XMM save block.
30615     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
30616     BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(EndMBB).addImm(X86::COND_E);
30617     MBB->addSuccessor(EndMBB);
30618   }
30619 
30620   // Make sure the last operand is EFLAGS, which gets clobbered by the branch
30621   // that was just emitted, but clearly shouldn't be "saved".
30622   assert((MI.getNumOperands() <= 3 ||
30623           !MI.getOperand(MI.getNumOperands() - 1).isReg() ||
30624           MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) &&
30625          "Expected last argument to be EFLAGS");
30626   unsigned MOVOpc = Subtarget.hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
30627   // In the XMM save block, save all the XMM argument registers.
30628   for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) {
30629     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
30630     MachineMemOperand *MMO = F->getMachineMemOperand(
30631         MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
30632         MachineMemOperand::MOStore,
30633         /*Size=*/16, /*Align=*/16);
30634     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
30635         .addFrameIndex(RegSaveFrameIndex)
30636         .addImm(/*Scale=*/1)
30637         .addReg(/*IndexReg=*/0)
30638         .addImm(/*Disp=*/Offset)
30639         .addReg(/*Segment=*/0)
30640         .addReg(MI.getOperand(i).getReg())
30641         .addMemOperand(MMO);
30642   }
30643 
30644   MI.eraseFromParent(); // The pseudo instruction is gone now.
30645 
30646   return EndMBB;
30647 }
30648 
30649 // The EFLAGS operand of SelectItr might be missing a kill marker
30650 // because there were multiple uses of EFLAGS, and ISel didn't know
30651 // which to mark. Figure out whether SelectItr should have had a
30652 // kill marker, and set it if it should. Returns the correct kill
30653 // marker value.
30654 static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
30655                                      MachineBasicBlock* BB,
30656                                      const TargetRegisterInfo* TRI) {
30657   // Scan forward through BB for a use/def of EFLAGS.
30658   MachineBasicBlock::iterator miI(std::next(SelectItr));
30659   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
30660     const MachineInstr& mi = *miI;
30661     if (mi.readsRegister(X86::EFLAGS))
30662       return false;
30663     if (mi.definesRegister(X86::EFLAGS))
30664       break; // Should have kill-flag - update below.
30665   }
30666 
30667   // If we hit the end of the block, check whether EFLAGS is live into a
30668   // successor.
30669   if (miI == BB->end()) {
30670     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
30671                                           sEnd = BB->succ_end();
30672          sItr != sEnd; ++sItr) {
30673       MachineBasicBlock* succ = *sItr;
30674       if (succ->isLiveIn(X86::EFLAGS))
30675         return false;
30676     }
30677   }
30678 
30679   // We found a def, or hit the end of the basic block and EFLAGS wasn't live
30680   // out. SelectMI should have a kill flag on EFLAGS.
30681   SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
30682   return true;
30683 }
30684 
30685 // Return true if it is OK for this CMOV pseudo-opcode to be cascaded
30686 // together with other CMOV pseudo-opcodes into a single basic-block with
30687 // conditional jump around it.
30688 static bool isCMOVPseudo(MachineInstr &MI) {
30689   switch (MI.getOpcode()) {
30690   case X86::CMOV_FR32:
30691   case X86::CMOV_FR32X:
30692   case X86::CMOV_FR64:
30693   case X86::CMOV_FR64X:
30694   case X86::CMOV_GR8:
30695   case X86::CMOV_GR16:
30696   case X86::CMOV_GR32:
30697   case X86::CMOV_RFP32:
30698   case X86::CMOV_RFP64:
30699   case X86::CMOV_RFP80:
30700   case X86::CMOV_VR128:
30701   case X86::CMOV_VR128X:
30702   case X86::CMOV_VR256:
30703   case X86::CMOV_VR256X:
30704   case X86::CMOV_VR512:
30705   case X86::CMOV_VK2:
30706   case X86::CMOV_VK4:
30707   case X86::CMOV_VK8:
30708   case X86::CMOV_VK16:
30709   case X86::CMOV_VK32:
30710   case X86::CMOV_VK64:
30711     return true;
30712 
30713   default:
30714     return false;
30715   }
30716 }
30717 
30718 // Helper function, which inserts PHI functions into SinkMBB:
30719 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
30720 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent CMOVs
30721 // in [MIItBegin, MIItEnd) range. It returns the last MachineInstrBuilder for
30722 // the last PHI function inserted.
30723 static MachineInstrBuilder createPHIsForCMOVsInSinkBB(
30724     MachineBasicBlock::iterator MIItBegin, MachineBasicBlock::iterator MIItEnd,
30725     MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
30726     MachineBasicBlock *SinkMBB) {
30727   MachineFunction *MF = TrueMBB->getParent();
30728   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
30729   DebugLoc DL = MIItBegin->getDebugLoc();
30730 
30731   X86::CondCode CC = X86::CondCode(MIItBegin->getOperand(3).getImm());
30732   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
30733 
30734   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
30735 
30736   // As we are creating the PHIs, we have to be careful if there is more than
30737   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
30738   // PHIs have to reference the individual true/false inputs from earlier PHIs.
30739   // That also means that PHI construction must work forward from earlier to
30740   // later, and that the code must maintain a mapping from earlier PHI's
30741   // destination registers, and the registers that went into the PHI.
30742   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
30743   MachineInstrBuilder MIB;
30744 
30745   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
30746     Register DestReg = MIIt->getOperand(0).getReg();
30747     Register Op1Reg = MIIt->getOperand(1).getReg();
30748     Register Op2Reg = MIIt->getOperand(2).getReg();
30749 
30750     // If this CMOV we are generating is the opposite condition from
30751     // the jump we generated, then we have to swap the operands for the
30752     // PHI that is going to be generated.
30753     if (MIIt->getOperand(3).getImm() == OppCC)
30754       std::swap(Op1Reg, Op2Reg);
30755 
30756     if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
30757       Op1Reg = RegRewriteTable[Op1Reg].first;
30758 
30759     if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
30760       Op2Reg = RegRewriteTable[Op2Reg].second;
30761 
30762     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
30763               .addReg(Op1Reg)
30764               .addMBB(FalseMBB)
30765               .addReg(Op2Reg)
30766               .addMBB(TrueMBB);
30767 
30768     // Add this PHI to the rewrite table.
30769     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
30770   }
30771 
30772   return MIB;
30773 }
30774 
30775 // Lower cascaded selects in form of (SecondCmov (FirstCMOV F, T, cc1), T, cc2).
30776 MachineBasicBlock *
30777 X86TargetLowering::EmitLoweredCascadedSelect(MachineInstr &FirstCMOV,
30778                                              MachineInstr &SecondCascadedCMOV,
30779                                              MachineBasicBlock *ThisMBB) const {
30780   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
30781   DebugLoc DL = FirstCMOV.getDebugLoc();
30782 
30783   // We lower cascaded CMOVs such as
30784   //
30785   //   (SecondCascadedCMOV (FirstCMOV F, T, cc1), T, cc2)
30786   //
30787   // to two successive branches.
30788   //
30789   // Without this, we would add a PHI between the two jumps, which ends up
30790   // creating a few copies all around. For instance, for
30791   //
30792   //    (sitofp (zext (fcmp une)))
30793   //
30794   // we would generate:
30795   //
30796   //         ucomiss %xmm1, %xmm0
30797   //         movss  <1.0f>, %xmm0
30798   //         movaps  %xmm0, %xmm1
30799   //         jne     .LBB5_2
30800   //         xorps   %xmm1, %xmm1
30801   // .LBB5_2:
30802   //         jp      .LBB5_4
30803   //         movaps  %xmm1, %xmm0
30804   // .LBB5_4:
30805   //         retq
30806   //
30807   // because this custom-inserter would have generated:
30808   //
30809   //   A
30810   //   | \
30811   //   |  B
30812   //   | /
30813   //   C
30814   //   | \
30815   //   |  D
30816   //   | /
30817   //   E
30818   //
30819   // A: X = ...; Y = ...
30820   // B: empty
30821   // C: Z = PHI [X, A], [Y, B]
30822   // D: empty
30823   // E: PHI [X, C], [Z, D]
30824   //
30825   // If we lower both CMOVs in a single step, we can instead generate:
30826   //
30827   //   A
30828   //   | \
30829   //   |  C
30830   //   | /|
30831   //   |/ |
30832   //   |  |
30833   //   |  D
30834   //   | /
30835   //   E
30836   //
30837   // A: X = ...; Y = ...
30838   // D: empty
30839   // E: PHI [X, A], [X, C], [Y, D]
30840   //
30841   // Which, in our sitofp/fcmp example, gives us something like:
30842   //
30843   //         ucomiss %xmm1, %xmm0
30844   //         movss  <1.0f>, %xmm0
30845   //         jne     .LBB5_4
30846   //         jp      .LBB5_4
30847   //         xorps   %xmm0, %xmm0
30848   // .LBB5_4:
30849   //         retq
30850   //
30851 
30852   // We lower cascaded CMOV into two successive branches to the same block.
30853   // EFLAGS is used by both, so mark it as live in the second.
30854   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
30855   MachineFunction *F = ThisMBB->getParent();
30856   MachineBasicBlock *FirstInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
30857   MachineBasicBlock *SecondInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
30858   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
30859 
30860   MachineFunction::iterator It = ++ThisMBB->getIterator();
30861   F->insert(It, FirstInsertedMBB);
30862   F->insert(It, SecondInsertedMBB);
30863   F->insert(It, SinkMBB);
30864 
30865   // For a cascaded CMOV, we lower it to two successive branches to
30866   // the same block (SinkMBB).  EFLAGS is used by both, so mark it as live in
30867   // the FirstInsertedMBB.
30868   FirstInsertedMBB->addLiveIn(X86::EFLAGS);
30869 
30870   // If the EFLAGS register isn't dead in the terminator, then claim that it's
30871   // live into the sink and copy blocks.
30872   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
30873   if (!SecondCascadedCMOV.killsRegister(X86::EFLAGS) &&
30874       !checkAndUpdateEFLAGSKill(SecondCascadedCMOV, ThisMBB, TRI)) {
30875     SecondInsertedMBB->addLiveIn(X86::EFLAGS);
30876     SinkMBB->addLiveIn(X86::EFLAGS);
30877   }
30878 
30879   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
30880   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
30881                   std::next(MachineBasicBlock::iterator(FirstCMOV)),
30882                   ThisMBB->end());
30883   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
30884 
30885   // Fallthrough block for ThisMBB.
30886   ThisMBB->addSuccessor(FirstInsertedMBB);
30887   // The true block target of the first branch is always SinkMBB.
30888   ThisMBB->addSuccessor(SinkMBB);
30889   // Fallthrough block for FirstInsertedMBB.
30890   FirstInsertedMBB->addSuccessor(SecondInsertedMBB);
30891   // The true block for the branch of FirstInsertedMBB.
30892   FirstInsertedMBB->addSuccessor(SinkMBB);
30893   // This is fallthrough.
30894   SecondInsertedMBB->addSuccessor(SinkMBB);
30895 
30896   // Create the conditional branch instructions.
30897   X86::CondCode FirstCC = X86::CondCode(FirstCMOV.getOperand(3).getImm());
30898   BuildMI(ThisMBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(FirstCC);
30899 
30900   X86::CondCode SecondCC =
30901       X86::CondCode(SecondCascadedCMOV.getOperand(3).getImm());
30902   BuildMI(FirstInsertedMBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(SecondCC);
30903 
30904   //  SinkMBB:
30905   //   %Result = phi [ %FalseValue, SecondInsertedMBB ], [ %TrueValue, ThisMBB ]
30906   Register DestReg = FirstCMOV.getOperand(0).getReg();
30907   Register Op1Reg = FirstCMOV.getOperand(1).getReg();
30908   Register Op2Reg = FirstCMOV.getOperand(2).getReg();
30909   MachineInstrBuilder MIB =
30910       BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(X86::PHI), DestReg)
30911           .addReg(Op1Reg)
30912           .addMBB(SecondInsertedMBB)
30913           .addReg(Op2Reg)
30914           .addMBB(ThisMBB);
30915 
30916   // The second SecondInsertedMBB provides the same incoming value as the
30917   // FirstInsertedMBB (the True operand of the SELECT_CC/CMOV nodes).
30918   MIB.addReg(FirstCMOV.getOperand(2).getReg()).addMBB(FirstInsertedMBB);
30919   // Copy the PHI result to the register defined by the second CMOV.
30920   BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL,
30921           TII->get(TargetOpcode::COPY),
30922           SecondCascadedCMOV.getOperand(0).getReg())
30923       .addReg(FirstCMOV.getOperand(0).getReg());
30924 
30925   // Now remove the CMOVs.
30926   FirstCMOV.eraseFromParent();
30927   SecondCascadedCMOV.eraseFromParent();
30928 
30929   return SinkMBB;
30930 }
30931 
30932 MachineBasicBlock *
30933 X86TargetLowering::EmitLoweredSelect(MachineInstr &MI,
30934                                      MachineBasicBlock *ThisMBB) const {
30935   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
30936   DebugLoc DL = MI.getDebugLoc();
30937 
30938   // To "insert" a SELECT_CC instruction, we actually have to insert the
30939   // diamond control-flow pattern.  The incoming instruction knows the
30940   // destination vreg to set, the condition code register to branch on, the
30941   // true/false values to select between and a branch opcode to use.
30942 
30943   //  ThisMBB:
30944   //  ...
30945   //   TrueVal = ...
30946   //   cmpTY ccX, r1, r2
30947   //   bCC copy1MBB
30948   //   fallthrough --> FalseMBB
30949 
30950   // This code lowers all pseudo-CMOV instructions. Generally it lowers these
30951   // as described above, by inserting a BB, and then making a PHI at the join
30952   // point to select the true and false operands of the CMOV in the PHI.
30953   //
30954   // The code also handles two different cases of multiple CMOV opcodes
30955   // in a row.
30956   //
30957   // Case 1:
30958   // In this case, there are multiple CMOVs in a row, all which are based on
30959   // the same condition setting (or the exact opposite condition setting).
30960   // In this case we can lower all the CMOVs using a single inserted BB, and
30961   // then make a number of PHIs at the join point to model the CMOVs. The only
30962   // trickiness here, is that in a case like:
30963   //
30964   // t2 = CMOV cond1 t1, f1
30965   // t3 = CMOV cond1 t2, f2
30966   //
30967   // when rewriting this into PHIs, we have to perform some renaming on the
30968   // temps since you cannot have a PHI operand refer to a PHI result earlier
30969   // in the same block.  The "simple" but wrong lowering would be:
30970   //
30971   // t2 = PHI t1(BB1), f1(BB2)
30972   // t3 = PHI t2(BB1), f2(BB2)
30973   //
30974   // but clearly t2 is not defined in BB1, so that is incorrect. The proper
30975   // renaming is to note that on the path through BB1, t2 is really just a
30976   // copy of t1, and do that renaming, properly generating:
30977   //
30978   // t2 = PHI t1(BB1), f1(BB2)
30979   // t3 = PHI t1(BB1), f2(BB2)
30980   //
30981   // Case 2:
30982   // CMOV ((CMOV F, T, cc1), T, cc2) is checked here and handled by a separate
30983   // function - EmitLoweredCascadedSelect.
30984 
30985   X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm());
30986   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
30987   MachineInstr *LastCMOV = &MI;
30988   MachineBasicBlock::iterator NextMIIt = MachineBasicBlock::iterator(MI);
30989 
30990   // Check for case 1, where there are multiple CMOVs with the same condition
30991   // first.  Of the two cases of multiple CMOV lowerings, case 1 reduces the
30992   // number of jumps the most.
30993 
30994   if (isCMOVPseudo(MI)) {
30995     // See if we have a string of CMOVS with the same condition. Skip over
30996     // intervening debug insts.
30997     while (NextMIIt != ThisMBB->end() && isCMOVPseudo(*NextMIIt) &&
30998            (NextMIIt->getOperand(3).getImm() == CC ||
30999             NextMIIt->getOperand(3).getImm() == OppCC)) {
31000       LastCMOV = &*NextMIIt;
31001       ++NextMIIt;
31002       NextMIIt = skipDebugInstructionsForward(NextMIIt, ThisMBB->end());
31003     }
31004   }
31005 
31006   // This checks for case 2, but only do this if we didn't already find
31007   // case 1, as indicated by LastCMOV == MI.
31008   if (LastCMOV == &MI && NextMIIt != ThisMBB->end() &&
31009       NextMIIt->getOpcode() == MI.getOpcode() &&
31010       NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
31011       NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
31012       NextMIIt->getOperand(1).isKill()) {
31013     return EmitLoweredCascadedSelect(MI, *NextMIIt, ThisMBB);
31014   }
31015 
31016   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
31017   MachineFunction *F = ThisMBB->getParent();
31018   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
31019   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
31020 
31021   MachineFunction::iterator It = ++ThisMBB->getIterator();
31022   F->insert(It, FalseMBB);
31023   F->insert(It, SinkMBB);
31024 
31025   // If the EFLAGS register isn't dead in the terminator, then claim that it's
31026   // live into the sink and copy blocks.
31027   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
31028   if (!LastCMOV->killsRegister(X86::EFLAGS) &&
31029       !checkAndUpdateEFLAGSKill(LastCMOV, ThisMBB, TRI)) {
31030     FalseMBB->addLiveIn(X86::EFLAGS);
31031     SinkMBB->addLiveIn(X86::EFLAGS);
31032   }
31033 
31034   // Transfer any debug instructions inside the CMOV sequence to the sunk block.
31035   auto DbgEnd = MachineBasicBlock::iterator(LastCMOV);
31036   auto DbgIt = MachineBasicBlock::iterator(MI);
31037   while (DbgIt != DbgEnd) {
31038     auto Next = std::next(DbgIt);
31039     if (DbgIt->isDebugInstr())
31040       SinkMBB->push_back(DbgIt->removeFromParent());
31041     DbgIt = Next;
31042   }
31043 
31044   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
31045   SinkMBB->splice(SinkMBB->end(), ThisMBB,
31046                   std::next(MachineBasicBlock::iterator(LastCMOV)),
31047                   ThisMBB->end());
31048   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
31049 
31050   // Fallthrough block for ThisMBB.
31051   ThisMBB->addSuccessor(FalseMBB);
31052   // The true block target of the first (or only) branch is always a SinkMBB.
31053   ThisMBB->addSuccessor(SinkMBB);
31054   // Fallthrough block for FalseMBB.
31055   FalseMBB->addSuccessor(SinkMBB);
31056 
31057   // Create the conditional branch instruction.
31058   BuildMI(ThisMBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
31059 
31060   //  SinkMBB:
31061   //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, ThisMBB ]
31062   //  ...
31063   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
31064   MachineBasicBlock::iterator MIItEnd =
31065       std::next(MachineBasicBlock::iterator(LastCMOV));
31066   createPHIsForCMOVsInSinkBB(MIItBegin, MIItEnd, ThisMBB, FalseMBB, SinkMBB);
31067 
31068   // Now remove the CMOV(s).
31069   ThisMBB->erase(MIItBegin, MIItEnd);
31070 
31071   return SinkMBB;
31072 }
31073 
31074 MachineBasicBlock *
31075 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
31076                                         MachineBasicBlock *BB) const {
31077   MachineFunction *MF = BB->getParent();
31078   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
31079   DebugLoc DL = MI.getDebugLoc();
31080   const BasicBlock *LLVM_BB = BB->getBasicBlock();
31081 
31082   assert(MF->shouldSplitStack());
31083 
31084   const bool Is64Bit = Subtarget.is64Bit();
31085   const bool IsLP64 = Subtarget.isTarget64BitLP64();
31086 
31087   const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
31088   const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
31089 
31090   // BB:
31091   //  ... [Till the alloca]
31092   // If stacklet is not large enough, jump to mallocMBB
31093   //
31094   // bumpMBB:
31095   //  Allocate by subtracting from RSP
31096   //  Jump to continueMBB
31097   //
31098   // mallocMBB:
31099   //  Allocate by call to runtime
31100   //
31101   // continueMBB:
31102   //  ...
31103   //  [rest of original BB]
31104   //
31105 
31106   MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
31107   MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
31108   MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
31109 
31110   MachineRegisterInfo &MRI = MF->getRegInfo();
31111   const TargetRegisterClass *AddrRegClass =
31112       getRegClassFor(getPointerTy(MF->getDataLayout()));
31113 
31114   unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
31115            bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
31116            tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
31117            SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
31118            sizeVReg = MI.getOperand(1).getReg(),
31119            physSPReg =
31120                IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP;
31121 
31122   MachineFunction::iterator MBBIter = ++BB->getIterator();
31123 
31124   MF->insert(MBBIter, bumpMBB);
31125   MF->insert(MBBIter, mallocMBB);
31126   MF->insert(MBBIter, continueMBB);
31127 
31128   continueMBB->splice(continueMBB->begin(), BB,
31129                       std::next(MachineBasicBlock::iterator(MI)), BB->end());
31130   continueMBB->transferSuccessorsAndUpdatePHIs(BB);
31131 
31132   // Add code to the main basic block to check if the stack limit has been hit,
31133   // and if so, jump to mallocMBB otherwise to bumpMBB.
31134   BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
31135   BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
31136     .addReg(tmpSPVReg).addReg(sizeVReg);
31137   BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
31138     .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
31139     .addReg(SPLimitVReg);
31140   BuildMI(BB, DL, TII->get(X86::JCC_1)).addMBB(mallocMBB).addImm(X86::COND_G);
31141 
31142   // bumpMBB simply decreases the stack pointer, since we know the current
31143   // stacklet has enough space.
31144   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
31145     .addReg(SPLimitVReg);
31146   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
31147     .addReg(SPLimitVReg);
31148   BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
31149 
31150   // Calls into a routine in libgcc to allocate more space from the heap.
31151   const uint32_t *RegMask =
31152       Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
31153   if (IsLP64) {
31154     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
31155       .addReg(sizeVReg);
31156     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
31157       .addExternalSymbol("__morestack_allocate_stack_space")
31158       .addRegMask(RegMask)
31159       .addReg(X86::RDI, RegState::Implicit)
31160       .addReg(X86::RAX, RegState::ImplicitDefine);
31161   } else if (Is64Bit) {
31162     BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
31163       .addReg(sizeVReg);
31164     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
31165       .addExternalSymbol("__morestack_allocate_stack_space")
31166       .addRegMask(RegMask)
31167       .addReg(X86::EDI, RegState::Implicit)
31168       .addReg(X86::EAX, RegState::ImplicitDefine);
31169   } else {
31170     BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
31171       .addImm(12);
31172     BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
31173     BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
31174       .addExternalSymbol("__morestack_allocate_stack_space")
31175       .addRegMask(RegMask)
31176       .addReg(X86::EAX, RegState::ImplicitDefine);
31177   }
31178 
31179   if (!Is64Bit)
31180     BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
31181       .addImm(16);
31182 
31183   BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
31184     .addReg(IsLP64 ? X86::RAX : X86::EAX);
31185   BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
31186 
31187   // Set up the CFG correctly.
31188   BB->addSuccessor(bumpMBB);
31189   BB->addSuccessor(mallocMBB);
31190   mallocMBB->addSuccessor(continueMBB);
31191   bumpMBB->addSuccessor(continueMBB);
31192 
31193   // Take care of the PHI nodes.
31194   BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
31195           MI.getOperand(0).getReg())
31196       .addReg(mallocPtrVReg)
31197       .addMBB(mallocMBB)
31198       .addReg(bumpSPPtrVReg)
31199       .addMBB(bumpMBB);
31200 
31201   // Delete the original pseudo instruction.
31202   MI.eraseFromParent();
31203 
31204   // And we're done.
31205   return continueMBB;
31206 }
31207 
31208 MachineBasicBlock *
31209 X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI,
31210                                        MachineBasicBlock *BB) const {
31211   MachineFunction *MF = BB->getParent();
31212   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
31213   MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
31214   DebugLoc DL = MI.getDebugLoc();
31215 
31216   assert(!isAsynchronousEHPersonality(
31217              classifyEHPersonality(MF->getFunction().getPersonalityFn())) &&
31218          "SEH does not use catchret!");
31219 
31220   // Only 32-bit EH needs to worry about manually restoring stack pointers.
31221   if (!Subtarget.is32Bit())
31222     return BB;
31223 
31224   // C++ EH creates a new target block to hold the restore code, and wires up
31225   // the new block to the return destination with a normal JMP_4.
31226   MachineBasicBlock *RestoreMBB =
31227       MF->CreateMachineBasicBlock(BB->getBasicBlock());
31228   assert(BB->succ_size() == 1);
31229   MF->insert(std::next(BB->getIterator()), RestoreMBB);
31230   RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
31231   BB->addSuccessor(RestoreMBB);
31232   MI.getOperand(0).setMBB(RestoreMBB);
31233 
31234   auto RestoreMBBI = RestoreMBB->begin();
31235   BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
31236   BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
31237   return BB;
31238 }
31239 
31240 MachineBasicBlock *
31241 X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI,
31242                                        MachineBasicBlock *BB) const {
31243   MachineFunction *MF = BB->getParent();
31244   const Constant *PerFn = MF->getFunction().getPersonalityFn();
31245   bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
31246   // Only 32-bit SEH requires special handling for catchpad.
31247   if (IsSEH && Subtarget.is32Bit()) {
31248     const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
31249     DebugLoc DL = MI.getDebugLoc();
31250     BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
31251   }
31252   MI.eraseFromParent();
31253   return BB;
31254 }
31255 
31256 MachineBasicBlock *
31257 X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI,
31258                                       MachineBasicBlock *BB) const {
31259   // So, here we replace TLSADDR with the sequence:
31260   // adjust_stackdown -> TLSADDR -> adjust_stackup.
31261   // We need this because TLSADDR is lowered into calls
31262   // inside MC, therefore without the two markers shrink-wrapping
31263   // may push the prologue/epilogue pass them.
31264   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
31265   DebugLoc DL = MI.getDebugLoc();
31266   MachineFunction &MF = *BB->getParent();
31267 
31268   // Emit CALLSEQ_START right before the instruction.
31269   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
31270   MachineInstrBuilder CallseqStart =
31271     BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0).addImm(0);
31272   BB->insert(MachineBasicBlock::iterator(MI), CallseqStart);
31273 
31274   // Emit CALLSEQ_END right after the instruction.
31275   // We don't call erase from parent because we want to keep the
31276   // original instruction around.
31277   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
31278   MachineInstrBuilder CallseqEnd =
31279     BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0);
31280   BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd);
31281 
31282   return BB;
31283 }
31284 
31285 MachineBasicBlock *
31286 X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI,
31287                                       MachineBasicBlock *BB) const {
31288   // This is pretty easy.  We're taking the value that we received from
31289   // our load from the relocation, sticking it in either RDI (x86-64)
31290   // or EAX and doing an indirect call.  The return value will then
31291   // be in the normal return register.
31292   MachineFunction *F = BB->getParent();
31293   const X86InstrInfo *TII = Subtarget.getInstrInfo();
31294   DebugLoc DL = MI.getDebugLoc();
31295 
31296   assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?");
31297   assert(MI.getOperand(3).isGlobal() && "This should be a global");
31298 
31299   // Get a register mask for the lowered call.
31300   // FIXME: The 32-bit calls have non-standard calling conventions. Use a
31301   // proper register mask.
31302   const uint32_t *RegMask =
31303       Subtarget.is64Bit() ?
31304       Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() :
31305       Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
31306   if (Subtarget.is64Bit()) {
31307     MachineInstrBuilder MIB =
31308         BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI)
31309             .addReg(X86::RIP)
31310             .addImm(0)
31311             .addReg(0)
31312             .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
31313                               MI.getOperand(3).getTargetFlags())
31314             .addReg(0);
31315     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
31316     addDirectMem(MIB, X86::RDI);
31317     MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
31318   } else if (!isPositionIndependent()) {
31319     MachineInstrBuilder MIB =
31320         BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
31321             .addReg(0)
31322             .addImm(0)
31323             .addReg(0)
31324             .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
31325                               MI.getOperand(3).getTargetFlags())
31326             .addReg(0);
31327     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
31328     addDirectMem(MIB, X86::EAX);
31329     MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
31330   } else {
31331     MachineInstrBuilder MIB =
31332         BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
31333             .addReg(TII->getGlobalBaseReg(F))
31334             .addImm(0)
31335             .addReg(0)
31336             .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
31337                               MI.getOperand(3).getTargetFlags())
31338             .addReg(0);
31339     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
31340     addDirectMem(MIB, X86::EAX);
31341     MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
31342   }
31343 
31344   MI.eraseFromParent(); // The pseudo instruction is gone now.
31345   return BB;
31346 }
31347 
31348 static unsigned getOpcodeForIndirectThunk(unsigned RPOpc) {
31349   switch (RPOpc) {
31350   case X86::INDIRECT_THUNK_CALL32:
31351     return X86::CALLpcrel32;
31352   case X86::INDIRECT_THUNK_CALL64:
31353     return X86::CALL64pcrel32;
31354   case X86::INDIRECT_THUNK_TCRETURN32:
31355     return X86::TCRETURNdi;
31356   case X86::INDIRECT_THUNK_TCRETURN64:
31357     return X86::TCRETURNdi64;
31358   }
31359   llvm_unreachable("not indirect thunk opcode");
31360 }
31361 
31362 static const char *getIndirectThunkSymbol(const X86Subtarget &Subtarget,
31363                                           unsigned Reg) {
31364   if (Subtarget.useRetpolineExternalThunk()) {
31365     // When using an external thunk for retpolines, we pick names that match the
31366     // names GCC happens to use as well. This helps simplify the implementation
31367     // of the thunks for kernels where they have no easy ability to create
31368     // aliases and are doing non-trivial configuration of the thunk's body. For
31369     // example, the Linux kernel will do boot-time hot patching of the thunk
31370     // bodies and cannot easily export aliases of these to loaded modules.
31371     //
31372     // Note that at any point in the future, we may need to change the semantics
31373     // of how we implement retpolines and at that time will likely change the
31374     // name of the called thunk. Essentially, there is no hard guarantee that
31375     // LLVM will generate calls to specific thunks, we merely make a best-effort
31376     // attempt to help out kernels and other systems where duplicating the
31377     // thunks is costly.
31378     switch (Reg) {
31379     case X86::EAX:
31380       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31381       return "__x86_indirect_thunk_eax";
31382     case X86::ECX:
31383       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31384       return "__x86_indirect_thunk_ecx";
31385     case X86::EDX:
31386       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31387       return "__x86_indirect_thunk_edx";
31388     case X86::EDI:
31389       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31390       return "__x86_indirect_thunk_edi";
31391     case X86::R11:
31392       assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
31393       return "__x86_indirect_thunk_r11";
31394     }
31395     llvm_unreachable("unexpected reg for external indirect thunk");
31396   }
31397 
31398   if (Subtarget.useRetpolineIndirectCalls() ||
31399       Subtarget.useRetpolineIndirectBranches()) {
31400     // When targeting an internal COMDAT thunk use an LLVM-specific name.
31401     switch (Reg) {
31402     case X86::EAX:
31403       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31404       return "__llvm_retpoline_eax";
31405     case X86::ECX:
31406       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31407       return "__llvm_retpoline_ecx";
31408     case X86::EDX:
31409       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31410       return "__llvm_retpoline_edx";
31411     case X86::EDI:
31412       assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
31413       return "__llvm_retpoline_edi";
31414     case X86::R11:
31415       assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
31416       return "__llvm_retpoline_r11";
31417     }
31418     llvm_unreachable("unexpected reg for retpoline");
31419   }
31420 
31421   if (Subtarget.useLVIControlFlowIntegrity()) {
31422     assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
31423     return "__llvm_lvi_thunk_r11";
31424   }
31425   llvm_unreachable("getIndirectThunkSymbol() invoked without thunk feature");
31426 }
31427 
31428 MachineBasicBlock *
31429 X86TargetLowering::EmitLoweredIndirectThunk(MachineInstr &MI,
31430                                             MachineBasicBlock *BB) const {
31431   // Copy the virtual register into the R11 physical register and
31432   // call the retpoline thunk.
31433   DebugLoc DL = MI.getDebugLoc();
31434   const X86InstrInfo *TII = Subtarget.getInstrInfo();
31435   Register CalleeVReg = MI.getOperand(0).getReg();
31436   unsigned Opc = getOpcodeForIndirectThunk(MI.getOpcode());
31437 
31438   // Find an available scratch register to hold the callee. On 64-bit, we can
31439   // just use R11, but we scan for uses anyway to ensure we don't generate
31440   // incorrect code. On 32-bit, we use one of EAX, ECX, or EDX that isn't
31441   // already a register use operand to the call to hold the callee. If none
31442   // are available, use EDI instead. EDI is chosen because EBX is the PIC base
31443   // register and ESI is the base pointer to realigned stack frames with VLAs.
31444   SmallVector<unsigned, 3> AvailableRegs;
31445   if (Subtarget.is64Bit())
31446     AvailableRegs.push_back(X86::R11);
31447   else
31448     AvailableRegs.append({X86::EAX, X86::ECX, X86::EDX, X86::EDI});
31449 
31450   // Zero out any registers that are already used.
31451   for (const auto &MO : MI.operands()) {
31452     if (MO.isReg() && MO.isUse())
31453       for (unsigned &Reg : AvailableRegs)
31454         if (Reg == MO.getReg())
31455           Reg = 0;
31456   }
31457 
31458   // Choose the first remaining non-zero available register.
31459   unsigned AvailableReg = 0;
31460   for (unsigned MaybeReg : AvailableRegs) {
31461     if (MaybeReg) {
31462       AvailableReg = MaybeReg;
31463       break;
31464     }
31465   }
31466   if (!AvailableReg)
31467     report_fatal_error("calling convention incompatible with retpoline, no "
31468                        "available registers");
31469 
31470   const char *Symbol = getIndirectThunkSymbol(Subtarget, AvailableReg);
31471 
31472   BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY), AvailableReg)
31473       .addReg(CalleeVReg);
31474   MI.getOperand(0).ChangeToES(Symbol);
31475   MI.setDesc(TII->get(Opc));
31476   MachineInstrBuilder(*BB->getParent(), &MI)
31477       .addReg(AvailableReg, RegState::Implicit | RegState::Kill);
31478   return BB;
31479 }
31480 
31481 /// SetJmp implies future control flow change upon calling the corresponding
31482 /// LongJmp.
31483 /// Instead of using the 'return' instruction, the long jump fixes the stack and
31484 /// performs an indirect branch. To do so it uses the registers that were stored
31485 /// in the jump buffer (when calling SetJmp).
31486 /// In case the shadow stack is enabled we need to fix it as well, because some
31487 /// return addresses will be skipped.
31488 /// The function will save the SSP for future fixing in the function
31489 /// emitLongJmpShadowStackFix.
31490 /// \sa emitLongJmpShadowStackFix
31491 /// \param [in] MI The temporary Machine Instruction for the builtin.
31492 /// \param [in] MBB The Machine Basic Block that will be modified.
31493 void X86TargetLowering::emitSetJmpShadowStackFix(MachineInstr &MI,
31494                                                  MachineBasicBlock *MBB) const {
31495   DebugLoc DL = MI.getDebugLoc();
31496   MachineFunction *MF = MBB->getParent();
31497   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
31498   MachineRegisterInfo &MRI = MF->getRegInfo();
31499   MachineInstrBuilder MIB;
31500 
31501   // Memory Reference.
31502   SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
31503                                            MI.memoperands_end());
31504 
31505   // Initialize a register with zero.
31506   MVT PVT = getPointerTy(MF->getDataLayout());
31507   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
31508   Register ZReg = MRI.createVirtualRegister(PtrRC);
31509   unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr;
31510   BuildMI(*MBB, MI, DL, TII->get(XorRROpc))
31511       .addDef(ZReg)
31512       .addReg(ZReg, RegState::Undef)
31513       .addReg(ZReg, RegState::Undef);
31514 
31515   // Read the current SSP Register value to the zeroed register.
31516   Register SSPCopyReg = MRI.createVirtualRegister(PtrRC);
31517   unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD;
31518   BuildMI(*MBB, MI, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg);
31519 
31520   // Write the SSP register value to offset 3 in input memory buffer.
31521   unsigned PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
31522   MIB = BuildMI(*MBB, MI, DL, TII->get(PtrStoreOpc));
31523   const int64_t SSPOffset = 3 * PVT.getStoreSize();
31524   const unsigned MemOpndSlot = 1;
31525   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
31526     if (i == X86::AddrDisp)
31527       MIB.addDisp(MI.getOperand(MemOpndSlot + i), SSPOffset);
31528     else
31529       MIB.add(MI.getOperand(MemOpndSlot + i));
31530   }
31531   MIB.addReg(SSPCopyReg);
31532   MIB.setMemRefs(MMOs);
31533 }
31534 
31535 MachineBasicBlock *
31536 X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
31537                                     MachineBasicBlock *MBB) const {
31538   DebugLoc DL = MI.getDebugLoc();
31539   MachineFunction *MF = MBB->getParent();
31540   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
31541   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
31542   MachineRegisterInfo &MRI = MF->getRegInfo();
31543 
31544   const BasicBlock *BB = MBB->getBasicBlock();
31545   MachineFunction::iterator I = ++MBB->getIterator();
31546 
31547   // Memory Reference
31548   SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
31549                                            MI.memoperands_end());
31550 
31551   unsigned DstReg;
31552   unsigned MemOpndSlot = 0;
31553 
31554   unsigned CurOp = 0;
31555 
31556   DstReg = MI.getOperand(CurOp++).getReg();
31557   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
31558   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
31559   (void)TRI;
31560   Register mainDstReg = MRI.createVirtualRegister(RC);
31561   Register restoreDstReg = MRI.createVirtualRegister(RC);
31562 
31563   MemOpndSlot = CurOp;
31564 
31565   MVT PVT = getPointerTy(MF->getDataLayout());
31566   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
31567          "Invalid Pointer Size!");
31568 
31569   // For v = setjmp(buf), we generate
31570   //
31571   // thisMBB:
31572   //  buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
31573   //  SjLjSetup restoreMBB
31574   //
31575   // mainMBB:
31576   //  v_main = 0
31577   //
31578   // sinkMBB:
31579   //  v = phi(main, restore)
31580   //
31581   // restoreMBB:
31582   //  if base pointer being used, load it from frame
31583   //  v_restore = 1
31584 
31585   MachineBasicBlock *thisMBB = MBB;
31586   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
31587   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
31588   MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
31589   MF->insert(I, mainMBB);
31590   MF->insert(I, sinkMBB);
31591   MF->push_back(restoreMBB);
31592   restoreMBB->setHasAddressTaken();
31593 
31594   MachineInstrBuilder MIB;
31595 
31596   // Transfer the remainder of BB and its successor edges to sinkMBB.
31597   sinkMBB->splice(sinkMBB->begin(), MBB,
31598                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
31599   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
31600 
31601   // thisMBB:
31602   unsigned PtrStoreOpc = 0;
31603   unsigned LabelReg = 0;
31604   const int64_t LabelOffset = 1 * PVT.getStoreSize();
31605   bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
31606                      !isPositionIndependent();
31607 
31608   // Prepare IP either in reg or imm.
31609   if (!UseImmLabel) {
31610     PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
31611     const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
31612     LabelReg = MRI.createVirtualRegister(PtrRC);
31613     if (Subtarget.is64Bit()) {
31614       MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
31615               .addReg(X86::RIP)
31616               .addImm(0)
31617               .addReg(0)
31618               .addMBB(restoreMBB)
31619               .addReg(0);
31620     } else {
31621       const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
31622       MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
31623               .addReg(XII->getGlobalBaseReg(MF))
31624               .addImm(0)
31625               .addReg(0)
31626               .addMBB(restoreMBB, Subtarget.classifyBlockAddressReference())
31627               .addReg(0);
31628     }
31629   } else
31630     PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
31631   // Store IP
31632   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
31633   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
31634     if (i == X86::AddrDisp)
31635       MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset);
31636     else
31637       MIB.add(MI.getOperand(MemOpndSlot + i));
31638   }
31639   if (!UseImmLabel)
31640     MIB.addReg(LabelReg);
31641   else
31642     MIB.addMBB(restoreMBB);
31643   MIB.setMemRefs(MMOs);
31644 
31645   if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) {
31646     emitSetJmpShadowStackFix(MI, thisMBB);
31647   }
31648 
31649   // Setup
31650   MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
31651           .addMBB(restoreMBB);
31652 
31653   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
31654   MIB.addRegMask(RegInfo->getNoPreservedMask());
31655   thisMBB->addSuccessor(mainMBB);
31656   thisMBB->addSuccessor(restoreMBB);
31657 
31658   // mainMBB:
31659   //  EAX = 0
31660   BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
31661   mainMBB->addSuccessor(sinkMBB);
31662 
31663   // sinkMBB:
31664   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
31665           TII->get(X86::PHI), DstReg)
31666     .addReg(mainDstReg).addMBB(mainMBB)
31667     .addReg(restoreDstReg).addMBB(restoreMBB);
31668 
31669   // restoreMBB:
31670   if (RegInfo->hasBasePointer(*MF)) {
31671     const bool Uses64BitFramePtr =
31672         Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
31673     X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
31674     X86FI->setRestoreBasePointer(MF);
31675     Register FramePtr = RegInfo->getFrameRegister(*MF);
31676     Register BasePtr = RegInfo->getBaseRegister();
31677     unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
31678     addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
31679                  FramePtr, true, X86FI->getRestoreBasePointerOffset())
31680       .setMIFlag(MachineInstr::FrameSetup);
31681   }
31682   BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
31683   BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
31684   restoreMBB->addSuccessor(sinkMBB);
31685 
31686   MI.eraseFromParent();
31687   return sinkMBB;
31688 }
31689 
31690 /// Fix the shadow stack using the previously saved SSP pointer.
31691 /// \sa emitSetJmpShadowStackFix
31692 /// \param [in] MI The temporary Machine Instruction for the builtin.
31693 /// \param [in] MBB The Machine Basic Block that will be modified.
31694 /// \return The sink MBB that will perform the future indirect branch.
31695 MachineBasicBlock *
31696 X86TargetLowering::emitLongJmpShadowStackFix(MachineInstr &MI,
31697                                              MachineBasicBlock *MBB) const {
31698   DebugLoc DL = MI.getDebugLoc();
31699   MachineFunction *MF = MBB->getParent();
31700   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
31701   MachineRegisterInfo &MRI = MF->getRegInfo();
31702 
31703   // Memory Reference
31704   SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
31705                                            MI.memoperands_end());
31706 
31707   MVT PVT = getPointerTy(MF->getDataLayout());
31708   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
31709 
31710   // checkSspMBB:
31711   //         xor vreg1, vreg1
31712   //         rdssp vreg1
31713   //         test vreg1, vreg1
31714   //         je sinkMBB   # Jump if Shadow Stack is not supported
31715   // fallMBB:
31716   //         mov buf+24/12(%rip), vreg2
31717   //         sub vreg1, vreg2
31718   //         jbe sinkMBB  # No need to fix the Shadow Stack
31719   // fixShadowMBB:
31720   //         shr 3/2, vreg2
31721   //         incssp vreg2  # fix the SSP according to the lower 8 bits
31722   //         shr 8, vreg2
31723   //         je sinkMBB
31724   // fixShadowLoopPrepareMBB:
31725   //         shl vreg2
31726   //         mov 128, vreg3
31727   // fixShadowLoopMBB:
31728   //         incssp vreg3
31729   //         dec vreg2
31730   //         jne fixShadowLoopMBB # Iterate until you finish fixing
31731   //                              # the Shadow Stack
31732   // sinkMBB:
31733 
31734   MachineFunction::iterator I = ++MBB->getIterator();
31735   const BasicBlock *BB = MBB->getBasicBlock();
31736 
31737   MachineBasicBlock *checkSspMBB = MF->CreateMachineBasicBlock(BB);
31738   MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
31739   MachineBasicBlock *fixShadowMBB = MF->CreateMachineBasicBlock(BB);
31740   MachineBasicBlock *fixShadowLoopPrepareMBB = MF->CreateMachineBasicBlock(BB);
31741   MachineBasicBlock *fixShadowLoopMBB = MF->CreateMachineBasicBlock(BB);
31742   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
31743   MF->insert(I, checkSspMBB);
31744   MF->insert(I, fallMBB);
31745   MF->insert(I, fixShadowMBB);
31746   MF->insert(I, fixShadowLoopPrepareMBB);
31747   MF->insert(I, fixShadowLoopMBB);
31748   MF->insert(I, sinkMBB);
31749 
31750   // Transfer the remainder of BB and its successor edges to sinkMBB.
31751   sinkMBB->splice(sinkMBB->begin(), MBB, MachineBasicBlock::iterator(MI),
31752                   MBB->end());
31753   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
31754 
31755   MBB->addSuccessor(checkSspMBB);
31756 
31757   // Initialize a register with zero.
31758   Register ZReg = MRI.createVirtualRegister(PtrRC);
31759   unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr;
31760   BuildMI(checkSspMBB, DL, TII->get(XorRROpc))
31761       .addDef(ZReg)
31762       .addReg(ZReg, RegState::Undef)
31763       .addReg(ZReg, RegState::Undef);
31764 
31765   // Read the current SSP Register value to the zeroed register.
31766   Register SSPCopyReg = MRI.createVirtualRegister(PtrRC);
31767   unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD;
31768   BuildMI(checkSspMBB, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg);
31769 
31770   // Check whether the result of the SSP register is zero and jump directly
31771   // to the sink.
31772   unsigned TestRROpc = (PVT == MVT::i64) ? X86::TEST64rr : X86::TEST32rr;
31773   BuildMI(checkSspMBB, DL, TII->get(TestRROpc))
31774       .addReg(SSPCopyReg)
31775       .addReg(SSPCopyReg);
31776   BuildMI(checkSspMBB, DL, TII->get(X86::JCC_1)).addMBB(sinkMBB).addImm(X86::COND_E);
31777   checkSspMBB->addSuccessor(sinkMBB);
31778   checkSspMBB->addSuccessor(fallMBB);
31779 
31780   // Reload the previously saved SSP register value.
31781   Register PrevSSPReg = MRI.createVirtualRegister(PtrRC);
31782   unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
31783   const int64_t SPPOffset = 3 * PVT.getStoreSize();
31784   MachineInstrBuilder MIB =
31785       BuildMI(fallMBB, DL, TII->get(PtrLoadOpc), PrevSSPReg);
31786   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
31787     const MachineOperand &MO = MI.getOperand(i);
31788     if (i == X86::AddrDisp)
31789       MIB.addDisp(MO, SPPOffset);
31790     else if (MO.isReg()) // Don't add the whole operand, we don't want to
31791                          // preserve kill flags.
31792       MIB.addReg(MO.getReg());
31793     else
31794       MIB.add(MO);
31795   }
31796   MIB.setMemRefs(MMOs);
31797 
31798   // Subtract the current SSP from the previous SSP.
31799   Register SspSubReg = MRI.createVirtualRegister(PtrRC);
31800   unsigned SubRROpc = (PVT == MVT::i64) ? X86::SUB64rr : X86::SUB32rr;
31801   BuildMI(fallMBB, DL, TII->get(SubRROpc), SspSubReg)
31802       .addReg(PrevSSPReg)
31803       .addReg(SSPCopyReg);
31804 
31805   // Jump to sink in case PrevSSPReg <= SSPCopyReg.
31806   BuildMI(fallMBB, DL, TII->get(X86::JCC_1)).addMBB(sinkMBB).addImm(X86::COND_BE);
31807   fallMBB->addSuccessor(sinkMBB);
31808   fallMBB->addSuccessor(fixShadowMBB);
31809 
31810   // Shift right by 2/3 for 32/64 because incssp multiplies the argument by 4/8.
31811   unsigned ShrRIOpc = (PVT == MVT::i64) ? X86::SHR64ri : X86::SHR32ri;
31812   unsigned Offset = (PVT == MVT::i64) ? 3 : 2;
31813   Register SspFirstShrReg = MRI.createVirtualRegister(PtrRC);
31814   BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspFirstShrReg)
31815       .addReg(SspSubReg)
31816       .addImm(Offset);
31817 
31818   // Increase SSP when looking only on the lower 8 bits of the delta.
31819   unsigned IncsspOpc = (PVT == MVT::i64) ? X86::INCSSPQ : X86::INCSSPD;
31820   BuildMI(fixShadowMBB, DL, TII->get(IncsspOpc)).addReg(SspFirstShrReg);
31821 
31822   // Reset the lower 8 bits.
31823   Register SspSecondShrReg = MRI.createVirtualRegister(PtrRC);
31824   BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspSecondShrReg)
31825       .addReg(SspFirstShrReg)
31826       .addImm(8);
31827 
31828   // Jump if the result of the shift is zero.
31829   BuildMI(fixShadowMBB, DL, TII->get(X86::JCC_1)).addMBB(sinkMBB).addImm(X86::COND_E);
31830   fixShadowMBB->addSuccessor(sinkMBB);
31831   fixShadowMBB->addSuccessor(fixShadowLoopPrepareMBB);
31832 
31833   // Do a single shift left.
31834   unsigned ShlR1Opc = (PVT == MVT::i64) ? X86::SHL64r1 : X86::SHL32r1;
31835   Register SspAfterShlReg = MRI.createVirtualRegister(PtrRC);
31836   BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(ShlR1Opc), SspAfterShlReg)
31837       .addReg(SspSecondShrReg);
31838 
31839   // Save the value 128 to a register (will be used next with incssp).
31840   Register Value128InReg = MRI.createVirtualRegister(PtrRC);
31841   unsigned MovRIOpc = (PVT == MVT::i64) ? X86::MOV64ri32 : X86::MOV32ri;
31842   BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(MovRIOpc), Value128InReg)
31843       .addImm(128);
31844   fixShadowLoopPrepareMBB->addSuccessor(fixShadowLoopMBB);
31845 
31846   // Since incssp only looks at the lower 8 bits, we might need to do several
31847   // iterations of incssp until we finish fixing the shadow stack.
31848   Register DecReg = MRI.createVirtualRegister(PtrRC);
31849   Register CounterReg = MRI.createVirtualRegister(PtrRC);
31850   BuildMI(fixShadowLoopMBB, DL, TII->get(X86::PHI), CounterReg)
31851       .addReg(SspAfterShlReg)
31852       .addMBB(fixShadowLoopPrepareMBB)
31853       .addReg(DecReg)
31854       .addMBB(fixShadowLoopMBB);
31855 
31856   // Every iteration we increase the SSP by 128.
31857   BuildMI(fixShadowLoopMBB, DL, TII->get(IncsspOpc)).addReg(Value128InReg);
31858 
31859   // Every iteration we decrement the counter by 1.
31860   unsigned DecROpc = (PVT == MVT::i64) ? X86::DEC64r : X86::DEC32r;
31861   BuildMI(fixShadowLoopMBB, DL, TII->get(DecROpc), DecReg).addReg(CounterReg);
31862 
31863   // Jump if the counter is not zero yet.
31864   BuildMI(fixShadowLoopMBB, DL, TII->get(X86::JCC_1)).addMBB(fixShadowLoopMBB).addImm(X86::COND_NE);
31865   fixShadowLoopMBB->addSuccessor(sinkMBB);
31866   fixShadowLoopMBB->addSuccessor(fixShadowLoopMBB);
31867 
31868   return sinkMBB;
31869 }
31870 
31871 MachineBasicBlock *
31872 X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
31873                                      MachineBasicBlock *MBB) const {
31874   DebugLoc DL = MI.getDebugLoc();
31875   MachineFunction *MF = MBB->getParent();
31876   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
31877   MachineRegisterInfo &MRI = MF->getRegInfo();
31878 
31879   // Memory Reference
31880   SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
31881                                            MI.memoperands_end());
31882 
31883   MVT PVT = getPointerTy(MF->getDataLayout());
31884   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
31885          "Invalid Pointer Size!");
31886 
31887   const TargetRegisterClass *RC =
31888     (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
31889   Register Tmp = MRI.createVirtualRegister(RC);
31890   // Since FP is only updated here but NOT referenced, it's treated as GPR.
31891   const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
31892   unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
31893   Register SP = RegInfo->getStackRegister();
31894 
31895   MachineInstrBuilder MIB;
31896 
31897   const int64_t LabelOffset = 1 * PVT.getStoreSize();
31898   const int64_t SPOffset = 2 * PVT.getStoreSize();
31899 
31900   unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
31901   unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
31902 
31903   MachineBasicBlock *thisMBB = MBB;
31904 
31905   // When CET and shadow stack is enabled, we need to fix the Shadow Stack.
31906   if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) {
31907     thisMBB = emitLongJmpShadowStackFix(MI, thisMBB);
31908   }
31909 
31910   // Reload FP
31911   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), FP);
31912   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
31913     const MachineOperand &MO = MI.getOperand(i);
31914     if (MO.isReg()) // Don't add the whole operand, we don't want to
31915                     // preserve kill flags.
31916       MIB.addReg(MO.getReg());
31917     else
31918       MIB.add(MO);
31919   }
31920   MIB.setMemRefs(MMOs);
31921 
31922   // Reload IP
31923   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
31924   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
31925     const MachineOperand &MO = MI.getOperand(i);
31926     if (i == X86::AddrDisp)
31927       MIB.addDisp(MO, LabelOffset);
31928     else if (MO.isReg()) // Don't add the whole operand, we don't want to
31929                          // preserve kill flags.
31930       MIB.addReg(MO.getReg());
31931     else
31932       MIB.add(MO);
31933   }
31934   MIB.setMemRefs(MMOs);
31935 
31936   // Reload SP
31937   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), SP);
31938   for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
31939     if (i == X86::AddrDisp)
31940       MIB.addDisp(MI.getOperand(i), SPOffset);
31941     else
31942       MIB.add(MI.getOperand(i)); // We can preserve the kill flags here, it's
31943                                  // the last instruction of the expansion.
31944   }
31945   MIB.setMemRefs(MMOs);
31946 
31947   // Jump
31948   BuildMI(*thisMBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
31949 
31950   MI.eraseFromParent();
31951   return thisMBB;
31952 }
31953 
31954 void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
31955                                                MachineBasicBlock *MBB,
31956                                                MachineBasicBlock *DispatchBB,
31957                                                int FI) const {
31958   DebugLoc DL = MI.getDebugLoc();
31959   MachineFunction *MF = MBB->getParent();
31960   MachineRegisterInfo *MRI = &MF->getRegInfo();
31961   const X86InstrInfo *TII = Subtarget.getInstrInfo();
31962 
31963   MVT PVT = getPointerTy(MF->getDataLayout());
31964   assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
31965 
31966   unsigned Op = 0;
31967   unsigned VR = 0;
31968 
31969   bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
31970                      !isPositionIndependent();
31971 
31972   if (UseImmLabel) {
31973     Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
31974   } else {
31975     const TargetRegisterClass *TRC =
31976         (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
31977     VR = MRI->createVirtualRegister(TRC);
31978     Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
31979 
31980     if (Subtarget.is64Bit())
31981       BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR)
31982           .addReg(X86::RIP)
31983           .addImm(1)
31984           .addReg(0)
31985           .addMBB(DispatchBB)
31986           .addReg(0);
31987     else
31988       BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR)
31989           .addReg(0) /* TII->getGlobalBaseReg(MF) */
31990           .addImm(1)
31991           .addReg(0)
31992           .addMBB(DispatchBB, Subtarget.classifyBlockAddressReference())
31993           .addReg(0);
31994   }
31995 
31996   MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op));
31997   addFrameReference(MIB, FI, Subtarget.is64Bit() ? 56 : 36);
31998   if (UseImmLabel)
31999     MIB.addMBB(DispatchBB);
32000   else
32001     MIB.addReg(VR);
32002 }
32003 
32004 MachineBasicBlock *
32005 X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
32006                                          MachineBasicBlock *BB) const {
32007   DebugLoc DL = MI.getDebugLoc();
32008   MachineFunction *MF = BB->getParent();
32009   MachineRegisterInfo *MRI = &MF->getRegInfo();
32010   const X86InstrInfo *TII = Subtarget.getInstrInfo();
32011   int FI = MF->getFrameInfo().getFunctionContextIndex();
32012 
32013   // Get a mapping of the call site numbers to all of the landing pads they're
32014   // associated with.
32015   DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
32016   unsigned MaxCSNum = 0;
32017   for (auto &MBB : *MF) {
32018     if (!MBB.isEHPad())
32019       continue;
32020 
32021     MCSymbol *Sym = nullptr;
32022     for (const auto &MI : MBB) {
32023       if (MI.isDebugInstr())
32024         continue;
32025 
32026       assert(MI.isEHLabel() && "expected EH_LABEL");
32027       Sym = MI.getOperand(0).getMCSymbol();
32028       break;
32029     }
32030 
32031     if (!MF->hasCallSiteLandingPad(Sym))
32032       continue;
32033 
32034     for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
32035       CallSiteNumToLPad[CSI].push_back(&MBB);
32036       MaxCSNum = std::max(MaxCSNum, CSI);
32037     }
32038   }
32039 
32040   // Get an ordered list of the machine basic blocks for the jump table.
32041   std::vector<MachineBasicBlock *> LPadList;
32042   SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
32043   LPadList.reserve(CallSiteNumToLPad.size());
32044 
32045   for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
32046     for (auto &LP : CallSiteNumToLPad[CSI]) {
32047       LPadList.push_back(LP);
32048       InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
32049     }
32050   }
32051 
32052   assert(!LPadList.empty() &&
32053          "No landing pad destinations for the dispatch jump table!");
32054 
32055   // Create the MBBs for the dispatch code.
32056 
32057   // Shove the dispatch's address into the return slot in the function context.
32058   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
32059   DispatchBB->setIsEHPad(true);
32060 
32061   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
32062   BuildMI(TrapBB, DL, TII->get(X86::TRAP));
32063   DispatchBB->addSuccessor(TrapBB);
32064 
32065   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
32066   DispatchBB->addSuccessor(DispContBB);
32067 
32068   // Insert MBBs.
32069   MF->push_back(DispatchBB);
32070   MF->push_back(DispContBB);
32071   MF->push_back(TrapBB);
32072 
32073   // Insert code into the entry block that creates and registers the function
32074   // context.
32075   SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI);
32076 
32077   // Create the jump table and associated information
32078   unsigned JTE = getJumpTableEncoding();
32079   MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE);
32080   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
32081 
32082   const X86RegisterInfo &RI = TII->getRegisterInfo();
32083   // Add a register mask with no preserved registers.  This results in all
32084   // registers being marked as clobbered.
32085   if (RI.hasBasePointer(*MF)) {
32086     const bool FPIs64Bit =
32087         Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
32088     X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>();
32089     MFI->setRestoreBasePointer(MF);
32090 
32091     Register FP = RI.getFrameRegister(*MF);
32092     Register BP = RI.getBaseRegister();
32093     unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm;
32094     addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true,
32095                  MFI->getRestoreBasePointerOffset())
32096         .addRegMask(RI.getNoPreservedMask());
32097   } else {
32098     BuildMI(DispatchBB, DL, TII->get(X86::NOOP))
32099         .addRegMask(RI.getNoPreservedMask());
32100   }
32101 
32102   // IReg is used as an index in a memory operand and therefore can't be SP
32103   Register IReg = MRI->createVirtualRegister(&X86::GR32_NOSPRegClass);
32104   addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI,
32105                     Subtarget.is64Bit() ? 8 : 4);
32106   BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri))
32107       .addReg(IReg)
32108       .addImm(LPadList.size());
32109   BuildMI(DispatchBB, DL, TII->get(X86::JCC_1)).addMBB(TrapBB).addImm(X86::COND_AE);
32110 
32111   if (Subtarget.is64Bit()) {
32112     Register BReg = MRI->createVirtualRegister(&X86::GR64RegClass);
32113     Register IReg64 = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
32114 
32115     // leaq .LJTI0_0(%rip), BReg
32116     BuildMI(DispContBB, DL, TII->get(X86::LEA64r), BReg)
32117         .addReg(X86::RIP)
32118         .addImm(1)
32119         .addReg(0)
32120         .addJumpTableIndex(MJTI)
32121         .addReg(0);
32122     // movzx IReg64, IReg
32123     BuildMI(DispContBB, DL, TII->get(TargetOpcode::SUBREG_TO_REG), IReg64)
32124         .addImm(0)
32125         .addReg(IReg)
32126         .addImm(X86::sub_32bit);
32127 
32128     switch (JTE) {
32129     case MachineJumpTableInfo::EK_BlockAddress:
32130       // jmpq *(BReg,IReg64,8)
32131       BuildMI(DispContBB, DL, TII->get(X86::JMP64m))
32132           .addReg(BReg)
32133           .addImm(8)
32134           .addReg(IReg64)
32135           .addImm(0)
32136           .addReg(0);
32137       break;
32138     case MachineJumpTableInfo::EK_LabelDifference32: {
32139       Register OReg = MRI->createVirtualRegister(&X86::GR32RegClass);
32140       Register OReg64 = MRI->createVirtualRegister(&X86::GR64RegClass);
32141       Register TReg = MRI->createVirtualRegister(&X86::GR64RegClass);
32142 
32143       // movl (BReg,IReg64,4), OReg
32144       BuildMI(DispContBB, DL, TII->get(X86::MOV32rm), OReg)
32145           .addReg(BReg)
32146           .addImm(4)
32147           .addReg(IReg64)
32148           .addImm(0)
32149           .addReg(0);
32150       // movsx OReg64, OReg
32151       BuildMI(DispContBB, DL, TII->get(X86::MOVSX64rr32), OReg64).addReg(OReg);
32152       // addq BReg, OReg64, TReg
32153       BuildMI(DispContBB, DL, TII->get(X86::ADD64rr), TReg)
32154           .addReg(OReg64)
32155           .addReg(BReg);
32156       // jmpq *TReg
32157       BuildMI(DispContBB, DL, TII->get(X86::JMP64r)).addReg(TReg);
32158       break;
32159     }
32160     default:
32161       llvm_unreachable("Unexpected jump table encoding");
32162     }
32163   } else {
32164     // jmpl *.LJTI0_0(,IReg,4)
32165     BuildMI(DispContBB, DL, TII->get(X86::JMP32m))
32166         .addReg(0)
32167         .addImm(4)
32168         .addReg(IReg)
32169         .addJumpTableIndex(MJTI)
32170         .addReg(0);
32171   }
32172 
32173   // Add the jump table entries as successors to the MBB.
32174   SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
32175   for (auto &LP : LPadList)
32176     if (SeenMBBs.insert(LP).second)
32177       DispContBB->addSuccessor(LP);
32178 
32179   // N.B. the order the invoke BBs are processed in doesn't matter here.
32180   SmallVector<MachineBasicBlock *, 64> MBBLPads;
32181   const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs();
32182   for (MachineBasicBlock *MBB : InvokeBBs) {
32183     // Remove the landing pad successor from the invoke block and replace it
32184     // with the new dispatch block.
32185     // Keep a copy of Successors since it's modified inside the loop.
32186     SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
32187                                                    MBB->succ_rend());
32188     // FIXME: Avoid quadratic complexity.
32189     for (auto MBBS : Successors) {
32190       if (MBBS->isEHPad()) {
32191         MBB->removeSuccessor(MBBS);
32192         MBBLPads.push_back(MBBS);
32193       }
32194     }
32195 
32196     MBB->addSuccessor(DispatchBB);
32197 
32198     // Find the invoke call and mark all of the callee-saved registers as
32199     // 'implicit defined' so that they're spilled.  This prevents code from
32200     // moving instructions to before the EH block, where they will never be
32201     // executed.
32202     for (auto &II : reverse(*MBB)) {
32203       if (!II.isCall())
32204         continue;
32205 
32206       DenseMap<unsigned, bool> DefRegs;
32207       for (auto &MOp : II.operands())
32208         if (MOp.isReg())
32209           DefRegs[MOp.getReg()] = true;
32210 
32211       MachineInstrBuilder MIB(*MF, &II);
32212       for (unsigned RegIdx = 0; SavedRegs[RegIdx]; ++RegIdx) {
32213         unsigned Reg = SavedRegs[RegIdx];
32214         if (!DefRegs[Reg])
32215           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
32216       }
32217 
32218       break;
32219     }
32220   }
32221 
32222   // Mark all former landing pads as non-landing pads.  The dispatch is the only
32223   // landing pad now.
32224   for (auto &LP : MBBLPads)
32225     LP->setIsEHPad(false);
32226 
32227   // The instruction is gone now.
32228   MI.eraseFromParent();
32229   return BB;
32230 }
32231 
32232 MachineBasicBlock *
32233 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
32234                                                MachineBasicBlock *BB) const {
32235   MachineFunction *MF = BB->getParent();
32236   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
32237   DebugLoc DL = MI.getDebugLoc();
32238 
32239   switch (MI.getOpcode()) {
32240   default: llvm_unreachable("Unexpected instr type to insert");
32241   case X86::TLS_addr32:
32242   case X86::TLS_addr64:
32243   case X86::TLS_base_addr32:
32244   case X86::TLS_base_addr64:
32245     return EmitLoweredTLSAddr(MI, BB);
32246   case X86::INDIRECT_THUNK_CALL32:
32247   case X86::INDIRECT_THUNK_CALL64:
32248   case X86::INDIRECT_THUNK_TCRETURN32:
32249   case X86::INDIRECT_THUNK_TCRETURN64:
32250     return EmitLoweredIndirectThunk(MI, BB);
32251   case X86::CATCHRET:
32252     return EmitLoweredCatchRet(MI, BB);
32253   case X86::CATCHPAD:
32254     return EmitLoweredCatchPad(MI, BB);
32255   case X86::SEG_ALLOCA_32:
32256   case X86::SEG_ALLOCA_64:
32257     return EmitLoweredSegAlloca(MI, BB);
32258   case X86::TLSCall_32:
32259   case X86::TLSCall_64:
32260     return EmitLoweredTLSCall(MI, BB);
32261   case X86::CMOV_FR32:
32262   case X86::CMOV_FR32X:
32263   case X86::CMOV_FR64:
32264   case X86::CMOV_FR64X:
32265   case X86::CMOV_GR8:
32266   case X86::CMOV_GR16:
32267   case X86::CMOV_GR32:
32268   case X86::CMOV_RFP32:
32269   case X86::CMOV_RFP64:
32270   case X86::CMOV_RFP80:
32271   case X86::CMOV_VR128:
32272   case X86::CMOV_VR128X:
32273   case X86::CMOV_VR256:
32274   case X86::CMOV_VR256X:
32275   case X86::CMOV_VR512:
32276   case X86::CMOV_VK2:
32277   case X86::CMOV_VK4:
32278   case X86::CMOV_VK8:
32279   case X86::CMOV_VK16:
32280   case X86::CMOV_VK32:
32281   case X86::CMOV_VK64:
32282     return EmitLoweredSelect(MI, BB);
32283 
32284   case X86::RDFLAGS32:
32285   case X86::RDFLAGS64: {
32286     unsigned PushF =
32287         MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
32288     unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
32289     MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
32290     // Permit reads of the EFLAGS and DF registers without them being defined.
32291     // This intrinsic exists to read external processor state in flags, such as
32292     // the trap flag, interrupt flag, and direction flag, none of which are
32293     // modeled by the backend.
32294     assert(Push->getOperand(2).getReg() == X86::EFLAGS &&
32295            "Unexpected register in operand!");
32296     Push->getOperand(2).setIsUndef();
32297     assert(Push->getOperand(3).getReg() == X86::DF &&
32298            "Unexpected register in operand!");
32299     Push->getOperand(3).setIsUndef();
32300     BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
32301 
32302     MI.eraseFromParent(); // The pseudo is gone now.
32303     return BB;
32304   }
32305 
32306   case X86::WRFLAGS32:
32307   case X86::WRFLAGS64: {
32308     unsigned Push =
32309         MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r;
32310     unsigned PopF =
32311         MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64;
32312     BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg());
32313     BuildMI(*BB, MI, DL, TII->get(PopF));
32314 
32315     MI.eraseFromParent(); // The pseudo is gone now.
32316     return BB;
32317   }
32318 
32319   case X86::FP32_TO_INT16_IN_MEM:
32320   case X86::FP32_TO_INT32_IN_MEM:
32321   case X86::FP32_TO_INT64_IN_MEM:
32322   case X86::FP64_TO_INT16_IN_MEM:
32323   case X86::FP64_TO_INT32_IN_MEM:
32324   case X86::FP64_TO_INT64_IN_MEM:
32325   case X86::FP80_TO_INT16_IN_MEM:
32326   case X86::FP80_TO_INT32_IN_MEM:
32327   case X86::FP80_TO_INT64_IN_MEM: {
32328     // Change the floating point control register to use "round towards zero"
32329     // mode when truncating to an integer value.
32330     int OrigCWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
32331     addFrameReference(BuildMI(*BB, MI, DL,
32332                               TII->get(X86::FNSTCW16m)), OrigCWFrameIdx);
32333 
32334     // Load the old value of the control word...
32335     Register OldCW = MF->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
32336     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOVZX32rm16), OldCW),
32337                       OrigCWFrameIdx);
32338 
32339     // OR 0b11 into bit 10 and 11. 0b11 is the encoding for round toward zero.
32340     Register NewCW = MF->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
32341     BuildMI(*BB, MI, DL, TII->get(X86::OR32ri), NewCW)
32342       .addReg(OldCW, RegState::Kill).addImm(0xC00);
32343 
32344     // Extract to 16 bits.
32345     Register NewCW16 =
32346         MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
32347     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY), NewCW16)
32348       .addReg(NewCW, RegState::Kill, X86::sub_16bit);
32349 
32350     // Prepare memory for FLDCW.
32351     int NewCWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
32352     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)),
32353                       NewCWFrameIdx)
32354       .addReg(NewCW16, RegState::Kill);
32355 
32356     // Reload the modified control word now...
32357     addFrameReference(BuildMI(*BB, MI, DL,
32358                               TII->get(X86::FLDCW16m)), NewCWFrameIdx);
32359 
32360     // Get the X86 opcode to use.
32361     unsigned Opc;
32362     switch (MI.getOpcode()) {
32363     default: llvm_unreachable("illegal opcode!");
32364     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
32365     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
32366     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
32367     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
32368     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
32369     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
32370     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
32371     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
32372     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
32373     }
32374 
32375     X86AddressMode AM = getAddressFromInstr(&MI, 0);
32376     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
32377         .addReg(MI.getOperand(X86::AddrNumOperands).getReg());
32378 
32379     // Reload the original control word now.
32380     addFrameReference(BuildMI(*BB, MI, DL,
32381                               TII->get(X86::FLDCW16m)), OrigCWFrameIdx);
32382 
32383     MI.eraseFromParent(); // The pseudo instruction is gone now.
32384     return BB;
32385   }
32386 
32387   // xbegin
32388   case X86::XBEGIN:
32389     return emitXBegin(MI, BB, Subtarget.getInstrInfo());
32390 
32391   case X86::VASTART_SAVE_XMM_REGS:
32392     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
32393 
32394   case X86::VAARG_64:
32395     return EmitVAARG64WithCustomInserter(MI, BB);
32396 
32397   case X86::EH_SjLj_SetJmp32:
32398   case X86::EH_SjLj_SetJmp64:
32399     return emitEHSjLjSetJmp(MI, BB);
32400 
32401   case X86::EH_SjLj_LongJmp32:
32402   case X86::EH_SjLj_LongJmp64:
32403     return emitEHSjLjLongJmp(MI, BB);
32404 
32405   case X86::Int_eh_sjlj_setup_dispatch:
32406     return EmitSjLjDispatchBlock(MI, BB);
32407 
32408   case TargetOpcode::STATEPOINT:
32409     // As an implementation detail, STATEPOINT shares the STACKMAP format at
32410     // this point in the process.  We diverge later.
32411     return emitPatchPoint(MI, BB);
32412 
32413   case TargetOpcode::STACKMAP:
32414   case TargetOpcode::PATCHPOINT:
32415     return emitPatchPoint(MI, BB);
32416 
32417   case TargetOpcode::PATCHABLE_EVENT_CALL:
32418     return emitXRayCustomEvent(MI, BB);
32419 
32420   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
32421     return emitXRayTypedEvent(MI, BB);
32422 
32423   case X86::LCMPXCHG8B: {
32424     const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
32425     // In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B
32426     // requires a memory operand. If it happens that current architecture is
32427     // i686 and for current function we need a base pointer
32428     // - which is ESI for i686 - register allocator would not be able to
32429     // allocate registers for an address in form of X(%reg, %reg, Y)
32430     // - there never would be enough unreserved registers during regalloc
32431     // (without the need for base ptr the only option would be X(%edi, %esi, Y).
32432     // We are giving a hand to register allocator by precomputing the address in
32433     // a new vreg using LEA.
32434 
32435     // If it is not i686 or there is no base pointer - nothing to do here.
32436     if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF))
32437       return BB;
32438 
32439     // Even though this code does not necessarily needs the base pointer to
32440     // be ESI, we check for that. The reason: if this assert fails, there are
32441     // some changes happened in the compiler base pointer handling, which most
32442     // probably have to be addressed somehow here.
32443     assert(TRI->getBaseRegister() == X86::ESI &&
32444            "LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a "
32445            "base pointer in mind");
32446 
32447     MachineRegisterInfo &MRI = MF->getRegInfo();
32448     MVT SPTy = getPointerTy(MF->getDataLayout());
32449     const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
32450     Register computedAddrVReg = MRI.createVirtualRegister(AddrRegClass);
32451 
32452     X86AddressMode AM = getAddressFromInstr(&MI, 0);
32453     // Regalloc does not need any help when the memory operand of CMPXCHG8B
32454     // does not use index register.
32455     if (AM.IndexReg == X86::NoRegister)
32456       return BB;
32457 
32458     // After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its
32459     // four operand definitions that are E[ABCD] registers. We skip them and
32460     // then insert the LEA.
32461     MachineBasicBlock::reverse_iterator RMBBI(MI.getReverseIterator());
32462     while (RMBBI != BB->rend() && (RMBBI->definesRegister(X86::EAX) ||
32463                                    RMBBI->definesRegister(X86::EBX) ||
32464                                    RMBBI->definesRegister(X86::ECX) ||
32465                                    RMBBI->definesRegister(X86::EDX))) {
32466       ++RMBBI;
32467     }
32468     MachineBasicBlock::iterator MBBI(RMBBI);
32469     addFullAddress(
32470         BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM);
32471 
32472     setDirectAddressInInstr(&MI, 0, computedAddrVReg);
32473 
32474     return BB;
32475   }
32476   case X86::LCMPXCHG16B:
32477     return BB;
32478   case X86::LCMPXCHG8B_SAVE_EBX:
32479   case X86::LCMPXCHG16B_SAVE_RBX: {
32480     unsigned BasePtr =
32481         MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
32482     if (!BB->isLiveIn(BasePtr))
32483       BB->addLiveIn(BasePtr);
32484     return BB;
32485   }
32486   }
32487 }
32488 
32489 //===----------------------------------------------------------------------===//
32490 //                           X86 Optimization Hooks
32491 //===----------------------------------------------------------------------===//
32492 
32493 bool
32494 X86TargetLowering::targetShrinkDemandedConstant(SDValue Op,
32495                                                 const APInt &Demanded,
32496                                                 TargetLoweringOpt &TLO) const {
32497   // Only optimize Ands to prevent shrinking a constant that could be
32498   // matched by movzx.
32499   if (Op.getOpcode() != ISD::AND)
32500     return false;
32501 
32502   EVT VT = Op.getValueType();
32503 
32504   // Ignore vectors.
32505   if (VT.isVector())
32506     return false;
32507 
32508   unsigned Size = VT.getSizeInBits();
32509 
32510   // Make sure the RHS really is a constant.
32511   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
32512   if (!C)
32513     return false;
32514 
32515   const APInt &Mask = C->getAPIntValue();
32516 
32517   // Clear all non-demanded bits initially.
32518   APInt ShrunkMask = Mask & Demanded;
32519 
32520   // Find the width of the shrunk mask.
32521   unsigned Width = ShrunkMask.getActiveBits();
32522 
32523   // If the mask is all 0s there's nothing to do here.
32524   if (Width == 0)
32525     return false;
32526 
32527   // Find the next power of 2 width, rounding up to a byte.
32528   Width = PowerOf2Ceil(std::max(Width, 8U));
32529   // Truncate the width to size to handle illegal types.
32530   Width = std::min(Width, Size);
32531 
32532   // Calculate a possible zero extend mask for this constant.
32533   APInt ZeroExtendMask = APInt::getLowBitsSet(Size, Width);
32534 
32535   // If we aren't changing the mask, just return true to keep it and prevent
32536   // the caller from optimizing.
32537   if (ZeroExtendMask == Mask)
32538     return true;
32539 
32540   // Make sure the new mask can be represented by a combination of mask bits
32541   // and non-demanded bits.
32542   if (!ZeroExtendMask.isSubsetOf(Mask | ~Demanded))
32543     return false;
32544 
32545   // Replace the constant with the zero extend mask.
32546   SDLoc DL(Op);
32547   SDValue NewC = TLO.DAG.getConstant(ZeroExtendMask, DL, VT);
32548   SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
32549   return TLO.CombineTo(Op, NewOp);
32550 }
32551 
32552 void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
32553                                                       KnownBits &Known,
32554                                                       const APInt &DemandedElts,
32555                                                       const SelectionDAG &DAG,
32556                                                       unsigned Depth) const {
32557   unsigned BitWidth = Known.getBitWidth();
32558   unsigned Opc = Op.getOpcode();
32559   EVT VT = Op.getValueType();
32560   assert((Opc >= ISD::BUILTIN_OP_END ||
32561           Opc == ISD::INTRINSIC_WO_CHAIN ||
32562           Opc == ISD::INTRINSIC_W_CHAIN ||
32563           Opc == ISD::INTRINSIC_VOID) &&
32564          "Should use MaskedValueIsZero if you don't know whether Op"
32565          " is a target node!");
32566 
32567   Known.resetAll();
32568   switch (Opc) {
32569   default: break;
32570   case X86ISD::SETCC:
32571     Known.Zero.setBitsFrom(1);
32572     break;
32573   case X86ISD::MOVMSK: {
32574     unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements();
32575     Known.Zero.setBitsFrom(NumLoBits);
32576     break;
32577   }
32578   case X86ISD::PEXTRB:
32579   case X86ISD::PEXTRW: {
32580     SDValue Src = Op.getOperand(0);
32581     EVT SrcVT = Src.getValueType();
32582     APInt DemandedElt = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
32583                                             Op.getConstantOperandVal(1));
32584     Known = DAG.computeKnownBits(Src, DemandedElt, Depth + 1);
32585     Known = Known.zextOrTrunc(BitWidth, false);
32586     Known.Zero.setBitsFrom(SrcVT.getScalarSizeInBits());
32587     break;
32588   }
32589   case X86ISD::VSRAI:
32590   case X86ISD::VSHLI:
32591   case X86ISD::VSRLI: {
32592     unsigned ShAmt = Op.getConstantOperandVal(1);
32593     if (ShAmt >= VT.getScalarSizeInBits()) {
32594       Known.setAllZero();
32595       break;
32596     }
32597 
32598     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
32599     if (Opc == X86ISD::VSHLI) {
32600       Known.Zero <<= ShAmt;
32601       Known.One <<= ShAmt;
32602       // Low bits are known zero.
32603       Known.Zero.setLowBits(ShAmt);
32604     } else if (Opc == X86ISD::VSRLI) {
32605       Known.Zero.lshrInPlace(ShAmt);
32606       Known.One.lshrInPlace(ShAmt);
32607       // High bits are known zero.
32608       Known.Zero.setHighBits(ShAmt);
32609     } else {
32610       Known.Zero.ashrInPlace(ShAmt);
32611       Known.One.ashrInPlace(ShAmt);
32612     }
32613     break;
32614   }
32615   case X86ISD::PACKUS: {
32616     // PACKUS is just a truncation if the upper half is zero.
32617     APInt DemandedLHS, DemandedRHS;
32618     getPackDemandedElts(VT, DemandedElts, DemandedLHS, DemandedRHS);
32619 
32620     Known.One = APInt::getAllOnesValue(BitWidth * 2);
32621     Known.Zero = APInt::getAllOnesValue(BitWidth * 2);
32622 
32623     KnownBits Known2;
32624     if (!!DemandedLHS) {
32625       Known2 = DAG.computeKnownBits(Op.getOperand(0), DemandedLHS, Depth + 1);
32626       Known.One &= Known2.One;
32627       Known.Zero &= Known2.Zero;
32628     }
32629     if (!!DemandedRHS) {
32630       Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedRHS, Depth + 1);
32631       Known.One &= Known2.One;
32632       Known.Zero &= Known2.Zero;
32633     }
32634 
32635     if (Known.countMinLeadingZeros() < BitWidth)
32636       Known.resetAll();
32637     Known = Known.trunc(BitWidth);
32638     break;
32639   }
32640   case X86ISD::ANDNP: {
32641     KnownBits Known2;
32642     Known = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
32643     Known2 = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
32644 
32645     // ANDNP = (~X & Y);
32646     Known.One &= Known2.Zero;
32647     Known.Zero |= Known2.One;
32648     break;
32649   }
32650   case X86ISD::FOR: {
32651     KnownBits Known2;
32652     Known = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
32653     Known2 = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
32654 
32655     // Output known-0 bits are only known if clear in both the LHS & RHS.
32656     Known.Zero &= Known2.Zero;
32657     // Output known-1 are known to be set if set in either the LHS | RHS.
32658     Known.One |= Known2.One;
32659     break;
32660   }
32661   case X86ISD::PSADBW: {
32662     assert(VT.getScalarType() == MVT::i64 &&
32663            Op.getOperand(0).getValueType().getScalarType() == MVT::i8 &&
32664            "Unexpected PSADBW types");
32665 
32666     // PSADBW - fills low 16 bits and zeros upper 48 bits of each i64 result.
32667     Known.Zero.setBitsFrom(16);
32668     break;
32669   }
32670   case X86ISD::CMOV: {
32671     Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
32672     // If we don't know any bits, early out.
32673     if (Known.isUnknown())
32674       break;
32675     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
32676 
32677     // Only known if known in both the LHS and RHS.
32678     Known.One &= Known2.One;
32679     Known.Zero &= Known2.Zero;
32680     break;
32681   }
32682   }
32683 
32684   // Handle target shuffles.
32685   // TODO - use resolveTargetShuffleInputs once we can limit recursive depth.
32686   if (isTargetShuffle(Opc)) {
32687     bool IsUnary;
32688     SmallVector<int, 64> Mask;
32689     SmallVector<SDValue, 2> Ops;
32690     if (getTargetShuffleMask(Op.getNode(), VT.getSimpleVT(), true, Ops, Mask,
32691                              IsUnary)) {
32692       unsigned NumOps = Ops.size();
32693       unsigned NumElts = VT.getVectorNumElements();
32694       if (Mask.size() == NumElts) {
32695         SmallVector<APInt, 2> DemandedOps(NumOps, APInt(NumElts, 0));
32696         Known.Zero.setAllBits(); Known.One.setAllBits();
32697         for (unsigned i = 0; i != NumElts; ++i) {
32698           if (!DemandedElts[i])
32699             continue;
32700           int M = Mask[i];
32701           if (M == SM_SentinelUndef) {
32702             // For UNDEF elements, we don't know anything about the common state
32703             // of the shuffle result.
32704             Known.resetAll();
32705             break;
32706           } else if (M == SM_SentinelZero) {
32707             Known.One.clearAllBits();
32708             continue;
32709           }
32710           assert(0 <= M && (unsigned)M < (NumOps * NumElts) &&
32711                  "Shuffle index out of range");
32712 
32713           unsigned OpIdx = (unsigned)M / NumElts;
32714           unsigned EltIdx = (unsigned)M % NumElts;
32715           if (Ops[OpIdx].getValueType() != VT) {
32716             // TODO - handle target shuffle ops with different value types.
32717             Known.resetAll();
32718             break;
32719           }
32720           DemandedOps[OpIdx].setBit(EltIdx);
32721         }
32722         // Known bits are the values that are shared by every demanded element.
32723         for (unsigned i = 0; i != NumOps && !Known.isUnknown(); ++i) {
32724           if (!DemandedOps[i])
32725             continue;
32726           KnownBits Known2 =
32727               DAG.computeKnownBits(Ops[i], DemandedOps[i], Depth + 1);
32728           Known.One &= Known2.One;
32729           Known.Zero &= Known2.Zero;
32730         }
32731       }
32732     }
32733   }
32734 }
32735 
32736 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
32737     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
32738     unsigned Depth) const {
32739   EVT VT = Op.getValueType();
32740   unsigned VTBits = VT.getScalarSizeInBits();
32741   unsigned Opcode = Op.getOpcode();
32742   switch (Opcode) {
32743   case X86ISD::SETCC_CARRY:
32744     // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
32745     return VTBits;
32746 
32747   case X86ISD::VTRUNC: {
32748     // TODO: Add DemandedElts support.
32749     SDValue Src = Op.getOperand(0);
32750     unsigned NumSrcBits = Src.getScalarValueSizeInBits();
32751     assert(VTBits < NumSrcBits && "Illegal truncation input type");
32752     unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1);
32753     if (Tmp > (NumSrcBits - VTBits))
32754       return Tmp - (NumSrcBits - VTBits);
32755     return 1;
32756   }
32757 
32758   case X86ISD::PACKSS: {
32759     // PACKSS is just a truncation if the sign bits extend to the packed size.
32760     APInt DemandedLHS, DemandedRHS;
32761     getPackDemandedElts(Op.getValueType(), DemandedElts, DemandedLHS,
32762                         DemandedRHS);
32763 
32764     unsigned SrcBits = Op.getOperand(0).getScalarValueSizeInBits();
32765     unsigned Tmp0 = SrcBits, Tmp1 = SrcBits;
32766     if (!!DemandedLHS)
32767       Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
32768     if (!!DemandedRHS)
32769       Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
32770     unsigned Tmp = std::min(Tmp0, Tmp1);
32771     if (Tmp > (SrcBits - VTBits))
32772       return Tmp - (SrcBits - VTBits);
32773     return 1;
32774   }
32775 
32776   case X86ISD::VSHLI: {
32777     SDValue Src = Op.getOperand(0);
32778     const APInt &ShiftVal = Op.getConstantOperandAPInt(1);
32779     if (ShiftVal.uge(VTBits))
32780       return VTBits; // Shifted all bits out --> zero.
32781     unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
32782     if (ShiftVal.uge(Tmp))
32783       return 1; // Shifted all sign bits out --> unknown.
32784     return Tmp - ShiftVal.getZExtValue();
32785   }
32786 
32787   case X86ISD::VSRAI: {
32788     SDValue Src = Op.getOperand(0);
32789     APInt ShiftVal = Op.getConstantOperandAPInt(1);
32790     if (ShiftVal.uge(VTBits - 1))
32791       return VTBits; // Sign splat.
32792     unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
32793     ShiftVal += Tmp;
32794     return ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
32795   }
32796 
32797   case X86ISD::PCMPGT:
32798   case X86ISD::PCMPEQ:
32799   case X86ISD::CMPP:
32800   case X86ISD::VPCOM:
32801   case X86ISD::VPCOMU:
32802     // Vector compares return zero/all-bits result values.
32803     return VTBits;
32804 
32805   case X86ISD::ANDNP: {
32806     unsigned Tmp0 =
32807         DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
32808     if (Tmp0 == 1) return 1; // Early out.
32809     unsigned Tmp1 =
32810         DAG.ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
32811     return std::min(Tmp0, Tmp1);
32812   }
32813 
32814   case X86ISD::CMOV: {
32815     unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth+1);
32816     if (Tmp0 == 1) return 1;  // Early out.
32817     unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth+1);
32818     return std::min(Tmp0, Tmp1);
32819   }
32820   }
32821 
32822   // Handle target shuffles.
32823   // TODO - use resolveTargetShuffleInputs once we can limit recursive depth.
32824   if (isTargetShuffle(Opcode)) {
32825     bool IsUnary;
32826     SmallVector<int, 64> Mask;
32827     SmallVector<SDValue, 2> Ops;
32828     if (getTargetShuffleMask(Op.getNode(), VT.getSimpleVT(), true, Ops, Mask,
32829                              IsUnary)) {
32830       unsigned NumOps = Ops.size();
32831       unsigned NumElts = VT.getVectorNumElements();
32832       if (Mask.size() == NumElts) {
32833         SmallVector<APInt, 2> DemandedOps(NumOps, APInt(NumElts, 0));
32834         for (unsigned i = 0; i != NumElts; ++i) {
32835           if (!DemandedElts[i])
32836             continue;
32837           int M = Mask[i];
32838           if (M == SM_SentinelUndef) {
32839             // For UNDEF elements, we don't know anything about the common state
32840             // of the shuffle result.
32841             return 1;
32842           } else if (M == SM_SentinelZero) {
32843             // Zero = all sign bits.
32844             continue;
32845           }
32846           assert(0 <= M && (unsigned)M < (NumOps * NumElts) &&
32847                  "Shuffle index out of range");
32848 
32849           unsigned OpIdx = (unsigned)M / NumElts;
32850           unsigned EltIdx = (unsigned)M % NumElts;
32851           if (Ops[OpIdx].getValueType() != VT) {
32852             // TODO - handle target shuffle ops with different value types.
32853             return 1;
32854           }
32855           DemandedOps[OpIdx].setBit(EltIdx);
32856         }
32857         unsigned Tmp0 = VTBits;
32858         for (unsigned i = 0; i != NumOps && Tmp0 > 1; ++i) {
32859           if (!DemandedOps[i])
32860             continue;
32861           unsigned Tmp1 =
32862               DAG.ComputeNumSignBits(Ops[i], DemandedOps[i], Depth + 1);
32863           Tmp0 = std::min(Tmp0, Tmp1);
32864         }
32865         return Tmp0;
32866       }
32867     }
32868   }
32869 
32870   // Fallback case.
32871   return 1;
32872 }
32873 
32874 SDValue X86TargetLowering::unwrapAddress(SDValue N) const {
32875   if (N->getOpcode() == X86ISD::Wrapper || N->getOpcode() == X86ISD::WrapperRIP)
32876     return N->getOperand(0);
32877   return N;
32878 }
32879 
32880 // Attempt to match a combined shuffle mask against supported unary shuffle
32881 // instructions.
32882 // TODO: Investigate sharing more of this with shuffle lowering.
32883 static bool matchUnaryShuffle(MVT MaskVT, ArrayRef<int> Mask,
32884                               bool AllowFloatDomain, bool AllowIntDomain,
32885                               SDValue &V1, const SDLoc &DL, SelectionDAG &DAG,
32886                               const X86Subtarget &Subtarget, unsigned &Shuffle,
32887                               MVT &SrcVT, MVT &DstVT) {
32888   unsigned NumMaskElts = Mask.size();
32889   unsigned MaskEltSize = MaskVT.getScalarSizeInBits();
32890 
32891   // Match against a VZEXT_MOVL vXi32 zero-extending instruction.
32892   if (MaskEltSize == 32 && isUndefOrEqual(Mask[0], 0) &&
32893       isUndefOrZero(Mask[1]) && isUndefInRange(Mask, 2, NumMaskElts - 2)) {
32894     Shuffle = X86ISD::VZEXT_MOVL;
32895     SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
32896     return true;
32897   }
32898 
32899   // Match against a ANY/ZERO_EXTEND_VECTOR_INREG instruction.
32900   // TODO: Add 512-bit vector support (split AVX512F and AVX512BW).
32901   if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE41()) ||
32902                          (MaskVT.is256BitVector() && Subtarget.hasInt256()))) {
32903     unsigned MaxScale = 64 / MaskEltSize;
32904     for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) {
32905       bool MatchAny = true;
32906       bool MatchZero = true;
32907       unsigned NumDstElts = NumMaskElts / Scale;
32908       for (unsigned i = 0; i != NumDstElts && (MatchAny || MatchZero); ++i) {
32909         if (!isUndefOrEqual(Mask[i * Scale], (int)i)) {
32910           MatchAny = MatchZero = false;
32911           break;
32912         }
32913         MatchAny &= isUndefInRange(Mask, (i * Scale) + 1, Scale - 1);
32914         MatchZero &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1);
32915       }
32916       if (MatchAny || MatchZero) {
32917         assert(MatchZero && "Failed to match zext but matched aext?");
32918         unsigned SrcSize = std::max(128u, NumDstElts * MaskEltSize);
32919         MVT ScalarTy = MaskVT.isInteger() ? MaskVT.getScalarType() :
32920                                             MVT::getIntegerVT(MaskEltSize);
32921         SrcVT = MVT::getVectorVT(ScalarTy, SrcSize / MaskEltSize);
32922 
32923         if (SrcVT.getSizeInBits() != MaskVT.getSizeInBits())
32924           V1 = extractSubVector(V1, 0, DAG, DL, SrcSize);
32925 
32926         Shuffle = unsigned(MatchAny ? ISD::ANY_EXTEND : ISD::ZERO_EXTEND);
32927         if (SrcVT.getVectorNumElements() != NumDstElts)
32928           Shuffle = getOpcode_EXTEND_VECTOR_INREG(Shuffle);
32929 
32930         DstVT = MVT::getIntegerVT(Scale * MaskEltSize);
32931         DstVT = MVT::getVectorVT(DstVT, NumDstElts);
32932         return true;
32933       }
32934     }
32935   }
32936 
32937   // Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS).
32938   if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) &&
32939       isUndefOrEqual(Mask[0], 0) &&
32940       isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) {
32941     Shuffle = X86ISD::VZEXT_MOVL;
32942     SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
32943     return true;
32944   }
32945 
32946   // Check if we have SSE3 which will let us use MOVDDUP etc. The
32947   // instructions are no slower than UNPCKLPD but has the option to
32948   // fold the input operand into even an unaligned memory load.
32949   if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && AllowFloatDomain) {
32950     if (isTargetShuffleEquivalent(Mask, {0, 0})) {
32951       Shuffle = X86ISD::MOVDDUP;
32952       SrcVT = DstVT = MVT::v2f64;
32953       return true;
32954     }
32955     if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
32956       Shuffle = X86ISD::MOVSLDUP;
32957       SrcVT = DstVT = MVT::v4f32;
32958       return true;
32959     }
32960     if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) {
32961       Shuffle = X86ISD::MOVSHDUP;
32962       SrcVT = DstVT = MVT::v4f32;
32963       return true;
32964     }
32965   }
32966 
32967   if (MaskVT.is256BitVector() && AllowFloatDomain) {
32968     assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles");
32969     if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
32970       Shuffle = X86ISD::MOVDDUP;
32971       SrcVT = DstVT = MVT::v4f64;
32972       return true;
32973     }
32974     if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
32975       Shuffle = X86ISD::MOVSLDUP;
32976       SrcVT = DstVT = MVT::v8f32;
32977       return true;
32978     }
32979     if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) {
32980       Shuffle = X86ISD::MOVSHDUP;
32981       SrcVT = DstVT = MVT::v8f32;
32982       return true;
32983     }
32984   }
32985 
32986   if (MaskVT.is512BitVector() && AllowFloatDomain) {
32987     assert(Subtarget.hasAVX512() &&
32988            "AVX512 required for 512-bit vector shuffles");
32989     if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
32990       Shuffle = X86ISD::MOVDDUP;
32991       SrcVT = DstVT = MVT::v8f64;
32992       return true;
32993     }
32994     if (isTargetShuffleEquivalent(
32995             Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) {
32996       Shuffle = X86ISD::MOVSLDUP;
32997       SrcVT = DstVT = MVT::v16f32;
32998       return true;
32999     }
33000     if (isTargetShuffleEquivalent(
33001             Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) {
33002       Shuffle = X86ISD::MOVSHDUP;
33003       SrcVT = DstVT = MVT::v16f32;
33004       return true;
33005     }
33006   }
33007 
33008   return false;
33009 }
33010 
33011 // Attempt to match a combined shuffle mask against supported unary immediate
33012 // permute instructions.
33013 // TODO: Investigate sharing more of this with shuffle lowering.
33014 static bool matchUnaryPermuteShuffle(MVT MaskVT, ArrayRef<int> Mask,
33015                                      const APInt &Zeroable,
33016                                      bool AllowFloatDomain, bool AllowIntDomain,
33017                                      const X86Subtarget &Subtarget,
33018                                      unsigned &Shuffle, MVT &ShuffleVT,
33019                                      unsigned &PermuteImm) {
33020   unsigned NumMaskElts = Mask.size();
33021   unsigned InputSizeInBits = MaskVT.getSizeInBits();
33022   unsigned MaskScalarSizeInBits = InputSizeInBits / NumMaskElts;
33023   MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits);
33024 
33025   bool ContainsZeros =
33026       llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; });
33027 
33028   // Handle VPERMI/VPERMILPD vXi64/vXi64 patterns.
33029   if (!ContainsZeros && MaskScalarSizeInBits == 64) {
33030     // Check for lane crossing permutes.
33031     if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) {
33032       // PERMPD/PERMQ permutes within a 256-bit vector (AVX2+).
33033       if (Subtarget.hasAVX2() && MaskVT.is256BitVector()) {
33034         Shuffle = X86ISD::VPERMI;
33035         ShuffleVT = (AllowFloatDomain ? MVT::v4f64 : MVT::v4i64);
33036         PermuteImm = getV4X86ShuffleImm(Mask);
33037         return true;
33038       }
33039       if (Subtarget.hasAVX512() && MaskVT.is512BitVector()) {
33040         SmallVector<int, 4> RepeatedMask;
33041         if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) {
33042           Shuffle = X86ISD::VPERMI;
33043           ShuffleVT = (AllowFloatDomain ? MVT::v8f64 : MVT::v8i64);
33044           PermuteImm = getV4X86ShuffleImm(RepeatedMask);
33045           return true;
33046         }
33047       }
33048     } else if (AllowFloatDomain && Subtarget.hasAVX()) {
33049       // VPERMILPD can permute with a non-repeating shuffle.
33050       Shuffle = X86ISD::VPERMILPI;
33051       ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size());
33052       PermuteImm = 0;
33053       for (int i = 0, e = Mask.size(); i != e; ++i) {
33054         int M = Mask[i];
33055         if (M == SM_SentinelUndef)
33056           continue;
33057         assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index");
33058         PermuteImm |= (M & 1) << i;
33059       }
33060       return true;
33061     }
33062   }
33063 
33064   // Handle PSHUFD/VPERMILPI vXi32/vXf32 repeated patterns.
33065   // AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we
33066   // had to use 2-input SHUFPD/SHUFPS shuffles (not handled here).
33067   if ((MaskScalarSizeInBits == 64 || MaskScalarSizeInBits == 32) &&
33068       !ContainsZeros && (AllowIntDomain || Subtarget.hasAVX())) {
33069     SmallVector<int, 4> RepeatedMask;
33070     if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
33071       // Narrow the repeated mask to create 32-bit element permutes.
33072       SmallVector<int, 4> WordMask = RepeatedMask;
33073       if (MaskScalarSizeInBits == 64)
33074         scaleShuffleMask<int>(2, RepeatedMask, WordMask);
33075 
33076       Shuffle = (AllowIntDomain ? X86ISD::PSHUFD : X86ISD::VPERMILPI);
33077       ShuffleVT = (AllowIntDomain ? MVT::i32 : MVT::f32);
33078       ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32);
33079       PermuteImm = getV4X86ShuffleImm(WordMask);
33080       return true;
33081     }
33082   }
33083 
33084   // Handle PSHUFLW/PSHUFHW vXi16 repeated patterns.
33085   if (!ContainsZeros && AllowIntDomain && MaskScalarSizeInBits == 16) {
33086     SmallVector<int, 4> RepeatedMask;
33087     if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
33088       ArrayRef<int> LoMask(RepeatedMask.data() + 0, 4);
33089       ArrayRef<int> HiMask(RepeatedMask.data() + 4, 4);
33090 
33091       // PSHUFLW: permute lower 4 elements only.
33092       if (isUndefOrInRange(LoMask, 0, 4) &&
33093           isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
33094         Shuffle = X86ISD::PSHUFLW;
33095         ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
33096         PermuteImm = getV4X86ShuffleImm(LoMask);
33097         return true;
33098       }
33099 
33100       // PSHUFHW: permute upper 4 elements only.
33101       if (isUndefOrInRange(HiMask, 4, 8) &&
33102           isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
33103         // Offset the HiMask so that we can create the shuffle immediate.
33104         int OffsetHiMask[4];
33105         for (int i = 0; i != 4; ++i)
33106           OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4);
33107 
33108         Shuffle = X86ISD::PSHUFHW;
33109         ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
33110         PermuteImm = getV4X86ShuffleImm(OffsetHiMask);
33111         return true;
33112       }
33113     }
33114   }
33115 
33116   // Attempt to match against byte/bit shifts.
33117   // FIXME: Add 512-bit support.
33118   if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
33119                          (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
33120     int ShiftAmt = matchShuffleAsShift(ShuffleVT, Shuffle, MaskScalarSizeInBits,
33121                                        Mask, 0, Zeroable, Subtarget);
33122     if (0 < ShiftAmt) {
33123       PermuteImm = (unsigned)ShiftAmt;
33124       return true;
33125     }
33126   }
33127 
33128   return false;
33129 }
33130 
33131 // Attempt to match a combined unary shuffle mask against supported binary
33132 // shuffle instructions.
33133 // TODO: Investigate sharing more of this with shuffle lowering.
33134 static bool matchBinaryShuffle(MVT MaskVT, ArrayRef<int> Mask,
33135                                bool AllowFloatDomain, bool AllowIntDomain,
33136                                SDValue &V1, SDValue &V2, const SDLoc &DL,
33137                                SelectionDAG &DAG, const X86Subtarget &Subtarget,
33138                                unsigned &Shuffle, MVT &SrcVT, MVT &DstVT,
33139                                bool IsUnary) {
33140   unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
33141 
33142   if (MaskVT.is128BitVector()) {
33143     if (isTargetShuffleEquivalent(Mask, {0, 0}) && AllowFloatDomain) {
33144       V2 = V1;
33145       V1 = (SM_SentinelUndef == Mask[0] ? DAG.getUNDEF(MVT::v4f32) : V1);
33146       Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKL : X86ISD::MOVLHPS;
33147       SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32;
33148       return true;
33149     }
33150     if (isTargetShuffleEquivalent(Mask, {1, 1}) && AllowFloatDomain) {
33151       V2 = V1;
33152       Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKH : X86ISD::MOVHLPS;
33153       SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32;
33154       return true;
33155     }
33156     if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() &&
33157         (AllowFloatDomain || !Subtarget.hasSSE41())) {
33158       std::swap(V1, V2);
33159       Shuffle = X86ISD::MOVSD;
33160       SrcVT = DstVT = MVT::v2f64;
33161       return true;
33162     }
33163     if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) &&
33164         (AllowFloatDomain || !Subtarget.hasSSE41())) {
33165       Shuffle = X86ISD::MOVSS;
33166       SrcVT = DstVT = MVT::v4f32;
33167       return true;
33168     }
33169   }
33170 
33171   // Attempt to match against either an unary or binary PACKSS/PACKUS shuffle.
33172   if (((MaskVT == MVT::v8i16 || MaskVT == MVT::v16i8) && Subtarget.hasSSE2()) ||
33173       ((MaskVT == MVT::v16i16 || MaskVT == MVT::v32i8) && Subtarget.hasInt256()) ||
33174       ((MaskVT == MVT::v32i16 || MaskVT == MVT::v64i8) && Subtarget.hasBWI())) {
33175     if (matchShuffleWithPACK(MaskVT, SrcVT, V1, V2, Shuffle, Mask, DAG,
33176                              Subtarget)) {
33177       DstVT = MaskVT;
33178       return true;
33179     }
33180   }
33181 
33182   // Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle.
33183   if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) ||
33184       (MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
33185       (MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) ||
33186       (MaskVT.is256BitVector() && Subtarget.hasAVX2()) ||
33187       (MaskVT.is512BitVector() && Subtarget.hasAVX512())) {
33188     if (matchShuffleWithUNPCK(MaskVT, V1, V2, Shuffle, IsUnary, Mask, DL, DAG,
33189                               Subtarget)) {
33190       SrcVT = DstVT = MaskVT;
33191       if (MaskVT.is256BitVector() && !Subtarget.hasAVX2())
33192         SrcVT = DstVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64);
33193       return true;
33194     }
33195   }
33196 
33197   return false;
33198 }
33199 
33200 static bool matchBinaryPermuteShuffle(
33201     MVT MaskVT, ArrayRef<int> Mask, const APInt &Zeroable,
33202     bool AllowFloatDomain, bool AllowIntDomain, SDValue &V1, SDValue &V2,
33203     const SDLoc &DL, SelectionDAG &DAG, const X86Subtarget &Subtarget,
33204     unsigned &Shuffle, MVT &ShuffleVT, unsigned &PermuteImm) {
33205   unsigned NumMaskElts = Mask.size();
33206   unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
33207 
33208   // Attempt to match against PALIGNR byte rotate.
33209   if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) ||
33210                          (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
33211     int ByteRotation = matchShuffleAsByteRotate(MaskVT, V1, V2, Mask);
33212     if (0 < ByteRotation) {
33213       Shuffle = X86ISD::PALIGNR;
33214       ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8);
33215       PermuteImm = ByteRotation;
33216       return true;
33217     }
33218   }
33219 
33220   // Attempt to combine to X86ISD::BLENDI.
33221   if ((NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) ||
33222                             (Subtarget.hasAVX() && MaskVT.is256BitVector()))) ||
33223       (MaskVT == MVT::v16i16 && Subtarget.hasAVX2())) {
33224     uint64_t BlendMask = 0;
33225     bool ForceV1Zero = false, ForceV2Zero = false;
33226     SmallVector<int, 8> TargetMask(Mask.begin(), Mask.end());
33227     if (matchShuffleAsBlend(V1, V2, TargetMask, Zeroable, ForceV1Zero,
33228                             ForceV2Zero, BlendMask)) {
33229       if (MaskVT == MVT::v16i16) {
33230         // We can only use v16i16 PBLENDW if the lanes are repeated.
33231         SmallVector<int, 8> RepeatedMask;
33232         if (isRepeatedTargetShuffleMask(128, MaskVT, TargetMask,
33233                                         RepeatedMask)) {
33234           assert(RepeatedMask.size() == 8 &&
33235                  "Repeated mask size doesn't match!");
33236           PermuteImm = 0;
33237           for (int i = 0; i < 8; ++i)
33238             if (RepeatedMask[i] >= 8)
33239               PermuteImm |= 1 << i;
33240           V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
33241           V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
33242           Shuffle = X86ISD::BLENDI;
33243           ShuffleVT = MaskVT;
33244           return true;
33245         }
33246       } else {
33247         V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
33248         V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
33249         PermuteImm = (unsigned)BlendMask;
33250         Shuffle = X86ISD::BLENDI;
33251         ShuffleVT = MaskVT;
33252         return true;
33253       }
33254     }
33255   }
33256 
33257   // Attempt to combine to INSERTPS, but only if it has elements that need to
33258   // be set to zero.
33259   if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() &&
33260       MaskVT.is128BitVector() &&
33261       llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; }) &&
33262       matchShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
33263     Shuffle = X86ISD::INSERTPS;
33264     ShuffleVT = MVT::v4f32;
33265     return true;
33266   }
33267 
33268   // Attempt to combine to SHUFPD.
33269   if (AllowFloatDomain && EltSizeInBits == 64 &&
33270       ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
33271        (MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
33272        (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
33273     bool ForceV1Zero = false, ForceV2Zero = false;
33274     if (matchShuffleWithSHUFPD(MaskVT, V1, V2, ForceV1Zero, ForceV2Zero,
33275                                PermuteImm, Mask, Zeroable)) {
33276       V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
33277       V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
33278       Shuffle = X86ISD::SHUFP;
33279       ShuffleVT = MVT::getVectorVT(MVT::f64, MaskVT.getSizeInBits() / 64);
33280       return true;
33281     }
33282   }
33283 
33284   // Attempt to combine to SHUFPS.
33285   if (AllowFloatDomain && EltSizeInBits == 32 &&
33286       ((MaskVT.is128BitVector() && Subtarget.hasSSE1()) ||
33287        (MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
33288        (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
33289     SmallVector<int, 4> RepeatedMask;
33290     if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) {
33291       // Match each half of the repeated mask, to determine if its just
33292       // referencing one of the vectors, is zeroable or entirely undef.
33293       auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) {
33294         int M0 = RepeatedMask[Offset];
33295         int M1 = RepeatedMask[Offset + 1];
33296 
33297         if (isUndefInRange(RepeatedMask, Offset, 2)) {
33298           return DAG.getUNDEF(MaskVT);
33299         } else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) {
33300           S0 = (SM_SentinelUndef == M0 ? -1 : 0);
33301           S1 = (SM_SentinelUndef == M1 ? -1 : 1);
33302           return getZeroVector(MaskVT, Subtarget, DAG, DL);
33303         } else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) {
33304           S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
33305           S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
33306           return V1;
33307         } else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) {
33308           S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
33309           S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
33310           return V2;
33311         }
33312 
33313         return SDValue();
33314       };
33315 
33316       int ShufMask[4] = {-1, -1, -1, -1};
33317       SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]);
33318       SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]);
33319 
33320       if (Lo && Hi) {
33321         V1 = Lo;
33322         V2 = Hi;
33323         Shuffle = X86ISD::SHUFP;
33324         ShuffleVT = MVT::getVectorVT(MVT::f32, MaskVT.getSizeInBits() / 32);
33325         PermuteImm = getV4X86ShuffleImm(ShufMask);
33326         return true;
33327       }
33328     }
33329   }
33330 
33331   // Attempt to combine to INSERTPS more generally if X86ISD::SHUFP failed.
33332   if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() &&
33333       MaskVT.is128BitVector() &&
33334       matchShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
33335     Shuffle = X86ISD::INSERTPS;
33336     ShuffleVT = MVT::v4f32;
33337     return true;
33338   }
33339 
33340   return false;
33341 }
33342 
33343 static SDValue combineX86ShuffleChainWithExtract(
33344     ArrayRef<SDValue> Inputs, SDValue Root, ArrayRef<int> BaseMask, int Depth,
33345     bool HasVariableMask, bool AllowVariableMask, SelectionDAG &DAG,
33346     const X86Subtarget &Subtarget);
33347 
33348 /// Combine an arbitrary chain of shuffles into a single instruction if
33349 /// possible.
33350 ///
33351 /// This is the leaf of the recursive combine below. When we have found some
33352 /// chain of single-use x86 shuffle instructions and accumulated the combined
33353 /// shuffle mask represented by them, this will try to pattern match that mask
33354 /// into either a single instruction if there is a special purpose instruction
33355 /// for this operation, or into a PSHUFB instruction which is a fully general
33356 /// instruction but should only be used to replace chains over a certain depth.
33357 static SDValue combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root,
33358                                       ArrayRef<int> BaseMask, int Depth,
33359                                       bool HasVariableMask,
33360                                       bool AllowVariableMask, SelectionDAG &DAG,
33361                                       const X86Subtarget &Subtarget) {
33362   assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!");
33363   assert((Inputs.size() == 1 || Inputs.size() == 2) &&
33364          "Unexpected number of shuffle inputs!");
33365 
33366   // Find the inputs that enter the chain. Note that multiple uses are OK
33367   // here, we're not going to remove the operands we find.
33368   bool UnaryShuffle = (Inputs.size() == 1);
33369   SDValue V1 = peekThroughBitcasts(Inputs[0]);
33370   SDValue V2 = (UnaryShuffle ? DAG.getUNDEF(V1.getValueType())
33371                              : peekThroughBitcasts(Inputs[1]));
33372 
33373   MVT VT1 = V1.getSimpleValueType();
33374   MVT VT2 = V2.getSimpleValueType();
33375   MVT RootVT = Root.getSimpleValueType();
33376   assert(VT1.getSizeInBits() == RootVT.getSizeInBits() &&
33377          VT2.getSizeInBits() == RootVT.getSizeInBits() &&
33378          "Vector size mismatch");
33379 
33380   SDLoc DL(Root);
33381   SDValue Res;
33382 
33383   unsigned NumBaseMaskElts = BaseMask.size();
33384   if (NumBaseMaskElts == 1) {
33385     assert(BaseMask[0] == 0 && "Invalid shuffle index found!");
33386     return DAG.getBitcast(RootVT, V1);
33387   }
33388 
33389   unsigned RootSizeInBits = RootVT.getSizeInBits();
33390   unsigned NumRootElts = RootVT.getVectorNumElements();
33391   unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts;
33392   bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() ||
33393                      (RootVT.isFloatingPoint() && Depth >= 1) ||
33394                      (RootVT.is256BitVector() && !Subtarget.hasAVX2());
33395 
33396   // Don't combine if we are a AVX512/EVEX target and the mask element size
33397   // is different from the root element size - this would prevent writemasks
33398   // from being reused.
33399   // TODO - this currently prevents all lane shuffles from occurring.
33400   // TODO - check for writemasks usage instead of always preventing combining.
33401   // TODO - attempt to narrow Mask back to writemask size.
33402   bool IsEVEXShuffle =
33403       RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128);
33404 
33405   // Attempt to match a subvector broadcast.
33406   // shuffle(insert_subvector(undef, sub, 0), undef, 0, 0, 0, 0)
33407   if (UnaryShuffle &&
33408       (BaseMaskEltSizeInBits == 128 || BaseMaskEltSizeInBits == 256)) {
33409     SmallVector<int, 64> BroadcastMask(NumBaseMaskElts, 0);
33410     if (isTargetShuffleEquivalent(BaseMask, BroadcastMask)) {
33411       SDValue Src = Inputs[0];
33412       if (Src.getOpcode() == ISD::INSERT_SUBVECTOR &&
33413           Src.getOperand(0).isUndef() &&
33414           Src.getOperand(1).getValueSizeInBits() == BaseMaskEltSizeInBits &&
33415           MayFoldLoad(Src.getOperand(1)) && isNullConstant(Src.getOperand(2))) {
33416         return DAG.getBitcast(RootVT, DAG.getNode(X86ISD::SUBV_BROADCAST, DL,
33417                                                   Src.getValueType(),
33418                                                   Src.getOperand(1)));
33419       }
33420     }
33421   }
33422 
33423   // TODO - handle 128/256-bit lane shuffles of 512-bit vectors.
33424 
33425   // Handle 128-bit lane shuffles of 256-bit vectors.
33426   // If we have AVX2, prefer to use VPERMQ/VPERMPD for unary shuffles unless
33427   // we need to use the zeroing feature.
33428   // TODO - this should support binary shuffles.
33429   if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 &&
33430       !(Subtarget.hasAVX2() && BaseMask[0] >= -1 && BaseMask[1] >= -1) &&
33431       !isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) {
33432     if (Depth == 0 && Root.getOpcode() == X86ISD::VPERM2X128)
33433       return SDValue(); // Nothing to do!
33434     MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64);
33435     unsigned PermMask = 0;
33436     PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0);
33437     PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4);
33438 
33439     Res = DAG.getBitcast(ShuffleVT, V1);
33440     Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res,
33441                       DAG.getUNDEF(ShuffleVT),
33442                       DAG.getTargetConstant(PermMask, DL, MVT::i8));
33443     return DAG.getBitcast(RootVT, Res);
33444   }
33445 
33446   // For masks that have been widened to 128-bit elements or more,
33447   // narrow back down to 64-bit elements.
33448   SmallVector<int, 64> Mask;
33449   if (BaseMaskEltSizeInBits > 64) {
33450     assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size");
33451     int MaskScale = BaseMaskEltSizeInBits / 64;
33452     scaleShuffleMask<int>(MaskScale, BaseMask, Mask);
33453   } else {
33454     Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end());
33455   }
33456 
33457   unsigned NumMaskElts = Mask.size();
33458   unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts;
33459 
33460   // Determine the effective mask value type.
33461   FloatDomain &= (32 <= MaskEltSizeInBits);
33462   MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits)
33463                            : MVT::getIntegerVT(MaskEltSizeInBits);
33464   MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts);
33465 
33466   // Only allow legal mask types.
33467   if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT))
33468     return SDValue();
33469 
33470   // Attempt to match the mask against known shuffle patterns.
33471   MVT ShuffleSrcVT, ShuffleVT;
33472   unsigned Shuffle, PermuteImm;
33473 
33474   // Which shuffle domains are permitted?
33475   // Permit domain crossing at higher combine depths.
33476   // TODO: Should we indicate which domain is preferred if both are allowed?
33477   bool AllowFloatDomain = FloatDomain || (Depth >= 3);
33478   bool AllowIntDomain = (!FloatDomain || (Depth >= 3)) && Subtarget.hasSSE2() &&
33479                         (!MaskVT.is256BitVector() || Subtarget.hasAVX2());
33480 
33481   // Determine zeroable mask elements.
33482   APInt KnownUndef, KnownZero;
33483   resolveZeroablesFromTargetShuffle(Mask, KnownUndef, KnownZero);
33484   APInt Zeroable = KnownUndef | KnownZero;
33485 
33486   if (UnaryShuffle) {
33487     // If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load
33488     // directly if we don't shuffle the lower element and we shuffle the upper
33489     // (zero) elements within themselves.
33490     if (V1.getOpcode() == X86ISD::VZEXT_LOAD &&
33491         (cast<MemIntrinsicSDNode>(V1)->getMemoryVT().getScalarSizeInBits() %
33492          MaskEltSizeInBits) == 0) {
33493       unsigned Scale =
33494           cast<MemIntrinsicSDNode>(V1)->getMemoryVT().getScalarSizeInBits() /
33495           MaskEltSizeInBits;
33496       ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale);
33497       if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) &&
33498           isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) {
33499         return DAG.getBitcast(RootVT, V1);
33500       }
33501     }
33502 
33503     // Attempt to match against broadcast-from-vector.
33504     // Limit AVX1 to cases where we're loading+broadcasting a scalar element.
33505     if ((Subtarget.hasAVX2() || (Subtarget.hasAVX() && 32 <= MaskEltSizeInBits))
33506         && (!IsEVEXShuffle || NumRootElts == NumMaskElts)) {
33507       SmallVector<int, 64> BroadcastMask(NumMaskElts, 0);
33508       if (isTargetShuffleEquivalent(Mask, BroadcastMask)) {
33509         if (V1.getValueType() == MaskVT &&
33510             V1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
33511             MayFoldLoad(V1.getOperand(0))) {
33512           if (Depth == 0 && Root.getOpcode() == X86ISD::VBROADCAST)
33513             return SDValue(); // Nothing to do!
33514           Res = V1.getOperand(0);
33515           Res = DAG.getNode(X86ISD::VBROADCAST, DL, MaskVT, Res);
33516           return DAG.getBitcast(RootVT, Res);
33517         }
33518         if (Subtarget.hasAVX2()) {
33519           if (Depth == 0 && Root.getOpcode() == X86ISD::VBROADCAST)
33520             return SDValue(); // Nothing to do!
33521           Res = DAG.getBitcast(MaskVT, V1);
33522           Res = DAG.getNode(X86ISD::VBROADCAST, DL, MaskVT, Res);
33523           return DAG.getBitcast(RootVT, Res);
33524         }
33525       }
33526     }
33527 
33528     SDValue NewV1 = V1; // Save operand in case early exit happens.
33529     if (matchUnaryShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, NewV1,
33530                           DL, DAG, Subtarget, Shuffle, ShuffleSrcVT,
33531                           ShuffleVT) &&
33532         (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
33533       if (Depth == 0 && Root.getOpcode() == Shuffle)
33534         return SDValue(); // Nothing to do!
33535       Res = DAG.getBitcast(ShuffleSrcVT, NewV1);
33536       Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res);
33537       return DAG.getBitcast(RootVT, Res);
33538     }
33539 
33540     if (matchUnaryPermuteShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain,
33541                                  AllowIntDomain, Subtarget, Shuffle, ShuffleVT,
33542                                  PermuteImm) &&
33543         (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
33544       if (Depth == 0 && Root.getOpcode() == Shuffle)
33545         return SDValue(); // Nothing to do!
33546       Res = DAG.getBitcast(ShuffleVT, V1);
33547       Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res,
33548                         DAG.getTargetConstant(PermuteImm, DL, MVT::i8));
33549       return DAG.getBitcast(RootVT, Res);
33550     }
33551   }
33552 
33553   SDValue NewV1 = V1; // Save operands in case early exit happens.
33554   SDValue NewV2 = V2;
33555   if (matchBinaryShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, NewV1,
33556                          NewV2, DL, DAG, Subtarget, Shuffle, ShuffleSrcVT,
33557                          ShuffleVT, UnaryShuffle) &&
33558       (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
33559     if (Depth == 0 && Root.getOpcode() == Shuffle)
33560       return SDValue(); // Nothing to do!
33561     NewV1 = DAG.getBitcast(ShuffleSrcVT, NewV1);
33562     NewV2 = DAG.getBitcast(ShuffleSrcVT, NewV2);
33563     Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2);
33564     return DAG.getBitcast(RootVT, Res);
33565   }
33566 
33567   NewV1 = V1; // Save operands in case early exit happens.
33568   NewV2 = V2;
33569   if (matchBinaryPermuteShuffle(
33570           MaskVT, Mask, Zeroable, AllowFloatDomain, AllowIntDomain, NewV1,
33571           NewV2, DL, DAG, Subtarget, Shuffle, ShuffleVT, PermuteImm) &&
33572       (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
33573     if (Depth == 0 && Root.getOpcode() == Shuffle)
33574       return SDValue(); // Nothing to do!
33575     NewV1 = DAG.getBitcast(ShuffleVT, NewV1);
33576     NewV2 = DAG.getBitcast(ShuffleVT, NewV2);
33577     Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2,
33578                       DAG.getTargetConstant(PermuteImm, DL, MVT::i8));
33579     return DAG.getBitcast(RootVT, Res);
33580   }
33581 
33582   // Typically from here on, we need an integer version of MaskVT.
33583   MVT IntMaskVT = MVT::getIntegerVT(MaskEltSizeInBits);
33584   IntMaskVT = MVT::getVectorVT(IntMaskVT, NumMaskElts);
33585 
33586   // Annoyingly, SSE4A instructions don't map into the above match helpers.
33587   if (Subtarget.hasSSE4A() && AllowIntDomain && RootSizeInBits == 128) {
33588     uint64_t BitLen, BitIdx;
33589     if (matchShuffleAsEXTRQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx,
33590                             Zeroable)) {
33591       if (Depth == 0 && Root.getOpcode() == X86ISD::EXTRQI)
33592         return SDValue(); // Nothing to do!
33593       V1 = DAG.getBitcast(IntMaskVT, V1);
33594       Res = DAG.getNode(X86ISD::EXTRQI, DL, IntMaskVT, V1,
33595                         DAG.getTargetConstant(BitLen, DL, MVT::i8),
33596                         DAG.getTargetConstant(BitIdx, DL, MVT::i8));
33597       return DAG.getBitcast(RootVT, Res);
33598     }
33599 
33600     if (matchShuffleAsINSERTQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx)) {
33601       if (Depth == 0 && Root.getOpcode() == X86ISD::INSERTQI)
33602         return SDValue(); // Nothing to do!
33603       V1 = DAG.getBitcast(IntMaskVT, V1);
33604       V2 = DAG.getBitcast(IntMaskVT, V2);
33605       Res = DAG.getNode(X86ISD::INSERTQI, DL, IntMaskVT, V1, V2,
33606                         DAG.getTargetConstant(BitLen, DL, MVT::i8),
33607                         DAG.getTargetConstant(BitIdx, DL, MVT::i8));
33608       return DAG.getBitcast(RootVT, Res);
33609     }
33610   }
33611 
33612   // Don't try to re-form single instruction chains under any circumstances now
33613   // that we've done encoding canonicalization for them.
33614   if (Depth < 1)
33615     return SDValue();
33616 
33617   // Depth threshold above which we can efficiently use variable mask shuffles.
33618   int VariableShuffleDepth = Subtarget.hasFastVariableShuffle() ? 1 : 2;
33619   AllowVariableMask &= (Depth >= VariableShuffleDepth) || HasVariableMask;
33620 
33621   bool MaskContainsZeros =
33622       any_of(Mask, [](int M) { return M == SM_SentinelZero; });
33623 
33624   if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) {
33625     // If we have a single input lane-crossing shuffle then lower to VPERMV.
33626     if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
33627         ((Subtarget.hasAVX2() &&
33628           (MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
33629          (Subtarget.hasAVX512() &&
33630           (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
33631            MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
33632          (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
33633          (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
33634          (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
33635          (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
33636       SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
33637       Res = DAG.getBitcast(MaskVT, V1);
33638       Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res);
33639       return DAG.getBitcast(RootVT, Res);
33640     }
33641 
33642     // Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero
33643     // vector as the second source.
33644     if (UnaryShuffle && AllowVariableMask &&
33645         ((Subtarget.hasAVX512() &&
33646           (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
33647            MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
33648          (Subtarget.hasVLX() &&
33649           (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
33650            MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
33651          (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
33652          (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
33653          (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
33654          (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
33655       // Adjust shuffle mask - replace SM_SentinelZero with second source index.
33656       for (unsigned i = 0; i != NumMaskElts; ++i)
33657         if (Mask[i] == SM_SentinelZero)
33658           Mask[i] = NumMaskElts + i;
33659 
33660       SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
33661       Res = DAG.getBitcast(MaskVT, V1);
33662       SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL);
33663       Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero);
33664       return DAG.getBitcast(RootVT, Res);
33665     }
33666 
33667     // If that failed and either input is extracted then try to combine as a
33668     // shuffle with the larger type.
33669     if (SDValue WideShuffle = combineX86ShuffleChainWithExtract(
33670             Inputs, Root, BaseMask, Depth, HasVariableMask, AllowVariableMask,
33671             DAG, Subtarget))
33672       return WideShuffle;
33673 
33674     // If we have a dual input lane-crossing shuffle then lower to VPERMV3.
33675     if (AllowVariableMask && !MaskContainsZeros &&
33676         ((Subtarget.hasAVX512() &&
33677           (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
33678            MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
33679          (Subtarget.hasVLX() &&
33680           (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
33681            MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
33682          (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
33683          (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
33684          (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
33685          (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
33686       SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
33687       V1 = DAG.getBitcast(MaskVT, V1);
33688       V2 = DAG.getBitcast(MaskVT, V2);
33689       Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
33690       return DAG.getBitcast(RootVT, Res);
33691     }
33692     return SDValue();
33693   }
33694 
33695   // See if we can combine a single input shuffle with zeros to a bit-mask,
33696   // which is much simpler than any shuffle.
33697   if (UnaryShuffle && MaskContainsZeros && AllowVariableMask &&
33698       isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) &&
33699       DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) {
33700     APInt Zero = APInt::getNullValue(MaskEltSizeInBits);
33701     APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits);
33702     APInt UndefElts(NumMaskElts, 0);
33703     SmallVector<APInt, 64> EltBits(NumMaskElts, Zero);
33704     for (unsigned i = 0; i != NumMaskElts; ++i) {
33705       int M = Mask[i];
33706       if (M == SM_SentinelUndef) {
33707         UndefElts.setBit(i);
33708         continue;
33709       }
33710       if (M == SM_SentinelZero)
33711         continue;
33712       EltBits[i] = AllOnes;
33713     }
33714     SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL);
33715     Res = DAG.getBitcast(MaskVT, V1);
33716     unsigned AndOpcode =
33717         FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND);
33718     Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask);
33719     return DAG.getBitcast(RootVT, Res);
33720   }
33721 
33722   // If we have a single input shuffle with different shuffle patterns in the
33723   // the 128-bit lanes use the variable mask to VPERMILPS.
33724   // TODO Combine other mask types at higher depths.
33725   if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
33726       ((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) ||
33727        (MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) {
33728     SmallVector<SDValue, 16> VPermIdx;
33729     for (int M : Mask) {
33730       SDValue Idx =
33731           M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32);
33732       VPermIdx.push_back(Idx);
33733     }
33734     SDValue VPermMask = DAG.getBuildVector(IntMaskVT, DL, VPermIdx);
33735     Res = DAG.getBitcast(MaskVT, V1);
33736     Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask);
33737     return DAG.getBitcast(RootVT, Res);
33738   }
33739 
33740   // With XOP, binary shuffles of 128/256-bit floating point vectors can combine
33741   // to VPERMIL2PD/VPERMIL2PS.
33742   if (AllowVariableMask && Subtarget.hasXOP() &&
33743       (MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 ||
33744        MaskVT == MVT::v8f32)) {
33745     // VPERMIL2 Operation.
33746     // Bits[3] - Match Bit.
33747     // Bits[2:1] - (Per Lane) PD Shuffle Mask.
33748     // Bits[2:0] - (Per Lane) PS Shuffle Mask.
33749     unsigned NumLanes = MaskVT.getSizeInBits() / 128;
33750     unsigned NumEltsPerLane = NumMaskElts / NumLanes;
33751     SmallVector<int, 8> VPerm2Idx;
33752     unsigned M2ZImm = 0;
33753     for (int M : Mask) {
33754       if (M == SM_SentinelUndef) {
33755         VPerm2Idx.push_back(-1);
33756         continue;
33757       }
33758       if (M == SM_SentinelZero) {
33759         M2ZImm = 2;
33760         VPerm2Idx.push_back(8);
33761         continue;
33762       }
33763       int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane);
33764       Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index);
33765       VPerm2Idx.push_back(Index);
33766     }
33767     V1 = DAG.getBitcast(MaskVT, V1);
33768     V2 = DAG.getBitcast(MaskVT, V2);
33769     SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, IntMaskVT, DAG, DL, true);
33770     Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp,
33771                       DAG.getTargetConstant(M2ZImm, DL, MVT::i8));
33772     return DAG.getBitcast(RootVT, Res);
33773   }
33774 
33775   // If we have 3 or more shuffle instructions or a chain involving a variable
33776   // mask, we can replace them with a single PSHUFB instruction profitably.
33777   // Intel's manuals suggest only using PSHUFB if doing so replacing 5
33778   // instructions, but in practice PSHUFB tends to be *very* fast so we're
33779   // more aggressive.
33780   if (UnaryShuffle && AllowVariableMask &&
33781       ((RootVT.is128BitVector() && Subtarget.hasSSSE3()) ||
33782        (RootVT.is256BitVector() && Subtarget.hasAVX2()) ||
33783        (RootVT.is512BitVector() && Subtarget.hasBWI()))) {
33784     SmallVector<SDValue, 16> PSHUFBMask;
33785     int NumBytes = RootVT.getSizeInBits() / 8;
33786     int Ratio = NumBytes / NumMaskElts;
33787     for (int i = 0; i < NumBytes; ++i) {
33788       int M = Mask[i / Ratio];
33789       if (M == SM_SentinelUndef) {
33790         PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
33791         continue;
33792       }
33793       if (M == SM_SentinelZero) {
33794         PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8));
33795         continue;
33796       }
33797       M = Ratio * M + i % Ratio;
33798       assert((M / 16) == (i / 16) && "Lane crossing detected");
33799       PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
33800     }
33801     MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
33802     Res = DAG.getBitcast(ByteVT, V1);
33803     SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask);
33804     Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp);
33805     return DAG.getBitcast(RootVT, Res);
33806   }
33807 
33808   // With XOP, if we have a 128-bit binary input shuffle we can always combine
33809   // to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never
33810   // slower than PSHUFB on targets that support both.
33811   if (AllowVariableMask && RootVT.is128BitVector() && Subtarget.hasXOP()) {
33812     // VPPERM Mask Operation
33813     // Bits[4:0] - Byte Index (0 - 31)
33814     // Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO)
33815     SmallVector<SDValue, 16> VPPERMMask;
33816     int NumBytes = 16;
33817     int Ratio = NumBytes / NumMaskElts;
33818     for (int i = 0; i < NumBytes; ++i) {
33819       int M = Mask[i / Ratio];
33820       if (M == SM_SentinelUndef) {
33821         VPPERMMask.push_back(DAG.getUNDEF(MVT::i8));
33822         continue;
33823       }
33824       if (M == SM_SentinelZero) {
33825         VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8));
33826         continue;
33827       }
33828       M = Ratio * M + i % Ratio;
33829       VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8));
33830     }
33831     MVT ByteVT = MVT::v16i8;
33832     V1 = DAG.getBitcast(ByteVT, V1);
33833     V2 = DAG.getBitcast(ByteVT, V2);
33834     SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask);
33835     Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp);
33836     return DAG.getBitcast(RootVT, Res);
33837   }
33838 
33839   // If that failed and either input is extracted then try to combine as a
33840   // shuffle with the larger type.
33841   if (SDValue WideShuffle = combineX86ShuffleChainWithExtract(
33842           Inputs, Root, BaseMask, Depth, HasVariableMask, AllowVariableMask,
33843           DAG, Subtarget))
33844     return WideShuffle;
33845 
33846   // If we have a dual input shuffle then lower to VPERMV3.
33847   if (!UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
33848       ((Subtarget.hasAVX512() &&
33849         (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
33850          MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
33851        (Subtarget.hasVLX() &&
33852         (MaskVT == MVT::v2f64 || MaskVT == MVT::v2i64 || MaskVT == MVT::v4f64 ||
33853          MaskVT == MVT::v4i64 || MaskVT == MVT::v4f32 || MaskVT == MVT::v4i32 ||
33854          MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
33855        (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
33856        (Subtarget.hasBWI() && Subtarget.hasVLX() &&
33857         (MaskVT == MVT::v8i16 || MaskVT == MVT::v16i16)) ||
33858        (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
33859        (Subtarget.hasVBMI() && Subtarget.hasVLX() &&
33860         (MaskVT == MVT::v16i8 || MaskVT == MVT::v32i8)))) {
33861     SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
33862     V1 = DAG.getBitcast(MaskVT, V1);
33863     V2 = DAG.getBitcast(MaskVT, V2);
33864     Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
33865     return DAG.getBitcast(RootVT, Res);
33866   }
33867 
33868   // Failed to find any combines.
33869   return SDValue();
33870 }
33871 
33872 // Combine an arbitrary chain of shuffles + extract_subvectors into a single
33873 // instruction if possible.
33874 //
33875 // Wrapper for combineX86ShuffleChain that extends the shuffle mask to a larger
33876 // type size to attempt to combine:
33877 // shuffle(extract_subvector(x,c1),extract_subvector(y,c2),m1)
33878 // -->
33879 // extract_subvector(shuffle(x,y,m2),0)
33880 static SDValue combineX86ShuffleChainWithExtract(
33881     ArrayRef<SDValue> Inputs, SDValue Root, ArrayRef<int> BaseMask, int Depth,
33882     bool HasVariableMask, bool AllowVariableMask, SelectionDAG &DAG,
33883     const X86Subtarget &Subtarget) {
33884   unsigned NumMaskElts = BaseMask.size();
33885   unsigned NumInputs = Inputs.size();
33886   if (NumInputs == 0)
33887     return SDValue();
33888 
33889   SmallVector<SDValue, 4> WideInputs(Inputs.begin(), Inputs.end());
33890   SmallVector<unsigned, 4> Offsets(NumInputs, 0);
33891 
33892   // Peek through subvectors.
33893   // TODO: Support inter-mixed EXTRACT_SUBVECTORs + BITCASTs?
33894   unsigned WideSizeInBits = WideInputs[0].getValueSizeInBits();
33895   for (unsigned i = 0; i != NumInputs; ++i) {
33896     SDValue &Src = WideInputs[i];
33897     unsigned &Offset = Offsets[i];
33898     Src = peekThroughBitcasts(Src);
33899     EVT BaseVT = Src.getValueType();
33900     while (Src.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
33901            isa<ConstantSDNode>(Src.getOperand(1))) {
33902       Offset += Src.getConstantOperandVal(1);
33903       Src = Src.getOperand(0);
33904     }
33905     WideSizeInBits = std::max(WideSizeInBits,
33906                               (unsigned)Src.getValueSizeInBits());
33907     assert((Offset % BaseVT.getVectorNumElements()) == 0 &&
33908            "Unexpected subvector extraction");
33909     Offset /= BaseVT.getVectorNumElements();
33910     Offset *= NumMaskElts;
33911   }
33912 
33913   // Bail if we're always extracting from the lowest subvectors,
33914   // combineX86ShuffleChain should match this for the current width.
33915   if (llvm::all_of(Offsets, [](unsigned Offset) { return Offset == 0; }))
33916     return SDValue();
33917 
33918   EVT RootVT = Root.getValueType();
33919   unsigned RootSizeInBits = RootVT.getSizeInBits();
33920   unsigned Scale = WideSizeInBits / RootSizeInBits;
33921   assert((WideSizeInBits % RootSizeInBits) == 0 &&
33922          "Unexpected subvector extraction");
33923 
33924   // If the src vector types aren't the same, see if we can extend
33925   // them to match each other.
33926   // TODO: Support different scalar types?
33927   EVT WideSVT = WideInputs[0].getValueType().getScalarType();
33928   if (llvm::any_of(WideInputs, [&WideSVT, &DAG](SDValue Op) {
33929         return !DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()) ||
33930                Op.getValueType().getScalarType() != WideSVT;
33931       }))
33932     return SDValue();
33933 
33934   for (SDValue &NewInput : WideInputs) {
33935     assert((WideSizeInBits % NewInput.getValueSizeInBits()) == 0 &&
33936            "Shuffle vector size mismatch");
33937     if (WideSizeInBits > NewInput.getValueSizeInBits())
33938       NewInput = widenSubVector(NewInput, false, Subtarget, DAG,
33939                                 SDLoc(NewInput), WideSizeInBits);
33940     assert(WideSizeInBits == NewInput.getValueSizeInBits() &&
33941            "Unexpected subvector extraction");
33942   }
33943 
33944   // Create new mask for larger type.
33945   for (unsigned i = 1; i != NumInputs; ++i)
33946     Offsets[i] += i * Scale * NumMaskElts;
33947 
33948   SmallVector<int, 64> WideMask(BaseMask.begin(), BaseMask.end());
33949   for (int &M : WideMask) {
33950     if (M < 0)
33951       continue;
33952     M = (M % NumMaskElts) + Offsets[M / NumMaskElts];
33953   }
33954   WideMask.append((Scale - 1) * NumMaskElts, SM_SentinelUndef);
33955 
33956   // Remove unused/repeated shuffle source ops.
33957   resolveTargetShuffleInputsAndMask(WideInputs, WideMask);
33958   assert(!WideInputs.empty() && "Shuffle with no inputs detected");
33959 
33960   if (WideInputs.size() > 2)
33961     return SDValue();
33962 
33963   // Increase depth for every upper subvector we've peeked through.
33964   Depth += count_if(Offsets, [](unsigned Offset) { return Offset > 0; });
33965 
33966   // Attempt to combine wider chain.
33967   // TODO: Can we use a better Root?
33968   SDValue WideRoot = WideInputs[0];
33969   if (SDValue WideShuffle = combineX86ShuffleChain(
33970           WideInputs, WideRoot, WideMask, Depth, HasVariableMask,
33971           AllowVariableMask, DAG, Subtarget)) {
33972     WideShuffle =
33973         extractSubVector(WideShuffle, 0, DAG, SDLoc(Root), RootSizeInBits);
33974     return DAG.getBitcast(RootVT, WideShuffle);
33975   }
33976   return SDValue();
33977 }
33978 
33979 // Attempt to constant fold all of the constant source ops.
33980 // Returns true if the entire shuffle is folded to a constant.
33981 // TODO: Extend this to merge multiple constant Ops and update the mask.
33982 static SDValue combineX86ShufflesConstants(ArrayRef<SDValue> Ops,
33983                                            ArrayRef<int> Mask, SDValue Root,
33984                                            bool HasVariableMask,
33985                                            SelectionDAG &DAG,
33986                                            const X86Subtarget &Subtarget) {
33987   MVT VT = Root.getSimpleValueType();
33988 
33989   unsigned SizeInBits = VT.getSizeInBits();
33990   unsigned NumMaskElts = Mask.size();
33991   unsigned MaskSizeInBits = SizeInBits / NumMaskElts;
33992   unsigned NumOps = Ops.size();
33993 
33994   // Extract constant bits from each source op.
33995   bool OneUseConstantOp = false;
33996   SmallVector<APInt, 16> UndefEltsOps(NumOps);
33997   SmallVector<SmallVector<APInt, 16>, 16> RawBitsOps(NumOps);
33998   for (unsigned i = 0; i != NumOps; ++i) {
33999     SDValue SrcOp = Ops[i];
34000     OneUseConstantOp |= SrcOp.hasOneUse();
34001     if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i],
34002                                        RawBitsOps[i]))
34003       return SDValue();
34004   }
34005 
34006   // Only fold if at least one of the constants is only used once or
34007   // the combined shuffle has included a variable mask shuffle, this
34008   // is to avoid constant pool bloat.
34009   if (!OneUseConstantOp && !HasVariableMask)
34010     return SDValue();
34011 
34012   // Shuffle the constant bits according to the mask.
34013   SDLoc DL(Root);
34014   APInt UndefElts(NumMaskElts, 0);
34015   APInt ZeroElts(NumMaskElts, 0);
34016   APInt ConstantElts(NumMaskElts, 0);
34017   SmallVector<APInt, 8> ConstantBitData(NumMaskElts,
34018                                         APInt::getNullValue(MaskSizeInBits));
34019   for (unsigned i = 0; i != NumMaskElts; ++i) {
34020     int M = Mask[i];
34021     if (M == SM_SentinelUndef) {
34022       UndefElts.setBit(i);
34023       continue;
34024     } else if (M == SM_SentinelZero) {
34025       ZeroElts.setBit(i);
34026       continue;
34027     }
34028     assert(0 <= M && M < (int)(NumMaskElts * NumOps));
34029 
34030     unsigned SrcOpIdx = (unsigned)M / NumMaskElts;
34031     unsigned SrcMaskIdx = (unsigned)M % NumMaskElts;
34032 
34033     auto &SrcUndefElts = UndefEltsOps[SrcOpIdx];
34034     if (SrcUndefElts[SrcMaskIdx]) {
34035       UndefElts.setBit(i);
34036       continue;
34037     }
34038 
34039     auto &SrcEltBits = RawBitsOps[SrcOpIdx];
34040     APInt &Bits = SrcEltBits[SrcMaskIdx];
34041     if (!Bits) {
34042       ZeroElts.setBit(i);
34043       continue;
34044     }
34045 
34046     ConstantElts.setBit(i);
34047     ConstantBitData[i] = Bits;
34048   }
34049   assert((UndefElts | ZeroElts | ConstantElts).isAllOnesValue());
34050 
34051   // Attempt to create a zero vector.
34052   if ((UndefElts | ZeroElts).isAllOnesValue())
34053     return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG, DL);
34054 
34055   // Create the constant data.
34056   MVT MaskSVT;
34057   if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64))
34058     MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits);
34059   else
34060     MaskSVT = MVT::getIntegerVT(MaskSizeInBits);
34061 
34062   MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts);
34063   if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT))
34064     return SDValue();
34065 
34066   SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL);
34067   return DAG.getBitcast(VT, CstOp);
34068 }
34069 
34070 /// Fully generic combining of x86 shuffle instructions.
34071 ///
34072 /// This should be the last combine run over the x86 shuffle instructions. Once
34073 /// they have been fully optimized, this will recursively consider all chains
34074 /// of single-use shuffle instructions, build a generic model of the cumulative
34075 /// shuffle operation, and check for simpler instructions which implement this
34076 /// operation. We use this primarily for two purposes:
34077 ///
34078 /// 1) Collapse generic shuffles to specialized single instructions when
34079 ///    equivalent. In most cases, this is just an encoding size win, but
34080 ///    sometimes we will collapse multiple generic shuffles into a single
34081 ///    special-purpose shuffle.
34082 /// 2) Look for sequences of shuffle instructions with 3 or more total
34083 ///    instructions, and replace them with the slightly more expensive SSSE3
34084 ///    PSHUFB instruction if available. We do this as the last combining step
34085 ///    to ensure we avoid using PSHUFB if we can implement the shuffle with
34086 ///    a suitable short sequence of other instructions. The PSHUFB will either
34087 ///    use a register or have to read from memory and so is slightly (but only
34088 ///    slightly) more expensive than the other shuffle instructions.
34089 ///
34090 /// Because this is inherently a quadratic operation (for each shuffle in
34091 /// a chain, we recurse up the chain), the depth is limited to 8 instructions.
34092 /// This should never be an issue in practice as the shuffle lowering doesn't
34093 /// produce sequences of more than 8 instructions.
34094 ///
34095 /// FIXME: We will currently miss some cases where the redundant shuffling
34096 /// would simplify under the threshold for PSHUFB formation because of
34097 /// combine-ordering. To fix this, we should do the redundant instruction
34098 /// combining in this recursive walk.
34099 static SDValue combineX86ShufflesRecursively(
34100     ArrayRef<SDValue> SrcOps, int SrcOpIndex, SDValue Root,
34101     ArrayRef<int> RootMask, ArrayRef<const SDNode *> SrcNodes, unsigned Depth,
34102     bool HasVariableMask, bool AllowVariableMask, SelectionDAG &DAG,
34103     const X86Subtarget &Subtarget) {
34104   assert(RootMask.size() > 0 &&
34105          (RootMask.size() > 1 || (RootMask[0] == 0 && SrcOpIndex == 0)) &&
34106          "Illegal shuffle root mask");
34107 
34108   // Bound the depth of our recursive combine because this is ultimately
34109   // quadratic in nature.
34110   const unsigned MaxRecursionDepth = 8;
34111   if (Depth >= MaxRecursionDepth)
34112     return SDValue();
34113 
34114   // Directly rip through bitcasts to find the underlying operand.
34115   SDValue Op = SrcOps[SrcOpIndex];
34116   Op = peekThroughOneUseBitcasts(Op);
34117 
34118   MVT VT = Op.getSimpleValueType();
34119   if (!VT.isVector())
34120     return SDValue(); // Bail if we hit a non-vector.
34121 
34122   assert(Root.getSimpleValueType().isVector() &&
34123          "Shuffles operate on vector types!");
34124   assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
34125          "Can only combine shuffles of the same vector register size.");
34126 
34127   // Extract target shuffle mask and resolve sentinels and inputs.
34128   // TODO - determine Op's demanded elts from RootMask.
34129   SmallVector<int, 64> OpMask;
34130   SmallVector<SDValue, 2> OpInputs;
34131   APInt OpUndef, OpZero;
34132   APInt OpDemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
34133   bool IsOpVariableMask = isTargetShuffleVariableMask(Op.getOpcode());
34134   if (!getTargetShuffleInputs(Op, OpDemandedElts, OpInputs, OpMask, OpUndef,
34135                               OpZero, DAG, Depth, false))
34136     return SDValue();
34137 
34138   SmallVector<int, 64> Mask;
34139   SmallVector<SDValue, 16> Ops;
34140 
34141   // We don't need to merge masks if the root is empty.
34142   bool EmptyRoot = (Depth == 0) && (RootMask.size() == 1);
34143   if (EmptyRoot) {
34144     // Only resolve zeros if it will remove an input, otherwise we might end
34145     // up in an infinite loop.
34146     bool ResolveKnownZeros = true;
34147     if (!OpZero.isNullValue()) {
34148       APInt UsedInputs = APInt::getNullValue(OpInputs.size());
34149       for (int i = 0, e = OpMask.size(); i != e; ++i) {
34150         int M = OpMask[i];
34151         if (OpUndef[i] || OpZero[i] || isUndefOrZero(M))
34152           continue;
34153         UsedInputs.setBit(M / OpMask.size());
34154         if (UsedInputs.isAllOnesValue()) {
34155           ResolveKnownZeros = false;
34156           break;
34157         }
34158       }
34159     }
34160     resolveTargetShuffleFromZeroables(OpMask, OpUndef, OpZero,
34161                                       ResolveKnownZeros);
34162 
34163     Mask = OpMask;
34164     Ops.append(OpInputs.begin(), OpInputs.end());
34165   } else {
34166     resolveTargetShuffleFromZeroables(OpMask, OpUndef, OpZero);
34167 
34168     // Add the inputs to the Ops list, avoiding duplicates.
34169     Ops.append(SrcOps.begin(), SrcOps.end());
34170 
34171     auto AddOp = [&Ops](SDValue Input, int InsertionPoint) -> int {
34172       // Attempt to find an existing match.
34173       SDValue InputBC = peekThroughBitcasts(Input);
34174       for (int i = 0, e = Ops.size(); i < e; ++i)
34175         if (InputBC == peekThroughBitcasts(Ops[i]))
34176           return i;
34177       // Match failed - should we replace an existing Op?
34178       if (InsertionPoint >= 0) {
34179         Ops[InsertionPoint] = Input;
34180         return InsertionPoint;
34181       }
34182       // Add to the end of the Ops list.
34183       Ops.push_back(Input);
34184       return Ops.size() - 1;
34185     };
34186 
34187     SmallVector<int, 2> OpInputIdx;
34188     for (SDValue OpInput : OpInputs)
34189       OpInputIdx.push_back(
34190           AddOp(OpInput, OpInputIdx.empty() ? SrcOpIndex : -1));
34191 
34192     assert(((RootMask.size() > OpMask.size() &&
34193              RootMask.size() % OpMask.size() == 0) ||
34194             (OpMask.size() > RootMask.size() &&
34195              OpMask.size() % RootMask.size() == 0) ||
34196             OpMask.size() == RootMask.size()) &&
34197            "The smaller number of elements must divide the larger.");
34198 
34199     // This function can be performance-critical, so we rely on the power-of-2
34200     // knowledge that we have about the mask sizes to replace div/rem ops with
34201     // bit-masks and shifts.
34202     assert(isPowerOf2_32(RootMask.size()) &&
34203            "Non-power-of-2 shuffle mask sizes");
34204     assert(isPowerOf2_32(OpMask.size()) && "Non-power-of-2 shuffle mask sizes");
34205     unsigned RootMaskSizeLog2 = countTrailingZeros(RootMask.size());
34206     unsigned OpMaskSizeLog2 = countTrailingZeros(OpMask.size());
34207 
34208     unsigned MaskWidth = std::max<unsigned>(OpMask.size(), RootMask.size());
34209     unsigned RootRatio =
34210         std::max<unsigned>(1, OpMask.size() >> RootMaskSizeLog2);
34211     unsigned OpRatio = std::max<unsigned>(1, RootMask.size() >> OpMaskSizeLog2);
34212     assert((RootRatio == 1 || OpRatio == 1) &&
34213            "Must not have a ratio for both incoming and op masks!");
34214 
34215     assert(isPowerOf2_32(MaskWidth) && "Non-power-of-2 shuffle mask sizes");
34216     assert(isPowerOf2_32(RootRatio) && "Non-power-of-2 shuffle mask sizes");
34217     assert(isPowerOf2_32(OpRatio) && "Non-power-of-2 shuffle mask sizes");
34218     unsigned RootRatioLog2 = countTrailingZeros(RootRatio);
34219     unsigned OpRatioLog2 = countTrailingZeros(OpRatio);
34220 
34221     Mask.resize(MaskWidth, SM_SentinelUndef);
34222 
34223     // Merge this shuffle operation's mask into our accumulated mask. Note that
34224     // this shuffle's mask will be the first applied to the input, followed by
34225     // the root mask to get us all the way to the root value arrangement. The
34226     // reason for this order is that we are recursing up the operation chain.
34227     for (unsigned i = 0; i < MaskWidth; ++i) {
34228       unsigned RootIdx = i >> RootRatioLog2;
34229       if (RootMask[RootIdx] < 0) {
34230         // This is a zero or undef lane, we're done.
34231         Mask[i] = RootMask[RootIdx];
34232         continue;
34233       }
34234 
34235       unsigned RootMaskedIdx =
34236           RootRatio == 1
34237               ? RootMask[RootIdx]
34238               : (RootMask[RootIdx] << RootRatioLog2) + (i & (RootRatio - 1));
34239 
34240       // Just insert the scaled root mask value if it references an input other
34241       // than the SrcOp we're currently inserting.
34242       if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) ||
34243           (((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) {
34244         Mask[i] = RootMaskedIdx;
34245         continue;
34246       }
34247 
34248       RootMaskedIdx = RootMaskedIdx & (MaskWidth - 1);
34249       unsigned OpIdx = RootMaskedIdx >> OpRatioLog2;
34250       if (OpMask[OpIdx] < 0) {
34251         // The incoming lanes are zero or undef, it doesn't matter which ones we
34252         // are using.
34253         Mask[i] = OpMask[OpIdx];
34254         continue;
34255       }
34256 
34257       // Ok, we have non-zero lanes, map them through to one of the Op's inputs.
34258       unsigned OpMaskedIdx = OpRatio == 1 ? OpMask[OpIdx]
34259                                           : (OpMask[OpIdx] << OpRatioLog2) +
34260                                                 (RootMaskedIdx & (OpRatio - 1));
34261 
34262       OpMaskedIdx = OpMaskedIdx & (MaskWidth - 1);
34263       int InputIdx = OpMask[OpIdx] / (int)OpMask.size();
34264       assert(0 <= OpInputIdx[InputIdx] && "Unknown target shuffle input");
34265       OpMaskedIdx += OpInputIdx[InputIdx] * MaskWidth;
34266 
34267       Mask[i] = OpMaskedIdx;
34268     }
34269   }
34270 
34271   // Remove unused/repeated shuffle source ops.
34272   resolveTargetShuffleInputsAndMask(Ops, Mask);
34273 
34274   // Handle the all undef/zero cases early.
34275   if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; }))
34276     return DAG.getUNDEF(Root.getValueType());
34277 
34278   // TODO - should we handle the mixed zero/undef case as well? Just returning
34279   // a zero mask will lose information on undef elements possibly reducing
34280   // future combine possibilities.
34281   if (all_of(Mask, [](int Idx) { return Idx < 0; }))
34282     return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG,
34283                          SDLoc(Root));
34284 
34285   assert(!Ops.empty() && "Shuffle with no inputs detected");
34286   HasVariableMask |= IsOpVariableMask;
34287 
34288   // Update the list of shuffle nodes that have been combined so far.
34289   SmallVector<const SDNode *, 16> CombinedNodes(SrcNodes.begin(),
34290                                                 SrcNodes.end());
34291   CombinedNodes.push_back(Op.getNode());
34292 
34293   // See if we can recurse into each shuffle source op (if it's a target
34294   // shuffle). The source op should only be generally combined if it either has
34295   // a single use (i.e. current Op) or all its users have already been combined,
34296   // if not then we can still combine but should prevent generation of variable
34297   // shuffles to avoid constant pool bloat.
34298   // Don't recurse if we already have more source ops than we can combine in
34299   // the remaining recursion depth.
34300   if (Ops.size() < (MaxRecursionDepth - Depth)) {
34301     for (int i = 0, e = Ops.size(); i < e; ++i) {
34302       // For empty roots, we need to resolve zeroable elements before combining
34303       // them with other shuffles.
34304       SmallVector<int, 64> ResolvedMask = Mask;
34305       if (EmptyRoot)
34306         resolveTargetShuffleFromZeroables(ResolvedMask, OpUndef, OpZero);
34307       bool AllowVar = false;
34308       if (Ops[i].getNode()->hasOneUse() ||
34309           SDNode::areOnlyUsersOf(CombinedNodes, Ops[i].getNode()))
34310         AllowVar = AllowVariableMask;
34311       if (SDValue Res = combineX86ShufflesRecursively(
34312               Ops, i, Root, ResolvedMask, CombinedNodes, Depth + 1,
34313               HasVariableMask, AllowVar, DAG, Subtarget))
34314         return Res;
34315     }
34316   }
34317 
34318   // Attempt to constant fold all of the constant source ops.
34319   if (SDValue Cst = combineX86ShufflesConstants(
34320           Ops, Mask, Root, HasVariableMask, DAG, Subtarget))
34321     return Cst;
34322 
34323   // We can only combine unary and binary shuffle mask cases.
34324   if (Ops.size() <= 2) {
34325     // Minor canonicalization of the accumulated shuffle mask to make it easier
34326     // to match below. All this does is detect masks with sequential pairs of
34327     // elements, and shrink them to the half-width mask. It does this in a loop
34328     // so it will reduce the size of the mask to the minimal width mask which
34329     // performs an equivalent shuffle.
34330     SmallVector<int, 64> WidenedMask;
34331     while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
34332       Mask = std::move(WidenedMask);
34333     }
34334 
34335     // Canonicalization of binary shuffle masks to improve pattern matching by
34336     // commuting the inputs.
34337     if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) {
34338       ShuffleVectorSDNode::commuteMask(Mask);
34339       std::swap(Ops[0], Ops[1]);
34340     }
34341 
34342     // Finally, try to combine into a single shuffle instruction.
34343     return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask,
34344                                   AllowVariableMask, DAG, Subtarget);
34345   }
34346 
34347   // If that failed and any input is extracted then try to combine as a
34348   // shuffle with the larger type.
34349   return combineX86ShuffleChainWithExtract(Ops, Root, Mask, Depth,
34350                                            HasVariableMask, AllowVariableMask,
34351                                            DAG, Subtarget);
34352 }
34353 
34354 /// Helper entry wrapper to combineX86ShufflesRecursively.
34355 static SDValue combineX86ShufflesRecursively(SDValue Op, SelectionDAG &DAG,
34356                                              const X86Subtarget &Subtarget) {
34357   return combineX86ShufflesRecursively({Op}, 0, Op, {0}, {}, /*Depth*/ 0,
34358                                        /*HasVarMask*/ false,
34359                                        /*AllowVarMask*/ true, DAG, Subtarget);
34360 }
34361 
34362 /// Get the PSHUF-style mask from PSHUF node.
34363 ///
34364 /// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
34365 /// PSHUF-style masks that can be reused with such instructions.
34366 static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
34367   MVT VT = N.getSimpleValueType();
34368   SmallVector<int, 4> Mask;
34369   SmallVector<SDValue, 2> Ops;
34370   bool IsUnary;
34371   bool HaveMask =
34372       getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary);
34373   (void)HaveMask;
34374   assert(HaveMask);
34375 
34376   // If we have more than 128-bits, only the low 128-bits of shuffle mask
34377   // matter. Check that the upper masks are repeats and remove them.
34378   if (VT.getSizeInBits() > 128) {
34379     int LaneElts = 128 / VT.getScalarSizeInBits();
34380 #ifndef NDEBUG
34381     for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
34382       for (int j = 0; j < LaneElts; ++j)
34383         assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
34384                "Mask doesn't repeat in high 128-bit lanes!");
34385 #endif
34386     Mask.resize(LaneElts);
34387   }
34388 
34389   switch (N.getOpcode()) {
34390   case X86ISD::PSHUFD:
34391     return Mask;
34392   case X86ISD::PSHUFLW:
34393     Mask.resize(4);
34394     return Mask;
34395   case X86ISD::PSHUFHW:
34396     Mask.erase(Mask.begin(), Mask.begin() + 4);
34397     for (int &M : Mask)
34398       M -= 4;
34399     return Mask;
34400   default:
34401     llvm_unreachable("No valid shuffle instruction found!");
34402   }
34403 }
34404 
34405 /// Search for a combinable shuffle across a chain ending in pshufd.
34406 ///
34407 /// We walk up the chain and look for a combinable shuffle, skipping over
34408 /// shuffles that we could hoist this shuffle's transformation past without
34409 /// altering anything.
34410 static SDValue
34411 combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
34412                              SelectionDAG &DAG) {
34413   assert(N.getOpcode() == X86ISD::PSHUFD &&
34414          "Called with something other than an x86 128-bit half shuffle!");
34415   SDLoc DL(N);
34416 
34417   // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
34418   // of the shuffles in the chain so that we can form a fresh chain to replace
34419   // this one.
34420   SmallVector<SDValue, 8> Chain;
34421   SDValue V = N.getOperand(0);
34422   for (; V.hasOneUse(); V = V.getOperand(0)) {
34423     switch (V.getOpcode()) {
34424     default:
34425       return SDValue(); // Nothing combined!
34426 
34427     case ISD::BITCAST:
34428       // Skip bitcasts as we always know the type for the target specific
34429       // instructions.
34430       continue;
34431 
34432     case X86ISD::PSHUFD:
34433       // Found another dword shuffle.
34434       break;
34435 
34436     case X86ISD::PSHUFLW:
34437       // Check that the low words (being shuffled) are the identity in the
34438       // dword shuffle, and the high words are self-contained.
34439       if (Mask[0] != 0 || Mask[1] != 1 ||
34440           !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
34441         return SDValue();
34442 
34443       Chain.push_back(V);
34444       continue;
34445 
34446     case X86ISD::PSHUFHW:
34447       // Check that the high words (being shuffled) are the identity in the
34448       // dword shuffle, and the low words are self-contained.
34449       if (Mask[2] != 2 || Mask[3] != 3 ||
34450           !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
34451         return SDValue();
34452 
34453       Chain.push_back(V);
34454       continue;
34455 
34456     case X86ISD::UNPCKL:
34457     case X86ISD::UNPCKH:
34458       // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
34459       // shuffle into a preceding word shuffle.
34460       if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
34461           V.getSimpleValueType().getVectorElementType() != MVT::i16)
34462         return SDValue();
34463 
34464       // Search for a half-shuffle which we can combine with.
34465       unsigned CombineOp =
34466           V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
34467       if (V.getOperand(0) != V.getOperand(1) ||
34468           !V->isOnlyUserOf(V.getOperand(0).getNode()))
34469         return SDValue();
34470       Chain.push_back(V);
34471       V = V.getOperand(0);
34472       do {
34473         switch (V.getOpcode()) {
34474         default:
34475           return SDValue(); // Nothing to combine.
34476 
34477         case X86ISD::PSHUFLW:
34478         case X86ISD::PSHUFHW:
34479           if (V.getOpcode() == CombineOp)
34480             break;
34481 
34482           Chain.push_back(V);
34483 
34484           LLVM_FALLTHROUGH;
34485         case ISD::BITCAST:
34486           V = V.getOperand(0);
34487           continue;
34488         }
34489         break;
34490       } while (V.hasOneUse());
34491       break;
34492     }
34493     // Break out of the loop if we break out of the switch.
34494     break;
34495   }
34496 
34497   if (!V.hasOneUse())
34498     // We fell out of the loop without finding a viable combining instruction.
34499     return SDValue();
34500 
34501   // Merge this node's mask and our incoming mask.
34502   SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
34503   for (int &M : Mask)
34504     M = VMask[M];
34505   V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
34506                   getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
34507 
34508   // Rebuild the chain around this new shuffle.
34509   while (!Chain.empty()) {
34510     SDValue W = Chain.pop_back_val();
34511 
34512     if (V.getValueType() != W.getOperand(0).getValueType())
34513       V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
34514 
34515     switch (W.getOpcode()) {
34516     default:
34517       llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
34518 
34519     case X86ISD::UNPCKL:
34520     case X86ISD::UNPCKH:
34521       V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
34522       break;
34523 
34524     case X86ISD::PSHUFD:
34525     case X86ISD::PSHUFLW:
34526     case X86ISD::PSHUFHW:
34527       V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
34528       break;
34529     }
34530   }
34531   if (V.getValueType() != N.getValueType())
34532     V = DAG.getBitcast(N.getValueType(), V);
34533 
34534   // Return the new chain to replace N.
34535   return V;
34536 }
34537 
34538 /// Try to combine x86 target specific shuffles.
34539 static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG,
34540                                     TargetLowering::DAGCombinerInfo &DCI,
34541                                     const X86Subtarget &Subtarget) {
34542   SDLoc DL(N);
34543   MVT VT = N.getSimpleValueType();
34544   SmallVector<int, 4> Mask;
34545   unsigned Opcode = N.getOpcode();
34546 
34547   // Combine binary shuffle of 2 similar 'Horizontal' instructions into a
34548   // single instruction.
34549   if (VT.getScalarSizeInBits() == 64 &&
34550       (Opcode == X86ISD::MOVSD || Opcode == X86ISD::UNPCKH ||
34551        Opcode == X86ISD::UNPCKL)) {
34552     auto BC0 = peekThroughBitcasts(N.getOperand(0));
34553     auto BC1 = peekThroughBitcasts(N.getOperand(1));
34554     EVT VT0 = BC0.getValueType();
34555     EVT VT1 = BC1.getValueType();
34556     unsigned Opcode0 = BC0.getOpcode();
34557     unsigned Opcode1 = BC1.getOpcode();
34558     if (Opcode0 == Opcode1 && VT0 == VT1 &&
34559         (Opcode0 == X86ISD::FHADD || Opcode0 == X86ISD::HADD ||
34560          Opcode0 == X86ISD::FHSUB || Opcode0 == X86ISD::HSUB ||
34561          Opcode0 == X86ISD::PACKSS || Opcode0 == X86ISD::PACKUS)) {
34562       SDValue Lo, Hi;
34563       if (Opcode == X86ISD::MOVSD) {
34564         Lo = BC1.getOperand(0);
34565         Hi = BC0.getOperand(1);
34566       } else {
34567         Lo = BC0.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
34568         Hi = BC1.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
34569       }
34570       SDValue Horiz = DAG.getNode(Opcode0, DL, VT0, Lo, Hi);
34571       return DAG.getBitcast(VT, Horiz);
34572     }
34573   }
34574 
34575   switch (Opcode) {
34576   case X86ISD::VBROADCAST: {
34577     SDValue Src = N.getOperand(0);
34578     SDValue BC = peekThroughBitcasts(Src);
34579     EVT SrcVT = Src.getValueType();
34580     EVT BCVT = BC.getValueType();
34581 
34582     // If broadcasting from another shuffle, attempt to simplify it.
34583     // TODO - we really need a general SimplifyDemandedVectorElts mechanism.
34584     if (isTargetShuffle(BC.getOpcode()) &&
34585         VT.getScalarSizeInBits() % BCVT.getScalarSizeInBits() == 0) {
34586       unsigned Scale = VT.getScalarSizeInBits() / BCVT.getScalarSizeInBits();
34587       SmallVector<int, 16> DemandedMask(BCVT.getVectorNumElements(),
34588                                         SM_SentinelUndef);
34589       for (unsigned i = 0; i != Scale; ++i)
34590         DemandedMask[i] = i;
34591       if (SDValue Res = combineX86ShufflesRecursively(
34592               {BC}, 0, BC, DemandedMask, {}, /*Depth*/ 0,
34593               /*HasVarMask*/ false, /*AllowVarMask*/ true, DAG, Subtarget))
34594         return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
34595                            DAG.getBitcast(SrcVT, Res));
34596     }
34597 
34598     // broadcast(bitcast(src)) -> bitcast(broadcast(src))
34599     // 32-bit targets have to bitcast i64 to f64, so better to bitcast upward.
34600     if (Src.getOpcode() == ISD::BITCAST &&
34601         SrcVT.getScalarSizeInBits() == BCVT.getScalarSizeInBits()) {
34602       EVT NewVT = EVT::getVectorVT(*DAG.getContext(), BCVT.getScalarType(),
34603                                    VT.getVectorNumElements());
34604       return DAG.getBitcast(VT, DAG.getNode(X86ISD::VBROADCAST, DL, NewVT, BC));
34605     }
34606 
34607     // Reduce broadcast source vector to lowest 128-bits.
34608     if (SrcVT.getSizeInBits() > 128)
34609       return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
34610                          extract128BitVector(Src, 0, DAG, DL));
34611 
34612     // broadcast(scalar_to_vector(x)) -> broadcast(x).
34613     if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR)
34614       return DAG.getNode(X86ISD::VBROADCAST, DL, VT, Src.getOperand(0));
34615 
34616     // Share broadcast with the longest vector and extract low subvector (free).
34617     for (SDNode *User : Src->uses())
34618       if (User != N.getNode() && User->getOpcode() == X86ISD::VBROADCAST &&
34619           User->getValueSizeInBits(0) > VT.getSizeInBits()) {
34620         return extractSubVector(SDValue(User, 0), 0, DAG, DL,
34621                                 VT.getSizeInBits());
34622       }
34623 
34624     // vbroadcast(scalarload X) -> vbroadcast_load X
34625     // For float loads, extract other uses of the scalar from the broadcast.
34626     if (!SrcVT.isVector() && (Src.hasOneUse() || VT.isFloatingPoint()) &&
34627         ISD::isNormalLoad(Src.getNode())) {
34628       LoadSDNode *LN = cast<LoadSDNode>(Src);
34629       SDVTList Tys = DAG.getVTList(VT, MVT::Other);
34630       SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
34631       SDValue BcastLd =
34632           DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, DL, Tys, Ops,
34633                                   LN->getMemoryVT(), LN->getMemOperand());
34634       // If the load value is used only by N, replace it via CombineTo N.
34635       bool NoReplaceExtract = Src.hasOneUse();
34636       DCI.CombineTo(N.getNode(), BcastLd);
34637       if (NoReplaceExtract) {
34638         DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), BcastLd.getValue(1));
34639         DCI.recursivelyDeleteUnusedNodes(LN);
34640       } else {
34641         SDValue Scl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT, BcastLd,
34642                                   DAG.getIntPtrConstant(0, DL));
34643         DCI.CombineTo(LN, Scl, BcastLd.getValue(1));
34644       }
34645       return N; // Return N so it doesn't get rechecked!
34646     }
34647 
34648     return SDValue();
34649   }
34650   case X86ISD::BLENDI: {
34651     SDValue N0 = N.getOperand(0);
34652     SDValue N1 = N.getOperand(1);
34653 
34654     // blend(bitcast(x),bitcast(y)) -> bitcast(blend(x,y)) to narrower types.
34655     // TODO: Handle MVT::v16i16 repeated blend mask.
34656     if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
34657         N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
34658       MVT SrcVT = N0.getOperand(0).getSimpleValueType();
34659       if ((VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
34660           SrcVT.getScalarSizeInBits() >= 32) {
34661         unsigned BlendMask = N.getConstantOperandVal(2);
34662         unsigned Size = VT.getVectorNumElements();
34663         unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
34664         BlendMask = scaleVectorShuffleBlendMask(BlendMask, Size, Scale);
34665         return DAG.getBitcast(
34666             VT, DAG.getNode(X86ISD::BLENDI, DL, SrcVT, N0.getOperand(0),
34667                             N1.getOperand(0),
34668                             DAG.getTargetConstant(BlendMask, DL, MVT::i8)));
34669       }
34670     }
34671     return SDValue();
34672   }
34673   case X86ISD::VPERMI: {
34674     // vpermi(bitcast(x)) -> bitcast(vpermi(x)) for same number of elements.
34675     // TODO: Remove when we have preferred domains in combineX86ShuffleChain.
34676     SDValue N0 = N.getOperand(0);
34677     SDValue N1 = N.getOperand(1);
34678     unsigned EltSizeInBits = VT.getScalarSizeInBits();
34679     if (N0.getOpcode() == ISD::BITCAST &&
34680         N0.getOperand(0).getScalarValueSizeInBits() == EltSizeInBits) {
34681       SDValue Src = N0.getOperand(0);
34682       EVT SrcVT = Src.getValueType();
34683       SDValue Res = DAG.getNode(X86ISD::VPERMI, DL, SrcVT, Src, N1);
34684       return DAG.getBitcast(VT, Res);
34685     }
34686     return SDValue();
34687   }
34688   case X86ISD::PSHUFD:
34689   case X86ISD::PSHUFLW:
34690   case X86ISD::PSHUFHW:
34691     Mask = getPSHUFShuffleMask(N);
34692     assert(Mask.size() == 4);
34693     break;
34694   case X86ISD::MOVSD:
34695   case X86ISD::MOVSS: {
34696     SDValue N0 = N.getOperand(0);
34697     SDValue N1 = N.getOperand(1);
34698 
34699     // Canonicalize scalar FPOps:
34700     // MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))
34701     // If commutable, allow OP(N1[0], N0[0]).
34702     unsigned Opcode1 = N1.getOpcode();
34703     if (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL || Opcode1 == ISD::FSUB ||
34704         Opcode1 == ISD::FDIV) {
34705       SDValue N10 = N1.getOperand(0);
34706       SDValue N11 = N1.getOperand(1);
34707       if (N10 == N0 ||
34708           (N11 == N0 && (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL))) {
34709         if (N10 != N0)
34710           std::swap(N10, N11);
34711         MVT SVT = VT.getVectorElementType();
34712         SDValue ZeroIdx = DAG.getIntPtrConstant(0, DL);
34713         N10 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N10, ZeroIdx);
34714         N11 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N11, ZeroIdx);
34715         SDValue Scl = DAG.getNode(Opcode1, DL, SVT, N10, N11);
34716         SDValue SclVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
34717         return DAG.getNode(Opcode, DL, VT, N0, SclVec);
34718       }
34719     }
34720 
34721     return SDValue();
34722   }
34723   case X86ISD::INSERTPS: {
34724     assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
34725     SDValue Op0 = N.getOperand(0);
34726     SDValue Op1 = N.getOperand(1);
34727     SDValue Op2 = N.getOperand(2);
34728     unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
34729     unsigned SrcIdx = (InsertPSMask >> 6) & 0x3;
34730     unsigned DstIdx = (InsertPSMask >> 4) & 0x3;
34731     unsigned ZeroMask = InsertPSMask & 0xF;
34732 
34733     // If we zero out all elements from Op0 then we don't need to reference it.
34734     if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef())
34735       return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1,
34736                          DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
34737 
34738     // If we zero out the element from Op1 then we don't need to reference it.
34739     if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef())
34740       return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
34741                          DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
34742 
34743     // Attempt to merge insertps Op1 with an inner target shuffle node.
34744     SmallVector<int, 8> TargetMask1;
34745     SmallVector<SDValue, 2> Ops1;
34746     APInt KnownUndef1, KnownZero1;
34747     if (getTargetShuffleAndZeroables(Op1, TargetMask1, Ops1, KnownUndef1,
34748                                      KnownZero1)) {
34749       if (KnownUndef1[SrcIdx] || KnownZero1[SrcIdx]) {
34750         // Zero/UNDEF insertion - zero out element and remove dependency.
34751         InsertPSMask |= (1u << DstIdx);
34752         return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
34753                            DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
34754       }
34755       // Update insertps mask srcidx and reference the source input directly.
34756       int M = TargetMask1[SrcIdx];
34757       assert(0 <= M && M < 8 && "Shuffle index out of range");
34758       InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6);
34759       Op1 = Ops1[M < 4 ? 0 : 1];
34760       return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
34761                          DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
34762     }
34763 
34764     // Attempt to merge insertps Op0 with an inner target shuffle node.
34765     SmallVector<int, 8> TargetMask0;
34766     SmallVector<SDValue, 2> Ops0;
34767     APInt KnownUndef0, KnownZero0;
34768     if (getTargetShuffleAndZeroables(Op0, TargetMask0, Ops0, KnownUndef0,
34769                                      KnownZero0)) {
34770       bool Updated = false;
34771       bool UseInput00 = false;
34772       bool UseInput01 = false;
34773       for (int i = 0; i != 4; ++i) {
34774         if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) {
34775           // No change if element is already zero or the inserted element.
34776           continue;
34777         } else if (KnownUndef0[i] || KnownZero0[i]) {
34778           // If the target mask is undef/zero then we must zero the element.
34779           InsertPSMask |= (1u << i);
34780           Updated = true;
34781           continue;
34782         }
34783 
34784         // The input vector element must be inline.
34785         int M = TargetMask0[i];
34786         if (M != i && M != (i + 4))
34787           return SDValue();
34788 
34789         // Determine which inputs of the target shuffle we're using.
34790         UseInput00 |= (0 <= M && M < 4);
34791         UseInput01 |= (4 <= M);
34792       }
34793 
34794       // If we're not using both inputs of the target shuffle then use the
34795       // referenced input directly.
34796       if (UseInput00 && !UseInput01) {
34797         Updated = true;
34798         Op0 = Ops0[0];
34799       } else if (!UseInput00 && UseInput01) {
34800         Updated = true;
34801         Op0 = Ops0[1];
34802       }
34803 
34804       if (Updated)
34805         return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
34806                            DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
34807     }
34808 
34809     // If we're inserting an element from a vbroadcast load, fold the
34810     // load into the X86insertps instruction. We need to convert the scalar
34811     // load to a vector and clear the source lane of the INSERTPS control.
34812     if (Op1.getOpcode() == X86ISD::VBROADCAST_LOAD && Op1.hasOneUse()) {
34813       auto *MemIntr = cast<MemIntrinsicSDNode>(Op1);
34814       if (MemIntr->getMemoryVT().getScalarSizeInBits() == 32) {
34815         SDValue Load = DAG.getLoad(MVT::f32, DL, MemIntr->getChain(),
34816                                    MemIntr->getBasePtr(),
34817                                    MemIntr->getMemOperand());
34818         SDValue Insert = DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0,
34819                            DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
34820                                        Load),
34821                            DAG.getTargetConstant(InsertPSMask & 0x3f, DL, MVT::i8));
34822         DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), Load.getValue(1));
34823         return Insert;
34824       }
34825     }
34826 
34827     return SDValue();
34828   }
34829   default:
34830     return SDValue();
34831   }
34832 
34833   // Nuke no-op shuffles that show up after combining.
34834   if (isNoopShuffleMask(Mask))
34835     return N.getOperand(0);
34836 
34837   // Look for simplifications involving one or two shuffle instructions.
34838   SDValue V = N.getOperand(0);
34839   switch (N.getOpcode()) {
34840   default:
34841     break;
34842   case X86ISD::PSHUFLW:
34843   case X86ISD::PSHUFHW:
34844     assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
34845 
34846     // See if this reduces to a PSHUFD which is no more expensive and can
34847     // combine with more operations. Note that it has to at least flip the
34848     // dwords as otherwise it would have been removed as a no-op.
34849     if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
34850       int DMask[] = {0, 1, 2, 3};
34851       int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
34852       DMask[DOffset + 0] = DOffset + 1;
34853       DMask[DOffset + 1] = DOffset + 0;
34854       MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
34855       V = DAG.getBitcast(DVT, V);
34856       V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
34857                       getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
34858       return DAG.getBitcast(VT, V);
34859     }
34860 
34861     // Look for shuffle patterns which can be implemented as a single unpack.
34862     // FIXME: This doesn't handle the location of the PSHUFD generically, and
34863     // only works when we have a PSHUFD followed by two half-shuffles.
34864     if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
34865         (V.getOpcode() == X86ISD::PSHUFLW ||
34866          V.getOpcode() == X86ISD::PSHUFHW) &&
34867         V.getOpcode() != N.getOpcode() &&
34868         V.hasOneUse()) {
34869       SDValue D = peekThroughOneUseBitcasts(V.getOperand(0));
34870       if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
34871         SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
34872         SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
34873         int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
34874         int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
34875         int WordMask[8];
34876         for (int i = 0; i < 4; ++i) {
34877           WordMask[i + NOffset] = Mask[i] + NOffset;
34878           WordMask[i + VOffset] = VMask[i] + VOffset;
34879         }
34880         // Map the word mask through the DWord mask.
34881         int MappedMask[8];
34882         for (int i = 0; i < 8; ++i)
34883           MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
34884         if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
34885             makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
34886           // We can replace all three shuffles with an unpack.
34887           V = DAG.getBitcast(VT, D.getOperand(0));
34888           return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
34889                                                 : X86ISD::UNPCKH,
34890                              DL, VT, V, V);
34891         }
34892       }
34893     }
34894 
34895     break;
34896 
34897   case X86ISD::PSHUFD:
34898     if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG))
34899       return NewN;
34900 
34901     break;
34902   }
34903 
34904   return SDValue();
34905 }
34906 
34907 /// Checks if the shuffle mask takes subsequent elements
34908 /// alternately from two vectors.
34909 /// For example <0, 5, 2, 7> or <8, 1, 10, 3, 12, 5, 14, 7> are both correct.
34910 static bool isAddSubOrSubAddMask(ArrayRef<int> Mask, bool &Op0Even) {
34911 
34912   int ParitySrc[2] = {-1, -1};
34913   unsigned Size = Mask.size();
34914   for (unsigned i = 0; i != Size; ++i) {
34915     int M = Mask[i];
34916     if (M < 0)
34917       continue;
34918 
34919     // Make sure we are using the matching element from the input.
34920     if ((M % Size) != i)
34921       return false;
34922 
34923     // Make sure we use the same input for all elements of the same parity.
34924     int Src = M / Size;
34925     if (ParitySrc[i % 2] >= 0 && ParitySrc[i % 2] != Src)
34926       return false;
34927     ParitySrc[i % 2] = Src;
34928   }
34929 
34930   // Make sure each input is used.
34931   if (ParitySrc[0] < 0 || ParitySrc[1] < 0 || ParitySrc[0] == ParitySrc[1])
34932     return false;
34933 
34934   Op0Even = ParitySrc[0] == 0;
34935   return true;
34936 }
34937 
34938 /// Returns true iff the shuffle node \p N can be replaced with ADDSUB(SUBADD)
34939 /// operation. If true is returned then the operands of ADDSUB(SUBADD) operation
34940 /// are written to the parameters \p Opnd0 and \p Opnd1.
34941 ///
34942 /// We combine shuffle to ADDSUB(SUBADD) directly on the abstract vector shuffle nodes
34943 /// so it is easier to generically match. We also insert dummy vector shuffle
34944 /// nodes for the operands which explicitly discard the lanes which are unused
34945 /// by this operation to try to flow through the rest of the combiner
34946 /// the fact that they're unused.
34947 static bool isAddSubOrSubAdd(SDNode *N, const X86Subtarget &Subtarget,
34948                              SelectionDAG &DAG, SDValue &Opnd0, SDValue &Opnd1,
34949                              bool &IsSubAdd) {
34950 
34951   EVT VT = N->getValueType(0);
34952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
34953   if (!Subtarget.hasSSE3() || !TLI.isTypeLegal(VT) ||
34954       !VT.getSimpleVT().isFloatingPoint())
34955     return false;
34956 
34957   // We only handle target-independent shuffles.
34958   // FIXME: It would be easy and harmless to use the target shuffle mask
34959   // extraction tool to support more.
34960   if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
34961     return false;
34962 
34963   SDValue V1 = N->getOperand(0);
34964   SDValue V2 = N->getOperand(1);
34965 
34966   // Make sure we have an FADD and an FSUB.
34967   if ((V1.getOpcode() != ISD::FADD && V1.getOpcode() != ISD::FSUB) ||
34968       (V2.getOpcode() != ISD::FADD && V2.getOpcode() != ISD::FSUB) ||
34969       V1.getOpcode() == V2.getOpcode())
34970     return false;
34971 
34972   // If there are other uses of these operations we can't fold them.
34973   if (!V1->hasOneUse() || !V2->hasOneUse())
34974     return false;
34975 
34976   // Ensure that both operations have the same operands. Note that we can
34977   // commute the FADD operands.
34978   SDValue LHS, RHS;
34979   if (V1.getOpcode() == ISD::FSUB) {
34980     LHS = V1->getOperand(0); RHS = V1->getOperand(1);
34981     if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
34982         (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
34983       return false;
34984   } else {
34985     assert(V2.getOpcode() == ISD::FSUB && "Unexpected opcode");
34986     LHS = V2->getOperand(0); RHS = V2->getOperand(1);
34987     if ((V1->getOperand(0) != LHS || V1->getOperand(1) != RHS) &&
34988         (V1->getOperand(0) != RHS || V1->getOperand(1) != LHS))
34989       return false;
34990   }
34991 
34992   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
34993   bool Op0Even;
34994   if (!isAddSubOrSubAddMask(Mask, Op0Even))
34995     return false;
34996 
34997   // It's a subadd if the vector in the even parity is an FADD.
34998   IsSubAdd = Op0Even ? V1->getOpcode() == ISD::FADD
34999                      : V2->getOpcode() == ISD::FADD;
35000 
35001   Opnd0 = LHS;
35002   Opnd1 = RHS;
35003   return true;
35004 }
35005 
35006 /// Combine shuffle of two fma nodes into FMAddSub or FMSubAdd.
35007 static SDValue combineShuffleToFMAddSub(SDNode *N,
35008                                         const X86Subtarget &Subtarget,
35009                                         SelectionDAG &DAG) {
35010   // We only handle target-independent shuffles.
35011   // FIXME: It would be easy and harmless to use the target shuffle mask
35012   // extraction tool to support more.
35013   if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
35014     return SDValue();
35015 
35016   MVT VT = N->getSimpleValueType(0);
35017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
35018   if (!Subtarget.hasAnyFMA() || !TLI.isTypeLegal(VT))
35019     return SDValue();
35020 
35021   // We're trying to match (shuffle fma(a, b, c), X86Fmsub(a, b, c).
35022   SDValue Op0 = N->getOperand(0);
35023   SDValue Op1 = N->getOperand(1);
35024   SDValue FMAdd = Op0, FMSub = Op1;
35025   if (FMSub.getOpcode() != X86ISD::FMSUB)
35026     std::swap(FMAdd, FMSub);
35027 
35028   if (FMAdd.getOpcode() != ISD::FMA || FMSub.getOpcode() != X86ISD::FMSUB ||
35029       FMAdd.getOperand(0) != FMSub.getOperand(0) || !FMAdd.hasOneUse() ||
35030       FMAdd.getOperand(1) != FMSub.getOperand(1) || !FMSub.hasOneUse() ||
35031       FMAdd.getOperand(2) != FMSub.getOperand(2))
35032     return SDValue();
35033 
35034   // Check for correct shuffle mask.
35035   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
35036   bool Op0Even;
35037   if (!isAddSubOrSubAddMask(Mask, Op0Even))
35038     return SDValue();
35039 
35040   // FMAddSub takes zeroth operand from FMSub node.
35041   SDLoc DL(N);
35042   bool IsSubAdd = Op0Even ? Op0 == FMAdd : Op1 == FMAdd;
35043   unsigned Opcode = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
35044   return DAG.getNode(Opcode, DL, VT, FMAdd.getOperand(0), FMAdd.getOperand(1),
35045                      FMAdd.getOperand(2));
35046 }
35047 
35048 /// Try to combine a shuffle into a target-specific add-sub or
35049 /// mul-add-sub node.
35050 static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N,
35051                                                 const X86Subtarget &Subtarget,
35052                                                 SelectionDAG &DAG) {
35053   if (SDValue V = combineShuffleToFMAddSub(N, Subtarget, DAG))
35054     return V;
35055 
35056   SDValue Opnd0, Opnd1;
35057   bool IsSubAdd;
35058   if (!isAddSubOrSubAdd(N, Subtarget, DAG, Opnd0, Opnd1, IsSubAdd))
35059     return SDValue();
35060 
35061   MVT VT = N->getSimpleValueType(0);
35062   SDLoc DL(N);
35063 
35064   // Try to generate X86ISD::FMADDSUB node here.
35065   SDValue Opnd2;
35066   if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2)) {
35067     unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
35068     return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2);
35069   }
35070 
35071   if (IsSubAdd)
35072     return SDValue();
35073 
35074   // Do not generate X86ISD::ADDSUB node for 512-bit types even though
35075   // the ADDSUB idiom has been successfully recognized. There are no known
35076   // X86 targets with 512-bit ADDSUB instructions!
35077   if (VT.is512BitVector())
35078     return SDValue();
35079 
35080   return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
35081 }
35082 
35083 // We are looking for a shuffle where both sources are concatenated with undef
35084 // and have a width that is half of the output's width. AVX2 has VPERMD/Q, so
35085 // if we can express this as a single-source shuffle, that's preferable.
35086 static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG,
35087                                            const X86Subtarget &Subtarget) {
35088   if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N))
35089     return SDValue();
35090 
35091   EVT VT = N->getValueType(0);
35092 
35093   // We only care about shuffles of 128/256-bit vectors of 32/64-bit values.
35094   if (!VT.is128BitVector() && !VT.is256BitVector())
35095     return SDValue();
35096 
35097   if (VT.getVectorElementType() != MVT::i32 &&
35098       VT.getVectorElementType() != MVT::i64 &&
35099       VT.getVectorElementType() != MVT::f32 &&
35100       VT.getVectorElementType() != MVT::f64)
35101     return SDValue();
35102 
35103   SDValue N0 = N->getOperand(0);
35104   SDValue N1 = N->getOperand(1);
35105 
35106   // Check that both sources are concats with undef.
35107   if (N0.getOpcode() != ISD::CONCAT_VECTORS ||
35108       N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
35109       N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() ||
35110       !N1.getOperand(1).isUndef())
35111     return SDValue();
35112 
35113   // Construct the new shuffle mask. Elements from the first source retain their
35114   // index, but elements from the second source no longer need to skip an undef.
35115   SmallVector<int, 8> Mask;
35116   int NumElts = VT.getVectorNumElements();
35117 
35118   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
35119   for (int Elt : SVOp->getMask())
35120     Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2));
35121 
35122   SDLoc DL(N);
35123   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0),
35124                                N1.getOperand(0));
35125   return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask);
35126 }
35127 
35128 /// Eliminate a redundant shuffle of a horizontal math op.
35129 static SDValue foldShuffleOfHorizOp(SDNode *N, SelectionDAG &DAG) {
35130   unsigned Opcode = N->getOpcode();
35131   if (Opcode != X86ISD::MOVDDUP && Opcode != X86ISD::VBROADCAST)
35132     if (Opcode != ISD::VECTOR_SHUFFLE || !N->getOperand(1).isUndef())
35133       return SDValue();
35134 
35135   // For a broadcast, peek through an extract element of index 0 to find the
35136   // horizontal op: broadcast (ext_vec_elt HOp, 0)
35137   EVT VT = N->getValueType(0);
35138   if (Opcode == X86ISD::VBROADCAST) {
35139     SDValue SrcOp = N->getOperand(0);
35140     if (SrcOp.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
35141         SrcOp.getValueType() == MVT::f64 &&
35142         SrcOp.getOperand(0).getValueType() == VT &&
35143         isNullConstant(SrcOp.getOperand(1)))
35144       N = SrcOp.getNode();
35145   }
35146 
35147   SDValue HOp = N->getOperand(0);
35148   if (HOp.getOpcode() != X86ISD::HADD && HOp.getOpcode() != X86ISD::FHADD &&
35149       HOp.getOpcode() != X86ISD::HSUB && HOp.getOpcode() != X86ISD::FHSUB)
35150     return SDValue();
35151 
35152   // 128-bit horizontal math instructions are defined to operate on adjacent
35153   // lanes of each operand as:
35154   // v4X32: A[0] + A[1] , A[2] + A[3] , B[0] + B[1] , B[2] + B[3]
35155   // ...similarly for v2f64 and v8i16.
35156   if (!HOp.getOperand(0).isUndef() && !HOp.getOperand(1).isUndef() &&
35157       HOp.getOperand(0) != HOp.getOperand(1))
35158     return SDValue();
35159 
35160   // The shuffle that we are eliminating may have allowed the horizontal op to
35161   // have an undemanded (undefined) operand. Duplicate the other (defined)
35162   // operand to ensure that the results are defined across all lanes without the
35163   // shuffle.
35164   auto updateHOp = [](SDValue HorizOp, SelectionDAG &DAG) {
35165     SDValue X;
35166     if (HorizOp.getOperand(0).isUndef()) {
35167       assert(!HorizOp.getOperand(1).isUndef() && "Not expecting foldable h-op");
35168       X = HorizOp.getOperand(1);
35169     } else if (HorizOp.getOperand(1).isUndef()) {
35170       assert(!HorizOp.getOperand(0).isUndef() && "Not expecting foldable h-op");
35171       X = HorizOp.getOperand(0);
35172     } else {
35173       return HorizOp;
35174     }
35175     return DAG.getNode(HorizOp.getOpcode(), SDLoc(HorizOp),
35176                        HorizOp.getValueType(), X, X);
35177   };
35178 
35179   // When the operands of a horizontal math op are identical, the low half of
35180   // the result is the same as the high half. If a target shuffle is also
35181   // replicating low and high halves (and without changing the type/length of
35182   // the vector), we don't need the shuffle.
35183   if (Opcode == X86ISD::MOVDDUP || Opcode == X86ISD::VBROADCAST) {
35184     if (HOp.getScalarValueSizeInBits() == 64 && HOp.getValueType() == VT) {
35185       // movddup (hadd X, X) --> hadd X, X
35186       // broadcast (extract_vec_elt (hadd X, X), 0) --> hadd X, X
35187       assert((HOp.getValueType() == MVT::v2f64 ||
35188               HOp.getValueType() == MVT::v4f64) && "Unexpected type for h-op");
35189       return updateHOp(HOp, DAG);
35190     }
35191     return SDValue();
35192   }
35193 
35194   // shuffle (hadd X, X), undef, [low half...high half] --> hadd X, X
35195   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
35196   // TODO: Other mask possibilities like {1,1} and {1,0} could be added here,
35197   // but this should be tied to whatever horizontal op matching and shuffle
35198   // canonicalization are producing.
35199   if (HOp.getValueSizeInBits() == 128 &&
35200       (isTargetShuffleEquivalent(Mask, {0, 0}) ||
35201        isTargetShuffleEquivalent(Mask, {0, 1, 0, 1}) ||
35202        isTargetShuffleEquivalent(Mask, {0, 1, 2, 3, 0, 1, 2, 3})))
35203     return updateHOp(HOp, DAG);
35204 
35205   if (HOp.getValueSizeInBits() == 256 &&
35206       (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2}) ||
35207        isTargetShuffleEquivalent(Mask, {0, 1, 0, 1, 4, 5, 4, 5}) ||
35208        isTargetShuffleEquivalent(
35209            Mask, {0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11, 8, 9, 10, 11})))
35210     return updateHOp(HOp, DAG);
35211 
35212   return SDValue();
35213 }
35214 
35215 /// If we have a shuffle of AVX/AVX512 (256/512 bit) vectors that only uses the
35216 /// low half of each source vector and does not set any high half elements in
35217 /// the destination vector, narrow the shuffle to half its original size.
35218 static SDValue narrowShuffle(ShuffleVectorSDNode *Shuf, SelectionDAG &DAG) {
35219   if (!Shuf->getValueType(0).isSimple())
35220     return SDValue();
35221   MVT VT = Shuf->getSimpleValueType(0);
35222   if (!VT.is256BitVector() && !VT.is512BitVector())
35223     return SDValue();
35224 
35225   // See if we can ignore all of the high elements of the shuffle.
35226   ArrayRef<int> Mask = Shuf->getMask();
35227   if (!isUndefUpperHalf(Mask))
35228     return SDValue();
35229 
35230   // Check if the shuffle mask accesses only the low half of each input vector
35231   // (half-index output is 0 or 2).
35232   int HalfIdx1, HalfIdx2;
35233   SmallVector<int, 8> HalfMask(Mask.size() / 2);
35234   if (!getHalfShuffleMask(Mask, HalfMask, HalfIdx1, HalfIdx2) ||
35235       (HalfIdx1 % 2 == 1) || (HalfIdx2 % 2 == 1))
35236     return SDValue();
35237 
35238   // Create a half-width shuffle to replace the unnecessarily wide shuffle.
35239   // The trick is knowing that all of the insert/extract are actually free
35240   // subregister (zmm<->ymm or ymm<->xmm) ops. That leaves us with a shuffle
35241   // of narrow inputs into a narrow output, and that is always cheaper than
35242   // the wide shuffle that we started with.
35243   return getShuffleHalfVectors(SDLoc(Shuf), Shuf->getOperand(0),
35244                                Shuf->getOperand(1), HalfMask, HalfIdx1,
35245                                HalfIdx2, false, DAG, /*UseConcat*/true);
35246 }
35247 
35248 static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG,
35249                               TargetLowering::DAGCombinerInfo &DCI,
35250                               const X86Subtarget &Subtarget) {
35251   if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N))
35252     if (SDValue V = narrowShuffle(Shuf, DAG))
35253       return V;
35254 
35255   // If we have legalized the vector types, look for blends of FADD and FSUB
35256   // nodes that we can fuse into an ADDSUB, FMADDSUB, or FMSUBADD node.
35257   SDLoc dl(N);
35258   EVT VT = N->getValueType(0);
35259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
35260   if (TLI.isTypeLegal(VT)) {
35261     if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG))
35262       return AddSub;
35263 
35264     if (SDValue HAddSub = foldShuffleOfHorizOp(N, DAG))
35265       return HAddSub;
35266   }
35267 
35268   // Attempt to combine into a vector load/broadcast.
35269   if (SDValue LD = combineToConsecutiveLoads(VT, N, dl, DAG, Subtarget, true))
35270     return LD;
35271 
35272   // For AVX2, we sometimes want to combine
35273   // (vector_shuffle <mask> (concat_vectors t1, undef)
35274   //                        (concat_vectors t2, undef))
35275   // Into:
35276   // (vector_shuffle <mask> (concat_vectors t1, t2), undef)
35277   // Since the latter can be efficiently lowered with VPERMD/VPERMQ
35278   if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget))
35279     return ShufConcat;
35280 
35281   if (isTargetShuffle(N->getOpcode())) {
35282     SDValue Op(N, 0);
35283     if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget))
35284       return Shuffle;
35285 
35286     // Try recursively combining arbitrary sequences of x86 shuffle
35287     // instructions into higher-order shuffles. We do this after combining
35288     // specific PSHUF instruction sequences into their minimal form so that we
35289     // can evaluate how many specialized shuffle instructions are involved in
35290     // a particular chain.
35291     if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
35292       return Res;
35293 
35294     // Simplify source operands based on shuffle mask.
35295     // TODO - merge this into combineX86ShufflesRecursively.
35296     APInt KnownUndef, KnownZero;
35297     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
35298     if (TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, DCI))
35299       return SDValue(N, 0);
35300   }
35301 
35302   // Look for a v2i64/v2f64 VZEXT_MOVL of a node that already produces zeros
35303   // in the upper 64 bits.
35304   // TODO: Can we generalize this using computeKnownBits.
35305   if (N->getOpcode() == X86ISD::VZEXT_MOVL &&
35306       (VT == MVT::v2f64 || VT == MVT::v2i64) &&
35307       N->getOperand(0).getOpcode() == ISD::BITCAST &&
35308       (N->getOperand(0).getOperand(0).getValueType() == MVT::v4f32 ||
35309        N->getOperand(0).getOperand(0).getValueType() == MVT::v4i32)) {
35310     SDValue In = N->getOperand(0).getOperand(0);
35311     switch (In.getOpcode()) {
35312     default:
35313       break;
35314     case X86ISD::CVTP2SI:   case X86ISD::CVTP2UI:
35315     case X86ISD::MCVTP2SI:  case X86ISD::MCVTP2UI:
35316     case X86ISD::CVTTP2SI:  case X86ISD::CVTTP2UI:
35317     case X86ISD::MCVTTP2SI: case X86ISD::MCVTTP2UI:
35318     case X86ISD::CVTSI2P:   case X86ISD::CVTUI2P:
35319     case X86ISD::MCVTSI2P:  case X86ISD::MCVTUI2P:
35320     case X86ISD::VFPROUND:  case X86ISD::VMFPROUND:
35321       if (In.getOperand(0).getValueType() == MVT::v2f64 ||
35322           In.getOperand(0).getValueType() == MVT::v2i64)
35323         return N->getOperand(0); // return the bitcast
35324       break;
35325     case X86ISD::STRICT_CVTTP2SI:
35326     case X86ISD::STRICT_CVTTP2UI:
35327     case X86ISD::STRICT_CVTSI2P:
35328     case X86ISD::STRICT_CVTUI2P:
35329     case X86ISD::STRICT_VFPROUND:
35330       if (In.getOperand(1).getValueType() == MVT::v2f64 ||
35331           In.getOperand(1).getValueType() == MVT::v2i64)
35332         return N->getOperand(0);
35333       break;
35334     }
35335   }
35336 
35337   // Pull subvector inserts into undef through VZEXT_MOVL by making it an
35338   // insert into a zero vector. This helps get VZEXT_MOVL closer to
35339   // scalar_to_vectors where 256/512 are canonicalized to an insert and a
35340   // 128-bit scalar_to_vector. This reduces the number of isel patterns.
35341   if (N->getOpcode() == X86ISD::VZEXT_MOVL && !DCI.isBeforeLegalizeOps() &&
35342       N->getOperand(0).getOpcode() == ISD::INSERT_SUBVECTOR &&
35343       N->getOperand(0).hasOneUse() &&
35344       N->getOperand(0).getOperand(0).isUndef() &&
35345       isNullConstant(N->getOperand(0).getOperand(2))) {
35346     SDValue In = N->getOperand(0).getOperand(1);
35347     SDValue Movl = DAG.getNode(X86ISD::VZEXT_MOVL, dl, In.getValueType(), In);
35348     return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT,
35349                        getZeroVector(VT.getSimpleVT(), Subtarget, DAG, dl),
35350                        Movl, N->getOperand(0).getOperand(2));
35351   }
35352 
35353   // If this a vzmovl of a full vector load, replace it with a vzload, unless
35354   // the load is volatile.
35355   if (N->getOpcode() == X86ISD::VZEXT_MOVL && N->getOperand(0).hasOneUse() &&
35356       ISD::isNormalLoad(N->getOperand(0).getNode())) {
35357     LoadSDNode *LN = cast<LoadSDNode>(N->getOperand(0));
35358     if (LN->isSimple()) {
35359       SDVTList Tys = DAG.getVTList(VT, MVT::Other);
35360       SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
35361       SDValue VZLoad =
35362           DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
35363                                   VT.getVectorElementType(),
35364                                   LN->getPointerInfo(),
35365                                   LN->getAlignment(),
35366                                   MachineMemOperand::MOLoad);
35367       DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), VZLoad.getValue(1));
35368       return VZLoad;
35369     }
35370   }
35371 
35372   return SDValue();
35373 }
35374 
35375 bool X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
35376     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
35377     TargetLoweringOpt &TLO, unsigned Depth) const {
35378   int NumElts = DemandedElts.getBitWidth();
35379   unsigned Opc = Op.getOpcode();
35380   EVT VT = Op.getValueType();
35381 
35382   // Handle special case opcodes.
35383   switch (Opc) {
35384   case X86ISD::PMULDQ:
35385   case X86ISD::PMULUDQ: {
35386     APInt LHSUndef, LHSZero;
35387     APInt RHSUndef, RHSZero;
35388     SDValue LHS = Op.getOperand(0);
35389     SDValue RHS = Op.getOperand(1);
35390     if (SimplifyDemandedVectorElts(LHS, DemandedElts, LHSUndef, LHSZero, TLO,
35391                                    Depth + 1))
35392       return true;
35393     if (SimplifyDemandedVectorElts(RHS, DemandedElts, RHSUndef, RHSZero, TLO,
35394                                    Depth + 1))
35395       return true;
35396     // Multiply by zero.
35397     KnownZero = LHSZero | RHSZero;
35398     break;
35399   }
35400   case X86ISD::VSHL:
35401   case X86ISD::VSRL:
35402   case X86ISD::VSRA: {
35403     // We only need the bottom 64-bits of the (128-bit) shift amount.
35404     SDValue Amt = Op.getOperand(1);
35405     MVT AmtVT = Amt.getSimpleValueType();
35406     assert(AmtVT.is128BitVector() && "Unexpected value type");
35407 
35408     // If we reuse the shift amount just for sse shift amounts then we know that
35409     // only the bottom 64-bits are only ever used.
35410     bool AssumeSingleUse = llvm::all_of(Amt->uses(), [&Amt](SDNode *Use) {
35411       unsigned UseOpc = Use->getOpcode();
35412       return (UseOpc == X86ISD::VSHL || UseOpc == X86ISD::VSRL ||
35413               UseOpc == X86ISD::VSRA) &&
35414              Use->getOperand(0) != Amt;
35415     });
35416 
35417     APInt AmtUndef, AmtZero;
35418     unsigned NumAmtElts = AmtVT.getVectorNumElements();
35419     APInt AmtElts = APInt::getLowBitsSet(NumAmtElts, NumAmtElts / 2);
35420     if (SimplifyDemandedVectorElts(Amt, AmtElts, AmtUndef, AmtZero, TLO,
35421                                    Depth + 1, AssumeSingleUse))
35422       return true;
35423     LLVM_FALLTHROUGH;
35424   }
35425   case X86ISD::VSHLI:
35426   case X86ISD::VSRLI:
35427   case X86ISD::VSRAI: {
35428     SDValue Src = Op.getOperand(0);
35429     APInt SrcUndef;
35430     if (SimplifyDemandedVectorElts(Src, DemandedElts, SrcUndef, KnownZero, TLO,
35431                                    Depth + 1))
35432       return true;
35433     // TODO convert SrcUndef to KnownUndef.
35434     break;
35435   }
35436   case X86ISD::KSHIFTL: {
35437     SDValue Src = Op.getOperand(0);
35438     auto *Amt = cast<ConstantSDNode>(Op.getOperand(1));
35439     assert(Amt->getAPIntValue().ult(NumElts) && "Out of range shift amount");
35440     unsigned ShiftAmt = Amt->getZExtValue();
35441 
35442     if (ShiftAmt == 0)
35443       return TLO.CombineTo(Op, Src);
35444 
35445     // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
35446     // single shift.  We can do this if the bottom bits (which are shifted
35447     // out) are never demanded.
35448     if (Src.getOpcode() == X86ISD::KSHIFTR) {
35449       if (!DemandedElts.intersects(APInt::getLowBitsSet(NumElts, ShiftAmt))) {
35450         unsigned C1 = Src.getConstantOperandVal(1);
35451         unsigned NewOpc = X86ISD::KSHIFTL;
35452         int Diff = ShiftAmt - C1;
35453         if (Diff < 0) {
35454           Diff = -Diff;
35455           NewOpc = X86ISD::KSHIFTR;
35456         }
35457 
35458         SDLoc dl(Op);
35459         SDValue NewSA = TLO.DAG.getTargetConstant(Diff, dl, MVT::i8);
35460         return TLO.CombineTo(
35461             Op, TLO.DAG.getNode(NewOpc, dl, VT, Src.getOperand(0), NewSA));
35462       }
35463     }
35464 
35465     APInt DemandedSrc = DemandedElts.lshr(ShiftAmt);
35466     if (SimplifyDemandedVectorElts(Src, DemandedSrc, KnownUndef, KnownZero, TLO,
35467                                    Depth + 1))
35468       return true;
35469 
35470     KnownUndef <<= ShiftAmt;
35471     KnownZero <<= ShiftAmt;
35472     KnownZero.setLowBits(ShiftAmt);
35473     break;
35474   }
35475   case X86ISD::KSHIFTR: {
35476     SDValue Src = Op.getOperand(0);
35477     auto *Amt = cast<ConstantSDNode>(Op.getOperand(1));
35478     assert(Amt->getAPIntValue().ult(NumElts) && "Out of range shift amount");
35479     unsigned ShiftAmt = Amt->getZExtValue();
35480 
35481     if (ShiftAmt == 0)
35482       return TLO.CombineTo(Op, Src);
35483 
35484     // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
35485     // single shift.  We can do this if the top bits (which are shifted
35486     // out) are never demanded.
35487     if (Src.getOpcode() == X86ISD::KSHIFTL) {
35488       if (!DemandedElts.intersects(APInt::getHighBitsSet(NumElts, ShiftAmt))) {
35489         unsigned C1 = Src.getConstantOperandVal(1);
35490         unsigned NewOpc = X86ISD::KSHIFTR;
35491         int Diff = ShiftAmt - C1;
35492         if (Diff < 0) {
35493           Diff = -Diff;
35494           NewOpc = X86ISD::KSHIFTL;
35495         }
35496 
35497         SDLoc dl(Op);
35498         SDValue NewSA = TLO.DAG.getTargetConstant(Diff, dl, MVT::i8);
35499         return TLO.CombineTo(
35500             Op, TLO.DAG.getNode(NewOpc, dl, VT, Src.getOperand(0), NewSA));
35501       }
35502     }
35503 
35504     APInt DemandedSrc = DemandedElts.shl(ShiftAmt);
35505     if (SimplifyDemandedVectorElts(Src, DemandedSrc, KnownUndef, KnownZero, TLO,
35506                                    Depth + 1))
35507       return true;
35508 
35509     KnownUndef.lshrInPlace(ShiftAmt);
35510     KnownZero.lshrInPlace(ShiftAmt);
35511     KnownZero.setHighBits(ShiftAmt);
35512     break;
35513   }
35514   case X86ISD::CVTSI2P:
35515   case X86ISD::CVTUI2P: {
35516     SDValue Src = Op.getOperand(0);
35517     MVT SrcVT = Src.getSimpleValueType();
35518     APInt SrcUndef, SrcZero;
35519     APInt SrcElts = DemandedElts.zextOrTrunc(SrcVT.getVectorNumElements());
35520     if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
35521                                    Depth + 1))
35522       return true;
35523     break;
35524   }
35525   case X86ISD::PACKSS:
35526   case X86ISD::PACKUS: {
35527     SDValue N0 = Op.getOperand(0);
35528     SDValue N1 = Op.getOperand(1);
35529 
35530     APInt DemandedLHS, DemandedRHS;
35531     getPackDemandedElts(VT, DemandedElts, DemandedLHS, DemandedRHS);
35532 
35533     APInt SrcUndef, SrcZero;
35534     if (SimplifyDemandedVectorElts(N0, DemandedLHS, SrcUndef, SrcZero, TLO,
35535                                    Depth + 1))
35536       return true;
35537     if (SimplifyDemandedVectorElts(N1, DemandedRHS, SrcUndef, SrcZero, TLO,
35538                                    Depth + 1))
35539       return true;
35540 
35541     // Aggressively peek through ops to get at the demanded elts.
35542     // TODO - we should do this for all target/faux shuffles ops.
35543     if (!DemandedElts.isAllOnesValue()) {
35544       APInt DemandedSrcBits =
35545           APInt::getAllOnesValue(N0.getScalarValueSizeInBits());
35546       SDValue NewN0 = SimplifyMultipleUseDemandedBits(
35547           N0, DemandedSrcBits, DemandedLHS, TLO.DAG, Depth + 1);
35548       SDValue NewN1 = SimplifyMultipleUseDemandedBits(
35549           N1, DemandedSrcBits, DemandedRHS, TLO.DAG, Depth + 1);
35550       if (NewN0 || NewN1) {
35551         NewN0 = NewN0 ? NewN0 : N0;
35552         NewN1 = NewN1 ? NewN1 : N1;
35553         return TLO.CombineTo(Op,
35554                              TLO.DAG.getNode(Opc, SDLoc(Op), VT, NewN0, NewN1));
35555       }
35556     }
35557     break;
35558   }
35559   case X86ISD::HADD:
35560   case X86ISD::HSUB:
35561   case X86ISD::FHADD:
35562   case X86ISD::FHSUB: {
35563     APInt DemandedLHS, DemandedRHS;
35564     getHorizDemandedElts(VT, DemandedElts, DemandedLHS, DemandedRHS);
35565 
35566     APInt LHSUndef, LHSZero;
35567     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, LHSUndef,
35568                                    LHSZero, TLO, Depth + 1))
35569       return true;
35570     APInt RHSUndef, RHSZero;
35571     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, RHSUndef,
35572                                    RHSZero, TLO, Depth + 1))
35573       return true;
35574     break;
35575   }
35576   case X86ISD::VTRUNC:
35577   case X86ISD::VTRUNCS:
35578   case X86ISD::VTRUNCUS: {
35579     SDValue Src = Op.getOperand(0);
35580     MVT SrcVT = Src.getSimpleValueType();
35581     APInt DemandedSrc = DemandedElts.zextOrTrunc(SrcVT.getVectorNumElements());
35582     APInt SrcUndef, SrcZero;
35583     if (SimplifyDemandedVectorElts(Src, DemandedSrc, SrcUndef, SrcZero, TLO,
35584                                    Depth + 1))
35585       return true;
35586     KnownZero = SrcZero.zextOrTrunc(NumElts);
35587     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
35588     break;
35589   }
35590   case X86ISD::BLENDV: {
35591     APInt SelUndef, SelZero;
35592     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, SelUndef,
35593                                    SelZero, TLO, Depth + 1))
35594       return true;
35595 
35596     // TODO: Use SelZero to adjust LHS/RHS DemandedElts.
35597     APInt LHSUndef, LHSZero;
35598     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, LHSUndef,
35599                                    LHSZero, TLO, Depth + 1))
35600       return true;
35601 
35602     APInt RHSUndef, RHSZero;
35603     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedElts, RHSUndef,
35604                                    RHSZero, TLO, Depth + 1))
35605       return true;
35606 
35607     KnownZero = LHSZero & RHSZero;
35608     KnownUndef = LHSUndef & RHSUndef;
35609     break;
35610   }
35611   case X86ISD::VBROADCAST: {
35612     SDValue Src = Op.getOperand(0);
35613     MVT SrcVT = Src.getSimpleValueType();
35614     if (!SrcVT.isVector())
35615       return false;
35616     // Don't bother broadcasting if we just need the 0'th element.
35617     if (DemandedElts == 1) {
35618       if (Src.getValueType() != VT)
35619         Src = widenSubVector(VT.getSimpleVT(), Src, false, Subtarget, TLO.DAG,
35620                              SDLoc(Op));
35621       return TLO.CombineTo(Op, Src);
35622     }
35623     APInt SrcUndef, SrcZero;
35624     APInt SrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(), 0);
35625     if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
35626                                    Depth + 1))
35627       return true;
35628     break;
35629   }
35630   case X86ISD::VPERMV: {
35631     SDValue Mask = Op.getOperand(0);
35632     APInt MaskUndef, MaskZero;
35633     if (SimplifyDemandedVectorElts(Mask, DemandedElts, MaskUndef, MaskZero, TLO,
35634                                    Depth + 1))
35635       return true;
35636     break;
35637   }
35638   case X86ISD::PSHUFB:
35639   case X86ISD::VPERMV3:
35640   case X86ISD::VPERMILPV: {
35641     SDValue Mask = Op.getOperand(1);
35642     APInt MaskUndef, MaskZero;
35643     if (SimplifyDemandedVectorElts(Mask, DemandedElts, MaskUndef, MaskZero, TLO,
35644                                    Depth + 1))
35645       return true;
35646     break;
35647   }
35648   case X86ISD::VPPERM:
35649   case X86ISD::VPERMIL2: {
35650     SDValue Mask = Op.getOperand(2);
35651     APInt MaskUndef, MaskZero;
35652     if (SimplifyDemandedVectorElts(Mask, DemandedElts, MaskUndef, MaskZero, TLO,
35653                                    Depth + 1))
35654       return true;
35655     break;
35656   }
35657   }
35658 
35659   // For 256/512-bit ops that are 128/256-bit ops glued together, if we do not
35660   // demand any of the high elements, then narrow the op to 128/256-bits: e.g.
35661   // (op ymm0, ymm1) --> insert undef, (op xmm0, xmm1), 0
35662   if ((VT.is256BitVector() || VT.is512BitVector()) &&
35663       DemandedElts.lshr(NumElts / 2) == 0) {
35664     unsigned SizeInBits = VT.getSizeInBits();
35665     unsigned ExtSizeInBits = SizeInBits / 2;
35666 
35667     // See if 512-bit ops only use the bottom 128-bits.
35668     if (VT.is512BitVector() && DemandedElts.lshr(NumElts / 4) == 0)
35669       ExtSizeInBits = SizeInBits / 4;
35670 
35671     switch (Opc) {
35672       // Zero upper elements.
35673     case X86ISD::VZEXT_MOVL: {
35674       SDLoc DL(Op);
35675       SDValue Ext0 =
35676           extractSubVector(Op.getOperand(0), 0, TLO.DAG, DL, ExtSizeInBits);
35677       SDValue ExtOp =
35678           TLO.DAG.getNode(Opc, DL, Ext0.getValueType(), Ext0);
35679       SDValue UndefVec = TLO.DAG.getUNDEF(VT);
35680       SDValue Insert =
35681           insertSubVector(UndefVec, ExtOp, 0, TLO.DAG, DL, ExtSizeInBits);
35682       return TLO.CombineTo(Op, Insert);
35683     }
35684       // Subvector broadcast.
35685     case X86ISD::SUBV_BROADCAST: {
35686       SDLoc DL(Op);
35687       SDValue Src = Op.getOperand(0);
35688       if (Src.getValueSizeInBits() > ExtSizeInBits)
35689         Src = extractSubVector(Src, 0, TLO.DAG, DL, ExtSizeInBits);
35690       else if (Src.getValueSizeInBits() < ExtSizeInBits) {
35691         MVT SrcSVT = Src.getSimpleValueType().getScalarType();
35692         MVT SrcVT =
35693             MVT::getVectorVT(SrcSVT, ExtSizeInBits / SrcSVT.getSizeInBits());
35694         Src = TLO.DAG.getNode(X86ISD::SUBV_BROADCAST, DL, SrcVT, Src);
35695       }
35696       return TLO.CombineTo(Op, insertSubVector(TLO.DAG.getUNDEF(VT), Src, 0,
35697                                                TLO.DAG, DL, ExtSizeInBits));
35698     }
35699       // Byte shifts by immediate.
35700     case X86ISD::VSHLDQ:
35701     case X86ISD::VSRLDQ:
35702       // Shift by uniform.
35703     case X86ISD::VSHL:
35704     case X86ISD::VSRL:
35705     case X86ISD::VSRA:
35706       // Shift by immediate.
35707     case X86ISD::VSHLI:
35708     case X86ISD::VSRLI:
35709     case X86ISD::VSRAI: {
35710       SDLoc DL(Op);
35711       SDValue Ext0 =
35712           extractSubVector(Op.getOperand(0), 0, TLO.DAG, DL, ExtSizeInBits);
35713       SDValue ExtOp =
35714           TLO.DAG.getNode(Opc, DL, Ext0.getValueType(), Ext0, Op.getOperand(1));
35715       SDValue UndefVec = TLO.DAG.getUNDEF(VT);
35716       SDValue Insert =
35717           insertSubVector(UndefVec, ExtOp, 0, TLO.DAG, DL, ExtSizeInBits);
35718       return TLO.CombineTo(Op, Insert);
35719     }
35720     case X86ISD::VPERMI: {
35721       // Simplify PERMPD/PERMQ to extract_subvector.
35722       // TODO: This should be done in shuffle combining.
35723       if (VT == MVT::v4f64 || VT == MVT::v4i64) {
35724         SmallVector<int, 4> Mask;
35725         DecodeVPERMMask(NumElts, Op.getConstantOperandVal(1), Mask);
35726         if (isUndefOrEqual(Mask[0], 2) && isUndefOrEqual(Mask[1], 3)) {
35727           SDLoc DL(Op);
35728           SDValue Ext = extractSubVector(Op.getOperand(0), 2, TLO.DAG, DL, 128);
35729           SDValue UndefVec = TLO.DAG.getUNDEF(VT);
35730           SDValue Insert = insertSubVector(UndefVec, Ext, 0, TLO.DAG, DL, 128);
35731           return TLO.CombineTo(Op, Insert);
35732         }
35733       }
35734       break;
35735     }
35736       // Target Shuffles.
35737     case X86ISD::PSHUFB:
35738     case X86ISD::UNPCKL:
35739     case X86ISD::UNPCKH:
35740       // Saturated Packs.
35741     case X86ISD::PACKSS:
35742     case X86ISD::PACKUS:
35743       // Horizontal Ops.
35744     case X86ISD::HADD:
35745     case X86ISD::HSUB:
35746     case X86ISD::FHADD:
35747     case X86ISD::FHSUB: {
35748       SDLoc DL(Op);
35749       MVT ExtVT = VT.getSimpleVT();
35750       ExtVT = MVT::getVectorVT(ExtVT.getScalarType(),
35751                                ExtSizeInBits / ExtVT.getScalarSizeInBits());
35752       SDValue Ext0 =
35753           extractSubVector(Op.getOperand(0), 0, TLO.DAG, DL, ExtSizeInBits);
35754       SDValue Ext1 =
35755           extractSubVector(Op.getOperand(1), 0, TLO.DAG, DL, ExtSizeInBits);
35756       SDValue ExtOp = TLO.DAG.getNode(Opc, DL, ExtVT, Ext0, Ext1);
35757       SDValue UndefVec = TLO.DAG.getUNDEF(VT);
35758       SDValue Insert =
35759           insertSubVector(UndefVec, ExtOp, 0, TLO.DAG, DL, ExtSizeInBits);
35760       return TLO.CombineTo(Op, Insert);
35761     }
35762     }
35763   }
35764 
35765   // Get target/faux shuffle mask.
35766   APInt OpUndef, OpZero;
35767   SmallVector<int, 64> OpMask;
35768   SmallVector<SDValue, 2> OpInputs;
35769   if (!getTargetShuffleInputs(Op, DemandedElts, OpInputs, OpMask, OpUndef,
35770                               OpZero, TLO.DAG, Depth, false))
35771     return false;
35772 
35773   // Shuffle inputs must be the same size as the result.
35774   if (OpMask.size() != (unsigned)NumElts ||
35775       llvm::any_of(OpInputs, [VT](SDValue V) {
35776         return VT.getSizeInBits() != V.getValueSizeInBits() ||
35777                !V.getValueType().isVector();
35778       }))
35779     return false;
35780 
35781   KnownZero = OpZero;
35782   KnownUndef = OpUndef;
35783 
35784   // Check if shuffle mask can be simplified to undef/zero/identity.
35785   int NumSrcs = OpInputs.size();
35786   for (int i = 0; i != NumElts; ++i)
35787     if (!DemandedElts[i])
35788       OpMask[i] = SM_SentinelUndef;
35789 
35790   if (isUndefInRange(OpMask, 0, NumElts)) {
35791     KnownUndef.setAllBits();
35792     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
35793   }
35794   if (isUndefOrZeroInRange(OpMask, 0, NumElts)) {
35795     KnownZero.setAllBits();
35796     return TLO.CombineTo(
35797         Op, getZeroVector(VT.getSimpleVT(), Subtarget, TLO.DAG, SDLoc(Op)));
35798   }
35799   for (int Src = 0; Src != NumSrcs; ++Src)
35800     if (isSequentialOrUndefInRange(OpMask, 0, NumElts, Src * NumElts))
35801       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, OpInputs[Src]));
35802 
35803   // Attempt to simplify inputs.
35804   for (int Src = 0; Src != NumSrcs; ++Src) {
35805     // TODO: Support inputs of different types.
35806     if (OpInputs[Src].getValueType() != VT)
35807       continue;
35808 
35809     int Lo = Src * NumElts;
35810     APInt SrcElts = APInt::getNullValue(NumElts);
35811     for (int i = 0; i != NumElts; ++i)
35812       if (DemandedElts[i]) {
35813         int M = OpMask[i] - Lo;
35814         if (0 <= M && M < NumElts)
35815           SrcElts.setBit(M);
35816       }
35817 
35818     // TODO - Propagate input undef/zero elts.
35819     APInt SrcUndef, SrcZero;
35820     if (SimplifyDemandedVectorElts(OpInputs[Src], SrcElts, SrcUndef, SrcZero,
35821                                    TLO, Depth + 1))
35822       return true;
35823   }
35824 
35825   // If we don't demand all elements, then attempt to combine to a simpler
35826   // shuffle.
35827   // TODO: Handle other depths, but first we need to handle the fact that
35828   // it might combine to the same shuffle.
35829   if (!DemandedElts.isAllOnesValue() && Depth == 0) {
35830     SmallVector<int, 64> DemandedMask(NumElts, SM_SentinelUndef);
35831     for (int i = 0; i != NumElts; ++i)
35832       if (DemandedElts[i])
35833         DemandedMask[i] = i;
35834 
35835     SDValue NewShuffle = combineX86ShufflesRecursively(
35836         {Op}, 0, Op, DemandedMask, {}, Depth, /*HasVarMask*/ false,
35837         /*AllowVarMask*/ true, TLO.DAG, Subtarget);
35838     if (NewShuffle)
35839       return TLO.CombineTo(Op, NewShuffle);
35840   }
35841 
35842   return false;
35843 }
35844 
35845 bool X86TargetLowering::SimplifyDemandedBitsForTargetNode(
35846     SDValue Op, const APInt &OriginalDemandedBits,
35847     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
35848     unsigned Depth) const {
35849   EVT VT = Op.getValueType();
35850   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
35851   unsigned Opc = Op.getOpcode();
35852   switch(Opc) {
35853   case X86ISD::PMULDQ:
35854   case X86ISD::PMULUDQ: {
35855     // PMULDQ/PMULUDQ only uses lower 32 bits from each vector element.
35856     KnownBits KnownOp;
35857     SDValue LHS = Op.getOperand(0);
35858     SDValue RHS = Op.getOperand(1);
35859     // FIXME: Can we bound this better?
35860     APInt DemandedMask = APInt::getLowBitsSet(64, 32);
35861     if (SimplifyDemandedBits(LHS, DemandedMask, OriginalDemandedElts, KnownOp,
35862                              TLO, Depth + 1))
35863       return true;
35864     if (SimplifyDemandedBits(RHS, DemandedMask, OriginalDemandedElts, KnownOp,
35865                              TLO, Depth + 1))
35866       return true;
35867 
35868     // Aggressively peek through ops to get at the demanded low bits.
35869     SDValue DemandedLHS = SimplifyMultipleUseDemandedBits(
35870         LHS, DemandedMask, OriginalDemandedElts, TLO.DAG, Depth + 1);
35871     SDValue DemandedRHS = SimplifyMultipleUseDemandedBits(
35872         RHS, DemandedMask, OriginalDemandedElts, TLO.DAG, Depth + 1);
35873     if (DemandedLHS || DemandedRHS) {
35874       DemandedLHS = DemandedLHS ? DemandedLHS : LHS;
35875       DemandedRHS = DemandedRHS ? DemandedRHS : RHS;
35876       return TLO.CombineTo(
35877           Op, TLO.DAG.getNode(Opc, SDLoc(Op), VT, DemandedLHS, DemandedRHS));
35878     }
35879     break;
35880   }
35881   case X86ISD::VSHLI: {
35882     SDValue Op0 = Op.getOperand(0);
35883 
35884     unsigned ShAmt = Op.getConstantOperandVal(1);
35885     if (ShAmt >= BitWidth)
35886       break;
35887 
35888     APInt DemandedMask = OriginalDemandedBits.lshr(ShAmt);
35889 
35890     // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
35891     // single shift.  We can do this if the bottom bits (which are shifted
35892     // out) are never demanded.
35893     if (Op0.getOpcode() == X86ISD::VSRLI &&
35894         OriginalDemandedBits.countTrailingZeros() >= ShAmt) {
35895       unsigned Shift2Amt = Op0.getConstantOperandVal(1);
35896       if (Shift2Amt < BitWidth) {
35897         int Diff = ShAmt - Shift2Amt;
35898         if (Diff == 0)
35899           return TLO.CombineTo(Op, Op0.getOperand(0));
35900 
35901         unsigned NewOpc = Diff < 0 ? X86ISD::VSRLI : X86ISD::VSHLI;
35902         SDValue NewShift = TLO.DAG.getNode(
35903             NewOpc, SDLoc(Op), VT, Op0.getOperand(0),
35904             TLO.DAG.getTargetConstant(std::abs(Diff), SDLoc(Op), MVT::i8));
35905         return TLO.CombineTo(Op, NewShift);
35906       }
35907     }
35908 
35909     if (SimplifyDemandedBits(Op0, DemandedMask, OriginalDemandedElts, Known,
35910                              TLO, Depth + 1))
35911       return true;
35912 
35913     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
35914     Known.Zero <<= ShAmt;
35915     Known.One <<= ShAmt;
35916 
35917     // Low bits known zero.
35918     Known.Zero.setLowBits(ShAmt);
35919     break;
35920   }
35921   case X86ISD::VSRLI: {
35922     unsigned ShAmt = Op.getConstantOperandVal(1);
35923     if (ShAmt >= BitWidth)
35924       break;
35925 
35926     APInt DemandedMask = OriginalDemandedBits << ShAmt;
35927 
35928     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
35929                              OriginalDemandedElts, Known, TLO, Depth + 1))
35930       return true;
35931 
35932     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
35933     Known.Zero.lshrInPlace(ShAmt);
35934     Known.One.lshrInPlace(ShAmt);
35935 
35936     // High bits known zero.
35937     Known.Zero.setHighBits(ShAmt);
35938     break;
35939   }
35940   case X86ISD::VSRAI: {
35941     SDValue Op0 = Op.getOperand(0);
35942     SDValue Op1 = Op.getOperand(1);
35943 
35944     unsigned ShAmt = cast<ConstantSDNode>(Op1)->getZExtValue();
35945     if (ShAmt >= BitWidth)
35946       break;
35947 
35948     APInt DemandedMask = OriginalDemandedBits << ShAmt;
35949 
35950     // If we just want the sign bit then we don't need to shift it.
35951     if (OriginalDemandedBits.isSignMask())
35952       return TLO.CombineTo(Op, Op0);
35953 
35954     // fold (VSRAI (VSHLI X, C1), C1) --> X iff NumSignBits(X) > C1
35955     if (Op0.getOpcode() == X86ISD::VSHLI &&
35956         Op.getOperand(1) == Op0.getOperand(1)) {
35957       SDValue Op00 = Op0.getOperand(0);
35958       unsigned NumSignBits =
35959           TLO.DAG.ComputeNumSignBits(Op00, OriginalDemandedElts);
35960       if (ShAmt < NumSignBits)
35961         return TLO.CombineTo(Op, Op00);
35962     }
35963 
35964     // If any of the demanded bits are produced by the sign extension, we also
35965     // demand the input sign bit.
35966     if (OriginalDemandedBits.countLeadingZeros() < ShAmt)
35967       DemandedMask.setSignBit();
35968 
35969     if (SimplifyDemandedBits(Op0, DemandedMask, OriginalDemandedElts, Known,
35970                              TLO, Depth + 1))
35971       return true;
35972 
35973     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
35974     Known.Zero.lshrInPlace(ShAmt);
35975     Known.One.lshrInPlace(ShAmt);
35976 
35977     // If the input sign bit is known to be zero, or if none of the top bits
35978     // are demanded, turn this into an unsigned shift right.
35979     if (Known.Zero[BitWidth - ShAmt - 1] ||
35980         OriginalDemandedBits.countLeadingZeros() >= ShAmt)
35981       return TLO.CombineTo(
35982           Op, TLO.DAG.getNode(X86ISD::VSRLI, SDLoc(Op), VT, Op0, Op1));
35983 
35984     // High bits are known one.
35985     if (Known.One[BitWidth - ShAmt - 1])
35986       Known.One.setHighBits(ShAmt);
35987     break;
35988   }
35989   case X86ISD::PEXTRB:
35990   case X86ISD::PEXTRW: {
35991     SDValue Vec = Op.getOperand(0);
35992     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
35993     MVT VecVT = Vec.getSimpleValueType();
35994     unsigned NumVecElts = VecVT.getVectorNumElements();
35995 
35996     if (CIdx && CIdx->getAPIntValue().ult(NumVecElts)) {
35997       unsigned Idx = CIdx->getZExtValue();
35998       unsigned VecBitWidth = VecVT.getScalarSizeInBits();
35999 
36000       // If we demand no bits from the vector then we must have demanded
36001       // bits from the implict zext - simplify to zero.
36002       APInt DemandedVecBits = OriginalDemandedBits.trunc(VecBitWidth);
36003       if (DemandedVecBits == 0)
36004         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
36005 
36006       APInt KnownUndef, KnownZero;
36007       APInt DemandedVecElts = APInt::getOneBitSet(NumVecElts, Idx);
36008       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
36009                                      KnownZero, TLO, Depth + 1))
36010         return true;
36011 
36012       KnownBits KnownVec;
36013       if (SimplifyDemandedBits(Vec, DemandedVecBits, DemandedVecElts,
36014                                KnownVec, TLO, Depth + 1))
36015         return true;
36016 
36017       if (SDValue V = SimplifyMultipleUseDemandedBits(
36018               Vec, DemandedVecBits, DemandedVecElts, TLO.DAG, Depth + 1))
36019         return TLO.CombineTo(
36020             Op, TLO.DAG.getNode(Opc, SDLoc(Op), VT, V, Op.getOperand(1)));
36021 
36022       Known = KnownVec.zext(BitWidth, true);
36023       return false;
36024     }
36025     break;
36026   }
36027   case X86ISD::PINSRB:
36028   case X86ISD::PINSRW: {
36029     SDValue Vec = Op.getOperand(0);
36030     SDValue Scl = Op.getOperand(1);
36031     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
36032     MVT VecVT = Vec.getSimpleValueType();
36033 
36034     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
36035       unsigned Idx = CIdx->getZExtValue();
36036       if (!OriginalDemandedElts[Idx])
36037         return TLO.CombineTo(Op, Vec);
36038 
36039       KnownBits KnownVec;
36040       APInt DemandedVecElts(OriginalDemandedElts);
36041       DemandedVecElts.clearBit(Idx);
36042       if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts,
36043                                KnownVec, TLO, Depth + 1))
36044         return true;
36045 
36046       KnownBits KnownScl;
36047       unsigned NumSclBits = Scl.getScalarValueSizeInBits();
36048       APInt DemandedSclBits = OriginalDemandedBits.zext(NumSclBits);
36049       if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
36050         return true;
36051 
36052       KnownScl = KnownScl.trunc(VecVT.getScalarSizeInBits());
36053       Known.One = KnownVec.One & KnownScl.One;
36054       Known.Zero = KnownVec.Zero & KnownScl.Zero;
36055       return false;
36056     }
36057     break;
36058   }
36059   case X86ISD::PACKSS:
36060     // PACKSS saturates to MIN/MAX integer values. So if we just want the
36061     // sign bit then we can just ask for the source operands sign bit.
36062     // TODO - add known bits handling.
36063     if (OriginalDemandedBits.isSignMask()) {
36064       APInt DemandedLHS, DemandedRHS;
36065       getPackDemandedElts(VT, OriginalDemandedElts, DemandedLHS, DemandedRHS);
36066 
36067       KnownBits KnownLHS, KnownRHS;
36068       APInt SignMask = APInt::getSignMask(BitWidth * 2);
36069       if (SimplifyDemandedBits(Op.getOperand(0), SignMask, DemandedLHS,
36070                                KnownLHS, TLO, Depth + 1))
36071         return true;
36072       if (SimplifyDemandedBits(Op.getOperand(1), SignMask, DemandedRHS,
36073                                KnownRHS, TLO, Depth + 1))
36074         return true;
36075     }
36076     // TODO - add general PACKSS/PACKUS SimplifyDemandedBits support.
36077     break;
36078   case X86ISD::PCMPGT:
36079     // icmp sgt(0, R) == ashr(R, BitWidth-1).
36080     // iff we only need the sign bit then we can use R directly.
36081     if (OriginalDemandedBits.isSignMask() &&
36082         ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()))
36083       return TLO.CombineTo(Op, Op.getOperand(1));
36084     break;
36085   case X86ISD::MOVMSK: {
36086     SDValue Src = Op.getOperand(0);
36087     MVT SrcVT = Src.getSimpleValueType();
36088     unsigned SrcBits = SrcVT.getScalarSizeInBits();
36089     unsigned NumElts = SrcVT.getVectorNumElements();
36090 
36091     // If we don't need the sign bits at all just return zero.
36092     if (OriginalDemandedBits.countTrailingZeros() >= NumElts)
36093       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
36094 
36095     // Only demand the vector elements of the sign bits we need.
36096     APInt KnownUndef, KnownZero;
36097     APInt DemandedElts = OriginalDemandedBits.zextOrTrunc(NumElts);
36098     if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
36099                                    TLO, Depth + 1))
36100       return true;
36101 
36102     Known.Zero = KnownZero.zextOrSelf(BitWidth);
36103     Known.Zero.setHighBits(BitWidth - NumElts);
36104 
36105     // MOVMSK only uses the MSB from each vector element.
36106     KnownBits KnownSrc;
36107     if (SimplifyDemandedBits(Src, APInt::getSignMask(SrcBits), DemandedElts,
36108                              KnownSrc, TLO, Depth + 1))
36109       return true;
36110 
36111     if (KnownSrc.One[SrcBits - 1])
36112       Known.One.setLowBits(NumElts);
36113     else if (KnownSrc.Zero[SrcBits - 1])
36114       Known.Zero.setLowBits(NumElts);
36115     return false;
36116   }
36117   }
36118 
36119   return TargetLowering::SimplifyDemandedBitsForTargetNode(
36120       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
36121 }
36122 
36123 SDValue X86TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
36124     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
36125     SelectionDAG &DAG, unsigned Depth) const {
36126   int NumElts = DemandedElts.getBitWidth();
36127   unsigned Opc = Op.getOpcode();
36128   EVT VT = Op.getValueType();
36129 
36130   switch (Opc) {
36131   case X86ISD::PINSRB:
36132   case X86ISD::PINSRW: {
36133     // If we don't demand the inserted element, return the base vector.
36134     SDValue Vec = Op.getOperand(0);
36135     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
36136     MVT VecVT = Vec.getSimpleValueType();
36137     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
36138         !DemandedElts[CIdx->getZExtValue()])
36139       return Vec;
36140      break;
36141   }
36142   case X86ISD::PCMPGT:
36143     // icmp sgt(0, R) == ashr(R, BitWidth-1).
36144     // iff we only need the sign bit then we can use R directly.
36145     if (DemandedBits.isSignMask() &&
36146         ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()))
36147       return Op.getOperand(1);
36148     break;
36149   }
36150 
36151   APInt ShuffleUndef, ShuffleZero;
36152   SmallVector<int, 16> ShuffleMask;
36153   SmallVector<SDValue, 2> ShuffleOps;
36154   if (getTargetShuffleInputs(Op, DemandedElts, ShuffleOps, ShuffleMask,
36155                              ShuffleUndef, ShuffleZero, DAG, Depth, false)) {
36156     // If all the demanded elts are from one operand and are inline,
36157     // then we can use the operand directly.
36158     int NumOps = ShuffleOps.size();
36159     if (ShuffleMask.size() == (unsigned)NumElts &&
36160         llvm::all_of(ShuffleOps, [VT](SDValue V) {
36161           return VT.getSizeInBits() == V.getValueSizeInBits();
36162         })) {
36163 
36164       if (DemandedElts.isSubsetOf(ShuffleUndef))
36165         return DAG.getUNDEF(VT);
36166       if (DemandedElts.isSubsetOf(ShuffleUndef | ShuffleZero))
36167         return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(Op));
36168 
36169       // Bitmask that indicates which ops have only been accessed 'inline'.
36170       APInt IdentityOp = APInt::getAllOnesValue(NumOps);
36171       for (int i = 0; i != NumElts; ++i) {
36172         int M = ShuffleMask[i];
36173         if (!DemandedElts[i] || ShuffleUndef[i])
36174           continue;
36175         int Op = M / NumElts;
36176         int Index = M % NumElts;
36177         if (M < 0 || Index != i) {
36178           IdentityOp.clearAllBits();
36179           break;
36180         }
36181         IdentityOp &= APInt::getOneBitSet(NumOps, Op);
36182         if (IdentityOp == 0)
36183           break;
36184       }
36185       assert((IdentityOp == 0 || IdentityOp.countPopulation() == 1) &&
36186              "Multiple identity shuffles detected");
36187 
36188       if (IdentityOp != 0)
36189         return DAG.getBitcast(VT, ShuffleOps[IdentityOp.countTrailingZeros()]);
36190     }
36191   }
36192 
36193   return TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
36194       Op, DemandedBits, DemandedElts, DAG, Depth);
36195 }
36196 
36197 // Helper to peek through bitops/setcc to determine size of source vector.
36198 // Allows combineBitcastvxi1 to determine what size vector generated a <X x i1>.
36199 static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size) {
36200   switch (Src.getOpcode()) {
36201   case ISD::SETCC:
36202     return Src.getOperand(0).getValueSizeInBits() == Size;
36203   case ISD::AND:
36204   case ISD::XOR:
36205   case ISD::OR:
36206     return checkBitcastSrcVectorSize(Src.getOperand(0), Size) &&
36207            checkBitcastSrcVectorSize(Src.getOperand(1), Size);
36208   }
36209   return false;
36210 }
36211 
36212 // Helper to push sign extension of vXi1 SETCC result through bitops.
36213 static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT,
36214                                           SDValue Src, const SDLoc &DL) {
36215   switch (Src.getOpcode()) {
36216   case ISD::SETCC:
36217     return DAG.getNode(ISD::SIGN_EXTEND, DL, SExtVT, Src);
36218   case ISD::AND:
36219   case ISD::XOR:
36220   case ISD::OR:
36221     return DAG.getNode(
36222         Src.getOpcode(), DL, SExtVT,
36223         signExtendBitcastSrcVector(DAG, SExtVT, Src.getOperand(0), DL),
36224         signExtendBitcastSrcVector(DAG, SExtVT, Src.getOperand(1), DL));
36225   }
36226   llvm_unreachable("Unexpected node type for vXi1 sign extension");
36227 }
36228 
36229 // Try to match patterns such as
36230 // (i16 bitcast (v16i1 x))
36231 // ->
36232 // (i16 movmsk (16i8 sext (v16i1 x)))
36233 // before the illegal vector is scalarized on subtargets that don't have legal
36234 // vxi1 types.
36235 static SDValue combineBitcastvxi1(SelectionDAG &DAG, EVT VT, SDValue Src,
36236                                   const SDLoc &DL,
36237                                   const X86Subtarget &Subtarget) {
36238   EVT SrcVT = Src.getValueType();
36239   if (!SrcVT.isSimple() || SrcVT.getScalarType() != MVT::i1)
36240     return SDValue();
36241 
36242   // If the input is a truncate from v16i8 or v32i8 go ahead and use a
36243   // movmskb even with avx512. This will be better than truncating to vXi1 and
36244   // using a kmov. This can especially help KNL if the input is a v16i8/v32i8
36245   // vpcmpeqb/vpcmpgtb.
36246   bool IsTruncated = Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse() &&
36247                      (Src.getOperand(0).getValueType() == MVT::v16i8 ||
36248                       Src.getOperand(0).getValueType() == MVT::v32i8 ||
36249                       Src.getOperand(0).getValueType() == MVT::v64i8);
36250 
36251   // With AVX512 vxi1 types are legal and we prefer using k-regs.
36252   // MOVMSK is supported in SSE2 or later.
36253   if (!Subtarget.hasSSE2() || (Subtarget.hasAVX512() && !IsTruncated))
36254     return SDValue();
36255 
36256   // There are MOVMSK flavors for types v16i8, v32i8, v4f32, v8f32, v4f64 and
36257   // v8f64. So all legal 128-bit and 256-bit vectors are covered except for
36258   // v8i16 and v16i16.
36259   // For these two cases, we can shuffle the upper element bytes to a
36260   // consecutive sequence at the start of the vector and treat the results as
36261   // v16i8 or v32i8, and for v16i8 this is the preferable solution. However,
36262   // for v16i16 this is not the case, because the shuffle is expensive, so we
36263   // avoid sign-extending to this type entirely.
36264   // For example, t0 := (v8i16 sext(v8i1 x)) needs to be shuffled as:
36265   // (v16i8 shuffle <0,2,4,6,8,10,12,14,u,u,...,u> (v16i8 bitcast t0), undef)
36266   MVT SExtVT;
36267   bool PropagateSExt = false;
36268   switch (SrcVT.getSimpleVT().SimpleTy) {
36269   default:
36270     return SDValue();
36271   case MVT::v2i1:
36272     SExtVT = MVT::v2i64;
36273     break;
36274   case MVT::v4i1:
36275     SExtVT = MVT::v4i32;
36276     // For cases such as (i4 bitcast (v4i1 setcc v4i64 v1, v2))
36277     // sign-extend to a 256-bit operation to avoid truncation.
36278     if (Subtarget.hasAVX() && checkBitcastSrcVectorSize(Src, 256)) {
36279       SExtVT = MVT::v4i64;
36280       PropagateSExt = true;
36281     }
36282     break;
36283   case MVT::v8i1:
36284     SExtVT = MVT::v8i16;
36285     // For cases such as (i8 bitcast (v8i1 setcc v8i32 v1, v2)),
36286     // sign-extend to a 256-bit operation to match the compare.
36287     // If the setcc operand is 128-bit, prefer sign-extending to 128-bit over
36288     // 256-bit because the shuffle is cheaper than sign extending the result of
36289     // the compare.
36290     if (Subtarget.hasAVX() && (checkBitcastSrcVectorSize(Src, 256) ||
36291                                checkBitcastSrcVectorSize(Src, 512))) {
36292       SExtVT = MVT::v8i32;
36293       PropagateSExt = true;
36294     }
36295     break;
36296   case MVT::v16i1:
36297     SExtVT = MVT::v16i8;
36298     // For the case (i16 bitcast (v16i1 setcc v16i16 v1, v2)),
36299     // it is not profitable to sign-extend to 256-bit because this will
36300     // require an extra cross-lane shuffle which is more expensive than
36301     // truncating the result of the compare to 128-bits.
36302     break;
36303   case MVT::v32i1:
36304     SExtVT = MVT::v32i8;
36305     break;
36306   case MVT::v64i1:
36307     // If we have AVX512F, but not AVX512BW and the input is truncated from
36308     // v64i8 checked earlier. Then split the input and make two pmovmskbs.
36309     if (Subtarget.hasAVX512() && !Subtarget.hasBWI()) {
36310       SExtVT = MVT::v64i8;
36311       break;
36312     }
36313     return SDValue();
36314   };
36315 
36316   SDValue V = PropagateSExt ? signExtendBitcastSrcVector(DAG, SExtVT, Src, DL)
36317                             : DAG.getNode(ISD::SIGN_EXTEND, DL, SExtVT, Src);
36318 
36319   if (SExtVT == MVT::v16i8 || SExtVT == MVT::v32i8 || SExtVT == MVT::v64i8) {
36320     V = getPMOVMSKB(DL, V, DAG, Subtarget);
36321   } else {
36322     if (SExtVT == MVT::v8i16)
36323       V = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, V,
36324                       DAG.getUNDEF(MVT::v8i16));
36325     V = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
36326   }
36327 
36328   EVT IntVT =
36329       EVT::getIntegerVT(*DAG.getContext(), SrcVT.getVectorNumElements());
36330   V = DAG.getZExtOrTrunc(V, DL, IntVT);
36331   return DAG.getBitcast(VT, V);
36332 }
36333 
36334 // Convert a vXi1 constant build vector to the same width scalar integer.
36335 static SDValue combinevXi1ConstantToInteger(SDValue Op, SelectionDAG &DAG) {
36336   EVT SrcVT = Op.getValueType();
36337   assert(SrcVT.getVectorElementType() == MVT::i1 &&
36338          "Expected a vXi1 vector");
36339   assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
36340          "Expected a constant build vector");
36341 
36342   APInt Imm(SrcVT.getVectorNumElements(), 0);
36343   for (unsigned Idx = 0, e = Op.getNumOperands(); Idx < e; ++Idx) {
36344     SDValue In = Op.getOperand(Idx);
36345     if (!In.isUndef() && (cast<ConstantSDNode>(In)->getZExtValue() & 0x1))
36346       Imm.setBit(Idx);
36347   }
36348   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), Imm.getBitWidth());
36349   return DAG.getConstant(Imm, SDLoc(Op), IntVT);
36350 }
36351 
36352 static SDValue combineCastedMaskArithmetic(SDNode *N, SelectionDAG &DAG,
36353                                            TargetLowering::DAGCombinerInfo &DCI,
36354                                            const X86Subtarget &Subtarget) {
36355   assert(N->getOpcode() == ISD::BITCAST && "Expected a bitcast");
36356 
36357   if (!DCI.isBeforeLegalizeOps())
36358     return SDValue();
36359 
36360   // Only do this if we have k-registers.
36361   if (!Subtarget.hasAVX512())
36362     return SDValue();
36363 
36364   EVT DstVT = N->getValueType(0);
36365   SDValue Op = N->getOperand(0);
36366   EVT SrcVT = Op.getValueType();
36367 
36368   if (!Op.hasOneUse())
36369     return SDValue();
36370 
36371   // Look for logic ops.
36372   if (Op.getOpcode() != ISD::AND &&
36373       Op.getOpcode() != ISD::OR &&
36374       Op.getOpcode() != ISD::XOR)
36375     return SDValue();
36376 
36377   // Make sure we have a bitcast between mask registers and a scalar type.
36378   if (!(SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
36379         DstVT.isScalarInteger()) &&
36380       !(DstVT.isVector() && DstVT.getVectorElementType() == MVT::i1 &&
36381         SrcVT.isScalarInteger()))
36382     return SDValue();
36383 
36384   SDValue LHS = Op.getOperand(0);
36385   SDValue RHS = Op.getOperand(1);
36386 
36387   if (LHS.hasOneUse() && LHS.getOpcode() == ISD::BITCAST &&
36388       LHS.getOperand(0).getValueType() == DstVT)
36389     return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT, LHS.getOperand(0),
36390                        DAG.getBitcast(DstVT, RHS));
36391 
36392   if (RHS.hasOneUse() && RHS.getOpcode() == ISD::BITCAST &&
36393       RHS.getOperand(0).getValueType() == DstVT)
36394     return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT,
36395                        DAG.getBitcast(DstVT, LHS), RHS.getOperand(0));
36396 
36397   // If the RHS is a vXi1 build vector, this is a good reason to flip too.
36398   // Most of these have to move a constant from the scalar domain anyway.
36399   if (ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) {
36400     RHS = combinevXi1ConstantToInteger(RHS, DAG);
36401     return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT,
36402                        DAG.getBitcast(DstVT, LHS), RHS);
36403   }
36404 
36405   return SDValue();
36406 }
36407 
36408 static SDValue createMMXBuildVector(BuildVectorSDNode *BV, SelectionDAG &DAG,
36409                                     const X86Subtarget &Subtarget) {
36410   SDLoc DL(BV);
36411   unsigned NumElts = BV->getNumOperands();
36412   SDValue Splat = BV->getSplatValue();
36413 
36414   // Build MMX element from integer GPR or SSE float values.
36415   auto CreateMMXElement = [&](SDValue V) {
36416     if (V.isUndef())
36417       return DAG.getUNDEF(MVT::x86mmx);
36418     if (V.getValueType().isFloatingPoint()) {
36419       if (Subtarget.hasSSE1() && !isa<ConstantFPSDNode>(V)) {
36420         V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v4f32, V);
36421         V = DAG.getBitcast(MVT::v2i64, V);
36422         return DAG.getNode(X86ISD::MOVDQ2Q, DL, MVT::x86mmx, V);
36423       }
36424       V = DAG.getBitcast(MVT::i32, V);
36425     } else {
36426       V = DAG.getAnyExtOrTrunc(V, DL, MVT::i32);
36427     }
36428     return DAG.getNode(X86ISD::MMX_MOVW2D, DL, MVT::x86mmx, V);
36429   };
36430 
36431   // Convert build vector ops to MMX data in the bottom elements.
36432   SmallVector<SDValue, 8> Ops;
36433 
36434   // Broadcast - use (PUNPCKL+)PSHUFW to broadcast single element.
36435   if (Splat) {
36436     if (Splat.isUndef())
36437       return DAG.getUNDEF(MVT::x86mmx);
36438 
36439     Splat = CreateMMXElement(Splat);
36440 
36441     if (Subtarget.hasSSE1()) {
36442       // Unpack v8i8 to splat i8 elements to lowest 16-bits.
36443       if (NumElts == 8)
36444         Splat = DAG.getNode(
36445             ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx,
36446             DAG.getConstant(Intrinsic::x86_mmx_punpcklbw, DL, MVT::i32), Splat,
36447             Splat);
36448 
36449       // Use PSHUFW to repeat 16-bit elements.
36450       unsigned ShufMask = (NumElts > 2 ? 0 : 0x44);
36451       return DAG.getNode(
36452           ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx,
36453           DAG.getTargetConstant(Intrinsic::x86_sse_pshuf_w, DL, MVT::i32),
36454           Splat, DAG.getTargetConstant(ShufMask, DL, MVT::i8));
36455     }
36456     Ops.append(NumElts, Splat);
36457   } else {
36458     for (unsigned i = 0; i != NumElts; ++i)
36459       Ops.push_back(CreateMMXElement(BV->getOperand(i)));
36460   }
36461 
36462   // Use tree of PUNPCKLs to build up general MMX vector.
36463   while (Ops.size() > 1) {
36464     unsigned NumOps = Ops.size();
36465     unsigned IntrinOp =
36466         (NumOps == 2 ? Intrinsic::x86_mmx_punpckldq
36467                      : (NumOps == 4 ? Intrinsic::x86_mmx_punpcklwd
36468                                     : Intrinsic::x86_mmx_punpcklbw));
36469     SDValue Intrin = DAG.getConstant(IntrinOp, DL, MVT::i32);
36470     for (unsigned i = 0; i != NumOps; i += 2)
36471       Ops[i / 2] = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx, Intrin,
36472                                Ops[i], Ops[i + 1]);
36473     Ops.resize(NumOps / 2);
36474   }
36475 
36476   return Ops[0];
36477 }
36478 
36479 static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG,
36480                               TargetLowering::DAGCombinerInfo &DCI,
36481                               const X86Subtarget &Subtarget) {
36482   SDValue N0 = N->getOperand(0);
36483   EVT VT = N->getValueType(0);
36484   EVT SrcVT = N0.getValueType();
36485 
36486   // Try to match patterns such as
36487   // (i16 bitcast (v16i1 x))
36488   // ->
36489   // (i16 movmsk (16i8 sext (v16i1 x)))
36490   // before the setcc result is scalarized on subtargets that don't have legal
36491   // vxi1 types.
36492   if (DCI.isBeforeLegalize()) {
36493     SDLoc dl(N);
36494     if (SDValue V = combineBitcastvxi1(DAG, VT, N0, dl, Subtarget))
36495       return V;
36496 
36497     // Recognize the IR pattern for the movmsk intrinsic under SSE1 befoer type
36498     // legalization destroys the v4i32 type.
36499     if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && SrcVT == MVT::v4i1 &&
36500         VT.isScalarInteger() && N0.getOpcode() == ISD::SETCC &&
36501         N0.getOperand(0).getValueType() == MVT::v4i32 &&
36502         ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()) &&
36503         cast<CondCodeSDNode>(N0.getOperand(2))->get() == ISD::SETLT) {
36504       SDValue N00 = N0.getOperand(0);
36505       // Only do this if we can avoid scalarizing the input.
36506       if (ISD::isNormalLoad(N00.getNode()) ||
36507           (N00.getOpcode() == ISD::BITCAST &&
36508            N00.getOperand(0).getValueType() == MVT::v4f32)) {
36509         SDValue V = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32,
36510                                 DAG.getBitcast(MVT::v4f32, N00));
36511         return DAG.getZExtOrTrunc(V, dl, VT);
36512       }
36513     }
36514 
36515     // If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer
36516     // type, widen both sides to avoid a trip through memory.
36517     if ((VT == MVT::v4i1 || VT == MVT::v2i1) && SrcVT.isScalarInteger() &&
36518         Subtarget.hasAVX512()) {
36519       N0 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, N0);
36520       N0 = DAG.getBitcast(MVT::v8i1, N0);
36521       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, N0,
36522                          DAG.getIntPtrConstant(0, dl));
36523     }
36524 
36525     // If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer
36526     // type, widen both sides to avoid a trip through memory.
36527     if ((SrcVT == MVT::v4i1 || SrcVT == MVT::v2i1) && VT.isScalarInteger() &&
36528         Subtarget.hasAVX512()) {
36529       // Use zeros for the widening if we already have some zeroes. This can
36530       // allow SimplifyDemandedBits to remove scalar ANDs that may be down
36531       // stream of this.
36532       // FIXME: It might make sense to detect a concat_vectors with a mix of
36533       // zeroes and undef and turn it into insert_subvector for i1 vectors as
36534       // a separate combine. What we can't do is canonicalize the operands of
36535       // such a concat or we'll get into a loop with SimplifyDemandedBits.
36536       if (N0.getOpcode() == ISD::CONCAT_VECTORS) {
36537         SDValue LastOp = N0.getOperand(N0.getNumOperands() - 1);
36538         if (ISD::isBuildVectorAllZeros(LastOp.getNode())) {
36539           SrcVT = LastOp.getValueType();
36540           unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
36541           SmallVector<SDValue, 4> Ops(N0->op_begin(), N0->op_end());
36542           Ops.resize(NumConcats, DAG.getConstant(0, dl, SrcVT));
36543           N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
36544           N0 = DAG.getBitcast(MVT::i8, N0);
36545           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
36546         }
36547       }
36548 
36549       unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
36550       SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
36551       Ops[0] = N0;
36552       N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
36553       N0 = DAG.getBitcast(MVT::i8, N0);
36554       return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
36555     }
36556   }
36557 
36558   // Look for (i8 (bitcast (v8i1 (extract_subvector (v16i1 X), 0)))) and
36559   // replace with (i8 (trunc (i16 (bitcast (v16i1 X))))). This can occur
36560   // due to insert_subvector legalization on KNL. By promoting the copy to i16
36561   // we can help with known bits propagation from the vXi1 domain to the
36562   // scalar domain.
36563   if (VT == MVT::i8 && SrcVT == MVT::v8i1 && Subtarget.hasAVX512() &&
36564       !Subtarget.hasDQI() && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
36565       N0.getOperand(0).getValueType() == MVT::v16i1 &&
36566       isNullConstant(N0.getOperand(1)))
36567     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT,
36568                        DAG.getBitcast(MVT::i16, N0.getOperand(0)));
36569 
36570   // Combine (bitcast (vbroadcast_load)) -> (vbroadcast_load). The memory VT
36571   // determines // the number of bits loaded. Remaining bits are zero.
36572   if (N0.getOpcode() == X86ISD::VBROADCAST_LOAD && N0.hasOneUse() &&
36573       VT.getScalarSizeInBits() == SrcVT.getScalarSizeInBits()) {
36574     auto *BCast = cast<MemIntrinsicSDNode>(N0);
36575     SDVTList Tys = DAG.getVTList(VT, MVT::Other);
36576     SDValue Ops[] = { BCast->getChain(), BCast->getBasePtr() };
36577     SDValue ResNode =
36578         DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, SDLoc(N), Tys, Ops,
36579                                 VT.getVectorElementType(),
36580                                 BCast->getMemOperand());
36581     DAG.ReplaceAllUsesOfValueWith(SDValue(BCast, 1), ResNode.getValue(1));
36582     return ResNode;
36583   }
36584 
36585   // Since MMX types are special and don't usually play with other vector types,
36586   // it's better to handle them early to be sure we emit efficient code by
36587   // avoiding store-load conversions.
36588   if (VT == MVT::x86mmx) {
36589     // Detect MMX constant vectors.
36590     APInt UndefElts;
36591     SmallVector<APInt, 1> EltBits;
36592     if (getTargetConstantBitsFromNode(N0, 64, UndefElts, EltBits)) {
36593       SDLoc DL(N0);
36594       // Handle zero-extension of i32 with MOVD.
36595       if (EltBits[0].countLeadingZeros() >= 32)
36596         return DAG.getNode(X86ISD::MMX_MOVW2D, DL, VT,
36597                            DAG.getConstant(EltBits[0].trunc(32), DL, MVT::i32));
36598       // Else, bitcast to a double.
36599       // TODO - investigate supporting sext 32-bit immediates on x86_64.
36600       APFloat F64(APFloat::IEEEdouble(), EltBits[0]);
36601       return DAG.getBitcast(VT, DAG.getConstantFP(F64, DL, MVT::f64));
36602     }
36603 
36604     // Detect bitcasts to x86mmx low word.
36605     if (N0.getOpcode() == ISD::BUILD_VECTOR &&
36606         (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) &&
36607         N0.getOperand(0).getValueType() == SrcVT.getScalarType()) {
36608       bool LowUndef = true, AllUndefOrZero = true;
36609       for (unsigned i = 1, e = SrcVT.getVectorNumElements(); i != e; ++i) {
36610         SDValue Op = N0.getOperand(i);
36611         LowUndef &= Op.isUndef() || (i >= e/2);
36612         AllUndefOrZero &= (Op.isUndef() || isNullConstant(Op));
36613       }
36614       if (AllUndefOrZero) {
36615         SDValue N00 = N0.getOperand(0);
36616         SDLoc dl(N00);
36617         N00 = LowUndef ? DAG.getAnyExtOrTrunc(N00, dl, MVT::i32)
36618                        : DAG.getZExtOrTrunc(N00, dl, MVT::i32);
36619         return DAG.getNode(X86ISD::MMX_MOVW2D, dl, VT, N00);
36620       }
36621     }
36622 
36623     // Detect bitcasts of 64-bit build vectors and convert to a
36624     // MMX UNPCK/PSHUFW which takes MMX type inputs with the value in the
36625     // lowest element.
36626     if (N0.getOpcode() == ISD::BUILD_VECTOR &&
36627         (SrcVT == MVT::v2f32 || SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 ||
36628          SrcVT == MVT::v8i8))
36629       return createMMXBuildVector(cast<BuildVectorSDNode>(N0), DAG, Subtarget);
36630 
36631     // Detect bitcasts between element or subvector extraction to x86mmx.
36632     if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
36633          N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) &&
36634         isNullConstant(N0.getOperand(1))) {
36635       SDValue N00 = N0.getOperand(0);
36636       if (N00.getValueType().is128BitVector())
36637         return DAG.getNode(X86ISD::MOVDQ2Q, SDLoc(N00), VT,
36638                            DAG.getBitcast(MVT::v2i64, N00));
36639     }
36640 
36641     // Detect bitcasts from FP_TO_SINT to x86mmx.
36642     if (SrcVT == MVT::v2i32 && N0.getOpcode() == ISD::FP_TO_SINT) {
36643       SDLoc DL(N0);
36644       SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
36645                                 DAG.getUNDEF(MVT::v2i32));
36646       return DAG.getNode(X86ISD::MOVDQ2Q, DL, VT,
36647                          DAG.getBitcast(MVT::v2i64, Res));
36648     }
36649   }
36650 
36651   // Try to remove a bitcast of constant vXi1 vector. We have to legalize
36652   // most of these to scalar anyway.
36653   if (Subtarget.hasAVX512() && VT.isScalarInteger() &&
36654       SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
36655       ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
36656     return combinevXi1ConstantToInteger(N0, DAG);
36657   }
36658 
36659   if (Subtarget.hasAVX512() && SrcVT.isScalarInteger() &&
36660       VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
36661       isa<ConstantSDNode>(N0)) {
36662     auto *C = cast<ConstantSDNode>(N0);
36663     if (C->isAllOnesValue())
36664       return DAG.getConstant(1, SDLoc(N0), VT);
36665     if (C->isNullValue())
36666       return DAG.getConstant(0, SDLoc(N0), VT);
36667   }
36668 
36669   // Try to remove bitcasts from input and output of mask arithmetic to
36670   // remove GPR<->K-register crossings.
36671   if (SDValue V = combineCastedMaskArithmetic(N, DAG, DCI, Subtarget))
36672     return V;
36673 
36674   // Convert a bitcasted integer logic operation that has one bitcasted
36675   // floating-point operand into a floating-point logic operation. This may
36676   // create a load of a constant, but that is cheaper than materializing the
36677   // constant in an integer register and transferring it to an SSE register or
36678   // transferring the SSE operand to integer register and back.
36679   unsigned FPOpcode;
36680   switch (N0.getOpcode()) {
36681     case ISD::AND: FPOpcode = X86ISD::FAND; break;
36682     case ISD::OR:  FPOpcode = X86ISD::FOR;  break;
36683     case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
36684     default: return SDValue();
36685   }
36686 
36687   if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
36688         (Subtarget.hasSSE2() && VT == MVT::f64)))
36689     return SDValue();
36690 
36691   SDValue LogicOp0 = N0.getOperand(0);
36692   SDValue LogicOp1 = N0.getOperand(1);
36693   SDLoc DL0(N0);
36694 
36695   // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
36696   if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST &&
36697       LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT &&
36698       !isa<ConstantSDNode>(LogicOp0.getOperand(0))) {
36699     SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1);
36700     return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1);
36701   }
36702   // bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y)
36703   if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST &&
36704       LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT &&
36705       !isa<ConstantSDNode>(LogicOp1.getOperand(0))) {
36706     SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0);
36707     return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0);
36708   }
36709 
36710   return SDValue();
36711 }
36712 
36713 // Given a ABS node, detect the following pattern:
36714 // (ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
36715 // This is useful as it is the input into a SAD pattern.
36716 static bool detectZextAbsDiff(const SDValue &Abs, SDValue &Op0, SDValue &Op1) {
36717   SDValue AbsOp1 = Abs->getOperand(0);
36718   if (AbsOp1.getOpcode() != ISD::SUB)
36719     return false;
36720 
36721   Op0 = AbsOp1.getOperand(0);
36722   Op1 = AbsOp1.getOperand(1);
36723 
36724   // Check if the operands of the sub are zero-extended from vectors of i8.
36725   if (Op0.getOpcode() != ISD::ZERO_EXTEND ||
36726       Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 ||
36727       Op1.getOpcode() != ISD::ZERO_EXTEND ||
36728       Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8)
36729     return false;
36730 
36731   return true;
36732 }
36733 
36734 // Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs
36735 // to these zexts.
36736 static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0,
36737                             const SDValue &Zext1, const SDLoc &DL,
36738                             const X86Subtarget &Subtarget) {
36739   // Find the appropriate width for the PSADBW.
36740   EVT InVT = Zext0.getOperand(0).getValueType();
36741   unsigned RegSize = std::max(128u, (unsigned)InVT.getSizeInBits());
36742 
36743   // "Zero-extend" the i8 vectors. This is not a per-element zext, rather we
36744   // fill in the missing vector elements with 0.
36745   unsigned NumConcat = RegSize / InVT.getSizeInBits();
36746   SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT));
36747   Ops[0] = Zext0.getOperand(0);
36748   MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8);
36749   SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
36750   Ops[0] = Zext1.getOperand(0);
36751   SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
36752 
36753   // Actually build the SAD, split as 128/256/512 bits for SSE/AVX2/AVX512BW.
36754   auto PSADBWBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
36755                           ArrayRef<SDValue> Ops) {
36756     MVT VT = MVT::getVectorVT(MVT::i64, Ops[0].getValueSizeInBits() / 64);
36757     return DAG.getNode(X86ISD::PSADBW, DL, VT, Ops);
36758   };
36759   MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64);
36760   return SplitOpsAndApply(DAG, Subtarget, DL, SadVT, { SadOp0, SadOp1 },
36761                           PSADBWBuilder);
36762 }
36763 
36764 // Attempt to replace an min/max v8i16/v16i8 horizontal reduction with
36765 // PHMINPOSUW.
36766 static SDValue combineHorizontalMinMaxResult(SDNode *Extract, SelectionDAG &DAG,
36767                                              const X86Subtarget &Subtarget) {
36768   // Bail without SSE41.
36769   if (!Subtarget.hasSSE41())
36770     return SDValue();
36771 
36772   EVT ExtractVT = Extract->getValueType(0);
36773   if (ExtractVT != MVT::i16 && ExtractVT != MVT::i8)
36774     return SDValue();
36775 
36776   // Check for SMAX/SMIN/UMAX/UMIN horizontal reduction patterns.
36777   ISD::NodeType BinOp;
36778   SDValue Src = DAG.matchBinOpReduction(
36779       Extract, BinOp, {ISD::SMAX, ISD::SMIN, ISD::UMAX, ISD::UMIN}, true);
36780   if (!Src)
36781     return SDValue();
36782 
36783   EVT SrcVT = Src.getValueType();
36784   EVT SrcSVT = SrcVT.getScalarType();
36785   if (SrcSVT != ExtractVT || (SrcVT.getSizeInBits() % 128) != 0)
36786     return SDValue();
36787 
36788   SDLoc DL(Extract);
36789   SDValue MinPos = Src;
36790 
36791   // First, reduce the source down to 128-bit, applying BinOp to lo/hi.
36792   while (SrcVT.getSizeInBits() > 128) {
36793     unsigned NumElts = SrcVT.getVectorNumElements();
36794     unsigned NumSubElts = NumElts / 2;
36795     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcSVT, NumSubElts);
36796     unsigned SubSizeInBits = SrcVT.getSizeInBits();
36797     SDValue Lo = extractSubVector(MinPos, 0, DAG, DL, SubSizeInBits);
36798     SDValue Hi = extractSubVector(MinPos, NumSubElts, DAG, DL, SubSizeInBits);
36799     MinPos = DAG.getNode(BinOp, DL, SrcVT, Lo, Hi);
36800   }
36801   assert(((SrcVT == MVT::v8i16 && ExtractVT == MVT::i16) ||
36802           (SrcVT == MVT::v16i8 && ExtractVT == MVT::i8)) &&
36803          "Unexpected value type");
36804 
36805   // PHMINPOSUW applies to UMIN(v8i16), for SMIN/SMAX/UMAX we must apply a mask
36806   // to flip the value accordingly.
36807   SDValue Mask;
36808   unsigned MaskEltsBits = ExtractVT.getSizeInBits();
36809   if (BinOp == ISD::SMAX)
36810     Mask = DAG.getConstant(APInt::getSignedMaxValue(MaskEltsBits), DL, SrcVT);
36811   else if (BinOp == ISD::SMIN)
36812     Mask = DAG.getConstant(APInt::getSignedMinValue(MaskEltsBits), DL, SrcVT);
36813   else if (BinOp == ISD::UMAX)
36814     Mask = DAG.getConstant(APInt::getAllOnesValue(MaskEltsBits), DL, SrcVT);
36815 
36816   if (Mask)
36817     MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
36818 
36819   // For v16i8 cases we need to perform UMIN on pairs of byte elements,
36820   // shuffling each upper element down and insert zeros. This means that the
36821   // v16i8 UMIN will leave the upper element as zero, performing zero-extension
36822   // ready for the PHMINPOS.
36823   if (ExtractVT == MVT::i8) {
36824     SDValue Upper = DAG.getVectorShuffle(
36825         SrcVT, DL, MinPos, DAG.getConstant(0, DL, MVT::v16i8),
36826         {1, 16, 3, 16, 5, 16, 7, 16, 9, 16, 11, 16, 13, 16, 15, 16});
36827     MinPos = DAG.getNode(ISD::UMIN, DL, SrcVT, MinPos, Upper);
36828   }
36829 
36830   // Perform the PHMINPOS on a v8i16 vector,
36831   MinPos = DAG.getBitcast(MVT::v8i16, MinPos);
36832   MinPos = DAG.getNode(X86ISD::PHMINPOS, DL, MVT::v8i16, MinPos);
36833   MinPos = DAG.getBitcast(SrcVT, MinPos);
36834 
36835   if (Mask)
36836     MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
36837 
36838   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractVT, MinPos,
36839                      DAG.getIntPtrConstant(0, DL));
36840 }
36841 
36842 // Attempt to replace an all_of/any_of/parity style horizontal reduction with a MOVMSK.
36843 static SDValue combineHorizontalPredicateResult(SDNode *Extract,
36844                                                 SelectionDAG &DAG,
36845                                                 const X86Subtarget &Subtarget) {
36846   // Bail without SSE2.
36847   if (!Subtarget.hasSSE2())
36848     return SDValue();
36849 
36850   EVT ExtractVT = Extract->getValueType(0);
36851   unsigned BitWidth = ExtractVT.getSizeInBits();
36852   if (ExtractVT != MVT::i64 && ExtractVT != MVT::i32 && ExtractVT != MVT::i16 &&
36853       ExtractVT != MVT::i8 && ExtractVT != MVT::i1)
36854     return SDValue();
36855 
36856   // Check for OR(any_of)/AND(all_of)/XOR(parity) horizontal reduction patterns.
36857   ISD::NodeType BinOp;
36858   SDValue Match = DAG.matchBinOpReduction(Extract, BinOp, {ISD::OR, ISD::AND});
36859   if (!Match && ExtractVT == MVT::i1)
36860     Match = DAG.matchBinOpReduction(Extract, BinOp, {ISD::XOR});
36861   if (!Match)
36862     return SDValue();
36863 
36864   // EXTRACT_VECTOR_ELT can require implicit extension of the vector element
36865   // which we can't support here for now.
36866   if (Match.getScalarValueSizeInBits() != BitWidth)
36867     return SDValue();
36868 
36869   SDValue Movmsk;
36870   SDLoc DL(Extract);
36871   EVT MatchVT = Match.getValueType();
36872   unsigned NumElts = MatchVT.getVectorNumElements();
36873   unsigned MaxElts = Subtarget.hasInt256() ? 32 : 16;
36874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
36875 
36876   if (ExtractVT == MVT::i1) {
36877     // Special case for (pre-legalization) vXi1 reductions.
36878     if (NumElts > 64 || !isPowerOf2_32(NumElts))
36879       return SDValue();
36880     if (TLI.isTypeLegal(MatchVT)) {
36881       // If this is a legal AVX512 predicate type then we can just bitcast.
36882       EVT MovmskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
36883       Movmsk = DAG.getBitcast(MovmskVT, Match);
36884     } else {
36885       // Use combineBitcastvxi1 to create the MOVMSK.
36886       while (NumElts > MaxElts) {
36887         SDValue Lo, Hi;
36888         std::tie(Lo, Hi) = DAG.SplitVector(Match, DL);
36889         Match = DAG.getNode(BinOp, DL, Lo.getValueType(), Lo, Hi);
36890         NumElts /= 2;
36891       }
36892       EVT MovmskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
36893       Movmsk = combineBitcastvxi1(DAG, MovmskVT, Match, DL, Subtarget);
36894     }
36895     if (!Movmsk)
36896       return SDValue();
36897     Movmsk = DAG.getZExtOrTrunc(Movmsk, DL, NumElts > 32 ? MVT::i64 : MVT::i32);
36898   } else {
36899     // Bail with AVX512VL (which uses predicate registers).
36900     if (Subtarget.hasVLX())
36901       return SDValue();
36902 
36903     unsigned MatchSizeInBits = Match.getValueSizeInBits();
36904     if (!(MatchSizeInBits == 128 ||
36905           (MatchSizeInBits == 256 && Subtarget.hasAVX())))
36906       return SDValue();
36907 
36908     // Make sure this isn't a vector of 1 element. The perf win from using
36909     // MOVMSK diminishes with less elements in the reduction, but it is
36910     // generally better to get the comparison over to the GPRs as soon as
36911     // possible to reduce the number of vector ops.
36912     if (Match.getValueType().getVectorNumElements() < 2)
36913       return SDValue();
36914 
36915     // Check that we are extracting a reduction of all sign bits.
36916     if (DAG.ComputeNumSignBits(Match) != BitWidth)
36917       return SDValue();
36918 
36919     if (MatchSizeInBits == 256 && BitWidth < 32 && !Subtarget.hasInt256()) {
36920       SDValue Lo, Hi;
36921       std::tie(Lo, Hi) = DAG.SplitVector(Match, DL);
36922       Match = DAG.getNode(BinOp, DL, Lo.getValueType(), Lo, Hi);
36923       MatchSizeInBits = Match.getValueSizeInBits();
36924     }
36925 
36926     // For 32/64 bit comparisons use MOVMSKPS/MOVMSKPD, else PMOVMSKB.
36927     MVT MaskSrcVT;
36928     if (64 == BitWidth || 32 == BitWidth)
36929       MaskSrcVT = MVT::getVectorVT(MVT::getFloatingPointVT(BitWidth),
36930                                    MatchSizeInBits / BitWidth);
36931     else
36932       MaskSrcVT = MVT::getVectorVT(MVT::i8, MatchSizeInBits / 8);
36933 
36934     SDValue BitcastLogicOp = DAG.getBitcast(MaskSrcVT, Match);
36935     Movmsk = getPMOVMSKB(DL, BitcastLogicOp, DAG, Subtarget);
36936     NumElts = MaskSrcVT.getVectorNumElements();
36937   }
36938   assert((NumElts <= 32 || NumElts == 64) &&
36939          "Not expecting more than 64 elements");
36940 
36941   MVT CmpVT = NumElts == 64 ? MVT::i64 : MVT::i32;
36942   if (BinOp == ISD::XOR) {
36943     // parity -> (AND (CTPOP(MOVMSK X)), 1)
36944     SDValue Mask = DAG.getConstant(1, DL, CmpVT);
36945     SDValue Result = DAG.getNode(ISD::CTPOP, DL, CmpVT, Movmsk);
36946     Result = DAG.getNode(ISD::AND, DL, CmpVT, Result, Mask);
36947     return DAG.getZExtOrTrunc(Result, DL, ExtractVT);
36948   }
36949 
36950   SDValue CmpC;
36951   ISD::CondCode CondCode;
36952   if (BinOp == ISD::OR) {
36953     // any_of -> MOVMSK != 0
36954     CmpC = DAG.getConstant(0, DL, CmpVT);
36955     CondCode = ISD::CondCode::SETNE;
36956   } else {
36957     // all_of -> MOVMSK == ((1 << NumElts) - 1)
36958     CmpC = DAG.getConstant(APInt::getLowBitsSet(CmpVT.getSizeInBits(), NumElts),
36959                            DL, CmpVT);
36960     CondCode = ISD::CondCode::SETEQ;
36961   }
36962 
36963   // The setcc produces an i8 of 0/1, so extend that to the result width and
36964   // negate to get the final 0/-1 mask value.
36965   EVT SetccVT =
36966       TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
36967   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Movmsk, CmpC, CondCode);
36968   SDValue Zext = DAG.getZExtOrTrunc(Setcc, DL, ExtractVT);
36969   SDValue Zero = DAG.getConstant(0, DL, ExtractVT);
36970   return DAG.getNode(ISD::SUB, DL, ExtractVT, Zero, Zext);
36971 }
36972 
36973 static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG,
36974                                       const X86Subtarget &Subtarget) {
36975   // PSADBW is only supported on SSE2 and up.
36976   if (!Subtarget.hasSSE2())
36977     return SDValue();
36978 
36979   // Verify the type we're extracting from is any integer type above i16.
36980   EVT VT = Extract->getOperand(0).getValueType();
36981   if (!VT.isSimple() || !(VT.getVectorElementType().getSizeInBits() > 16))
36982     return SDValue();
36983 
36984   unsigned RegSize = 128;
36985   if (Subtarget.useBWIRegs())
36986     RegSize = 512;
36987   else if (Subtarget.hasAVX())
36988     RegSize = 256;
36989 
36990   // We handle upto v16i* for SSE2 / v32i* for AVX / v64i* for AVX512.
36991   // TODO: We should be able to handle larger vectors by splitting them before
36992   // feeding them into several SADs, and then reducing over those.
36993   if (RegSize / VT.getVectorNumElements() < 8)
36994     return SDValue();
36995 
36996   // Match shuffle + add pyramid.
36997   ISD::NodeType BinOp;
36998   SDValue Root = DAG.matchBinOpReduction(Extract, BinOp, {ISD::ADD});
36999 
37000   // The operand is expected to be zero extended from i8
37001   // (verified in detectZextAbsDiff).
37002   // In order to convert to i64 and above, additional any/zero/sign
37003   // extend is expected.
37004   // The zero extend from 32 bit has no mathematical effect on the result.
37005   // Also the sign extend is basically zero extend
37006   // (extends the sign bit which is zero).
37007   // So it is correct to skip the sign/zero extend instruction.
37008   if (Root && (Root.getOpcode() == ISD::SIGN_EXTEND ||
37009     Root.getOpcode() == ISD::ZERO_EXTEND ||
37010     Root.getOpcode() == ISD::ANY_EXTEND))
37011     Root = Root.getOperand(0);
37012 
37013   // If there was a match, we want Root to be a select that is the root of an
37014   // abs-diff pattern.
37015   if (!Root || Root.getOpcode() != ISD::ABS)
37016     return SDValue();
37017 
37018   // Check whether we have an abs-diff pattern feeding into the select.
37019   SDValue Zext0, Zext1;
37020   if (!detectZextAbsDiff(Root, Zext0, Zext1))
37021     return SDValue();
37022 
37023   // Create the SAD instruction.
37024   SDLoc DL(Extract);
37025   SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL, Subtarget);
37026 
37027   // If the original vector was wider than 8 elements, sum over the results
37028   // in the SAD vector.
37029   unsigned Stages = Log2_32(VT.getVectorNumElements());
37030   MVT SadVT = SAD.getSimpleValueType();
37031   if (Stages > 3) {
37032     unsigned SadElems = SadVT.getVectorNumElements();
37033 
37034     for(unsigned i = Stages - 3; i > 0; --i) {
37035       SmallVector<int, 16> Mask(SadElems, -1);
37036       for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j)
37037         Mask[j] = MaskEnd + j;
37038 
37039       SDValue Shuffle =
37040           DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask);
37041       SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle);
37042     }
37043   }
37044 
37045   MVT Type = Extract->getSimpleValueType(0);
37046   unsigned TypeSizeInBits = Type.getSizeInBits();
37047   // Return the lowest TypeSizeInBits bits.
37048   MVT ResVT = MVT::getVectorVT(Type, SadVT.getSizeInBits() / TypeSizeInBits);
37049   SAD = DAG.getBitcast(ResVT, SAD);
37050   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Type, SAD,
37051                      Extract->getOperand(1));
37052 }
37053 
37054 // Attempt to peek through a target shuffle and extract the scalar from the
37055 // source.
37056 static SDValue combineExtractWithShuffle(SDNode *N, SelectionDAG &DAG,
37057                                          TargetLowering::DAGCombinerInfo &DCI,
37058                                          const X86Subtarget &Subtarget) {
37059   if (DCI.isBeforeLegalizeOps())
37060     return SDValue();
37061 
37062   SDLoc dl(N);
37063   SDValue Src = N->getOperand(0);
37064   SDValue Idx = N->getOperand(1);
37065 
37066   EVT VT = N->getValueType(0);
37067   EVT SrcVT = Src.getValueType();
37068   EVT SrcSVT = SrcVT.getVectorElementType();
37069   unsigned NumSrcElts = SrcVT.getVectorNumElements();
37070 
37071   // Don't attempt this for boolean mask vectors or unknown extraction indices.
37072   if (SrcSVT == MVT::i1 || !isa<ConstantSDNode>(Idx))
37073     return SDValue();
37074 
37075   SDValue SrcBC = peekThroughBitcasts(Src);
37076 
37077   // Handle extract(broadcast(scalar_value)), it doesn't matter what index is.
37078   if (X86ISD::VBROADCAST == SrcBC.getOpcode()) {
37079     SDValue SrcOp = SrcBC.getOperand(0);
37080     if (SrcOp.getValueSizeInBits() == VT.getSizeInBits())
37081       return DAG.getBitcast(VT, SrcOp);
37082   }
37083 
37084   // If we're extracting a single element from a broadcast load and there are
37085   // no other users, just create a single load.
37086   if (SrcBC.getOpcode() == X86ISD::VBROADCAST_LOAD && SrcBC.hasOneUse()) {
37087     auto *MemIntr = cast<MemIntrinsicSDNode>(SrcBC);
37088     unsigned SrcBCWidth = SrcBC.getScalarValueSizeInBits();
37089     if (MemIntr->getMemoryVT().getSizeInBits() == SrcBCWidth &&
37090         VT.getSizeInBits() == SrcBCWidth) {
37091       SDValue Load = DAG.getLoad(VT, dl, MemIntr->getChain(),
37092                                  MemIntr->getBasePtr(),
37093                                  MemIntr->getPointerInfo(),
37094                                  MemIntr->getAlignment(),
37095                                  MemIntr->getMemOperand()->getFlags());
37096       DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), Load.getValue(1));
37097       return Load;
37098     }
37099   }
37100 
37101   // Handle extract(truncate(x)) for 0'th index.
37102   // TODO: Treat this as a faux shuffle?
37103   // TODO: When can we use this for general indices?
37104   if (ISD::TRUNCATE == Src.getOpcode() && SrcVT.is128BitVector() &&
37105       isNullConstant(Idx)) {
37106     Src = extract128BitVector(Src.getOperand(0), 0, DAG, dl);
37107     Src = DAG.getBitcast(SrcVT, Src);
37108     return DAG.getNode(N->getOpcode(), dl, VT, Src, Idx);
37109   }
37110 
37111   // Resolve the target shuffle inputs and mask.
37112   SmallVector<int, 16> Mask;
37113   SmallVector<SDValue, 2> Ops;
37114   if (!getTargetShuffleInputs(SrcBC, Ops, Mask, DAG))
37115     return SDValue();
37116 
37117   // Attempt to narrow/widen the shuffle mask to the correct size.
37118   if (Mask.size() != NumSrcElts) {
37119     if ((NumSrcElts % Mask.size()) == 0) {
37120       SmallVector<int, 16> ScaledMask;
37121       int Scale = NumSrcElts / Mask.size();
37122       scaleShuffleMask<int>(Scale, Mask, ScaledMask);
37123       Mask = std::move(ScaledMask);
37124     } else if ((Mask.size() % NumSrcElts) == 0) {
37125       // Simplify Mask based on demanded element.
37126       int ExtractIdx = (int)N->getConstantOperandVal(1);
37127       int Scale = Mask.size() / NumSrcElts;
37128       int Lo = Scale * ExtractIdx;
37129       int Hi = Scale * (ExtractIdx + 1);
37130       for (int i = 0, e = (int)Mask.size(); i != e; ++i)
37131         if (i < Lo || Hi <= i)
37132           Mask[i] = SM_SentinelUndef;
37133 
37134       SmallVector<int, 16> WidenedMask;
37135       while (Mask.size() > NumSrcElts &&
37136              canWidenShuffleElements(Mask, WidenedMask))
37137         Mask = std::move(WidenedMask);
37138       // TODO - investigate support for wider shuffle masks with known upper
37139       // undef/zero elements for implicit zero-extension.
37140     }
37141   }
37142 
37143   // Check if narrowing/widening failed.
37144   if (Mask.size() != NumSrcElts)
37145     return SDValue();
37146 
37147   int SrcIdx = Mask[N->getConstantOperandVal(1)];
37148 
37149   // If the shuffle source element is undef/zero then we can just accept it.
37150   if (SrcIdx == SM_SentinelUndef)
37151     return DAG.getUNDEF(VT);
37152 
37153   if (SrcIdx == SM_SentinelZero)
37154     return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, dl, VT)
37155                                 : DAG.getConstant(0, dl, VT);
37156 
37157   SDValue SrcOp = Ops[SrcIdx / Mask.size()];
37158   SrcIdx = SrcIdx % Mask.size();
37159 
37160   // We can only extract other elements from 128-bit vectors and in certain
37161   // circumstances, depending on SSE-level.
37162   // TODO: Investigate using extract_subvector for larger vectors.
37163   // TODO: Investigate float/double extraction if it will be just stored.
37164   if ((SrcVT == MVT::v4i32 || SrcVT == MVT::v2i64) &&
37165       ((SrcIdx == 0 && Subtarget.hasSSE2()) || Subtarget.hasSSE41())) {
37166     assert(SrcSVT == VT && "Unexpected extraction type");
37167     SrcOp = DAG.getBitcast(SrcVT, SrcOp);
37168     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcSVT, SrcOp,
37169                        DAG.getIntPtrConstant(SrcIdx, dl));
37170   }
37171 
37172   if ((SrcVT == MVT::v8i16 && Subtarget.hasSSE2()) ||
37173       (SrcVT == MVT::v16i8 && Subtarget.hasSSE41())) {
37174     assert(VT.getSizeInBits() >= SrcSVT.getSizeInBits() &&
37175            "Unexpected extraction type");
37176     unsigned OpCode = (SrcVT == MVT::v8i16 ? X86ISD::PEXTRW : X86ISD::PEXTRB);
37177     SrcOp = DAG.getBitcast(SrcVT, SrcOp);
37178     SDValue ExtOp = DAG.getNode(OpCode, dl, MVT::i32, SrcOp,
37179                                 DAG.getIntPtrConstant(SrcIdx, dl));
37180     return DAG.getZExtOrTrunc(ExtOp, dl, VT);
37181   }
37182 
37183   return SDValue();
37184 }
37185 
37186 /// Extracting a scalar FP value from vector element 0 is free, so extract each
37187 /// operand first, then perform the math as a scalar op.
37188 static SDValue scalarizeExtEltFP(SDNode *ExtElt, SelectionDAG &DAG) {
37189   assert(ExtElt->getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Expected extract");
37190   SDValue Vec = ExtElt->getOperand(0);
37191   SDValue Index = ExtElt->getOperand(1);
37192   EVT VT = ExtElt->getValueType(0);
37193   EVT VecVT = Vec.getValueType();
37194 
37195   // TODO: If this is a unary/expensive/expand op, allow extraction from a
37196   // non-zero element because the shuffle+scalar op will be cheaper?
37197   if (!Vec.hasOneUse() || !isNullConstant(Index) || VecVT.getScalarType() != VT)
37198     return SDValue();
37199 
37200   // Vector FP compares don't fit the pattern of FP math ops (propagate, not
37201   // extract, the condition code), so deal with those as a special-case.
37202   if (Vec.getOpcode() == ISD::SETCC && VT == MVT::i1) {
37203     EVT OpVT = Vec.getOperand(0).getValueType().getScalarType();
37204     if (OpVT != MVT::f32 && OpVT != MVT::f64)
37205       return SDValue();
37206 
37207     // extract (setcc X, Y, CC), 0 --> setcc (extract X, 0), (extract Y, 0), CC
37208     SDLoc DL(ExtElt);
37209     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT,
37210                                Vec.getOperand(0), Index);
37211     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT,
37212                                Vec.getOperand(1), Index);
37213     return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1, Vec.getOperand(2));
37214   }
37215 
37216   if (VT != MVT::f32 && VT != MVT::f64)
37217     return SDValue();
37218 
37219   // Vector FP selects don't fit the pattern of FP math ops (because the
37220   // condition has a different type and we have to change the opcode), so deal
37221   // with those here.
37222   // FIXME: This is restricted to pre type legalization by ensuring the setcc
37223   // has i1 elements. If we loosen this we need to convert vector bool to a
37224   // scalar bool.
37225   if (Vec.getOpcode() == ISD::VSELECT &&
37226       Vec.getOperand(0).getOpcode() == ISD::SETCC &&
37227       Vec.getOperand(0).getValueType().getScalarType() == MVT::i1 &&
37228       Vec.getOperand(0).getOperand(0).getValueType() == VecVT) {
37229     // ext (sel Cond, X, Y), 0 --> sel (ext Cond, 0), (ext X, 0), (ext Y, 0)
37230     SDLoc DL(ExtElt);
37231     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
37232                                Vec.getOperand(0).getValueType().getScalarType(),
37233                                Vec.getOperand(0), Index);
37234     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
37235                                Vec.getOperand(1), Index);
37236     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
37237                                Vec.getOperand(2), Index);
37238     return DAG.getNode(ISD::SELECT, DL, VT, Ext0, Ext1, Ext2);
37239   }
37240 
37241   // TODO: This switch could include FNEG and the x86-specific FP logic ops
37242   // (FAND, FANDN, FOR, FXOR). But that may require enhancements to avoid
37243   // missed load folding and fma+fneg combining.
37244   switch (Vec.getOpcode()) {
37245   case ISD::FMA: // Begin 3 operands
37246   case ISD::FMAD:
37247   case ISD::FADD: // Begin 2 operands
37248   case ISD::FSUB:
37249   case ISD::FMUL:
37250   case ISD::FDIV:
37251   case ISD::FREM:
37252   case ISD::FCOPYSIGN:
37253   case ISD::FMINNUM:
37254   case ISD::FMAXNUM:
37255   case ISD::FMINNUM_IEEE:
37256   case ISD::FMAXNUM_IEEE:
37257   case ISD::FMAXIMUM:
37258   case ISD::FMINIMUM:
37259   case X86ISD::FMAX:
37260   case X86ISD::FMIN:
37261   case ISD::FABS: // Begin 1 operand
37262   case ISD::FSQRT:
37263   case ISD::FRINT:
37264   case ISD::FCEIL:
37265   case ISD::FTRUNC:
37266   case ISD::FNEARBYINT:
37267   case ISD::FROUND:
37268   case ISD::FFLOOR:
37269   case X86ISD::FRCP:
37270   case X86ISD::FRSQRT: {
37271     // extract (fp X, Y, ...), 0 --> fp (extract X, 0), (extract Y, 0), ...
37272     SDLoc DL(ExtElt);
37273     SmallVector<SDValue, 4> ExtOps;
37274     for (SDValue Op : Vec->ops())
37275       ExtOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op, Index));
37276     return DAG.getNode(Vec.getOpcode(), DL, VT, ExtOps);
37277   }
37278   default:
37279     return SDValue();
37280   }
37281   llvm_unreachable("All opcodes should return within switch");
37282 }
37283 
37284 /// Try to convert a vector reduction sequence composed of binops and shuffles
37285 /// into horizontal ops.
37286 static SDValue combineReductionToHorizontal(SDNode *ExtElt, SelectionDAG &DAG,
37287                                             const X86Subtarget &Subtarget) {
37288   assert(ExtElt->getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unexpected caller");
37289 
37290   // We need at least SSE2 to anything here.
37291   if (!Subtarget.hasSSE2())
37292     return SDValue();
37293 
37294   ISD::NodeType Opc;
37295   SDValue Rdx =
37296       DAG.matchBinOpReduction(ExtElt, Opc, {ISD::ADD, ISD::FADD}, true);
37297   if (!Rdx)
37298     return SDValue();
37299 
37300   SDValue Index = ExtElt->getOperand(1);
37301   assert(isNullConstant(Index) &&
37302          "Reduction doesn't end in an extract from index 0");
37303 
37304   EVT VT = ExtElt->getValueType(0);
37305   EVT VecVT = Rdx.getValueType();
37306   if (VecVT.getScalarType() != VT)
37307     return SDValue();
37308 
37309   SDLoc DL(ExtElt);
37310 
37311   // vXi8 reduction - sub 128-bit vector.
37312   if (VecVT == MVT::v4i8 || VecVT == MVT::v8i8) {
37313     if (VecVT == MVT::v4i8) {
37314       // Pad with zero.
37315       if (Subtarget.hasSSE41()) {
37316         Rdx = DAG.getBitcast(MVT::i32, Rdx);
37317         Rdx = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v4i32,
37318                           DAG.getConstant(0, DL, MVT::v4i32), Rdx,
37319                           DAG.getIntPtrConstant(0, DL));
37320         Rdx = DAG.getBitcast(MVT::v16i8, Rdx);
37321       } else {
37322         Rdx = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i8, Rdx,
37323                           DAG.getConstant(0, DL, VecVT));
37324       }
37325     }
37326     if (Rdx.getValueType() == MVT::v8i8) {
37327       // Pad with undef.
37328       Rdx = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, Rdx,
37329                         DAG.getUNDEF(MVT::v8i8));
37330     }
37331     Rdx = DAG.getNode(X86ISD::PSADBW, DL, MVT::v2i64, Rdx,
37332                       DAG.getConstant(0, DL, MVT::v16i8));
37333     Rdx = DAG.getBitcast(MVT::v16i8, Rdx);
37334     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Rdx, Index);
37335   }
37336 
37337   // Must be a >=128-bit vector with pow2 elements.
37338   if ((VecVT.getSizeInBits() % 128) != 0 ||
37339       !isPowerOf2_32(VecVT.getVectorNumElements()))
37340     return SDValue();
37341 
37342   // vXi8 reduction - sum lo/hi halves then use PSADBW.
37343   if (VT == MVT::i8) {
37344     while (Rdx.getValueSizeInBits() > 128) {
37345       unsigned HalfSize = VecVT.getSizeInBits() / 2;
37346       unsigned HalfElts = VecVT.getVectorNumElements() / 2;
37347       SDValue Lo = extractSubVector(Rdx, 0, DAG, DL, HalfSize);
37348       SDValue Hi = extractSubVector(Rdx, HalfElts, DAG, DL, HalfSize);
37349       Rdx = DAG.getNode(ISD::ADD, DL, Lo.getValueType(), Lo, Hi);
37350       VecVT = Rdx.getValueType();
37351     }
37352     assert(VecVT == MVT::v16i8 && "v16i8 reduction expected");
37353 
37354     SDValue Hi = DAG.getVectorShuffle(
37355         MVT::v16i8, DL, Rdx, Rdx,
37356         {8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1});
37357     Rdx = DAG.getNode(ISD::ADD, DL, MVT::v16i8, Rdx, Hi);
37358     Rdx = DAG.getNode(X86ISD::PSADBW, DL, MVT::v2i64, Rdx,
37359                       getZeroVector(MVT::v16i8, Subtarget, DAG, DL));
37360     Rdx = DAG.getBitcast(MVT::v16i8, Rdx);
37361     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Rdx, Index);
37362   }
37363 
37364   // Only use (F)HADD opcodes if they aren't microcoded or minimizes codesize.
37365   bool OptForSize = DAG.getMachineFunction().getFunction().hasOptSize();
37366   if (!Subtarget.hasFastHorizontalOps() && !OptForSize)
37367     return SDValue();
37368 
37369   unsigned HorizOpcode = Opc == ISD::ADD ? X86ISD::HADD : X86ISD::FHADD;
37370 
37371   // 256-bit horizontal instructions operate on 128-bit chunks rather than
37372   // across the whole vector, so we need an extract + hop preliminary stage.
37373   // This is the only step where the operands of the hop are not the same value.
37374   // TODO: We could extend this to handle 512-bit or even longer vectors.
37375   if (((VecVT == MVT::v16i16 || VecVT == MVT::v8i32) && Subtarget.hasSSSE3()) ||
37376       ((VecVT == MVT::v8f32 || VecVT == MVT::v4f64) && Subtarget.hasSSE3())) {
37377     unsigned NumElts = VecVT.getVectorNumElements();
37378     SDValue Hi = extract128BitVector(Rdx, NumElts / 2, DAG, DL);
37379     SDValue Lo = extract128BitVector(Rdx, 0, DAG, DL);
37380     Rdx = DAG.getNode(HorizOpcode, DL, Lo.getValueType(), Hi, Lo);
37381     VecVT = Rdx.getValueType();
37382   }
37383   if (!((VecVT == MVT::v8i16 || VecVT == MVT::v4i32) && Subtarget.hasSSSE3()) &&
37384       !((VecVT == MVT::v4f32 || VecVT == MVT::v2f64) && Subtarget.hasSSE3()))
37385     return SDValue();
37386 
37387   // extract (add (shuf X), X), 0 --> extract (hadd X, X), 0
37388   unsigned ReductionSteps = Log2_32(VecVT.getVectorNumElements());
37389   for (unsigned i = 0; i != ReductionSteps; ++i)
37390     Rdx = DAG.getNode(HorizOpcode, DL, VecVT, Rdx, Rdx);
37391 
37392   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Rdx, Index);
37393 }
37394 
37395 /// Detect vector gather/scatter index generation and convert it from being a
37396 /// bunch of shuffles and extracts into a somewhat faster sequence.
37397 /// For i686, the best sequence is apparently storing the value and loading
37398 /// scalars back, while for x64 we should use 64-bit extracts and shifts.
37399 static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG,
37400                                        TargetLowering::DAGCombinerInfo &DCI,
37401                                        const X86Subtarget &Subtarget) {
37402   if (SDValue NewOp = combineExtractWithShuffle(N, DAG, DCI, Subtarget))
37403     return NewOp;
37404 
37405   SDValue InputVector = N->getOperand(0);
37406   SDValue EltIdx = N->getOperand(1);
37407   auto *CIdx = dyn_cast<ConstantSDNode>(EltIdx);
37408 
37409   EVT SrcVT = InputVector.getValueType();
37410   EVT VT = N->getValueType(0);
37411   SDLoc dl(InputVector);
37412   bool IsPextr = N->getOpcode() != ISD::EXTRACT_VECTOR_ELT;
37413   unsigned NumSrcElts = SrcVT.getVectorNumElements();
37414 
37415   if (CIdx && CIdx->getAPIntValue().uge(NumSrcElts))
37416     return IsPextr ? DAG.getConstant(0, dl, VT) : DAG.getUNDEF(VT);
37417 
37418   // Integer Constant Folding.
37419   if (CIdx && VT.isInteger()) {
37420     APInt UndefVecElts;
37421     SmallVector<APInt, 16> EltBits;
37422     unsigned VecEltBitWidth = SrcVT.getScalarSizeInBits();
37423     if (getTargetConstantBitsFromNode(InputVector, VecEltBitWidth, UndefVecElts,
37424                                       EltBits, true, false)) {
37425       uint64_t Idx = CIdx->getZExtValue();
37426       if (UndefVecElts[Idx])
37427         return IsPextr ? DAG.getConstant(0, dl, VT) : DAG.getUNDEF(VT);
37428       return DAG.getConstant(EltBits[Idx].zextOrSelf(VT.getScalarSizeInBits()),
37429                              dl, VT);
37430     }
37431   }
37432 
37433   if (IsPextr) {
37434     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
37435     if (TLI.SimplifyDemandedBits(
37436             SDValue(N, 0), APInt::getAllOnesValue(VT.getSizeInBits()), DCI))
37437       return SDValue(N, 0);
37438 
37439     // PEXTR*(PINSR*(v, s, c), c) -> s (with implicit zext handling).
37440     if ((InputVector.getOpcode() == X86ISD::PINSRB ||
37441          InputVector.getOpcode() == X86ISD::PINSRW) &&
37442         InputVector.getOperand(2) == EltIdx) {
37443       assert(SrcVT == InputVector.getOperand(0).getValueType() &&
37444              "Vector type mismatch");
37445       SDValue Scl = InputVector.getOperand(1);
37446       Scl = DAG.getNode(ISD::TRUNCATE, dl, SrcVT.getScalarType(), Scl);
37447       return DAG.getZExtOrTrunc(Scl, dl, VT);
37448     }
37449 
37450     // TODO - Remove this once we can handle the implicit zero-extension of
37451     // X86ISD::PEXTRW/X86ISD::PEXTRB in combineHorizontalPredicateResult and
37452     // combineBasicSADPattern.
37453     return SDValue();
37454   }
37455 
37456   // Detect mmx extraction of all bits as a i64. It works better as a bitcast.
37457   if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
37458       VT == MVT::i64 && SrcVT == MVT::v1i64 && isNullConstant(EltIdx)) {
37459     SDValue MMXSrc = InputVector.getOperand(0);
37460 
37461     // The bitcast source is a direct mmx result.
37462     if (MMXSrc.getValueType() == MVT::x86mmx)
37463       return DAG.getBitcast(VT, InputVector);
37464   }
37465 
37466   // Detect mmx to i32 conversion through a v2i32 elt extract.
37467   if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
37468       VT == MVT::i32 && SrcVT == MVT::v2i32 && isNullConstant(EltIdx)) {
37469     SDValue MMXSrc = InputVector.getOperand(0);
37470 
37471     // The bitcast source is a direct mmx result.
37472     if (MMXSrc.getValueType() == MVT::x86mmx)
37473       return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc);
37474   }
37475 
37476   // Check whether this extract is the root of a sum of absolute differences
37477   // pattern. This has to be done here because we really want it to happen
37478   // pre-legalization,
37479   if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget))
37480     return SAD;
37481 
37482   // Attempt to replace an all_of/any_of horizontal reduction with a MOVMSK.
37483   if (SDValue Cmp = combineHorizontalPredicateResult(N, DAG, Subtarget))
37484     return Cmp;
37485 
37486   // Attempt to replace min/max v8i16/v16i8 reductions with PHMINPOSUW.
37487   if (SDValue MinMax = combineHorizontalMinMaxResult(N, DAG, Subtarget))
37488     return MinMax;
37489 
37490   if (SDValue V = combineReductionToHorizontal(N, DAG, Subtarget))
37491     return V;
37492 
37493   if (SDValue V = scalarizeExtEltFP(N, DAG))
37494     return V;
37495 
37496   // Attempt to extract a i1 element by using MOVMSK to extract the signbits
37497   // and then testing the relevant element.
37498   if (CIdx && SrcVT.getScalarType() == MVT::i1) {
37499     SmallVector<SDNode *, 16> BoolExtracts;
37500     auto IsBoolExtract = [&BoolExtracts](SDNode *Use) {
37501       if (Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
37502           isa<ConstantSDNode>(Use->getOperand(1)) &&
37503           Use->getValueType(0) == MVT::i1) {
37504         BoolExtracts.push_back(Use);
37505         return true;
37506       }
37507       return false;
37508     };
37509     if (all_of(InputVector->uses(), IsBoolExtract) &&
37510         BoolExtracts.size() > 1) {
37511       EVT BCVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcElts);
37512       if (SDValue BC =
37513               combineBitcastvxi1(DAG, BCVT, InputVector, dl, Subtarget)) {
37514         for (SDNode *Use : BoolExtracts) {
37515           // extractelement vXi1 X, MaskIdx --> ((movmsk X) & Mask) == Mask
37516           unsigned MaskIdx = Use->getConstantOperandVal(1);
37517           APInt MaskBit = APInt::getOneBitSet(NumSrcElts, MaskIdx);
37518           SDValue Mask = DAG.getConstant(MaskBit, dl, BCVT);
37519           SDValue Res = DAG.getNode(ISD::AND, dl, BCVT, BC, Mask);
37520           Res = DAG.getSetCC(dl, MVT::i1, Res, Mask, ISD::SETEQ);
37521           DCI.CombineTo(Use, Res);
37522         }
37523         return SDValue(N, 0);
37524       }
37525     }
37526   }
37527 
37528   return SDValue();
37529 }
37530 
37531 /// If a vector select has an operand that is -1 or 0, try to simplify the
37532 /// select to a bitwise logic operation.
37533 /// TODO: Move to DAGCombiner, possibly using TargetLowering::hasAndNot()?
37534 static SDValue
37535 combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG,
37536                                  TargetLowering::DAGCombinerInfo &DCI,
37537                                  const X86Subtarget &Subtarget) {
37538   SDValue Cond = N->getOperand(0);
37539   SDValue LHS = N->getOperand(1);
37540   SDValue RHS = N->getOperand(2);
37541   EVT VT = LHS.getValueType();
37542   EVT CondVT = Cond.getValueType();
37543   SDLoc DL(N);
37544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
37545 
37546   if (N->getOpcode() != ISD::VSELECT)
37547     return SDValue();
37548 
37549   assert(CondVT.isVector() && "Vector select expects a vector selector!");
37550 
37551   // Check if the first operand is all zeros and Cond type is vXi1.
37552   // This situation only applies to avx512.
37553   // TODO: Use isNullOrNullSplat() to distinguish constants with undefs?
37554   // TODO: Can we assert that both operands are not zeros (because that should
37555   //       get simplified at node creation time)?
37556   bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
37557   bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
37558 
37559   // If both inputs are 0/undef, create a complete zero vector.
37560   // FIXME: As noted above this should be handled by DAGCombiner/getNode.
37561   if (TValIsAllZeros && FValIsAllZeros) {
37562     if (VT.isFloatingPoint())
37563       return DAG.getConstantFP(0.0, DL, VT);
37564     return DAG.getConstant(0, DL, VT);
37565   }
37566 
37567   if (TValIsAllZeros && !FValIsAllZeros && Subtarget.hasAVX512() &&
37568       Cond.hasOneUse() && CondVT.getVectorElementType() == MVT::i1) {
37569     // Invert the cond to not(cond) : xor(op,allones)=not(op)
37570     SDValue CondNew = DAG.getNOT(DL, Cond, CondVT);
37571     // Vselect cond, op1, op2 = Vselect not(cond), op2, op1
37572     return DAG.getSelect(DL, VT, CondNew, RHS, LHS);
37573   }
37574 
37575   // To use the condition operand as a bitwise mask, it must have elements that
37576   // are the same size as the select elements. Ie, the condition operand must
37577   // have already been promoted from the IR select condition type <N x i1>.
37578   // Don't check if the types themselves are equal because that excludes
37579   // vector floating-point selects.
37580   if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
37581     return SDValue();
37582 
37583   // Try to invert the condition if true value is not all 1s and false value is
37584   // not all 0s. Only do this if the condition has one use.
37585   bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
37586   if (!TValIsAllOnes && !FValIsAllZeros && Cond.hasOneUse() &&
37587       // Check if the selector will be produced by CMPP*/PCMP*.
37588       Cond.getOpcode() == ISD::SETCC &&
37589       // Check if SETCC has already been promoted.
37590       TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
37591           CondVT) {
37592     bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
37593 
37594     if (TValIsAllZeros || FValIsAllOnes) {
37595       SDValue CC = Cond.getOperand(2);
37596       ISD::CondCode NewCC = ISD::getSetCCInverse(
37597           cast<CondCodeSDNode>(CC)->get(), Cond.getOperand(0).getValueType());
37598       Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
37599                           NewCC);
37600       std::swap(LHS, RHS);
37601       TValIsAllOnes = FValIsAllOnes;
37602       FValIsAllZeros = TValIsAllZeros;
37603     }
37604   }
37605 
37606   // Cond value must be 'sign splat' to be converted to a logical op.
37607   if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits())
37608     return SDValue();
37609 
37610   // vselect Cond, 111..., 000... -> Cond
37611   if (TValIsAllOnes && FValIsAllZeros)
37612     return DAG.getBitcast(VT, Cond);
37613 
37614   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(CondVT))
37615     return SDValue();
37616 
37617   // vselect Cond, 111..., X -> or Cond, X
37618   if (TValIsAllOnes) {
37619     SDValue CastRHS = DAG.getBitcast(CondVT, RHS);
37620     SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, CastRHS);
37621     return DAG.getBitcast(VT, Or);
37622   }
37623 
37624   // vselect Cond, X, 000... -> and Cond, X
37625   if (FValIsAllZeros) {
37626     SDValue CastLHS = DAG.getBitcast(CondVT, LHS);
37627     SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, CastLHS);
37628     return DAG.getBitcast(VT, And);
37629   }
37630 
37631   // vselect Cond, 000..., X -> andn Cond, X
37632   if (TValIsAllZeros) {
37633     MVT AndNVT = MVT::getVectorVT(MVT::i64, CondVT.getSizeInBits() / 64);
37634     SDValue CastCond = DAG.getBitcast(AndNVT, Cond);
37635     SDValue CastRHS = DAG.getBitcast(AndNVT, RHS);
37636     SDValue AndN = DAG.getNode(X86ISD::ANDNP, DL, AndNVT, CastCond, CastRHS);
37637     return DAG.getBitcast(VT, AndN);
37638   }
37639 
37640   return SDValue();
37641 }
37642 
37643 /// If both arms of a vector select are concatenated vectors, split the select,
37644 /// and concatenate the result to eliminate a wide (256-bit) vector instruction:
37645 ///   vselect Cond, (concat T0, T1), (concat F0, F1) -->
37646 ///   concat (vselect (split Cond), T0, F0), (vselect (split Cond), T1, F1)
37647 static SDValue narrowVectorSelect(SDNode *N, SelectionDAG &DAG,
37648                                   const X86Subtarget &Subtarget) {
37649   unsigned Opcode = N->getOpcode();
37650   if (Opcode != X86ISD::BLENDV && Opcode != ISD::VSELECT)
37651     return SDValue();
37652 
37653   // TODO: Split 512-bit vectors too?
37654   EVT VT = N->getValueType(0);
37655   if (!VT.is256BitVector())
37656     return SDValue();
37657 
37658   // TODO: Split as long as any 2 of the 3 operands are concatenated?
37659   SDValue Cond = N->getOperand(0);
37660   SDValue TVal = N->getOperand(1);
37661   SDValue FVal = N->getOperand(2);
37662   SmallVector<SDValue, 4> CatOpsT, CatOpsF;
37663   if (!TVal.hasOneUse() || !FVal.hasOneUse() ||
37664       !collectConcatOps(TVal.getNode(), CatOpsT) ||
37665       !collectConcatOps(FVal.getNode(), CatOpsF))
37666     return SDValue();
37667 
37668   auto makeBlend = [Opcode](SelectionDAG &DAG, const SDLoc &DL,
37669                             ArrayRef<SDValue> Ops) {
37670     return DAG.getNode(Opcode, DL, Ops[1].getValueType(), Ops);
37671   };
37672   return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { Cond, TVal, FVal },
37673                           makeBlend, /*CheckBWI*/ false);
37674 }
37675 
37676 static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) {
37677   SDValue Cond = N->getOperand(0);
37678   SDValue LHS = N->getOperand(1);
37679   SDValue RHS = N->getOperand(2);
37680   SDLoc DL(N);
37681 
37682   auto *TrueC = dyn_cast<ConstantSDNode>(LHS);
37683   auto *FalseC = dyn_cast<ConstantSDNode>(RHS);
37684   if (!TrueC || !FalseC)
37685     return SDValue();
37686 
37687   // Don't do this for crazy integer types.
37688   EVT VT = N->getValueType(0);
37689   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
37690     return SDValue();
37691 
37692   // We're going to use the condition bit in math or logic ops. We could allow
37693   // this with a wider condition value (post-legalization it becomes an i8),
37694   // but if nothing is creating selects that late, it doesn't matter.
37695   if (Cond.getValueType() != MVT::i1)
37696     return SDValue();
37697 
37698   // A power-of-2 multiply is just a shift. LEA also cheaply handles multiply by
37699   // 3, 5, or 9 with i32/i64, so those get transformed too.
37700   // TODO: For constants that overflow or do not differ by power-of-2 or small
37701   // multiplier, convert to 'and' + 'add'.
37702   const APInt &TrueVal = TrueC->getAPIntValue();
37703   const APInt &FalseVal = FalseC->getAPIntValue();
37704   bool OV;
37705   APInt Diff = TrueVal.ssub_ov(FalseVal, OV);
37706   if (OV)
37707     return SDValue();
37708 
37709   APInt AbsDiff = Diff.abs();
37710   if (AbsDiff.isPowerOf2() ||
37711       ((VT == MVT::i32 || VT == MVT::i64) &&
37712        (AbsDiff == 3 || AbsDiff == 5 || AbsDiff == 9))) {
37713 
37714     // We need a positive multiplier constant for shift/LEA codegen. The 'not'
37715     // of the condition can usually be folded into a compare predicate, but even
37716     // without that, the sequence should be cheaper than a CMOV alternative.
37717     if (TrueVal.slt(FalseVal)) {
37718       Cond = DAG.getNOT(DL, Cond, MVT::i1);
37719       std::swap(TrueC, FalseC);
37720     }
37721 
37722     // select Cond, TC, FC --> (zext(Cond) * (TC - FC)) + FC
37723     SDValue R = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
37724 
37725     // Multiply condition by the difference if non-one.
37726     if (!AbsDiff.isOneValue())
37727       R = DAG.getNode(ISD::MUL, DL, VT, R, DAG.getConstant(AbsDiff, DL, VT));
37728 
37729     // Add the base if non-zero.
37730     if (!FalseC->isNullValue())
37731       R = DAG.getNode(ISD::ADD, DL, VT, R, SDValue(FalseC, 0));
37732 
37733     return R;
37734   }
37735 
37736   return SDValue();
37737 }
37738 
37739 /// If this is a *dynamic* select (non-constant condition) and we can match
37740 /// this node with one of the variable blend instructions, restructure the
37741 /// condition so that blends can use the high (sign) bit of each element.
37742 /// This function will also call SimplifyDemandedBits on already created
37743 /// BLENDV to perform additional simplifications.
37744 static SDValue combineVSelectToBLENDV(SDNode *N, SelectionDAG &DAG,
37745                                            TargetLowering::DAGCombinerInfo &DCI,
37746                                            const X86Subtarget &Subtarget) {
37747   SDValue Cond = N->getOperand(0);
37748   if ((N->getOpcode() != ISD::VSELECT &&
37749        N->getOpcode() != X86ISD::BLENDV) ||
37750       ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
37751     return SDValue();
37752 
37753   // Don't optimize before the condition has been transformed to a legal type
37754   // and don't ever optimize vector selects that map to AVX512 mask-registers.
37755   unsigned BitWidth = Cond.getScalarValueSizeInBits();
37756   if (BitWidth < 8 || BitWidth > 64)
37757     return SDValue();
37758 
37759   // We can only handle the cases where VSELECT is directly legal on the
37760   // subtarget. We custom lower VSELECT nodes with constant conditions and
37761   // this makes it hard to see whether a dynamic VSELECT will correctly
37762   // lower, so we both check the operation's status and explicitly handle the
37763   // cases where a *dynamic* blend will fail even though a constant-condition
37764   // blend could be custom lowered.
37765   // FIXME: We should find a better way to handle this class of problems.
37766   // Potentially, we should combine constant-condition vselect nodes
37767   // pre-legalization into shuffles and not mark as many types as custom
37768   // lowered.
37769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
37770   EVT VT = N->getValueType(0);
37771   if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
37772     return SDValue();
37773   // FIXME: We don't support i16-element blends currently. We could and
37774   // should support them by making *all* the bits in the condition be set
37775   // rather than just the high bit and using an i8-element blend.
37776   if (VT.getVectorElementType() == MVT::i16)
37777     return SDValue();
37778   // Dynamic blending was only available from SSE4.1 onward.
37779   if (VT.is128BitVector() && !Subtarget.hasSSE41())
37780     return SDValue();
37781   // Byte blends are only available in AVX2
37782   if (VT == MVT::v32i8 && !Subtarget.hasAVX2())
37783     return SDValue();
37784   // There are no 512-bit blend instructions that use sign bits.
37785   if (VT.is512BitVector())
37786     return SDValue();
37787 
37788   auto OnlyUsedAsSelectCond = [](SDValue Cond) {
37789     for (SDNode::use_iterator UI = Cond->use_begin(), UE = Cond->use_end();
37790          UI != UE; ++UI)
37791       if ((UI->getOpcode() != ISD::VSELECT &&
37792            UI->getOpcode() != X86ISD::BLENDV) ||
37793           UI.getOperandNo() != 0)
37794         return false;
37795 
37796     return true;
37797   };
37798 
37799   if (OnlyUsedAsSelectCond(Cond)) {
37800     APInt DemandedMask(APInt::getSignMask(BitWidth));
37801     KnownBits Known;
37802     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
37803                                           !DCI.isBeforeLegalizeOps());
37804     if (!TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO, 0, true))
37805       return SDValue();
37806 
37807     // If we changed the computation somewhere in the DAG, this change will
37808     // affect all users of Cond. Update all the nodes so that we do not use
37809     // the generic VSELECT anymore. Otherwise, we may perform wrong
37810     // optimizations as we messed with the actual expectation for the vector
37811     // boolean values.
37812     for (SDNode *U : Cond->uses()) {
37813       if (U->getOpcode() == X86ISD::BLENDV)
37814         continue;
37815 
37816       SDValue SB = DAG.getNode(X86ISD::BLENDV, SDLoc(U), U->getValueType(0),
37817                                Cond, U->getOperand(1), U->getOperand(2));
37818       DAG.ReplaceAllUsesOfValueWith(SDValue(U, 0), SB);
37819       DCI.AddToWorklist(U);
37820     }
37821     DCI.CommitTargetLoweringOpt(TLO);
37822     return SDValue(N, 0);
37823   }
37824 
37825   // Otherwise we can still at least try to simplify multiple use bits.
37826   APInt DemandedMask(APInt::getSignMask(BitWidth));
37827   APInt DemandedElts(APInt::getAllOnesValue(VT.getVectorNumElements()));
37828   KnownBits Known;
37829   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
37830                                         !DCI.isBeforeLegalizeOps());
37831   if (SDValue V = TLI.SimplifyMultipleUseDemandedBits(Cond, DemandedMask,
37832                                                       DemandedElts, DAG, 0))
37833     return DAG.getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
37834                        V, N->getOperand(1), N->getOperand(2));
37835 
37836   return SDValue();
37837 }
37838 
37839 // Try to match:
37840 //   (or (and (M, (sub 0, X)), (pandn M, X)))
37841 // which is a special case of:
37842 //   (select M, (sub 0, X), X)
37843 // Per:
37844 // http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
37845 // We know that, if fNegate is 0 or 1:
37846 //   (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate)
37847 //
37848 // Here, we have a mask, M (all 1s or 0), and, similarly, we know that:
37849 //   ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1))
37850 //   ( M      ? -X : X) == ((X ^   M     ) + (M & 1))
37851 // This lets us transform our vselect to:
37852 //   (add (xor X, M), (and M, 1))
37853 // And further to:
37854 //   (sub (xor X, M), M)
37855 static SDValue combineLogicBlendIntoConditionalNegate(
37856     EVT VT, SDValue Mask, SDValue X, SDValue Y, const SDLoc &DL,
37857     SelectionDAG &DAG, const X86Subtarget &Subtarget) {
37858   EVT MaskVT = Mask.getValueType();
37859   assert(MaskVT.isInteger() &&
37860          DAG.ComputeNumSignBits(Mask) == MaskVT.getScalarSizeInBits() &&
37861          "Mask must be zero/all-bits");
37862 
37863   if (X.getValueType() != MaskVT || Y.getValueType() != MaskVT)
37864     return SDValue();
37865   if (!DAG.getTargetLoweringInfo().isOperationLegal(ISD::SUB, MaskVT))
37866     return SDValue();
37867 
37868   auto IsNegV = [](SDNode *N, SDValue V) {
37869     return N->getOpcode() == ISD::SUB && N->getOperand(1) == V &&
37870            ISD::isBuildVectorAllZeros(N->getOperand(0).getNode());
37871   };
37872 
37873   SDValue V;
37874   if (IsNegV(Y.getNode(), X))
37875     V = X;
37876   else if (IsNegV(X.getNode(), Y))
37877     V = Y;
37878   else
37879     return SDValue();
37880 
37881   SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask);
37882   SDValue SubOp2 = Mask;
37883 
37884   // If the negate was on the false side of the select, then
37885   // the operands of the SUB need to be swapped. PR 27251.
37886   // This is because the pattern being matched above is
37887   // (vselect M, (sub (0, X), X)  -> (sub (xor X, M), M)
37888   // but if the pattern matched was
37889   // (vselect M, X, (sub (0, X))), that is really negation of the pattern
37890   // above, -(vselect M, (sub 0, X), X), and therefore the replacement
37891   // pattern also needs to be a negation of the replacement pattern above.
37892   // And -(sub X, Y) is just sub (Y, X), so swapping the operands of the
37893   // sub accomplishes the negation of the replacement pattern.
37894   if (V == Y)
37895     std::swap(SubOp1, SubOp2);
37896 
37897   SDValue Res = DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2);
37898   return DAG.getBitcast(VT, Res);
37899 }
37900 
37901 /// Do target-specific dag combines on SELECT and VSELECT nodes.
37902 static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
37903                              TargetLowering::DAGCombinerInfo &DCI,
37904                              const X86Subtarget &Subtarget) {
37905   SDLoc DL(N);
37906   SDValue Cond = N->getOperand(0);
37907   SDValue LHS = N->getOperand(1);
37908   SDValue RHS = N->getOperand(2);
37909 
37910   // Try simplification again because we use this function to optimize
37911   // BLENDV nodes that are not handled by the generic combiner.
37912   if (SDValue V = DAG.simplifySelect(Cond, LHS, RHS))
37913     return V;
37914 
37915   EVT VT = LHS.getValueType();
37916   EVT CondVT = Cond.getValueType();
37917   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
37918   bool CondConstantVector = ISD::isBuildVectorOfConstantSDNodes(Cond.getNode());
37919 
37920   // Attempt to combine (select M, (sub 0, X), X) -> (sub (xor X, M), M).
37921   // Limit this to cases of non-constant masks that createShuffleMaskFromVSELECT
37922   // can't catch, plus vXi8 cases where we'd likely end up with BLENDV.
37923   if (CondVT.isVector() && CondVT.isInteger() &&
37924       CondVT.getScalarSizeInBits() == VT.getScalarSizeInBits() &&
37925       (!CondConstantVector || CondVT.getScalarType() == MVT::i8) &&
37926       DAG.ComputeNumSignBits(Cond) == CondVT.getScalarSizeInBits())
37927     if (SDValue V = combineLogicBlendIntoConditionalNegate(VT, Cond, RHS, LHS,
37928                                                            DL, DAG, Subtarget))
37929       return V;
37930 
37931   // Convert vselects with constant condition into shuffles.
37932   if (CondConstantVector && DCI.isBeforeLegalizeOps()) {
37933     SmallVector<int, 64> Mask;
37934     if (createShuffleMaskFromVSELECT(Mask, Cond))
37935       return DAG.getVectorShuffle(VT, DL, LHS, RHS, Mask);
37936   }
37937 
37938   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
37939   // instructions match the semantics of the common C idiom x<y?x:y but not
37940   // x<=y?x:y, because of how they handle negative zero (which can be
37941   // ignored in unsafe-math mode).
37942   // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
37943   if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
37944       VT != MVT::f80 && VT != MVT::f128 &&
37945       (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
37946       (Subtarget.hasSSE2() ||
37947        (Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) {
37948     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
37949 
37950     unsigned Opcode = 0;
37951     // Check for x CC y ? x : y.
37952     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
37953         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
37954       switch (CC) {
37955       default: break;
37956       case ISD::SETULT:
37957         // Converting this to a min would handle NaNs incorrectly, and swapping
37958         // the operands would cause it to handle comparisons between positive
37959         // and negative zero incorrectly.
37960         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
37961           if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
37962               !(DAG.isKnownNeverZeroFloat(LHS) ||
37963                 DAG.isKnownNeverZeroFloat(RHS)))
37964             break;
37965           std::swap(LHS, RHS);
37966         }
37967         Opcode = X86ISD::FMIN;
37968         break;
37969       case ISD::SETOLE:
37970         // Converting this to a min would handle comparisons between positive
37971         // and negative zero incorrectly.
37972         if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
37973             !DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS))
37974           break;
37975         Opcode = X86ISD::FMIN;
37976         break;
37977       case ISD::SETULE:
37978         // Converting this to a min would handle both negative zeros and NaNs
37979         // incorrectly, but we can swap the operands to fix both.
37980         std::swap(LHS, RHS);
37981         LLVM_FALLTHROUGH;
37982       case ISD::SETOLT:
37983       case ISD::SETLT:
37984       case ISD::SETLE:
37985         Opcode = X86ISD::FMIN;
37986         break;
37987 
37988       case ISD::SETOGE:
37989         // Converting this to a max would handle comparisons between positive
37990         // and negative zero incorrectly.
37991         if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
37992             !DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS))
37993           break;
37994         Opcode = X86ISD::FMAX;
37995         break;
37996       case ISD::SETUGT:
37997         // Converting this to a max would handle NaNs incorrectly, and swapping
37998         // the operands would cause it to handle comparisons between positive
37999         // and negative zero incorrectly.
38000         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
38001           if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
38002               !(DAG.isKnownNeverZeroFloat(LHS) ||
38003                 DAG.isKnownNeverZeroFloat(RHS)))
38004             break;
38005           std::swap(LHS, RHS);
38006         }
38007         Opcode = X86ISD::FMAX;
38008         break;
38009       case ISD::SETUGE:
38010         // Converting this to a max would handle both negative zeros and NaNs
38011         // incorrectly, but we can swap the operands to fix both.
38012         std::swap(LHS, RHS);
38013         LLVM_FALLTHROUGH;
38014       case ISD::SETOGT:
38015       case ISD::SETGT:
38016       case ISD::SETGE:
38017         Opcode = X86ISD::FMAX;
38018         break;
38019       }
38020     // Check for x CC y ? y : x -- a min/max with reversed arms.
38021     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
38022                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
38023       switch (CC) {
38024       default: break;
38025       case ISD::SETOGE:
38026         // Converting this to a min would handle comparisons between positive
38027         // and negative zero incorrectly, and swapping the operands would
38028         // cause it to handle NaNs incorrectly.
38029         if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
38030             !(DAG.isKnownNeverZeroFloat(LHS) ||
38031               DAG.isKnownNeverZeroFloat(RHS))) {
38032           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
38033             break;
38034           std::swap(LHS, RHS);
38035         }
38036         Opcode = X86ISD::FMIN;
38037         break;
38038       case ISD::SETUGT:
38039         // Converting this to a min would handle NaNs incorrectly.
38040         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
38041           break;
38042         Opcode = X86ISD::FMIN;
38043         break;
38044       case ISD::SETUGE:
38045         // Converting this to a min would handle both negative zeros and NaNs
38046         // incorrectly, but we can swap the operands to fix both.
38047         std::swap(LHS, RHS);
38048         LLVM_FALLTHROUGH;
38049       case ISD::SETOGT:
38050       case ISD::SETGT:
38051       case ISD::SETGE:
38052         Opcode = X86ISD::FMIN;
38053         break;
38054 
38055       case ISD::SETULT:
38056         // Converting this to a max would handle NaNs incorrectly.
38057         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
38058           break;
38059         Opcode = X86ISD::FMAX;
38060         break;
38061       case ISD::SETOLE:
38062         // Converting this to a max would handle comparisons between positive
38063         // and negative zero incorrectly, and swapping the operands would
38064         // cause it to handle NaNs incorrectly.
38065         if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
38066             !DAG.isKnownNeverZeroFloat(LHS) &&
38067             !DAG.isKnownNeverZeroFloat(RHS)) {
38068           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
38069             break;
38070           std::swap(LHS, RHS);
38071         }
38072         Opcode = X86ISD::FMAX;
38073         break;
38074       case ISD::SETULE:
38075         // Converting this to a max would handle both negative zeros and NaNs
38076         // incorrectly, but we can swap the operands to fix both.
38077         std::swap(LHS, RHS);
38078         LLVM_FALLTHROUGH;
38079       case ISD::SETOLT:
38080       case ISD::SETLT:
38081       case ISD::SETLE:
38082         Opcode = X86ISD::FMAX;
38083         break;
38084       }
38085     }
38086 
38087     if (Opcode)
38088       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
38089   }
38090 
38091   // Some mask scalar intrinsics rely on checking if only one bit is set
38092   // and implement it in C code like this:
38093   // A[0] = (U & 1) ? A[0] : W[0];
38094   // This creates some redundant instructions that break pattern matching.
38095   // fold (select (setcc (and (X, 1), 0, seteq), Y, Z)) -> select(and(X, 1),Z,Y)
38096   if (Subtarget.hasAVX512() && N->getOpcode() == ISD::SELECT &&
38097       Cond.getOpcode() == ISD::SETCC && (VT == MVT::f32 || VT == MVT::f64)) {
38098     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
38099     SDValue AndNode = Cond.getOperand(0);
38100     if (AndNode.getOpcode() == ISD::AND && CC == ISD::SETEQ &&
38101         isNullConstant(Cond.getOperand(1)) &&
38102         isOneConstant(AndNode.getOperand(1))) {
38103       // LHS and RHS swapped due to
38104       // setcc outputting 1 when AND resulted in 0 and vice versa.
38105       AndNode = DAG.getZExtOrTrunc(AndNode, DL, MVT::i8);
38106       return DAG.getNode(ISD::SELECT, DL, VT, AndNode, RHS, LHS);
38107     }
38108   }
38109 
38110   // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
38111   // lowering on KNL. In this case we convert it to
38112   // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
38113   // The same situation all vectors of i8 and i16 without BWI.
38114   // Make sure we extend these even before type legalization gets a chance to
38115   // split wide vectors.
38116   // Since SKX these selects have a proper lowering.
38117   if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && CondVT.isVector() &&
38118       CondVT.getVectorElementType() == MVT::i1 &&
38119       (VT.getVectorElementType() == MVT::i8 ||
38120        VT.getVectorElementType() == MVT::i16)) {
38121     Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
38122     return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS);
38123   }
38124 
38125   // AVX512 - Extend select with zero to merge with target shuffle.
38126   // select(mask, extract_subvector(shuffle(x)), zero) -->
38127   // extract_subvector(select(insert_subvector(mask), shuffle(x), zero))
38128   // TODO - support non target shuffles as well.
38129   if (Subtarget.hasAVX512() && CondVT.isVector() &&
38130       CondVT.getVectorElementType() == MVT::i1) {
38131     auto SelectableOp = [&TLI](SDValue Op) {
38132       return Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
38133              isTargetShuffle(Op.getOperand(0).getOpcode()) &&
38134              isNullConstant(Op.getOperand(1)) &&
38135              TLI.isTypeLegal(Op.getOperand(0).getValueType()) &&
38136              Op.hasOneUse() && Op.getOperand(0).hasOneUse();
38137     };
38138 
38139     bool SelectableLHS = SelectableOp(LHS);
38140     bool SelectableRHS = SelectableOp(RHS);
38141     bool ZeroLHS = ISD::isBuildVectorAllZeros(LHS.getNode());
38142     bool ZeroRHS = ISD::isBuildVectorAllZeros(RHS.getNode());
38143 
38144     if ((SelectableLHS && ZeroRHS) || (SelectableRHS && ZeroLHS)) {
38145       EVT SrcVT = SelectableLHS ? LHS.getOperand(0).getValueType()
38146                                 : RHS.getOperand(0).getValueType();
38147       unsigned NumSrcElts = SrcVT.getVectorNumElements();
38148       EVT SrcCondVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumSrcElts);
38149       LHS = insertSubVector(DAG.getUNDEF(SrcVT), LHS, 0, DAG, DL,
38150                             VT.getSizeInBits());
38151       RHS = insertSubVector(DAG.getUNDEF(SrcVT), RHS, 0, DAG, DL,
38152                             VT.getSizeInBits());
38153       Cond = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcCondVT,
38154                          DAG.getUNDEF(SrcCondVT), Cond,
38155                          DAG.getIntPtrConstant(0, DL));
38156       SDValue Res = DAG.getSelect(DL, SrcVT, Cond, LHS, RHS);
38157       return extractSubVector(Res, 0, DAG, DL, VT.getSizeInBits());
38158     }
38159   }
38160 
38161   if (SDValue V = combineSelectOfTwoConstants(N, DAG))
38162     return V;
38163 
38164   // Canonicalize max and min:
38165   // (x > y) ? x : y -> (x >= y) ? x : y
38166   // (x < y) ? x : y -> (x <= y) ? x : y
38167   // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
38168   // the need for an extra compare
38169   // against zero. e.g.
38170   // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
38171   // subl   %esi, %edi
38172   // testl  %edi, %edi
38173   // movl   $0, %eax
38174   // cmovgl %edi, %eax
38175   // =>
38176   // xorl   %eax, %eax
38177   // subl   %esi, $edi
38178   // cmovsl %eax, %edi
38179   if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
38180       Cond.hasOneUse() &&
38181       DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
38182       DAG.isEqualTo(RHS, Cond.getOperand(1))) {
38183     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
38184     switch (CC) {
38185     default: break;
38186     case ISD::SETLT:
38187     case ISD::SETGT: {
38188       ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
38189       Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
38190                           Cond.getOperand(0), Cond.getOperand(1), NewCC);
38191       return DAG.getSelect(DL, VT, Cond, LHS, RHS);
38192     }
38193     }
38194   }
38195 
38196   // Match VSELECTs into subs with unsigned saturation.
38197   if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
38198       // psubus is available in SSE2 for i8 and i16 vectors.
38199       Subtarget.hasSSE2() && VT.getVectorNumElements() >= 2 &&
38200       isPowerOf2_32(VT.getVectorNumElements()) &&
38201       (VT.getVectorElementType() == MVT::i8 ||
38202        VT.getVectorElementType() == MVT::i16)) {
38203     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
38204 
38205     // Check if one of the arms of the VSELECT is a zero vector. If it's on the
38206     // left side invert the predicate to simplify logic below.
38207     SDValue Other;
38208     if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
38209       Other = RHS;
38210       CC = ISD::getSetCCInverse(CC, VT.getVectorElementType());
38211     } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
38212       Other = LHS;
38213     }
38214 
38215     if (Other.getNode() && Other->getNumOperands() == 2 &&
38216         Other->getOperand(0) == Cond.getOperand(0)) {
38217       SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
38218       SDValue CondRHS = Cond->getOperand(1);
38219 
38220       // Look for a general sub with unsigned saturation first.
38221       // x >= y ? x-y : 0 --> subus x, y
38222       // x >  y ? x-y : 0 --> subus x, y
38223       if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
38224           Other->getOpcode() == ISD::SUB && OpRHS == CondRHS)
38225         return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
38226 
38227       if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) {
38228         if (isa<BuildVectorSDNode>(CondRHS)) {
38229           // If the RHS is a constant we have to reverse the const
38230           // canonicalization.
38231           // x > C-1 ? x+-C : 0 --> subus x, C
38232           auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
38233             return (!Op && !Cond) ||
38234                    (Op && Cond &&
38235                     Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
38236           };
38237           if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
38238               ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
38239                                         /*AllowUndefs*/ true)) {
38240             OpRHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
38241                                 OpRHS);
38242             return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
38243           }
38244 
38245           // Another special case: If C was a sign bit, the sub has been
38246           // canonicalized into a xor.
38247           // FIXME: Would it be better to use computeKnownBits to determine
38248           //        whether it's safe to decanonicalize the xor?
38249           // x s< 0 ? x^C : 0 --> subus x, C
38250           if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
38251             if (CC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
38252                 ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
38253                 OpRHSConst->getAPIntValue().isSignMask()) {
38254               // Note that we have to rebuild the RHS constant here to ensure we
38255               // don't rely on particular values of undef lanes.
38256               OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT);
38257               return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
38258             }
38259           }
38260         }
38261       }
38262     }
38263   }
38264 
38265   // Match VSELECTs into add with unsigned saturation.
38266   if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
38267       // paddus is available in SSE2 for i8 and i16 vectors.
38268       Subtarget.hasSSE2() && VT.getVectorNumElements() >= 2 &&
38269       isPowerOf2_32(VT.getVectorNumElements()) &&
38270       (VT.getVectorElementType() == MVT::i8 ||
38271        VT.getVectorElementType() == MVT::i16)) {
38272     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
38273 
38274     SDValue CondLHS = Cond->getOperand(0);
38275     SDValue CondRHS = Cond->getOperand(1);
38276 
38277     // Check if one of the arms of the VSELECT is vector with all bits set.
38278     // If it's on the left side invert the predicate to simplify logic below.
38279     SDValue Other;
38280     if (ISD::isBuildVectorAllOnes(LHS.getNode())) {
38281       Other = RHS;
38282       CC = ISD::getSetCCInverse(CC, VT.getVectorElementType());
38283     } else if (ISD::isBuildVectorAllOnes(RHS.getNode())) {
38284       Other = LHS;
38285     }
38286 
38287     if (Other.getNode() && Other.getOpcode() == ISD::ADD) {
38288       SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
38289 
38290       // Canonicalize condition operands.
38291       if (CC == ISD::SETUGE) {
38292         std::swap(CondLHS, CondRHS);
38293         CC = ISD::SETULE;
38294       }
38295 
38296       // We can test against either of the addition operands.
38297       // x <= x+y ? x+y : ~0 --> addus x, y
38298       // x+y >= x ? x+y : ~0 --> addus x, y
38299       if (CC == ISD::SETULE && Other == CondRHS &&
38300           (OpLHS == CondLHS || OpRHS == CondLHS))
38301         return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
38302 
38303       if (isa<BuildVectorSDNode>(OpRHS) && isa<BuildVectorSDNode>(CondRHS) &&
38304           CondLHS == OpLHS) {
38305         // If the RHS is a constant we have to reverse the const
38306         // canonicalization.
38307         // x > ~C ? x+C : ~0 --> addus x, C
38308         auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
38309           return Cond->getAPIntValue() == ~Op->getAPIntValue();
38310         };
38311         if (CC == ISD::SETULE &&
38312             ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
38313           return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
38314       }
38315     }
38316   }
38317 
38318   // Early exit check
38319   if (!TLI.isTypeLegal(VT))
38320     return SDValue();
38321 
38322   if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, DCI, Subtarget))
38323     return V;
38324 
38325   if (SDValue V = combineVSelectToBLENDV(N, DAG, DCI, Subtarget))
38326     return V;
38327 
38328   if (SDValue V = narrowVectorSelect(N, DAG, Subtarget))
38329     return V;
38330 
38331   // select(~Cond, X, Y) -> select(Cond, Y, X)
38332   if (CondVT.getScalarType() != MVT::i1)
38333     if (SDValue CondNot = IsNOT(Cond, DAG))
38334       return DAG.getNode(N->getOpcode(), DL, VT,
38335                          DAG.getBitcast(CondVT, CondNot), RHS, LHS);
38336 
38337   // Custom action for SELECT MMX
38338   if (VT == MVT::x86mmx) {
38339     LHS = DAG.getBitcast(MVT::i64, LHS);
38340     RHS = DAG.getBitcast(MVT::i64, RHS);
38341     SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::i64, Cond, LHS, RHS);
38342     return DAG.getBitcast(VT, newSelect);
38343   }
38344 
38345   return SDValue();
38346 }
38347 
38348 /// Combine:
38349 ///   (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
38350 /// to:
38351 ///   (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
38352 /// i.e., reusing the EFLAGS produced by the LOCKed instruction.
38353 /// Note that this is only legal for some op/cc combinations.
38354 static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
38355                                        SelectionDAG &DAG,
38356                                        const X86Subtarget &Subtarget) {
38357   // This combine only operates on CMP-like nodes.
38358   if (!(Cmp.getOpcode() == X86ISD::CMP ||
38359         (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
38360     return SDValue();
38361 
38362   // Can't replace the cmp if it has more uses than the one we're looking at.
38363   // FIXME: We would like to be able to handle this, but would need to make sure
38364   // all uses were updated.
38365   if (!Cmp.hasOneUse())
38366     return SDValue();
38367 
38368   // This only applies to variations of the common case:
38369   //   (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
38370   //   (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
38371   //   (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
38372   //   (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
38373   // Using the proper condcodes (see below), overflow is checked for.
38374 
38375   // FIXME: We can generalize both constraints:
38376   // - XOR/OR/AND (if they were made to survive AtomicExpand)
38377   // - LHS != 1
38378   // if the result is compared.
38379 
38380   SDValue CmpLHS = Cmp.getOperand(0);
38381   SDValue CmpRHS = Cmp.getOperand(1);
38382 
38383   if (!CmpLHS.hasOneUse())
38384     return SDValue();
38385 
38386   unsigned Opc = CmpLHS.getOpcode();
38387   if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB)
38388     return SDValue();
38389 
38390   SDValue OpRHS = CmpLHS.getOperand(2);
38391   auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS);
38392   if (!OpRHSC)
38393     return SDValue();
38394 
38395   APInt Addend = OpRHSC->getAPIntValue();
38396   if (Opc == ISD::ATOMIC_LOAD_SUB)
38397     Addend = -Addend;
38398 
38399   auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
38400   if (!CmpRHSC)
38401     return SDValue();
38402 
38403   APInt Comparison = CmpRHSC->getAPIntValue();
38404 
38405   // If the addend is the negation of the comparison value, then we can do
38406   // a full comparison by emitting the atomic arithmetic as a locked sub.
38407   if (Comparison == -Addend) {
38408     // The CC is fine, but we need to rewrite the LHS of the comparison as an
38409     // atomic sub.
38410     auto *AN = cast<AtomicSDNode>(CmpLHS.getNode());
38411     auto AtomicSub = DAG.getAtomic(
38412         ISD::ATOMIC_LOAD_SUB, SDLoc(CmpLHS), CmpLHS.getValueType(),
38413         /*Chain*/ CmpLHS.getOperand(0), /*LHS*/ CmpLHS.getOperand(1),
38414         /*RHS*/ DAG.getConstant(-Addend, SDLoc(CmpRHS), CmpRHS.getValueType()),
38415         AN->getMemOperand());
38416     auto LockOp = lowerAtomicArithWithLOCK(AtomicSub, DAG, Subtarget);
38417     DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
38418                                   DAG.getUNDEF(CmpLHS.getValueType()));
38419     DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
38420     return LockOp;
38421   }
38422 
38423   // We can handle comparisons with zero in a number of cases by manipulating
38424   // the CC used.
38425   if (!Comparison.isNullValue())
38426     return SDValue();
38427 
38428   if (CC == X86::COND_S && Addend == 1)
38429     CC = X86::COND_LE;
38430   else if (CC == X86::COND_NS && Addend == 1)
38431     CC = X86::COND_G;
38432   else if (CC == X86::COND_G && Addend == -1)
38433     CC = X86::COND_GE;
38434   else if (CC == X86::COND_LE && Addend == -1)
38435     CC = X86::COND_L;
38436   else
38437     return SDValue();
38438 
38439   SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG, Subtarget);
38440   DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
38441                                 DAG.getUNDEF(CmpLHS.getValueType()));
38442   DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
38443   return LockOp;
38444 }
38445 
38446 // Check whether a boolean test is testing a boolean value generated by
38447 // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
38448 // code.
38449 //
38450 // Simplify the following patterns:
38451 // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
38452 // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
38453 // to (Op EFLAGS Cond)
38454 //
38455 // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
38456 // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
38457 // to (Op EFLAGS !Cond)
38458 //
38459 // where Op could be BRCOND or CMOV.
38460 //
38461 static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
38462   // This combine only operates on CMP-like nodes.
38463   if (!(Cmp.getOpcode() == X86ISD::CMP ||
38464         (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
38465     return SDValue();
38466 
38467   // Quit if not used as a boolean value.
38468   if (CC != X86::COND_E && CC != X86::COND_NE)
38469     return SDValue();
38470 
38471   // Check CMP operands. One of them should be 0 or 1 and the other should be
38472   // an SetCC or extended from it.
38473   SDValue Op1 = Cmp.getOperand(0);
38474   SDValue Op2 = Cmp.getOperand(1);
38475 
38476   SDValue SetCC;
38477   const ConstantSDNode* C = nullptr;
38478   bool needOppositeCond = (CC == X86::COND_E);
38479   bool checkAgainstTrue = false; // Is it a comparison against 1?
38480 
38481   if ((C = dyn_cast<ConstantSDNode>(Op1)))
38482     SetCC = Op2;
38483   else if ((C = dyn_cast<ConstantSDNode>(Op2)))
38484     SetCC = Op1;
38485   else // Quit if all operands are not constants.
38486     return SDValue();
38487 
38488   if (C->getZExtValue() == 1) {
38489     needOppositeCond = !needOppositeCond;
38490     checkAgainstTrue = true;
38491   } else if (C->getZExtValue() != 0)
38492     // Quit if the constant is neither 0 or 1.
38493     return SDValue();
38494 
38495   bool truncatedToBoolWithAnd = false;
38496   // Skip (zext $x), (trunc $x), or (and $x, 1) node.
38497   while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
38498          SetCC.getOpcode() == ISD::TRUNCATE ||
38499          SetCC.getOpcode() == ISD::AND) {
38500     if (SetCC.getOpcode() == ISD::AND) {
38501       int OpIdx = -1;
38502       if (isOneConstant(SetCC.getOperand(0)))
38503         OpIdx = 1;
38504       if (isOneConstant(SetCC.getOperand(1)))
38505         OpIdx = 0;
38506       if (OpIdx < 0)
38507         break;
38508       SetCC = SetCC.getOperand(OpIdx);
38509       truncatedToBoolWithAnd = true;
38510     } else
38511       SetCC = SetCC.getOperand(0);
38512   }
38513 
38514   switch (SetCC.getOpcode()) {
38515   case X86ISD::SETCC_CARRY:
38516     // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
38517     // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
38518     // i.e. it's a comparison against true but the result of SETCC_CARRY is not
38519     // truncated to i1 using 'and'.
38520     if (checkAgainstTrue && !truncatedToBoolWithAnd)
38521       break;
38522     assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
38523            "Invalid use of SETCC_CARRY!");
38524     LLVM_FALLTHROUGH;
38525   case X86ISD::SETCC:
38526     // Set the condition code or opposite one if necessary.
38527     CC = X86::CondCode(SetCC.getConstantOperandVal(0));
38528     if (needOppositeCond)
38529       CC = X86::GetOppositeBranchCondition(CC);
38530     return SetCC.getOperand(1);
38531   case X86ISD::CMOV: {
38532     // Check whether false/true value has canonical one, i.e. 0 or 1.
38533     ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
38534     ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
38535     // Quit if true value is not a constant.
38536     if (!TVal)
38537       return SDValue();
38538     // Quit if false value is not a constant.
38539     if (!FVal) {
38540       SDValue Op = SetCC.getOperand(0);
38541       // Skip 'zext' or 'trunc' node.
38542       if (Op.getOpcode() == ISD::ZERO_EXTEND ||
38543           Op.getOpcode() == ISD::TRUNCATE)
38544         Op = Op.getOperand(0);
38545       // A special case for rdrand/rdseed, where 0 is set if false cond is
38546       // found.
38547       if ((Op.getOpcode() != X86ISD::RDRAND &&
38548            Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
38549         return SDValue();
38550     }
38551     // Quit if false value is not the constant 0 or 1.
38552     bool FValIsFalse = true;
38553     if (FVal && FVal->getZExtValue() != 0) {
38554       if (FVal->getZExtValue() != 1)
38555         return SDValue();
38556       // If FVal is 1, opposite cond is needed.
38557       needOppositeCond = !needOppositeCond;
38558       FValIsFalse = false;
38559     }
38560     // Quit if TVal is not the constant opposite of FVal.
38561     if (FValIsFalse && TVal->getZExtValue() != 1)
38562       return SDValue();
38563     if (!FValIsFalse && TVal->getZExtValue() != 0)
38564       return SDValue();
38565     CC = X86::CondCode(SetCC.getConstantOperandVal(2));
38566     if (needOppositeCond)
38567       CC = X86::GetOppositeBranchCondition(CC);
38568     return SetCC.getOperand(3);
38569   }
38570   }
38571 
38572   return SDValue();
38573 }
38574 
38575 /// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
38576 /// Match:
38577 ///   (X86or (X86setcc) (X86setcc))
38578 ///   (X86cmp (and (X86setcc) (X86setcc)), 0)
38579 static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
38580                                            X86::CondCode &CC1, SDValue &Flags,
38581                                            bool &isAnd) {
38582   if (Cond->getOpcode() == X86ISD::CMP) {
38583     if (!isNullConstant(Cond->getOperand(1)))
38584       return false;
38585 
38586     Cond = Cond->getOperand(0);
38587   }
38588 
38589   isAnd = false;
38590 
38591   SDValue SetCC0, SetCC1;
38592   switch (Cond->getOpcode()) {
38593   default: return false;
38594   case ISD::AND:
38595   case X86ISD::AND:
38596     isAnd = true;
38597     LLVM_FALLTHROUGH;
38598   case ISD::OR:
38599   case X86ISD::OR:
38600     SetCC0 = Cond->getOperand(0);
38601     SetCC1 = Cond->getOperand(1);
38602     break;
38603   };
38604 
38605   // Make sure we have SETCC nodes, using the same flags value.
38606   if (SetCC0.getOpcode() != X86ISD::SETCC ||
38607       SetCC1.getOpcode() != X86ISD::SETCC ||
38608       SetCC0->getOperand(1) != SetCC1->getOperand(1))
38609     return false;
38610 
38611   CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
38612   CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
38613   Flags = SetCC0->getOperand(1);
38614   return true;
38615 }
38616 
38617 // When legalizing carry, we create carries via add X, -1
38618 // If that comes from an actual carry, via setcc, we use the
38619 // carry directly.
38620 static SDValue combineCarryThroughADD(SDValue EFLAGS, SelectionDAG &DAG) {
38621   if (EFLAGS.getOpcode() == X86ISD::ADD) {
38622     if (isAllOnesConstant(EFLAGS.getOperand(1))) {
38623       SDValue Carry = EFLAGS.getOperand(0);
38624       while (Carry.getOpcode() == ISD::TRUNCATE ||
38625              Carry.getOpcode() == ISD::ZERO_EXTEND ||
38626              Carry.getOpcode() == ISD::SIGN_EXTEND ||
38627              Carry.getOpcode() == ISD::ANY_EXTEND ||
38628              (Carry.getOpcode() == ISD::AND &&
38629               isOneConstant(Carry.getOperand(1))))
38630         Carry = Carry.getOperand(0);
38631       if (Carry.getOpcode() == X86ISD::SETCC ||
38632           Carry.getOpcode() == X86ISD::SETCC_CARRY) {
38633         // TODO: Merge this code with equivalent in combineAddOrSubToADCOrSBB?
38634         uint64_t CarryCC = Carry.getConstantOperandVal(0);
38635         SDValue CarryOp1 = Carry.getOperand(1);
38636         if (CarryCC == X86::COND_B)
38637           return CarryOp1;
38638         if (CarryCC == X86::COND_A) {
38639           // Try to convert COND_A into COND_B in an attempt to facilitate
38640           // materializing "setb reg".
38641           //
38642           // Do not flip "e > c", where "c" is a constant, because Cmp
38643           // instruction cannot take an immediate as its first operand.
38644           //
38645           if (CarryOp1.getOpcode() == X86ISD::SUB &&
38646               CarryOp1.getNode()->hasOneUse() &&
38647               CarryOp1.getValueType().isInteger() &&
38648               !isa<ConstantSDNode>(CarryOp1.getOperand(1))) {
38649             SDValue SubCommute =
38650                 DAG.getNode(X86ISD::SUB, SDLoc(CarryOp1), CarryOp1->getVTList(),
38651                             CarryOp1.getOperand(1), CarryOp1.getOperand(0));
38652             return SDValue(SubCommute.getNode(), CarryOp1.getResNo());
38653           }
38654         }
38655         // If this is a check of the z flag of an add with 1, switch to the
38656         // C flag.
38657         if (CarryCC == X86::COND_E &&
38658             CarryOp1.getOpcode() == X86ISD::ADD &&
38659             isOneConstant(CarryOp1.getOperand(1)))
38660           return CarryOp1;
38661       }
38662     }
38663   }
38664 
38665   return SDValue();
38666 }
38667 
38668 /// Optimize an EFLAGS definition used according to the condition code \p CC
38669 /// into a simpler EFLAGS value, potentially returning a new \p CC and replacing
38670 /// uses of chain values.
38671 static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC,
38672                                   SelectionDAG &DAG,
38673                                   const X86Subtarget &Subtarget) {
38674   if (CC == X86::COND_B)
38675     if (SDValue Flags = combineCarryThroughADD(EFLAGS, DAG))
38676       return Flags;
38677 
38678   if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC))
38679     return R;
38680   return combineSetCCAtomicArith(EFLAGS, CC, DAG, Subtarget);
38681 }
38682 
38683 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
38684 static SDValue combineCMov(SDNode *N, SelectionDAG &DAG,
38685                            TargetLowering::DAGCombinerInfo &DCI,
38686                            const X86Subtarget &Subtarget) {
38687   SDLoc DL(N);
38688 
38689   SDValue FalseOp = N->getOperand(0);
38690   SDValue TrueOp = N->getOperand(1);
38691   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
38692   SDValue Cond = N->getOperand(3);
38693 
38694   // cmov X, X, ?, ? --> X
38695   if (TrueOp == FalseOp)
38696     return TrueOp;
38697 
38698   // Try to simplify the EFLAGS and condition code operands.
38699   // We can't always do this as FCMOV only supports a subset of X86 cond.
38700   if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG, Subtarget)) {
38701     if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) {
38702       SDValue Ops[] = {FalseOp, TrueOp, DAG.getTargetConstant(CC, DL, MVT::i8),
38703                        Flags};
38704       return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
38705     }
38706   }
38707 
38708   // If this is a select between two integer constants, try to do some
38709   // optimizations.  Note that the operands are ordered the opposite of SELECT
38710   // operands.
38711   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
38712     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
38713       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
38714       // larger than FalseC (the false value).
38715       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
38716         CC = X86::GetOppositeBranchCondition(CC);
38717         std::swap(TrueC, FalseC);
38718         std::swap(TrueOp, FalseOp);
38719       }
38720 
38721       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
38722       // This is efficient for any integer data type (including i8/i16) and
38723       // shift amount.
38724       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
38725         Cond = getSETCC(CC, Cond, DL, DAG);
38726 
38727         // Zero extend the condition if needed.
38728         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
38729 
38730         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
38731         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
38732                            DAG.getConstant(ShAmt, DL, MVT::i8));
38733         return Cond;
38734       }
38735 
38736       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
38737       // for any integer data type, including i8/i16.
38738       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
38739         Cond = getSETCC(CC, Cond, DL, DAG);
38740 
38741         // Zero extend the condition if needed.
38742         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
38743                            FalseC->getValueType(0), Cond);
38744         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
38745                            SDValue(FalseC, 0));
38746         return Cond;
38747       }
38748 
38749       // Optimize cases that will turn into an LEA instruction.  This requires
38750       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
38751       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
38752         APInt Diff = TrueC->getAPIntValue() - FalseC->getAPIntValue();
38753         assert(Diff.getBitWidth() == N->getValueType(0).getSizeInBits() &&
38754                "Implicit constant truncation");
38755 
38756         bool isFastMultiplier = false;
38757         if (Diff.ult(10)) {
38758           switch (Diff.getZExtValue()) {
38759           default: break;
38760           case 1:  // result = add base, cond
38761           case 2:  // result = lea base(    , cond*2)
38762           case 3:  // result = lea base(cond, cond*2)
38763           case 4:  // result = lea base(    , cond*4)
38764           case 5:  // result = lea base(cond, cond*4)
38765           case 8:  // result = lea base(    , cond*8)
38766           case 9:  // result = lea base(cond, cond*8)
38767             isFastMultiplier = true;
38768             break;
38769           }
38770         }
38771 
38772         if (isFastMultiplier) {
38773           Cond = getSETCC(CC, Cond, DL ,DAG);
38774           // Zero extend the condition if needed.
38775           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
38776                              Cond);
38777           // Scale the condition by the difference.
38778           if (Diff != 1)
38779             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
38780                                DAG.getConstant(Diff, DL, Cond.getValueType()));
38781 
38782           // Add the base if non-zero.
38783           if (FalseC->getAPIntValue() != 0)
38784             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
38785                                SDValue(FalseC, 0));
38786           return Cond;
38787         }
38788       }
38789     }
38790   }
38791 
38792   // Handle these cases:
38793   //   (select (x != c), e, c) -> select (x != c), e, x),
38794   //   (select (x == c), c, e) -> select (x == c), x, e)
38795   // where the c is an integer constant, and the "select" is the combination
38796   // of CMOV and CMP.
38797   //
38798   // The rationale for this change is that the conditional-move from a constant
38799   // needs two instructions, however, conditional-move from a register needs
38800   // only one instruction.
38801   //
38802   // CAVEAT: By replacing a constant with a symbolic value, it may obscure
38803   //  some instruction-combining opportunities. This opt needs to be
38804   //  postponed as late as possible.
38805   //
38806   if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
38807     // the DCI.xxxx conditions are provided to postpone the optimization as
38808     // late as possible.
38809 
38810     ConstantSDNode *CmpAgainst = nullptr;
38811     if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
38812         (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
38813         !isa<ConstantSDNode>(Cond.getOperand(0))) {
38814 
38815       if (CC == X86::COND_NE &&
38816           CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
38817         CC = X86::GetOppositeBranchCondition(CC);
38818         std::swap(TrueOp, FalseOp);
38819       }
38820 
38821       if (CC == X86::COND_E &&
38822           CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
38823         SDValue Ops[] = {FalseOp, Cond.getOperand(0),
38824                          DAG.getTargetConstant(CC, DL, MVT::i8), Cond};
38825         return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
38826       }
38827     }
38828   }
38829 
38830   // Fold and/or of setcc's to double CMOV:
38831   //   (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
38832   //   (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
38833   //
38834   // This combine lets us generate:
38835   //   cmovcc1 (jcc1 if we don't have CMOV)
38836   //   cmovcc2 (same)
38837   // instead of:
38838   //   setcc1
38839   //   setcc2
38840   //   and/or
38841   //   cmovne (jne if we don't have CMOV)
38842   // When we can't use the CMOV instruction, it might increase branch
38843   // mispredicts.
38844   // When we can use CMOV, or when there is no mispredict, this improves
38845   // throughput and reduces register pressure.
38846   //
38847   if (CC == X86::COND_NE) {
38848     SDValue Flags;
38849     X86::CondCode CC0, CC1;
38850     bool isAndSetCC;
38851     if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
38852       if (isAndSetCC) {
38853         std::swap(FalseOp, TrueOp);
38854         CC0 = X86::GetOppositeBranchCondition(CC0);
38855         CC1 = X86::GetOppositeBranchCondition(CC1);
38856       }
38857 
38858       SDValue LOps[] = {FalseOp, TrueOp,
38859                         DAG.getTargetConstant(CC0, DL, MVT::i8), Flags};
38860       SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), LOps);
38861       SDValue Ops[] = {LCMOV, TrueOp, DAG.getTargetConstant(CC1, DL, MVT::i8),
38862                        Flags};
38863       SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
38864       return CMOV;
38865     }
38866   }
38867 
38868   // Fold (CMOV C1, (ADD (CTTZ X), C2), (X != 0)) ->
38869   //      (ADD (CMOV C1-C2, (CTTZ X), (X != 0)), C2)
38870   // Or (CMOV (ADD (CTTZ X), C2), C1, (X == 0)) ->
38871   //    (ADD (CMOV (CTTZ X), C1-C2, (X == 0)), C2)
38872   if ((CC == X86::COND_NE || CC == X86::COND_E) &&
38873       Cond.getOpcode() == X86ISD::CMP && isNullConstant(Cond.getOperand(1))) {
38874     SDValue Add = TrueOp;
38875     SDValue Const = FalseOp;
38876     // Canonicalize the condition code for easier matching and output.
38877     if (CC == X86::COND_E)
38878       std::swap(Add, Const);
38879 
38880     // We might have replaced the constant in the cmov with the LHS of the
38881     // compare. If so change it to the RHS of the compare.
38882     if (Const == Cond.getOperand(0))
38883       Const = Cond.getOperand(1);
38884 
38885     // Ok, now make sure that Add is (add (cttz X), C2) and Const is a constant.
38886     if (isa<ConstantSDNode>(Const) && Add.getOpcode() == ISD::ADD &&
38887         Add.hasOneUse() && isa<ConstantSDNode>(Add.getOperand(1)) &&
38888         (Add.getOperand(0).getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
38889          Add.getOperand(0).getOpcode() == ISD::CTTZ) &&
38890         Add.getOperand(0).getOperand(0) == Cond.getOperand(0)) {
38891       EVT VT = N->getValueType(0);
38892       // This should constant fold.
38893       SDValue Diff = DAG.getNode(ISD::SUB, DL, VT, Const, Add.getOperand(1));
38894       SDValue CMov =
38895           DAG.getNode(X86ISD::CMOV, DL, VT, Diff, Add.getOperand(0),
38896                       DAG.getTargetConstant(X86::COND_NE, DL, MVT::i8), Cond);
38897       return DAG.getNode(ISD::ADD, DL, VT, CMov, Add.getOperand(1));
38898     }
38899   }
38900 
38901   return SDValue();
38902 }
38903 
38904 /// Different mul shrinking modes.
38905 enum class ShrinkMode { MULS8, MULU8, MULS16, MULU16 };
38906 
38907 static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) {
38908   EVT VT = N->getOperand(0).getValueType();
38909   if (VT.getScalarSizeInBits() != 32)
38910     return false;
38911 
38912   assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2");
38913   unsigned SignBits[2] = {1, 1};
38914   bool IsPositive[2] = {false, false};
38915   for (unsigned i = 0; i < 2; i++) {
38916     SDValue Opd = N->getOperand(i);
38917 
38918     SignBits[i] = DAG.ComputeNumSignBits(Opd);
38919     IsPositive[i] = DAG.SignBitIsZero(Opd);
38920   }
38921 
38922   bool AllPositive = IsPositive[0] && IsPositive[1];
38923   unsigned MinSignBits = std::min(SignBits[0], SignBits[1]);
38924   // When ranges are from -128 ~ 127, use MULS8 mode.
38925   if (MinSignBits >= 25)
38926     Mode = ShrinkMode::MULS8;
38927   // When ranges are from 0 ~ 255, use MULU8 mode.
38928   else if (AllPositive && MinSignBits >= 24)
38929     Mode = ShrinkMode::MULU8;
38930   // When ranges are from -32768 ~ 32767, use MULS16 mode.
38931   else if (MinSignBits >= 17)
38932     Mode = ShrinkMode::MULS16;
38933   // When ranges are from 0 ~ 65535, use MULU16 mode.
38934   else if (AllPositive && MinSignBits >= 16)
38935     Mode = ShrinkMode::MULU16;
38936   else
38937     return false;
38938   return true;
38939 }
38940 
38941 /// When the operands of vector mul are extended from smaller size values,
38942 /// like i8 and i16, the type of mul may be shrinked to generate more
38943 /// efficient code. Two typical patterns are handled:
38944 /// Pattern1:
38945 ///     %2 = sext/zext <N x i8> %1 to <N x i32>
38946 ///     %4 = sext/zext <N x i8> %3 to <N x i32>
38947 //   or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
38948 ///     %5 = mul <N x i32> %2, %4
38949 ///
38950 /// Pattern2:
38951 ///     %2 = zext/sext <N x i16> %1 to <N x i32>
38952 ///     %4 = zext/sext <N x i16> %3 to <N x i32>
38953 ///  or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
38954 ///     %5 = mul <N x i32> %2, %4
38955 ///
38956 /// There are four mul shrinking modes:
38957 /// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is
38958 /// -128 to 128, and the scalar value range of %4 is also -128 to 128,
38959 /// generate pmullw+sext32 for it (MULS8 mode).
38960 /// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is
38961 /// 0 to 255, and the scalar value range of %4 is also 0 to 255,
38962 /// generate pmullw+zext32 for it (MULU8 mode).
38963 /// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is
38964 /// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767,
38965 /// generate pmullw+pmulhw for it (MULS16 mode).
38966 /// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is
38967 /// 0 to 65535, and the scalar value range of %4 is also 0 to 65535,
38968 /// generate pmullw+pmulhuw for it (MULU16 mode).
38969 static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG,
38970                                const X86Subtarget &Subtarget) {
38971   // Check for legality
38972   // pmullw/pmulhw are not supported by SSE.
38973   if (!Subtarget.hasSSE2())
38974     return SDValue();
38975 
38976   // Check for profitability
38977   // pmulld is supported since SSE41. It is better to use pmulld
38978   // instead of pmullw+pmulhw, except for subtargets where pmulld is slower than
38979   // the expansion.
38980   bool OptForMinSize = DAG.getMachineFunction().getFunction().hasMinSize();
38981   if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow()))
38982     return SDValue();
38983 
38984   ShrinkMode Mode;
38985   if (!canReduceVMulWidth(N, DAG, Mode))
38986     return SDValue();
38987 
38988   SDLoc DL(N);
38989   SDValue N0 = N->getOperand(0);
38990   SDValue N1 = N->getOperand(1);
38991   EVT VT = N->getOperand(0).getValueType();
38992   unsigned NumElts = VT.getVectorNumElements();
38993   if ((NumElts % 2) != 0)
38994     return SDValue();
38995 
38996   EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, NumElts);
38997 
38998   // Shrink the operands of mul.
38999   SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0);
39000   SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1);
39001 
39002   // Generate the lower part of mul: pmullw. For MULU8/MULS8, only the
39003   // lower part is needed.
39004   SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1);
39005   if (Mode == ShrinkMode::MULU8 || Mode == ShrinkMode::MULS8)
39006     return DAG.getNode((Mode == ShrinkMode::MULU8) ? ISD::ZERO_EXTEND
39007                                                    : ISD::SIGN_EXTEND,
39008                        DL, VT, MulLo);
39009 
39010   MVT ResVT = MVT::getVectorVT(MVT::i32, NumElts / 2);
39011   // Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16,
39012   // the higher part is also needed.
39013   SDValue MulHi =
39014       DAG.getNode(Mode == ShrinkMode::MULS16 ? ISD::MULHS : ISD::MULHU, DL,
39015                   ReducedVT, NewN0, NewN1);
39016 
39017   // Repack the lower part and higher part result of mul into a wider
39018   // result.
39019   // Generate shuffle functioning as punpcklwd.
39020   SmallVector<int, 16> ShuffleMask(NumElts);
39021   for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
39022     ShuffleMask[2 * i] = i;
39023     ShuffleMask[2 * i + 1] = i + NumElts;
39024   }
39025   SDValue ResLo =
39026       DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
39027   ResLo = DAG.getBitcast(ResVT, ResLo);
39028   // Generate shuffle functioning as punpckhwd.
39029   for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
39030     ShuffleMask[2 * i] = i + NumElts / 2;
39031     ShuffleMask[2 * i + 1] = i + NumElts * 3 / 2;
39032   }
39033   SDValue ResHi =
39034       DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
39035   ResHi = DAG.getBitcast(ResVT, ResHi);
39036   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi);
39037 }
39038 
39039 static SDValue combineMulSpecial(uint64_t MulAmt, SDNode *N, SelectionDAG &DAG,
39040                                  EVT VT, const SDLoc &DL) {
39041 
39042   auto combineMulShlAddOrSub = [&](int Mult, int Shift, bool isAdd) {
39043     SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
39044                                  DAG.getConstant(Mult, DL, VT));
39045     Result = DAG.getNode(ISD::SHL, DL, VT, Result,
39046                          DAG.getConstant(Shift, DL, MVT::i8));
39047     Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
39048                          N->getOperand(0));
39049     return Result;
39050   };
39051 
39052   auto combineMulMulAddOrSub = [&](int Mul1, int Mul2, bool isAdd) {
39053     SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
39054                                  DAG.getConstant(Mul1, DL, VT));
39055     Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, Result,
39056                          DAG.getConstant(Mul2, DL, VT));
39057     Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
39058                          N->getOperand(0));
39059     return Result;
39060   };
39061 
39062   switch (MulAmt) {
39063   default:
39064     break;
39065   case 11:
39066     // mul x, 11 => add ((shl (mul x, 5), 1), x)
39067     return combineMulShlAddOrSub(5, 1, /*isAdd*/ true);
39068   case 21:
39069     // mul x, 21 => add ((shl (mul x, 5), 2), x)
39070     return combineMulShlAddOrSub(5, 2, /*isAdd*/ true);
39071   case 41:
39072     // mul x, 41 => add ((shl (mul x, 5), 3), x)
39073     return combineMulShlAddOrSub(5, 3, /*isAdd*/ true);
39074   case 22:
39075     // mul x, 22 => add (add ((shl (mul x, 5), 2), x), x)
39076     return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
39077                        combineMulShlAddOrSub(5, 2, /*isAdd*/ true));
39078   case 19:
39079     // mul x, 19 => add ((shl (mul x, 9), 1), x)
39080     return combineMulShlAddOrSub(9, 1, /*isAdd*/ true);
39081   case 37:
39082     // mul x, 37 => add ((shl (mul x, 9), 2), x)
39083     return combineMulShlAddOrSub(9, 2, /*isAdd*/ true);
39084   case 73:
39085     // mul x, 73 => add ((shl (mul x, 9), 3), x)
39086     return combineMulShlAddOrSub(9, 3, /*isAdd*/ true);
39087   case 13:
39088     // mul x, 13 => add ((shl (mul x, 3), 2), x)
39089     return combineMulShlAddOrSub(3, 2, /*isAdd*/ true);
39090   case 23:
39091     // mul x, 23 => sub ((shl (mul x, 3), 3), x)
39092     return combineMulShlAddOrSub(3, 3, /*isAdd*/ false);
39093   case 26:
39094     // mul x, 26 => add ((mul (mul x, 5), 5), x)
39095     return combineMulMulAddOrSub(5, 5, /*isAdd*/ true);
39096   case 28:
39097     // mul x, 28 => add ((mul (mul x, 9), 3), x)
39098     return combineMulMulAddOrSub(9, 3, /*isAdd*/ true);
39099   case 29:
39100     // mul x, 29 => add (add ((mul (mul x, 9), 3), x), x)
39101     return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
39102                        combineMulMulAddOrSub(9, 3, /*isAdd*/ true));
39103   }
39104 
39105   // Another trick. If this is a power 2 + 2/4/8, we can use a shift followed
39106   // by a single LEA.
39107   // First check if this a sum of two power of 2s because that's easy. Then
39108   // count how many zeros are up to the first bit.
39109   // TODO: We can do this even without LEA at a cost of two shifts and an add.
39110   if (isPowerOf2_64(MulAmt & (MulAmt - 1))) {
39111     unsigned ScaleShift = countTrailingZeros(MulAmt);
39112     if (ScaleShift >= 1 && ScaleShift < 4) {
39113       unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1)));
39114       SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39115                                    DAG.getConstant(ShiftAmt, DL, MVT::i8));
39116       SDValue Shift2 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39117                                    DAG.getConstant(ScaleShift, DL, MVT::i8));
39118       return DAG.getNode(ISD::ADD, DL, VT, Shift1, Shift2);
39119     }
39120   }
39121 
39122   return SDValue();
39123 }
39124 
39125 // If the upper 17 bits of each element are zero then we can use PMADDWD,
39126 // which is always at least as quick as PMULLD, except on KNL.
39127 static SDValue combineMulToPMADDWD(SDNode *N, SelectionDAG &DAG,
39128                                    const X86Subtarget &Subtarget) {
39129   if (!Subtarget.hasSSE2())
39130     return SDValue();
39131 
39132   if (Subtarget.isPMADDWDSlow())
39133     return SDValue();
39134 
39135   EVT VT = N->getValueType(0);
39136 
39137   // Only support vXi32 vectors.
39138   if (!VT.isVector() || VT.getVectorElementType() != MVT::i32)
39139     return SDValue();
39140 
39141   // Make sure the vXi16 type is legal. This covers the AVX512 without BWI case.
39142   // Also allow v2i32 if it will be widened.
39143   MVT WVT = MVT::getVectorVT(MVT::i16, 2 * VT.getVectorNumElements());
39144   if (VT != MVT::v2i32 && !DAG.getTargetLoweringInfo().isTypeLegal(WVT))
39145     return SDValue();
39146 
39147   SDValue N0 = N->getOperand(0);
39148   SDValue N1 = N->getOperand(1);
39149 
39150   // If we are zero extending two steps without SSE4.1, its better to reduce
39151   // the vmul width instead.
39152   if (!Subtarget.hasSSE41() &&
39153       (N0.getOpcode() == ISD::ZERO_EXTEND &&
39154        N0.getOperand(0).getScalarValueSizeInBits() <= 8) &&
39155       (N1.getOpcode() == ISD::ZERO_EXTEND &&
39156        N1.getOperand(0).getScalarValueSizeInBits() <= 8))
39157     return SDValue();
39158 
39159   APInt Mask17 = APInt::getHighBitsSet(32, 17);
39160   if (!DAG.MaskedValueIsZero(N1, Mask17) ||
39161       !DAG.MaskedValueIsZero(N0, Mask17))
39162     return SDValue();
39163 
39164   // Use SplitOpsAndApply to handle AVX splitting.
39165   auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
39166                            ArrayRef<SDValue> Ops) {
39167     MVT OpVT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32);
39168     return DAG.getNode(X86ISD::VPMADDWD, DL, OpVT, Ops);
39169   };
39170   return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT,
39171                           { DAG.getBitcast(WVT, N0), DAG.getBitcast(WVT, N1) },
39172                           PMADDWDBuilder);
39173 }
39174 
39175 static SDValue combineMulToPMULDQ(SDNode *N, SelectionDAG &DAG,
39176                                   const X86Subtarget &Subtarget) {
39177   if (!Subtarget.hasSSE2())
39178     return SDValue();
39179 
39180   EVT VT = N->getValueType(0);
39181 
39182   // Only support vXi64 vectors.
39183   if (!VT.isVector() || VT.getVectorElementType() != MVT::i64 ||
39184       VT.getVectorNumElements() < 2 ||
39185       !isPowerOf2_32(VT.getVectorNumElements()))
39186     return SDValue();
39187 
39188   SDValue N0 = N->getOperand(0);
39189   SDValue N1 = N->getOperand(1);
39190 
39191   // MULDQ returns the 64-bit result of the signed multiplication of the lower
39192   // 32-bits. We can lower with this if the sign bits stretch that far.
39193   if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(N0) > 32 &&
39194       DAG.ComputeNumSignBits(N1) > 32) {
39195     auto PMULDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
39196                             ArrayRef<SDValue> Ops) {
39197       return DAG.getNode(X86ISD::PMULDQ, DL, Ops[0].getValueType(), Ops);
39198     };
39199     return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 },
39200                             PMULDQBuilder, /*CheckBWI*/false);
39201   }
39202 
39203   // If the upper bits are zero we can use a single pmuludq.
39204   APInt Mask = APInt::getHighBitsSet(64, 32);
39205   if (DAG.MaskedValueIsZero(N0, Mask) && DAG.MaskedValueIsZero(N1, Mask)) {
39206     auto PMULUDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
39207                              ArrayRef<SDValue> Ops) {
39208       return DAG.getNode(X86ISD::PMULUDQ, DL, Ops[0].getValueType(), Ops);
39209     };
39210     return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 },
39211                             PMULUDQBuilder, /*CheckBWI*/false);
39212   }
39213 
39214   return SDValue();
39215 }
39216 
39217 /// Optimize a single multiply with constant into two operations in order to
39218 /// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA.
39219 static SDValue combineMul(SDNode *N, SelectionDAG &DAG,
39220                           TargetLowering::DAGCombinerInfo &DCI,
39221                           const X86Subtarget &Subtarget) {
39222   EVT VT = N->getValueType(0);
39223 
39224   if (SDValue V = combineMulToPMADDWD(N, DAG, Subtarget))
39225     return V;
39226 
39227   if (SDValue V = combineMulToPMULDQ(N, DAG, Subtarget))
39228     return V;
39229 
39230   if (DCI.isBeforeLegalize() && VT.isVector())
39231     return reduceVMULWidth(N, DAG, Subtarget);
39232 
39233   if (!MulConstantOptimization)
39234     return SDValue();
39235   // An imul is usually smaller than the alternative sequence.
39236   if (DAG.getMachineFunction().getFunction().hasMinSize())
39237     return SDValue();
39238 
39239   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
39240     return SDValue();
39241 
39242   if (VT != MVT::i64 && VT != MVT::i32)
39243     return SDValue();
39244 
39245   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
39246   if (!C)
39247     return SDValue();
39248   if (isPowerOf2_64(C->getZExtValue()))
39249     return SDValue();
39250 
39251   int64_t SignMulAmt = C->getSExtValue();
39252   assert(SignMulAmt != INT64_MIN && "Int min should have been handled!");
39253   uint64_t AbsMulAmt = SignMulAmt < 0 ? -SignMulAmt : SignMulAmt;
39254 
39255   SDLoc DL(N);
39256   if (AbsMulAmt == 3 || AbsMulAmt == 5 || AbsMulAmt == 9) {
39257     SDValue NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
39258                                  DAG.getConstant(AbsMulAmt, DL, VT));
39259     if (SignMulAmt < 0)
39260       NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
39261                            NewMul);
39262 
39263     return NewMul;
39264   }
39265 
39266   uint64_t MulAmt1 = 0;
39267   uint64_t MulAmt2 = 0;
39268   if ((AbsMulAmt % 9) == 0) {
39269     MulAmt1 = 9;
39270     MulAmt2 = AbsMulAmt / 9;
39271   } else if ((AbsMulAmt % 5) == 0) {
39272     MulAmt1 = 5;
39273     MulAmt2 = AbsMulAmt / 5;
39274   } else if ((AbsMulAmt % 3) == 0) {
39275     MulAmt1 = 3;
39276     MulAmt2 = AbsMulAmt / 3;
39277   }
39278 
39279   SDValue NewMul;
39280   // For negative multiply amounts, only allow MulAmt2 to be a power of 2.
39281   if (MulAmt2 &&
39282       (isPowerOf2_64(MulAmt2) ||
39283        (SignMulAmt >= 0 && (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)))) {
39284 
39285     if (isPowerOf2_64(MulAmt2) &&
39286         !(SignMulAmt >= 0 && N->hasOneUse() &&
39287           N->use_begin()->getOpcode() == ISD::ADD))
39288       // If second multiplifer is pow2, issue it first. We want the multiply by
39289       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
39290       // is an add. Only do this for positive multiply amounts since the
39291       // negate would prevent it from being used as an address mode anyway.
39292       std::swap(MulAmt1, MulAmt2);
39293 
39294     if (isPowerOf2_64(MulAmt1))
39295       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39296                            DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
39297     else
39298       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
39299                            DAG.getConstant(MulAmt1, DL, VT));
39300 
39301     if (isPowerOf2_64(MulAmt2))
39302       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
39303                            DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
39304     else
39305       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
39306                            DAG.getConstant(MulAmt2, DL, VT));
39307 
39308     // Negate the result.
39309     if (SignMulAmt < 0)
39310       NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
39311                            NewMul);
39312   } else if (!Subtarget.slowLEA())
39313     NewMul = combineMulSpecial(C->getZExtValue(), N, DAG, VT, DL);
39314 
39315   if (!NewMul) {
39316     assert(C->getZExtValue() != 0 &&
39317            C->getZExtValue() != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) &&
39318            "Both cases that could cause potential overflows should have "
39319            "already been handled.");
39320     if (isPowerOf2_64(AbsMulAmt - 1)) {
39321       // (mul x, 2^N + 1) => (add (shl x, N), x)
39322       NewMul = DAG.getNode(
39323           ISD::ADD, DL, VT, N->getOperand(0),
39324           DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39325                       DAG.getConstant(Log2_64(AbsMulAmt - 1), DL,
39326                                       MVT::i8)));
39327       // To negate, subtract the number from zero
39328       if (SignMulAmt < 0)
39329         NewMul = DAG.getNode(ISD::SUB, DL, VT,
39330                              DAG.getConstant(0, DL, VT), NewMul);
39331     } else if (isPowerOf2_64(AbsMulAmt + 1)) {
39332       // (mul x, 2^N - 1) => (sub (shl x, N), x)
39333       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39334                            DAG.getConstant(Log2_64(AbsMulAmt + 1),
39335                                            DL, MVT::i8));
39336       // To negate, reverse the operands of the subtract.
39337       if (SignMulAmt < 0)
39338         NewMul = DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), NewMul);
39339       else
39340         NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
39341     } else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt - 2)) {
39342       // (mul x, 2^N + 2) => (add (add (shl x, N), x), x)
39343       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39344                            DAG.getConstant(Log2_64(AbsMulAmt - 2),
39345                                            DL, MVT::i8));
39346       NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0));
39347       NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0));
39348     } else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt + 2)) {
39349       // (mul x, 2^N - 2) => (sub (sub (shl x, N), x), x)
39350       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
39351                            DAG.getConstant(Log2_64(AbsMulAmt + 2),
39352                                            DL, MVT::i8));
39353       NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
39354       NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
39355     }
39356   }
39357 
39358   return NewMul;
39359 }
39360 
39361 static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) {
39362   SDValue N0 = N->getOperand(0);
39363   SDValue N1 = N->getOperand(1);
39364   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
39365   EVT VT = N0.getValueType();
39366 
39367   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
39368   // since the result of setcc_c is all zero's or all ones.
39369   if (VT.isInteger() && !VT.isVector() &&
39370       N1C && N0.getOpcode() == ISD::AND &&
39371       N0.getOperand(1).getOpcode() == ISD::Constant) {
39372     SDValue N00 = N0.getOperand(0);
39373     APInt Mask = N0.getConstantOperandAPInt(1);
39374     Mask <<= N1C->getAPIntValue();
39375     bool MaskOK = false;
39376     // We can handle cases concerning bit-widening nodes containing setcc_c if
39377     // we carefully interrogate the mask to make sure we are semantics
39378     // preserving.
39379     // The transform is not safe if the result of C1 << C2 exceeds the bitwidth
39380     // of the underlying setcc_c operation if the setcc_c was zero extended.
39381     // Consider the following example:
39382     //   zext(setcc_c)                 -> i32 0x0000FFFF
39383     //   c1                            -> i32 0x0000FFFF
39384     //   c2                            -> i32 0x00000001
39385     //   (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
39386     //   (and setcc_c, (c1 << c2))     -> i32 0x0000FFFE
39387     if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
39388       MaskOK = true;
39389     } else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
39390                N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
39391       MaskOK = true;
39392     } else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
39393                 N00.getOpcode() == ISD::ANY_EXTEND) &&
39394                N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
39395       MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
39396     }
39397     if (MaskOK && Mask != 0) {
39398       SDLoc DL(N);
39399       return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
39400     }
39401   }
39402 
39403   // Hardware support for vector shifts is sparse which makes us scalarize the
39404   // vector operations in many cases. Also, on sandybridge ADD is faster than
39405   // shl.
39406   // (shl V, 1) -> add V,V
39407   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
39408     if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
39409       assert(N0.getValueType().isVector() && "Invalid vector shift type");
39410       // We shift all of the values by one. In many cases we do not have
39411       // hardware support for this operation. This is better expressed as an ADD
39412       // of two values.
39413       if (N1SplatC->isOne())
39414         return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
39415     }
39416 
39417   return SDValue();
39418 }
39419 
39420 static SDValue combineShiftRightArithmetic(SDNode *N, SelectionDAG &DAG) {
39421   SDValue N0 = N->getOperand(0);
39422   SDValue N1 = N->getOperand(1);
39423   EVT VT = N0.getValueType();
39424   unsigned Size = VT.getSizeInBits();
39425 
39426   // fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
39427   // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
39428   // into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
39429   // depending on sign of (SarConst - [56,48,32,24,16])
39430 
39431   // sexts in X86 are MOVs. The MOVs have the same code size
39432   // as above SHIFTs (only SHIFT on 1 has lower code size).
39433   // However the MOVs have 2 advantages to a SHIFT:
39434   // 1. MOVs can write to a register that differs from source
39435   // 2. MOVs accept memory operands
39436 
39437   if (VT.isVector() || N1.getOpcode() != ISD::Constant ||
39438       N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
39439       N0.getOperand(1).getOpcode() != ISD::Constant)
39440     return SDValue();
39441 
39442   SDValue N00 = N0.getOperand(0);
39443   SDValue N01 = N0.getOperand(1);
39444   APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
39445   APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
39446   EVT CVT = N1.getValueType();
39447 
39448   if (SarConst.isNegative())
39449     return SDValue();
39450 
39451   for (MVT SVT : { MVT::i8, MVT::i16, MVT::i32 }) {
39452     unsigned ShiftSize = SVT.getSizeInBits();
39453     // skipping types without corresponding sext/zext and
39454     // ShlConst that is not one of [56,48,32,24,16]
39455     if (ShiftSize >= Size || ShlConst != Size - ShiftSize)
39456       continue;
39457     SDLoc DL(N);
39458     SDValue NN =
39459         DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
39460     SarConst = SarConst - (Size - ShiftSize);
39461     if (SarConst == 0)
39462       return NN;
39463     else if (SarConst.isNegative())
39464       return DAG.getNode(ISD::SHL, DL, VT, NN,
39465                          DAG.getConstant(-SarConst, DL, CVT));
39466     else
39467       return DAG.getNode(ISD::SRA, DL, VT, NN,
39468                          DAG.getConstant(SarConst, DL, CVT));
39469   }
39470   return SDValue();
39471 }
39472 
39473 static SDValue combineShiftRightLogical(SDNode *N, SelectionDAG &DAG,
39474                                         TargetLowering::DAGCombinerInfo &DCI) {
39475   SDValue N0 = N->getOperand(0);
39476   SDValue N1 = N->getOperand(1);
39477   EVT VT = N0.getValueType();
39478 
39479   // Only do this on the last DAG combine as it can interfere with other
39480   // combines.
39481   if (!DCI.isAfterLegalizeDAG())
39482     return SDValue();
39483 
39484   // Try to improve a sequence of srl (and X, C1), C2 by inverting the order.
39485   // TODO: This is a generic DAG combine that became an x86-only combine to
39486   // avoid shortcomings in other folds such as bswap, bit-test ('bt'), and
39487   // and-not ('andn').
39488   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
39489     return SDValue();
39490 
39491   auto *ShiftC = dyn_cast<ConstantSDNode>(N1);
39492   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
39493   if (!ShiftC || !AndC)
39494     return SDValue();
39495 
39496   // If we can shrink the constant mask below 8-bits or 32-bits, then this
39497   // transform should reduce code size. It may also enable secondary transforms
39498   // from improved known-bits analysis or instruction selection.
39499   APInt MaskVal = AndC->getAPIntValue();
39500 
39501   // If this can be matched by a zero extend, don't optimize.
39502   if (MaskVal.isMask()) {
39503     unsigned TO = MaskVal.countTrailingOnes();
39504     if (TO >= 8 && isPowerOf2_32(TO))
39505       return SDValue();
39506   }
39507 
39508   APInt NewMaskVal = MaskVal.lshr(ShiftC->getAPIntValue());
39509   unsigned OldMaskSize = MaskVal.getMinSignedBits();
39510   unsigned NewMaskSize = NewMaskVal.getMinSignedBits();
39511   if ((OldMaskSize > 8 && NewMaskSize <= 8) ||
39512       (OldMaskSize > 32 && NewMaskSize <= 32)) {
39513     // srl (and X, AndC), ShiftC --> and (srl X, ShiftC), (AndC >> ShiftC)
39514     SDLoc DL(N);
39515     SDValue NewMask = DAG.getConstant(NewMaskVal, DL, VT);
39516     SDValue NewShift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
39517     return DAG.getNode(ISD::AND, DL, VT, NewShift, NewMask);
39518   }
39519   return SDValue();
39520 }
39521 
39522 static SDValue combineVectorPack(SDNode *N, SelectionDAG &DAG,
39523                                  TargetLowering::DAGCombinerInfo &DCI,
39524                                  const X86Subtarget &Subtarget) {
39525   unsigned Opcode = N->getOpcode();
39526   assert((X86ISD::PACKSS == Opcode || X86ISD::PACKUS == Opcode) &&
39527          "Unexpected shift opcode");
39528 
39529   EVT VT = N->getValueType(0);
39530   SDValue N0 = N->getOperand(0);
39531   SDValue N1 = N->getOperand(1);
39532   unsigned DstBitsPerElt = VT.getScalarSizeInBits();
39533   unsigned SrcBitsPerElt = 2 * DstBitsPerElt;
39534   assert(N0.getScalarValueSizeInBits() == SrcBitsPerElt &&
39535          N1.getScalarValueSizeInBits() == SrcBitsPerElt &&
39536          "Unexpected PACKSS/PACKUS input type");
39537 
39538   bool IsSigned = (X86ISD::PACKSS == Opcode);
39539 
39540   // Constant Folding.
39541   APInt UndefElts0, UndefElts1;
39542   SmallVector<APInt, 32> EltBits0, EltBits1;
39543   if ((N0.isUndef() || N->isOnlyUserOf(N0.getNode())) &&
39544       (N1.isUndef() || N->isOnlyUserOf(N1.getNode())) &&
39545       getTargetConstantBitsFromNode(N0, SrcBitsPerElt, UndefElts0, EltBits0) &&
39546       getTargetConstantBitsFromNode(N1, SrcBitsPerElt, UndefElts1, EltBits1)) {
39547     unsigned NumLanes = VT.getSizeInBits() / 128;
39548     unsigned NumDstElts = VT.getVectorNumElements();
39549     unsigned NumSrcElts = NumDstElts / 2;
39550     unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
39551     unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
39552 
39553     APInt Undefs(NumDstElts, 0);
39554     SmallVector<APInt, 32> Bits(NumDstElts, APInt::getNullValue(DstBitsPerElt));
39555     for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
39556       for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
39557         unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
39558         auto &UndefElts = (Elt >= NumSrcEltsPerLane ? UndefElts1 : UndefElts0);
39559         auto &EltBits = (Elt >= NumSrcEltsPerLane ? EltBits1 : EltBits0);
39560 
39561         if (UndefElts[SrcIdx]) {
39562           Undefs.setBit(Lane * NumDstEltsPerLane + Elt);
39563           continue;
39564         }
39565 
39566         APInt &Val = EltBits[SrcIdx];
39567         if (IsSigned) {
39568           // PACKSS: Truncate signed value with signed saturation.
39569           // Source values less than dst minint are saturated to minint.
39570           // Source values greater than dst maxint are saturated to maxint.
39571           if (Val.isSignedIntN(DstBitsPerElt))
39572             Val = Val.trunc(DstBitsPerElt);
39573           else if (Val.isNegative())
39574             Val = APInt::getSignedMinValue(DstBitsPerElt);
39575           else
39576             Val = APInt::getSignedMaxValue(DstBitsPerElt);
39577         } else {
39578           // PACKUS: Truncate signed value with unsigned saturation.
39579           // Source values less than zero are saturated to zero.
39580           // Source values greater than dst maxuint are saturated to maxuint.
39581           if (Val.isIntN(DstBitsPerElt))
39582             Val = Val.trunc(DstBitsPerElt);
39583           else if (Val.isNegative())
39584             Val = APInt::getNullValue(DstBitsPerElt);
39585           else
39586             Val = APInt::getAllOnesValue(DstBitsPerElt);
39587         }
39588         Bits[Lane * NumDstEltsPerLane + Elt] = Val;
39589       }
39590     }
39591 
39592     return getConstVector(Bits, Undefs, VT.getSimpleVT(), DAG, SDLoc(N));
39593   }
39594 
39595   // Try to combine a PACKUSWB/PACKSSWB implemented truncate with a regular
39596   // truncate to create a larger truncate.
39597   if (Subtarget.hasAVX512() &&
39598       N0.getOpcode() == ISD::TRUNCATE && N1.isUndef() && VT == MVT::v16i8 &&
39599       N0.getOperand(0).getValueType() == MVT::v8i32) {
39600     if ((IsSigned && DAG.ComputeNumSignBits(N0) > 8) ||
39601         (!IsSigned &&
39602          DAG.MaskedValueIsZero(N0, APInt::getHighBitsSet(16, 8)))) {
39603       if (Subtarget.hasVLX())
39604         return DAG.getNode(X86ISD::VTRUNC, SDLoc(N), VT, N0.getOperand(0));
39605 
39606       // Widen input to v16i32 so we can truncate that.
39607       SDLoc dl(N);
39608       SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i32,
39609                                    N0.getOperand(0), DAG.getUNDEF(MVT::v8i32));
39610       return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Concat);
39611     }
39612   }
39613 
39614   // Attempt to combine as shuffle.
39615   SDValue Op(N, 0);
39616   if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
39617     return Res;
39618 
39619   return SDValue();
39620 }
39621 
39622 static SDValue combineVectorShiftVar(SDNode *N, SelectionDAG &DAG,
39623                                      TargetLowering::DAGCombinerInfo &DCI,
39624                                      const X86Subtarget &Subtarget) {
39625   assert((X86ISD::VSHL == N->getOpcode() || X86ISD::VSRA == N->getOpcode() ||
39626           X86ISD::VSRL == N->getOpcode()) &&
39627          "Unexpected shift opcode");
39628   EVT VT = N->getValueType(0);
39629   SDValue N0 = N->getOperand(0);
39630   SDValue N1 = N->getOperand(1);
39631 
39632   // Shift zero -> zero.
39633   if (ISD::isBuildVectorAllZeros(N0.getNode()))
39634     return DAG.getConstant(0, SDLoc(N), VT);
39635 
39636   // Detect constant shift amounts.
39637   APInt UndefElts;
39638   SmallVector<APInt, 32> EltBits;
39639   if (getTargetConstantBitsFromNode(N1, 64, UndefElts, EltBits, true, false)) {
39640     unsigned X86Opc = getTargetVShiftUniformOpcode(N->getOpcode(), false);
39641     return getTargetVShiftByConstNode(X86Opc, SDLoc(N), VT.getSimpleVT(), N0,
39642                                       EltBits[0].getZExtValue(), DAG);
39643   }
39644 
39645   APInt KnownUndef, KnownZero;
39646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
39647   APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
39648   if (TLI.SimplifyDemandedVectorElts(SDValue(N, 0), DemandedElts, KnownUndef,
39649                                      KnownZero, DCI))
39650     return SDValue(N, 0);
39651 
39652   return SDValue();
39653 }
39654 
39655 static SDValue combineVectorShiftImm(SDNode *N, SelectionDAG &DAG,
39656                                      TargetLowering::DAGCombinerInfo &DCI,
39657                                      const X86Subtarget &Subtarget) {
39658   unsigned Opcode = N->getOpcode();
39659   assert((X86ISD::VSHLI == Opcode || X86ISD::VSRAI == Opcode ||
39660           X86ISD::VSRLI == Opcode) &&
39661          "Unexpected shift opcode");
39662   bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode;
39663   EVT VT = N->getValueType(0);
39664   SDValue N0 = N->getOperand(0);
39665   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
39666   assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 &&
39667          "Unexpected value type");
39668   assert(N->getOperand(1).getValueType() == MVT::i8 &&
39669          "Unexpected shift amount type");
39670 
39671   // Out of range logical bit shifts are guaranteed to be zero.
39672   // Out of range arithmetic bit shifts splat the sign bit.
39673   unsigned ShiftVal = N->getConstantOperandVal(1);
39674   if (ShiftVal >= NumBitsPerElt) {
39675     if (LogicalShift)
39676       return DAG.getConstant(0, SDLoc(N), VT);
39677     else
39678       ShiftVal = NumBitsPerElt - 1;
39679   }
39680 
39681   // Shift N0 by zero -> N0.
39682   if (!ShiftVal)
39683     return N0;
39684 
39685   // Shift zero -> zero.
39686   if (ISD::isBuildVectorAllZeros(N0.getNode()))
39687     return DAG.getConstant(0, SDLoc(N), VT);
39688 
39689   // Fold (VSRAI (VSRAI X, C1), C2) --> (VSRAI X, (C1 + C2)) with (C1 + C2)
39690   // clamped to (NumBitsPerElt - 1).
39691   if (Opcode == X86ISD::VSRAI && N0.getOpcode() == X86ISD::VSRAI) {
39692     unsigned ShiftVal2 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
39693     unsigned NewShiftVal = ShiftVal + ShiftVal2;
39694     if (NewShiftVal >= NumBitsPerElt)
39695       NewShiftVal = NumBitsPerElt - 1;
39696     return DAG.getNode(X86ISD::VSRAI, SDLoc(N), VT, N0.getOperand(0),
39697                        DAG.getTargetConstant(NewShiftVal, SDLoc(N), MVT::i8));
39698   }
39699 
39700   // We can decode 'whole byte' logical bit shifts as shuffles.
39701   if (LogicalShift && (ShiftVal % 8) == 0) {
39702     SDValue Op(N, 0);
39703     if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
39704       return Res;
39705   }
39706 
39707   // Constant Folding.
39708   APInt UndefElts;
39709   SmallVector<APInt, 32> EltBits;
39710   if (N->isOnlyUserOf(N0.getNode()) &&
39711       getTargetConstantBitsFromNode(N0, NumBitsPerElt, UndefElts, EltBits)) {
39712     assert(EltBits.size() == VT.getVectorNumElements() &&
39713            "Unexpected shift value type");
39714     // Undef elements need to fold to 0. It's possible SimplifyDemandedBits
39715     // created an undef input due to no input bits being demanded, but user
39716     // still expects 0 in other bits.
39717     for (unsigned i = 0, e = EltBits.size(); i != e; ++i) {
39718       APInt &Elt = EltBits[i];
39719       if (UndefElts[i])
39720         Elt = 0;
39721       else if (X86ISD::VSHLI == Opcode)
39722         Elt <<= ShiftVal;
39723       else if (X86ISD::VSRAI == Opcode)
39724         Elt.ashrInPlace(ShiftVal);
39725       else
39726         Elt.lshrInPlace(ShiftVal);
39727     }
39728     // Reset undef elements since they were zeroed above.
39729     UndefElts = 0;
39730     return getConstVector(EltBits, UndefElts, VT.getSimpleVT(), DAG, SDLoc(N));
39731   }
39732 
39733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
39734   if (TLI.SimplifyDemandedBits(SDValue(N, 0),
39735                                APInt::getAllOnesValue(NumBitsPerElt), DCI))
39736     return SDValue(N, 0);
39737 
39738   return SDValue();
39739 }
39740 
39741 static SDValue combineVectorInsert(SDNode *N, SelectionDAG &DAG,
39742                                    TargetLowering::DAGCombinerInfo &DCI,
39743                                    const X86Subtarget &Subtarget) {
39744   EVT VT = N->getValueType(0);
39745   assert(((N->getOpcode() == X86ISD::PINSRB && VT == MVT::v16i8) ||
39746           (N->getOpcode() == X86ISD::PINSRW && VT == MVT::v8i16)) &&
39747          "Unexpected vector insertion");
39748 
39749   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
39750   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
39751   if (TLI.SimplifyDemandedBits(SDValue(N, 0),
39752                                APInt::getAllOnesValue(NumBitsPerElt), DCI))
39753     return SDValue(N, 0);
39754 
39755   // Attempt to combine PINSRB/PINSRW patterns to a shuffle.
39756   SDValue Op(N, 0);
39757   if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
39758     return Res;
39759 
39760   return SDValue();
39761 }
39762 
39763 /// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs
39764 /// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for
39765 /// OR -> CMPNEQSS.
39766 static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG,
39767                                    TargetLowering::DAGCombinerInfo &DCI,
39768                                    const X86Subtarget &Subtarget) {
39769   unsigned opcode;
39770 
39771   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
39772   // we're requiring SSE2 for both.
39773   if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
39774     SDValue N0 = N->getOperand(0);
39775     SDValue N1 = N->getOperand(1);
39776     SDValue CMP0 = N0.getOperand(1);
39777     SDValue CMP1 = N1.getOperand(1);
39778     SDLoc DL(N);
39779 
39780     // The SETCCs should both refer to the same CMP.
39781     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
39782       return SDValue();
39783 
39784     SDValue CMP00 = CMP0->getOperand(0);
39785     SDValue CMP01 = CMP0->getOperand(1);
39786     EVT     VT    = CMP00.getValueType();
39787 
39788     if (VT == MVT::f32 || VT == MVT::f64) {
39789       bool ExpectingFlags = false;
39790       // Check for any users that want flags:
39791       for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
39792            !ExpectingFlags && UI != UE; ++UI)
39793         switch (UI->getOpcode()) {
39794         default:
39795         case ISD::BR_CC:
39796         case ISD::BRCOND:
39797         case ISD::SELECT:
39798           ExpectingFlags = true;
39799           break;
39800         case ISD::CopyToReg:
39801         case ISD::SIGN_EXTEND:
39802         case ISD::ZERO_EXTEND:
39803         case ISD::ANY_EXTEND:
39804           break;
39805         }
39806 
39807       if (!ExpectingFlags) {
39808         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
39809         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
39810 
39811         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
39812           X86::CondCode tmp = cc0;
39813           cc0 = cc1;
39814           cc1 = tmp;
39815         }
39816 
39817         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
39818             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
39819           // FIXME: need symbolic constants for these magic numbers.
39820           // See X86ATTInstPrinter.cpp:printSSECC().
39821           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
39822           if (Subtarget.hasAVX512()) {
39823             SDValue FSetCC =
39824                 DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CMP00, CMP01,
39825                             DAG.getTargetConstant(x86cc, DL, MVT::i8));
39826             // Need to fill with zeros to ensure the bitcast will produce zeroes
39827             // for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
39828             SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v16i1,
39829                                       DAG.getConstant(0, DL, MVT::v16i1),
39830                                       FSetCC, DAG.getIntPtrConstant(0, DL));
39831             return DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Ins), DL,
39832                                       N->getSimpleValueType(0));
39833           }
39834           SDValue OnesOrZeroesF =
39835               DAG.getNode(X86ISD::FSETCC, DL, CMP00.getValueType(), CMP00,
39836                           CMP01, DAG.getTargetConstant(x86cc, DL, MVT::i8));
39837 
39838           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
39839           MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
39840 
39841           if (is64BitFP && !Subtarget.is64Bit()) {
39842             // On a 32-bit target, we cannot bitcast the 64-bit float to a
39843             // 64-bit integer, since that's not a legal type. Since
39844             // OnesOrZeroesF is all ones of all zeroes, we don't need all the
39845             // bits, but can do this little dance to extract the lowest 32 bits
39846             // and work with those going forward.
39847             SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
39848                                            OnesOrZeroesF);
39849             SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
39850             OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
39851                                         Vector32, DAG.getIntPtrConstant(0, DL));
39852             IntVT = MVT::i32;
39853           }
39854 
39855           SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
39856           SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
39857                                       DAG.getConstant(1, DL, IntVT));
39858           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
39859                                               ANDed);
39860           return OneBitOfTruth;
39861         }
39862       }
39863     }
39864   }
39865   return SDValue();
39866 }
39867 
39868 /// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y).
39869 static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) {
39870   assert(N->getOpcode() == ISD::AND);
39871 
39872   MVT VT = N->getSimpleValueType(0);
39873   if (!VT.is128BitVector() && !VT.is256BitVector() && !VT.is512BitVector())
39874     return SDValue();
39875 
39876   SDValue X, Y;
39877   SDValue N0 = N->getOperand(0);
39878   SDValue N1 = N->getOperand(1);
39879 
39880   if (SDValue Not = IsNOT(N0, DAG)) {
39881     X = Not;
39882     Y = N1;
39883   } else if (SDValue Not = IsNOT(N1, DAG)) {
39884     X = Not;
39885     Y = N0;
39886   } else
39887     return SDValue();
39888 
39889   X = DAG.getBitcast(VT, X);
39890   Y = DAG.getBitcast(VT, Y);
39891   return DAG.getNode(X86ISD::ANDNP, SDLoc(N), VT, X, Y);
39892 }
39893 
39894 // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
39895 // register. In most cases we actually compare or select YMM-sized registers
39896 // and mixing the two types creates horrible code. This method optimizes
39897 // some of the transition sequences.
39898 // Even with AVX-512 this is still useful for removing casts around logical
39899 // operations on vXi1 mask types.
39900 static SDValue PromoteMaskArithmetic(SDNode *N, SelectionDAG &DAG,
39901                                      const X86Subtarget &Subtarget) {
39902   EVT VT = N->getValueType(0);
39903   assert(VT.isVector() && "Expected vector type");
39904 
39905   assert((N->getOpcode() == ISD::ANY_EXTEND ||
39906           N->getOpcode() == ISD::ZERO_EXTEND ||
39907           N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
39908 
39909   SDValue Narrow = N->getOperand(0);
39910   EVT NarrowVT = Narrow.getValueType();
39911 
39912   if (Narrow->getOpcode() != ISD::XOR &&
39913       Narrow->getOpcode() != ISD::AND &&
39914       Narrow->getOpcode() != ISD::OR)
39915     return SDValue();
39916 
39917   SDValue N0  = Narrow->getOperand(0);
39918   SDValue N1  = Narrow->getOperand(1);
39919   SDLoc DL(Narrow);
39920 
39921   // The Left side has to be a trunc.
39922   if (N0.getOpcode() != ISD::TRUNCATE)
39923     return SDValue();
39924 
39925   // The type of the truncated inputs.
39926   if (N0.getOperand(0).getValueType() != VT)
39927     return SDValue();
39928 
39929   // The right side has to be a 'trunc' or a constant vector.
39930   bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE &&
39931                   N1.getOperand(0).getValueType() == VT;
39932   if (!RHSTrunc &&
39933       !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()))
39934     return SDValue();
39935 
39936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
39937 
39938   if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), VT))
39939     return SDValue();
39940 
39941   // Set N0 and N1 to hold the inputs to the new wide operation.
39942   N0 = N0.getOperand(0);
39943   if (RHSTrunc)
39944     N1 = N1.getOperand(0);
39945   else
39946     N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N1);
39947 
39948   // Generate the wide operation.
39949   SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, VT, N0, N1);
39950   unsigned Opcode = N->getOpcode();
39951   switch (Opcode) {
39952   default: llvm_unreachable("Unexpected opcode");
39953   case ISD::ANY_EXTEND:
39954     return Op;
39955   case ISD::ZERO_EXTEND:
39956     return DAG.getZeroExtendInReg(Op, DL, NarrowVT.getScalarType());
39957   case ISD::SIGN_EXTEND:
39958     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
39959                        Op, DAG.getValueType(NarrowVT));
39960   }
39961 }
39962 
39963 /// If both input operands of a logic op are being cast from floating point
39964 /// types, try to convert this into a floating point logic node to avoid
39965 /// unnecessary moves from SSE to integer registers.
39966 static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
39967                                         const X86Subtarget &Subtarget) {
39968   EVT VT = N->getValueType(0);
39969   SDValue N0 = N->getOperand(0);
39970   SDValue N1 = N->getOperand(1);
39971   SDLoc DL(N);
39972 
39973   if (N0.getOpcode() != ISD::BITCAST || N1.getOpcode() != ISD::BITCAST)
39974     return SDValue();
39975 
39976   SDValue N00 = N0.getOperand(0);
39977   SDValue N10 = N1.getOperand(0);
39978   EVT N00Type = N00.getValueType();
39979   EVT N10Type = N10.getValueType();
39980 
39981   // Ensure that both types are the same and are legal scalar fp types.
39982   if (N00Type != N10Type ||
39983       !((Subtarget.hasSSE1() && N00Type == MVT::f32) ||
39984         (Subtarget.hasSSE2() && N00Type == MVT::f64)))
39985     return SDValue();
39986 
39987   unsigned FPOpcode;
39988   switch (N->getOpcode()) {
39989   default: llvm_unreachable("Unexpected input node for FP logic conversion");
39990   case ISD::AND: FPOpcode = X86ISD::FAND; break;
39991   case ISD::OR:  FPOpcode = X86ISD::FOR;  break;
39992   case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
39993   }
39994 
39995   SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
39996   return DAG.getBitcast(VT, FPLogic);
39997 }
39998 
39999 /// If this is a zero/all-bits result that is bitwise-anded with a low bits
40000 /// mask. (Mask == 1 for the x86 lowering of a SETCC + ZEXT), replace the 'and'
40001 /// with a shift-right to eliminate loading the vector constant mask value.
40002 static SDValue combineAndMaskToShift(SDNode *N, SelectionDAG &DAG,
40003                                      const X86Subtarget &Subtarget) {
40004   SDValue Op0 = peekThroughBitcasts(N->getOperand(0));
40005   SDValue Op1 = peekThroughBitcasts(N->getOperand(1));
40006   EVT VT0 = Op0.getValueType();
40007   EVT VT1 = Op1.getValueType();
40008 
40009   if (VT0 != VT1 || !VT0.isSimple() || !VT0.isInteger())
40010     return SDValue();
40011 
40012   APInt SplatVal;
40013   if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) ||
40014       !SplatVal.isMask())
40015     return SDValue();
40016 
40017   // Don't prevent creation of ANDN.
40018   if (isBitwiseNot(Op0))
40019     return SDValue();
40020 
40021   if (!SupportedVectorShiftWithImm(VT0.getSimpleVT(), Subtarget, ISD::SRL))
40022     return SDValue();
40023 
40024   unsigned EltBitWidth = VT0.getScalarSizeInBits();
40025   if (EltBitWidth != DAG.ComputeNumSignBits(Op0))
40026     return SDValue();
40027 
40028   SDLoc DL(N);
40029   unsigned ShiftVal = SplatVal.countTrailingOnes();
40030   SDValue ShAmt = DAG.getTargetConstant(EltBitWidth - ShiftVal, DL, MVT::i8);
40031   SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt);
40032   return DAG.getBitcast(N->getValueType(0), Shift);
40033 }
40034 
40035 // Get the index node from the lowered DAG of a GEP IR instruction with one
40036 // indexing dimension.
40037 static SDValue getIndexFromUnindexedLoad(LoadSDNode *Ld) {
40038   if (Ld->isIndexed())
40039     return SDValue();
40040 
40041   SDValue Base = Ld->getBasePtr();
40042 
40043   if (Base.getOpcode() != ISD::ADD)
40044     return SDValue();
40045 
40046   SDValue ShiftedIndex = Base.getOperand(0);
40047 
40048   if (ShiftedIndex.getOpcode() != ISD::SHL)
40049     return SDValue();
40050 
40051   return ShiftedIndex.getOperand(0);
40052 
40053 }
40054 
40055 static bool hasBZHI(const X86Subtarget &Subtarget, MVT VT) {
40056   if (Subtarget.hasBMI2() && VT.isScalarInteger()) {
40057     switch (VT.getSizeInBits()) {
40058     default: return false;
40059     case 64: return Subtarget.is64Bit() ? true : false;
40060     case 32: return true;
40061     }
40062   }
40063   return false;
40064 }
40065 
40066 // This function recognizes cases where X86 bzhi instruction can replace and
40067 // 'and-load' sequence.
40068 // In case of loading integer value from an array of constants which is defined
40069 // as follows:
40070 //
40071 //   int array[SIZE] = {0x0, 0x1, 0x3, 0x7, 0xF ..., 2^(SIZE-1) - 1}
40072 //
40073 // then applying a bitwise and on the result with another input.
40074 // It's equivalent to performing bzhi (zero high bits) on the input, with the
40075 // same index of the load.
40076 static SDValue combineAndLoadToBZHI(SDNode *Node, SelectionDAG &DAG,
40077                                     const X86Subtarget &Subtarget) {
40078   MVT VT = Node->getSimpleValueType(0);
40079   SDLoc dl(Node);
40080 
40081   // Check if subtarget has BZHI instruction for the node's type
40082   if (!hasBZHI(Subtarget, VT))
40083     return SDValue();
40084 
40085   // Try matching the pattern for both operands.
40086   for (unsigned i = 0; i < 2; i++) {
40087     SDValue N = Node->getOperand(i);
40088     LoadSDNode *Ld = dyn_cast<LoadSDNode>(N.getNode());
40089 
40090      // continue if the operand is not a load instruction
40091     if (!Ld)
40092       return SDValue();
40093 
40094     const Value *MemOp = Ld->getMemOperand()->getValue();
40095 
40096     if (!MemOp)
40097       return SDValue();
40098 
40099     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(MemOp)) {
40100       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) {
40101         if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
40102 
40103           Constant *Init = GV->getInitializer();
40104           Type *Ty = Init->getType();
40105           if (!isa<ConstantDataArray>(Init) ||
40106               !Ty->getArrayElementType()->isIntegerTy() ||
40107               Ty->getArrayElementType()->getScalarSizeInBits() !=
40108                   VT.getSizeInBits() ||
40109               Ty->getArrayNumElements() >
40110                   Ty->getArrayElementType()->getScalarSizeInBits())
40111             continue;
40112 
40113           // Check if the array's constant elements are suitable to our case.
40114           uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
40115           bool ConstantsMatch = true;
40116           for (uint64_t j = 0; j < ArrayElementCount; j++) {
40117             ConstantInt *Elem =
40118                 dyn_cast<ConstantInt>(Init->getAggregateElement(j));
40119             if (Elem->getZExtValue() != (((uint64_t)1 << j) - 1)) {
40120               ConstantsMatch = false;
40121               break;
40122             }
40123           }
40124           if (!ConstantsMatch)
40125             continue;
40126 
40127           // Do the transformation (For 32-bit type):
40128           // -> (and (load arr[idx]), inp)
40129           // <- (and (srl 0xFFFFFFFF, (sub 32, idx)))
40130           //    that will be replaced with one bzhi instruction.
40131           SDValue Inp = (i == 0) ? Node->getOperand(1) : Node->getOperand(0);
40132           SDValue SizeC = DAG.getConstant(VT.getSizeInBits(), dl, MVT::i32);
40133 
40134           // Get the Node which indexes into the array.
40135           SDValue Index = getIndexFromUnindexedLoad(Ld);
40136           if (!Index)
40137             return SDValue();
40138           Index = DAG.getZExtOrTrunc(Index, dl, MVT::i32);
40139 
40140           SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, SizeC, Index);
40141           Sub = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Sub);
40142 
40143           SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
40144           SDValue LShr = DAG.getNode(ISD::SRL, dl, VT, AllOnes, Sub);
40145 
40146           return DAG.getNode(ISD::AND, dl, VT, Inp, LShr);
40147         }
40148       }
40149     }
40150   }
40151   return SDValue();
40152 }
40153 
40154 // Look for (and (ctpop X), 1) which is the IR form of __builtin_parity.
40155 // Turn it into series of XORs and a setnp.
40156 static SDValue combineParity(SDNode *N, SelectionDAG &DAG,
40157                              const X86Subtarget &Subtarget) {
40158   EVT VT = N->getValueType(0);
40159 
40160   // We only support 64-bit and 32-bit. 64-bit requires special handling
40161   // unless the 64-bit popcnt instruction is legal.
40162   if (VT != MVT::i32 && VT != MVT::i64)
40163     return SDValue();
40164 
40165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
40166   if (TLI.isTypeLegal(VT) && TLI.isOperationLegal(ISD::CTPOP, VT))
40167     return SDValue();
40168 
40169   SDValue N0 = N->getOperand(0);
40170   SDValue N1 = N->getOperand(1);
40171 
40172   // LHS needs to be a single use CTPOP.
40173   if (N0.getOpcode() != ISD::CTPOP || !N0.hasOneUse())
40174     return SDValue();
40175 
40176   // RHS needs to be 1.
40177   if (!isOneConstant(N1))
40178     return SDValue();
40179 
40180   SDLoc DL(N);
40181   SDValue X = N0.getOperand(0);
40182 
40183   // If this is 64-bit, its always best to xor the two 32-bit pieces together
40184   // even if we have popcnt.
40185   if (VT == MVT::i64) {
40186     SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
40187                              DAG.getNode(ISD::SRL, DL, VT, X,
40188                                          DAG.getConstant(32, DL, MVT::i8)));
40189     SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, X);
40190     X = DAG.getNode(ISD::XOR, DL, MVT::i32, Lo, Hi);
40191     // Generate a 32-bit parity idiom. This will bring us back here if we need
40192     // to expand it too.
40193     SDValue Parity = DAG.getNode(ISD::AND, DL, MVT::i32,
40194                                  DAG.getNode(ISD::CTPOP, DL, MVT::i32, X),
40195                                  DAG.getConstant(1, DL, MVT::i32));
40196     return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Parity);
40197   }
40198   assert(VT == MVT::i32 && "Unexpected VT!");
40199 
40200   // Xor the high and low 16-bits together using a 32-bit operation.
40201   SDValue Hi16 = DAG.getNode(ISD::SRL, DL, VT, X,
40202                              DAG.getConstant(16, DL, MVT::i8));
40203   X = DAG.getNode(ISD::XOR, DL, VT, X, Hi16);
40204 
40205   // Finally xor the low 2 bytes together and use a 8-bit flag setting xor.
40206   // This should allow an h-reg to be used to save a shift.
40207   // FIXME: We only get an h-reg in 32-bit mode.
40208   SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
40209                            DAG.getNode(ISD::SRL, DL, VT, X,
40210                                        DAG.getConstant(8, DL, MVT::i8)));
40211   SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, X);
40212   SDVTList VTs = DAG.getVTList(MVT::i8, MVT::i32);
40213   SDValue Flags = DAG.getNode(X86ISD::XOR, DL, VTs, Lo, Hi).getValue(1);
40214 
40215   // Copy the inverse of the parity flag into a register with setcc.
40216   SDValue Setnp = getSETCC(X86::COND_NP, Flags, DL, DAG);
40217   // Zero extend to original type.
40218   return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), Setnp);
40219 }
40220 
40221 
40222 // Look for (and (bitcast (vXi1 (concat_vectors (vYi1 setcc), undef,))), C)
40223 // Where C is a mask containing the same number of bits as the setcc and
40224 // where the setcc will freely 0 upper bits of k-register. We can replace the
40225 // undef in the concat with 0s and remove the AND. This mainly helps with
40226 // v2i1/v4i1 setcc being casted to scalar.
40227 static SDValue combineScalarAndWithMaskSetcc(SDNode *N, SelectionDAG &DAG,
40228                                              const X86Subtarget &Subtarget) {
40229   assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
40230 
40231   EVT VT = N->getValueType(0);
40232 
40233   // Make sure this is an AND with constant. We will check the value of the
40234   // constant later.
40235   if (!isa<ConstantSDNode>(N->getOperand(1)))
40236     return SDValue();
40237 
40238   // This is implied by the ConstantSDNode.
40239   assert(!VT.isVector() && "Expected scalar VT!");
40240 
40241   if (N->getOperand(0).getOpcode() != ISD::BITCAST ||
40242       !N->getOperand(0).hasOneUse() ||
40243       !N->getOperand(0).getOperand(0).hasOneUse())
40244     return SDValue();
40245 
40246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
40247   SDValue Src = N->getOperand(0).getOperand(0);
40248   EVT SrcVT = Src.getValueType();
40249   if (!SrcVT.isVector() || SrcVT.getVectorElementType() != MVT::i1 ||
40250       !TLI.isTypeLegal(SrcVT))
40251     return SDValue();
40252 
40253   if (Src.getOpcode() != ISD::CONCAT_VECTORS)
40254     return SDValue();
40255 
40256   // We only care about the first subvector of the concat, we expect the
40257   // other subvectors to be ignored due to the AND if we make the change.
40258   SDValue SubVec = Src.getOperand(0);
40259   EVT SubVecVT = SubVec.getValueType();
40260 
40261   // First subvector should be a setcc with a legal result type. The RHS of the
40262   // AND should be a mask with this many bits.
40263   if (SubVec.getOpcode() != ISD::SETCC || !TLI.isTypeLegal(SubVecVT) ||
40264       !N->getConstantOperandAPInt(1).isMask(SubVecVT.getVectorNumElements()))
40265     return SDValue();
40266 
40267   EVT SetccVT = SubVec.getOperand(0).getValueType();
40268   if (!TLI.isTypeLegal(SetccVT) ||
40269       !(Subtarget.hasVLX() || SetccVT.is512BitVector()))
40270     return SDValue();
40271 
40272   if (!(Subtarget.hasBWI() || SetccVT.getScalarSizeInBits() >= 32))
40273     return SDValue();
40274 
40275   // We passed all the checks. Rebuild the concat_vectors with zeroes
40276   // and cast it back to VT.
40277   SDLoc dl(N);
40278   SmallVector<SDValue, 4> Ops(Src.getNumOperands(),
40279                               DAG.getConstant(0, dl, SubVecVT));
40280   Ops[0] = SubVec;
40281   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT,
40282                                Ops);
40283   return DAG.getBitcast(VT, Concat);
40284 }
40285 
40286 static SDValue combineAnd(SDNode *N, SelectionDAG &DAG,
40287                           TargetLowering::DAGCombinerInfo &DCI,
40288                           const X86Subtarget &Subtarget) {
40289   EVT VT = N->getValueType(0);
40290 
40291   // If this is SSE1 only convert to FAND to avoid scalarization.
40292   if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
40293     return DAG.getBitcast(
40294         MVT::v4i32, DAG.getNode(X86ISD::FAND, SDLoc(N), MVT::v4f32,
40295                                 DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
40296                                 DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
40297   }
40298 
40299   // Use a 32-bit and+zext if upper bits known zero.
40300   if (VT == MVT::i64 && Subtarget.is64Bit() &&
40301       !isa<ConstantSDNode>(N->getOperand(1))) {
40302     APInt HiMask = APInt::getHighBitsSet(64, 32);
40303     if (DAG.MaskedValueIsZero(N->getOperand(1), HiMask) ||
40304         DAG.MaskedValueIsZero(N->getOperand(0), HiMask)) {
40305       SDLoc dl(N);
40306       SDValue LHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(0));
40307       SDValue RHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(1));
40308       return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64,
40309                          DAG.getNode(ISD::AND, dl, MVT::i32, LHS, RHS));
40310     }
40311   }
40312 
40313   // This must be done before legalization has expanded the ctpop.
40314   if (SDValue V = combineParity(N, DAG, Subtarget))
40315     return V;
40316 
40317   // Match all-of bool scalar reductions into a bitcast/movmsk + cmp.
40318   // TODO: Support multiple SrcOps.
40319   if (VT == MVT::i1) {
40320     SmallVector<SDValue, 2> SrcOps;
40321     if (matchScalarReduction(SDValue(N, 0), ISD::AND, SrcOps) &&
40322         SrcOps.size() == 1) {
40323       SDLoc dl(N);
40324       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
40325       unsigned NumElts = SrcOps[0].getValueType().getVectorNumElements();
40326       EVT MaskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
40327       SDValue Mask = combineBitcastvxi1(DAG, MaskVT, SrcOps[0], dl, Subtarget);
40328       if (!Mask && TLI.isTypeLegal(SrcOps[0].getValueType()))
40329         Mask = DAG.getBitcast(MaskVT, SrcOps[0]);
40330       if (Mask) {
40331         APInt AllBits = APInt::getAllOnesValue(NumElts);
40332         return DAG.getSetCC(dl, MVT::i1, Mask,
40333                             DAG.getConstant(AllBits, dl, MaskVT), ISD::SETEQ);
40334       }
40335     }
40336   }
40337 
40338   if (SDValue V = combineScalarAndWithMaskSetcc(N, DAG, Subtarget))
40339     return V;
40340 
40341   if (DCI.isBeforeLegalizeOps())
40342     return SDValue();
40343 
40344   if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
40345     return R;
40346 
40347   if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
40348     return FPLogic;
40349 
40350   if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG))
40351     return R;
40352 
40353   if (SDValue ShiftRight = combineAndMaskToShift(N, DAG, Subtarget))
40354     return ShiftRight;
40355 
40356   if (SDValue R = combineAndLoadToBZHI(N, DAG, Subtarget))
40357     return R;
40358 
40359   // Attempt to recursively combine a bitmask AND with shuffles.
40360   if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
40361     SDValue Op(N, 0);
40362     if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
40363       return Res;
40364   }
40365 
40366   // Attempt to combine a scalar bitmask AND with an extracted shuffle.
40367   if ((VT.getScalarSizeInBits() % 8) == 0 &&
40368       N->getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
40369       isa<ConstantSDNode>(N->getOperand(0).getOperand(1))) {
40370     SDValue BitMask = N->getOperand(1);
40371     SDValue SrcVec = N->getOperand(0).getOperand(0);
40372     EVT SrcVecVT = SrcVec.getValueType();
40373 
40374     // Check that the constant bitmask masks whole bytes.
40375     APInt UndefElts;
40376     SmallVector<APInt, 64> EltBits;
40377     if (VT == SrcVecVT.getScalarType() &&
40378         N->getOperand(0)->isOnlyUserOf(SrcVec.getNode()) &&
40379         getTargetConstantBitsFromNode(BitMask, 8, UndefElts, EltBits) &&
40380         llvm::all_of(EltBits, [](APInt M) {
40381           return M.isNullValue() || M.isAllOnesValue();
40382         })) {
40383       unsigned NumElts = SrcVecVT.getVectorNumElements();
40384       unsigned Scale = SrcVecVT.getScalarSizeInBits() / 8;
40385       unsigned Idx = N->getOperand(0).getConstantOperandVal(1);
40386 
40387       // Create a root shuffle mask from the byte mask and the extracted index.
40388       SmallVector<int, 16> ShuffleMask(NumElts * Scale, SM_SentinelUndef);
40389       for (unsigned i = 0; i != Scale; ++i) {
40390         if (UndefElts[i])
40391           continue;
40392         int VecIdx = Scale * Idx + i;
40393         ShuffleMask[VecIdx] =
40394             EltBits[i].isNullValue() ? SM_SentinelZero : VecIdx;
40395       }
40396 
40397       if (SDValue Shuffle = combineX86ShufflesRecursively(
40398               {SrcVec}, 0, SrcVec, ShuffleMask, {}, /*Depth*/ 1,
40399               /*HasVarMask*/ false, /*AllowVarMask*/ true, DAG, Subtarget))
40400         return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), VT, Shuffle,
40401                            N->getOperand(0).getOperand(1));
40402     }
40403   }
40404 
40405   return SDValue();
40406 }
40407 
40408 // Canonicalize OR(AND(X,C),AND(Y,~C)) -> OR(AND(X,C),ANDNP(C,Y))
40409 static SDValue canonicalizeBitSelect(SDNode *N, SelectionDAG &DAG,
40410                                      const X86Subtarget &Subtarget) {
40411   assert(N->getOpcode() == ISD::OR && "Unexpected Opcode");
40412 
40413   MVT VT = N->getSimpleValueType(0);
40414   if (!VT.isVector() || (VT.getScalarSizeInBits() % 8) != 0)
40415     return SDValue();
40416 
40417   SDValue N0 = peekThroughBitcasts(N->getOperand(0));
40418   SDValue N1 = peekThroughBitcasts(N->getOperand(1));
40419   if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
40420     return SDValue();
40421 
40422   // On XOP we'll lower to PCMOV so accept one use. With AVX512, we can use
40423   // VPTERNLOG. Otherwise only do this if either mask has multiple uses already.
40424   bool UseVPTERNLOG = (Subtarget.hasAVX512() && VT.is512BitVector()) ||
40425                       Subtarget.hasVLX();
40426   if (!(Subtarget.hasXOP() || UseVPTERNLOG ||
40427         !N0.getOperand(1).hasOneUse() || !N1.getOperand(1).hasOneUse()))
40428     return SDValue();
40429 
40430   // Attempt to extract constant byte masks.
40431   APInt UndefElts0, UndefElts1;
40432   SmallVector<APInt, 32> EltBits0, EltBits1;
40433   if (!getTargetConstantBitsFromNode(N0.getOperand(1), 8, UndefElts0, EltBits0,
40434                                      false, false))
40435     return SDValue();
40436   if (!getTargetConstantBitsFromNode(N1.getOperand(1), 8, UndefElts1, EltBits1,
40437                                      false, false))
40438     return SDValue();
40439 
40440   for (unsigned i = 0, e = EltBits0.size(); i != e; ++i) {
40441     // TODO - add UNDEF elts support.
40442     if (UndefElts0[i] || UndefElts1[i])
40443       return SDValue();
40444     if (EltBits0[i] != ~EltBits1[i])
40445       return SDValue();
40446   }
40447 
40448   SDLoc DL(N);
40449   SDValue X = N->getOperand(0);
40450   SDValue Y =
40451       DAG.getNode(X86ISD::ANDNP, DL, VT, DAG.getBitcast(VT, N0.getOperand(1)),
40452                   DAG.getBitcast(VT, N1.getOperand(0)));
40453   return DAG.getNode(ISD::OR, DL, VT, X, Y);
40454 }
40455 
40456 // Try to match OR(AND(~MASK,X),AND(MASK,Y)) logic pattern.
40457 static bool matchLogicBlend(SDNode *N, SDValue &X, SDValue &Y, SDValue &Mask) {
40458   if (N->getOpcode() != ISD::OR)
40459     return false;
40460 
40461   SDValue N0 = N->getOperand(0);
40462   SDValue N1 = N->getOperand(1);
40463 
40464   // Canonicalize AND to LHS.
40465   if (N1.getOpcode() == ISD::AND)
40466     std::swap(N0, N1);
40467 
40468   // Attempt to match OR(AND(M,Y),ANDNP(M,X)).
40469   if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP)
40470     return false;
40471 
40472   Mask = N1.getOperand(0);
40473   X = N1.getOperand(1);
40474 
40475   // Check to see if the mask appeared in both the AND and ANDNP.
40476   if (N0.getOperand(0) == Mask)
40477     Y = N0.getOperand(1);
40478   else if (N0.getOperand(1) == Mask)
40479     Y = N0.getOperand(0);
40480   else
40481     return false;
40482 
40483   // TODO: Attempt to match against AND(XOR(-1,M),Y) as well, waiting for
40484   // ANDNP combine allows other combines to happen that prevent matching.
40485   return true;
40486 }
40487 
40488 // Try to fold:
40489 //   (or (and (m, y), (pandn m, x)))
40490 // into:
40491 //   (vselect m, x, y)
40492 // As a special case, try to fold:
40493 //   (or (and (m, (sub 0, x)), (pandn m, x)))
40494 // into:
40495 //   (sub (xor X, M), M)
40496 static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG,
40497                                             const X86Subtarget &Subtarget) {
40498   assert(N->getOpcode() == ISD::OR && "Unexpected Opcode");
40499 
40500   EVT VT = N->getValueType(0);
40501   if (!((VT.is128BitVector() && Subtarget.hasSSE2()) ||
40502         (VT.is256BitVector() && Subtarget.hasInt256())))
40503     return SDValue();
40504 
40505   SDValue X, Y, Mask;
40506   if (!matchLogicBlend(N, X, Y, Mask))
40507     return SDValue();
40508 
40509   // Validate that X, Y, and Mask are bitcasts, and see through them.
40510   Mask = peekThroughBitcasts(Mask);
40511   X = peekThroughBitcasts(X);
40512   Y = peekThroughBitcasts(Y);
40513 
40514   EVT MaskVT = Mask.getValueType();
40515   unsigned EltBits = MaskVT.getScalarSizeInBits();
40516 
40517   // TODO: Attempt to handle floating point cases as well?
40518   if (!MaskVT.isInteger() || DAG.ComputeNumSignBits(Mask) != EltBits)
40519     return SDValue();
40520 
40521   SDLoc DL(N);
40522 
40523   // Attempt to combine to conditional negate: (sub (xor X, M), M)
40524   if (SDValue Res = combineLogicBlendIntoConditionalNegate(VT, Mask, X, Y, DL,
40525                                                            DAG, Subtarget))
40526     return Res;
40527 
40528   // PBLENDVB is only available on SSE 4.1.
40529   if (!Subtarget.hasSSE41())
40530     return SDValue();
40531 
40532   MVT BlendVT = VT.is256BitVector() ? MVT::v32i8 : MVT::v16i8;
40533 
40534   X = DAG.getBitcast(BlendVT, X);
40535   Y = DAG.getBitcast(BlendVT, Y);
40536   Mask = DAG.getBitcast(BlendVT, Mask);
40537   Mask = DAG.getSelect(DL, BlendVT, Mask, Y, X);
40538   return DAG.getBitcast(VT, Mask);
40539 }
40540 
40541 // Helper function for combineOrCmpEqZeroToCtlzSrl
40542 // Transforms:
40543 //   seteq(cmp x, 0)
40544 //   into:
40545 //   srl(ctlz x), log2(bitsize(x))
40546 // Input pattern is checked by caller.
40547 static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy,
40548                                           SelectionDAG &DAG) {
40549   SDValue Cmp = Op.getOperand(1);
40550   EVT VT = Cmp.getOperand(0).getValueType();
40551   unsigned Log2b = Log2_32(VT.getSizeInBits());
40552   SDLoc dl(Op);
40553   SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0));
40554   // The result of the shift is true or false, and on X86, the 32-bit
40555   // encoding of shr and lzcnt is more desirable.
40556   SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32);
40557   SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc,
40558                             DAG.getConstant(Log2b, dl, MVT::i8));
40559   return DAG.getZExtOrTrunc(Scc, dl, ExtTy);
40560 }
40561 
40562 // Try to transform:
40563 //   zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
40564 //   into:
40565 //   srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
40566 // Will also attempt to match more generic cases, eg:
40567 //   zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0)))
40568 // Only applies if the target supports the FastLZCNT feature.
40569 static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG,
40570                                            TargetLowering::DAGCombinerInfo &DCI,
40571                                            const X86Subtarget &Subtarget) {
40572   if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast())
40573     return SDValue();
40574 
40575   auto isORCandidate = [](SDValue N) {
40576     return (N->getOpcode() == ISD::OR && N->hasOneUse());
40577   };
40578 
40579   // Check the zero extend is extending to 32-bit or more. The code generated by
40580   // srl(ctlz) for 16-bit or less variants of the pattern would require extra
40581   // instructions to clear the upper bits.
40582   if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) ||
40583       !isORCandidate(N->getOperand(0)))
40584     return SDValue();
40585 
40586   // Check the node matches: setcc(eq, cmp 0)
40587   auto isSetCCCandidate = [](SDValue N) {
40588     return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() &&
40589            X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E &&
40590            N->getOperand(1).getOpcode() == X86ISD::CMP &&
40591            isNullConstant(N->getOperand(1).getOperand(1)) &&
40592            N->getOperand(1).getValueType().bitsGE(MVT::i32);
40593   };
40594 
40595   SDNode *OR = N->getOperand(0).getNode();
40596   SDValue LHS = OR->getOperand(0);
40597   SDValue RHS = OR->getOperand(1);
40598 
40599   // Save nodes matching or(or, setcc(eq, cmp 0)).
40600   SmallVector<SDNode *, 2> ORNodes;
40601   while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) ||
40602           (isORCandidate(RHS) && isSetCCCandidate(LHS)))) {
40603     ORNodes.push_back(OR);
40604     OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode();
40605     LHS = OR->getOperand(0);
40606     RHS = OR->getOperand(1);
40607   }
40608 
40609   // The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)).
40610   if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) ||
40611       !isORCandidate(SDValue(OR, 0)))
40612     return SDValue();
40613 
40614   // We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it
40615   // to
40616   // or(srl(ctlz),srl(ctlz)).
40617   // The dag combiner can then fold it into:
40618   // srl(or(ctlz, ctlz)).
40619   EVT VT = OR->getValueType(0);
40620   SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG);
40621   SDValue Ret, NewRHS;
40622   if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG)))
40623     Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS);
40624 
40625   if (!Ret)
40626     return SDValue();
40627 
40628   // Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern.
40629   while (ORNodes.size() > 0) {
40630     OR = ORNodes.pop_back_val();
40631     LHS = OR->getOperand(0);
40632     RHS = OR->getOperand(1);
40633     // Swap rhs with lhs to match or(setcc(eq, cmp, 0), or).
40634     if (RHS->getOpcode() == ISD::OR)
40635       std::swap(LHS, RHS);
40636     NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG);
40637     if (!NewRHS)
40638       return SDValue();
40639     Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS);
40640   }
40641 
40642   if (Ret)
40643     Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret);
40644 
40645   return Ret;
40646 }
40647 
40648 static SDValue combineOrShiftToFunnelShift(SDNode *N, SelectionDAG &DAG,
40649                                            const X86Subtarget &Subtarget) {
40650   assert(N->getOpcode() == ISD::OR && "Expected ISD::OR node");
40651   SDValue N0 = N->getOperand(0);
40652   SDValue N1 = N->getOperand(1);
40653   EVT VT = N->getValueType(0);
40654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
40655 
40656   if (!TLI.isOperationLegalOrCustom(ISD::FSHL, VT) ||
40657       !TLI.isOperationLegalOrCustom(ISD::FSHR, VT))
40658     return SDValue();
40659 
40660   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
40661   bool OptForSize = DAG.shouldOptForSize();
40662   unsigned Bits = VT.getScalarSizeInBits();
40663 
40664   // SHLD/SHRD instructions have lower register pressure, but on some
40665   // platforms they have higher latency than the equivalent
40666   // series of shifts/or that would otherwise be generated.
40667   // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
40668   // have higher latencies and we are not optimizing for size.
40669   if (!OptForSize && Subtarget.isSHLDSlow())
40670     return SDValue();
40671 
40672   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
40673     std::swap(N0, N1);
40674   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
40675     return SDValue();
40676   if (!N0.hasOneUse() || !N1.hasOneUse())
40677     return SDValue();
40678 
40679   EVT ShiftVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
40680 
40681   SDValue ShAmt0 = N0.getOperand(1);
40682   if (ShAmt0.getValueType() != ShiftVT)
40683     return SDValue();
40684   SDValue ShAmt1 = N1.getOperand(1);
40685   if (ShAmt1.getValueType() != ShiftVT)
40686     return SDValue();
40687 
40688   // Peek through any modulo shift masks.
40689   SDValue ShMsk0;
40690   if (ShAmt0.getOpcode() == ISD::AND &&
40691       isa<ConstantSDNode>(ShAmt0.getOperand(1)) &&
40692       ShAmt0.getConstantOperandAPInt(1) == (Bits - 1)) {
40693     ShMsk0 = ShAmt0;
40694     ShAmt0 = ShAmt0.getOperand(0);
40695   }
40696   SDValue ShMsk1;
40697   if (ShAmt1.getOpcode() == ISD::AND &&
40698       isa<ConstantSDNode>(ShAmt1.getOperand(1)) &&
40699       ShAmt1.getConstantOperandAPInt(1) == (Bits - 1)) {
40700     ShMsk1 = ShAmt1;
40701     ShAmt1 = ShAmt1.getOperand(0);
40702   }
40703 
40704   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
40705     ShAmt0 = ShAmt0.getOperand(0);
40706   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
40707     ShAmt1 = ShAmt1.getOperand(0);
40708 
40709   SDLoc DL(N);
40710   unsigned Opc = ISD::FSHL;
40711   SDValue Op0 = N0.getOperand(0);
40712   SDValue Op1 = N1.getOperand(0);
40713   if (ShAmt0.getOpcode() == ISD::SUB || ShAmt0.getOpcode() == ISD::XOR) {
40714     Opc = ISD::FSHR;
40715     std::swap(Op0, Op1);
40716     std::swap(ShAmt0, ShAmt1);
40717     std::swap(ShMsk0, ShMsk1);
40718   }
40719 
40720   auto GetFunnelShift = [&DAG, &DL, VT, Opc, &ShiftVT](SDValue Op0, SDValue Op1,
40721                                                        SDValue Amt) {
40722     if (Opc == ISD::FSHR)
40723       std::swap(Op0, Op1);
40724     return DAG.getNode(Opc, DL, VT, Op0, Op1,
40725                        DAG.getNode(ISD::TRUNCATE, DL, ShiftVT, Amt));
40726   };
40727 
40728   // OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> FSHL( X, Y, C )
40729   // OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> FSHR( Y, X, C )
40730   // OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> FSHL( X, Y, C )
40731   // OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> FSHR( Y, X, C )
40732   // OR( SHL( X, AND( C, 31 ) ), SRL( Y, AND( 0 - C, 31 ) ) ) -> FSHL( X, Y, C )
40733   // OR( SRL( X, AND( C, 31 ) ), SHL( Y, AND( 0 - C, 31 ) ) ) -> FSHR( Y, X, C )
40734   if (ShAmt1.getOpcode() == ISD::SUB) {
40735     SDValue Sum = ShAmt1.getOperand(0);
40736     if (auto *SumC = dyn_cast<ConstantSDNode>(Sum)) {
40737       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
40738       if (ShAmt1Op1.getOpcode() == ISD::AND &&
40739           isa<ConstantSDNode>(ShAmt1Op1.getOperand(1)) &&
40740           ShAmt1Op1.getConstantOperandAPInt(1) == (Bits - 1)) {
40741         ShMsk1 = ShAmt1Op1;
40742         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
40743       }
40744       if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE)
40745         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
40746       if ((SumC->getAPIntValue() == Bits ||
40747            (SumC->getAPIntValue() == 0 && ShMsk1)) &&
40748           ShAmt1Op1 == ShAmt0)
40749         return GetFunnelShift(Op0, Op1, ShAmt0);
40750     }
40751   } else if (auto *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
40752     auto *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
40753     if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits)
40754       return GetFunnelShift(Op0, Op1, ShAmt0);
40755   } else if (ShAmt1.getOpcode() == ISD::XOR) {
40756     SDValue Mask = ShAmt1.getOperand(1);
40757     if (auto *MaskC = dyn_cast<ConstantSDNode>(Mask)) {
40758       unsigned InnerShift = (ISD::FSHL == Opc ? ISD::SRL : ISD::SHL);
40759       SDValue ShAmt1Op0 = ShAmt1.getOperand(0);
40760       if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE)
40761         ShAmt1Op0 = ShAmt1Op0.getOperand(0);
40762       if (MaskC->getSExtValue() == (Bits - 1) &&
40763           (ShAmt1Op0 == ShAmt0 || ShAmt1Op0 == ShMsk0)) {
40764         if (Op1.getOpcode() == InnerShift &&
40765             isa<ConstantSDNode>(Op1.getOperand(1)) &&
40766             Op1.getConstantOperandAPInt(1).isOneValue()) {
40767           return GetFunnelShift(Op0, Op1.getOperand(0), ShAmt0);
40768         }
40769         // Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ).
40770         if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD &&
40771             Op1.getOperand(0) == Op1.getOperand(1)) {
40772           return GetFunnelShift(Op0, Op1.getOperand(0), ShAmt0);
40773         }
40774       }
40775     }
40776   }
40777 
40778   return SDValue();
40779 }
40780 
40781 static SDValue combineOr(SDNode *N, SelectionDAG &DAG,
40782                          TargetLowering::DAGCombinerInfo &DCI,
40783                          const X86Subtarget &Subtarget) {
40784   SDValue N0 = N->getOperand(0);
40785   SDValue N1 = N->getOperand(1);
40786   EVT VT = N->getValueType(0);
40787 
40788   // If this is SSE1 only convert to FOR to avoid scalarization.
40789   if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
40790     return DAG.getBitcast(MVT::v4i32,
40791                           DAG.getNode(X86ISD::FOR, SDLoc(N), MVT::v4f32,
40792                                       DAG.getBitcast(MVT::v4f32, N0),
40793                                       DAG.getBitcast(MVT::v4f32, N1)));
40794   }
40795 
40796   // Match any-of bool scalar reductions into a bitcast/movmsk + cmp.
40797   // TODO: Support multiple SrcOps.
40798   if (VT == MVT::i1) {
40799     SmallVector<SDValue, 2> SrcOps;
40800     if (matchScalarReduction(SDValue(N, 0), ISD::OR, SrcOps) &&
40801         SrcOps.size() == 1) {
40802       SDLoc dl(N);
40803       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
40804       unsigned NumElts = SrcOps[0].getValueType().getVectorNumElements();
40805       EVT MaskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
40806       SDValue Mask = combineBitcastvxi1(DAG, MaskVT, SrcOps[0], dl, Subtarget);
40807       if (!Mask && TLI.isTypeLegal(SrcOps[0].getValueType()))
40808         Mask = DAG.getBitcast(MaskVT, SrcOps[0]);
40809       if (Mask) {
40810         APInt AllBits = APInt::getNullValue(NumElts);
40811         return DAG.getSetCC(dl, MVT::i1, Mask,
40812                             DAG.getConstant(AllBits, dl, MaskVT), ISD::SETNE);
40813       }
40814     }
40815   }
40816 
40817   if (DCI.isBeforeLegalizeOps())
40818     return SDValue();
40819 
40820   if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
40821     return R;
40822 
40823   if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
40824     return FPLogic;
40825 
40826   if (SDValue R = canonicalizeBitSelect(N, DAG, Subtarget))
40827     return R;
40828 
40829   if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget))
40830     return R;
40831 
40832   if (SDValue R = combineOrShiftToFunnelShift(N, DAG, Subtarget))
40833     return R;
40834 
40835   // Attempt to recursively combine an OR of shuffles.
40836   if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
40837     SDValue Op(N, 0);
40838     if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
40839       return Res;
40840   }
40841 
40842   return SDValue();
40843 }
40844 
40845 /// Try to turn tests against the signbit in the form of:
40846 ///   XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
40847 /// into:
40848 ///   SETGT(X, -1)
40849 static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
40850   // This is only worth doing if the output type is i8 or i1.
40851   EVT ResultType = N->getValueType(0);
40852   if (ResultType != MVT::i8 && ResultType != MVT::i1)
40853     return SDValue();
40854 
40855   SDValue N0 = N->getOperand(0);
40856   SDValue N1 = N->getOperand(1);
40857 
40858   // We should be performing an xor against a truncated shift.
40859   if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
40860     return SDValue();
40861 
40862   // Make sure we are performing an xor against one.
40863   if (!isOneConstant(N1))
40864     return SDValue();
40865 
40866   // SetCC on x86 zero extends so only act on this if it's a logical shift.
40867   SDValue Shift = N0.getOperand(0);
40868   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
40869     return SDValue();
40870 
40871   // Make sure we are truncating from one of i16, i32 or i64.
40872   EVT ShiftTy = Shift.getValueType();
40873   if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
40874     return SDValue();
40875 
40876   // Make sure the shift amount extracts the sign bit.
40877   if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
40878       Shift.getConstantOperandAPInt(1) != (ShiftTy.getSizeInBits() - 1))
40879     return SDValue();
40880 
40881   // Create a greater-than comparison against -1.
40882   // N.B. Using SETGE against 0 works but we want a canonical looking
40883   // comparison, using SETGT matches up with what TranslateX86CC.
40884   SDLoc DL(N);
40885   SDValue ShiftOp = Shift.getOperand(0);
40886   EVT ShiftOpTy = ShiftOp.getValueType();
40887   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
40888   EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
40889                                                *DAG.getContext(), ResultType);
40890   SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp,
40891                               DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
40892   if (SetCCResultType != ResultType)
40893     Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond);
40894   return Cond;
40895 }
40896 
40897 /// Turn vector tests of the signbit in the form of:
40898 ///   xor (sra X, elt_size(X)-1), -1
40899 /// into:
40900 ///   pcmpgt X, -1
40901 ///
40902 /// This should be called before type legalization because the pattern may not
40903 /// persist after that.
40904 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
40905                                          const X86Subtarget &Subtarget) {
40906   EVT VT = N->getValueType(0);
40907   if (!VT.isSimple())
40908     return SDValue();
40909 
40910   switch (VT.getSimpleVT().SimpleTy) {
40911   default: return SDValue();
40912   case MVT::v16i8:
40913   case MVT::v8i16:
40914   case MVT::v4i32:
40915   case MVT::v2i64: if (!Subtarget.hasSSE2()) return SDValue(); break;
40916   case MVT::v32i8:
40917   case MVT::v16i16:
40918   case MVT::v8i32:
40919   case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break;
40920   }
40921 
40922   // There must be a shift right algebraic before the xor, and the xor must be a
40923   // 'not' operation.
40924   SDValue Shift = N->getOperand(0);
40925   SDValue Ones = N->getOperand(1);
40926   if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() ||
40927       !ISD::isBuildVectorAllOnes(Ones.getNode()))
40928     return SDValue();
40929 
40930   // The shift should be smearing the sign bit across each vector element.
40931   auto *ShiftAmt =
40932       isConstOrConstSplat(Shift.getOperand(1), /*AllowUndefs*/ true);
40933   if (!ShiftAmt ||
40934       ShiftAmt->getAPIntValue() != (Shift.getScalarValueSizeInBits() - 1))
40935     return SDValue();
40936 
40937   // Create a greater-than comparison against -1. We don't use the more obvious
40938   // greater-than-or-equal-to-zero because SSE/AVX don't have that instruction.
40939   return DAG.getSetCC(SDLoc(N), VT, Shift.getOperand(0), Ones, ISD::SETGT);
40940 }
40941 
40942 /// Detect patterns of truncation with unsigned saturation:
40943 ///
40944 /// 1. (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
40945 ///   Return the source value x to be truncated or SDValue() if the pattern was
40946 ///   not matched.
40947 ///
40948 /// 2. (truncate (smin (smax (x, C1), C2)) to dest_type),
40949 ///   where C1 >= 0 and C2 is unsigned max of destination type.
40950 ///
40951 ///    (truncate (smax (smin (x, C2), C1)) to dest_type)
40952 ///   where C1 >= 0, C2 is unsigned max of destination type and C1 <= C2.
40953 ///
40954 ///   These two patterns are equivalent to:
40955 ///   (truncate (umin (smax(x, C1), unsigned_max_of_dest_type)) to dest_type)
40956 ///   So return the smax(x, C1) value to be truncated or SDValue() if the
40957 ///   pattern was not matched.
40958 static SDValue detectUSatPattern(SDValue In, EVT VT, SelectionDAG &DAG,
40959                                  const SDLoc &DL) {
40960   EVT InVT = In.getValueType();
40961 
40962   // Saturation with truncation. We truncate from InVT to VT.
40963   assert(InVT.getScalarSizeInBits() > VT.getScalarSizeInBits() &&
40964          "Unexpected types for truncate operation");
40965 
40966   // Match min/max and return limit value as a parameter.
40967   auto MatchMinMax = [](SDValue V, unsigned Opcode, APInt &Limit) -> SDValue {
40968     if (V.getOpcode() == Opcode &&
40969         ISD::isConstantSplatVector(V.getOperand(1).getNode(), Limit))
40970       return V.getOperand(0);
40971     return SDValue();
40972   };
40973 
40974   APInt C1, C2;
40975   if (SDValue UMin = MatchMinMax(In, ISD::UMIN, C2))
40976     // C2 should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according
40977     // the element size of the destination type.
40978     if (C2.isMask(VT.getScalarSizeInBits()))
40979       return UMin;
40980 
40981   if (SDValue SMin = MatchMinMax(In, ISD::SMIN, C2))
40982     if (MatchMinMax(SMin, ISD::SMAX, C1))
40983       if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()))
40984         return SMin;
40985 
40986   if (SDValue SMax = MatchMinMax(In, ISD::SMAX, C1))
40987     if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, C2))
40988       if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()) &&
40989           C2.uge(C1)) {
40990         return DAG.getNode(ISD::SMAX, DL, InVT, SMin, In.getOperand(1));
40991       }
40992 
40993   return SDValue();
40994 }
40995 
40996 /// Detect patterns of truncation with signed saturation:
40997 /// (truncate (smin ((smax (x, signed_min_of_dest_type)),
40998 ///                  signed_max_of_dest_type)) to dest_type)
40999 /// or:
41000 /// (truncate (smax ((smin (x, signed_max_of_dest_type)),
41001 ///                  signed_min_of_dest_type)) to dest_type).
41002 /// With MatchPackUS, the smax/smin range is [0, unsigned_max_of_dest_type].
41003 /// Return the source value to be truncated or SDValue() if the pattern was not
41004 /// matched.
41005 static SDValue detectSSatPattern(SDValue In, EVT VT, bool MatchPackUS = false) {
41006   unsigned NumDstBits = VT.getScalarSizeInBits();
41007   unsigned NumSrcBits = In.getScalarValueSizeInBits();
41008   assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
41009 
41010   auto MatchMinMax = [](SDValue V, unsigned Opcode,
41011                         const APInt &Limit) -> SDValue {
41012     APInt C;
41013     if (V.getOpcode() == Opcode &&
41014         ISD::isConstantSplatVector(V.getOperand(1).getNode(), C) && C == Limit)
41015       return V.getOperand(0);
41016     return SDValue();
41017   };
41018 
41019   APInt SignedMax, SignedMin;
41020   if (MatchPackUS) {
41021     SignedMax = APInt::getAllOnesValue(NumDstBits).zext(NumSrcBits);
41022     SignedMin = APInt(NumSrcBits, 0);
41023   } else {
41024     SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
41025     SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
41026   }
41027 
41028   if (SDValue SMin = MatchMinMax(In, ISD::SMIN, SignedMax))
41029     if (SDValue SMax = MatchMinMax(SMin, ISD::SMAX, SignedMin))
41030       return SMax;
41031 
41032   if (SDValue SMax = MatchMinMax(In, ISD::SMAX, SignedMin))
41033     if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, SignedMax))
41034       return SMin;
41035 
41036   return SDValue();
41037 }
41038 
41039 static SDValue combineTruncateWithSat(SDValue In, EVT VT, const SDLoc &DL,
41040                                       SelectionDAG &DAG,
41041                                       const X86Subtarget &Subtarget) {
41042   if (!Subtarget.hasSSE2() || !VT.isVector())
41043     return SDValue();
41044 
41045   EVT SVT = VT.getVectorElementType();
41046   EVT InVT = In.getValueType();
41047   EVT InSVT = InVT.getVectorElementType();
41048 
41049   // If we're clamping a signed 32-bit vector to 0-255 and the 32-bit vector is
41050   // split across two registers. We can use a packusdw+perm to clamp to 0-65535
41051   // and concatenate at the same time. Then we can use a final vpmovuswb to
41052   // clip to 0-255.
41053   if (Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
41054       InVT == MVT::v16i32 && VT == MVT::v16i8) {
41055     if (auto USatVal = detectSSatPattern(In, VT, true)) {
41056       // Emit a VPACKUSDW+VPERMQ followed by a VPMOVUSWB.
41057       SDValue Mid = truncateVectorWithPACK(X86ISD::PACKUS, MVT::v16i16, USatVal,
41058                                            DL, DAG, Subtarget);
41059       assert(Mid && "Failed to pack!");
41060       return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, Mid);
41061     }
41062   }
41063 
41064   // vXi32 truncate instructions are available with AVX512F.
41065   // vXi16 truncate instructions are only available with AVX512BW.
41066   // For 256-bit or smaller vectors, we require VLX.
41067   // FIXME: We could widen truncates to 512 to remove the VLX restriction.
41068   // If the result type is 256-bits or larger and we have disable 512-bit
41069   // registers, we should go ahead and use the pack instructions if possible.
41070   bool PreferAVX512 = ((Subtarget.hasAVX512() && InSVT == MVT::i32) ||
41071                        (Subtarget.hasBWI() && InSVT == MVT::i16)) &&
41072                       (InVT.getSizeInBits() > 128) &&
41073                       (Subtarget.hasVLX() || InVT.getSizeInBits() > 256) &&
41074                       !(!Subtarget.useAVX512Regs() && VT.getSizeInBits() >= 256);
41075 
41076   if (isPowerOf2_32(VT.getVectorNumElements()) && !PreferAVX512 &&
41077       VT.getSizeInBits() >= 64 &&
41078       (SVT == MVT::i8 || SVT == MVT::i16) &&
41079       (InSVT == MVT::i16 || InSVT == MVT::i32)) {
41080     if (auto USatVal = detectSSatPattern(In, VT, true)) {
41081       // vXi32 -> vXi8 must be performed as PACKUSWB(PACKSSDW,PACKSSDW).
41082       // Only do this when the result is at least 64 bits or we'll leaving
41083       // dangling PACKSSDW nodes.
41084       if (SVT == MVT::i8 && InSVT == MVT::i32) {
41085         EVT MidVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
41086                                      VT.getVectorNumElements());
41087         SDValue Mid = truncateVectorWithPACK(X86ISD::PACKSS, MidVT, USatVal, DL,
41088                                              DAG, Subtarget);
41089         assert(Mid && "Failed to pack!");
41090         SDValue V = truncateVectorWithPACK(X86ISD::PACKUS, VT, Mid, DL, DAG,
41091                                            Subtarget);
41092         assert(V && "Failed to pack!");
41093         return V;
41094       } else if (SVT == MVT::i8 || Subtarget.hasSSE41())
41095         return truncateVectorWithPACK(X86ISD::PACKUS, VT, USatVal, DL, DAG,
41096                                       Subtarget);
41097     }
41098     if (auto SSatVal = detectSSatPattern(In, VT))
41099       return truncateVectorWithPACK(X86ISD::PACKSS, VT, SSatVal, DL, DAG,
41100                                     Subtarget);
41101   }
41102 
41103   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
41104   if (TLI.isTypeLegal(InVT) && InVT.isVector() && SVT != MVT::i1 &&
41105       Subtarget.hasAVX512() && (InSVT != MVT::i16 || Subtarget.hasBWI())) {
41106     unsigned TruncOpc = 0;
41107     SDValue SatVal;
41108     if (auto SSatVal = detectSSatPattern(In, VT)) {
41109       SatVal = SSatVal;
41110       TruncOpc = X86ISD::VTRUNCS;
41111     } else if (auto USatVal = detectUSatPattern(In, VT, DAG, DL)) {
41112       SatVal = USatVal;
41113       TruncOpc = X86ISD::VTRUNCUS;
41114     }
41115     if (SatVal) {
41116       unsigned ResElts = VT.getVectorNumElements();
41117       // If the input type is less than 512 bits and we don't have VLX, we need
41118       // to widen to 512 bits.
41119       if (!Subtarget.hasVLX() && !InVT.is512BitVector()) {
41120         unsigned NumConcats = 512 / InVT.getSizeInBits();
41121         ResElts *= NumConcats;
41122         SmallVector<SDValue, 4> ConcatOps(NumConcats, DAG.getUNDEF(InVT));
41123         ConcatOps[0] = SatVal;
41124         InVT = EVT::getVectorVT(*DAG.getContext(), InSVT,
41125                                 NumConcats * InVT.getVectorNumElements());
41126         SatVal = DAG.getNode(ISD::CONCAT_VECTORS, DL, InVT, ConcatOps);
41127       }
41128       // Widen the result if its narrower than 128 bits.
41129       if (ResElts * SVT.getSizeInBits() < 128)
41130         ResElts = 128 / SVT.getSizeInBits();
41131       EVT TruncVT = EVT::getVectorVT(*DAG.getContext(), SVT, ResElts);
41132       SDValue Res = DAG.getNode(TruncOpc, DL, TruncVT, SatVal);
41133       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
41134                          DAG.getIntPtrConstant(0, DL));
41135     }
41136   }
41137 
41138   return SDValue();
41139 }
41140 
41141 /// This function detects the AVG pattern between vectors of unsigned i8/i16,
41142 /// which is c = (a + b + 1) / 2, and replace this operation with the efficient
41143 /// X86ISD::AVG instruction.
41144 static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
41145                                 const X86Subtarget &Subtarget,
41146                                 const SDLoc &DL) {
41147   if (!VT.isVector())
41148     return SDValue();
41149   EVT InVT = In.getValueType();
41150   unsigned NumElems = VT.getVectorNumElements();
41151 
41152   EVT ScalarVT = VT.getVectorElementType();
41153   if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
41154         NumElems >= 2 && isPowerOf2_32(NumElems)))
41155     return SDValue();
41156 
41157   // InScalarVT is the intermediate type in AVG pattern and it should be greater
41158   // than the original input type (i8/i16).
41159   EVT InScalarVT = InVT.getVectorElementType();
41160   if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
41161     return SDValue();
41162 
41163   if (!Subtarget.hasSSE2())
41164     return SDValue();
41165 
41166   // Detect the following pattern:
41167   //
41168   //   %1 = zext <N x i8> %a to <N x i32>
41169   //   %2 = zext <N x i8> %b to <N x i32>
41170   //   %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
41171   //   %4 = add nuw nsw <N x i32> %3, %2
41172   //   %5 = lshr <N x i32> %N, <i32 1 x N>
41173   //   %6 = trunc <N x i32> %5 to <N x i8>
41174   //
41175   // In AVX512, the last instruction can also be a trunc store.
41176   if (In.getOpcode() != ISD::SRL)
41177     return SDValue();
41178 
41179   // A lambda checking the given SDValue is a constant vector and each element
41180   // is in the range [Min, Max].
41181   auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
41182     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
41183     if (!BV || !BV->isConstant())
41184       return false;
41185     for (SDValue Op : V->ops()) {
41186       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
41187       if (!C)
41188         return false;
41189       const APInt &Val = C->getAPIntValue();
41190       if (Val.ult(Min) || Val.ugt(Max))
41191         return false;
41192     }
41193     return true;
41194   };
41195 
41196   // Check if each element of the vector is right-shifted by one.
41197   auto LHS = In.getOperand(0);
41198   auto RHS = In.getOperand(1);
41199   if (!IsConstVectorInRange(RHS, 1, 1))
41200     return SDValue();
41201   if (LHS.getOpcode() != ISD::ADD)
41202     return SDValue();
41203 
41204   // Detect a pattern of a + b + 1 where the order doesn't matter.
41205   SDValue Operands[3];
41206   Operands[0] = LHS.getOperand(0);
41207   Operands[1] = LHS.getOperand(1);
41208 
41209   auto AVGBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
41210                        ArrayRef<SDValue> Ops) {
41211     return DAG.getNode(X86ISD::AVG, DL, Ops[0].getValueType(), Ops);
41212   };
41213 
41214   // Take care of the case when one of the operands is a constant vector whose
41215   // element is in the range [1, 256].
41216   if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
41217       Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
41218       Operands[0].getOperand(0).getValueType() == VT) {
41219     // The pattern is detected. Subtract one from the constant vector, then
41220     // demote it and emit X86ISD::AVG instruction.
41221     SDValue VecOnes = DAG.getConstant(1, DL, InVT);
41222     Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes);
41223     Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
41224     return SplitOpsAndApply(DAG, Subtarget, DL, VT,
41225                             { Operands[0].getOperand(0), Operands[1] },
41226                             AVGBuilder);
41227   }
41228 
41229   // Matches 'add like' patterns: add(Op0,Op1) + zext(or(Op0,Op1)).
41230   // Match the or case only if its 'add-like' - can be replaced by an add.
41231   auto FindAddLike = [&](SDValue V, SDValue &Op0, SDValue &Op1) {
41232     if (ISD::ADD == V.getOpcode()) {
41233       Op0 = V.getOperand(0);
41234       Op1 = V.getOperand(1);
41235       return true;
41236     }
41237     if (ISD::ZERO_EXTEND != V.getOpcode())
41238       return false;
41239     V = V.getOperand(0);
41240     if (V.getValueType() != VT || ISD::OR != V.getOpcode() ||
41241         !DAG.haveNoCommonBitsSet(V.getOperand(0), V.getOperand(1)))
41242       return false;
41243     Op0 = V.getOperand(0);
41244     Op1 = V.getOperand(1);
41245     return true;
41246   };
41247 
41248   SDValue Op0, Op1;
41249   if (FindAddLike(Operands[0], Op0, Op1))
41250     std::swap(Operands[0], Operands[1]);
41251   else if (!FindAddLike(Operands[1], Op0, Op1))
41252     return SDValue();
41253   Operands[2] = Op0;
41254   Operands[1] = Op1;
41255 
41256   // Now we have three operands of two additions. Check that one of them is a
41257   // constant vector with ones, and the other two can be promoted from i8/i16.
41258   for (int i = 0; i < 3; ++i) {
41259     if (!IsConstVectorInRange(Operands[i], 1, 1))
41260       continue;
41261     std::swap(Operands[i], Operands[2]);
41262 
41263     // Check if Operands[0] and Operands[1] are results of type promotion.
41264     for (int j = 0; j < 2; ++j)
41265       if (Operands[j].getValueType() != VT) {
41266         if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
41267             Operands[j].getOperand(0).getValueType() != VT)
41268           return SDValue();
41269         Operands[j] = Operands[j].getOperand(0);
41270       }
41271 
41272     // The pattern is detected, emit X86ISD::AVG instruction(s).
41273     return SplitOpsAndApply(DAG, Subtarget, DL, VT, {Operands[0], Operands[1]},
41274                             AVGBuilder);
41275   }
41276 
41277   return SDValue();
41278 }
41279 
41280 static SDValue combineLoad(SDNode *N, SelectionDAG &DAG,
41281                            TargetLowering::DAGCombinerInfo &DCI,
41282                            const X86Subtarget &Subtarget) {
41283   LoadSDNode *Ld = cast<LoadSDNode>(N);
41284   EVT RegVT = Ld->getValueType(0);
41285   EVT MemVT = Ld->getMemoryVT();
41286   SDLoc dl(Ld);
41287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
41288 
41289   // For chips with slow 32-byte unaligned loads, break the 32-byte operation
41290   // into two 16-byte operations. Also split non-temporal aligned loads on
41291   // pre-AVX2 targets as 32-byte loads will lower to regular temporal loads.
41292   ISD::LoadExtType Ext = Ld->getExtensionType();
41293   bool Fast;
41294   unsigned Alignment = Ld->getAlignment();
41295   if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
41296       Ext == ISD::NON_EXTLOAD &&
41297       ((Ld->isNonTemporal() && !Subtarget.hasInt256() && Alignment >= 16) ||
41298        (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
41299                                *Ld->getMemOperand(), &Fast) &&
41300         !Fast))) {
41301     unsigned NumElems = RegVT.getVectorNumElements();
41302     if (NumElems < 2)
41303       return SDValue();
41304 
41305     unsigned HalfAlign = 16;
41306     SDValue Ptr1 = Ld->getBasePtr();
41307     SDValue Ptr2 = DAG.getMemBasePlusOffset(Ptr1, HalfAlign, dl);
41308     EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
41309                                   NumElems / 2);
41310     SDValue Load1 =
41311         DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr1, Ld->getPointerInfo(),
41312                     Alignment, Ld->getMemOperand()->getFlags());
41313     SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr2,
41314                                 Ld->getPointerInfo().getWithOffset(HalfAlign),
41315                                 MinAlign(Alignment, HalfAlign),
41316                                 Ld->getMemOperand()->getFlags());
41317     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
41318                              Load1.getValue(1), Load2.getValue(1));
41319 
41320     SDValue NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Load1, Load2);
41321     return DCI.CombineTo(N, NewVec, TF, true);
41322   }
41323 
41324   // Bool vector load - attempt to cast to an integer, as we have good
41325   // (vXiY *ext(vXi1 bitcast(iX))) handling.
41326   if (Ext == ISD::NON_EXTLOAD && !Subtarget.hasAVX512() && RegVT.isVector() &&
41327       RegVT.getScalarType() == MVT::i1 && DCI.isBeforeLegalize()) {
41328     unsigned NumElts = RegVT.getVectorNumElements();
41329     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
41330     if (TLI.isTypeLegal(IntVT)) {
41331       SDValue IntLoad = DAG.getLoad(IntVT, dl, Ld->getChain(), Ld->getBasePtr(),
41332                                     Ld->getPointerInfo(), Alignment,
41333                                     Ld->getMemOperand()->getFlags());
41334       SDValue BoolVec = DAG.getBitcast(RegVT, IntLoad);
41335       return DCI.CombineTo(N, BoolVec, IntLoad.getValue(1), true);
41336     }
41337   }
41338 
41339   return SDValue();
41340 }
41341 
41342 /// If V is a build vector of boolean constants and exactly one of those
41343 /// constants is true, return the operand index of that true element.
41344 /// Otherwise, return -1.
41345 static int getOneTrueElt(SDValue V) {
41346   // This needs to be a build vector of booleans.
41347   // TODO: Checking for the i1 type matches the IR definition for the mask,
41348   // but the mask check could be loosened to i8 or other types. That might
41349   // also require checking more than 'allOnesValue'; eg, the x86 HW
41350   // instructions only require that the MSB is set for each mask element.
41351   // The ISD::MSTORE comments/definition do not specify how the mask operand
41352   // is formatted.
41353   auto *BV = dyn_cast<BuildVectorSDNode>(V);
41354   if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1)
41355     return -1;
41356 
41357   int TrueIndex = -1;
41358   unsigned NumElts = BV->getValueType(0).getVectorNumElements();
41359   for (unsigned i = 0; i < NumElts; ++i) {
41360     const SDValue &Op = BV->getOperand(i);
41361     if (Op.isUndef())
41362       continue;
41363     auto *ConstNode = dyn_cast<ConstantSDNode>(Op);
41364     if (!ConstNode)
41365       return -1;
41366     if (ConstNode->getAPIntValue().isAllOnesValue()) {
41367       // If we already found a one, this is too many.
41368       if (TrueIndex >= 0)
41369         return -1;
41370       TrueIndex = i;
41371     }
41372   }
41373   return TrueIndex;
41374 }
41375 
41376 /// Given a masked memory load/store operation, return true if it has one mask
41377 /// bit set. If it has one mask bit set, then also return the memory address of
41378 /// the scalar element to load/store, the vector index to insert/extract that
41379 /// scalar element, and the alignment for the scalar memory access.
41380 static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp,
41381                                          SelectionDAG &DAG, SDValue &Addr,
41382                                          SDValue &Index, unsigned &Alignment) {
41383   int TrueMaskElt = getOneTrueElt(MaskedOp->getMask());
41384   if (TrueMaskElt < 0)
41385     return false;
41386 
41387   // Get the address of the one scalar element that is specified by the mask
41388   // using the appropriate offset from the base pointer.
41389   EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType();
41390   Addr = MaskedOp->getBasePtr();
41391   if (TrueMaskElt != 0) {
41392     unsigned Offset = TrueMaskElt * EltVT.getStoreSize();
41393     Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp));
41394   }
41395 
41396   Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp));
41397   Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize());
41398   return true;
41399 }
41400 
41401 /// If exactly one element of the mask is set for a non-extending masked load,
41402 /// it is a scalar load and vector insert.
41403 /// Note: It is expected that the degenerate cases of an all-zeros or all-ones
41404 /// mask have already been optimized in IR, so we don't bother with those here.
41405 static SDValue
41406 reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG,
41407                              TargetLowering::DAGCombinerInfo &DCI) {
41408   assert(ML->isUnindexed() && "Unexpected indexed masked load!");
41409   // TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
41410   // However, some target hooks may need to be added to know when the transform
41411   // is profitable. Endianness would also have to be considered.
41412 
41413   SDValue Addr, VecIndex;
41414   unsigned Alignment;
41415   if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment))
41416     return SDValue();
41417 
41418   // Load the one scalar element that is specified by the mask using the
41419   // appropriate offset from the base pointer.
41420   SDLoc DL(ML);
41421   EVT VT = ML->getValueType(0);
41422   EVT EltVT = VT.getVectorElementType();
41423   SDValue Load =
41424       DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(),
41425                   Alignment, ML->getMemOperand()->getFlags());
41426 
41427   // Insert the loaded element into the appropriate place in the vector.
41428   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
41429                                ML->getPassThru(), Load, VecIndex);
41430   return DCI.CombineTo(ML, Insert, Load.getValue(1), true);
41431 }
41432 
41433 static SDValue
41434 combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG,
41435                               TargetLowering::DAGCombinerInfo &DCI) {
41436   assert(ML->isUnindexed() && "Unexpected indexed masked load!");
41437   if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode()))
41438     return SDValue();
41439 
41440   SDLoc DL(ML);
41441   EVT VT = ML->getValueType(0);
41442 
41443   // If we are loading the first and last elements of a vector, it is safe and
41444   // always faster to load the whole vector. Replace the masked load with a
41445   // vector load and select.
41446   unsigned NumElts = VT.getVectorNumElements();
41447   BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask());
41448   bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0));
41449   bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1));
41450   if (LoadFirstElt && LoadLastElt) {
41451     SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
41452                                 ML->getMemOperand());
41453     SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd,
41454                                   ML->getPassThru());
41455     return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true);
41456   }
41457 
41458   // Convert a masked load with a constant mask into a masked load and a select.
41459   // This allows the select operation to use a faster kind of select instruction
41460   // (for example, vblendvps -> vblendps).
41461 
41462   // Don't try this if the pass-through operand is already undefined. That would
41463   // cause an infinite loop because that's what we're about to create.
41464   if (ML->getPassThru().isUndef())
41465     return SDValue();
41466 
41467   if (ISD::isBuildVectorAllZeros(ML->getPassThru().getNode()))
41468     return SDValue();
41469 
41470   // The new masked load has an undef pass-through operand. The select uses the
41471   // original pass-through operand.
41472   SDValue NewML = DAG.getMaskedLoad(
41473       VT, DL, ML->getChain(), ML->getBasePtr(), ML->getOffset(), ML->getMask(),
41474       DAG.getUNDEF(VT), ML->getMemoryVT(), ML->getMemOperand(),
41475       ML->getAddressingMode(), ML->getExtensionType());
41476   SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML,
41477                                 ML->getPassThru());
41478 
41479   return DCI.CombineTo(ML, Blend, NewML.getValue(1), true);
41480 }
41481 
41482 static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG,
41483                                  TargetLowering::DAGCombinerInfo &DCI,
41484                                  const X86Subtarget &Subtarget) {
41485   MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
41486 
41487   // TODO: Expanding load with constant mask may be optimized as well.
41488   if (Mld->isExpandingLoad())
41489     return SDValue();
41490 
41491   if (Mld->getExtensionType() == ISD::NON_EXTLOAD) {
41492     if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI))
41493       return ScalarLoad;
41494     // TODO: Do some AVX512 subsets benefit from this transform?
41495     if (!Subtarget.hasAVX512())
41496       if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI))
41497         return Blend;
41498   }
41499 
41500   return SDValue();
41501 }
41502 
41503 /// If exactly one element of the mask is set for a non-truncating masked store,
41504 /// it is a vector extract and scalar store.
41505 /// Note: It is expected that the degenerate cases of an all-zeros or all-ones
41506 /// mask have already been optimized in IR, so we don't bother with those here.
41507 static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS,
41508                                               SelectionDAG &DAG) {
41509   // TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
41510   // However, some target hooks may need to be added to know when the transform
41511   // is profitable. Endianness would also have to be considered.
41512 
41513   SDValue Addr, VecIndex;
41514   unsigned Alignment;
41515   if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment))
41516     return SDValue();
41517 
41518   // Extract the one scalar element that is actually being stored.
41519   SDLoc DL(MS);
41520   EVT VT = MS->getValue().getValueType();
41521   EVT EltVT = VT.getVectorElementType();
41522   SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
41523                                 MS->getValue(), VecIndex);
41524 
41525   // Store that element at the appropriate offset from the base pointer.
41526   return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(),
41527                       Alignment, MS->getMemOperand()->getFlags());
41528 }
41529 
41530 static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG,
41531                                   TargetLowering::DAGCombinerInfo &DCI,
41532                                   const X86Subtarget &Subtarget) {
41533   MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
41534   if (Mst->isCompressingStore())
41535     return SDValue();
41536 
41537   EVT VT = Mst->getValue().getValueType();
41538   SDLoc dl(Mst);
41539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
41540 
41541   if (Mst->isTruncatingStore())
41542     return SDValue();
41543 
41544   if (SDValue ScalarStore = reduceMaskedStoreToScalarStore(Mst, DAG))
41545     return ScalarStore;
41546 
41547   // If the mask value has been legalized to a non-boolean vector, try to
41548   // simplify ops leading up to it. We only demand the MSB of each lane.
41549   SDValue Mask = Mst->getMask();
41550   if (Mask.getScalarValueSizeInBits() != 1) {
41551     APInt DemandedMask(APInt::getSignMask(VT.getScalarSizeInBits()));
41552     if (TLI.SimplifyDemandedBits(Mask, DemandedMask, DCI))
41553       return SDValue(N, 0);
41554   }
41555 
41556   SDValue Value = Mst->getValue();
41557   if (Value.getOpcode() == ISD::TRUNCATE && Value.getNode()->hasOneUse() &&
41558       TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
41559                             Mst->getMemoryVT())) {
41560     return DAG.getMaskedStore(Mst->getChain(), SDLoc(N), Value.getOperand(0),
41561                               Mst->getBasePtr(), Mst->getOffset(), Mask,
41562                               Mst->getMemoryVT(), Mst->getMemOperand(),
41563                               Mst->getAddressingMode(), true);
41564   }
41565 
41566   return SDValue();
41567 }
41568 
41569 static SDValue combineStore(SDNode *N, SelectionDAG &DAG,
41570                             TargetLowering::DAGCombinerInfo &DCI,
41571                             const X86Subtarget &Subtarget) {
41572   StoreSDNode *St = cast<StoreSDNode>(N);
41573   EVT StVT = St->getMemoryVT();
41574   SDLoc dl(St);
41575   unsigned Alignment = St->getAlignment();
41576   SDValue StoredVal = St->getValue();
41577   EVT VT = StoredVal.getValueType();
41578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
41579 
41580   // Convert a store of vXi1 into a store of iX and a bitcast.
41581   if (!Subtarget.hasAVX512() && VT == StVT && VT.isVector() &&
41582       VT.getVectorElementType() == MVT::i1) {
41583 
41584     EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), VT.getVectorNumElements());
41585     StoredVal = DAG.getBitcast(NewVT, StoredVal);
41586 
41587     return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
41588                         St->getPointerInfo(), St->getAlignment(),
41589                         St->getMemOperand()->getFlags());
41590   }
41591 
41592   // If this is a store of a scalar_to_vector to v1i1, just use a scalar store.
41593   // This will avoid a copy to k-register.
41594   if (VT == MVT::v1i1 && VT == StVT && Subtarget.hasAVX512() &&
41595       StoredVal.getOpcode() == ISD::SCALAR_TO_VECTOR &&
41596       StoredVal.getOperand(0).getValueType() == MVT::i8) {
41597     return DAG.getStore(St->getChain(), dl, StoredVal.getOperand(0),
41598                         St->getBasePtr(), St->getPointerInfo(),
41599                         St->getAlignment(), St->getMemOperand()->getFlags());
41600   }
41601 
41602   // Widen v2i1/v4i1 stores to v8i1.
41603   if ((VT == MVT::v2i1 || VT == MVT::v4i1) && VT == StVT &&
41604       Subtarget.hasAVX512()) {
41605     unsigned NumConcats = 8 / VT.getVectorNumElements();
41606     SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(VT));
41607     Ops[0] = StoredVal;
41608     StoredVal = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
41609     return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
41610                         St->getPointerInfo(), St->getAlignment(),
41611                         St->getMemOperand()->getFlags());
41612   }
41613 
41614   // Turn vXi1 stores of constants into a scalar store.
41615   if ((VT == MVT::v8i1 || VT == MVT::v16i1 || VT == MVT::v32i1 ||
41616        VT == MVT::v64i1) && VT == StVT && TLI.isTypeLegal(VT) &&
41617       ISD::isBuildVectorOfConstantSDNodes(StoredVal.getNode())) {
41618     // If its a v64i1 store without 64-bit support, we need two stores.
41619     if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
41620       SDValue Lo = DAG.getBuildVector(MVT::v32i1, dl,
41621                                       StoredVal->ops().slice(0, 32));
41622       Lo = combinevXi1ConstantToInteger(Lo, DAG);
41623       SDValue Hi = DAG.getBuildVector(MVT::v32i1, dl,
41624                                       StoredVal->ops().slice(32, 32));
41625       Hi = combinevXi1ConstantToInteger(Hi, DAG);
41626 
41627       SDValue Ptr0 = St->getBasePtr();
41628       SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 4, dl);
41629 
41630       SDValue Ch0 =
41631           DAG.getStore(St->getChain(), dl, Lo, Ptr0, St->getPointerInfo(),
41632                        Alignment, St->getMemOperand()->getFlags());
41633       SDValue Ch1 =
41634           DAG.getStore(St->getChain(), dl, Hi, Ptr1,
41635                        St->getPointerInfo().getWithOffset(4),
41636                        MinAlign(Alignment, 4U),
41637                        St->getMemOperand()->getFlags());
41638       return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
41639     }
41640 
41641     StoredVal = combinevXi1ConstantToInteger(StoredVal, DAG);
41642     return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
41643                         St->getPointerInfo(), St->getAlignment(),
41644                         St->getMemOperand()->getFlags());
41645   }
41646 
41647   // If we are saving a 32-byte vector and 32-byte stores are slow, such as on
41648   // Sandy Bridge, perform two 16-byte stores.
41649   bool Fast;
41650   if (VT.is256BitVector() && StVT == VT &&
41651       TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
41652                              *St->getMemOperand(), &Fast) &&
41653       !Fast) {
41654     unsigned NumElems = VT.getVectorNumElements();
41655     if (NumElems < 2)
41656       return SDValue();
41657 
41658     return splitVectorStore(St, DAG);
41659   }
41660 
41661   // Split under-aligned vector non-temporal stores.
41662   if (St->isNonTemporal() && StVT == VT && Alignment < VT.getStoreSize()) {
41663     // ZMM/YMM nt-stores - either it can be stored as a series of shorter
41664     // vectors or the legalizer can scalarize it to use MOVNTI.
41665     if (VT.is256BitVector() || VT.is512BitVector()) {
41666       unsigned NumElems = VT.getVectorNumElements();
41667       if (NumElems < 2)
41668         return SDValue();
41669       return splitVectorStore(St, DAG);
41670     }
41671 
41672     // XMM nt-stores - scalarize this to f64 nt-stores on SSE4A, else i32/i64
41673     // to use MOVNTI.
41674     if (VT.is128BitVector() && Subtarget.hasSSE2()) {
41675       MVT NTVT = Subtarget.hasSSE4A()
41676                      ? MVT::v2f64
41677                      : (TLI.isTypeLegal(MVT::i64) ? MVT::v2i64 : MVT::v4i32);
41678       return scalarizeVectorStore(St, NTVT, DAG);
41679     }
41680   }
41681 
41682   // Try to optimize v16i16->v16i8 truncating stores when BWI is not
41683   // supported, but avx512f is by extending to v16i32 and truncating.
41684   if (!St->isTruncatingStore() && VT == MVT::v16i8 && !Subtarget.hasBWI() &&
41685       St->getValue().getOpcode() == ISD::TRUNCATE &&
41686       St->getValue().getOperand(0).getValueType() == MVT::v16i16 &&
41687       TLI.isTruncStoreLegal(MVT::v16i32, MVT::v16i8) &&
41688       St->getValue().hasOneUse() && !DCI.isBeforeLegalizeOps()) {
41689     SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::v16i32, St->getValue());
41690     return DAG.getTruncStore(St->getChain(), dl, Ext, St->getBasePtr(),
41691                              MVT::v16i8, St->getMemOperand());
41692   }
41693 
41694   // Try to fold a VTRUNCUS or VTRUNCS into a truncating store.
41695   if (!St->isTruncatingStore() && StoredVal.hasOneUse() &&
41696       (StoredVal.getOpcode() == X86ISD::VTRUNCUS ||
41697        StoredVal.getOpcode() == X86ISD::VTRUNCS) &&
41698       TLI.isTruncStoreLegal(StoredVal.getOperand(0).getValueType(), VT)) {
41699     bool IsSigned = StoredVal.getOpcode() == X86ISD::VTRUNCS;
41700     return EmitTruncSStore(IsSigned, St->getChain(),
41701                            dl, StoredVal.getOperand(0), St->getBasePtr(),
41702                            VT, St->getMemOperand(), DAG);
41703   }
41704 
41705   // Optimize trunc store (of multiple scalars) to shuffle and store.
41706   // First, pack all of the elements in one place. Next, store to memory
41707   // in fewer chunks.
41708   if (St->isTruncatingStore() && VT.isVector()) {
41709     // Check if we can detect an AVG pattern from the truncation. If yes,
41710     // replace the trunc store by a normal store with the result of X86ISD::AVG
41711     // instruction.
41712     if (DCI.isBeforeLegalize() || TLI.isTypeLegal(St->getMemoryVT()))
41713       if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG,
41714                                          Subtarget, dl))
41715         return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
41716                             St->getPointerInfo(), St->getAlignment(),
41717                             St->getMemOperand()->getFlags());
41718 
41719     if (TLI.isTruncStoreLegal(VT, StVT)) {
41720       if (SDValue Val = detectSSatPattern(St->getValue(), St->getMemoryVT()))
41721         return EmitTruncSStore(true /* Signed saturation */, St->getChain(),
41722                                dl, Val, St->getBasePtr(),
41723                                St->getMemoryVT(), St->getMemOperand(), DAG);
41724       if (SDValue Val = detectUSatPattern(St->getValue(), St->getMemoryVT(),
41725                                           DAG, dl))
41726         return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(),
41727                                dl, Val, St->getBasePtr(),
41728                                St->getMemoryVT(), St->getMemOperand(), DAG);
41729     }
41730 
41731     return SDValue();
41732   }
41733 
41734   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
41735   // the FP state in cases where an emms may be missing.
41736   // A preferable solution to the general problem is to figure out the right
41737   // places to insert EMMS.  This qualifies as a quick hack.
41738 
41739   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
41740   if (VT.getSizeInBits() != 64)
41741     return SDValue();
41742 
41743   const Function &F = DAG.getMachineFunction().getFunction();
41744   bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
41745   bool F64IsLegal =
41746       !Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2();
41747   if ((VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit()) &&
41748       isa<LoadSDNode>(St->getValue()) &&
41749       cast<LoadSDNode>(St->getValue())->isSimple() &&
41750       St->getChain().hasOneUse() && St->isSimple()) {
41751     LoadSDNode *Ld = cast<LoadSDNode>(St->getValue().getNode());
41752 
41753     if (!ISD::isNormalLoad(Ld))
41754       return SDValue();
41755 
41756     // Avoid the transformation if there are multiple uses of the loaded value.
41757     if (!Ld->hasNUsesOfValue(1, 0))
41758       return SDValue();
41759 
41760     SDLoc LdDL(Ld);
41761     SDLoc StDL(N);
41762     // Lower to a single movq load/store pair.
41763     SDValue NewLd = DAG.getLoad(MVT::f64, LdDL, Ld->getChain(),
41764                                 Ld->getBasePtr(), Ld->getMemOperand());
41765 
41766     // Make sure new load is placed in same chain order.
41767     DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
41768     return DAG.getStore(St->getChain(), StDL, NewLd, St->getBasePtr(),
41769                         St->getMemOperand());
41770   }
41771 
41772   // This is similar to the above case, but here we handle a scalar 64-bit
41773   // integer store that is extracted from a vector on a 32-bit target.
41774   // If we have SSE2, then we can treat it like a floating-point double
41775   // to get past legalization. The execution dependencies fixup pass will
41776   // choose the optimal machine instruction for the store if this really is
41777   // an integer or v2f32 rather than an f64.
41778   if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() &&
41779       St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
41780     SDValue OldExtract = St->getOperand(1);
41781     SDValue ExtOp0 = OldExtract.getOperand(0);
41782     unsigned VecSize = ExtOp0.getValueSizeInBits();
41783     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
41784     SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
41785     SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
41786                                      BitCast, OldExtract.getOperand(1));
41787     return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
41788                         St->getPointerInfo(), St->getAlignment(),
41789                         St->getMemOperand()->getFlags());
41790   }
41791 
41792   return SDValue();
41793 }
41794 
41795 /// Return 'true' if this vector operation is "horizontal"
41796 /// and return the operands for the horizontal operation in LHS and RHS.  A
41797 /// horizontal operation performs the binary operation on successive elements
41798 /// of its first operand, then on successive elements of its second operand,
41799 /// returning the resulting values in a vector.  For example, if
41800 ///   A = < float a0, float a1, float a2, float a3 >
41801 /// and
41802 ///   B = < float b0, float b1, float b2, float b3 >
41803 /// then the result of doing a horizontal operation on A and B is
41804 ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
41805 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
41806 /// A horizontal-op B, for some already available A and B, and if so then LHS is
41807 /// set to A, RHS to B, and the routine returns 'true'.
41808 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, SelectionDAG &DAG,
41809                               const X86Subtarget &Subtarget,
41810                               bool IsCommutative) {
41811   // If either operand is undef, bail out. The binop should be simplified.
41812   if (LHS.isUndef() || RHS.isUndef())
41813     return false;
41814 
41815   // Look for the following pattern:
41816   //   A = < float a0, float a1, float a2, float a3 >
41817   //   B = < float b0, float b1, float b2, float b3 >
41818   // and
41819   //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
41820   //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
41821   // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
41822   // which is A horizontal-op B.
41823 
41824   MVT VT = LHS.getSimpleValueType();
41825   assert((VT.is128BitVector() || VT.is256BitVector()) &&
41826          "Unsupported vector type for horizontal add/sub");
41827   unsigned NumElts = VT.getVectorNumElements();
41828 
41829   // TODO - can we make a general helper method that does all of this for us?
41830   auto GetShuffle = [&](SDValue Op, SDValue &N0, SDValue &N1,
41831                         SmallVectorImpl<int> &ShuffleMask) {
41832     if (Op.getOpcode() == ISD::VECTOR_SHUFFLE) {
41833       if (!Op.getOperand(0).isUndef())
41834         N0 = Op.getOperand(0);
41835       if (!Op.getOperand(1).isUndef())
41836         N1 = Op.getOperand(1);
41837       ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
41838       ShuffleMask.append(Mask.begin(), Mask.end());
41839       return;
41840     }
41841     bool UseSubVector = false;
41842     if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
41843         Op.getOperand(0).getValueType().is256BitVector() &&
41844         llvm::isNullConstant(Op.getOperand(1))) {
41845       Op = Op.getOperand(0);
41846       UseSubVector = true;
41847     }
41848     bool IsUnary;
41849     SmallVector<SDValue, 2> SrcOps;
41850     SmallVector<int, 16> SrcShuffleMask;
41851     SDValue BC = peekThroughBitcasts(Op);
41852     if (isTargetShuffle(BC.getOpcode()) &&
41853         getTargetShuffleMask(BC.getNode(), BC.getSimpleValueType(), false,
41854                              SrcOps, SrcShuffleMask, IsUnary)) {
41855       if (!UseSubVector && SrcShuffleMask.size() == NumElts &&
41856           SrcOps.size() <= 2) {
41857         N0 = SrcOps.size() > 0 ? SrcOps[0] : SDValue();
41858         N1 = SrcOps.size() > 1 ? SrcOps[1] : SDValue();
41859         ShuffleMask.append(SrcShuffleMask.begin(), SrcShuffleMask.end());
41860       }
41861       if (UseSubVector && (SrcShuffleMask.size() == (NumElts * 2)) &&
41862           SrcOps.size() == 1) {
41863         N0 = extract128BitVector(SrcOps[0], 0, DAG, SDLoc(Op));
41864         N1 = extract128BitVector(SrcOps[0], NumElts, DAG, SDLoc(Op));
41865         ArrayRef<int> Mask = ArrayRef<int>(SrcShuffleMask).slice(0, NumElts);
41866         ShuffleMask.append(Mask.begin(), Mask.end());
41867       }
41868     }
41869   };
41870 
41871   // View LHS in the form
41872   //   LHS = VECTOR_SHUFFLE A, B, LMask
41873   // If LHS is not a shuffle, then pretend it is the identity shuffle:
41874   //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
41875   // NOTE: A default initialized SDValue represents an UNDEF of type VT.
41876   SDValue A, B;
41877   SmallVector<int, 16> LMask;
41878   GetShuffle(LHS, A, B, LMask);
41879 
41880   // Likewise, view RHS in the form
41881   //   RHS = VECTOR_SHUFFLE C, D, RMask
41882   SDValue C, D;
41883   SmallVector<int, 16> RMask;
41884   GetShuffle(RHS, C, D, RMask);
41885 
41886   // At least one of the operands should be a vector shuffle.
41887   unsigned NumShuffles = (LMask.empty() ? 0 : 1) + (RMask.empty() ? 0 : 1);
41888   if (NumShuffles == 0)
41889     return false;
41890 
41891   if (LMask.empty()) {
41892     A = LHS;
41893     for (unsigned i = 0; i != NumElts; ++i)
41894       LMask.push_back(i);
41895   }
41896 
41897   if (RMask.empty()) {
41898     C = RHS;
41899     for (unsigned i = 0; i != NumElts; ++i)
41900       RMask.push_back(i);
41901   }
41902 
41903   // If A and B occur in reverse order in RHS, then canonicalize by commuting
41904   // RHS operands and shuffle mask.
41905   if (A != C) {
41906     std::swap(C, D);
41907     ShuffleVectorSDNode::commuteMask(RMask);
41908   }
41909   // Check that the shuffles are both shuffling the same vectors.
41910   if (!(A == C && B == D))
41911     return false;
41912 
41913   // LHS and RHS are now:
41914   //   LHS = shuffle A, B, LMask
41915   //   RHS = shuffle A, B, RMask
41916   // Check that the masks correspond to performing a horizontal operation.
41917   // AVX defines horizontal add/sub to operate independently on 128-bit lanes,
41918   // so we just repeat the inner loop if this is a 256-bit op.
41919   unsigned Num128BitChunks = VT.getSizeInBits() / 128;
41920   unsigned NumEltsPer128BitChunk = NumElts / Num128BitChunks;
41921   assert((NumEltsPer128BitChunk % 2 == 0) &&
41922          "Vector type should have an even number of elements in each lane");
41923   for (unsigned j = 0; j != NumElts; j += NumEltsPer128BitChunk) {
41924     for (unsigned i = 0; i != NumEltsPer128BitChunk; ++i) {
41925       // Ignore undefined components.
41926       int LIdx = LMask[i + j], RIdx = RMask[i + j];
41927       if (LIdx < 0 || RIdx < 0 ||
41928           (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
41929           (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
41930         continue;
41931 
41932       // The  low half of the 128-bit result must choose from A.
41933       // The high half of the 128-bit result must choose from B,
41934       // unless B is undef. In that case, we are always choosing from A.
41935       unsigned NumEltsPer64BitChunk = NumEltsPer128BitChunk / 2;
41936       unsigned Src = B.getNode() ? i >= NumEltsPer64BitChunk : 0;
41937 
41938       // Check that successive elements are being operated on. If not, this is
41939       // not a horizontal operation.
41940       int Index = 2 * (i % NumEltsPer64BitChunk) + NumElts * Src + j;
41941       if (!(LIdx == Index && RIdx == Index + 1) &&
41942           !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
41943         return false;
41944     }
41945   }
41946 
41947   LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
41948   RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
41949 
41950   if (!shouldUseHorizontalOp(LHS == RHS && NumShuffles < 2, DAG, Subtarget))
41951     return false;
41952 
41953   LHS = DAG.getBitcast(VT, LHS);
41954   RHS = DAG.getBitcast(VT, RHS);
41955   return true;
41956 }
41957 
41958 /// Do target-specific dag combines on floating-point adds/subs.
41959 static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG,
41960                                const X86Subtarget &Subtarget) {
41961   EVT VT = N->getValueType(0);
41962   SDValue LHS = N->getOperand(0);
41963   SDValue RHS = N->getOperand(1);
41964   bool IsFadd = N->getOpcode() == ISD::FADD;
41965   auto HorizOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB;
41966   assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode");
41967 
41968   // Try to synthesize horizontal add/sub from adds/subs of shuffles.
41969   if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
41970        (Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
41971       isHorizontalBinOp(LHS, RHS, DAG, Subtarget, IsFadd))
41972     return DAG.getNode(HorizOpcode, SDLoc(N), VT, LHS, RHS);
41973 
41974   return SDValue();
41975 }
41976 
41977 /// Attempt to pre-truncate inputs to arithmetic ops if it will simplify
41978 /// the codegen.
41979 /// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) )
41980 /// TODO: This overlaps with the generic combiner's visitTRUNCATE. Remove
41981 ///       anything that is guaranteed to be transformed by DAGCombiner.
41982 static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG,
41983                                           const X86Subtarget &Subtarget,
41984                                           const SDLoc &DL) {
41985   assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode");
41986   SDValue Src = N->getOperand(0);
41987   unsigned SrcOpcode = Src.getOpcode();
41988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
41989 
41990   EVT VT = N->getValueType(0);
41991   EVT SrcVT = Src.getValueType();
41992 
41993   auto IsFreeTruncation = [VT](SDValue Op) {
41994     unsigned TruncSizeInBits = VT.getScalarSizeInBits();
41995 
41996     // See if this has been extended from a smaller/equal size to
41997     // the truncation size, allowing a truncation to combine with the extend.
41998     unsigned Opcode = Op.getOpcode();
41999     if ((Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND ||
42000          Opcode == ISD::ZERO_EXTEND) &&
42001         Op.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits)
42002       return true;
42003 
42004     // See if this is a single use constant which can be constant folded.
42005     // NOTE: We don't peek throught bitcasts here because there is currently
42006     // no support for constant folding truncate+bitcast+vector_of_constants. So
42007     // we'll just send up with a truncate on both operands which will
42008     // get turned back into (truncate (binop)) causing an infinite loop.
42009     return ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
42010   };
42011 
42012   auto TruncateArithmetic = [&](SDValue N0, SDValue N1) {
42013     SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
42014     SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
42015     return DAG.getNode(SrcOpcode, DL, VT, Trunc0, Trunc1);
42016   };
42017 
42018   // Don't combine if the operation has other uses.
42019   if (!Src.hasOneUse())
42020     return SDValue();
42021 
42022   // Only support vector truncation for now.
42023   // TODO: i64 scalar math would benefit as well.
42024   if (!VT.isVector())
42025     return SDValue();
42026 
42027   // In most cases its only worth pre-truncating if we're only facing the cost
42028   // of one truncation.
42029   // i.e. if one of the inputs will constant fold or the input is repeated.
42030   switch (SrcOpcode) {
42031   case ISD::AND:
42032   case ISD::XOR:
42033   case ISD::OR: {
42034     SDValue Op0 = Src.getOperand(0);
42035     SDValue Op1 = Src.getOperand(1);
42036     if (TLI.isOperationLegalOrPromote(SrcOpcode, VT) &&
42037         (Op0 == Op1 || IsFreeTruncation(Op0) || IsFreeTruncation(Op1)))
42038       return TruncateArithmetic(Op0, Op1);
42039     break;
42040   }
42041 
42042   case ISD::MUL:
42043     // X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its
42044     // better to truncate if we have the chance.
42045     if (SrcVT.getScalarType() == MVT::i64 &&
42046         TLI.isOperationLegal(SrcOpcode, VT) &&
42047         !TLI.isOperationLegal(SrcOpcode, SrcVT))
42048       return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1));
42049     LLVM_FALLTHROUGH;
42050   case ISD::ADD: {
42051     SDValue Op0 = Src.getOperand(0);
42052     SDValue Op1 = Src.getOperand(1);
42053     if (TLI.isOperationLegal(SrcOpcode, VT) &&
42054         (Op0 == Op1 || IsFreeTruncation(Op0) || IsFreeTruncation(Op1)))
42055       return TruncateArithmetic(Op0, Op1);
42056     break;
42057   }
42058   case ISD::SUB: {
42059     // TODO: ISD::SUB We are conservative and require both sides to be freely
42060     // truncatable to avoid interfering with combineSubToSubus.
42061     SDValue Op0 = Src.getOperand(0);
42062     SDValue Op1 = Src.getOperand(1);
42063     if (TLI.isOperationLegal(SrcOpcode, VT) &&
42064         (Op0 == Op1 || (IsFreeTruncation(Op0) && IsFreeTruncation(Op1))))
42065       return TruncateArithmetic(Op0, Op1);
42066     break;
42067   }
42068   }
42069 
42070   return SDValue();
42071 }
42072 
42073 /// Truncate using ISD::AND mask and X86ISD::PACKUS.
42074 /// e.g. trunc <8 x i32> X to <8 x i16> -->
42075 /// MaskX = X & 0xffff (clear high bits to prevent saturation)
42076 /// packus (extract_subv MaskX, 0), (extract_subv MaskX, 1)
42077 static SDValue combineVectorTruncationWithPACKUS(SDNode *N, const SDLoc &DL,
42078                                                  const X86Subtarget &Subtarget,
42079                                                  SelectionDAG &DAG) {
42080   SDValue In = N->getOperand(0);
42081   EVT InVT = In.getValueType();
42082   EVT OutVT = N->getValueType(0);
42083 
42084   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
42085                                     OutVT.getScalarSizeInBits());
42086   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
42087   return truncateVectorWithPACK(X86ISD::PACKUS, OutVT, In, DL, DAG, Subtarget);
42088 }
42089 
42090 /// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
42091 static SDValue combineVectorTruncationWithPACKSS(SDNode *N, const SDLoc &DL,
42092                                                  const X86Subtarget &Subtarget,
42093                                                  SelectionDAG &DAG) {
42094   SDValue In = N->getOperand(0);
42095   EVT InVT = In.getValueType();
42096   EVT OutVT = N->getValueType(0);
42097   In = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, InVT, In,
42098                    DAG.getValueType(OutVT));
42099   return truncateVectorWithPACK(X86ISD::PACKSS, OutVT, In, DL, DAG, Subtarget);
42100 }
42101 
42102 /// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
42103 /// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
42104 /// legalization the truncation will be translated into a BUILD_VECTOR with each
42105 /// element that is extracted from a vector and then truncated, and it is
42106 /// difficult to do this optimization based on them.
42107 static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
42108                                        const X86Subtarget &Subtarget) {
42109   EVT OutVT = N->getValueType(0);
42110   if (!OutVT.isVector())
42111     return SDValue();
42112 
42113   SDValue In = N->getOperand(0);
42114   if (!In.getValueType().isSimple())
42115     return SDValue();
42116 
42117   EVT InVT = In.getValueType();
42118   unsigned NumElems = OutVT.getVectorNumElements();
42119 
42120   // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
42121   // SSE2, and we need to take care of it specially.
42122   // AVX512 provides vpmovdb.
42123   if (!Subtarget.hasSSE2() || Subtarget.hasAVX2())
42124     return SDValue();
42125 
42126   EVT OutSVT = OutVT.getVectorElementType();
42127   EVT InSVT = InVT.getVectorElementType();
42128   if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
42129         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
42130         NumElems >= 8))
42131     return SDValue();
42132 
42133   // SSSE3's pshufb results in less instructions in the cases below.
42134   if (Subtarget.hasSSSE3() && NumElems == 8 &&
42135       ((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
42136        (InSVT == MVT::i32 && OutSVT == MVT::i16)))
42137     return SDValue();
42138 
42139   SDLoc DL(N);
42140   // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS
42141   // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
42142   // truncate 2 x v4i32 to v8i16.
42143   if (Subtarget.hasSSE41() || OutSVT == MVT::i8)
42144     return combineVectorTruncationWithPACKUS(N, DL, Subtarget, DAG);
42145   if (InSVT == MVT::i32)
42146     return combineVectorTruncationWithPACKSS(N, DL, Subtarget, DAG);
42147 
42148   return SDValue();
42149 }
42150 
42151 /// This function transforms vector truncation of 'extended sign-bits' or
42152 /// 'extended zero-bits' values.
42153 /// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS/PACKUS operations.
42154 static SDValue combineVectorSignBitsTruncation(SDNode *N, const SDLoc &DL,
42155                                                SelectionDAG &DAG,
42156                                                const X86Subtarget &Subtarget) {
42157   // Requires SSE2.
42158   if (!Subtarget.hasSSE2())
42159     return SDValue();
42160 
42161   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple())
42162     return SDValue();
42163 
42164   SDValue In = N->getOperand(0);
42165   if (!In.getValueType().isSimple())
42166     return SDValue();
42167 
42168   MVT VT = N->getValueType(0).getSimpleVT();
42169   MVT SVT = VT.getScalarType();
42170 
42171   MVT InVT = In.getValueType().getSimpleVT();
42172   MVT InSVT = InVT.getScalarType();
42173 
42174   // Check we have a truncation suited for PACKSS/PACKUS.
42175   if (!VT.is128BitVector() && !VT.is256BitVector())
42176     return SDValue();
42177   if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32)
42178     return SDValue();
42179   if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64)
42180     return SDValue();
42181 
42182   // AVX512 has fast truncate, but if the input is already going to be split,
42183   // there's no harm in trying pack.
42184   if (Subtarget.hasAVX512() &&
42185       !(!Subtarget.useAVX512Regs() && VT.is256BitVector() &&
42186         InVT.is512BitVector()))
42187     return SDValue();
42188 
42189   unsigned NumPackedSignBits = std::min<unsigned>(SVT.getSizeInBits(), 16);
42190   unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8;
42191 
42192   // Use PACKUS if the input has zero-bits that extend all the way to the
42193   // packed/truncated value. e.g. masks, zext_in_reg, etc.
42194   KnownBits Known = DAG.computeKnownBits(In);
42195   unsigned NumLeadingZeroBits = Known.countMinLeadingZeros();
42196   if (NumLeadingZeroBits >= (InSVT.getSizeInBits() - NumPackedZeroBits))
42197     return truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget);
42198 
42199   // Use PACKSS if the input has sign-bits that extend all the way to the
42200   // packed/truncated value. e.g. Comparison result, sext_in_reg, etc.
42201   unsigned NumSignBits = DAG.ComputeNumSignBits(In);
42202   if (NumSignBits > (InSVT.getSizeInBits() - NumPackedSignBits))
42203     return truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget);
42204 
42205   return SDValue();
42206 }
42207 
42208 // Try to form a MULHU or MULHS node by looking for
42209 // (trunc (srl (mul ext, ext), 16))
42210 // TODO: This is X86 specific because we want to be able to handle wide types
42211 // before type legalization. But we can only do it if the vector will be
42212 // legalized via widening/splitting. Type legalization can't handle promotion
42213 // of a MULHU/MULHS. There isn't a way to convey this to the generic DAG
42214 // combiner.
42215 static SDValue combinePMULH(SDValue Src, EVT VT, const SDLoc &DL,
42216                             SelectionDAG &DAG, const X86Subtarget &Subtarget) {
42217   // First instruction should be a right shift of a multiply.
42218   if (Src.getOpcode() != ISD::SRL ||
42219       Src.getOperand(0).getOpcode() != ISD::MUL)
42220     return SDValue();
42221 
42222   if (!Subtarget.hasSSE2())
42223     return SDValue();
42224 
42225   // Only handle vXi16 types that are at least 128-bits unless they will be
42226   // widened.
42227   if (!VT.isVector() || VT.getVectorElementType() != MVT::i16)
42228     return SDValue();
42229 
42230   // Input type should be vXi32.
42231   EVT InVT = Src.getValueType();
42232   if (InVT.getVectorElementType() != MVT::i32)
42233     return SDValue();
42234 
42235   // Need a shift by 16.
42236   APInt ShiftAmt;
42237   if (!ISD::isConstantSplatVector(Src.getOperand(1).getNode(), ShiftAmt) ||
42238       ShiftAmt != 16)
42239     return SDValue();
42240 
42241   SDValue LHS = Src.getOperand(0).getOperand(0);
42242   SDValue RHS = Src.getOperand(0).getOperand(1);
42243 
42244   unsigned ExtOpc = LHS.getOpcode();
42245   if ((ExtOpc != ISD::SIGN_EXTEND && ExtOpc != ISD::ZERO_EXTEND) ||
42246       RHS.getOpcode() != ExtOpc)
42247     return SDValue();
42248 
42249   // Peek through the extends.
42250   LHS = LHS.getOperand(0);
42251   RHS = RHS.getOperand(0);
42252 
42253   // Ensure the input types match.
42254   if (LHS.getValueType() != VT || RHS.getValueType() != VT)
42255     return SDValue();
42256 
42257   unsigned Opc = ExtOpc == ISD::SIGN_EXTEND ? ISD::MULHS : ISD::MULHU;
42258   return DAG.getNode(Opc, DL, VT, LHS, RHS);
42259 }
42260 
42261 // Attempt to match PMADDUBSW, which multiplies corresponding unsigned bytes
42262 // from one vector with signed bytes from another vector, adds together
42263 // adjacent pairs of 16-bit products, and saturates the result before
42264 // truncating to 16-bits.
42265 //
42266 // Which looks something like this:
42267 // (i16 (ssat (add (mul (zext (even elts (i8 A))), (sext (even elts (i8 B)))),
42268 //                 (mul (zext (odd elts (i8 A)), (sext (odd elts (i8 B))))))))
42269 static SDValue detectPMADDUBSW(SDValue In, EVT VT, SelectionDAG &DAG,
42270                                const X86Subtarget &Subtarget,
42271                                const SDLoc &DL) {
42272   if (!VT.isVector() || !Subtarget.hasSSSE3())
42273     return SDValue();
42274 
42275   unsigned NumElems = VT.getVectorNumElements();
42276   EVT ScalarVT = VT.getVectorElementType();
42277   if (ScalarVT != MVT::i16 || NumElems < 8 || !isPowerOf2_32(NumElems))
42278     return SDValue();
42279 
42280   SDValue SSatVal = detectSSatPattern(In, VT);
42281   if (!SSatVal || SSatVal.getOpcode() != ISD::ADD)
42282     return SDValue();
42283 
42284   // Ok this is a signed saturation of an ADD. See if this ADD is adding pairs
42285   // of multiplies from even/odd elements.
42286   SDValue N0 = SSatVal.getOperand(0);
42287   SDValue N1 = SSatVal.getOperand(1);
42288 
42289   if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL)
42290     return SDValue();
42291 
42292   SDValue N00 = N0.getOperand(0);
42293   SDValue N01 = N0.getOperand(1);
42294   SDValue N10 = N1.getOperand(0);
42295   SDValue N11 = N1.getOperand(1);
42296 
42297   // TODO: Handle constant vectors and use knownbits/computenumsignbits?
42298   // Canonicalize zero_extend to LHS.
42299   if (N01.getOpcode() == ISD::ZERO_EXTEND)
42300     std::swap(N00, N01);
42301   if (N11.getOpcode() == ISD::ZERO_EXTEND)
42302     std::swap(N10, N11);
42303 
42304   // Ensure we have a zero_extend and a sign_extend.
42305   if (N00.getOpcode() != ISD::ZERO_EXTEND ||
42306       N01.getOpcode() != ISD::SIGN_EXTEND ||
42307       N10.getOpcode() != ISD::ZERO_EXTEND ||
42308       N11.getOpcode() != ISD::SIGN_EXTEND)
42309     return SDValue();
42310 
42311   // Peek through the extends.
42312   N00 = N00.getOperand(0);
42313   N01 = N01.getOperand(0);
42314   N10 = N10.getOperand(0);
42315   N11 = N11.getOperand(0);
42316 
42317   // Ensure the extend is from vXi8.
42318   if (N00.getValueType().getVectorElementType() != MVT::i8 ||
42319       N01.getValueType().getVectorElementType() != MVT::i8 ||
42320       N10.getValueType().getVectorElementType() != MVT::i8 ||
42321       N11.getValueType().getVectorElementType() != MVT::i8)
42322     return SDValue();
42323 
42324   // All inputs should be build_vectors.
42325   if (N00.getOpcode() != ISD::BUILD_VECTOR ||
42326       N01.getOpcode() != ISD::BUILD_VECTOR ||
42327       N10.getOpcode() != ISD::BUILD_VECTOR ||
42328       N11.getOpcode() != ISD::BUILD_VECTOR)
42329     return SDValue();
42330 
42331   // N00/N10 are zero extended. N01/N11 are sign extended.
42332 
42333   // For each element, we need to ensure we have an odd element from one vector
42334   // multiplied by the odd element of another vector and the even element from
42335   // one of the same vectors being multiplied by the even element from the
42336   // other vector. So we need to make sure for each element i, this operator
42337   // is being performed:
42338   //  A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1]
42339   SDValue ZExtIn, SExtIn;
42340   for (unsigned i = 0; i != NumElems; ++i) {
42341     SDValue N00Elt = N00.getOperand(i);
42342     SDValue N01Elt = N01.getOperand(i);
42343     SDValue N10Elt = N10.getOperand(i);
42344     SDValue N11Elt = N11.getOperand(i);
42345     // TODO: Be more tolerant to undefs.
42346     if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
42347         N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
42348         N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
42349         N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
42350       return SDValue();
42351     auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1));
42352     auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1));
42353     auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1));
42354     auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1));
42355     if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt)
42356       return SDValue();
42357     unsigned IdxN00 = ConstN00Elt->getZExtValue();
42358     unsigned IdxN01 = ConstN01Elt->getZExtValue();
42359     unsigned IdxN10 = ConstN10Elt->getZExtValue();
42360     unsigned IdxN11 = ConstN11Elt->getZExtValue();
42361     // Add is commutative so indices can be reordered.
42362     if (IdxN00 > IdxN10) {
42363       std::swap(IdxN00, IdxN10);
42364       std::swap(IdxN01, IdxN11);
42365     }
42366     // N0 indices be the even element. N1 indices must be the next odd element.
42367     if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 ||
42368         IdxN01 != 2 * i || IdxN11 != 2 * i + 1)
42369       return SDValue();
42370     SDValue N00In = N00Elt.getOperand(0);
42371     SDValue N01In = N01Elt.getOperand(0);
42372     SDValue N10In = N10Elt.getOperand(0);
42373     SDValue N11In = N11Elt.getOperand(0);
42374     // First time we find an input capture it.
42375     if (!ZExtIn) {
42376       ZExtIn = N00In;
42377       SExtIn = N01In;
42378     }
42379     if (ZExtIn != N00In || SExtIn != N01In ||
42380         ZExtIn != N10In || SExtIn != N11In)
42381       return SDValue();
42382   }
42383 
42384   auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
42385                          ArrayRef<SDValue> Ops) {
42386     // Shrink by adding truncate nodes and let DAGCombine fold with the
42387     // sources.
42388     EVT InVT = Ops[0].getValueType();
42389     assert(InVT.getScalarType() == MVT::i8 &&
42390            "Unexpected scalar element type");
42391     assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
42392     EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
42393                                  InVT.getVectorNumElements() / 2);
42394     return DAG.getNode(X86ISD::VPMADDUBSW, DL, ResVT, Ops[0], Ops[1]);
42395   };
42396   return SplitOpsAndApply(DAG, Subtarget, DL, VT, { ZExtIn, SExtIn },
42397                           PMADDBuilder);
42398 }
42399 
42400 static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
42401                                const X86Subtarget &Subtarget) {
42402   EVT VT = N->getValueType(0);
42403   SDValue Src = N->getOperand(0);
42404   SDLoc DL(N);
42405 
42406   // Attempt to pre-truncate inputs to arithmetic ops instead.
42407   if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL))
42408     return V;
42409 
42410   // Try to detect AVG pattern first.
42411   if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL))
42412     return Avg;
42413 
42414   // Try to detect PMADD
42415   if (SDValue PMAdd = detectPMADDUBSW(Src, VT, DAG, Subtarget, DL))
42416     return PMAdd;
42417 
42418   // Try to combine truncation with signed/unsigned saturation.
42419   if (SDValue Val = combineTruncateWithSat(Src, VT, DL, DAG, Subtarget))
42420     return Val;
42421 
42422   // Try to combine PMULHUW/PMULHW for vXi16.
42423   if (SDValue V = combinePMULH(Src, VT, DL, DAG, Subtarget))
42424     return V;
42425 
42426   // The bitcast source is a direct mmx result.
42427   // Detect bitcasts between i32 to x86mmx
42428   if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) {
42429     SDValue BCSrc = Src.getOperand(0);
42430     if (BCSrc.getValueType() == MVT::x86mmx)
42431       return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc);
42432   }
42433 
42434   // Try to truncate extended sign/zero bits with PACKSS/PACKUS.
42435   if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget))
42436     return V;
42437 
42438   return combineVectorTruncation(N, DAG, Subtarget);
42439 }
42440 
42441 static SDValue combineVTRUNC(SDNode *N, SelectionDAG &DAG) {
42442   EVT VT = N->getValueType(0);
42443   SDValue In = N->getOperand(0);
42444   SDLoc DL(N);
42445 
42446   if (auto SSatVal = detectSSatPattern(In, VT))
42447     return DAG.getNode(X86ISD::VTRUNCS, DL, VT, SSatVal);
42448   if (auto USatVal = detectUSatPattern(In, VT, DAG, DL))
42449     return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, USatVal);
42450 
42451   return SDValue();
42452 }
42453 
42454 /// Returns the negated value if the node \p N flips sign of FP value.
42455 ///
42456 /// FP-negation node may have different forms: FNEG(x), FXOR (x, 0x80000000)
42457 /// or FSUB(0, x)
42458 /// AVX512F does not have FXOR, so FNEG is lowered as
42459 /// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))).
42460 /// In this case we go though all bitcasts.
42461 /// This also recognizes splat of a negated value and returns the splat of that
42462 /// value.
42463 static SDValue isFNEG(SelectionDAG &DAG, SDNode *N, unsigned Depth = 0) {
42464   if (N->getOpcode() == ISD::FNEG)
42465     return N->getOperand(0);
42466 
42467   // Don't recurse exponentially.
42468   if (Depth > SelectionDAG::MaxRecursionDepth)
42469     return SDValue();
42470 
42471   unsigned ScalarSize = N->getValueType(0).getScalarSizeInBits();
42472 
42473   SDValue Op = peekThroughBitcasts(SDValue(N, 0));
42474   EVT VT = Op->getValueType(0);
42475 
42476   // Make sure the element size doesn't change.
42477   if (VT.getScalarSizeInBits() != ScalarSize)
42478     return SDValue();
42479 
42480   unsigned Opc = Op.getOpcode();
42481   switch (Opc) {
42482   case ISD::VECTOR_SHUFFLE: {
42483     // For a VECTOR_SHUFFLE(VEC1, VEC2), if the VEC2 is undef, then the negate
42484     // of this is VECTOR_SHUFFLE(-VEC1, UNDEF).  The mask can be anything here.
42485     if (!Op.getOperand(1).isUndef())
42486       return SDValue();
42487     if (SDValue NegOp0 = isFNEG(DAG, Op.getOperand(0).getNode(), Depth + 1))
42488       if (NegOp0.getValueType() == VT) // FIXME: Can we do better?
42489         return DAG.getVectorShuffle(VT, SDLoc(Op), NegOp0, DAG.getUNDEF(VT),
42490                                     cast<ShuffleVectorSDNode>(Op)->getMask());
42491     break;
42492   }
42493   case ISD::INSERT_VECTOR_ELT: {
42494     // Negate of INSERT_VECTOR_ELT(UNDEF, V, INDEX) is INSERT_VECTOR_ELT(UNDEF,
42495     // -V, INDEX).
42496     SDValue InsVector = Op.getOperand(0);
42497     SDValue InsVal = Op.getOperand(1);
42498     if (!InsVector.isUndef())
42499       return SDValue();
42500     if (SDValue NegInsVal = isFNEG(DAG, InsVal.getNode(), Depth + 1))
42501       if (NegInsVal.getValueType() == VT.getVectorElementType()) // FIXME
42502         return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), VT, InsVector,
42503                            NegInsVal, Op.getOperand(2));
42504     break;
42505   }
42506   case ISD::FSUB:
42507   case ISD::XOR:
42508   case X86ISD::FXOR: {
42509     SDValue Op1 = Op.getOperand(1);
42510     SDValue Op0 = Op.getOperand(0);
42511 
42512     // For XOR and FXOR, we want to check if constant
42513     // bits of Op1 are sign bit masks. For FSUB, we
42514     // have to check if constant bits of Op0 are sign
42515     // bit masks and hence we swap the operands.
42516     if (Opc == ISD::FSUB)
42517       std::swap(Op0, Op1);
42518 
42519     APInt UndefElts;
42520     SmallVector<APInt, 16> EltBits;
42521     // Extract constant bits and see if they are all
42522     // sign bit masks. Ignore the undef elements.
42523     if (getTargetConstantBitsFromNode(Op1, ScalarSize, UndefElts, EltBits,
42524                                       /* AllowWholeUndefs */ true,
42525                                       /* AllowPartialUndefs */ false)) {
42526       for (unsigned I = 0, E = EltBits.size(); I < E; I++)
42527         if (!UndefElts[I] && !EltBits[I].isSignMask())
42528           return SDValue();
42529 
42530       return peekThroughBitcasts(Op0);
42531     }
42532   }
42533   }
42534 
42535   return SDValue();
42536 }
42537 
42538 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc,
42539                                 bool NegRes) {
42540   if (NegMul) {
42541     switch (Opcode) {
42542     default: llvm_unreachable("Unexpected opcode");
42543     case ISD::FMA:             Opcode = X86ISD::FNMADD;       break;
42544     case X86ISD::FMADD_RND:    Opcode = X86ISD::FNMADD_RND;   break;
42545     case X86ISD::FMSUB:        Opcode = X86ISD::FNMSUB;       break;
42546     case X86ISD::FMSUB_RND:    Opcode = X86ISD::FNMSUB_RND;   break;
42547     case X86ISD::FNMADD:       Opcode = ISD::FMA;             break;
42548     case X86ISD::FNMADD_RND:   Opcode = X86ISD::FMADD_RND;    break;
42549     case X86ISD::FNMSUB:       Opcode = X86ISD::FMSUB;        break;
42550     case X86ISD::FNMSUB_RND:   Opcode = X86ISD::FMSUB_RND;    break;
42551     }
42552   }
42553 
42554   if (NegAcc) {
42555     switch (Opcode) {
42556     default: llvm_unreachable("Unexpected opcode");
42557     case ISD::FMA:             Opcode = X86ISD::FMSUB;        break;
42558     case X86ISD::FMADD_RND:    Opcode = X86ISD::FMSUB_RND;    break;
42559     case X86ISD::FMSUB:        Opcode = ISD::FMA;             break;
42560     case X86ISD::FMSUB_RND:    Opcode = X86ISD::FMADD_RND;    break;
42561     case X86ISD::FNMADD:       Opcode = X86ISD::FNMSUB;       break;
42562     case X86ISD::FNMADD_RND:   Opcode = X86ISD::FNMSUB_RND;   break;
42563     case X86ISD::FNMSUB:       Opcode = X86ISD::FNMADD;       break;
42564     case X86ISD::FNMSUB_RND:   Opcode = X86ISD::FNMADD_RND;   break;
42565     case X86ISD::FMADDSUB:     Opcode = X86ISD::FMSUBADD;     break;
42566     case X86ISD::FMADDSUB_RND: Opcode = X86ISD::FMSUBADD_RND; break;
42567     case X86ISD::FMSUBADD:     Opcode = X86ISD::FMADDSUB;     break;
42568     case X86ISD::FMSUBADD_RND: Opcode = X86ISD::FMADDSUB_RND; break;
42569     }
42570   }
42571 
42572   if (NegRes) {
42573     switch (Opcode) {
42574     default: llvm_unreachable("Unexpected opcode");
42575     case ISD::FMA:             Opcode = X86ISD::FNMSUB;       break;
42576     case X86ISD::FMADD_RND:    Opcode = X86ISD::FNMSUB_RND;   break;
42577     case X86ISD::FMSUB:        Opcode = X86ISD::FNMADD;       break;
42578     case X86ISD::FMSUB_RND:    Opcode = X86ISD::FNMADD_RND;   break;
42579     case X86ISD::FNMADD:       Opcode = X86ISD::FMSUB;        break;
42580     case X86ISD::FNMADD_RND:   Opcode = X86ISD::FMSUB_RND;    break;
42581     case X86ISD::FNMSUB:       Opcode = ISD::FMA;             break;
42582     case X86ISD::FNMSUB_RND:   Opcode = X86ISD::FMADD_RND;    break;
42583     }
42584   }
42585 
42586   return Opcode;
42587 }
42588 
42589 /// Do target-specific dag combines on floating point negations.
42590 static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
42591                            const X86Subtarget &Subtarget) {
42592   EVT OrigVT = N->getValueType(0);
42593   SDValue Arg = isFNEG(DAG, N);
42594   if (!Arg)
42595     return SDValue();
42596 
42597   EVT VT = Arg.getValueType();
42598   EVT SVT = VT.getScalarType();
42599   SDLoc DL(N);
42600 
42601   // Let legalize expand this if it isn't a legal type yet.
42602   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
42603     return SDValue();
42604 
42605   // If we're negating a FMUL node on a target with FMA, then we can avoid the
42606   // use of a constant by performing (-0 - A*B) instead.
42607   // FIXME: Check rounding control flags as well once it becomes available.
42608   if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
42609       Arg->getFlags().hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
42610     SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
42611     SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
42612                                   Arg.getOperand(1), Zero);
42613     return DAG.getBitcast(OrigVT, NewNode);
42614   }
42615 
42616   // If we're negating an FMA node, then we can adjust the
42617   // instruction to include the extra negation.
42618   if (Arg.hasOneUse() && Subtarget.hasAnyFMA()) {
42619     switch (Arg.getOpcode()) {
42620     case ISD::FMA:
42621     case X86ISD::FMSUB:
42622     case X86ISD::FNMADD:
42623     case X86ISD::FNMSUB:
42624     case X86ISD::FMADD_RND:
42625     case X86ISD::FMSUB_RND:
42626     case X86ISD::FNMADD_RND:
42627     case X86ISD::FNMSUB_RND: {
42628       // We can't handle scalar intrinsic node here because it would only
42629       // invert one element and not the whole vector. But we could try to handle
42630       // a negation of the lower element only.
42631       unsigned NewOpcode = negateFMAOpcode(Arg.getOpcode(), false, false, true);
42632       return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT, Arg->ops()));
42633     }
42634     }
42635   }
42636 
42637   return SDValue();
42638 }
42639 
42640 char X86TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
42641                                            bool LegalOperations,
42642                                            bool ForCodeSize,
42643                                            unsigned Depth) const {
42644   // fneg patterns are removable even if they have multiple uses.
42645   if (isFNEG(DAG, Op.getNode(), Depth))
42646     return 2;
42647 
42648   // Don't recurse exponentially.
42649   if (Depth > SelectionDAG::MaxRecursionDepth)
42650     return 0;
42651 
42652   EVT VT = Op.getValueType();
42653   EVT SVT = VT.getScalarType();
42654   switch (Op.getOpcode()) {
42655   case ISD::FMA:
42656   case X86ISD::FMSUB:
42657   case X86ISD::FNMADD:
42658   case X86ISD::FNMSUB:
42659   case X86ISD::FMADD_RND:
42660   case X86ISD::FMSUB_RND:
42661   case X86ISD::FNMADD_RND:
42662   case X86ISD::FNMSUB_RND: {
42663     if (!Op.hasOneUse() || !Subtarget.hasAnyFMA() || !isTypeLegal(VT) ||
42664         !(SVT == MVT::f32 || SVT == MVT::f64) || !LegalOperations)
42665       break;
42666 
42667     // This is always negatible for free but we might be able to remove some
42668     // extra operand negations as well.
42669     for (int i = 0; i != 3; ++i) {
42670       char V = isNegatibleForFree(Op.getOperand(i), DAG, LegalOperations,
42671                                   ForCodeSize, Depth + 1);
42672       if (V == 2)
42673         return V;
42674     }
42675     return 1;
42676   }
42677   }
42678 
42679   return TargetLowering::isNegatibleForFree(Op, DAG, LegalOperations,
42680                                             ForCodeSize, Depth);
42681 }
42682 
42683 SDValue X86TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
42684                                                 bool LegalOperations,
42685                                                 bool ForCodeSize,
42686                                                 unsigned Depth) const {
42687   // fneg patterns are removable even if they have multiple uses.
42688   if (SDValue Arg = isFNEG(DAG, Op.getNode(), Depth))
42689     return DAG.getBitcast(Op.getValueType(), Arg);
42690 
42691   EVT VT = Op.getValueType();
42692   EVT SVT = VT.getScalarType();
42693   unsigned Opc = Op.getOpcode();
42694   switch (Opc) {
42695   case ISD::FMA:
42696   case X86ISD::FMSUB:
42697   case X86ISD::FNMADD:
42698   case X86ISD::FNMSUB:
42699   case X86ISD::FMADD_RND:
42700   case X86ISD::FMSUB_RND:
42701   case X86ISD::FNMADD_RND:
42702   case X86ISD::FNMSUB_RND: {
42703     if (!Op.hasOneUse() || !Subtarget.hasAnyFMA() || !isTypeLegal(VT) ||
42704         !(SVT == MVT::f32 || SVT == MVT::f64) || !LegalOperations)
42705       break;
42706 
42707     // This is always negatible for free but we might be able to remove some
42708     // extra operand negations as well.
42709     SmallVector<SDValue, 4> NewOps(Op.getNumOperands(), SDValue());
42710     for (int i = 0; i != 3; ++i) {
42711       char V = isNegatibleForFree(Op.getOperand(i), DAG, LegalOperations,
42712                                   ForCodeSize, Depth + 1);
42713       if (V == 2)
42714         NewOps[i] = getNegatedExpression(Op.getOperand(i), DAG, LegalOperations,
42715                                          ForCodeSize, Depth + 1);
42716     }
42717 
42718     bool NegA = !!NewOps[0];
42719     bool NegB = !!NewOps[1];
42720     bool NegC = !!NewOps[2];
42721     unsigned NewOpc = negateFMAOpcode(Opc, NegA != NegB, NegC, true);
42722 
42723     // Fill in the non-negated ops with the original values.
42724     for (int i = 0, e = Op.getNumOperands(); i != e; ++i)
42725       if (!NewOps[i])
42726         NewOps[i] = Op.getOperand(i);
42727     return DAG.getNode(NewOpc, SDLoc(Op), VT, NewOps);
42728   }
42729   }
42730 
42731   return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
42732                                               ForCodeSize, Depth);
42733 }
42734 
42735 static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
42736                                  const X86Subtarget &Subtarget) {
42737   MVT VT = N->getSimpleValueType(0);
42738   // If we have integer vector types available, use the integer opcodes.
42739   if (!VT.isVector() || !Subtarget.hasSSE2())
42740     return SDValue();
42741 
42742   SDLoc dl(N);
42743 
42744   unsigned IntBits = VT.getScalarSizeInBits();
42745   MVT IntSVT = MVT::getIntegerVT(IntBits);
42746   MVT IntVT = MVT::getVectorVT(IntSVT, VT.getSizeInBits() / IntBits);
42747 
42748   SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0));
42749   SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1));
42750   unsigned IntOpcode;
42751   switch (N->getOpcode()) {
42752   default: llvm_unreachable("Unexpected FP logic op");
42753   case X86ISD::FOR:   IntOpcode = ISD::OR; break;
42754   case X86ISD::FXOR:  IntOpcode = ISD::XOR; break;
42755   case X86ISD::FAND:  IntOpcode = ISD::AND; break;
42756   case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
42757   }
42758   SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
42759   return DAG.getBitcast(VT, IntOp);
42760 }
42761 
42762 
42763 /// Fold a xor(setcc cond, val), 1 --> setcc (inverted(cond), val)
42764 static SDValue foldXor1SetCC(SDNode *N, SelectionDAG &DAG) {
42765   if (N->getOpcode() != ISD::XOR)
42766     return SDValue();
42767 
42768   SDValue LHS = N->getOperand(0);
42769   if (!isOneConstant(N->getOperand(1)) || LHS->getOpcode() != X86ISD::SETCC)
42770     return SDValue();
42771 
42772   X86::CondCode NewCC = X86::GetOppositeBranchCondition(
42773       X86::CondCode(LHS->getConstantOperandVal(0)));
42774   SDLoc DL(N);
42775   return getSETCC(NewCC, LHS->getOperand(1), DL, DAG);
42776 }
42777 
42778 static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
42779                           TargetLowering::DAGCombinerInfo &DCI,
42780                           const X86Subtarget &Subtarget) {
42781   // If this is SSE1 only convert to FXOR to avoid scalarization.
42782   if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() &&
42783       N->getValueType(0) == MVT::v4i32) {
42784     return DAG.getBitcast(
42785         MVT::v4i32, DAG.getNode(X86ISD::FXOR, SDLoc(N), MVT::v4f32,
42786                                 DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
42787                                 DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
42788   }
42789 
42790   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
42791     return Cmp;
42792 
42793   if (DCI.isBeforeLegalizeOps())
42794     return SDValue();
42795 
42796   if (SDValue SetCC = foldXor1SetCC(N, DAG))
42797     return SetCC;
42798 
42799   if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
42800     return RV;
42801 
42802   if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
42803     return FPLogic;
42804 
42805   return combineFneg(N, DAG, Subtarget);
42806 }
42807 
42808 static SDValue combineBEXTR(SDNode *N, SelectionDAG &DAG,
42809                             TargetLowering::DAGCombinerInfo &DCI,
42810                             const X86Subtarget &Subtarget) {
42811   SDValue Op0 = N->getOperand(0);
42812   SDValue Op1 = N->getOperand(1);
42813   EVT VT = N->getValueType(0);
42814   unsigned NumBits = VT.getSizeInBits();
42815 
42816   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
42817 
42818   // TODO - Constant Folding.
42819   if (auto *Cst1 = dyn_cast<ConstantSDNode>(Op1)) {
42820     // Reduce Cst1 to the bottom 16-bits.
42821     // NOTE: SimplifyDemandedBits won't do this for constants.
42822     const APInt &Val1 = Cst1->getAPIntValue();
42823     APInt MaskedVal1 = Val1 & 0xFFFF;
42824     if (MaskedVal1 != Val1)
42825       return DAG.getNode(X86ISD::BEXTR, SDLoc(N), VT, Op0,
42826                          DAG.getConstant(MaskedVal1, SDLoc(N), VT));
42827   }
42828 
42829   // Only bottom 16-bits of the control bits are required.
42830   APInt DemandedMask(APInt::getLowBitsSet(NumBits, 16));
42831   if (TLI.SimplifyDemandedBits(Op1, DemandedMask, DCI))
42832     return SDValue(N, 0);
42833 
42834   return SDValue();
42835 }
42836 
42837 static bool isNullFPScalarOrVectorConst(SDValue V) {
42838   return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode());
42839 }
42840 
42841 /// If a value is a scalar FP zero or a vector FP zero (potentially including
42842 /// undefined elements), return a zero constant that may be used to fold away
42843 /// that value. In the case of a vector, the returned constant will not contain
42844 /// undefined elements even if the input parameter does. This makes it suitable
42845 /// to be used as a replacement operand with operations (eg, bitwise-and) where
42846 /// an undef should not propagate.
42847 static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG,
42848                                         const X86Subtarget &Subtarget) {
42849   if (!isNullFPScalarOrVectorConst(V))
42850     return SDValue();
42851 
42852   if (V.getValueType().isVector())
42853     return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V));
42854 
42855   return V;
42856 }
42857 
42858 static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG,
42859                                       const X86Subtarget &Subtarget) {
42860   SDValue N0 = N->getOperand(0);
42861   SDValue N1 = N->getOperand(1);
42862   EVT VT = N->getValueType(0);
42863   SDLoc DL(N);
42864 
42865   // Vector types are handled in combineANDXORWithAllOnesIntoANDNP().
42866   if (!((VT == MVT::f32 && Subtarget.hasSSE1()) ||
42867         (VT == MVT::f64 && Subtarget.hasSSE2()) ||
42868         (VT == MVT::v4f32 && Subtarget.hasSSE1() && !Subtarget.hasSSE2())))
42869     return SDValue();
42870 
42871   auto isAllOnesConstantFP = [](SDValue V) {
42872     if (V.getSimpleValueType().isVector())
42873       return ISD::isBuildVectorAllOnes(V.getNode());
42874     auto *C = dyn_cast<ConstantFPSDNode>(V);
42875     return C && C->getConstantFPValue()->isAllOnesValue();
42876   };
42877 
42878   // fand (fxor X, -1), Y --> fandn X, Y
42879   if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1)))
42880     return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1);
42881 
42882   // fand X, (fxor Y, -1) --> fandn Y, X
42883   if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1)))
42884     return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0);
42885 
42886   return SDValue();
42887 }
42888 
42889 /// Do target-specific dag combines on X86ISD::FAND nodes.
42890 static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG,
42891                            const X86Subtarget &Subtarget) {
42892   // FAND(0.0, x) -> 0.0
42893   if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget))
42894     return V;
42895 
42896   // FAND(x, 0.0) -> 0.0
42897   if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
42898     return V;
42899 
42900   if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget))
42901     return V;
42902 
42903   return lowerX86FPLogicOp(N, DAG, Subtarget);
42904 }
42905 
42906 /// Do target-specific dag combines on X86ISD::FANDN nodes.
42907 static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG,
42908                             const X86Subtarget &Subtarget) {
42909   // FANDN(0.0, x) -> x
42910   if (isNullFPScalarOrVectorConst(N->getOperand(0)))
42911     return N->getOperand(1);
42912 
42913   // FANDN(x, 0.0) -> 0.0
42914   if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
42915     return V;
42916 
42917   return lowerX86FPLogicOp(N, DAG, Subtarget);
42918 }
42919 
42920 /// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
42921 static SDValue combineFOr(SDNode *N, SelectionDAG &DAG,
42922                           const X86Subtarget &Subtarget) {
42923   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
42924 
42925   // F[X]OR(0.0, x) -> x
42926   if (isNullFPScalarOrVectorConst(N->getOperand(0)))
42927     return N->getOperand(1);
42928 
42929   // F[X]OR(x, 0.0) -> x
42930   if (isNullFPScalarOrVectorConst(N->getOperand(1)))
42931     return N->getOperand(0);
42932 
42933   if (SDValue NewVal = combineFneg(N, DAG, Subtarget))
42934     return NewVal;
42935 
42936   return lowerX86FPLogicOp(N, DAG, Subtarget);
42937 }
42938 
42939 /// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
42940 static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) {
42941   assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
42942 
42943   // FMIN/FMAX are commutative if no NaNs and no negative zeros are allowed.
42944   if (!DAG.getTarget().Options.NoNaNsFPMath ||
42945       !DAG.getTarget().Options.NoSignedZerosFPMath)
42946     return SDValue();
42947 
42948   // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
42949   // into FMINC and FMAXC, which are Commutative operations.
42950   unsigned NewOp = 0;
42951   switch (N->getOpcode()) {
42952     default: llvm_unreachable("unknown opcode");
42953     case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
42954     case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
42955   }
42956 
42957   return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
42958                      N->getOperand(0), N->getOperand(1));
42959 }
42960 
42961 static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG,
42962                                      const X86Subtarget &Subtarget) {
42963   if (Subtarget.useSoftFloat())
42964     return SDValue();
42965 
42966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
42967 
42968   EVT VT = N->getValueType(0);
42969   if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
42970         (Subtarget.hasSSE2() && VT == MVT::f64) ||
42971         (VT.isVector() && TLI.isTypeLegal(VT))))
42972     return SDValue();
42973 
42974   SDValue Op0 = N->getOperand(0);
42975   SDValue Op1 = N->getOperand(1);
42976   SDLoc DL(N);
42977   auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
42978 
42979   // If we don't have to respect NaN inputs, this is a direct translation to x86
42980   // min/max instructions.
42981   if (DAG.getTarget().Options.NoNaNsFPMath || N->getFlags().hasNoNaNs())
42982     return DAG.getNode(MinMaxOp, DL, VT, Op0, Op1, N->getFlags());
42983 
42984   // If one of the operands is known non-NaN use the native min/max instructions
42985   // with the non-NaN input as second operand.
42986   if (DAG.isKnownNeverNaN(Op1))
42987     return DAG.getNode(MinMaxOp, DL, VT, Op0, Op1, N->getFlags());
42988   if (DAG.isKnownNeverNaN(Op0))
42989     return DAG.getNode(MinMaxOp, DL, VT, Op1, Op0, N->getFlags());
42990 
42991   // If we have to respect NaN inputs, this takes at least 3 instructions.
42992   // Favor a library call when operating on a scalar and minimizing code size.
42993   if (!VT.isVector() && DAG.getMachineFunction().getFunction().hasMinSize())
42994     return SDValue();
42995 
42996   EVT SetCCType = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
42997                                          VT);
42998 
42999   // There are 4 possibilities involving NaN inputs, and these are the required
43000   // outputs:
43001   //                   Op1
43002   //               Num     NaN
43003   //            ----------------
43004   //       Num  |  Max  |  Op0 |
43005   // Op0        ----------------
43006   //       NaN  |  Op1  |  NaN |
43007   //            ----------------
43008   //
43009   // The SSE FP max/min instructions were not designed for this case, but rather
43010   // to implement:
43011   //   Min = Op1 < Op0 ? Op1 : Op0
43012   //   Max = Op1 > Op0 ? Op1 : Op0
43013   //
43014   // So they always return Op0 if either input is a NaN. However, we can still
43015   // use those instructions for fmaxnum by selecting away a NaN input.
43016 
43017   // If either operand is NaN, the 2nd source operand (Op0) is passed through.
43018   SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
43019   SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType, Op0, Op0, ISD::SETUO);
43020 
43021   // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
43022   // are NaN, the NaN value of Op1 is the result.
43023   return DAG.getSelect(DL, VT, IsOp0Nan, Op1, MinOrMax);
43024 }
43025 
43026 static SDValue combineX86INT_TO_FP(SDNode *N, SelectionDAG &DAG,
43027                                    TargetLowering::DAGCombinerInfo &DCI) {
43028   EVT VT = N->getValueType(0);
43029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
43030 
43031   APInt KnownUndef, KnownZero;
43032   APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
43033   if (TLI.SimplifyDemandedVectorElts(SDValue(N, 0), DemandedElts, KnownUndef,
43034                                      KnownZero, DCI))
43035     return SDValue(N, 0);
43036 
43037   // Convert a full vector load into vzload when not all bits are needed.
43038   SDValue In = N->getOperand(0);
43039   MVT InVT = In.getSimpleValueType();
43040   if (VT.getVectorNumElements() < InVT.getVectorNumElements() &&
43041       ISD::isNormalLoad(In.getNode()) && In.hasOneUse()) {
43042     assert(InVT.is128BitVector() && "Expected 128-bit input vector");
43043     LoadSDNode *LN = cast<LoadSDNode>(N->getOperand(0));
43044     // Unless the load is volatile or atomic.
43045     if (LN->isSimple()) {
43046       SDLoc dl(N);
43047       unsigned NumBits = InVT.getScalarSizeInBits() * VT.getVectorNumElements();
43048       MVT MemVT = MVT::getIntegerVT(NumBits);
43049       MVT LoadVT = MVT::getVectorVT(MemVT, 128 / NumBits);
43050       SDVTList Tys = DAG.getVTList(LoadVT, MVT::Other);
43051       SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
43052       SDValue VZLoad =
43053           DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, MemVT,
43054                                   LN->getPointerInfo(),
43055                                   LN->getAlignment(),
43056                                   LN->getMemOperand()->getFlags());
43057       SDValue Convert = DAG.getNode(N->getOpcode(), dl, VT,
43058                                     DAG.getBitcast(InVT, VZLoad));
43059       DCI.CombineTo(N, Convert);
43060       DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), VZLoad.getValue(1));
43061       return SDValue(N, 0);
43062     }
43063   }
43064 
43065   return SDValue();
43066 }
43067 
43068 static SDValue combineCVTP2I_CVTTP2I(SDNode *N, SelectionDAG &DAG,
43069                                      TargetLowering::DAGCombinerInfo &DCI) {
43070   // FIXME: Handle strict fp nodes.
43071   EVT VT = N->getValueType(0);
43072 
43073   // Convert a full vector load into vzload when not all bits are needed.
43074   SDValue In = N->getOperand(0);
43075   MVT InVT = In.getSimpleValueType();
43076   if (VT.getVectorNumElements() < InVT.getVectorNumElements() &&
43077       ISD::isNormalLoad(In.getNode()) && In.hasOneUse()) {
43078     assert(InVT.is128BitVector() && "Expected 128-bit input vector");
43079     LoadSDNode *LN = cast<LoadSDNode>(In);
43080     // Unless the load is volatile or atomic.
43081     if (LN->isSimple()) {
43082       SDLoc dl(N);
43083       unsigned NumBits = InVT.getScalarSizeInBits() * VT.getVectorNumElements();
43084       MVT MemVT = MVT::getFloatingPointVT(NumBits);
43085       MVT LoadVT = MVT::getVectorVT(MemVT, 128 / NumBits);
43086       SDVTList Tys = DAG.getVTList(LoadVT, MVT::Other);
43087       SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
43088       SDValue VZLoad =
43089           DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, MemVT,
43090                                   LN->getPointerInfo(),
43091                                   LN->getAlignment(),
43092                                   LN->getMemOperand()->getFlags());
43093       SDValue Convert = DAG.getNode(N->getOpcode(), dl, VT,
43094                                     DAG.getBitcast(InVT, VZLoad));
43095       DCI.CombineTo(N, Convert);
43096       DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), VZLoad.getValue(1));
43097       return SDValue(N, 0);
43098     }
43099   }
43100 
43101   return SDValue();
43102 }
43103 
43104 /// Do target-specific dag combines on X86ISD::ANDNP nodes.
43105 static SDValue combineAndnp(SDNode *N, SelectionDAG &DAG,
43106                             TargetLowering::DAGCombinerInfo &DCI,
43107                             const X86Subtarget &Subtarget) {
43108   MVT VT = N->getSimpleValueType(0);
43109 
43110   // ANDNP(0, x) -> x
43111   if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
43112     return N->getOperand(1);
43113 
43114   // ANDNP(x, 0) -> 0
43115   if (ISD::isBuildVectorAllZeros(N->getOperand(1).getNode()))
43116     return DAG.getConstant(0, SDLoc(N), VT);
43117 
43118   // Turn ANDNP back to AND if input is inverted.
43119   if (SDValue Not = IsNOT(N->getOperand(0), DAG))
43120     return DAG.getNode(ISD::AND, SDLoc(N), VT, DAG.getBitcast(VT, Not),
43121                        N->getOperand(1));
43122 
43123   // Attempt to recursively combine a bitmask ANDNP with shuffles.
43124   if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
43125     SDValue Op(N, 0);
43126     if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
43127       return Res;
43128   }
43129 
43130   return SDValue();
43131 }
43132 
43133 static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
43134                          TargetLowering::DAGCombinerInfo &DCI) {
43135   SDValue N0 = N->getOperand(0);
43136   SDValue N1 = N->getOperand(1);
43137 
43138   // BT ignores high bits in the bit index operand.
43139   unsigned BitWidth = N1.getValueSizeInBits();
43140   APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
43141   if (SDValue DemandedN1 = DAG.GetDemandedBits(N1, DemandedMask))
43142     return DAG.getNode(X86ISD::BT, SDLoc(N), MVT::i32, N0, DemandedN1);
43143 
43144   return SDValue();
43145 }
43146 
43147 // Try to combine sext_in_reg of a cmov of constants by extending the constants.
43148 static SDValue combineSextInRegCmov(SDNode *N, SelectionDAG &DAG) {
43149   assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
43150 
43151   EVT DstVT = N->getValueType(0);
43152 
43153   SDValue N0 = N->getOperand(0);
43154   SDValue N1 = N->getOperand(1);
43155   EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
43156 
43157   if (ExtraVT != MVT::i8 && ExtraVT != MVT::i16)
43158     return SDValue();
43159 
43160   // Look through single use any_extends / truncs.
43161   SDValue IntermediateBitwidthOp;
43162   if ((N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
43163       N0.hasOneUse()) {
43164     IntermediateBitwidthOp = N0;
43165     N0 = N0.getOperand(0);
43166   }
43167 
43168   // See if we have a single use cmov.
43169   if (N0.getOpcode() != X86ISD::CMOV || !N0.hasOneUse())
43170     return SDValue();
43171 
43172   SDValue CMovOp0 = N0.getOperand(0);
43173   SDValue CMovOp1 = N0.getOperand(1);
43174 
43175   // Make sure both operands are constants.
43176   if (!isa<ConstantSDNode>(CMovOp0.getNode()) ||
43177       !isa<ConstantSDNode>(CMovOp1.getNode()))
43178     return SDValue();
43179 
43180   SDLoc DL(N);
43181 
43182   // If we looked through an any_extend/trunc above, add one to the constants.
43183   if (IntermediateBitwidthOp) {
43184     unsigned IntermediateOpc = IntermediateBitwidthOp.getOpcode();
43185     CMovOp0 = DAG.getNode(IntermediateOpc, DL, DstVT, CMovOp0);
43186     CMovOp1 = DAG.getNode(IntermediateOpc, DL, DstVT, CMovOp1);
43187   }
43188 
43189   CMovOp0 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, DstVT, CMovOp0, N1);
43190   CMovOp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, DstVT, CMovOp1, N1);
43191 
43192   EVT CMovVT = DstVT;
43193   // We do not want i16 CMOV's. Promote to i32 and truncate afterwards.
43194   if (DstVT == MVT::i16) {
43195     CMovVT = MVT::i32;
43196     CMovOp0 = DAG.getNode(ISD::ZERO_EXTEND, DL, CMovVT, CMovOp0);
43197     CMovOp1 = DAG.getNode(ISD::ZERO_EXTEND, DL, CMovVT, CMovOp1);
43198   }
43199 
43200   SDValue CMov = DAG.getNode(X86ISD::CMOV, DL, CMovVT, CMovOp0, CMovOp1,
43201                              N0.getOperand(2), N0.getOperand(3));
43202 
43203   if (CMovVT != DstVT)
43204     CMov = DAG.getNode(ISD::TRUNCATE, DL, DstVT, CMov);
43205 
43206   return CMov;
43207 }
43208 
43209 static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG,
43210                                       const X86Subtarget &Subtarget) {
43211   assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
43212 
43213   if (SDValue V = combineSextInRegCmov(N, DAG))
43214     return V;
43215 
43216   EVT VT = N->getValueType(0);
43217   SDValue N0 = N->getOperand(0);
43218   SDValue N1 = N->getOperand(1);
43219   EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
43220   SDLoc dl(N);
43221 
43222   // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
43223   // both SSE and AVX2 since there is no sign-extended shift right
43224   // operation on a vector with 64-bit elements.
43225   //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
43226   // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
43227   if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
43228       N0.getOpcode() == ISD::SIGN_EXTEND)) {
43229     SDValue N00 = N0.getOperand(0);
43230 
43231     // EXTLOAD has a better solution on AVX2,
43232     // it may be replaced with X86ISD::VSEXT node.
43233     if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256())
43234       if (!ISD::isNormalLoad(N00.getNode()))
43235         return SDValue();
43236 
43237     if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
43238         SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
43239                                   N00, N1);
43240       return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
43241     }
43242   }
43243   return SDValue();
43244 }
43245 
43246 /// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
43247 /// zext(add_nuw(x, C)) --> add(zext(x), C_zext)
43248 /// Promoting a sign/zero extension ahead of a no overflow 'add' exposes
43249 /// opportunities to combine math ops, use an LEA, or use a complex addressing
43250 /// mode. This can eliminate extend, add, and shift instructions.
43251 static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG,
43252                                    const X86Subtarget &Subtarget) {
43253   if (Ext->getOpcode() != ISD::SIGN_EXTEND &&
43254       Ext->getOpcode() != ISD::ZERO_EXTEND)
43255     return SDValue();
43256 
43257   // TODO: This should be valid for other integer types.
43258   EVT VT = Ext->getValueType(0);
43259   if (VT != MVT::i64)
43260     return SDValue();
43261 
43262   SDValue Add = Ext->getOperand(0);
43263   if (Add.getOpcode() != ISD::ADD)
43264     return SDValue();
43265 
43266   bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND;
43267   bool NSW = Add->getFlags().hasNoSignedWrap();
43268   bool NUW = Add->getFlags().hasNoUnsignedWrap();
43269 
43270   // We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding
43271   // into the 'zext'
43272   if ((Sext && !NSW) || (!Sext && !NUW))
43273     return SDValue();
43274 
43275   // Having a constant operand to the 'add' ensures that we are not increasing
43276   // the instruction count because the constant is extended for free below.
43277   // A constant operand can also become the displacement field of an LEA.
43278   auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
43279   if (!AddOp1)
43280     return SDValue();
43281 
43282   // Don't make the 'add' bigger if there's no hope of combining it with some
43283   // other 'add' or 'shl' instruction.
43284   // TODO: It may be profitable to generate simpler LEA instructions in place
43285   // of single 'add' instructions, but the cost model for selecting an LEA
43286   // currently has a high threshold.
43287   bool HasLEAPotential = false;
43288   for (auto *User : Ext->uses()) {
43289     if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
43290       HasLEAPotential = true;
43291       break;
43292     }
43293   }
43294   if (!HasLEAPotential)
43295     return SDValue();
43296 
43297   // Everything looks good, so pull the '{s|z}ext' ahead of the 'add'.
43298   int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue();
43299   SDValue AddOp0 = Add.getOperand(0);
43300   SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0);
43301   SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
43302 
43303   // The wider add is guaranteed to not wrap because both operands are
43304   // sign-extended.
43305   SDNodeFlags Flags;
43306   Flags.setNoSignedWrap(NSW);
43307   Flags.setNoUnsignedWrap(NUW);
43308   return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, Flags);
43309 }
43310 
43311 // If we face {ANY,SIGN,ZERO}_EXTEND that is applied to a CMOV with constant
43312 // operands and the result of CMOV is not used anywhere else - promote CMOV
43313 // itself instead of promoting its result. This could be beneficial, because:
43314 //     1) X86TargetLowering::EmitLoweredSelect later can do merging of two
43315 //        (or more) pseudo-CMOVs only when they go one-after-another and
43316 //        getting rid of result extension code after CMOV will help that.
43317 //     2) Promotion of constant CMOV arguments is free, hence the
43318 //        {ANY,SIGN,ZERO}_EXTEND will just be deleted.
43319 //     3) 16-bit CMOV encoding is 4 bytes, 32-bit CMOV is 3-byte, so this
43320 //        promotion is also good in terms of code-size.
43321 //        (64-bit CMOV is 4-bytes, that's why we don't do 32-bit => 64-bit
43322 //         promotion).
43323 static SDValue combineToExtendCMOV(SDNode *Extend, SelectionDAG &DAG) {
43324   SDValue CMovN = Extend->getOperand(0);
43325   if (CMovN.getOpcode() != X86ISD::CMOV || !CMovN.hasOneUse())
43326     return SDValue();
43327 
43328   EVT TargetVT = Extend->getValueType(0);
43329   unsigned ExtendOpcode = Extend->getOpcode();
43330   SDLoc DL(Extend);
43331 
43332   EVT VT = CMovN.getValueType();
43333   SDValue CMovOp0 = CMovN.getOperand(0);
43334   SDValue CMovOp1 = CMovN.getOperand(1);
43335 
43336   if (!isa<ConstantSDNode>(CMovOp0.getNode()) ||
43337       !isa<ConstantSDNode>(CMovOp1.getNode()))
43338     return SDValue();
43339 
43340   // Only extend to i32 or i64.
43341   if (TargetVT != MVT::i32 && TargetVT != MVT::i64)
43342     return SDValue();
43343 
43344   // Only extend from i16 unless its a sign_extend from i32. Zext/aext from i32
43345   // are free.
43346   if (VT != MVT::i16 && !(ExtendOpcode == ISD::SIGN_EXTEND && VT == MVT::i32))
43347     return SDValue();
43348 
43349   // If this a zero extend to i64, we should only extend to i32 and use a free
43350   // zero extend to finish.
43351   EVT ExtendVT = TargetVT;
43352   if (TargetVT == MVT::i64 && ExtendOpcode != ISD::SIGN_EXTEND)
43353     ExtendVT = MVT::i32;
43354 
43355   CMovOp0 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp0);
43356   CMovOp1 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp1);
43357 
43358   SDValue Res = DAG.getNode(X86ISD::CMOV, DL, ExtendVT, CMovOp0, CMovOp1,
43359                             CMovN.getOperand(2), CMovN.getOperand(3));
43360 
43361   // Finish extending if needed.
43362   if (ExtendVT != TargetVT)
43363     Res = DAG.getNode(ExtendOpcode, DL, TargetVT, Res);
43364 
43365   return Res;
43366 }
43367 
43368 // Convert (vXiY *ext(vXi1 bitcast(iX))) to extend_in_reg(broadcast(iX)).
43369 // This is more or less the reverse of combineBitcastvxi1.
43370 static SDValue
43371 combineToExtendBoolVectorInReg(SDNode *N, SelectionDAG &DAG,
43372                                TargetLowering::DAGCombinerInfo &DCI,
43373                                const X86Subtarget &Subtarget) {
43374   unsigned Opcode = N->getOpcode();
43375   if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND &&
43376       Opcode != ISD::ANY_EXTEND)
43377     return SDValue();
43378   if (!DCI.isBeforeLegalizeOps())
43379     return SDValue();
43380   if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
43381     return SDValue();
43382 
43383   SDValue N0 = N->getOperand(0);
43384   EVT VT = N->getValueType(0);
43385   EVT SVT = VT.getScalarType();
43386   EVT InSVT = N0.getValueType().getScalarType();
43387   unsigned EltSizeInBits = SVT.getSizeInBits();
43388 
43389   // Input type must be extending a bool vector (bit-casted from a scalar
43390   // integer) to legal integer types.
43391   if (!VT.isVector())
43392     return SDValue();
43393   if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16 && SVT != MVT::i8)
43394     return SDValue();
43395   if (InSVT != MVT::i1 || N0.getOpcode() != ISD::BITCAST)
43396     return SDValue();
43397 
43398   SDValue N00 = N0.getOperand(0);
43399   EVT SclVT = N0.getOperand(0).getValueType();
43400   if (!SclVT.isScalarInteger())
43401     return SDValue();
43402 
43403   SDLoc DL(N);
43404   SDValue Vec;
43405   SmallVector<int, 32> ShuffleMask;
43406   unsigned NumElts = VT.getVectorNumElements();
43407   assert(NumElts == SclVT.getSizeInBits() && "Unexpected bool vector size");
43408 
43409   // Broadcast the scalar integer to the vector elements.
43410   if (NumElts > EltSizeInBits) {
43411     // If the scalar integer is greater than the vector element size, then we
43412     // must split it down into sub-sections for broadcasting. For example:
43413     //   i16 -> v16i8 (i16 -> v8i16 -> v16i8) with 2 sub-sections.
43414     //   i32 -> v32i8 (i32 -> v8i32 -> v32i8) with 4 sub-sections.
43415     assert((NumElts % EltSizeInBits) == 0 && "Unexpected integer scale");
43416     unsigned Scale = NumElts / EltSizeInBits;
43417     EVT BroadcastVT =
43418         EVT::getVectorVT(*DAG.getContext(), SclVT, EltSizeInBits);
43419     Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, BroadcastVT, N00);
43420     Vec = DAG.getBitcast(VT, Vec);
43421 
43422     for (unsigned i = 0; i != Scale; ++i)
43423       ShuffleMask.append(EltSizeInBits, i);
43424   } else {
43425     // For smaller scalar integers, we can simply any-extend it to the vector
43426     // element size (we don't care about the upper bits) and broadcast it to all
43427     // elements.
43428     SDValue Scl = DAG.getAnyExtOrTrunc(N00, DL, SVT);
43429     Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
43430     ShuffleMask.append(NumElts, 0);
43431   }
43432   Vec = DAG.getVectorShuffle(VT, DL, Vec, Vec, ShuffleMask);
43433 
43434   // Now, mask the relevant bit in each element.
43435   SmallVector<SDValue, 32> Bits;
43436   for (unsigned i = 0; i != NumElts; ++i) {
43437     int BitIdx = (i % EltSizeInBits);
43438     APInt Bit = APInt::getBitsSet(EltSizeInBits, BitIdx, BitIdx + 1);
43439     Bits.push_back(DAG.getConstant(Bit, DL, SVT));
43440   }
43441   SDValue BitMask = DAG.getBuildVector(VT, DL, Bits);
43442   Vec = DAG.getNode(ISD::AND, DL, VT, Vec, BitMask);
43443 
43444   // Compare against the bitmask and extend the result.
43445   EVT CCVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts);
43446   Vec = DAG.getSetCC(DL, CCVT, Vec, BitMask, ISD::SETEQ);
43447   Vec = DAG.getSExtOrTrunc(Vec, DL, VT);
43448 
43449   // For SEXT, this is now done, otherwise shift the result down for
43450   // zero-extension.
43451   if (Opcode == ISD::SIGN_EXTEND)
43452     return Vec;
43453   return DAG.getNode(ISD::SRL, DL, VT, Vec,
43454                      DAG.getConstant(EltSizeInBits - 1, DL, VT));
43455 }
43456 
43457 // Attempt to combine a (sext/zext (setcc)) to a setcc with a xmm/ymm/zmm
43458 // result type.
43459 static SDValue combineExtSetcc(SDNode *N, SelectionDAG &DAG,
43460                                const X86Subtarget &Subtarget) {
43461   SDValue N0 = N->getOperand(0);
43462   EVT VT = N->getValueType(0);
43463   SDLoc dl(N);
43464 
43465   // Only do this combine with AVX512 for vector extends.
43466   if (!Subtarget.hasAVX512() || !VT.isVector() || N0.getOpcode() != ISD::SETCC)
43467     return SDValue();
43468 
43469   // Only combine legal element types.
43470   EVT SVT = VT.getVectorElementType();
43471   if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32 &&
43472       SVT != MVT::i64 && SVT != MVT::f32 && SVT != MVT::f64)
43473     return SDValue();
43474 
43475   // We can only do this if the vector size in 256 bits or less.
43476   unsigned Size = VT.getSizeInBits();
43477   if (Size > 256)
43478     return SDValue();
43479 
43480   // Don't fold if the condition code can't be handled by PCMPEQ/PCMPGT since
43481   // that's the only integer compares with we have.
43482   ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
43483   if (ISD::isUnsignedIntSetCC(CC))
43484     return SDValue();
43485 
43486   // Only do this combine if the extension will be fully consumed by the setcc.
43487   EVT N00VT = N0.getOperand(0).getValueType();
43488   EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
43489   if (Size != MatchingVecType.getSizeInBits())
43490     return SDValue();
43491 
43492   SDValue Res = DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
43493 
43494   if (N->getOpcode() == ISD::ZERO_EXTEND)
43495     Res = DAG.getZeroExtendInReg(Res, dl, N0.getValueType().getScalarType());
43496 
43497   return Res;
43498 }
43499 
43500 static SDValue combineSext(SDNode *N, SelectionDAG &DAG,
43501                            TargetLowering::DAGCombinerInfo &DCI,
43502                            const X86Subtarget &Subtarget) {
43503   SDValue N0 = N->getOperand(0);
43504   EVT VT = N->getValueType(0);
43505   EVT InVT = N0.getValueType();
43506   SDLoc DL(N);
43507 
43508   if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
43509     return NewCMov;
43510 
43511   if (!DCI.isBeforeLegalizeOps())
43512     return SDValue();
43513 
43514   if (SDValue V = combineExtSetcc(N, DAG, Subtarget))
43515     return V;
43516 
43517   if (InVT == MVT::i1 && N0.getOpcode() == ISD::XOR &&
43518       isAllOnesConstant(N0.getOperand(1)) && N0.hasOneUse()) {
43519     // Invert and sign-extend a boolean is the same as zero-extend and subtract
43520     // 1 because 0 becomes -1 and 1 becomes 0. The subtract is efficiently
43521     // lowered with an LEA or a DEC. This is the same as: select Bool, 0, -1.
43522     // sext (xor Bool, -1) --> sub (zext Bool), 1
43523     SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
43524     return DAG.getNode(ISD::SUB, DL, VT, Zext, DAG.getConstant(1, DL, VT));
43525   }
43526 
43527   if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
43528     return V;
43529 
43530   if (VT.isVector())
43531     if (SDValue R = PromoteMaskArithmetic(N, DAG, Subtarget))
43532       return R;
43533 
43534   if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
43535     return NewAdd;
43536 
43537   return SDValue();
43538 }
43539 
43540 static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
43541                           TargetLowering::DAGCombinerInfo &DCI,
43542                           const X86Subtarget &Subtarget) {
43543   SDLoc dl(N);
43544   EVT VT = N->getValueType(0);
43545 
43546   // Let legalize expand this if it isn't a legal type yet.
43547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
43548   if (!TLI.isTypeLegal(VT))
43549     return SDValue();
43550 
43551   EVT ScalarVT = VT.getScalarType();
43552   if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
43553     return SDValue();
43554 
43555   SDValue A = N->getOperand(0);
43556   SDValue B = N->getOperand(1);
43557   SDValue C = N->getOperand(2);
43558 
43559   auto invertIfNegative = [&DAG, &TLI, &DCI](SDValue &V) {
43560     bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
43561     bool LegalOperations = !DCI.isBeforeLegalizeOps();
43562     if (TLI.isNegatibleForFree(V, DAG, LegalOperations, CodeSize) == 2) {
43563       V = TLI.getNegatedExpression(V, DAG, LegalOperations, CodeSize);
43564       return true;
43565     }
43566     // Look through extract_vector_elts. If it comes from an FNEG, create a
43567     // new extract from the FNEG input.
43568     if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
43569         isNullConstant(V.getOperand(1))) {
43570       SDValue Vec = V.getOperand(0);
43571       if (TLI.isNegatibleForFree(Vec, DAG, LegalOperations, CodeSize) == 2) {
43572         SDValue NegVal =
43573             TLI.getNegatedExpression(Vec, DAG, LegalOperations, CodeSize);
43574         V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), V.getValueType(),
43575                         NegVal, V.getOperand(1));
43576         return true;
43577       }
43578     }
43579 
43580     return false;
43581   };
43582 
43583   // Do not convert the passthru input of scalar intrinsics.
43584   // FIXME: We could allow negations of the lower element only.
43585   bool NegA = invertIfNegative(A);
43586   bool NegB = invertIfNegative(B);
43587   bool NegC = invertIfNegative(C);
43588 
43589   if (!NegA && !NegB && !NegC)
43590     return SDValue();
43591 
43592   unsigned NewOpcode =
43593       negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC, false);
43594 
43595   if (N->getNumOperands() == 4)
43596     return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3));
43597   return DAG.getNode(NewOpcode, dl, VT, A, B, C);
43598 }
43599 
43600 // Combine FMADDSUB(A, B, FNEG(C)) -> FMSUBADD(A, B, C)
43601 // Combine FMSUBADD(A, B, FNEG(C)) -> FMADDSUB(A, B, C)
43602 static SDValue combineFMADDSUB(SDNode *N, SelectionDAG &DAG,
43603                                TargetLowering::DAGCombinerInfo &DCI) {
43604   SDLoc dl(N);
43605   EVT VT = N->getValueType(0);
43606   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
43607   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
43608   bool LegalOperations = !DCI.isBeforeLegalizeOps();
43609 
43610   SDValue N2 = N->getOperand(2);
43611   if (TLI.isNegatibleForFree(N2, DAG, LegalOperations, CodeSize) != 2)
43612     return SDValue();
43613 
43614   SDValue NegN2 = TLI.getNegatedExpression(N2, DAG, LegalOperations, CodeSize);
43615   unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), false, true, false);
43616 
43617   if (N->getNumOperands() == 4)
43618     return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
43619                        NegN2, N->getOperand(3));
43620   return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
43621                      NegN2);
43622 }
43623 
43624 static SDValue combineZext(SDNode *N, SelectionDAG &DAG,
43625                            TargetLowering::DAGCombinerInfo &DCI,
43626                            const X86Subtarget &Subtarget) {
43627   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
43628   //           (and (i32 x86isd::setcc_carry), 1)
43629   // This eliminates the zext. This transformation is necessary because
43630   // ISD::SETCC is always legalized to i8.
43631   SDLoc dl(N);
43632   SDValue N0 = N->getOperand(0);
43633   EVT VT = N->getValueType(0);
43634 
43635   if (N0.getOpcode() == ISD::AND &&
43636       N0.hasOneUse() &&
43637       N0.getOperand(0).hasOneUse()) {
43638     SDValue N00 = N0.getOperand(0);
43639     if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
43640       if (!isOneConstant(N0.getOperand(1)))
43641         return SDValue();
43642       return DAG.getNode(ISD::AND, dl, VT,
43643                          DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
43644                                      N00.getOperand(0), N00.getOperand(1)),
43645                          DAG.getConstant(1, dl, VT));
43646     }
43647   }
43648 
43649   if (N0.getOpcode() == ISD::TRUNCATE &&
43650       N0.hasOneUse() &&
43651       N0.getOperand(0).hasOneUse()) {
43652     SDValue N00 = N0.getOperand(0);
43653     if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
43654       return DAG.getNode(ISD::AND, dl, VT,
43655                          DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
43656                                      N00.getOperand(0), N00.getOperand(1)),
43657                          DAG.getConstant(1, dl, VT));
43658     }
43659   }
43660 
43661   if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
43662     return NewCMov;
43663 
43664   if (DCI.isBeforeLegalizeOps())
43665     if (SDValue V = combineExtSetcc(N, DAG, Subtarget))
43666       return V;
43667 
43668   if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
43669     return V;
43670 
43671   if (VT.isVector())
43672     if (SDValue R = PromoteMaskArithmetic(N, DAG, Subtarget))
43673       return R;
43674 
43675   if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
43676     return NewAdd;
43677 
43678   if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget))
43679     return R;
43680 
43681   // TODO: Combine with any target/faux shuffle.
43682   if (N0.getOpcode() == X86ISD::PACKUS && N0.getValueSizeInBits() == 128 &&
43683       VT.getScalarSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits()) {
43684     SDValue N00 = N0.getOperand(0);
43685     SDValue N01 = N0.getOperand(1);
43686     unsigned NumSrcEltBits = N00.getScalarValueSizeInBits();
43687     APInt ZeroMask = APInt::getHighBitsSet(NumSrcEltBits, NumSrcEltBits / 2);
43688     if ((N00.isUndef() || DAG.MaskedValueIsZero(N00, ZeroMask)) &&
43689         (N01.isUndef() || DAG.MaskedValueIsZero(N01, ZeroMask))) {
43690       return concatSubVectors(N00, N01, DAG, dl);
43691     }
43692   }
43693 
43694   return SDValue();
43695 }
43696 
43697 /// Recursive helper for combineVectorSizedSetCCEquality() to see if we have a
43698 /// recognizable memcmp expansion.
43699 static bool isOrXorXorTree(SDValue X, bool Root = true) {
43700   if (X.getOpcode() == ISD::OR)
43701     return isOrXorXorTree(X.getOperand(0), false) &&
43702            isOrXorXorTree(X.getOperand(1), false);
43703   if (Root)
43704     return false;
43705   return X.getOpcode() == ISD::XOR;
43706 }
43707 
43708 /// Recursive helper for combineVectorSizedSetCCEquality() to emit the memcmp
43709 /// expansion.
43710 template<typename F>
43711 static SDValue emitOrXorXorTree(SDValue X, SDLoc &DL, SelectionDAG &DAG,
43712                                 EVT VecVT, EVT CmpVT, bool HasPT, F SToV) {
43713   SDValue Op0 = X.getOperand(0);
43714   SDValue Op1 = X.getOperand(1);
43715   if (X.getOpcode() == ISD::OR) {
43716     SDValue A = emitOrXorXorTree(Op0, DL, DAG, VecVT, CmpVT, HasPT, SToV);
43717     SDValue B = emitOrXorXorTree(Op1, DL, DAG, VecVT, CmpVT, HasPT, SToV);
43718     if (VecVT != CmpVT)
43719       return DAG.getNode(ISD::OR, DL, CmpVT, A, B);
43720     if (HasPT)
43721       return DAG.getNode(ISD::OR, DL, VecVT, A, B);
43722     return DAG.getNode(ISD::AND, DL, CmpVT, A, B);
43723   } else if (X.getOpcode() == ISD::XOR) {
43724     SDValue A = SToV(Op0);
43725     SDValue B = SToV(Op1);
43726     if (VecVT != CmpVT)
43727       return DAG.getSetCC(DL, CmpVT, A, B, ISD::SETNE);
43728     if (HasPT)
43729       return DAG.getNode(ISD::XOR, DL, VecVT, A, B);
43730     return DAG.getSetCC(DL, CmpVT, A, B, ISD::SETEQ);
43731   }
43732   llvm_unreachable("Impossible");
43733 }
43734 
43735 /// Try to map a 128-bit or larger integer comparison to vector instructions
43736 /// before type legalization splits it up into chunks.
43737 static SDValue combineVectorSizedSetCCEquality(SDNode *SetCC, SelectionDAG &DAG,
43738                                                const X86Subtarget &Subtarget) {
43739   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
43740   assert((CC == ISD::SETNE || CC == ISD::SETEQ) && "Bad comparison predicate");
43741 
43742   // We're looking for an oversized integer equality comparison.
43743   SDValue X = SetCC->getOperand(0);
43744   SDValue Y = SetCC->getOperand(1);
43745   EVT OpVT = X.getValueType();
43746   unsigned OpSize = OpVT.getSizeInBits();
43747   if (!OpVT.isScalarInteger() || OpSize < 128)
43748     return SDValue();
43749 
43750   // Ignore a comparison with zero because that gets special treatment in
43751   // EmitTest(). But make an exception for the special case of a pair of
43752   // logically-combined vector-sized operands compared to zero. This pattern may
43753   // be generated by the memcmp expansion pass with oversized integer compares
43754   // (see PR33325).
43755   bool IsOrXorXorTreeCCZero = isNullConstant(Y) && isOrXorXorTree(X);
43756   if (isNullConstant(Y) && !IsOrXorXorTreeCCZero)
43757     return SDValue();
43758 
43759   // Don't perform this combine if constructing the vector will be expensive.
43760   auto IsVectorBitCastCheap = [](SDValue X) {
43761     X = peekThroughBitcasts(X);
43762     return isa<ConstantSDNode>(X) || X.getValueType().isVector() ||
43763            X.getOpcode() == ISD::LOAD;
43764   };
43765   if ((!IsVectorBitCastCheap(X) || !IsVectorBitCastCheap(Y)) &&
43766       !IsOrXorXorTreeCCZero)
43767     return SDValue();
43768 
43769   EVT VT = SetCC->getValueType(0);
43770   SDLoc DL(SetCC);
43771   bool HasAVX = Subtarget.hasAVX();
43772 
43773   // Use XOR (plus OR) and PTEST after SSE4.1 for 128/256-bit operands.
43774   // Use PCMPNEQ (plus OR) and KORTEST for 512-bit operands.
43775   // Otherwise use PCMPEQ (plus AND) and mask testing.
43776   if ((OpSize == 128 && Subtarget.hasSSE2()) ||
43777       (OpSize == 256 && HasAVX) ||
43778       (OpSize == 512 && Subtarget.useAVX512Regs())) {
43779     bool HasPT = Subtarget.hasSSE41();
43780 
43781     // PTEST and MOVMSK are slow on Knights Landing and Knights Mill and widened
43782     // vector registers are essentially free. (Technically, widening registers
43783     // prevents load folding, but the tradeoff is worth it.)
43784     bool PreferKOT = Subtarget.preferMaskRegisters();
43785     bool NeedZExt = PreferKOT && !Subtarget.hasVLX() && OpSize != 512;
43786 
43787     EVT VecVT = MVT::v16i8;
43788     EVT CmpVT = PreferKOT ? MVT::v16i1 : VecVT;
43789     if (OpSize == 256) {
43790       VecVT = MVT::v32i8;
43791       CmpVT = PreferKOT ? MVT::v32i1 : VecVT;
43792     }
43793     EVT CastVT = VecVT;
43794     bool NeedsAVX512FCast = false;
43795     if (OpSize == 512 || NeedZExt) {
43796       if (Subtarget.hasBWI()) {
43797         VecVT = MVT::v64i8;
43798         CmpVT = MVT::v64i1;
43799         if (OpSize == 512)
43800           CastVT = VecVT;
43801       } else {
43802         VecVT = MVT::v16i32;
43803         CmpVT = MVT::v16i1;
43804         CastVT = OpSize == 512 ? VecVT :
43805                  OpSize == 256 ? MVT::v8i32 : MVT::v4i32;
43806         NeedsAVX512FCast = true;
43807       }
43808     }
43809 
43810     auto ScalarToVector = [&](SDValue X) -> SDValue {
43811       bool TmpZext = false;
43812       EVT TmpCastVT = CastVT;
43813       if (X.getOpcode() == ISD::ZERO_EXTEND) {
43814         SDValue OrigX = X.getOperand(0);
43815         unsigned OrigSize = OrigX.getScalarValueSizeInBits();
43816         if (OrigSize < OpSize) {
43817           if (OrigSize == 128) {
43818             TmpCastVT = NeedsAVX512FCast ? MVT::v4i32 : MVT::v16i8;
43819             X = OrigX;
43820             TmpZext = true;
43821           } else if (OrigSize == 256) {
43822             TmpCastVT = NeedsAVX512FCast ? MVT::v8i32 : MVT::v32i8;
43823             X = OrigX;
43824             TmpZext = true;
43825           }
43826         }
43827       }
43828       X = DAG.getBitcast(TmpCastVT, X);
43829       if (!NeedZExt && !TmpZext)
43830         return X;
43831       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
43832       MVT VecIdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
43833       return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT,
43834                          DAG.getConstant(0, DL, VecVT), X,
43835                          DAG.getConstant(0, DL, VecIdxVT));
43836     };
43837 
43838     SDValue Cmp;
43839     if (IsOrXorXorTreeCCZero) {
43840       // This is a bitwise-combined equality comparison of 2 pairs of vectors:
43841       // setcc i128 (or (xor A, B), (xor C, D)), 0, eq|ne
43842       // Use 2 vector equality compares and 'and' the results before doing a
43843       // MOVMSK.
43844       Cmp = emitOrXorXorTree(X, DL, DAG, VecVT, CmpVT, HasPT, ScalarToVector);
43845     } else {
43846       SDValue VecX = ScalarToVector(X);
43847       SDValue VecY = ScalarToVector(Y);
43848       if (VecVT != CmpVT) {
43849         Cmp = DAG.getSetCC(DL, CmpVT, VecX, VecY, ISD::SETNE);
43850       } else if (HasPT) {
43851         Cmp = DAG.getNode(ISD::XOR, DL, VecVT, VecX, VecY);
43852       } else {
43853         Cmp = DAG.getSetCC(DL, CmpVT, VecX, VecY, ISD::SETEQ);
43854       }
43855     }
43856     // AVX512 should emit a setcc that will lower to kortest.
43857     if (VecVT != CmpVT) {
43858       EVT KRegVT = CmpVT == MVT::v64i1 ? MVT::i64 :
43859                    CmpVT == MVT::v32i1 ? MVT::i32 : MVT::i16;
43860       return DAG.getSetCC(DL, VT, DAG.getBitcast(KRegVT, Cmp),
43861                           DAG.getConstant(0, DL, KRegVT), CC);
43862     }
43863     if (HasPT) {
43864       SDValue BCCmp = DAG.getBitcast(OpSize == 256 ? MVT::v4i64 : MVT::v2i64,
43865                                      Cmp);
43866       SDValue PT = DAG.getNode(X86ISD::PTEST, DL, MVT::i32, BCCmp, BCCmp);
43867       X86::CondCode X86CC = CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE;
43868       SDValue SetCC = getSETCC(X86CC, PT, DL, DAG);
43869       return DAG.getNode(ISD::TRUNCATE, DL, VT, SetCC.getValue(0));
43870     }
43871     // If all bytes match (bitmask is 0x(FFFF)FFFF), that's equality.
43872     // setcc i128 X, Y, eq --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, eq
43873     // setcc i128 X, Y, ne --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, ne
43874     // setcc i256 X, Y, eq --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, eq
43875     // setcc i256 X, Y, ne --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, ne
43876     SDValue MovMsk = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Cmp);
43877     SDValue FFFFs = DAG.getConstant(OpSize == 128 ? 0xFFFF : 0xFFFFFFFF, DL,
43878                                     MVT::i32);
43879     return DAG.getSetCC(DL, VT, MovMsk, FFFFs, CC);
43880   }
43881 
43882   return SDValue();
43883 }
43884 
43885 static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
43886                             const X86Subtarget &Subtarget) {
43887   const ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
43888   const SDValue LHS = N->getOperand(0);
43889   const SDValue RHS = N->getOperand(1);
43890   EVT VT = N->getValueType(0);
43891   EVT OpVT = LHS.getValueType();
43892   SDLoc DL(N);
43893 
43894   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
43895     // 0-x == y --> x+y == 0
43896     // 0-x != y --> x+y != 0
43897     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
43898         LHS.hasOneUse()) {
43899       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, RHS, LHS.getOperand(1));
43900       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
43901     }
43902     // x == 0-y --> x+y == 0
43903     // x != 0-y --> x+y != 0
43904     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
43905         RHS.hasOneUse()) {
43906       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
43907       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
43908     }
43909 
43910     if (SDValue V = combineVectorSizedSetCCEquality(N, DAG, Subtarget))
43911       return V;
43912   }
43913 
43914   if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
43915       (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
43916     // Using temporaries to avoid messing up operand ordering for later
43917     // transformations if this doesn't work.
43918     SDValue Op0 = LHS;
43919     SDValue Op1 = RHS;
43920     ISD::CondCode TmpCC = CC;
43921     // Put build_vector on the right.
43922     if (Op0.getOpcode() == ISD::BUILD_VECTOR) {
43923       std::swap(Op0, Op1);
43924       TmpCC = ISD::getSetCCSwappedOperands(TmpCC);
43925     }
43926 
43927     bool IsSEXT0 =
43928         (Op0.getOpcode() == ISD::SIGN_EXTEND) &&
43929         (Op0.getOperand(0).getValueType().getVectorElementType() == MVT::i1);
43930     bool IsVZero1 = ISD::isBuildVectorAllZeros(Op1.getNode());
43931 
43932     if (IsSEXT0 && IsVZero1) {
43933       assert(VT == Op0.getOperand(0).getValueType() &&
43934              "Uexpected operand type");
43935       if (TmpCC == ISD::SETGT)
43936         return DAG.getConstant(0, DL, VT);
43937       if (TmpCC == ISD::SETLE)
43938         return DAG.getConstant(1, DL, VT);
43939       if (TmpCC == ISD::SETEQ || TmpCC == ISD::SETGE)
43940         return DAG.getNOT(DL, Op0.getOperand(0), VT);
43941 
43942       assert((TmpCC == ISD::SETNE || TmpCC == ISD::SETLT) &&
43943              "Unexpected condition code!");
43944       return Op0.getOperand(0);
43945     }
43946   }
43947 
43948   // If we have AVX512, but not BWI and this is a vXi16/vXi8 setcc, just
43949   // pre-promote its result type since vXi1 vectors don't get promoted
43950   // during type legalization.
43951   // NOTE: The element count check is to ignore operand types that need to
43952   // go through type promotion to a 128-bit vector.
43953   if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && VT.isVector() &&
43954       VT.getVectorElementType() == MVT::i1 &&
43955       (OpVT.getVectorElementType() == MVT::i8 ||
43956        OpVT.getVectorElementType() == MVT::i16)) {
43957     SDValue Setcc = DAG.getSetCC(DL, OpVT, LHS, RHS, CC);
43958     return DAG.getNode(ISD::TRUNCATE, DL, VT, Setcc);
43959   }
43960 
43961   // For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early
43962   // to avoid scalarization via legalization because v4i32 is not a legal type.
43963   if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 &&
43964       LHS.getValueType() == MVT::v4f32)
43965     return LowerVSETCC(SDValue(N, 0), Subtarget, DAG);
43966 
43967   return SDValue();
43968 }
43969 
43970 static SDValue combineMOVMSK(SDNode *N, SelectionDAG &DAG,
43971                              TargetLowering::DAGCombinerInfo &DCI,
43972                              const X86Subtarget &Subtarget) {
43973   SDValue Src = N->getOperand(0);
43974   MVT SrcVT = Src.getSimpleValueType();
43975   MVT VT = N->getSimpleValueType(0);
43976   unsigned NumBits = VT.getScalarSizeInBits();
43977   unsigned NumElts = SrcVT.getVectorNumElements();
43978 
43979   // Perform constant folding.
43980   if (ISD::isBuildVectorOfConstantSDNodes(Src.getNode())) {
43981     assert(VT == MVT::i32 && "Unexpected result type");
43982     APInt Imm(32, 0);
43983     for (unsigned Idx = 0, e = Src.getNumOperands(); Idx < e; ++Idx) {
43984       if (!Src.getOperand(Idx).isUndef() &&
43985           Src.getConstantOperandAPInt(Idx).isNegative())
43986         Imm.setBit(Idx);
43987     }
43988     return DAG.getConstant(Imm, SDLoc(N), VT);
43989   }
43990 
43991   // Look through int->fp bitcasts that don't change the element width.
43992   unsigned EltWidth = SrcVT.getScalarSizeInBits();
43993   if (Subtarget.hasSSE2() && Src.getOpcode() == ISD::BITCAST &&
43994       Src.getOperand(0).getScalarValueSizeInBits() == EltWidth)
43995     return DAG.getNode(X86ISD::MOVMSK, SDLoc(N), VT, Src.getOperand(0));
43996 
43997   // Fold movmsk(not(x)) -> not(movmsk) to improve folding of movmsk results
43998   // with scalar comparisons.
43999   if (SDValue NotSrc = IsNOT(Src, DAG)) {
44000     SDLoc DL(N);
44001     APInt NotMask = APInt::getLowBitsSet(NumBits, NumElts);
44002     NotSrc = DAG.getBitcast(SrcVT, NotSrc);
44003     return DAG.getNode(ISD::XOR, DL, VT,
44004                        DAG.getNode(X86ISD::MOVMSK, DL, VT, NotSrc),
44005                        DAG.getConstant(NotMask, DL, VT));
44006   }
44007 
44008   // Simplify the inputs.
44009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
44010   APInt DemandedMask(APInt::getAllOnesValue(NumBits));
44011   if (TLI.SimplifyDemandedBits(SDValue(N, 0), DemandedMask, DCI))
44012     return SDValue(N, 0);
44013 
44014   return SDValue();
44015 }
44016 
44017 static SDValue combineX86GatherScatter(SDNode *N, SelectionDAG &DAG,
44018                                        TargetLowering::DAGCombinerInfo &DCI) {
44019   // With vector masks we only demand the upper bit of the mask.
44020   SDValue Mask = cast<X86MaskedGatherScatterSDNode>(N)->getMask();
44021   if (Mask.getScalarValueSizeInBits() != 1) {
44022     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
44023     APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits()));
44024     if (TLI.SimplifyDemandedBits(Mask, DemandedMask, DCI))
44025       return SDValue(N, 0);
44026   }
44027 
44028   return SDValue();
44029 }
44030 
44031 static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG,
44032                                     TargetLowering::DAGCombinerInfo &DCI) {
44033   SDLoc DL(N);
44034   auto *GorS = cast<MaskedGatherScatterSDNode>(N);
44035   SDValue Chain = GorS->getChain();
44036   SDValue Index = GorS->getIndex();
44037   SDValue Mask = GorS->getMask();
44038   SDValue Base = GorS->getBasePtr();
44039   SDValue Scale = GorS->getScale();
44040 
44041   if (DCI.isBeforeLegalize()) {
44042     unsigned IndexWidth = Index.getScalarValueSizeInBits();
44043 
44044     // Shrink constant indices if they are larger than 32-bits.
44045     // Only do this before legalize types since v2i64 could become v2i32.
44046     // FIXME: We could check that the type is legal if we're after legalize
44047     // types, but then we would need to construct test cases where that happens.
44048     // FIXME: We could support more than just constant vectors, but we need to
44049     // careful with costing. A truncate that can be optimized out would be fine.
44050     // Otherwise we might only want to create a truncate if it avoids a split.
44051     if (auto *BV = dyn_cast<BuildVectorSDNode>(Index)) {
44052       if (BV->isConstant() && IndexWidth > 32 &&
44053           DAG.ComputeNumSignBits(Index) > (IndexWidth - 32)) {
44054         unsigned NumElts = Index.getValueType().getVectorNumElements();
44055         EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
44056         Index = DAG.getNode(ISD::TRUNCATE, DL, NewVT, Index);
44057         if (auto *Gather = dyn_cast<MaskedGatherSDNode>(GorS)) {
44058           SDValue Ops[] = { Chain, Gather->getPassThru(),
44059                             Mask, Base, Index, Scale } ;
44060           return DAG.getMaskedGather(Gather->getVTList(),
44061                                      Gather->getMemoryVT(), DL, Ops,
44062                                      Gather->getMemOperand(),
44063                                      Gather->getIndexType());
44064         }
44065         auto *Scatter = cast<MaskedScatterSDNode>(GorS);
44066         SDValue Ops[] = { Chain, Scatter->getValue(),
44067                           Mask, Base, Index, Scale };
44068         return DAG.getMaskedScatter(Scatter->getVTList(),
44069                                     Scatter->getMemoryVT(), DL,
44070                                     Ops, Scatter->getMemOperand(),
44071                                     Scatter->getIndexType());
44072       }
44073     }
44074 
44075     // Shrink any sign/zero extends from 32 or smaller to larger than 32 if
44076     // there are sufficient sign bits. Only do this before legalize types to
44077     // avoid creating illegal types in truncate.
44078     if ((Index.getOpcode() == ISD::SIGN_EXTEND ||
44079          Index.getOpcode() == ISD::ZERO_EXTEND) &&
44080         IndexWidth > 32 &&
44081         Index.getOperand(0).getScalarValueSizeInBits() <= 32 &&
44082         DAG.ComputeNumSignBits(Index) > (IndexWidth - 32)) {
44083       unsigned NumElts = Index.getValueType().getVectorNumElements();
44084       EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
44085       Index = DAG.getNode(ISD::TRUNCATE, DL, NewVT, Index);
44086       if (auto *Gather = dyn_cast<MaskedGatherSDNode>(GorS)) {
44087         SDValue Ops[] = { Chain, Gather->getPassThru(),
44088                           Mask, Base, Index, Scale } ;
44089         return DAG.getMaskedGather(Gather->getVTList(),
44090                                    Gather->getMemoryVT(), DL, Ops,
44091                                    Gather->getMemOperand(),
44092                                    Gather->getIndexType());
44093       }
44094       auto *Scatter = cast<MaskedScatterSDNode>(GorS);
44095       SDValue Ops[] = { Chain, Scatter->getValue(),
44096                         Mask, Base, Index, Scale };
44097       return DAG.getMaskedScatter(Scatter->getVTList(),
44098                                   Scatter->getMemoryVT(), DL,
44099                                   Ops, Scatter->getMemOperand(),
44100                                   Scatter->getIndexType());
44101     }
44102   }
44103 
44104   if (DCI.isBeforeLegalizeOps()) {
44105     unsigned IndexWidth = Index.getScalarValueSizeInBits();
44106 
44107     // Make sure the index is either i32 or i64
44108     if (IndexWidth != 32 && IndexWidth != 64) {
44109       MVT EltVT = IndexWidth > 32 ? MVT::i64 : MVT::i32;
44110       EVT IndexVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
44111                                    Index.getValueType().getVectorNumElements());
44112       Index = DAG.getSExtOrTrunc(Index, DL, IndexVT);
44113       if (auto *Gather = dyn_cast<MaskedGatherSDNode>(GorS)) {
44114         SDValue Ops[] = { Chain, Gather->getPassThru(),
44115                           Mask, Base, Index, Scale } ;
44116         return DAG.getMaskedGather(Gather->getVTList(),
44117                                    Gather->getMemoryVT(), DL, Ops,
44118                                    Gather->getMemOperand(),
44119                                    Gather->getIndexType());
44120       }
44121       auto *Scatter = cast<MaskedScatterSDNode>(GorS);
44122       SDValue Ops[] = { Chain, Scatter->getValue(),
44123                         Mask, Base, Index, Scale };
44124       return DAG.getMaskedScatter(Scatter->getVTList(),
44125                                   Scatter->getMemoryVT(), DL,
44126                                   Ops, Scatter->getMemOperand(),
44127                                   Scatter->getIndexType());
44128     }
44129   }
44130 
44131   // With vector masks we only demand the upper bit of the mask.
44132   if (Mask.getScalarValueSizeInBits() != 1) {
44133     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
44134     APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits()));
44135     if (TLI.SimplifyDemandedBits(Mask, DemandedMask, DCI))
44136       return SDValue(N, 0);
44137   }
44138 
44139   return SDValue();
44140 }
44141 
44142 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
44143 static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG,
44144                                const X86Subtarget &Subtarget) {
44145   SDLoc DL(N);
44146   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
44147   SDValue EFLAGS = N->getOperand(1);
44148 
44149   // Try to simplify the EFLAGS and condition code operands.
44150   if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget))
44151     return getSETCC(CC, Flags, DL, DAG);
44152 
44153   return SDValue();
44154 }
44155 
44156 /// Optimize branch condition evaluation.
44157 static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG,
44158                              const X86Subtarget &Subtarget) {
44159   SDLoc DL(N);
44160   SDValue EFLAGS = N->getOperand(3);
44161   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
44162 
44163   // Try to simplify the EFLAGS and condition code operands.
44164   // Make sure to not keep references to operands, as combineSetCCEFLAGS can
44165   // RAUW them under us.
44166   if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) {
44167     SDValue Cond = DAG.getTargetConstant(CC, DL, MVT::i8);
44168     return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
44169                        N->getOperand(1), Cond, Flags);
44170   }
44171 
44172   return SDValue();
44173 }
44174 
44175 static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N,
44176                                                   SelectionDAG &DAG) {
44177   // Take advantage of vector comparisons producing 0 or -1 in each lane to
44178   // optimize away operation when it's from a constant.
44179   //
44180   // The general transformation is:
44181   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
44182   //       AND(VECTOR_CMP(x,y), constant2)
44183   //    constant2 = UNARYOP(constant)
44184 
44185   // Early exit if this isn't a vector operation, the operand of the
44186   // unary operation isn't a bitwise AND, or if the sizes of the operations
44187   // aren't the same.
44188   EVT VT = N->getValueType(0);
44189   bool IsStrict = N->isStrictFPOpcode();
44190   SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
44191   if (!VT.isVector() || Op0->getOpcode() != ISD::AND ||
44192       Op0->getOperand(0)->getOpcode() != ISD::SETCC ||
44193       VT.getSizeInBits() != Op0.getValueSizeInBits())
44194     return SDValue();
44195 
44196   // Now check that the other operand of the AND is a constant. We could
44197   // make the transformation for non-constant splats as well, but it's unclear
44198   // that would be a benefit as it would not eliminate any operations, just
44199   // perform one more step in scalar code before moving to the vector unit.
44200   if (auto *BV = dyn_cast<BuildVectorSDNode>(Op0.getOperand(1))) {
44201     // Bail out if the vector isn't a constant.
44202     if (!BV->isConstant())
44203       return SDValue();
44204 
44205     // Everything checks out. Build up the new and improved node.
44206     SDLoc DL(N);
44207     EVT IntVT = BV->getValueType(0);
44208     // Create a new constant of the appropriate type for the transformed
44209     // DAG.
44210     SDValue SourceConst;
44211     if (IsStrict)
44212       SourceConst = DAG.getNode(N->getOpcode(), DL, {VT, MVT::Other},
44213                                 {N->getOperand(0), SDValue(BV, 0)});
44214     else
44215       SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
44216     // The AND node needs bitcasts to/from an integer vector type around it.
44217     SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
44218     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, Op0->getOperand(0),
44219                                  MaskConst);
44220     SDValue Res = DAG.getBitcast(VT, NewAnd);
44221     if (IsStrict)
44222       return DAG.getMergeValues({Res, SourceConst.getValue(1)}, DL);
44223     return Res;
44224   }
44225 
44226   return SDValue();
44227 }
44228 
44229 /// If we are converting a value to floating-point, try to replace scalar
44230 /// truncate of an extracted vector element with a bitcast. This tries to keep
44231 /// the sequence on XMM registers rather than moving between vector and GPRs.
44232 static SDValue combineToFPTruncExtElt(SDNode *N, SelectionDAG &DAG) {
44233   // TODO: This is currently only used by combineSIntToFP, but it is generalized
44234   //       to allow being called by any similar cast opcode.
44235   // TODO: Consider merging this into lowering: vectorizeExtractedCast().
44236   SDValue Trunc = N->getOperand(0);
44237   if (!Trunc.hasOneUse() || Trunc.getOpcode() != ISD::TRUNCATE)
44238     return SDValue();
44239 
44240   SDValue ExtElt = Trunc.getOperand(0);
44241   if (!ExtElt.hasOneUse() || ExtElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
44242       !isNullConstant(ExtElt.getOperand(1)))
44243     return SDValue();
44244 
44245   EVT TruncVT = Trunc.getValueType();
44246   EVT SrcVT = ExtElt.getValueType();
44247   unsigned DestWidth = TruncVT.getSizeInBits();
44248   unsigned SrcWidth = SrcVT.getSizeInBits();
44249   if (SrcWidth % DestWidth != 0)
44250     return SDValue();
44251 
44252   // inttofp (trunc (extelt X, 0)) --> inttofp (extelt (bitcast X), 0)
44253   EVT SrcVecVT = ExtElt.getOperand(0).getValueType();
44254   unsigned VecWidth = SrcVecVT.getSizeInBits();
44255   unsigned NumElts = VecWidth / DestWidth;
44256   EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), TruncVT, NumElts);
44257   SDValue BitcastVec = DAG.getBitcast(BitcastVT, ExtElt.getOperand(0));
44258   SDLoc DL(N);
44259   SDValue NewExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TruncVT,
44260                                   BitcastVec, ExtElt.getOperand(1));
44261   return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), NewExtElt);
44262 }
44263 
44264 static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG,
44265                                const X86Subtarget &Subtarget) {
44266   bool IsStrict = N->isStrictFPOpcode();
44267   SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
44268   EVT VT = N->getValueType(0);
44269   EVT InVT = Op0.getValueType();
44270 
44271   // UINT_TO_FP(vXi1) -> SINT_TO_FP(ZEXT(vXi1 to vXi32))
44272   // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
44273   // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
44274   if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) {
44275     SDLoc dl(N);
44276     EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
44277                                  InVT.getVectorNumElements());
44278     SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
44279 
44280     // UINT_TO_FP isn't legal without AVX512 so use SINT_TO_FP.
44281     if (IsStrict)
44282       return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
44283                          {N->getOperand(0), P});
44284     return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
44285   }
44286 
44287   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
44288   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
44289   // the optimization here.
44290   if (DAG.SignBitIsZero(Op0)) {
44291     if (IsStrict)
44292       return DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(N), {VT, MVT::Other},
44293                          {N->getOperand(0), Op0});
44294     return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0);
44295   }
44296 
44297   return SDValue();
44298 }
44299 
44300 static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG,
44301                                TargetLowering::DAGCombinerInfo &DCI,
44302                                const X86Subtarget &Subtarget) {
44303   // First try to optimize away the conversion entirely when it's
44304   // conditionally from a constant. Vectors only.
44305   bool IsStrict = N->isStrictFPOpcode();
44306   if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG))
44307     return Res;
44308 
44309   // Now move on to more general possibilities.
44310   SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
44311   EVT VT = N->getValueType(0);
44312   EVT InVT = Op0.getValueType();
44313 
44314   // SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32))
44315   // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
44316   // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
44317   if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) {
44318     SDLoc dl(N);
44319     EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
44320                                  InVT.getVectorNumElements());
44321     SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
44322     if (IsStrict)
44323       return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
44324                          {N->getOperand(0), P});
44325     return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
44326   }
44327 
44328   // Without AVX512DQ we only support i64 to float scalar conversion. For both
44329   // vectors and scalars, see if we know that the upper bits are all the sign
44330   // bit, in which case we can truncate the input to i32 and convert from that.
44331   if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) {
44332     unsigned BitWidth = InVT.getScalarSizeInBits();
44333     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0);
44334     if (NumSignBits >= (BitWidth - 31)) {
44335       EVT TruncVT = MVT::i32;
44336       if (InVT.isVector())
44337         TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT,
44338                                    InVT.getVectorNumElements());
44339       SDLoc dl(N);
44340       if (DCI.isBeforeLegalize() || TruncVT != MVT::v2i32) {
44341         SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0);
44342         if (IsStrict)
44343           return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
44344                              {N->getOperand(0), Trunc});
44345         return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc);
44346       }
44347       // If we're after legalize and the type is v2i32 we need to shuffle and
44348       // use CVTSI2P.
44349       assert(InVT == MVT::v2i64 && "Unexpected VT!");
44350       SDValue Cast = DAG.getBitcast(MVT::v4i32, Op0);
44351       SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Cast, Cast,
44352                                           { 0, 2, -1, -1 });
44353       if (IsStrict)
44354         return DAG.getNode(X86ISD::STRICT_CVTSI2P, dl, {VT, MVT::Other},
44355                            {N->getOperand(0), Shuf});
44356       return DAG.getNode(X86ISD::CVTSI2P, dl, VT, Shuf);
44357     }
44358   }
44359 
44360   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
44361   // a 32-bit target where SSE doesn't support i64->FP operations.
44362   if (!Subtarget.useSoftFloat() && Subtarget.hasX87() &&
44363       Op0.getOpcode() == ISD::LOAD) {
44364     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
44365     EVT LdVT = Ld->getValueType(0);
44366 
44367     // This transformation is not supported if the result type is f16 or f128.
44368     if (VT == MVT::f16 || VT == MVT::f128)
44369       return SDValue();
44370 
44371     // If we have AVX512DQ we can use packed conversion instructions unless
44372     // the VT is f80.
44373     if (Subtarget.hasDQI() && VT != MVT::f80)
44374       return SDValue();
44375 
44376     if (Ld->isSimple() && !VT.isVector() &&
44377         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
44378         !Subtarget.is64Bit() && LdVT == MVT::i64) {
44379       std::pair<SDValue, SDValue> Tmp = Subtarget.getTargetLowering()->BuildFILD(
44380           SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
44381       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Tmp.second);
44382       return Tmp.first;
44383     }
44384   }
44385 
44386   if (IsStrict)
44387     return SDValue();
44388 
44389   if (SDValue V = combineToFPTruncExtElt(N, DAG))
44390     return V;
44391 
44392   return SDValue();
44393 }
44394 
44395 static bool needCarryOrOverflowFlag(SDValue Flags) {
44396   assert(Flags.getValueType() == MVT::i32 && "Unexpected VT!");
44397 
44398   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
44399          UI != UE; ++UI) {
44400     SDNode *User = *UI;
44401 
44402     X86::CondCode CC;
44403     switch (User->getOpcode()) {
44404     default:
44405       // Be conservative.
44406       return true;
44407     case X86ISD::SETCC:
44408     case X86ISD::SETCC_CARRY:
44409       CC = (X86::CondCode)User->getConstantOperandVal(0);
44410       break;
44411     case X86ISD::BRCOND:
44412       CC = (X86::CondCode)User->getConstantOperandVal(2);
44413       break;
44414     case X86ISD::CMOV:
44415       CC = (X86::CondCode)User->getConstantOperandVal(2);
44416       break;
44417     }
44418 
44419     switch (CC) {
44420     default: break;
44421     case X86::COND_A: case X86::COND_AE:
44422     case X86::COND_B: case X86::COND_BE:
44423     case X86::COND_O: case X86::COND_NO:
44424     case X86::COND_G: case X86::COND_GE:
44425     case X86::COND_L: case X86::COND_LE:
44426       return true;
44427     }
44428   }
44429 
44430   return false;
44431 }
44432 
44433 static bool onlyZeroFlagUsed(SDValue Flags) {
44434   assert(Flags.getValueType() == MVT::i32 && "Unexpected VT!");
44435 
44436   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
44437          UI != UE; ++UI) {
44438     SDNode *User = *UI;
44439 
44440     unsigned CCOpNo;
44441     switch (User->getOpcode()) {
44442     default:
44443       // Be conservative.
44444       return false;
44445     case X86ISD::SETCC:       CCOpNo = 0; break;
44446     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
44447     case X86ISD::BRCOND:      CCOpNo = 2; break;
44448     case X86ISD::CMOV:        CCOpNo = 2; break;
44449     }
44450 
44451     X86::CondCode CC = (X86::CondCode)User->getConstantOperandVal(CCOpNo);
44452     if (CC != X86::COND_E && CC != X86::COND_NE)
44453       return false;
44454   }
44455 
44456   return true;
44457 }
44458 
44459 static SDValue combineCMP(SDNode *N, SelectionDAG &DAG) {
44460   // Only handle test patterns.
44461   if (!isNullConstant(N->getOperand(1)))
44462     return SDValue();
44463 
44464   // If we have a CMP of a truncated binop, see if we can make a smaller binop
44465   // and use its flags directly.
44466   // TODO: Maybe we should try promoting compares that only use the zero flag
44467   // first if we can prove the upper bits with computeKnownBits?
44468   SDLoc dl(N);
44469   SDValue Op = N->getOperand(0);
44470   EVT VT = Op.getValueType();
44471 
44472   // If we have a constant logical shift that's only used in a comparison
44473   // against zero turn it into an equivalent AND. This allows turning it into
44474   // a TEST instruction later.
44475   if ((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) &&
44476       Op.hasOneUse() && isa<ConstantSDNode>(Op.getOperand(1)) &&
44477       onlyZeroFlagUsed(SDValue(N, 0))) {
44478     unsigned BitWidth = VT.getSizeInBits();
44479     const APInt &ShAmt = Op.getConstantOperandAPInt(1);
44480     if (ShAmt.ult(BitWidth)) { // Avoid undefined shifts.
44481       unsigned MaskBits = BitWidth - ShAmt.getZExtValue();
44482       APInt Mask = Op.getOpcode() == ISD::SRL
44483                        ? APInt::getHighBitsSet(BitWidth, MaskBits)
44484                        : APInt::getLowBitsSet(BitWidth, MaskBits);
44485       if (Mask.isSignedIntN(32)) {
44486         Op = DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0),
44487                          DAG.getConstant(Mask, dl, VT));
44488         return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
44489                            DAG.getConstant(0, dl, VT));
44490       }
44491     }
44492   }
44493 
44494   // Look for a truncate with a single use.
44495   if (Op.getOpcode() != ISD::TRUNCATE || !Op.hasOneUse())
44496     return SDValue();
44497 
44498   Op = Op.getOperand(0);
44499 
44500   // Arithmetic op can only have one use.
44501   if (!Op.hasOneUse())
44502     return SDValue();
44503 
44504   unsigned NewOpc;
44505   switch (Op.getOpcode()) {
44506   default: return SDValue();
44507   case ISD::AND:
44508     // Skip and with constant. We have special handling for and with immediate
44509     // during isel to generate test instructions.
44510     if (isa<ConstantSDNode>(Op.getOperand(1)))
44511       return SDValue();
44512     NewOpc = X86ISD::AND;
44513     break;
44514   case ISD::OR:  NewOpc = X86ISD::OR;  break;
44515   case ISD::XOR: NewOpc = X86ISD::XOR; break;
44516   case ISD::ADD:
44517     // If the carry or overflow flag is used, we can't truncate.
44518     if (needCarryOrOverflowFlag(SDValue(N, 0)))
44519       return SDValue();
44520     NewOpc = X86ISD::ADD;
44521     break;
44522   case ISD::SUB:
44523     // If the carry or overflow flag is used, we can't truncate.
44524     if (needCarryOrOverflowFlag(SDValue(N, 0)))
44525       return SDValue();
44526     NewOpc = X86ISD::SUB;
44527     break;
44528   }
44529 
44530   // We found an op we can narrow. Truncate its inputs.
44531   SDValue Op0 = DAG.getNode(ISD::TRUNCATE, dl, VT, Op.getOperand(0));
44532   SDValue Op1 = DAG.getNode(ISD::TRUNCATE, dl, VT, Op.getOperand(1));
44533 
44534   // Use a X86 specific opcode to avoid DAG combine messing with it.
44535   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
44536   Op = DAG.getNode(NewOpc, dl, VTs, Op0, Op1);
44537 
44538   // For AND, keep a CMP so that we can match the test pattern.
44539   if (NewOpc == X86ISD::AND)
44540     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
44541                        DAG.getConstant(0, dl, VT));
44542 
44543   // Return the flags.
44544   return Op.getValue(1);
44545 }
44546 
44547 static SDValue combineX86AddSub(SDNode *N, SelectionDAG &DAG,
44548                                 TargetLowering::DAGCombinerInfo &DCI) {
44549   assert((X86ISD::ADD == N->getOpcode() || X86ISD::SUB == N->getOpcode()) &&
44550          "Expected X86ISD::ADD or X86ISD::SUB");
44551 
44552   SDLoc DL(N);
44553   SDValue LHS = N->getOperand(0);
44554   SDValue RHS = N->getOperand(1);
44555   MVT VT = LHS.getSimpleValueType();
44556   unsigned GenericOpc = X86ISD::ADD == N->getOpcode() ? ISD::ADD : ISD::SUB;
44557 
44558   // If we don't use the flag result, simplify back to a generic ADD/SUB.
44559   if (!N->hasAnyUseOfValue(1)) {
44560     SDValue Res = DAG.getNode(GenericOpc, DL, VT, LHS, RHS);
44561     return DAG.getMergeValues({Res, DAG.getConstant(0, DL, MVT::i32)}, DL);
44562   }
44563 
44564   // Fold any similar generic ADD/SUB opcodes to reuse this node.
44565   auto MatchGeneric = [&](SDValue N0, SDValue N1, bool Negate) {
44566     SDValue Ops[] = {N0, N1};
44567     SDVTList VTs = DAG.getVTList(N->getValueType(0));
44568     if (SDNode *GenericAddSub = DAG.getNodeIfExists(GenericOpc, VTs, Ops)) {
44569       SDValue Op(N, 0);
44570       if (Negate)
44571         Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
44572       DCI.CombineTo(GenericAddSub, Op);
44573     }
44574   };
44575   MatchGeneric(LHS, RHS, false);
44576   MatchGeneric(RHS, LHS, X86ISD::SUB == N->getOpcode());
44577 
44578   return SDValue();
44579 }
44580 
44581 static SDValue combineSBB(SDNode *N, SelectionDAG &DAG) {
44582   if (SDValue Flags = combineCarryThroughADD(N->getOperand(2), DAG)) {
44583     MVT VT = N->getSimpleValueType(0);
44584     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
44585     return DAG.getNode(X86ISD::SBB, SDLoc(N), VTs,
44586                        N->getOperand(0), N->getOperand(1),
44587                        Flags);
44588   }
44589 
44590   // Fold SBB(SUB(X,Y),0,Carry) -> SBB(X,Y,Carry)
44591   // iff the flag result is dead.
44592   SDValue Op0 = N->getOperand(0);
44593   SDValue Op1 = N->getOperand(1);
44594   if (Op0.getOpcode() == ISD::SUB && isNullConstant(Op1) &&
44595       !N->hasAnyUseOfValue(1))
44596     return DAG.getNode(X86ISD::SBB, SDLoc(N), N->getVTList(), Op0.getOperand(0),
44597                        Op0.getOperand(1), N->getOperand(2));
44598 
44599   return SDValue();
44600 }
44601 
44602 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
44603 static SDValue combineADC(SDNode *N, SelectionDAG &DAG,
44604                           TargetLowering::DAGCombinerInfo &DCI) {
44605   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
44606   // the result is either zero or one (depending on the input carry bit).
44607   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
44608   if (X86::isZeroNode(N->getOperand(0)) &&
44609       X86::isZeroNode(N->getOperand(1)) &&
44610       // We don't have a good way to replace an EFLAGS use, so only do this when
44611       // dead right now.
44612       SDValue(N, 1).use_empty()) {
44613     SDLoc DL(N);
44614     EVT VT = N->getValueType(0);
44615     SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
44616     SDValue Res1 =
44617         DAG.getNode(ISD::AND, DL, VT,
44618                     DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
44619                                 DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
44620                                 N->getOperand(2)),
44621                     DAG.getConstant(1, DL, VT));
44622     return DCI.CombineTo(N, Res1, CarryOut);
44623   }
44624 
44625   if (SDValue Flags = combineCarryThroughADD(N->getOperand(2), DAG)) {
44626     MVT VT = N->getSimpleValueType(0);
44627     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
44628     return DAG.getNode(X86ISD::ADC, SDLoc(N), VTs,
44629                        N->getOperand(0), N->getOperand(1),
44630                        Flags);
44631   }
44632 
44633   return SDValue();
44634 }
44635 
44636 /// If this is an add or subtract where one operand is produced by a cmp+setcc,
44637 /// then try to convert it to an ADC or SBB. This replaces TEST+SET+{ADD/SUB}
44638 /// with CMP+{ADC, SBB}.
44639 static SDValue combineAddOrSubToADCOrSBB(SDNode *N, SelectionDAG &DAG) {
44640   bool IsSub = N->getOpcode() == ISD::SUB;
44641   SDValue X = N->getOperand(0);
44642   SDValue Y = N->getOperand(1);
44643 
44644   // If this is an add, canonicalize a zext operand to the RHS.
44645   // TODO: Incomplete? What if both sides are zexts?
44646   if (!IsSub && X.getOpcode() == ISD::ZERO_EXTEND &&
44647       Y.getOpcode() != ISD::ZERO_EXTEND)
44648     std::swap(X, Y);
44649 
44650   // Look through a one-use zext.
44651   bool PeekedThroughZext = false;
44652   if (Y.getOpcode() == ISD::ZERO_EXTEND && Y.hasOneUse()) {
44653     Y = Y.getOperand(0);
44654     PeekedThroughZext = true;
44655   }
44656 
44657   // If this is an add, canonicalize a setcc operand to the RHS.
44658   // TODO: Incomplete? What if both sides are setcc?
44659   // TODO: Should we allow peeking through a zext of the other operand?
44660   if (!IsSub && !PeekedThroughZext && X.getOpcode() == X86ISD::SETCC &&
44661       Y.getOpcode() != X86ISD::SETCC)
44662     std::swap(X, Y);
44663 
44664   if (Y.getOpcode() != X86ISD::SETCC || !Y.hasOneUse())
44665     return SDValue();
44666 
44667   SDLoc DL(N);
44668   EVT VT = N->getValueType(0);
44669   X86::CondCode CC = (X86::CondCode)Y.getConstantOperandVal(0);
44670 
44671   // If X is -1 or 0, then we have an opportunity to avoid constants required in
44672   // the general case below.
44673   auto *ConstantX = dyn_cast<ConstantSDNode>(X);
44674   if (ConstantX) {
44675     if ((!IsSub && CC == X86::COND_AE && ConstantX->isAllOnesValue()) ||
44676         (IsSub && CC == X86::COND_B && ConstantX->isNullValue())) {
44677       // This is a complicated way to get -1 or 0 from the carry flag:
44678       // -1 + SETAE --> -1 + (!CF) --> CF ? -1 : 0 --> SBB %eax, %eax
44679       //  0 - SETB  -->  0 -  (CF) --> CF ? -1 : 0 --> SBB %eax, %eax
44680       return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
44681                          DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
44682                          Y.getOperand(1));
44683     }
44684 
44685     if ((!IsSub && CC == X86::COND_BE && ConstantX->isAllOnesValue()) ||
44686         (IsSub && CC == X86::COND_A && ConstantX->isNullValue())) {
44687       SDValue EFLAGS = Y->getOperand(1);
44688       if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
44689           EFLAGS.getValueType().isInteger() &&
44690           !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
44691         // Swap the operands of a SUB, and we have the same pattern as above.
44692         // -1 + SETBE (SUB A, B) --> -1 + SETAE (SUB B, A) --> SUB + SBB
44693         //  0 - SETA  (SUB A, B) -->  0 - SETB  (SUB B, A) --> SUB + SBB
44694         SDValue NewSub = DAG.getNode(
44695             X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(),
44696             EFLAGS.getOperand(1), EFLAGS.getOperand(0));
44697         SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
44698         return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
44699                            DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
44700                            NewEFLAGS);
44701       }
44702     }
44703   }
44704 
44705   if (CC == X86::COND_B) {
44706     // X + SETB Z --> adc X, 0
44707     // X - SETB Z --> sbb X, 0
44708     return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL,
44709                        DAG.getVTList(VT, MVT::i32), X,
44710                        DAG.getConstant(0, DL, VT), Y.getOperand(1));
44711   }
44712 
44713   if (CC == X86::COND_A) {
44714     SDValue EFLAGS = Y->getOperand(1);
44715     // Try to convert COND_A into COND_B in an attempt to facilitate
44716     // materializing "setb reg".
44717     //
44718     // Do not flip "e > c", where "c" is a constant, because Cmp instruction
44719     // cannot take an immediate as its first operand.
44720     //
44721     if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.getNode()->hasOneUse() &&
44722         EFLAGS.getValueType().isInteger() &&
44723         !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
44724       SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
44725                                    EFLAGS.getNode()->getVTList(),
44726                                    EFLAGS.getOperand(1), EFLAGS.getOperand(0));
44727       SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
44728       return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL,
44729                          DAG.getVTList(VT, MVT::i32), X,
44730                          DAG.getConstant(0, DL, VT), NewEFLAGS);
44731     }
44732   }
44733 
44734   if (CC != X86::COND_E && CC != X86::COND_NE)
44735     return SDValue();
44736 
44737   SDValue Cmp = Y.getOperand(1);
44738   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
44739       !X86::isZeroNode(Cmp.getOperand(1)) ||
44740       !Cmp.getOperand(0).getValueType().isInteger())
44741     return SDValue();
44742 
44743   SDValue Z = Cmp.getOperand(0);
44744   EVT ZVT = Z.getValueType();
44745 
44746   // If X is -1 or 0, then we have an opportunity to avoid constants required in
44747   // the general case below.
44748   if (ConstantX) {
44749     // 'neg' sets the carry flag when Z != 0, so create 0 or -1 using 'sbb' with
44750     // fake operands:
44751     //  0 - (Z != 0) --> sbb %eax, %eax, (neg Z)
44752     // -1 + (Z == 0) --> sbb %eax, %eax, (neg Z)
44753     if ((IsSub && CC == X86::COND_NE && ConstantX->isNullValue()) ||
44754         (!IsSub && CC == X86::COND_E && ConstantX->isAllOnesValue())) {
44755       SDValue Zero = DAG.getConstant(0, DL, ZVT);
44756       SDVTList X86SubVTs = DAG.getVTList(ZVT, MVT::i32);
44757       SDValue Neg = DAG.getNode(X86ISD::SUB, DL, X86SubVTs, Zero, Z);
44758       return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
44759                          DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
44760                          SDValue(Neg.getNode(), 1));
44761     }
44762 
44763     // cmp with 1 sets the carry flag when Z == 0, so create 0 or -1 using 'sbb'
44764     // with fake operands:
44765     //  0 - (Z == 0) --> sbb %eax, %eax, (cmp Z, 1)
44766     // -1 + (Z != 0) --> sbb %eax, %eax, (cmp Z, 1)
44767     if ((IsSub && CC == X86::COND_E && ConstantX->isNullValue()) ||
44768         (!IsSub && CC == X86::COND_NE && ConstantX->isAllOnesValue())) {
44769       SDValue One = DAG.getConstant(1, DL, ZVT);
44770       SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
44771       return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
44772                          DAG.getTargetConstant(X86::COND_B, DL, MVT::i8), Cmp1);
44773     }
44774   }
44775 
44776   // (cmp Z, 1) sets the carry flag if Z is 0.
44777   SDValue One = DAG.getConstant(1, DL, ZVT);
44778   SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
44779 
44780   // Add the flags type for ADC/SBB nodes.
44781   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
44782 
44783   // X - (Z != 0) --> sub X, (zext(setne Z, 0)) --> adc X, -1, (cmp Z, 1)
44784   // X + (Z != 0) --> add X, (zext(setne Z, 0)) --> sbb X, -1, (cmp Z, 1)
44785   if (CC == X86::COND_NE)
44786     return DAG.getNode(IsSub ? X86ISD::ADC : X86ISD::SBB, DL, VTs, X,
44787                        DAG.getConstant(-1ULL, DL, VT), Cmp1);
44788 
44789   // X - (Z == 0) --> sub X, (zext(sete  Z, 0)) --> sbb X, 0, (cmp Z, 1)
44790   // X + (Z == 0) --> add X, (zext(sete  Z, 0)) --> adc X, 0, (cmp Z, 1)
44791   return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL, VTs, X,
44792                      DAG.getConstant(0, DL, VT), Cmp1);
44793 }
44794 
44795 static SDValue combineLoopMAddPattern(SDNode *N, SelectionDAG &DAG,
44796                                       const X86Subtarget &Subtarget) {
44797   if (!Subtarget.hasSSE2())
44798     return SDValue();
44799 
44800   EVT VT = N->getValueType(0);
44801 
44802   // If the vector size is less than 128, or greater than the supported RegSize,
44803   // do not use PMADD.
44804   if (!VT.isVector() || VT.getVectorNumElements() < 8)
44805     return SDValue();
44806 
44807   SDValue Op0 = N->getOperand(0);
44808   SDValue Op1 = N->getOperand(1);
44809 
44810   auto UsePMADDWD = [&](SDValue Op) {
44811     ShrinkMode Mode;
44812     return Op.getOpcode() == ISD::MUL &&
44813            canReduceVMulWidth(Op.getNode(), DAG, Mode) &&
44814            Mode != ShrinkMode::MULU16 &&
44815            (!Subtarget.hasSSE41() ||
44816             (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
44817              Op->isOnlyUserOf(Op.getOperand(1).getNode())));
44818   };
44819 
44820   SDValue MulOp, OtherOp;
44821   if (UsePMADDWD(Op0)) {
44822     MulOp = Op0;
44823     OtherOp = Op1;
44824   } else if (UsePMADDWD(Op1)) {
44825     MulOp = Op1;
44826     OtherOp = Op0;
44827   } else
44828    return SDValue();
44829 
44830   SDLoc DL(N);
44831   EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
44832                                    VT.getVectorNumElements());
44833   EVT MAddVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
44834                                 VT.getVectorNumElements() / 2);
44835 
44836   // Shrink the operands of mul.
44837   SDValue N0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(0));
44838   SDValue N1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(1));
44839 
44840   // Madd vector size is half of the original vector size
44841   auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
44842                            ArrayRef<SDValue> Ops) {
44843     MVT OpVT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32);
44844     return DAG.getNode(X86ISD::VPMADDWD, DL, OpVT, Ops);
44845   };
44846   SDValue Madd = SplitOpsAndApply(DAG, Subtarget, DL, MAddVT, { N0, N1 },
44847                                   PMADDWDBuilder);
44848   // Fill the rest of the output with 0
44849   SDValue Zero = DAG.getConstant(0, DL, Madd.getSimpleValueType());
44850   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Madd, Zero);
44851 
44852   // Preserve the reduction flag on the ADD. We may need to revisit for the
44853   // other operand.
44854   SDNodeFlags Flags;
44855   Flags.setVectorReduction(true);
44856   return DAG.getNode(ISD::ADD, DL, VT, Concat, OtherOp, Flags);
44857 }
44858 
44859 static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG,
44860                                      const X86Subtarget &Subtarget) {
44861   if (!Subtarget.hasSSE2())
44862     return SDValue();
44863 
44864   SDLoc DL(N);
44865   EVT VT = N->getValueType(0);
44866 
44867   // TODO: There's nothing special about i32, any integer type above i16 should
44868   // work just as well.
44869   if (!VT.isVector() || !VT.isSimple() ||
44870       !(VT.getVectorElementType() == MVT::i32))
44871     return SDValue();
44872 
44873   unsigned RegSize = 128;
44874   if (Subtarget.useBWIRegs())
44875     RegSize = 512;
44876   else if (Subtarget.hasAVX())
44877     RegSize = 256;
44878 
44879   // We only handle v16i32 for SSE2 / v32i32 for AVX / v64i32 for AVX512.
44880   // TODO: We should be able to handle larger vectors by splitting them before
44881   // feeding them into several SADs, and then reducing over those.
44882   if (VT.getSizeInBits() / 4 > RegSize)
44883     return SDValue();
44884 
44885   // We know N is a reduction add. To match SAD, we need one of the operands to
44886   // be an ABS.
44887   SDValue AbsOp = N->getOperand(0);
44888   SDValue OtherOp = N->getOperand(1);
44889   if (AbsOp.getOpcode() != ISD::ABS)
44890     std::swap(AbsOp, OtherOp);
44891   if (AbsOp.getOpcode() != ISD::ABS)
44892     return SDValue();
44893 
44894   // Check whether we have an abs-diff pattern feeding into the select.
44895   SDValue SadOp0, SadOp1;
44896   if(!detectZextAbsDiff(AbsOp, SadOp0, SadOp1))
44897     return SDValue();
44898 
44899   // SAD pattern detected. Now build a SAD instruction and an addition for
44900   // reduction. Note that the number of elements of the result of SAD is less
44901   // than the number of elements of its input. Therefore, we could only update
44902   // part of elements in the reduction vector.
44903   SDValue Sad = createPSADBW(DAG, SadOp0, SadOp1, DL, Subtarget);
44904 
44905   // The output of PSADBW is a vector of i64.
44906   // We need to turn the vector of i64 into a vector of i32.
44907   // If the reduction vector is at least as wide as the psadbw result, just
44908   // bitcast. If it's narrower which can only occur for v2i32, bits 127:16 of
44909   // the PSADBW will be zero. If we promote/ narrow vectors, truncate the v2i64
44910   // result to v2i32 which will be removed by type legalization. If we/ widen
44911   // narrow vectors then we bitcast to v4i32 and extract v2i32.
44912   MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32);
44913   Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad);
44914 
44915   if (VT.getSizeInBits() > ResVT.getSizeInBits()) {
44916     // Fill the upper elements with zero to match the add width.
44917     assert(VT.getSizeInBits() % ResVT.getSizeInBits() == 0 && "Unexpected VTs");
44918     unsigned NumConcats = VT.getSizeInBits() / ResVT.getSizeInBits();
44919     SmallVector<SDValue, 4> Ops(NumConcats, DAG.getConstant(0, DL, ResVT));
44920     Ops[0] = Sad;
44921     Sad = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops);
44922   } else if (VT.getSizeInBits() < ResVT.getSizeInBits()) {
44923     Sad = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Sad,
44924                       DAG.getIntPtrConstant(0, DL));
44925   }
44926 
44927   // Preserve the reduction flag on the ADD. We may need to revisit for the
44928   // other operand.
44929   SDNodeFlags Flags;
44930   Flags.setVectorReduction(true);
44931   return DAG.getNode(ISD::ADD, DL, VT, Sad, OtherOp, Flags);
44932 }
44933 
44934 static SDValue matchPMADDWD(SelectionDAG &DAG, SDValue Op0, SDValue Op1,
44935                             const SDLoc &DL, EVT VT,
44936                             const X86Subtarget &Subtarget) {
44937   // Example of pattern we try to detect:
44938   // t := (v8i32 mul (sext (v8i16 x0), (sext (v8i16 x1))))
44939   //(add (build_vector (extract_elt t, 0),
44940   //                   (extract_elt t, 2),
44941   //                   (extract_elt t, 4),
44942   //                   (extract_elt t, 6)),
44943   //     (build_vector (extract_elt t, 1),
44944   //                   (extract_elt t, 3),
44945   //                   (extract_elt t, 5),
44946   //                   (extract_elt t, 7)))
44947 
44948   if (!Subtarget.hasSSE2())
44949     return SDValue();
44950 
44951   if (Op0.getOpcode() != ISD::BUILD_VECTOR ||
44952       Op1.getOpcode() != ISD::BUILD_VECTOR)
44953     return SDValue();
44954 
44955   if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 ||
44956       VT.getVectorNumElements() < 4 ||
44957       !isPowerOf2_32(VT.getVectorNumElements()))
44958     return SDValue();
44959 
44960   // Check if one of Op0,Op1 is of the form:
44961   // (build_vector (extract_elt Mul, 0),
44962   //               (extract_elt Mul, 2),
44963   //               (extract_elt Mul, 4),
44964   //                   ...
44965   // the other is of the form:
44966   // (build_vector (extract_elt Mul, 1),
44967   //               (extract_elt Mul, 3),
44968   //               (extract_elt Mul, 5),
44969   //                   ...
44970   // and identify Mul.
44971   SDValue Mul;
44972   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; i += 2) {
44973     SDValue Op0L = Op0->getOperand(i), Op1L = Op1->getOperand(i),
44974             Op0H = Op0->getOperand(i + 1), Op1H = Op1->getOperand(i + 1);
44975     // TODO: Be more tolerant to undefs.
44976     if (Op0L.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
44977         Op1L.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
44978         Op0H.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
44979         Op1H.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
44980       return SDValue();
44981     auto *Const0L = dyn_cast<ConstantSDNode>(Op0L->getOperand(1));
44982     auto *Const1L = dyn_cast<ConstantSDNode>(Op1L->getOperand(1));
44983     auto *Const0H = dyn_cast<ConstantSDNode>(Op0H->getOperand(1));
44984     auto *Const1H = dyn_cast<ConstantSDNode>(Op1H->getOperand(1));
44985     if (!Const0L || !Const1L || !Const0H || !Const1H)
44986       return SDValue();
44987     unsigned Idx0L = Const0L->getZExtValue(), Idx1L = Const1L->getZExtValue(),
44988              Idx0H = Const0H->getZExtValue(), Idx1H = Const1H->getZExtValue();
44989     // Commutativity of mul allows factors of a product to reorder.
44990     if (Idx0L > Idx1L)
44991       std::swap(Idx0L, Idx1L);
44992     if (Idx0H > Idx1H)
44993       std::swap(Idx0H, Idx1H);
44994     // Commutativity of add allows pairs of factors to reorder.
44995     if (Idx0L > Idx0H) {
44996       std::swap(Idx0L, Idx0H);
44997       std::swap(Idx1L, Idx1H);
44998     }
44999     if (Idx0L != 2 * i || Idx1L != 2 * i + 1 || Idx0H != 2 * i + 2 ||
45000         Idx1H != 2 * i + 3)
45001       return SDValue();
45002     if (!Mul) {
45003       // First time an extract_elt's source vector is visited. Must be a MUL
45004       // with 2X number of vector elements than the BUILD_VECTOR.
45005       // Both extracts must be from same MUL.
45006       Mul = Op0L->getOperand(0);
45007       if (Mul->getOpcode() != ISD::MUL ||
45008           Mul.getValueType().getVectorNumElements() != 2 * e)
45009         return SDValue();
45010     }
45011     // Check that the extract is from the same MUL previously seen.
45012     if (Mul != Op0L->getOperand(0) || Mul != Op1L->getOperand(0) ||
45013         Mul != Op0H->getOperand(0) || Mul != Op1H->getOperand(0))
45014       return SDValue();
45015   }
45016 
45017   // Check if the Mul source can be safely shrunk.
45018   ShrinkMode Mode;
45019   if (!canReduceVMulWidth(Mul.getNode(), DAG, Mode) ||
45020       Mode == ShrinkMode::MULU16)
45021     return SDValue();
45022 
45023   auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
45024                          ArrayRef<SDValue> Ops) {
45025     // Shrink by adding truncate nodes and let DAGCombine fold with the
45026     // sources.
45027     EVT InVT = Ops[0].getValueType();
45028     assert(InVT.getScalarType() == MVT::i32 &&
45029            "Unexpected scalar element type");
45030     assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
45031     EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
45032                                  InVT.getVectorNumElements() / 2);
45033     EVT TruncVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
45034                                    InVT.getVectorNumElements());
45035     return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT,
45036                        DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[0]),
45037                        DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[1]));
45038   };
45039   return SplitOpsAndApply(DAG, Subtarget, DL, VT,
45040                           { Mul.getOperand(0), Mul.getOperand(1) },
45041                           PMADDBuilder);
45042 }
45043 
45044 // Attempt to turn this pattern into PMADDWD.
45045 // (mul (add (sext (build_vector)), (sext (build_vector))),
45046 //      (add (sext (build_vector)), (sext (build_vector)))
45047 static SDValue matchPMADDWD_2(SelectionDAG &DAG, SDValue N0, SDValue N1,
45048                               const SDLoc &DL, EVT VT,
45049                               const X86Subtarget &Subtarget) {
45050   if (!Subtarget.hasSSE2())
45051     return SDValue();
45052 
45053   if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL)
45054     return SDValue();
45055 
45056   if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 ||
45057       VT.getVectorNumElements() < 4 ||
45058       !isPowerOf2_32(VT.getVectorNumElements()))
45059     return SDValue();
45060 
45061   SDValue N00 = N0.getOperand(0);
45062   SDValue N01 = N0.getOperand(1);
45063   SDValue N10 = N1.getOperand(0);
45064   SDValue N11 = N1.getOperand(1);
45065 
45066   // All inputs need to be sign extends.
45067   // TODO: Support ZERO_EXTEND from known positive?
45068   if (N00.getOpcode() != ISD::SIGN_EXTEND ||
45069       N01.getOpcode() != ISD::SIGN_EXTEND ||
45070       N10.getOpcode() != ISD::SIGN_EXTEND ||
45071       N11.getOpcode() != ISD::SIGN_EXTEND)
45072     return SDValue();
45073 
45074   // Peek through the extends.
45075   N00 = N00.getOperand(0);
45076   N01 = N01.getOperand(0);
45077   N10 = N10.getOperand(0);
45078   N11 = N11.getOperand(0);
45079 
45080   // Must be extending from vXi16.
45081   EVT InVT = N00.getValueType();
45082   if (InVT.getVectorElementType() != MVT::i16 || N01.getValueType() != InVT ||
45083       N10.getValueType() != InVT || N11.getValueType() != InVT)
45084     return SDValue();
45085 
45086   // All inputs should be build_vectors.
45087   if (N00.getOpcode() != ISD::BUILD_VECTOR ||
45088       N01.getOpcode() != ISD::BUILD_VECTOR ||
45089       N10.getOpcode() != ISD::BUILD_VECTOR ||
45090       N11.getOpcode() != ISD::BUILD_VECTOR)
45091     return SDValue();
45092 
45093   // For each element, we need to ensure we have an odd element from one vector
45094   // multiplied by the odd element of another vector and the even element from
45095   // one of the same vectors being multiplied by the even element from the
45096   // other vector. So we need to make sure for each element i, this operator
45097   // is being performed:
45098   //  A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1]
45099   SDValue In0, In1;
45100   for (unsigned i = 0; i != N00.getNumOperands(); ++i) {
45101     SDValue N00Elt = N00.getOperand(i);
45102     SDValue N01Elt = N01.getOperand(i);
45103     SDValue N10Elt = N10.getOperand(i);
45104     SDValue N11Elt = N11.getOperand(i);
45105     // TODO: Be more tolerant to undefs.
45106     if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
45107         N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
45108         N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
45109         N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
45110       return SDValue();
45111     auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1));
45112     auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1));
45113     auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1));
45114     auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1));
45115     if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt)
45116       return SDValue();
45117     unsigned IdxN00 = ConstN00Elt->getZExtValue();
45118     unsigned IdxN01 = ConstN01Elt->getZExtValue();
45119     unsigned IdxN10 = ConstN10Elt->getZExtValue();
45120     unsigned IdxN11 = ConstN11Elt->getZExtValue();
45121     // Add is commutative so indices can be reordered.
45122     if (IdxN00 > IdxN10) {
45123       std::swap(IdxN00, IdxN10);
45124       std::swap(IdxN01, IdxN11);
45125     }
45126     // N0 indices be the even element. N1 indices must be the next odd element.
45127     if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 ||
45128         IdxN01 != 2 * i || IdxN11 != 2 * i + 1)
45129       return SDValue();
45130     SDValue N00In = N00Elt.getOperand(0);
45131     SDValue N01In = N01Elt.getOperand(0);
45132     SDValue N10In = N10Elt.getOperand(0);
45133     SDValue N11In = N11Elt.getOperand(0);
45134     // First time we find an input capture it.
45135     if (!In0) {
45136       In0 = N00In;
45137       In1 = N01In;
45138     }
45139     // Mul is commutative so the input vectors can be in any order.
45140     // Canonicalize to make the compares easier.
45141     if (In0 != N00In)
45142       std::swap(N00In, N01In);
45143     if (In0 != N10In)
45144       std::swap(N10In, N11In);
45145     if (In0 != N00In || In1 != N01In || In0 != N10In || In1 != N11In)
45146       return SDValue();
45147   }
45148 
45149   auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
45150                          ArrayRef<SDValue> Ops) {
45151     // Shrink by adding truncate nodes and let DAGCombine fold with the
45152     // sources.
45153     EVT OpVT = Ops[0].getValueType();
45154     assert(OpVT.getScalarType() == MVT::i16 &&
45155            "Unexpected scalar element type");
45156     assert(OpVT == Ops[1].getValueType() && "Operands' types mismatch");
45157     EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
45158                                  OpVT.getVectorNumElements() / 2);
45159     return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT, Ops[0], Ops[1]);
45160   };
45161   return SplitOpsAndApply(DAG, Subtarget, DL, VT, { In0, In1 },
45162                           PMADDBuilder);
45163 }
45164 
45165 static SDValue combineAdd(SDNode *N, SelectionDAG &DAG,
45166                           TargetLowering::DAGCombinerInfo &DCI,
45167                           const X86Subtarget &Subtarget) {
45168   const SDNodeFlags Flags = N->getFlags();
45169   if (Flags.hasVectorReduction()) {
45170     if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget))
45171       return Sad;
45172     if (SDValue MAdd = combineLoopMAddPattern(N, DAG, Subtarget))
45173       return MAdd;
45174   }
45175   EVT VT = N->getValueType(0);
45176   SDValue Op0 = N->getOperand(0);
45177   SDValue Op1 = N->getOperand(1);
45178 
45179   if (SDValue MAdd = matchPMADDWD(DAG, Op0, Op1, SDLoc(N), VT, Subtarget))
45180     return MAdd;
45181   if (SDValue MAdd = matchPMADDWD_2(DAG, Op0, Op1, SDLoc(N), VT, Subtarget))
45182     return MAdd;
45183 
45184   // Try to synthesize horizontal adds from adds of shuffles.
45185   if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 ||
45186        VT == MVT::v8i32) &&
45187       Subtarget.hasSSSE3() &&
45188       isHorizontalBinOp(Op0, Op1, DAG, Subtarget, true)) {
45189     auto HADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
45190                           ArrayRef<SDValue> Ops) {
45191       return DAG.getNode(X86ISD::HADD, DL, Ops[0].getValueType(), Ops);
45192     };
45193     return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1},
45194                             HADDBuilder);
45195   }
45196 
45197   // If vectors of i1 are legal, turn (add (zext (vXi1 X)), Y) into
45198   // (sub Y, (sext (vXi1 X))).
45199   // FIXME: We have the (sub Y, (zext (vXi1 X))) -> (add (sext (vXi1 X)), Y) in
45200   // generic DAG combine without a legal type check, but adding this there
45201   // caused regressions.
45202   if (VT.isVector()) {
45203     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
45204     if (Op0.getOpcode() == ISD::ZERO_EXTEND &&
45205         Op0.getOperand(0).getValueType().getVectorElementType() == MVT::i1 &&
45206         TLI.isTypeLegal(Op0.getOperand(0).getValueType())) {
45207       SDLoc DL(N);
45208       SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op0.getOperand(0));
45209       return DAG.getNode(ISD::SUB, DL, VT, Op1, SExt);
45210     }
45211 
45212     if (Op1.getOpcode() == ISD::ZERO_EXTEND &&
45213         Op1.getOperand(0).getValueType().getVectorElementType() == MVT::i1 &&
45214         TLI.isTypeLegal(Op1.getOperand(0).getValueType())) {
45215       SDLoc DL(N);
45216       SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op1.getOperand(0));
45217       return DAG.getNode(ISD::SUB, DL, VT, Op0, SExt);
45218     }
45219   }
45220 
45221   return combineAddOrSubToADCOrSBB(N, DAG);
45222 }
45223 
45224 static SDValue combineSubToSubus(SDNode *N, SelectionDAG &DAG,
45225                                  const X86Subtarget &Subtarget) {
45226   SDValue Op0 = N->getOperand(0);
45227   SDValue Op1 = N->getOperand(1);
45228   EVT VT = N->getValueType(0);
45229 
45230   if (!VT.isVector())
45231     return SDValue();
45232 
45233   // PSUBUS is supported, starting from SSE2, but truncation for v8i32
45234   // is only worth it with SSSE3 (PSHUFB).
45235   EVT EltVT = VT.getVectorElementType();
45236   if (!(Subtarget.hasSSE2() && (EltVT == MVT::i8 || EltVT == MVT::i16)) &&
45237       !(Subtarget.hasSSSE3() && (VT == MVT::v8i32 || VT == MVT::v8i64)) &&
45238       !(Subtarget.useBWIRegs() && (VT == MVT::v16i32)))
45239     return SDValue();
45240 
45241   SDValue SubusLHS, SubusRHS;
45242   // Try to find umax(a,b) - b or a - umin(a,b) patterns
45243   // they may be converted to subus(a,b).
45244   // TODO: Need to add IR canonicalization for this code.
45245   if (Op0.getOpcode() == ISD::UMAX) {
45246     SubusRHS = Op1;
45247     SDValue MaxLHS = Op0.getOperand(0);
45248     SDValue MaxRHS = Op0.getOperand(1);
45249     if (MaxLHS == Op1)
45250       SubusLHS = MaxRHS;
45251     else if (MaxRHS == Op1)
45252       SubusLHS = MaxLHS;
45253     else
45254       return SDValue();
45255   } else if (Op1.getOpcode() == ISD::UMIN) {
45256     SubusLHS = Op0;
45257     SDValue MinLHS = Op1.getOperand(0);
45258     SDValue MinRHS = Op1.getOperand(1);
45259     if (MinLHS == Op0)
45260       SubusRHS = MinRHS;
45261     else if (MinRHS == Op0)
45262       SubusRHS = MinLHS;
45263     else
45264       return SDValue();
45265   } else
45266     return SDValue();
45267 
45268   // PSUBUS doesn't support v8i32/v8i64/v16i32, but it can be enabled with
45269   // special preprocessing in some cases.
45270   if (EltVT == MVT::i8 || EltVT == MVT::i16)
45271     return DAG.getNode(ISD::USUBSAT, SDLoc(N), VT, SubusLHS, SubusRHS);
45272 
45273   assert((VT == MVT::v8i32 || VT == MVT::v16i32 || VT == MVT::v8i64) &&
45274          "Unexpected VT!");
45275 
45276   // Special preprocessing case can be only applied
45277   // if the value was zero extended from 16 bit,
45278   // so we require first 16 bits to be zeros for 32 bit
45279   // values, or first 48 bits for 64 bit values.
45280   KnownBits Known = DAG.computeKnownBits(SubusLHS);
45281   unsigned NumZeros = Known.countMinLeadingZeros();
45282   if ((VT == MVT::v8i64 && NumZeros < 48) || NumZeros < 16)
45283     return SDValue();
45284 
45285   EVT ExtType = SubusLHS.getValueType();
45286   EVT ShrinkedType;
45287   if (VT == MVT::v8i32 || VT == MVT::v8i64)
45288     ShrinkedType = MVT::v8i16;
45289   else
45290     ShrinkedType = NumZeros >= 24 ? MVT::v16i8 : MVT::v16i16;
45291 
45292   // If SubusLHS is zeroextended - truncate SubusRHS to it's
45293   // size SubusRHS = umin(0xFFF.., SubusRHS).
45294   SDValue SaturationConst =
45295       DAG.getConstant(APInt::getLowBitsSet(ExtType.getScalarSizeInBits(),
45296                                            ShrinkedType.getScalarSizeInBits()),
45297                       SDLoc(SubusLHS), ExtType);
45298   SDValue UMin = DAG.getNode(ISD::UMIN, SDLoc(SubusLHS), ExtType, SubusRHS,
45299                              SaturationConst);
45300   SDValue NewSubusLHS =
45301       DAG.getZExtOrTrunc(SubusLHS, SDLoc(SubusLHS), ShrinkedType);
45302   SDValue NewSubusRHS = DAG.getZExtOrTrunc(UMin, SDLoc(SubusRHS), ShrinkedType);
45303   SDValue Psubus = DAG.getNode(ISD::USUBSAT, SDLoc(N), ShrinkedType,
45304                                NewSubusLHS, NewSubusRHS);
45305 
45306   // Zero extend the result, it may be used somewhere as 32 bit,
45307   // if not zext and following trunc will shrink.
45308   return DAG.getZExtOrTrunc(Psubus, SDLoc(N), ExtType);
45309 }
45310 
45311 static SDValue combineSub(SDNode *N, SelectionDAG &DAG,
45312                           TargetLowering::DAGCombinerInfo &DCI,
45313                           const X86Subtarget &Subtarget) {
45314   SDValue Op0 = N->getOperand(0);
45315   SDValue Op1 = N->getOperand(1);
45316 
45317   // X86 can't encode an immediate LHS of a sub. See if we can push the
45318   // negation into a preceding instruction.
45319   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
45320     // If the RHS of the sub is a XOR with one use and a constant, invert the
45321     // immediate. Then add one to the LHS of the sub so we can turn
45322     // X-Y -> X+~Y+1, saving one register.
45323     if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
45324         isa<ConstantSDNode>(Op1.getOperand(1))) {
45325       const APInt &XorC = Op1.getConstantOperandAPInt(1);
45326       EVT VT = Op0.getValueType();
45327       SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
45328                                    Op1.getOperand(0),
45329                                    DAG.getConstant(~XorC, SDLoc(Op1), VT));
45330       return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
45331                          DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
45332     }
45333   }
45334 
45335   // Try to synthesize horizontal subs from subs of shuffles.
45336   EVT VT = N->getValueType(0);
45337   if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 ||
45338        VT == MVT::v8i32) &&
45339       Subtarget.hasSSSE3() &&
45340       isHorizontalBinOp(Op0, Op1, DAG, Subtarget, false)) {
45341     auto HSUBBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
45342                           ArrayRef<SDValue> Ops) {
45343       return DAG.getNode(X86ISD::HSUB, DL, Ops[0].getValueType(), Ops);
45344     };
45345     return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1},
45346                             HSUBBuilder);
45347   }
45348 
45349   // Try to create PSUBUS if SUB's argument is max/min
45350   if (SDValue V = combineSubToSubus(N, DAG, Subtarget))
45351     return V;
45352 
45353   return combineAddOrSubToADCOrSBB(N, DAG);
45354 }
45355 
45356 static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG,
45357                                     const X86Subtarget &Subtarget) {
45358   MVT VT = N->getSimpleValueType(0);
45359   SDLoc DL(N);
45360 
45361   if (N->getOperand(0) == N->getOperand(1)) {
45362     if (N->getOpcode() == X86ISD::PCMPEQ)
45363       return DAG.getConstant(-1, DL, VT);
45364     if (N->getOpcode() == X86ISD::PCMPGT)
45365       return DAG.getConstant(0, DL, VT);
45366   }
45367 
45368   return SDValue();
45369 }
45370 
45371 /// Helper that combines an array of subvector ops as if they were the operands
45372 /// of a ISD::CONCAT_VECTORS node, but may have come from another source (e.g.
45373 /// ISD::INSERT_SUBVECTOR). The ops are assumed to be of the same type.
45374 static SDValue combineConcatVectorOps(const SDLoc &DL, MVT VT,
45375                                       ArrayRef<SDValue> Ops, SelectionDAG &DAG,
45376                                       TargetLowering::DAGCombinerInfo &DCI,
45377                                       const X86Subtarget &Subtarget) {
45378   assert(Subtarget.hasAVX() && "AVX assumed for concat_vectors");
45379 
45380   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
45381     return DAG.getUNDEF(VT);
45382 
45383   if (llvm::all_of(Ops, [](SDValue Op) {
45384         return ISD::isBuildVectorAllZeros(Op.getNode());
45385       }))
45386     return getZeroVector(VT, Subtarget, DAG, DL);
45387 
45388   SDValue Op0 = Ops[0];
45389 
45390   // Fold subvector loads into one.
45391   // If needed, look through bitcasts to get to the load.
45392   if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(Op0))) {
45393     bool Fast;
45394     const X86TargetLowering *TLI = Subtarget.getTargetLowering();
45395     if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
45396                                 *FirstLd->getMemOperand(), &Fast) &&
45397         Fast) {
45398       if (SDValue Ld =
45399               EltsFromConsecutiveLoads(VT, Ops, DL, DAG, Subtarget, false))
45400         return Ld;
45401     }
45402   }
45403 
45404   // Repeated subvectors.
45405   if (llvm::all_of(Ops, [Op0](SDValue Op) { return Op == Op0; })) {
45406     // If this broadcast/subv_broadcast is inserted into both halves, use a
45407     // larger broadcast/subv_broadcast.
45408     if (Op0.getOpcode() == X86ISD::VBROADCAST ||
45409         Op0.getOpcode() == X86ISD::SUBV_BROADCAST)
45410       return DAG.getNode(Op0.getOpcode(), DL, VT, Op0.getOperand(0));
45411 
45412     // concat_vectors(movddup(x),movddup(x)) -> broadcast(x)
45413     if (Op0.getOpcode() == X86ISD::MOVDDUP && VT == MVT::v4f64 &&
45414         (Subtarget.hasAVX2() || MayFoldLoad(Op0.getOperand(0))))
45415       return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
45416                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f64,
45417                                      Op0.getOperand(0),
45418                                      DAG.getIntPtrConstant(0, DL)));
45419 
45420     // concat_vectors(scalar_to_vector(x),scalar_to_vector(x)) -> broadcast(x)
45421     if (Op0.getOpcode() == ISD::SCALAR_TO_VECTOR &&
45422         (Subtarget.hasAVX2() ||
45423          (VT.getScalarSizeInBits() >= 32 && MayFoldLoad(Op0.getOperand(0)))) &&
45424         Op0.getOperand(0).getValueType() == VT.getScalarType())
45425       return DAG.getNode(X86ISD::VBROADCAST, DL, VT, Op0.getOperand(0));
45426   }
45427 
45428   bool IsSplat = llvm::all_of(Ops, [&Op0](SDValue Op) { return Op == Op0; });
45429 
45430   // Repeated opcode.
45431   // TODO - combineX86ShufflesRecursively should handle shuffle concatenation
45432   // but it currently struggles with different vector widths.
45433   if (llvm::all_of(Ops, [Op0](SDValue Op) {
45434         return Op.getOpcode() == Op0.getOpcode();
45435       })) {
45436     unsigned NumOps = Ops.size();
45437     switch (Op0.getOpcode()) {
45438     case X86ISD::PSHUFHW:
45439     case X86ISD::PSHUFLW:
45440     case X86ISD::PSHUFD:
45441       if (!IsSplat && NumOps == 2 && VT.is256BitVector() &&
45442           Subtarget.hasInt256() && Op0.getOperand(1) == Ops[1].getOperand(1)) {
45443         SmallVector<SDValue, 2> Src;
45444         for (unsigned i = 0; i != NumOps; ++i)
45445           Src.push_back(Ops[i].getOperand(0));
45446         return DAG.getNode(Op0.getOpcode(), DL, VT,
45447                            DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Src),
45448                            Op0.getOperand(1));
45449       }
45450       LLVM_FALLTHROUGH;
45451     case X86ISD::VPERMILPI:
45452       // TODO - add support for vXf64/vXi64 shuffles.
45453       if (!IsSplat && NumOps == 2 && (VT == MVT::v8f32 || VT == MVT::v8i32) &&
45454           Subtarget.hasAVX() && Op0.getOperand(1) == Ops[1].getOperand(1)) {
45455         SmallVector<SDValue, 2> Src;
45456         for (unsigned i = 0; i != NumOps; ++i)
45457           Src.push_back(DAG.getBitcast(MVT::v4f32, Ops[i].getOperand(0)));
45458         SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8f32, Src);
45459         Res = DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, Res,
45460                           Op0.getOperand(1));
45461         return DAG.getBitcast(VT, Res);
45462       }
45463       break;
45464     case X86ISD::PACKUS:
45465       if (NumOps == 2 && VT.is256BitVector() && Subtarget.hasInt256()) {
45466         SmallVector<SDValue, 2> LHS, RHS;
45467         for (unsigned i = 0; i != NumOps; ++i) {
45468           LHS.push_back(Ops[i].getOperand(0));
45469           RHS.push_back(Ops[i].getOperand(1));
45470         }
45471         MVT SrcVT = Op0.getOperand(0).getSimpleValueType();
45472         SrcVT = MVT::getVectorVT(SrcVT.getScalarType(),
45473                                  NumOps * SrcVT.getVectorNumElements());
45474         return DAG.getNode(Op0.getOpcode(), DL, VT,
45475                            DAG.getNode(ISD::CONCAT_VECTORS, DL, SrcVT, LHS),
45476                            DAG.getNode(ISD::CONCAT_VECTORS, DL, SrcVT, RHS));
45477       }
45478       break;
45479     }
45480   }
45481 
45482   return SDValue();
45483 }
45484 
45485 static SDValue combineConcatVectors(SDNode *N, SelectionDAG &DAG,
45486                                     TargetLowering::DAGCombinerInfo &DCI,
45487                                     const X86Subtarget &Subtarget) {
45488   EVT VT = N->getValueType(0);
45489   EVT SrcVT = N->getOperand(0).getValueType();
45490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
45491 
45492   // Don't do anything for i1 vectors.
45493   if (VT.getVectorElementType() == MVT::i1)
45494     return SDValue();
45495 
45496   if (Subtarget.hasAVX() && TLI.isTypeLegal(VT) && TLI.isTypeLegal(SrcVT)) {
45497     SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
45498     if (SDValue R = combineConcatVectorOps(SDLoc(N), VT.getSimpleVT(), Ops, DAG,
45499                                            DCI, Subtarget))
45500       return R;
45501   }
45502 
45503   return SDValue();
45504 }
45505 
45506 static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG,
45507                                       TargetLowering::DAGCombinerInfo &DCI,
45508                                       const X86Subtarget &Subtarget) {
45509   if (DCI.isBeforeLegalizeOps())
45510     return SDValue();
45511 
45512   MVT OpVT = N->getSimpleValueType(0);
45513 
45514   bool IsI1Vector = OpVT.getVectorElementType() == MVT::i1;
45515 
45516   SDLoc dl(N);
45517   SDValue Vec = N->getOperand(0);
45518   SDValue SubVec = N->getOperand(1);
45519 
45520   uint64_t IdxVal = N->getConstantOperandVal(2);
45521   MVT SubVecVT = SubVec.getSimpleValueType();
45522 
45523   if (Vec.isUndef() && SubVec.isUndef())
45524     return DAG.getUNDEF(OpVT);
45525 
45526   // Inserting undefs/zeros into zeros/undefs is a zero vector.
45527   if ((Vec.isUndef() || ISD::isBuildVectorAllZeros(Vec.getNode())) &&
45528       (SubVec.isUndef() || ISD::isBuildVectorAllZeros(SubVec.getNode())))
45529     return getZeroVector(OpVT, Subtarget, DAG, dl);
45530 
45531   if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
45532     // If we're inserting into a zero vector and then into a larger zero vector,
45533     // just insert into the larger zero vector directly.
45534     if (SubVec.getOpcode() == ISD::INSERT_SUBVECTOR &&
45535         ISD::isBuildVectorAllZeros(SubVec.getOperand(0).getNode())) {
45536       uint64_t Idx2Val = SubVec.getConstantOperandVal(2);
45537       return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
45538                          getZeroVector(OpVT, Subtarget, DAG, dl),
45539                          SubVec.getOperand(1),
45540                          DAG.getIntPtrConstant(IdxVal + Idx2Val, dl));
45541     }
45542 
45543     // If we're inserting into a zero vector and our input was extracted from an
45544     // insert into a zero vector of the same type and the extraction was at
45545     // least as large as the original insertion. Just insert the original
45546     // subvector into a zero vector.
45547     if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && IdxVal == 0 &&
45548         isNullConstant(SubVec.getOperand(1)) &&
45549         SubVec.getOperand(0).getOpcode() == ISD::INSERT_SUBVECTOR) {
45550       SDValue Ins = SubVec.getOperand(0);
45551       if (isNullConstant(Ins.getOperand(2)) &&
45552           ISD::isBuildVectorAllZeros(Ins.getOperand(0).getNode()) &&
45553           Ins.getOperand(1).getValueSizeInBits() <= SubVecVT.getSizeInBits())
45554         return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
45555                            getZeroVector(OpVT, Subtarget, DAG, dl),
45556                            Ins.getOperand(1), N->getOperand(2));
45557     }
45558   }
45559 
45560   // Stop here if this is an i1 vector.
45561   if (IsI1Vector)
45562     return SDValue();
45563 
45564   // If this is an insert of an extract, combine to a shuffle. Don't do this
45565   // if the insert or extract can be represented with a subregister operation.
45566   if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
45567       SubVec.getOperand(0).getSimpleValueType() == OpVT &&
45568       (IdxVal != 0 || !Vec.isUndef())) {
45569     int ExtIdxVal = SubVec.getConstantOperandVal(1);
45570     if (ExtIdxVal != 0) {
45571       int VecNumElts = OpVT.getVectorNumElements();
45572       int SubVecNumElts = SubVecVT.getVectorNumElements();
45573       SmallVector<int, 64> Mask(VecNumElts);
45574       // First create an identity shuffle mask.
45575       for (int i = 0; i != VecNumElts; ++i)
45576         Mask[i] = i;
45577       // Now insert the extracted portion.
45578       for (int i = 0; i != SubVecNumElts; ++i)
45579         Mask[i + IdxVal] = i + ExtIdxVal + VecNumElts;
45580 
45581       return DAG.getVectorShuffle(OpVT, dl, Vec, SubVec.getOperand(0), Mask);
45582     }
45583   }
45584 
45585   // Match concat_vector style patterns.
45586   SmallVector<SDValue, 2> SubVectorOps;
45587   if (collectConcatOps(N, SubVectorOps)) {
45588     if (SDValue Fold =
45589             combineConcatVectorOps(dl, OpVT, SubVectorOps, DAG, DCI, Subtarget))
45590       return Fold;
45591 
45592     // If we're inserting all zeros into the upper half, change this to
45593     // a concat with zero. We will match this to a move
45594     // with implicit upper bit zeroing during isel.
45595     // We do this here because we don't want combineConcatVectorOps to
45596     // create INSERT_SUBVECTOR from CONCAT_VECTORS.
45597     if (SubVectorOps.size() == 2 &&
45598         ISD::isBuildVectorAllZeros(SubVectorOps[1].getNode()))
45599       return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
45600                          getZeroVector(OpVT, Subtarget, DAG, dl),
45601                          SubVectorOps[0], DAG.getIntPtrConstant(0, dl));
45602   }
45603 
45604   // If this is a broadcast insert into an upper undef, use a larger broadcast.
45605   if (Vec.isUndef() && IdxVal != 0 && SubVec.getOpcode() == X86ISD::VBROADCAST)
45606     return DAG.getNode(X86ISD::VBROADCAST, dl, OpVT, SubVec.getOperand(0));
45607 
45608   // If this is a broadcast load inserted into an upper undef, use a larger
45609   // broadcast load.
45610   if (Vec.isUndef() && IdxVal != 0 && SubVec.hasOneUse() &&
45611       SubVec.getOpcode() == X86ISD::VBROADCAST_LOAD) {
45612     auto *MemIntr = cast<MemIntrinsicSDNode>(SubVec);
45613     SDVTList Tys = DAG.getVTList(OpVT, MVT::Other);
45614     SDValue Ops[] = { MemIntr->getChain(), MemIntr->getBasePtr() };
45615     SDValue BcastLd =
45616         DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, dl, Tys, Ops,
45617                                 MemIntr->getMemoryVT(),
45618                                 MemIntr->getMemOperand());
45619     DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), BcastLd.getValue(1));
45620     return BcastLd;
45621   }
45622 
45623   return SDValue();
45624 }
45625 
45626 /// If we are extracting a subvector of a vector select and the select condition
45627 /// is composed of concatenated vectors, try to narrow the select width. This
45628 /// is a common pattern for AVX1 integer code because 256-bit selects may be
45629 /// legal, but there is almost no integer math/logic available for 256-bit.
45630 /// This function should only be called with legal types (otherwise, the calls
45631 /// to get simple value types will assert).
45632 static SDValue narrowExtractedVectorSelect(SDNode *Ext, SelectionDAG &DAG) {
45633   SDValue Sel = peekThroughBitcasts(Ext->getOperand(0));
45634   SmallVector<SDValue, 4> CatOps;
45635   if (Sel.getOpcode() != ISD::VSELECT ||
45636       !collectConcatOps(Sel.getOperand(0).getNode(), CatOps))
45637     return SDValue();
45638 
45639   // Note: We assume simple value types because this should only be called with
45640   //       legal operations/types.
45641   // TODO: This can be extended to handle extraction to 256-bits.
45642   MVT VT = Ext->getSimpleValueType(0);
45643   if (!VT.is128BitVector())
45644     return SDValue();
45645 
45646   MVT SelCondVT = Sel.getOperand(0).getSimpleValueType();
45647   if (!SelCondVT.is256BitVector() && !SelCondVT.is512BitVector())
45648     return SDValue();
45649 
45650   MVT WideVT = Ext->getOperand(0).getSimpleValueType();
45651   MVT SelVT = Sel.getSimpleValueType();
45652   assert((SelVT.is256BitVector() || SelVT.is512BitVector()) &&
45653          "Unexpected vector type with legal operations");
45654 
45655   unsigned SelElts = SelVT.getVectorNumElements();
45656   unsigned CastedElts = WideVT.getVectorNumElements();
45657   unsigned ExtIdx = cast<ConstantSDNode>(Ext->getOperand(1))->getZExtValue();
45658   if (SelElts % CastedElts == 0) {
45659     // The select has the same or more (narrower) elements than the extract
45660     // operand. The extraction index gets scaled by that factor.
45661     ExtIdx *= (SelElts / CastedElts);
45662   } else if (CastedElts % SelElts == 0) {
45663     // The select has less (wider) elements than the extract operand. Make sure
45664     // that the extraction index can be divided evenly.
45665     unsigned IndexDivisor = CastedElts / SelElts;
45666     if (ExtIdx % IndexDivisor != 0)
45667       return SDValue();
45668     ExtIdx /= IndexDivisor;
45669   } else {
45670     llvm_unreachable("Element count of simple vector types are not divisible?");
45671   }
45672 
45673   unsigned NarrowingFactor = WideVT.getSizeInBits() / VT.getSizeInBits();
45674   unsigned NarrowElts = SelElts / NarrowingFactor;
45675   MVT NarrowSelVT = MVT::getVectorVT(SelVT.getVectorElementType(), NarrowElts);
45676   SDLoc DL(Ext);
45677   SDValue ExtCond = extract128BitVector(Sel.getOperand(0), ExtIdx, DAG, DL);
45678   SDValue ExtT = extract128BitVector(Sel.getOperand(1), ExtIdx, DAG, DL);
45679   SDValue ExtF = extract128BitVector(Sel.getOperand(2), ExtIdx, DAG, DL);
45680   SDValue NarrowSel = DAG.getSelect(DL, NarrowSelVT, ExtCond, ExtT, ExtF);
45681   return DAG.getBitcast(VT, NarrowSel);
45682 }
45683 
45684 static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG,
45685                                        TargetLowering::DAGCombinerInfo &DCI,
45686                                        const X86Subtarget &Subtarget) {
45687   // For AVX1 only, if we are extracting from a 256-bit and+not (which will
45688   // eventually get combined/lowered into ANDNP) with a concatenated operand,
45689   // split the 'and' into 128-bit ops to avoid the concatenate and extract.
45690   // We let generic combining take over from there to simplify the
45691   // insert/extract and 'not'.
45692   // This pattern emerges during AVX1 legalization. We handle it before lowering
45693   // to avoid complications like splitting constant vector loads.
45694 
45695   // Capture the original wide type in the likely case that we need to bitcast
45696   // back to this type.
45697   if (!N->getValueType(0).isSimple())
45698     return SDValue();
45699 
45700   MVT VT = N->getSimpleValueType(0);
45701   SDValue InVec = N->getOperand(0);
45702   SDValue InVecBC = peekThroughBitcasts(InVec);
45703   EVT InVecVT = InVec.getValueType();
45704   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
45705 
45706   if (Subtarget.hasAVX() && !Subtarget.hasAVX2() &&
45707       TLI.isTypeLegal(InVecVT) &&
45708       InVecVT.getSizeInBits() == 256 && InVecBC.getOpcode() == ISD::AND) {
45709     auto isConcatenatedNot = [] (SDValue V) {
45710       V = peekThroughBitcasts(V);
45711       if (!isBitwiseNot(V))
45712         return false;
45713       SDValue NotOp = V->getOperand(0);
45714       return peekThroughBitcasts(NotOp).getOpcode() == ISD::CONCAT_VECTORS;
45715     };
45716     if (isConcatenatedNot(InVecBC.getOperand(0)) ||
45717         isConcatenatedNot(InVecBC.getOperand(1))) {
45718       // extract (and v4i64 X, (not (concat Y1, Y2))), n -> andnp v2i64 X(n), Y1
45719       SDValue Concat = split256IntArith(InVecBC, DAG);
45720       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT,
45721                          DAG.getBitcast(InVecVT, Concat), N->getOperand(1));
45722     }
45723   }
45724 
45725   if (DCI.isBeforeLegalizeOps())
45726     return SDValue();
45727 
45728   if (SDValue V = narrowExtractedVectorSelect(N, DAG))
45729     return V;
45730 
45731   unsigned IdxVal = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
45732 
45733   if (ISD::isBuildVectorAllZeros(InVec.getNode()))
45734     return getZeroVector(VT, Subtarget, DAG, SDLoc(N));
45735 
45736   if (ISD::isBuildVectorAllOnes(InVec.getNode())) {
45737     if (VT.getScalarType() == MVT::i1)
45738       return DAG.getConstant(1, SDLoc(N), VT);
45739     return getOnesVector(VT, DAG, SDLoc(N));
45740   }
45741 
45742   if (InVec.getOpcode() == ISD::BUILD_VECTOR)
45743     return DAG.getBuildVector(
45744         VT, SDLoc(N),
45745         InVec.getNode()->ops().slice(IdxVal, VT.getVectorNumElements()));
45746 
45747   // If we are extracting from an insert into a zero vector, replace with a
45748   // smaller insert into zero if we don't access less than the original
45749   // subvector. Don't do this for i1 vectors.
45750   if (VT.getVectorElementType() != MVT::i1 &&
45751       InVec.getOpcode() == ISD::INSERT_SUBVECTOR && IdxVal == 0 &&
45752       InVec.hasOneUse() && isNullConstant(InVec.getOperand(2)) &&
45753       ISD::isBuildVectorAllZeros(InVec.getOperand(0).getNode()) &&
45754       InVec.getOperand(1).getValueSizeInBits() <= VT.getSizeInBits()) {
45755     SDLoc DL(N);
45756     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
45757                        getZeroVector(VT, Subtarget, DAG, DL),
45758                        InVec.getOperand(1), InVec.getOperand(2));
45759   }
45760 
45761   // If we're extracting from a broadcast then we're better off just
45762   // broadcasting to the smaller type directly, assuming this is the only use.
45763   // As its a broadcast we don't care about the extraction index.
45764   if (InVec.getOpcode() == X86ISD::VBROADCAST && InVec.hasOneUse() &&
45765       InVec.getOperand(0).getValueSizeInBits() <= VT.getSizeInBits())
45766     return DAG.getNode(X86ISD::VBROADCAST, SDLoc(N), VT, InVec.getOperand(0));
45767 
45768   if (InVec.getOpcode() == X86ISD::VBROADCAST_LOAD && InVec.hasOneUse()) {
45769     auto *MemIntr = cast<MemIntrinsicSDNode>(InVec);
45770     if (MemIntr->getMemoryVT().getSizeInBits() <= VT.getSizeInBits()) {
45771       SDVTList Tys = DAG.getVTList(VT, MVT::Other);
45772       SDValue Ops[] = { MemIntr->getChain(), MemIntr->getBasePtr() };
45773       SDValue BcastLd =
45774           DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, SDLoc(N), Tys, Ops,
45775                                   MemIntr->getMemoryVT(),
45776                                   MemIntr->getMemOperand());
45777       DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), BcastLd.getValue(1));
45778       return BcastLd;
45779     }
45780   }
45781 
45782   // If we're extracting the lowest subvector and we're the only user,
45783   // we may be able to perform this with a smaller vector width.
45784   if (IdxVal == 0 && InVec.hasOneUse()) {
45785     unsigned InOpcode = InVec.getOpcode();
45786     if (VT == MVT::v2f64 && InVecVT == MVT::v4f64) {
45787       // v2f64 CVTDQ2PD(v4i32).
45788       if (InOpcode == ISD::SINT_TO_FP &&
45789           InVec.getOperand(0).getValueType() == MVT::v4i32) {
45790         return DAG.getNode(X86ISD::CVTSI2P, SDLoc(N), VT, InVec.getOperand(0));
45791       }
45792       // v2f64 CVTUDQ2PD(v4i32).
45793       if (InOpcode == ISD::UINT_TO_FP && Subtarget.hasVLX() &&
45794           InVec.getOperand(0).getValueType() == MVT::v4i32) {
45795         return DAG.getNode(X86ISD::CVTUI2P, SDLoc(N), VT, InVec.getOperand(0));
45796       }
45797       // v2f64 CVTPS2PD(v4f32).
45798       if (InOpcode == ISD::FP_EXTEND &&
45799           InVec.getOperand(0).getValueType() == MVT::v4f32) {
45800         return DAG.getNode(X86ISD::VFPEXT, SDLoc(N), VT, InVec.getOperand(0));
45801       }
45802     }
45803     if ((InOpcode == ISD::ANY_EXTEND ||
45804          InOpcode == ISD::ANY_EXTEND_VECTOR_INREG ||
45805          InOpcode == ISD::ZERO_EXTEND ||
45806          InOpcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
45807          InOpcode == ISD::SIGN_EXTEND ||
45808          InOpcode == ISD::SIGN_EXTEND_VECTOR_INREG) &&
45809         VT.is128BitVector() &&
45810         InVec.getOperand(0).getSimpleValueType().is128BitVector()) {
45811       unsigned ExtOp = getOpcode_EXTEND_VECTOR_INREG(InOpcode);
45812       return DAG.getNode(ExtOp, SDLoc(N), VT, InVec.getOperand(0));
45813     }
45814     if (InOpcode == ISD::VSELECT &&
45815         InVec.getOperand(0).getValueType().is256BitVector() &&
45816         InVec.getOperand(1).getValueType().is256BitVector() &&
45817         InVec.getOperand(2).getValueType().is256BitVector()) {
45818       SDLoc DL(N);
45819       SDValue Ext0 = extractSubVector(InVec.getOperand(0), 0, DAG, DL, 128);
45820       SDValue Ext1 = extractSubVector(InVec.getOperand(1), 0, DAG, DL, 128);
45821       SDValue Ext2 = extractSubVector(InVec.getOperand(2), 0, DAG, DL, 128);
45822       return DAG.getNode(InOpcode, DL, VT, Ext0, Ext1, Ext2);
45823     }
45824   }
45825 
45826   return SDValue();
45827 }
45828 
45829 static SDValue combineScalarToVector(SDNode *N, SelectionDAG &DAG) {
45830   EVT VT = N->getValueType(0);
45831   SDValue Src = N->getOperand(0);
45832   SDLoc DL(N);
45833 
45834   // If this is a scalar to vector to v1i1 from an AND with 1, bypass the and.
45835   // This occurs frequently in our masked scalar intrinsic code and our
45836   // floating point select lowering with AVX512.
45837   // TODO: SimplifyDemandedBits instead?
45838   if (VT == MVT::v1i1 && Src.getOpcode() == ISD::AND && Src.hasOneUse())
45839     if (auto *C = dyn_cast<ConstantSDNode>(Src.getOperand(1)))
45840       if (C->getAPIntValue().isOneValue())
45841         return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1,
45842                            Src.getOperand(0));
45843 
45844   // Combine scalar_to_vector of an extract_vector_elt into an extract_subvec.
45845   if (VT == MVT::v1i1 && Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
45846       Src.hasOneUse() && Src.getOperand(0).getValueType().isVector() &&
45847       Src.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
45848     if (auto *C = dyn_cast<ConstantSDNode>(Src.getOperand(1)))
45849       if (C->isNullValue())
45850         return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src.getOperand(0),
45851                            Src.getOperand(1));
45852 
45853   // Reduce v2i64 to v4i32 if we don't need the upper bits.
45854   // TODO: Move to DAGCombine?
45855   if (VT == MVT::v2i64 && Src.getOpcode() == ISD::ANY_EXTEND &&
45856       Src.getValueType() == MVT::i64 && Src.hasOneUse() &&
45857       Src.getOperand(0).getScalarValueSizeInBits() <= 32)
45858     return DAG.getBitcast(
45859         VT, DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v4i32,
45860                         DAG.getAnyExtOrTrunc(Src.getOperand(0), DL, MVT::i32)));
45861 
45862   return SDValue();
45863 }
45864 
45865 // Simplify PMULDQ and PMULUDQ operations.
45866 static SDValue combinePMULDQ(SDNode *N, SelectionDAG &DAG,
45867                              TargetLowering::DAGCombinerInfo &DCI,
45868                              const X86Subtarget &Subtarget) {
45869   SDValue LHS = N->getOperand(0);
45870   SDValue RHS = N->getOperand(1);
45871 
45872   // Canonicalize constant to RHS.
45873   if (DAG.isConstantIntBuildVectorOrConstantInt(LHS) &&
45874       !DAG.isConstantIntBuildVectorOrConstantInt(RHS))
45875     return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), RHS, LHS);
45876 
45877   // Multiply by zero.
45878   // Don't return RHS as it may contain UNDEFs.
45879   if (ISD::isBuildVectorAllZeros(RHS.getNode()))
45880     return DAG.getConstant(0, SDLoc(N), N->getValueType(0));
45881 
45882   // PMULDQ/PMULUDQ only uses lower 32 bits from each vector element.
45883   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
45884   if (TLI.SimplifyDemandedBits(SDValue(N, 0), APInt::getAllOnesValue(64), DCI))
45885     return SDValue(N, 0);
45886 
45887   // If the input is an extend_invec and the SimplifyDemandedBits call didn't
45888   // convert it to any_extend_invec, due to the LegalOperations check, do the
45889   // conversion directly to a vector shuffle manually. This exposes combine
45890   // opportunities missed by combineExtInVec not calling
45891   // combineX86ShufflesRecursively on SSE4.1 targets.
45892   // FIXME: This is basically a hack around several other issues related to
45893   // ANY_EXTEND_VECTOR_INREG.
45894   if (N->getValueType(0) == MVT::v2i64 && LHS.hasOneUse() &&
45895       (LHS.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG ||
45896        LHS.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG) &&
45897       LHS.getOperand(0).getValueType() == MVT::v4i32) {
45898     SDLoc dl(N);
45899     LHS = DAG.getVectorShuffle(MVT::v4i32, dl, LHS.getOperand(0),
45900                                LHS.getOperand(0), { 0, -1, 1, -1 });
45901     LHS = DAG.getBitcast(MVT::v2i64, LHS);
45902     return DAG.getNode(N->getOpcode(), dl, MVT::v2i64, LHS, RHS);
45903   }
45904   if (N->getValueType(0) == MVT::v2i64 && RHS.hasOneUse() &&
45905       (RHS.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG ||
45906        RHS.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG) &&
45907       RHS.getOperand(0).getValueType() == MVT::v4i32) {
45908     SDLoc dl(N);
45909     RHS = DAG.getVectorShuffle(MVT::v4i32, dl, RHS.getOperand(0),
45910                                RHS.getOperand(0), { 0, -1, 1, -1 });
45911     RHS = DAG.getBitcast(MVT::v2i64, RHS);
45912     return DAG.getNode(N->getOpcode(), dl, MVT::v2i64, LHS, RHS);
45913   }
45914 
45915   return SDValue();
45916 }
45917 
45918 static SDValue combineExtInVec(SDNode *N, SelectionDAG &DAG,
45919                                TargetLowering::DAGCombinerInfo &DCI,
45920                                const X86Subtarget &Subtarget) {
45921   EVT VT = N->getValueType(0);
45922   SDValue In = N->getOperand(0);
45923   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
45924 
45925   // Try to merge vector loads and extend_inreg to an extload.
45926   if (!DCI.isBeforeLegalizeOps() && ISD::isNormalLoad(In.getNode()) &&
45927       In.hasOneUse()) {
45928     auto *Ld = cast<LoadSDNode>(In);
45929     if (Ld->isSimple()) {
45930       MVT SVT = In.getSimpleValueType().getVectorElementType();
45931       ISD::LoadExtType Ext = N->getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
45932       EVT MemVT = EVT::getVectorVT(*DAG.getContext(), SVT,
45933                                    VT.getVectorNumElements());
45934       if (TLI.isLoadExtLegal(Ext, VT, MemVT)) {
45935         SDValue Load =
45936             DAG.getExtLoad(Ext, SDLoc(N), VT, Ld->getChain(), Ld->getBasePtr(),
45937                            Ld->getPointerInfo(), MemVT, Ld->getAlignment(),
45938                            Ld->getMemOperand()->getFlags());
45939         DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
45940         return Load;
45941       }
45942     }
45943   }
45944 
45945   // Attempt to combine as a shuffle.
45946   // TODO: SSE41 support
45947   if (Subtarget.hasAVX() && N->getOpcode() != ISD::SIGN_EXTEND_VECTOR_INREG) {
45948     SDValue Op(N, 0);
45949     if (TLI.isTypeLegal(VT) && TLI.isTypeLegal(In.getValueType()))
45950       if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
45951         return Res;
45952   }
45953 
45954   return SDValue();
45955 }
45956 
45957 static SDValue combineKSHIFT(SDNode *N, SelectionDAG &DAG,
45958                              TargetLowering::DAGCombinerInfo &DCI) {
45959   EVT VT = N->getValueType(0);
45960 
45961   if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
45962     return DAG.getConstant(0, SDLoc(N), VT);
45963 
45964   APInt KnownUndef, KnownZero;
45965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
45966   APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
45967   if (TLI.SimplifyDemandedVectorElts(SDValue(N, 0), DemandedElts, KnownUndef,
45968                                      KnownZero, DCI))
45969     return SDValue(N, 0);
45970 
45971   return SDValue();
45972 }
45973 
45974 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
45975                                              DAGCombinerInfo &DCI) const {
45976   SelectionDAG &DAG = DCI.DAG;
45977   switch (N->getOpcode()) {
45978   default: break;
45979   case ISD::SCALAR_TO_VECTOR:
45980     return combineScalarToVector(N, DAG);
45981   case ISD::EXTRACT_VECTOR_ELT:
45982   case X86ISD::PEXTRW:
45983   case X86ISD::PEXTRB:
45984     return combineExtractVectorElt(N, DAG, DCI, Subtarget);
45985   case ISD::CONCAT_VECTORS:
45986     return combineConcatVectors(N, DAG, DCI, Subtarget);
45987   case ISD::INSERT_SUBVECTOR:
45988     return combineInsertSubvector(N, DAG, DCI, Subtarget);
45989   case ISD::EXTRACT_SUBVECTOR:
45990     return combineExtractSubvector(N, DAG, DCI, Subtarget);
45991   case ISD::VSELECT:
45992   case ISD::SELECT:
45993   case X86ISD::BLENDV:      return combineSelect(N, DAG, DCI, Subtarget);
45994   case ISD::BITCAST:        return combineBitcast(N, DAG, DCI, Subtarget);
45995   case X86ISD::CMOV:        return combineCMov(N, DAG, DCI, Subtarget);
45996   case X86ISD::CMP:         return combineCMP(N, DAG);
45997   case ISD::ADD:            return combineAdd(N, DAG, DCI, Subtarget);
45998   case ISD::SUB:            return combineSub(N, DAG, DCI, Subtarget);
45999   case X86ISD::ADD:
46000   case X86ISD::SUB:         return combineX86AddSub(N, DAG, DCI);
46001   case X86ISD::SBB:         return combineSBB(N, DAG);
46002   case X86ISD::ADC:         return combineADC(N, DAG, DCI);
46003   case ISD::MUL:            return combineMul(N, DAG, DCI, Subtarget);
46004   case ISD::SHL:            return combineShiftLeft(N, DAG);
46005   case ISD::SRA:            return combineShiftRightArithmetic(N, DAG);
46006   case ISD::SRL:            return combineShiftRightLogical(N, DAG, DCI);
46007   case ISD::AND:            return combineAnd(N, DAG, DCI, Subtarget);
46008   case ISD::OR:             return combineOr(N, DAG, DCI, Subtarget);
46009   case ISD::XOR:            return combineXor(N, DAG, DCI, Subtarget);
46010   case X86ISD::BEXTR:       return combineBEXTR(N, DAG, DCI, Subtarget);
46011   case ISD::LOAD:           return combineLoad(N, DAG, DCI, Subtarget);
46012   case ISD::MLOAD:          return combineMaskedLoad(N, DAG, DCI, Subtarget);
46013   case ISD::STORE:          return combineStore(N, DAG, DCI, Subtarget);
46014   case ISD::MSTORE:         return combineMaskedStore(N, DAG, DCI, Subtarget);
46015   case ISD::SINT_TO_FP:
46016   case ISD::STRICT_SINT_TO_FP:
46017     return combineSIntToFP(N, DAG, DCI, Subtarget);
46018   case ISD::UINT_TO_FP:
46019   case ISD::STRICT_UINT_TO_FP:
46020     return combineUIntToFP(N, DAG, Subtarget);
46021   case ISD::FADD:
46022   case ISD::FSUB:           return combineFaddFsub(N, DAG, Subtarget);
46023   case ISD::FNEG:           return combineFneg(N, DAG, Subtarget);
46024   case ISD::TRUNCATE:       return combineTruncate(N, DAG, Subtarget);
46025   case X86ISD::VTRUNC:      return combineVTRUNC(N, DAG);
46026   case X86ISD::ANDNP:       return combineAndnp(N, DAG, DCI, Subtarget);
46027   case X86ISD::FAND:        return combineFAnd(N, DAG, Subtarget);
46028   case X86ISD::FANDN:       return combineFAndn(N, DAG, Subtarget);
46029   case X86ISD::FXOR:
46030   case X86ISD::FOR:         return combineFOr(N, DAG, Subtarget);
46031   case X86ISD::FMIN:
46032   case X86ISD::FMAX:        return combineFMinFMax(N, DAG);
46033   case ISD::FMINNUM:
46034   case ISD::FMAXNUM:        return combineFMinNumFMaxNum(N, DAG, Subtarget);
46035   case X86ISD::CVTSI2P:
46036   case X86ISD::CVTUI2P:     return combineX86INT_TO_FP(N, DAG, DCI);
46037   case X86ISD::CVTP2SI:
46038   case X86ISD::CVTP2UI:
46039   case X86ISD::CVTTP2SI:
46040   case X86ISD::CVTTP2UI:    return combineCVTP2I_CVTTP2I(N, DAG, DCI);
46041   case X86ISD::BT:          return combineBT(N, DAG, DCI);
46042   case ISD::ANY_EXTEND:
46043   case ISD::ZERO_EXTEND:    return combineZext(N, DAG, DCI, Subtarget);
46044   case ISD::SIGN_EXTEND:    return combineSext(N, DAG, DCI, Subtarget);
46045   case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget);
46046   case ISD::ANY_EXTEND_VECTOR_INREG:
46047   case ISD::SIGN_EXTEND_VECTOR_INREG:
46048   case ISD::ZERO_EXTEND_VECTOR_INREG: return combineExtInVec(N, DAG, DCI,
46049                                                              Subtarget);
46050   case ISD::SETCC:          return combineSetCC(N, DAG, Subtarget);
46051   case X86ISD::SETCC:       return combineX86SetCC(N, DAG, Subtarget);
46052   case X86ISD::BRCOND:      return combineBrCond(N, DAG, Subtarget);
46053   case X86ISD::PACKSS:
46054   case X86ISD::PACKUS:      return combineVectorPack(N, DAG, DCI, Subtarget);
46055   case X86ISD::VSHL:
46056   case X86ISD::VSRA:
46057   case X86ISD::VSRL:
46058     return combineVectorShiftVar(N, DAG, DCI, Subtarget);
46059   case X86ISD::VSHLI:
46060   case X86ISD::VSRAI:
46061   case X86ISD::VSRLI:
46062     return combineVectorShiftImm(N, DAG, DCI, Subtarget);
46063   case X86ISD::PINSRB:
46064   case X86ISD::PINSRW:      return combineVectorInsert(N, DAG, DCI, Subtarget);
46065   case X86ISD::SHUFP:       // Handle all target specific shuffles
46066   case X86ISD::INSERTPS:
46067   case X86ISD::EXTRQI:
46068   case X86ISD::INSERTQI:
46069   case X86ISD::PALIGNR:
46070   case X86ISD::VSHLDQ:
46071   case X86ISD::VSRLDQ:
46072   case X86ISD::BLENDI:
46073   case X86ISD::UNPCKH:
46074   case X86ISD::UNPCKL:
46075   case X86ISD::MOVHLPS:
46076   case X86ISD::MOVLHPS:
46077   case X86ISD::PSHUFB:
46078   case X86ISD::PSHUFD:
46079   case X86ISD::PSHUFHW:
46080   case X86ISD::PSHUFLW:
46081   case X86ISD::MOVSHDUP:
46082   case X86ISD::MOVSLDUP:
46083   case X86ISD::MOVDDUP:
46084   case X86ISD::MOVSS:
46085   case X86ISD::MOVSD:
46086   case X86ISD::VBROADCAST:
46087   case X86ISD::VPPERM:
46088   case X86ISD::VPERMI:
46089   case X86ISD::VPERMV:
46090   case X86ISD::VPERMV3:
46091   case X86ISD::VPERMIL2:
46092   case X86ISD::VPERMILPI:
46093   case X86ISD::VPERMILPV:
46094   case X86ISD::VPERM2X128:
46095   case X86ISD::SHUF128:
46096   case X86ISD::VZEXT_MOVL:
46097   case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget);
46098   case X86ISD::FMADD_RND:
46099   case X86ISD::FMSUB:
46100   case X86ISD::FMSUB_RND:
46101   case X86ISD::FNMADD:
46102   case X86ISD::FNMADD_RND:
46103   case X86ISD::FNMSUB:
46104   case X86ISD::FNMSUB_RND:
46105   case ISD::FMA: return combineFMA(N, DAG, DCI, Subtarget);
46106   case X86ISD::FMADDSUB_RND:
46107   case X86ISD::FMSUBADD_RND:
46108   case X86ISD::FMADDSUB:
46109   case X86ISD::FMSUBADD:    return combineFMADDSUB(N, DAG, DCI);
46110   case X86ISD::MOVMSK:      return combineMOVMSK(N, DAG, DCI, Subtarget);
46111   case X86ISD::MGATHER:
46112   case X86ISD::MSCATTER:    return combineX86GatherScatter(N, DAG, DCI);
46113   case ISD::MGATHER:
46114   case ISD::MSCATTER:       return combineGatherScatter(N, DAG, DCI);
46115   case X86ISD::PCMPEQ:
46116   case X86ISD::PCMPGT:      return combineVectorCompare(N, DAG, Subtarget);
46117   case X86ISD::PMULDQ:
46118   case X86ISD::PMULUDQ:     return combinePMULDQ(N, DAG, DCI, Subtarget);
46119   case X86ISD::KSHIFTL:
46120   case X86ISD::KSHIFTR:     return combineKSHIFT(N, DAG, DCI);
46121   }
46122 
46123   return SDValue();
46124 }
46125 
46126 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
46127   if (!isTypeLegal(VT))
46128     return false;
46129 
46130   // There are no vXi8 shifts.
46131   if (Opc == ISD::SHL && VT.isVector() && VT.getVectorElementType() == MVT::i8)
46132     return false;
46133 
46134   // TODO: Almost no 8-bit ops are desirable because they have no actual
46135   //       size/speed advantages vs. 32-bit ops, but they do have a major
46136   //       potential disadvantage by causing partial register stalls.
46137   //
46138   // 8-bit multiply/shl is probably not cheaper than 32-bit multiply/shl, and
46139   // we have specializations to turn 32-bit multiply/shl into LEA or other ops.
46140   // Also, see the comment in "IsDesirableToPromoteOp" - where we additionally
46141   // check for a constant operand to the multiply.
46142   if ((Opc == ISD::MUL || Opc == ISD::SHL) && VT == MVT::i8)
46143     return false;
46144 
46145   // i16 instruction encodings are longer and some i16 instructions are slow,
46146   // so those are not desirable.
46147   if (VT == MVT::i16) {
46148     switch (Opc) {
46149     default:
46150       break;
46151     case ISD::LOAD:
46152     case ISD::SIGN_EXTEND:
46153     case ISD::ZERO_EXTEND:
46154     case ISD::ANY_EXTEND:
46155     case ISD::SHL:
46156     case ISD::SRA:
46157     case ISD::SRL:
46158     case ISD::SUB:
46159     case ISD::ADD:
46160     case ISD::MUL:
46161     case ISD::AND:
46162     case ISD::OR:
46163     case ISD::XOR:
46164       return false;
46165     }
46166   }
46167 
46168   // Any legal type not explicitly accounted for above here is desirable.
46169   return true;
46170 }
46171 
46172 SDValue X86TargetLowering::expandIndirectJTBranch(const SDLoc& dl,
46173                                                   SDValue Value, SDValue Addr,
46174                                                   SelectionDAG &DAG) const {
46175   const Module *M = DAG.getMachineFunction().getMMI().getModule();
46176   Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");
46177   if (IsCFProtectionSupported) {
46178     // In case control-flow branch protection is enabled, we need to add
46179     // notrack prefix to the indirect branch.
46180     // In order to do that we create NT_BRIND SDNode.
46181     // Upon ISEL, the pattern will convert it to jmp with NoTrack prefix.
46182     return DAG.getNode(X86ISD::NT_BRIND, dl, MVT::Other, Value, Addr);
46183   }
46184 
46185   return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, DAG);
46186 }
46187 
46188 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
46189   EVT VT = Op.getValueType();
46190   bool Is8BitMulByConstant = VT == MVT::i8 && Op.getOpcode() == ISD::MUL &&
46191                              isa<ConstantSDNode>(Op.getOperand(1));
46192 
46193   // i16 is legal, but undesirable since i16 instruction encodings are longer
46194   // and some i16 instructions are slow.
46195   // 8-bit multiply-by-constant can usually be expanded to something cheaper
46196   // using LEA and/or other ALU ops.
46197   if (VT != MVT::i16 && !Is8BitMulByConstant)
46198     return false;
46199 
46200   auto IsFoldableRMW = [](SDValue Load, SDValue Op) {
46201     if (!Op.hasOneUse())
46202       return false;
46203     SDNode *User = *Op->use_begin();
46204     if (!ISD::isNormalStore(User))
46205       return false;
46206     auto *Ld = cast<LoadSDNode>(Load);
46207     auto *St = cast<StoreSDNode>(User);
46208     return Ld->getBasePtr() == St->getBasePtr();
46209   };
46210 
46211   auto IsFoldableAtomicRMW = [](SDValue Load, SDValue Op) {
46212     if (!Load.hasOneUse() || Load.getOpcode() != ISD::ATOMIC_LOAD)
46213       return false;
46214     if (!Op.hasOneUse())
46215       return false;
46216     SDNode *User = *Op->use_begin();
46217     if (User->getOpcode() != ISD::ATOMIC_STORE)
46218       return false;
46219     auto *Ld = cast<AtomicSDNode>(Load);
46220     auto *St = cast<AtomicSDNode>(User);
46221     return Ld->getBasePtr() == St->getBasePtr();
46222   };
46223 
46224   bool Commute = false;
46225   switch (Op.getOpcode()) {
46226   default: return false;
46227   case ISD::SIGN_EXTEND:
46228   case ISD::ZERO_EXTEND:
46229   case ISD::ANY_EXTEND:
46230     break;
46231   case ISD::SHL:
46232   case ISD::SRA:
46233   case ISD::SRL: {
46234     SDValue N0 = Op.getOperand(0);
46235     // Look out for (store (shl (load), x)).
46236     if (MayFoldLoad(N0) && IsFoldableRMW(N0, Op))
46237       return false;
46238     break;
46239   }
46240   case ISD::ADD:
46241   case ISD::MUL:
46242   case ISD::AND:
46243   case ISD::OR:
46244   case ISD::XOR:
46245     Commute = true;
46246     LLVM_FALLTHROUGH;
46247   case ISD::SUB: {
46248     SDValue N0 = Op.getOperand(0);
46249     SDValue N1 = Op.getOperand(1);
46250     // Avoid disabling potential load folding opportunities.
46251     if (MayFoldLoad(N1) &&
46252         (!Commute || !isa<ConstantSDNode>(N0) ||
46253          (Op.getOpcode() != ISD::MUL && IsFoldableRMW(N1, Op))))
46254       return false;
46255     if (MayFoldLoad(N0) &&
46256         ((Commute && !isa<ConstantSDNode>(N1)) ||
46257          (Op.getOpcode() != ISD::MUL && IsFoldableRMW(N0, Op))))
46258       return false;
46259     if (IsFoldableAtomicRMW(N0, Op) ||
46260         (Commute && IsFoldableAtomicRMW(N1, Op)))
46261       return false;
46262   }
46263   }
46264 
46265   PVT = MVT::i32;
46266   return true;
46267 }
46268 
46269 bool X86TargetLowering::
46270     isDesirableToCombineBuildVectorToShuffleTruncate(
46271         ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
46272 
46273   assert(SrcVT.getVectorNumElements() == ShuffleMask.size() &&
46274          "Element count mismatch");
46275   assert(
46276       Subtarget.getTargetLowering()->isShuffleMaskLegal(ShuffleMask, SrcVT) &&
46277       "Shuffle Mask expected to be legal");
46278 
46279   // For 32-bit elements VPERMD is better than shuffle+truncate.
46280   // TODO: After we improve lowerBuildVector, add execption for VPERMW.
46281   if (SrcVT.getScalarSizeInBits() == 32 || !Subtarget.hasAVX2())
46282     return false;
46283 
46284   if (is128BitLaneCrossingShuffleMask(SrcVT.getSimpleVT(), ShuffleMask))
46285     return false;
46286 
46287   return true;
46288 }
46289 
46290 //===----------------------------------------------------------------------===//
46291 //                           X86 Inline Assembly Support
46292 //===----------------------------------------------------------------------===//
46293 
46294 // Helper to match a string separated by whitespace.
46295 static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
46296   S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
46297 
46298   for (StringRef Piece : Pieces) {
46299     if (!S.startswith(Piece)) // Check if the piece matches.
46300       return false;
46301 
46302     S = S.substr(Piece.size());
46303     StringRef::size_type Pos = S.find_first_not_of(" \t");
46304     if (Pos == 0) // We matched a prefix.
46305       return false;
46306 
46307     S = S.substr(Pos);
46308   }
46309 
46310   return S.empty();
46311 }
46312 
46313 static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
46314 
46315   if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
46316     if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
46317         std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
46318         std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
46319 
46320       if (AsmPieces.size() == 3)
46321         return true;
46322       else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
46323         return true;
46324     }
46325   }
46326   return false;
46327 }
46328 
46329 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
46330   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
46331 
46332   const std::string &AsmStr = IA->getAsmString();
46333 
46334   IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
46335   if (!Ty || Ty->getBitWidth() % 16 != 0)
46336     return false;
46337 
46338   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
46339   SmallVector<StringRef, 4> AsmPieces;
46340   SplitString(AsmStr, AsmPieces, ";\n");
46341 
46342   switch (AsmPieces.size()) {
46343   default: return false;
46344   case 1:
46345     // FIXME: this should verify that we are targeting a 486 or better.  If not,
46346     // we will turn this bswap into something that will be lowered to logical
46347     // ops instead of emitting the bswap asm.  For now, we don't support 486 or
46348     // lower so don't worry about this.
46349     // bswap $0
46350     if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
46351         matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
46352         matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
46353         matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
46354         matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
46355         matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
46356       // No need to check constraints, nothing other than the equivalent of
46357       // "=r,0" would be valid here.
46358       return IntrinsicLowering::LowerToByteSwap(CI);
46359     }
46360 
46361     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
46362     if (CI->getType()->isIntegerTy(16) &&
46363         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
46364         (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
46365          matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
46366       AsmPieces.clear();
46367       StringRef ConstraintsStr = IA->getConstraintString();
46368       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
46369       array_pod_sort(AsmPieces.begin(), AsmPieces.end());
46370       if (clobbersFlagRegisters(AsmPieces))
46371         return IntrinsicLowering::LowerToByteSwap(CI);
46372     }
46373     break;
46374   case 3:
46375     if (CI->getType()->isIntegerTy(32) &&
46376         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
46377         matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
46378         matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
46379         matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
46380       AsmPieces.clear();
46381       StringRef ConstraintsStr = IA->getConstraintString();
46382       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
46383       array_pod_sort(AsmPieces.begin(), AsmPieces.end());
46384       if (clobbersFlagRegisters(AsmPieces))
46385         return IntrinsicLowering::LowerToByteSwap(CI);
46386     }
46387 
46388     if (CI->getType()->isIntegerTy(64)) {
46389       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
46390       if (Constraints.size() >= 2 &&
46391           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
46392           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
46393         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
46394         if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
46395             matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
46396             matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
46397           return IntrinsicLowering::LowerToByteSwap(CI);
46398       }
46399     }
46400     break;
46401   }
46402   return false;
46403 }
46404 
46405 static X86::CondCode parseConstraintCode(llvm::StringRef Constraint) {
46406   X86::CondCode Cond = StringSwitch<X86::CondCode>(Constraint)
46407                            .Case("{@cca}", X86::COND_A)
46408                            .Case("{@ccae}", X86::COND_AE)
46409                            .Case("{@ccb}", X86::COND_B)
46410                            .Case("{@ccbe}", X86::COND_BE)
46411                            .Case("{@ccc}", X86::COND_B)
46412                            .Case("{@cce}", X86::COND_E)
46413                            .Case("{@ccz}", X86::COND_E)
46414                            .Case("{@ccg}", X86::COND_G)
46415                            .Case("{@ccge}", X86::COND_GE)
46416                            .Case("{@ccl}", X86::COND_L)
46417                            .Case("{@ccle}", X86::COND_LE)
46418                            .Case("{@ccna}", X86::COND_BE)
46419                            .Case("{@ccnae}", X86::COND_B)
46420                            .Case("{@ccnb}", X86::COND_AE)
46421                            .Case("{@ccnbe}", X86::COND_A)
46422                            .Case("{@ccnc}", X86::COND_AE)
46423                            .Case("{@ccne}", X86::COND_NE)
46424                            .Case("{@ccnz}", X86::COND_NE)
46425                            .Case("{@ccng}", X86::COND_LE)
46426                            .Case("{@ccnge}", X86::COND_L)
46427                            .Case("{@ccnl}", X86::COND_GE)
46428                            .Case("{@ccnle}", X86::COND_G)
46429                            .Case("{@ccno}", X86::COND_NO)
46430                            .Case("{@ccnp}", X86::COND_P)
46431                            .Case("{@ccns}", X86::COND_NS)
46432                            .Case("{@cco}", X86::COND_O)
46433                            .Case("{@ccp}", X86::COND_P)
46434                            .Case("{@ccs}", X86::COND_S)
46435                            .Default(X86::COND_INVALID);
46436   return Cond;
46437 }
46438 
46439 /// Given a constraint letter, return the type of constraint for this target.
46440 X86TargetLowering::ConstraintType
46441 X86TargetLowering::getConstraintType(StringRef Constraint) const {
46442   if (Constraint.size() == 1) {
46443     switch (Constraint[0]) {
46444     case 'R':
46445     case 'q':
46446     case 'Q':
46447     case 'f':
46448     case 't':
46449     case 'u':
46450     case 'y':
46451     case 'x':
46452     case 'v':
46453     case 'Y':
46454     case 'l':
46455     case 'k': // AVX512 masking registers.
46456       return C_RegisterClass;
46457     case 'a':
46458     case 'b':
46459     case 'c':
46460     case 'd':
46461     case 'S':
46462     case 'D':
46463     case 'A':
46464       return C_Register;
46465     case 'I':
46466     case 'J':
46467     case 'K':
46468     case 'N':
46469     case 'G':
46470     case 'L':
46471     case 'M':
46472       return C_Immediate;
46473     case 'C':
46474     case 'e':
46475     case 'Z':
46476       return C_Other;
46477     default:
46478       break;
46479     }
46480   }
46481   else if (Constraint.size() == 2) {
46482     switch (Constraint[0]) {
46483     default:
46484       break;
46485     case 'Y':
46486       switch (Constraint[1]) {
46487       default:
46488         break;
46489       case 'z':
46490       case '0':
46491         return C_Register;
46492       case 'i':
46493       case 'm':
46494       case 'k':
46495       case 't':
46496       case '2':
46497         return C_RegisterClass;
46498       }
46499     }
46500   } else if (parseConstraintCode(Constraint) != X86::COND_INVALID)
46501     return C_Other;
46502   return TargetLowering::getConstraintType(Constraint);
46503 }
46504 
46505 /// Examine constraint type and operand type and determine a weight value.
46506 /// This object must already have been set up with the operand type
46507 /// and the current alternative constraint selected.
46508 TargetLowering::ConstraintWeight
46509   X86TargetLowering::getSingleConstraintMatchWeight(
46510     AsmOperandInfo &info, const char *constraint) const {
46511   ConstraintWeight weight = CW_Invalid;
46512   Value *CallOperandVal = info.CallOperandVal;
46513     // If we don't have a value, we can't do a match,
46514     // but allow it at the lowest weight.
46515   if (!CallOperandVal)
46516     return CW_Default;
46517   Type *type = CallOperandVal->getType();
46518   // Look at the constraint type.
46519   switch (*constraint) {
46520   default:
46521     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
46522     LLVM_FALLTHROUGH;
46523   case 'R':
46524   case 'q':
46525   case 'Q':
46526   case 'a':
46527   case 'b':
46528   case 'c':
46529   case 'd':
46530   case 'S':
46531   case 'D':
46532   case 'A':
46533     if (CallOperandVal->getType()->isIntegerTy())
46534       weight = CW_SpecificReg;
46535     break;
46536   case 'f':
46537   case 't':
46538   case 'u':
46539     if (type->isFloatingPointTy())
46540       weight = CW_SpecificReg;
46541     break;
46542   case 'y':
46543     if (type->isX86_MMXTy() && Subtarget.hasMMX())
46544       weight = CW_SpecificReg;
46545     break;
46546   case 'Y': {
46547     unsigned Size = StringRef(constraint).size();
46548     // Pick 'i' as the next char as 'Yi' and 'Y' are synonymous, when matching 'Y'
46549     char NextChar = Size == 2 ? constraint[1] : 'i';
46550     if (Size > 2)
46551       break;
46552     switch (NextChar) {
46553       default:
46554         return CW_Invalid;
46555       // XMM0
46556       case 'z':
46557       case '0':
46558         if ((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1())
46559           return CW_SpecificReg;
46560         return CW_Invalid;
46561       // Conditional OpMask regs (AVX512)
46562       case 'k':
46563         if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
46564           return CW_Register;
46565         return CW_Invalid;
46566       // Any MMX reg
46567       case 'm':
46568         if (type->isX86_MMXTy() && Subtarget.hasMMX())
46569           return weight;
46570         return CW_Invalid;
46571       // Any SSE reg when ISA >= SSE2, same as 'Y'
46572       case 'i':
46573       case 't':
46574       case '2':
46575         if (!Subtarget.hasSSE2())
46576           return CW_Invalid;
46577         break;
46578     }
46579     // Fall through (handle "Y" constraint).
46580     LLVM_FALLTHROUGH;
46581   }
46582   case 'v':
46583     if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512())
46584       weight = CW_Register;
46585     LLVM_FALLTHROUGH;
46586   case 'x':
46587     if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) ||
46588         ((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasAVX()))
46589       weight = CW_Register;
46590     break;
46591   case 'k':
46592     // Enable conditional vector operations using %k<#> registers.
46593     if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
46594       weight = CW_Register;
46595     break;
46596   case 'I':
46597     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
46598       if (C->getZExtValue() <= 31)
46599         weight = CW_Constant;
46600     }
46601     break;
46602   case 'J':
46603     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46604       if (C->getZExtValue() <= 63)
46605         weight = CW_Constant;
46606     }
46607     break;
46608   case 'K':
46609     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46610       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
46611         weight = CW_Constant;
46612     }
46613     break;
46614   case 'L':
46615     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46616       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
46617         weight = CW_Constant;
46618     }
46619     break;
46620   case 'M':
46621     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46622       if (C->getZExtValue() <= 3)
46623         weight = CW_Constant;
46624     }
46625     break;
46626   case 'N':
46627     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46628       if (C->getZExtValue() <= 0xff)
46629         weight = CW_Constant;
46630     }
46631     break;
46632   case 'G':
46633   case 'C':
46634     if (isa<ConstantFP>(CallOperandVal)) {
46635       weight = CW_Constant;
46636     }
46637     break;
46638   case 'e':
46639     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46640       if ((C->getSExtValue() >= -0x80000000LL) &&
46641           (C->getSExtValue() <= 0x7fffffffLL))
46642         weight = CW_Constant;
46643     }
46644     break;
46645   case 'Z':
46646     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
46647       if (C->getZExtValue() <= 0xffffffff)
46648         weight = CW_Constant;
46649     }
46650     break;
46651   }
46652   return weight;
46653 }
46654 
46655 /// Try to replace an X constraint, which matches anything, with another that
46656 /// has more specific requirements based on the type of the corresponding
46657 /// operand.
46658 const char *X86TargetLowering::
46659 LowerXConstraint(EVT ConstraintVT) const {
46660   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
46661   // 'f' like normal targets.
46662   if (ConstraintVT.isFloatingPoint()) {
46663     if (Subtarget.hasSSE2())
46664       return "Y";
46665     if (Subtarget.hasSSE1())
46666       return "x";
46667   }
46668 
46669   return TargetLowering::LowerXConstraint(ConstraintVT);
46670 }
46671 
46672 // Lower @cc targets via setcc.
46673 SDValue X86TargetLowering::LowerAsmOutputForConstraint(
46674     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
46675     SelectionDAG &DAG) const {
46676   X86::CondCode Cond = parseConstraintCode(OpInfo.ConstraintCode);
46677   if (Cond == X86::COND_INVALID)
46678     return SDValue();
46679   // Check that return type is valid.
46680   if (OpInfo.ConstraintVT.isVector() || !OpInfo.ConstraintVT.isInteger() ||
46681       OpInfo.ConstraintVT.getSizeInBits() < 8)
46682     report_fatal_error("Flag output operand is of invalid type");
46683 
46684   // Get EFLAGS register. Only update chain when copyfrom is glued.
46685   if (Flag.getNode()) {
46686     Flag = DAG.getCopyFromReg(Chain, DL, X86::EFLAGS, MVT::i32, Flag);
46687     Chain = Flag.getValue(1);
46688   } else
46689     Flag = DAG.getCopyFromReg(Chain, DL, X86::EFLAGS, MVT::i32);
46690   // Extract CC code.
46691   SDValue CC = getSETCC(Cond, Flag, DL, DAG);
46692   // Extend to 32-bits
46693   SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, DL, OpInfo.ConstraintVT, CC);
46694 
46695   return Result;
46696 }
46697 
46698 /// Lower the specified operand into the Ops vector.
46699 /// If it is invalid, don't add anything to Ops.
46700 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
46701                                                      std::string &Constraint,
46702                                                      std::vector<SDValue>&Ops,
46703                                                      SelectionDAG &DAG) const {
46704   SDValue Result;
46705 
46706   // Only support length 1 constraints for now.
46707   if (Constraint.length() > 1) return;
46708 
46709   char ConstraintLetter = Constraint[0];
46710   switch (ConstraintLetter) {
46711   default: break;
46712   case 'I':
46713     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46714       if (C->getZExtValue() <= 31) {
46715         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46716                                        Op.getValueType());
46717         break;
46718       }
46719     }
46720     return;
46721   case 'J':
46722     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46723       if (C->getZExtValue() <= 63) {
46724         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46725                                        Op.getValueType());
46726         break;
46727       }
46728     }
46729     return;
46730   case 'K':
46731     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46732       if (isInt<8>(C->getSExtValue())) {
46733         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46734                                        Op.getValueType());
46735         break;
46736       }
46737     }
46738     return;
46739   case 'L':
46740     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46741       if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
46742           (Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) {
46743         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
46744                                        Op.getValueType());
46745         break;
46746       }
46747     }
46748     return;
46749   case 'M':
46750     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46751       if (C->getZExtValue() <= 3) {
46752         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46753                                        Op.getValueType());
46754         break;
46755       }
46756     }
46757     return;
46758   case 'N':
46759     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46760       if (C->getZExtValue() <= 255) {
46761         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46762                                        Op.getValueType());
46763         break;
46764       }
46765     }
46766     return;
46767   case 'O':
46768     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46769       if (C->getZExtValue() <= 127) {
46770         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46771                                        Op.getValueType());
46772         break;
46773       }
46774     }
46775     return;
46776   case 'e': {
46777     // 32-bit signed value
46778     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46779       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
46780                                            C->getSExtValue())) {
46781         // Widen to 64 bits here to get it sign extended.
46782         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
46783         break;
46784       }
46785     // FIXME gcc accepts some relocatable values here too, but only in certain
46786     // memory models; it's complicated.
46787     }
46788     return;
46789   }
46790   case 'Z': {
46791     // 32-bit unsigned value
46792     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
46793       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
46794                                            C->getZExtValue())) {
46795         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
46796                                        Op.getValueType());
46797         break;
46798       }
46799     }
46800     // FIXME gcc accepts some relocatable values here too, but only in certain
46801     // memory models; it's complicated.
46802     return;
46803   }
46804   case 'i': {
46805     // Literal immediates are always ok.
46806     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
46807       bool IsBool = CST->getConstantIntValue()->getBitWidth() == 1;
46808       BooleanContent BCont = getBooleanContents(MVT::i64);
46809       ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
46810                                     : ISD::SIGN_EXTEND;
46811       int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? CST->getZExtValue()
46812                                                   : CST->getSExtValue();
46813       Result = DAG.getTargetConstant(ExtVal, SDLoc(Op), MVT::i64);
46814       break;
46815     }
46816 
46817     // In any sort of PIC mode addresses need to be computed at runtime by
46818     // adding in a register or some sort of table lookup.  These can't
46819     // be used as immediates.
46820     if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC())
46821       return;
46822 
46823     // If we are in non-pic codegen mode, we allow the address of a global (with
46824     // an optional displacement) to be used with 'i'.
46825     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op))
46826       // If we require an extra load to get this address, as in PIC mode, we
46827       // can't accept it.
46828       if (isGlobalStubReference(
46829               Subtarget.classifyGlobalReference(GA->getGlobal())))
46830         return;
46831     break;
46832   }
46833   }
46834 
46835   if (Result.getNode()) {
46836     Ops.push_back(Result);
46837     return;
46838   }
46839   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
46840 }
46841 
46842 /// Check if \p RC is a general purpose register class.
46843 /// I.e., GR* or one of their variant.
46844 static bool isGRClass(const TargetRegisterClass &RC) {
46845   return RC.hasSuperClassEq(&X86::GR8RegClass) ||
46846          RC.hasSuperClassEq(&X86::GR16RegClass) ||
46847          RC.hasSuperClassEq(&X86::GR32RegClass) ||
46848          RC.hasSuperClassEq(&X86::GR64RegClass) ||
46849          RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass);
46850 }
46851 
46852 /// Check if \p RC is a vector register class.
46853 /// I.e., FR* / VR* or one of their variant.
46854 static bool isFRClass(const TargetRegisterClass &RC) {
46855   return RC.hasSuperClassEq(&X86::FR32XRegClass) ||
46856          RC.hasSuperClassEq(&X86::FR64XRegClass) ||
46857          RC.hasSuperClassEq(&X86::VR128XRegClass) ||
46858          RC.hasSuperClassEq(&X86::VR256XRegClass) ||
46859          RC.hasSuperClassEq(&X86::VR512RegClass);
46860 }
46861 
46862 /// Check if \p RC is a mask register class.
46863 /// I.e., VK* or one of their variant.
46864 static bool isVKClass(const TargetRegisterClass &RC) {
46865   return RC.hasSuperClassEq(&X86::VK1RegClass) ||
46866          RC.hasSuperClassEq(&X86::VK2RegClass) ||
46867          RC.hasSuperClassEq(&X86::VK4RegClass) ||
46868          RC.hasSuperClassEq(&X86::VK8RegClass) ||
46869          RC.hasSuperClassEq(&X86::VK16RegClass) ||
46870          RC.hasSuperClassEq(&X86::VK32RegClass) ||
46871          RC.hasSuperClassEq(&X86::VK64RegClass);
46872 }
46873 
46874 std::pair<unsigned, const TargetRegisterClass *>
46875 X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
46876                                                 StringRef Constraint,
46877                                                 MVT VT) const {
46878   // First, see if this is a constraint that directly corresponds to an LLVM
46879   // register class.
46880   if (Constraint.size() == 1) {
46881     // GCC Constraint Letters
46882     switch (Constraint[0]) {
46883     default: break;
46884     // 'A' means [ER]AX + [ER]DX.
46885     case 'A':
46886       if (Subtarget.is64Bit())
46887         return std::make_pair(X86::RAX, &X86::GR64_ADRegClass);
46888       assert((Subtarget.is32Bit() || Subtarget.is16Bit()) &&
46889              "Expecting 64, 32 or 16 bit subtarget");
46890       return std::make_pair(X86::EAX, &X86::GR32_ADRegClass);
46891 
46892       // TODO: Slight differences here in allocation order and leaving
46893       // RIP in the class. Do they matter any more here than they do
46894       // in the normal allocation?
46895     case 'k':
46896       if (Subtarget.hasAVX512()) {
46897         if (VT == MVT::i1)
46898           return std::make_pair(0U, &X86::VK1RegClass);
46899         if (VT == MVT::i8)
46900           return std::make_pair(0U, &X86::VK8RegClass);
46901         if (VT == MVT::i16)
46902           return std::make_pair(0U, &X86::VK16RegClass);
46903       }
46904       if (Subtarget.hasBWI()) {
46905         if (VT == MVT::i32)
46906           return std::make_pair(0U, &X86::VK32RegClass);
46907         if (VT == MVT::i64)
46908           return std::make_pair(0U, &X86::VK64RegClass);
46909       }
46910       break;
46911     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
46912       if (Subtarget.is64Bit()) {
46913         if (VT == MVT::i32 || VT == MVT::f32)
46914           return std::make_pair(0U, &X86::GR32RegClass);
46915         if (VT == MVT::i16)
46916           return std::make_pair(0U, &X86::GR16RegClass);
46917         if (VT == MVT::i8 || VT == MVT::i1)
46918           return std::make_pair(0U, &X86::GR8RegClass);
46919         if (VT == MVT::i64 || VT == MVT::f64)
46920           return std::make_pair(0U, &X86::GR64RegClass);
46921         break;
46922       }
46923       LLVM_FALLTHROUGH;
46924       // 32-bit fallthrough
46925     case 'Q':   // Q_REGS
46926       if (VT == MVT::i32 || VT == MVT::f32)
46927         return std::make_pair(0U, &X86::GR32_ABCDRegClass);
46928       if (VT == MVT::i16)
46929         return std::make_pair(0U, &X86::GR16_ABCDRegClass);
46930       if (VT == MVT::i8 || VT == MVT::i1)
46931         return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
46932       if (VT == MVT::i64)
46933         return std::make_pair(0U, &X86::GR64_ABCDRegClass);
46934       break;
46935     case 'r':   // GENERAL_REGS
46936     case 'l':   // INDEX_REGS
46937       if (VT == MVT::i8 || VT == MVT::i1)
46938         return std::make_pair(0U, &X86::GR8RegClass);
46939       if (VT == MVT::i16)
46940         return std::make_pair(0U, &X86::GR16RegClass);
46941       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit())
46942         return std::make_pair(0U, &X86::GR32RegClass);
46943       return std::make_pair(0U, &X86::GR64RegClass);
46944     case 'R':   // LEGACY_REGS
46945       if (VT == MVT::i8 || VT == MVT::i1)
46946         return std::make_pair(0U, &X86::GR8_NOREXRegClass);
46947       if (VT == MVT::i16)
46948         return std::make_pair(0U, &X86::GR16_NOREXRegClass);
46949       if (VT == MVT::i32 || !Subtarget.is64Bit())
46950         return std::make_pair(0U, &X86::GR32_NOREXRegClass);
46951       return std::make_pair(0U, &X86::GR64_NOREXRegClass);
46952     case 'f':  // FP Stack registers.
46953       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
46954       // value to the correct fpstack register class.
46955       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
46956         return std::make_pair(0U, &X86::RFP32RegClass);
46957       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
46958         return std::make_pair(0U, &X86::RFP64RegClass);
46959       return std::make_pair(0U, &X86::RFP80RegClass);
46960     case 'y':   // MMX_REGS if MMX allowed.
46961       if (!Subtarget.hasMMX()) break;
46962       return std::make_pair(0U, &X86::VR64RegClass);
46963     case 'Y':   // SSE_REGS if SSE2 allowed
46964       if (!Subtarget.hasSSE2()) break;
46965       LLVM_FALLTHROUGH;
46966     case 'v':
46967     case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
46968       if (!Subtarget.hasSSE1()) break;
46969       bool VConstraint = (Constraint[0] == 'v');
46970 
46971       switch (VT.SimpleTy) {
46972       default: break;
46973       // Scalar SSE types.
46974       case MVT::f32:
46975       case MVT::i32:
46976         if (VConstraint && Subtarget.hasVLX())
46977           return std::make_pair(0U, &X86::FR32XRegClass);
46978         return std::make_pair(0U, &X86::FR32RegClass);
46979       case MVT::f64:
46980       case MVT::i64:
46981         if (VConstraint && Subtarget.hasVLX())
46982           return std::make_pair(0U, &X86::FR64XRegClass);
46983         return std::make_pair(0U, &X86::FR64RegClass);
46984       // TODO: Handle i128 in FR128RegClass after it is tested well.
46985       // Vector types and fp128.
46986       case MVT::f128:
46987       case MVT::v16i8:
46988       case MVT::v8i16:
46989       case MVT::v4i32:
46990       case MVT::v2i64:
46991       case MVT::v4f32:
46992       case MVT::v2f64:
46993         if (VConstraint && Subtarget.hasVLX())
46994           return std::make_pair(0U, &X86::VR128XRegClass);
46995         return std::make_pair(0U, &X86::VR128RegClass);
46996       // AVX types.
46997       case MVT::v32i8:
46998       case MVT::v16i16:
46999       case MVT::v8i32:
47000       case MVT::v4i64:
47001       case MVT::v8f32:
47002       case MVT::v4f64:
47003         if (VConstraint && Subtarget.hasVLX())
47004           return std::make_pair(0U, &X86::VR256XRegClass);
47005         if (Subtarget.hasAVX())
47006           return std::make_pair(0U, &X86::VR256RegClass);
47007         break;
47008       case MVT::v8f64:
47009       case MVT::v16f32:
47010       case MVT::v16i32:
47011       case MVT::v8i64:
47012         if (!Subtarget.hasAVX512()) break;
47013         if (VConstraint)
47014           return std::make_pair(0U, &X86::VR512RegClass);
47015         return std::make_pair(0U, &X86::VR512_0_15RegClass);
47016       }
47017       break;
47018     }
47019   } else if (Constraint.size() == 2 && Constraint[0] == 'Y') {
47020     switch (Constraint[1]) {
47021     default:
47022       break;
47023     case 'i':
47024     case 't':
47025     case '2':
47026       return getRegForInlineAsmConstraint(TRI, "Y", VT);
47027     case 'm':
47028       if (!Subtarget.hasMMX()) break;
47029       return std::make_pair(0U, &X86::VR64RegClass);
47030     case 'z':
47031     case '0':
47032       if (!Subtarget.hasSSE1()) break;
47033       return std::make_pair(X86::XMM0, &X86::VR128RegClass);
47034     case 'k':
47035       // This register class doesn't allocate k0 for masked vector operation.
47036       if (Subtarget.hasAVX512()) {
47037         if (VT == MVT::i1)
47038           return std::make_pair(0U, &X86::VK1WMRegClass);
47039         if (VT == MVT::i8)
47040           return std::make_pair(0U, &X86::VK8WMRegClass);
47041         if (VT == MVT::i16)
47042           return std::make_pair(0U, &X86::VK16WMRegClass);
47043       }
47044       if (Subtarget.hasBWI()) {
47045         if (VT == MVT::i32)
47046           return std::make_pair(0U, &X86::VK32WMRegClass);
47047         if (VT == MVT::i64)
47048           return std::make_pair(0U, &X86::VK64WMRegClass);
47049       }
47050       break;
47051     }
47052   }
47053 
47054   if (parseConstraintCode(Constraint) != X86::COND_INVALID)
47055     return std::make_pair(0U, &X86::GR32RegClass);
47056 
47057   // Use the default implementation in TargetLowering to convert the register
47058   // constraint into a member of a register class.
47059   std::pair<unsigned, const TargetRegisterClass*> Res;
47060   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
47061 
47062   // Not found as a standard register?
47063   if (!Res.second) {
47064     // Map st(0) -> st(7) -> ST0
47065     if (Constraint.size() == 7 && Constraint[0] == '{' &&
47066         tolower(Constraint[1]) == 's' && tolower(Constraint[2]) == 't' &&
47067         Constraint[3] == '(' &&
47068         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
47069         Constraint[5] == ')' && Constraint[6] == '}') {
47070       // st(7) is not allocatable and thus not a member of RFP80. Return
47071       // singleton class in cases where we have a reference to it.
47072       if (Constraint[4] == '7')
47073         return std::make_pair(X86::FP7, &X86::RFP80_7RegClass);
47074       return std::make_pair(X86::FP0 + Constraint[4] - '0',
47075                             &X86::RFP80RegClass);
47076     }
47077 
47078     // GCC allows "st(0)" to be called just plain "st".
47079     if (StringRef("{st}").equals_lower(Constraint))
47080       return std::make_pair(X86::FP0, &X86::RFP80RegClass);
47081 
47082     // flags -> EFLAGS
47083     if (StringRef("{flags}").equals_lower(Constraint))
47084       return std::make_pair(X86::EFLAGS, &X86::CCRRegClass);
47085 
47086     // dirflag -> DF
47087     if (StringRef("{dirflag}").equals_lower(Constraint))
47088       return std::make_pair(X86::DF, &X86::DFCCRRegClass);
47089 
47090     // fpsr -> FPSW
47091     if (StringRef("{fpsr}").equals_lower(Constraint))
47092       return std::make_pair(X86::FPSW, &X86::FPCCRRegClass);
47093 
47094     return Res;
47095   }
47096 
47097   // Make sure it isn't a register that requires 64-bit mode.
47098   if (!Subtarget.is64Bit() &&
47099       (isFRClass(*Res.second) || isGRClass(*Res.second)) &&
47100       TRI->getEncodingValue(Res.first) >= 8) {
47101     // Register requires REX prefix, but we're in 32-bit mode.
47102     return std::make_pair(0, nullptr);
47103   }
47104 
47105   // Make sure it isn't a register that requires AVX512.
47106   if (!Subtarget.hasAVX512() && isFRClass(*Res.second) &&
47107       TRI->getEncodingValue(Res.first) & 0x10) {
47108     // Register requires EVEX prefix.
47109     return std::make_pair(0, nullptr);
47110   }
47111 
47112   // Otherwise, check to see if this is a register class of the wrong value
47113   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
47114   // turn into {ax},{dx}.
47115   // MVT::Other is used to specify clobber names.
47116   if (TRI->isTypeLegalForClass(*Res.second, VT) || VT == MVT::Other)
47117     return Res;   // Correct type already, nothing to do.
47118 
47119   // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
47120   // return "eax". This should even work for things like getting 64bit integer
47121   // registers when given an f64 type.
47122   const TargetRegisterClass *Class = Res.second;
47123   // The generic code will match the first register class that contains the
47124   // given register. Thus, based on the ordering of the tablegened file,
47125   // the "plain" GR classes might not come first.
47126   // Therefore, use a helper method.
47127   if (isGRClass(*Class)) {
47128     unsigned Size = VT.getSizeInBits();
47129     if (Size == 1) Size = 8;
47130     unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
47131     if (DestReg > 0) {
47132       bool is64Bit = Subtarget.is64Bit();
47133       const TargetRegisterClass *RC =
47134           Size == 8 ? (is64Bit ? &X86::GR8RegClass : &X86::GR8_NOREXRegClass)
47135         : Size == 16 ? (is64Bit ? &X86::GR16RegClass : &X86::GR16_NOREXRegClass)
47136         : Size == 32 ? (is64Bit ? &X86::GR32RegClass : &X86::GR32_NOREXRegClass)
47137         : Size == 64 ? (is64Bit ? &X86::GR64RegClass : nullptr)
47138         : nullptr;
47139       if (Size == 64 && !is64Bit) {
47140         // Model GCC's behavior here and select a fixed pair of 32-bit
47141         // registers.
47142         switch (DestReg) {
47143         case X86::RAX:
47144           return std::make_pair(X86::EAX, &X86::GR32_ADRegClass);
47145         case X86::RDX:
47146           return std::make_pair(X86::EDX, &X86::GR32_DCRegClass);
47147         case X86::RCX:
47148           return std::make_pair(X86::ECX, &X86::GR32_CBRegClass);
47149         case X86::RBX:
47150           return std::make_pair(X86::EBX, &X86::GR32_BSIRegClass);
47151         case X86::RSI:
47152           return std::make_pair(X86::ESI, &X86::GR32_SIDIRegClass);
47153         case X86::RDI:
47154           return std::make_pair(X86::EDI, &X86::GR32_DIBPRegClass);
47155         case X86::RBP:
47156           return std::make_pair(X86::EBP, &X86::GR32_BPSPRegClass);
47157         default:
47158           return std::make_pair(0, nullptr);
47159         }
47160       }
47161       if (RC && RC->contains(DestReg))
47162         return std::make_pair(DestReg, RC);
47163       return Res;
47164     }
47165     // No register found/type mismatch.
47166     return std::make_pair(0, nullptr);
47167   } else if (isFRClass(*Class)) {
47168     // Handle references to XMM physical registers that got mapped into the
47169     // wrong class.  This can happen with constraints like {xmm0} where the
47170     // target independent register mapper will just pick the first match it can
47171     // find, ignoring the required type.
47172 
47173     // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
47174     if (VT == MVT::f32 || VT == MVT::i32)
47175       Res.second = &X86::FR32XRegClass;
47176     else if (VT == MVT::f64 || VT == MVT::i64)
47177       Res.second = &X86::FR64XRegClass;
47178     else if (TRI->isTypeLegalForClass(X86::VR128XRegClass, VT))
47179       Res.second = &X86::VR128XRegClass;
47180     else if (TRI->isTypeLegalForClass(X86::VR256XRegClass, VT))
47181       Res.second = &X86::VR256XRegClass;
47182     else if (TRI->isTypeLegalForClass(X86::VR512RegClass, VT))
47183       Res.second = &X86::VR512RegClass;
47184     else {
47185       // Type mismatch and not a clobber: Return an error;
47186       Res.first = 0;
47187       Res.second = nullptr;
47188     }
47189   } else if (isVKClass(*Class)) {
47190     if (VT == MVT::i1)
47191       Res.second = &X86::VK1RegClass;
47192     else if (VT == MVT::i8)
47193       Res.second = &X86::VK8RegClass;
47194     else if (VT == MVT::i16)
47195       Res.second = &X86::VK16RegClass;
47196     else if (VT == MVT::i32)
47197       Res.second = &X86::VK32RegClass;
47198     else if (VT == MVT::i64)
47199       Res.second = &X86::VK64RegClass;
47200     else {
47201       // Type mismatch and not a clobber: Return an error;
47202       Res.first = 0;
47203       Res.second = nullptr;
47204     }
47205   }
47206 
47207   return Res;
47208 }
47209 
47210 int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
47211                                             const AddrMode &AM, Type *Ty,
47212                                             unsigned AS) const {
47213   // Scaling factors are not free at all.
47214   // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
47215   // will take 2 allocations in the out of order engine instead of 1
47216   // for plain addressing mode, i.e. inst (reg1).
47217   // E.g.,
47218   // vaddps (%rsi,%rdx), %ymm0, %ymm1
47219   // Requires two allocations (one for the load, one for the computation)
47220   // whereas:
47221   // vaddps (%rsi), %ymm0, %ymm1
47222   // Requires just 1 allocation, i.e., freeing allocations for other operations
47223   // and having less micro operations to execute.
47224   //
47225   // For some X86 architectures, this is even worse because for instance for
47226   // stores, the complex addressing mode forces the instruction to use the
47227   // "load" ports instead of the dedicated "store" port.
47228   // E.g., on Haswell:
47229   // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
47230   // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
47231   if (isLegalAddressingMode(DL, AM, Ty, AS))
47232     // Scale represents reg2 * scale, thus account for 1
47233     // as soon as we use a second register.
47234     return AM.Scale != 0;
47235   return -1;
47236 }
47237 
47238 bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
47239   // Integer division on x86 is expensive. However, when aggressively optimizing
47240   // for code size, we prefer to use a div instruction, as it is usually smaller
47241   // than the alternative sequence.
47242   // The exception to this is vector division. Since x86 doesn't have vector
47243   // integer division, leaving the division as-is is a loss even in terms of
47244   // size, because it will have to be scalarized, while the alternative code
47245   // sequence can be performed in vector form.
47246   bool OptSize =
47247       Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
47248   return OptSize && !VT.isVector();
47249 }
47250 
47251 void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
47252   if (!Subtarget.is64Bit())
47253     return;
47254 
47255   // Update IsSplitCSR in X86MachineFunctionInfo.
47256   X86MachineFunctionInfo *AFI =
47257       Entry->getParent()->getInfo<X86MachineFunctionInfo>();
47258   AFI->setIsSplitCSR(true);
47259 }
47260 
47261 void X86TargetLowering::insertCopiesSplitCSR(
47262     MachineBasicBlock *Entry,
47263     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
47264   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
47265   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
47266   if (!IStart)
47267     return;
47268 
47269   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
47270   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
47271   MachineBasicBlock::iterator MBBI = Entry->begin();
47272   for (const MCPhysReg *I = IStart; *I; ++I) {
47273     const TargetRegisterClass *RC = nullptr;
47274     if (X86::GR64RegClass.contains(*I))
47275       RC = &X86::GR64RegClass;
47276     else
47277       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
47278 
47279     Register NewVR = MRI->createVirtualRegister(RC);
47280     // Create copy from CSR to a virtual register.
47281     // FIXME: this currently does not emit CFI pseudo-instructions, it works
47282     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
47283     // nounwind. If we want to generalize this later, we may need to emit
47284     // CFI pseudo-instructions.
47285     assert(
47286         Entry->getParent()->getFunction().hasFnAttribute(Attribute::NoUnwind) &&
47287         "Function should be nounwind in insertCopiesSplitCSR!");
47288     Entry->addLiveIn(*I);
47289     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
47290         .addReg(*I);
47291 
47292     // Insert the copy-back instructions right before the terminator.
47293     for (auto *Exit : Exits)
47294       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
47295               TII->get(TargetOpcode::COPY), *I)
47296           .addReg(NewVR);
47297   }
47298 }
47299 
47300 bool X86TargetLowering::supportSwiftError() const {
47301   return Subtarget.is64Bit();
47302 }
47303 
47304 /// Returns the name of the symbol used to emit stack probes or the empty
47305 /// string if not applicable.
47306 StringRef
47307 X86TargetLowering::getStackProbeSymbolName(MachineFunction &MF) const {
47308   // If the function specifically requests stack probes, emit them.
47309   if (MF.getFunction().hasFnAttribute("probe-stack"))
47310     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString();
47311 
47312   // Generally, if we aren't on Windows, the platform ABI does not include
47313   // support for stack probes, so don't emit them.
47314   if (!Subtarget.isOSWindows() || Subtarget.isTargetMachO() ||
47315       MF.getFunction().hasFnAttribute("no-stack-arg-probe"))
47316     return "";
47317 
47318   // We need a stack probe to conform to the Windows ABI. Choose the right
47319   // symbol.
47320   if (Subtarget.is64Bit())
47321     return Subtarget.isTargetCygMing() ? "___chkstk_ms" : "__chkstk";
47322   return Subtarget.isTargetCygMing() ? "_alloca" : "_chkstk";
47323 }
47324 
47325 unsigned
47326 X86TargetLowering::getStackProbeSize(MachineFunction &MF) const {
47327   // The default stack probe size is 4096 if the function has no stackprobesize
47328   // attribute.
47329   unsigned StackProbeSize = 4096;
47330   const Function &Fn = MF.getFunction();
47331   if (Fn.hasFnAttribute("stack-probe-size"))
47332     Fn.getFnAttribute("stack-probe-size")
47333         .getValueAsString()
47334         .getAsInteger(0, StackProbeSize);
47335   return StackProbeSize;
47336 }
47337