xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 2f9966ff63d65bd474478888c9088eeae3f9c669)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 #define PASS_NAME "X86 DAG->DAG Instruction Selection"
39 
40 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41 
42 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
43     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
44     cl::Hidden);
45 
46 static cl::opt<bool> EnablePromoteAnyextLoad(
47     "x86-promote-anyext-load", cl::init(true),
48     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
49 
50 extern cl::opt<bool> IndirectBranchTracking;
51 
52 //===----------------------------------------------------------------------===//
53 //                      Pattern Matcher Implementation
54 //===----------------------------------------------------------------------===//
55 
56 namespace {
57   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
58   /// numbers for the leaves of the matched tree.
59   struct X86ISelAddressMode {
60     enum {
61       RegBase,
62       FrameIndexBase
63     } BaseType = RegBase;
64 
65     // This is really a union, discriminated by BaseType!
66     SDValue Base_Reg;
67     int Base_FrameIndex = 0;
68 
69     unsigned Scale = 1;
70     SDValue IndexReg;
71     int32_t Disp = 0;
72     SDValue Segment;
73     const GlobalValue *GV = nullptr;
74     const Constant *CP = nullptr;
75     const BlockAddress *BlockAddr = nullptr;
76     const char *ES = nullptr;
77     MCSymbol *MCSym = nullptr;
78     int JT = -1;
79     Align Alignment;            // CP alignment.
80     unsigned char SymbolFlags = X86II::MO_NO_FLAG;  // X86II::MO_*
81     bool NegateIndex = false;
82 
83     X86ISelAddressMode() = default;
84 
85     bool hasSymbolicDisplacement() const {
86       return GV != nullptr || CP != nullptr || ES != nullptr ||
87              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88     }
89 
90     bool hasBaseOrIndexReg() const {
91       return BaseType == FrameIndexBase ||
92              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93     }
94 
95     /// Return true if this addressing mode is already RIP-relative.
96     bool isRIPRelative() const {
97       if (BaseType != RegBase) return false;
98       if (RegisterSDNode *RegNode =
99             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
100         return RegNode->getReg() == X86::RIP;
101       return false;
102     }
103 
104     void setBaseReg(SDValue Reg) {
105       BaseType = RegBase;
106       Base_Reg = Reg;
107     }
108 
109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110     void dump(SelectionDAG *DAG = nullptr) {
111       dbgs() << "X86ISelAddressMode " << this << '\n';
112       dbgs() << "Base_Reg ";
113       if (Base_Reg.getNode())
114         Base_Reg.getNode()->dump(DAG);
115       else
116         dbgs() << "nul\n";
117       if (BaseType == FrameIndexBase)
118         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
119       dbgs() << " Scale " << Scale << '\n'
120              << "IndexReg ";
121       if (NegateIndex)
122         dbgs() << "negate ";
123       if (IndexReg.getNode())
124         IndexReg.getNode()->dump(DAG);
125       else
126         dbgs() << "nul\n";
127       dbgs() << " Disp " << Disp << '\n'
128              << "GV ";
129       if (GV)
130         GV->dump();
131       else
132         dbgs() << "nul";
133       dbgs() << " CP ";
134       if (CP)
135         CP->dump();
136       else
137         dbgs() << "nul";
138       dbgs() << '\n'
139              << "ES ";
140       if (ES)
141         dbgs() << ES;
142       else
143         dbgs() << "nul";
144       dbgs() << " MCSym ";
145       if (MCSym)
146         dbgs() << MCSym;
147       else
148         dbgs() << "nul";
149       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
150     }
151 #endif
152   };
153 }
154 
155 namespace {
156   //===--------------------------------------------------------------------===//
157   /// ISel - X86-specific code to select X86 machine instructions for
158   /// SelectionDAG operations.
159   ///
160   class X86DAGToDAGISel final : public SelectionDAGISel {
161     /// Keep a pointer to the X86Subtarget around so that we can
162     /// make the right decision when generating code for different targets.
163     const X86Subtarget *Subtarget;
164 
165     /// If true, selector should try to optimize for minimum code size.
166     bool OptForMinSize;
167 
168     /// Disable direct TLS access through segment registers.
169     bool IndirectTlsSegRefs;
170 
171   public:
172     static char ID;
173 
174     X86DAGToDAGISel() = delete;
175 
176     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOptLevel OptLevel)
177         : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr),
178           OptForMinSize(false), IndirectTlsSegRefs(false) {}
179 
180     bool runOnMachineFunction(MachineFunction &MF) override {
181       // Reset the subtarget each time through.
182       Subtarget = &MF.getSubtarget<X86Subtarget>();
183       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
184                              "indirect-tls-seg-refs");
185 
186       // OptFor[Min]Size are used in pattern predicates that isel is matching.
187       OptForMinSize = MF.getFunction().hasMinSize();
188       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
189              "OptForMinSize implies OptForSize");
190 
191       SelectionDAGISel::runOnMachineFunction(MF);
192       return true;
193     }
194 
195     void emitFunctionEntryCode() override;
196 
197     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
198 
199     void PreprocessISelDAG() override;
200     void PostprocessISelDAG() override;
201 
202 // Include the pieces autogenerated from the target description.
203 #include "X86GenDAGISel.inc"
204 
205   private:
206     void Select(SDNode *N) override;
207 
208     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
209     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
210                             bool AllowSegmentRegForX32 = false);
211     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215     SDValue matchIndexRecursively(SDValue N, X86ISelAddressMode &AM,
216                                   unsigned Depth);
217     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218                                  unsigned Depth);
219     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
220                                        unsigned Depth);
221     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
222     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
223                     SDValue &Scale, SDValue &Index, SDValue &Disp,
224                     SDValue &Segment);
225     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
226                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
227                           SDValue &Index, SDValue &Disp, SDValue &Segment);
228     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
229     bool selectLEAAddr(SDValue N, SDValue &Base,
230                        SDValue &Scale, SDValue &Index, SDValue &Disp,
231                        SDValue &Segment);
232     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
233                             SDValue &Scale, SDValue &Index, SDValue &Disp,
234                             SDValue &Segment);
235     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
236                            SDValue &Scale, SDValue &Index, SDValue &Disp,
237                            SDValue &Segment);
238     bool selectRelocImm(SDValue N, SDValue &Op);
239 
240     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
241                      SDValue &Base, SDValue &Scale,
242                      SDValue &Index, SDValue &Disp,
243                      SDValue &Segment);
244 
245     // Convenience method where P is also root.
246     bool tryFoldLoad(SDNode *P, SDValue N,
247                      SDValue &Base, SDValue &Scale,
248                      SDValue &Index, SDValue &Disp,
249                      SDValue &Segment) {
250       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
251     }
252 
253     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
254                           SDValue &Base, SDValue &Scale,
255                           SDValue &Index, SDValue &Disp,
256                           SDValue &Segment);
257 
258     bool isProfitableToFormMaskedOp(SDNode *N) const;
259 
260     /// Implement addressing mode selection for inline asm expressions.
261     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
262                                       InlineAsm::ConstraintCode ConstraintID,
263                                       std::vector<SDValue> &OutOps) override;
264 
265     void emitSpecialCodeForMain();
266 
267     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
268                                    MVT VT, SDValue &Base, SDValue &Scale,
269                                    SDValue &Index, SDValue &Disp,
270                                    SDValue &Segment) {
271       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
272         Base = CurDAG->getTargetFrameIndex(
273             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
274       else if (AM.Base_Reg.getNode())
275         Base = AM.Base_Reg;
276       else
277         Base = CurDAG->getRegister(0, VT);
278 
279       Scale = getI8Imm(AM.Scale, DL);
280 
281       // Negate the index if needed.
282       if (AM.NegateIndex) {
283         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
284         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
285                                                      AM.IndexReg), 0);
286         AM.IndexReg = Neg;
287       }
288 
289       if (AM.IndexReg.getNode())
290         Index = AM.IndexReg;
291       else
292         Index = CurDAG->getRegister(0, VT);
293 
294       // These are 32-bit even in 64-bit mode since RIP-relative offset
295       // is 32-bit.
296       if (AM.GV)
297         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
298                                               MVT::i32, AM.Disp,
299                                               AM.SymbolFlags);
300       else if (AM.CP)
301         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
302                                              AM.Disp, AM.SymbolFlags);
303       else if (AM.ES) {
304         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
305         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
306       } else if (AM.MCSym) {
307         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
308         assert(AM.SymbolFlags == 0 && "oo");
309         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
310       } else if (AM.JT != -1) {
311         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
312         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
313       } else if (AM.BlockAddr)
314         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
315                                              AM.SymbolFlags);
316       else
317         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
318 
319       if (AM.Segment.getNode())
320         Segment = AM.Segment;
321       else
322         Segment = CurDAG->getRegister(0, MVT::i16);
323     }
324 
325     // Utility function to determine whether we should avoid selecting
326     // immediate forms of instructions for better code size or not.
327     // At a high level, we'd like to avoid such instructions when
328     // we have similar constants used within the same basic block
329     // that can be kept in a register.
330     //
331     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
332       uint32_t UseCount = 0;
333 
334       // Do not want to hoist if we're not optimizing for size.
335       // TODO: We'd like to remove this restriction.
336       // See the comment in X86InstrInfo.td for more info.
337       if (!CurDAG->shouldOptForSize())
338         return false;
339 
340       // Walk all the users of the immediate.
341       for (const SDNode *User : N->uses()) {
342         if (UseCount >= 2)
343           break;
344 
345         // This user is already selected. Count it as a legitimate use and
346         // move on.
347         if (User->isMachineOpcode()) {
348           UseCount++;
349           continue;
350         }
351 
352         // We want to count stores of immediates as real uses.
353         if (User->getOpcode() == ISD::STORE &&
354             User->getOperand(1).getNode() == N) {
355           UseCount++;
356           continue;
357         }
358 
359         // We don't currently match users that have > 2 operands (except
360         // for stores, which are handled above)
361         // Those instruction won't match in ISEL, for now, and would
362         // be counted incorrectly.
363         // This may change in the future as we add additional instruction
364         // types.
365         if (User->getNumOperands() != 2)
366           continue;
367 
368         // If this is a sign-extended 8-bit integer immediate used in an ALU
369         // instruction, there is probably an opcode encoding to save space.
370         auto *C = dyn_cast<ConstantSDNode>(N);
371         if (C && isInt<8>(C->getSExtValue()))
372           continue;
373 
374         // Immediates that are used for offsets as part of stack
375         // manipulation should be left alone. These are typically
376         // used to indicate SP offsets for argument passing and
377         // will get pulled into stores/pushes (implicitly).
378         if (User->getOpcode() == X86ISD::ADD ||
379             User->getOpcode() == ISD::ADD    ||
380             User->getOpcode() == X86ISD::SUB ||
381             User->getOpcode() == ISD::SUB) {
382 
383           // Find the other operand of the add/sub.
384           SDValue OtherOp = User->getOperand(0);
385           if (OtherOp.getNode() == N)
386             OtherOp = User->getOperand(1);
387 
388           // Don't count if the other operand is SP.
389           RegisterSDNode *RegNode;
390           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
391               (RegNode = dyn_cast_or_null<RegisterSDNode>(
392                  OtherOp->getOperand(1).getNode())))
393             if ((RegNode->getReg() == X86::ESP) ||
394                 (RegNode->getReg() == X86::RSP))
395               continue;
396         }
397 
398         // ... otherwise, count this and move on.
399         UseCount++;
400       }
401 
402       // If we have more than 1 use, then recommend for hoisting.
403       return (UseCount > 1);
404     }
405 
406     /// Return a target constant with the specified value of type i8.
407     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
408       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
409     }
410 
411     /// Return a target constant with the specified value, of type i32.
412     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
413       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
414     }
415 
416     /// Return a target constant with the specified value, of type i64.
417     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
418       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
419     }
420 
421     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
422                                         const SDLoc &DL) {
423       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
424       uint64_t Index = N->getConstantOperandVal(1);
425       MVT VecVT = N->getOperand(0).getSimpleValueType();
426       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
427     }
428 
429     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
430                                       const SDLoc &DL) {
431       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
432       uint64_t Index = N->getConstantOperandVal(2);
433       MVT VecVT = N->getSimpleValueType(0);
434       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
435     }
436 
437     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
438                                                const SDLoc &DL) {
439       assert(VecWidth == 128 && "Unexpected vector width");
440       uint64_t Index = N->getConstantOperandVal(2);
441       MVT VecVT = N->getSimpleValueType(0);
442       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
443       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
444       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
445       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
446       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
447     }
448 
449     SDValue getSBBZero(SDNode *N) {
450       SDLoc dl(N);
451       MVT VT = N->getSimpleValueType(0);
452 
453       // Create zero.
454       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
455       SDValue Zero = SDValue(
456           CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
457       if (VT == MVT::i64) {
458         Zero = SDValue(
459             CurDAG->getMachineNode(
460                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
461                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
462                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
463             0);
464       }
465 
466       // Copy flags to the EFLAGS register and glue it to next node.
467       unsigned Opcode = N->getOpcode();
468       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
469              "Unexpected opcode for SBB materialization");
470       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
471       SDValue EFLAGS =
472           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
473                                N->getOperand(FlagOpIndex), SDValue());
474 
475       // Create a 64-bit instruction if the result is 64-bits otherwise use the
476       // 32-bit version.
477       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
478       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
479       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
480       return SDValue(
481           CurDAG->getMachineNode(Opc, dl, VTs,
482                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
483           0);
484     }
485 
486     // Helper to detect unneeded and instructions on shift amounts. Called
487     // from PatFrags in tablegen.
488     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
489       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
490       const APInt &Val = N->getConstantOperandAPInt(1);
491 
492       if (Val.countr_one() >= Width)
493         return true;
494 
495       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
496       return Mask.countr_one() >= Width;
497     }
498 
499     /// Return an SDNode that returns the value of the global base register.
500     /// Output instructions required to initialize the global base register,
501     /// if necessary.
502     SDNode *getGlobalBaseReg();
503 
504     /// Return a reference to the TargetMachine, casted to the target-specific
505     /// type.
506     const X86TargetMachine &getTargetMachine() const {
507       return static_cast<const X86TargetMachine &>(TM);
508     }
509 
510     /// Return a reference to the TargetInstrInfo, casted to the target-specific
511     /// type.
512     const X86InstrInfo *getInstrInfo() const {
513       return Subtarget->getInstrInfo();
514     }
515 
516     /// Return a condition code of the given SDNode
517     X86::CondCode getCondFromNode(SDNode *N) const;
518 
519     /// Address-mode matching performs shift-of-and to and-of-shift
520     /// reassociation in order to expose more scaled addressing
521     /// opportunities.
522     bool ComplexPatternFuncMutatesDAG() const override {
523       return true;
524     }
525 
526     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
527 
528     // Indicates we should prefer to use a non-temporal load for this load.
529     bool useNonTemporalLoad(LoadSDNode *N) const {
530       if (!N->isNonTemporal())
531         return false;
532 
533       unsigned StoreSize = N->getMemoryVT().getStoreSize();
534 
535       if (N->getAlign().value() < StoreSize)
536         return false;
537 
538       switch (StoreSize) {
539       default: llvm_unreachable("Unsupported store size");
540       case 4:
541       case 8:
542         return false;
543       case 16:
544         return Subtarget->hasSSE41();
545       case 32:
546         return Subtarget->hasAVX2();
547       case 64:
548         return Subtarget->hasAVX512();
549       }
550     }
551 
552     bool foldLoadStoreIntoMemOperand(SDNode *Node);
553     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
554     bool matchBitExtract(SDNode *Node);
555     bool shrinkAndImmediate(SDNode *N);
556     bool isMaskZeroExtended(SDNode *N) const;
557     bool tryShiftAmountMod(SDNode *N);
558     bool tryShrinkShlLogicImm(SDNode *N);
559     bool tryVPTERNLOG(SDNode *N);
560     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
561                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
562                         uint8_t Imm);
563     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
564     bool tryMatchBitSelect(SDNode *N);
565 
566     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
567                                 const SDLoc &dl, MVT VT, SDNode *Node);
568     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
569                                 const SDLoc &dl, MVT VT, SDNode *Node,
570                                 SDValue &InGlue);
571 
572     bool tryOptimizeRem8Extend(SDNode *N);
573 
574     bool onlyUsesZeroFlag(SDValue Flags) const;
575     bool hasNoSignFlagUses(SDValue Flags) const;
576     bool hasNoCarryFlagUses(SDValue Flags) const;
577   };
578 }
579 
580 char X86DAGToDAGISel::ID = 0;
581 
582 INITIALIZE_PASS(X86DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
583 
584 // Returns true if this masked compare can be implemented legally with this
585 // type.
586 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
587   unsigned Opcode = N->getOpcode();
588   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
589       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
590       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
591     // We can get 256-bit 8 element types here without VLX being enabled. When
592     // this happens we will use 512-bit operations and the mask will not be
593     // zero extended.
594     EVT OpVT = N->getOperand(0).getValueType();
595     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
596     // second operand.
597     if (Opcode == X86ISD::STRICT_CMPM)
598       OpVT = N->getOperand(1).getValueType();
599     if (OpVT.is256BitVector() || OpVT.is128BitVector())
600       return Subtarget->hasVLX();
601 
602     return true;
603   }
604   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
605   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
606       Opcode == X86ISD::FSETCCM_SAE)
607     return true;
608 
609   return false;
610 }
611 
612 // Returns true if we can assume the writer of the mask has zero extended it
613 // for us.
614 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
615   // If this is an AND, check if we have a compare on either side. As long as
616   // one side guarantees the mask is zero extended, the AND will preserve those
617   // zeros.
618   if (N->getOpcode() == ISD::AND)
619     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
620            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
621 
622   return isLegalMaskCompare(N, Subtarget);
623 }
624 
625 bool
626 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
627   if (OptLevel == CodeGenOptLevel::None)
628     return false;
629 
630   if (!N.hasOneUse())
631     return false;
632 
633   if (N.getOpcode() != ISD::LOAD)
634     return true;
635 
636   // Don't fold non-temporal loads if we have an instruction for them.
637   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
638     return false;
639 
640   // If N is a load, do additional profitability checks.
641   if (U == Root) {
642     switch (U->getOpcode()) {
643     default: break;
644     case X86ISD::ADD:
645     case X86ISD::ADC:
646     case X86ISD::SUB:
647     case X86ISD::SBB:
648     case X86ISD::AND:
649     case X86ISD::XOR:
650     case X86ISD::OR:
651     case ISD::ADD:
652     case ISD::UADDO_CARRY:
653     case ISD::AND:
654     case ISD::OR:
655     case ISD::XOR: {
656       SDValue Op1 = U->getOperand(1);
657 
658       // If the other operand is a 8-bit immediate we should fold the immediate
659       // instead. This reduces code size.
660       // e.g.
661       // movl 4(%esp), %eax
662       // addl $4, %eax
663       // vs.
664       // movl $4, %eax
665       // addl 4(%esp), %eax
666       // The former is 2 bytes shorter. In case where the increment is 1, then
667       // the saving can be 4 bytes (by using incl %eax).
668       if (auto *Imm = dyn_cast<ConstantSDNode>(Op1)) {
669         if (Imm->getAPIntValue().isSignedIntN(8))
670           return false;
671 
672         // If this is a 64-bit AND with an immediate that fits in 32-bits,
673         // prefer using the smaller and over folding the load. This is needed to
674         // make sure immediates created by shrinkAndImmediate are always folded.
675         // Ideally we would narrow the load during DAG combine and get the
676         // best of both worlds.
677         if (U->getOpcode() == ISD::AND &&
678             Imm->getAPIntValue().getBitWidth() == 64 &&
679             Imm->getAPIntValue().isIntN(32))
680           return false;
681 
682         // If this really a zext_inreg that can be represented with a movzx
683         // instruction, prefer that.
684         // TODO: We could shrink the load and fold if it is non-volatile.
685         if (U->getOpcode() == ISD::AND &&
686             (Imm->getAPIntValue() == UINT8_MAX ||
687              Imm->getAPIntValue() == UINT16_MAX ||
688              Imm->getAPIntValue() == UINT32_MAX))
689           return false;
690 
691         // ADD/SUB with can negate the immediate and use the opposite operation
692         // to fit 128 into a sign extended 8 bit immediate.
693         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
694             (-Imm->getAPIntValue()).isSignedIntN(8))
695           return false;
696 
697         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
698             (-Imm->getAPIntValue()).isSignedIntN(8) &&
699             hasNoCarryFlagUses(SDValue(U, 1)))
700           return false;
701       }
702 
703       // If the other operand is a TLS address, we should fold it instead.
704       // This produces
705       // movl    %gs:0, %eax
706       // leal    i@NTPOFF(%eax), %eax
707       // instead of
708       // movl    $i@NTPOFF, %eax
709       // addl    %gs:0, %eax
710       // if the block also has an access to a second TLS address this will save
711       // a load.
712       // FIXME: This is probably also true for non-TLS addresses.
713       if (Op1.getOpcode() == X86ISD::Wrapper) {
714         SDValue Val = Op1.getOperand(0);
715         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
716           return false;
717       }
718 
719       // Don't fold load if this matches the BTS/BTR/BTC patterns.
720       // BTS: (or X, (shl 1, n))
721       // BTR: (and X, (rotl -2, n))
722       // BTC: (xor X, (shl 1, n))
723       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
724         if (U->getOperand(0).getOpcode() == ISD::SHL &&
725             isOneConstant(U->getOperand(0).getOperand(0)))
726           return false;
727 
728         if (U->getOperand(1).getOpcode() == ISD::SHL &&
729             isOneConstant(U->getOperand(1).getOperand(0)))
730           return false;
731       }
732       if (U->getOpcode() == ISD::AND) {
733         SDValue U0 = U->getOperand(0);
734         SDValue U1 = U->getOperand(1);
735         if (U0.getOpcode() == ISD::ROTL) {
736           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
737           if (C && C->getSExtValue() == -2)
738             return false;
739         }
740 
741         if (U1.getOpcode() == ISD::ROTL) {
742           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
743           if (C && C->getSExtValue() == -2)
744             return false;
745         }
746       }
747 
748       break;
749     }
750     case ISD::SHL:
751     case ISD::SRA:
752     case ISD::SRL:
753       // Don't fold a load into a shift by immediate. The BMI2 instructions
754       // support folding a load, but not an immediate. The legacy instructions
755       // support folding an immediate, but can't fold a load. Folding an
756       // immediate is preferable to folding a load.
757       if (isa<ConstantSDNode>(U->getOperand(1)))
758         return false;
759 
760       break;
761     }
762   }
763 
764   // Prevent folding a load if this can implemented with an insert_subreg or
765   // a move that implicitly zeroes.
766   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
767       isNullConstant(Root->getOperand(2)) &&
768       (Root->getOperand(0).isUndef() ||
769        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
770     return false;
771 
772   return true;
773 }
774 
775 // Indicates it is profitable to form an AVX512 masked operation. Returning
776 // false will favor a masked register-register masked move or vblendm and the
777 // operation will be selected separately.
778 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
779   assert(
780       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
781       "Unexpected opcode!");
782 
783   // If the operation has additional users, the operation will be duplicated.
784   // Check the use count to prevent that.
785   // FIXME: Are there cheap opcodes we might want to duplicate?
786   return N->getOperand(1).hasOneUse();
787 }
788 
789 /// Replace the original chain operand of the call with
790 /// load's chain operand and move load below the call's chain operand.
791 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
792                                SDValue Call, SDValue OrigChain) {
793   SmallVector<SDValue, 8> Ops;
794   SDValue Chain = OrigChain.getOperand(0);
795   if (Chain.getNode() == Load.getNode())
796     Ops.push_back(Load.getOperand(0));
797   else {
798     assert(Chain.getOpcode() == ISD::TokenFactor &&
799            "Unexpected chain operand");
800     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
801       if (Chain.getOperand(i).getNode() == Load.getNode())
802         Ops.push_back(Load.getOperand(0));
803       else
804         Ops.push_back(Chain.getOperand(i));
805     SDValue NewChain =
806       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
807     Ops.clear();
808     Ops.push_back(NewChain);
809   }
810   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
811   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
812   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
813                              Load.getOperand(1), Load.getOperand(2));
814 
815   Ops.clear();
816   Ops.push_back(SDValue(Load.getNode(), 1));
817   Ops.append(Call->op_begin() + 1, Call->op_end());
818   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
819 }
820 
821 /// Return true if call address is a load and it can be
822 /// moved below CALLSEQ_START and the chains leading up to the call.
823 /// Return the CALLSEQ_START by reference as a second output.
824 /// In the case of a tail call, there isn't a callseq node between the call
825 /// chain and the load.
826 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
827   // The transformation is somewhat dangerous if the call's chain was glued to
828   // the call. After MoveBelowOrigChain the load is moved between the call and
829   // the chain, this can create a cycle if the load is not folded. So it is
830   // *really* important that we are sure the load will be folded.
831   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
832     return false;
833   auto *LD = dyn_cast<LoadSDNode>(Callee.getNode());
834   if (!LD ||
835       !LD->isSimple() ||
836       LD->getAddressingMode() != ISD::UNINDEXED ||
837       LD->getExtensionType() != ISD::NON_EXTLOAD)
838     return false;
839 
840   // Now let's find the callseq_start.
841   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
842     if (!Chain.hasOneUse())
843       return false;
844     Chain = Chain.getOperand(0);
845   }
846 
847   if (!Chain.getNumOperands())
848     return false;
849   // Since we are not checking for AA here, conservatively abort if the chain
850   // writes to memory. It's not safe to move the callee (a load) across a store.
851   if (isa<MemSDNode>(Chain.getNode()) &&
852       cast<MemSDNode>(Chain.getNode())->writeMem())
853     return false;
854   if (Chain.getOperand(0).getNode() == Callee.getNode())
855     return true;
856   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
857       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
858       Callee.getValue(1).hasOneUse())
859     return true;
860   return false;
861 }
862 
863 static bool isEndbrImm64(uint64_t Imm) {
864 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
865 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
866   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
867     return false;
868 
869   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
870                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
871   int i = 24; // 24bit 0x0F1EFA has matched
872   while (i < 64) {
873     uint8_t Byte = (Imm >> i) & 0xFF;
874     if (Byte == 0xF3)
875       return true;
876     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
877       return false;
878     i += 8;
879   }
880 
881   return false;
882 }
883 
884 static bool needBWI(MVT VT) {
885   return (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v64i8);
886 }
887 
888 void X86DAGToDAGISel::PreprocessISelDAG() {
889   bool MadeChange = false;
890   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
891        E = CurDAG->allnodes_end(); I != E; ) {
892     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
893 
894     // This is for CET enhancement.
895     //
896     // ENDBR32 and ENDBR64 have specific opcodes:
897     // ENDBR32: F3 0F 1E FB
898     // ENDBR64: F3 0F 1E FA
899     // And we want that attackers won’t find unintended ENDBR32/64
900     // opcode matches in the binary
901     // Here’s an example:
902     // If the compiler had to generate asm for the following code:
903     // a = 0xF30F1EFA
904     // it could, for example, generate:
905     // mov 0xF30F1EFA, dword ptr[a]
906     // In such a case, the binary would include a gadget that starts
907     // with a fake ENDBR64 opcode. Therefore, we split such generation
908     // into multiple operations, let it not shows in the binary
909     if (N->getOpcode() == ISD::Constant) {
910       MVT VT = N->getSimpleValueType(0);
911       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
912       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
913       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
914         // Check that the cf-protection-branch is enabled.
915         Metadata *CFProtectionBranch =
916           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
917         if (CFProtectionBranch || IndirectBranchTracking) {
918           SDLoc dl(N);
919           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
920           Complement = CurDAG->getNOT(dl, Complement, VT);
921           --I;
922           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
923           ++I;
924           MadeChange = true;
925           continue;
926         }
927       }
928     }
929 
930     // If this is a target specific AND node with no flag usages, turn it back
931     // into ISD::AND to enable test instruction matching.
932     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
933       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
934                                     N->getOperand(0), N->getOperand(1));
935       --I;
936       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
937       ++I;
938       MadeChange = true;
939       continue;
940     }
941 
942     // Convert vector increment or decrement to sub/add with an all-ones
943     // constant:
944     // add X, <1, 1...> --> sub X, <-1, -1...>
945     // sub X, <1, 1...> --> add X, <-1, -1...>
946     // The all-ones vector constant can be materialized using a pcmpeq
947     // instruction that is commonly recognized as an idiom (has no register
948     // dependency), so that's better/smaller than loading a splat 1 constant.
949     //
950     // But don't do this if it would inhibit a potentially profitable load
951     // folding opportunity for the other operand. That only occurs with the
952     // intersection of:
953     // (1) The other operand (op0) is load foldable.
954     // (2) The op is an add (otherwise, we are *creating* an add and can still
955     //     load fold the other op).
956     // (3) The target has AVX (otherwise, we have a destructive add and can't
957     //     load fold the other op without killing the constant op).
958     // (4) The constant 1 vector has multiple uses (so it is profitable to load
959     //     into a register anyway).
960     auto mayPreventLoadFold = [&]() {
961       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
962              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
963              !N->getOperand(1).hasOneUse();
964     };
965     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
966         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
967       APInt SplatVal;
968       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
969           SplatVal.isOne()) {
970         SDLoc DL(N);
971 
972         MVT VT = N->getSimpleValueType(0);
973         unsigned NumElts = VT.getSizeInBits() / 32;
974         SDValue AllOnes =
975             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
976         AllOnes = CurDAG->getBitcast(VT, AllOnes);
977 
978         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
979         SDValue Res =
980             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
981         --I;
982         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
983         ++I;
984         MadeChange = true;
985         continue;
986       }
987     }
988 
989     switch (N->getOpcode()) {
990     case X86ISD::VBROADCAST: {
991       MVT VT = N->getSimpleValueType(0);
992       // Emulate v32i16/v64i8 broadcast without BWI.
993       if (!Subtarget->hasBWI() && needBWI(VT)) {
994         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
995         SDLoc dl(N);
996         SDValue NarrowBCast =
997             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
998         SDValue Res =
999             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1000                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1001         unsigned Index = NarrowVT.getVectorMinNumElements();
1002         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1003                               CurDAG->getIntPtrConstant(Index, dl));
1004 
1005         --I;
1006         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1007         ++I;
1008         MadeChange = true;
1009         continue;
1010       }
1011 
1012       break;
1013     }
1014     case X86ISD::VBROADCAST_LOAD: {
1015       MVT VT = N->getSimpleValueType(0);
1016       // Emulate v32i16/v64i8 broadcast without BWI.
1017       if (!Subtarget->hasBWI() && needBWI(VT)) {
1018         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
1019         auto *MemNode = cast<MemSDNode>(N);
1020         SDLoc dl(N);
1021         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1022         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1023         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1024             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
1025             MemNode->getMemOperand());
1026         SDValue Res =
1027             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1028                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1029         unsigned Index = NarrowVT.getVectorMinNumElements();
1030         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1031                               CurDAG->getIntPtrConstant(Index, dl));
1032 
1033         --I;
1034         SDValue To[] = {Res, NarrowBCast.getValue(1)};
1035         CurDAG->ReplaceAllUsesWith(N, To);
1036         ++I;
1037         MadeChange = true;
1038         continue;
1039       }
1040 
1041       break;
1042     }
1043     case ISD::LOAD: {
1044       // If this is a XMM/YMM load of the same lower bits as another YMM/ZMM
1045       // load, then just extract the lower subvector and avoid the second load.
1046       auto *Ld = cast<LoadSDNode>(N);
1047       MVT VT = N->getSimpleValueType(0);
1048       if (!ISD::isNormalLoad(Ld) || !Ld->isSimple() ||
1049           !(VT.is128BitVector() || VT.is256BitVector()))
1050         break;
1051 
1052       MVT MaxVT = VT;
1053       SDNode *MaxLd = nullptr;
1054       SDValue Ptr = Ld->getBasePtr();
1055       SDValue Chain = Ld->getChain();
1056       for (SDNode *User : Ptr->uses()) {
1057         auto *UserLd = dyn_cast<LoadSDNode>(User);
1058         MVT UserVT = User->getSimpleValueType(0);
1059         if (User != N && UserLd && ISD::isNormalLoad(User) &&
1060             UserLd->getBasePtr() == Ptr && UserLd->getChain() == Chain &&
1061             !User->hasAnyUseOfValue(1) &&
1062             (UserVT.is256BitVector() || UserVT.is512BitVector()) &&
1063             UserVT.getSizeInBits() > VT.getSizeInBits() &&
1064             (!MaxLd || UserVT.getSizeInBits() > MaxVT.getSizeInBits())) {
1065           MaxLd = User;
1066           MaxVT = UserVT;
1067         }
1068       }
1069       if (MaxLd) {
1070         SDLoc dl(N);
1071         unsigned NumSubElts = VT.getSizeInBits() / MaxVT.getScalarSizeInBits();
1072         MVT SubVT = MVT::getVectorVT(MaxVT.getScalarType(), NumSubElts);
1073         SDValue Extract = CurDAG->getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT,
1074                                           SDValue(MaxLd, 0),
1075                                           CurDAG->getIntPtrConstant(0, dl));
1076         SDValue Res = CurDAG->getBitcast(VT, Extract);
1077 
1078         --I;
1079         SDValue To[] = {Res, SDValue(MaxLd, 1)};
1080         CurDAG->ReplaceAllUsesWith(N, To);
1081         ++I;
1082         MadeChange = true;
1083         continue;
1084       }
1085       break;
1086     }
1087     case ISD::VSELECT: {
1088       // Replace VSELECT with non-mask conditions with with BLENDV/VPTERNLOG.
1089       EVT EleVT = N->getOperand(0).getValueType().getVectorElementType();
1090       if (EleVT == MVT::i1)
1091         break;
1092 
1093       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1094       assert(N->getValueType(0).getVectorElementType() != MVT::i16 &&
1095              "We can't replace VSELECT with BLENDV in vXi16!");
1096       SDValue R;
1097       if (Subtarget->hasVLX() && CurDAG->ComputeNumSignBits(N->getOperand(0)) ==
1098                                      EleVT.getSizeInBits()) {
1099         R = CurDAG->getNode(X86ISD::VPTERNLOG, SDLoc(N), N->getValueType(0),
1100                             N->getOperand(0), N->getOperand(1), N->getOperand(2),
1101                             CurDAG->getTargetConstant(0xCA, SDLoc(N), MVT::i8));
1102       } else {
1103         R = CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
1104                             N->getOperand(0), N->getOperand(1),
1105                             N->getOperand(2));
1106       }
1107       --I;
1108       CurDAG->ReplaceAllUsesWith(N, R.getNode());
1109       ++I;
1110       MadeChange = true;
1111       continue;
1112     }
1113     case ISD::FP_ROUND:
1114     case ISD::STRICT_FP_ROUND:
1115     case ISD::FP_TO_SINT:
1116     case ISD::FP_TO_UINT:
1117     case ISD::STRICT_FP_TO_SINT:
1118     case ISD::STRICT_FP_TO_UINT: {
1119       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1120       // don't need 2 sets of patterns.
1121       if (!N->getSimpleValueType(0).isVector())
1122         break;
1123 
1124       unsigned NewOpc;
1125       switch (N->getOpcode()) {
1126       default: llvm_unreachable("Unexpected opcode!");
1127       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
1128       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
1129       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1130       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
1131       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1132       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1133       }
1134       SDValue Res;
1135       if (N->isStrictFPOpcode())
1136         Res =
1137             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1138                             {N->getOperand(0), N->getOperand(1)});
1139       else
1140         Res =
1141             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1142                             N->getOperand(0));
1143       --I;
1144       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1145       ++I;
1146       MadeChange = true;
1147       continue;
1148     }
1149     case ISD::SHL:
1150     case ISD::SRA:
1151     case ISD::SRL: {
1152       // Replace vector shifts with their X86 specific equivalent so we don't
1153       // need 2 sets of patterns.
1154       if (!N->getValueType(0).isVector())
1155         break;
1156 
1157       unsigned NewOpc;
1158       switch (N->getOpcode()) {
1159       default: llvm_unreachable("Unexpected opcode!");
1160       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1161       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1162       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1163       }
1164       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1165                                     N->getOperand(0), N->getOperand(1));
1166       --I;
1167       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1168       ++I;
1169       MadeChange = true;
1170       continue;
1171     }
1172     case ISD::ANY_EXTEND:
1173     case ISD::ANY_EXTEND_VECTOR_INREG: {
1174       // Replace vector any extend with the zero extend equivalents so we don't
1175       // need 2 sets of patterns. Ignore vXi1 extensions.
1176       if (!N->getValueType(0).isVector())
1177         break;
1178 
1179       unsigned NewOpc;
1180       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1181         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1182                "Unexpected opcode for mask vector!");
1183         NewOpc = ISD::SIGN_EXTEND;
1184       } else {
1185         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1186                               ? ISD::ZERO_EXTEND
1187                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1188       }
1189 
1190       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1191                                     N->getOperand(0));
1192       --I;
1193       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1194       ++I;
1195       MadeChange = true;
1196       continue;
1197     }
1198     case ISD::FCEIL:
1199     case ISD::STRICT_FCEIL:
1200     case ISD::FFLOOR:
1201     case ISD::STRICT_FFLOOR:
1202     case ISD::FTRUNC:
1203     case ISD::STRICT_FTRUNC:
1204     case ISD::FROUNDEVEN:
1205     case ISD::STRICT_FROUNDEVEN:
1206     case ISD::FNEARBYINT:
1207     case ISD::STRICT_FNEARBYINT:
1208     case ISD::FRINT:
1209     case ISD::STRICT_FRINT: {
1210       // Replace fp rounding with their X86 specific equivalent so we don't
1211       // need 2 sets of patterns.
1212       unsigned Imm;
1213       switch (N->getOpcode()) {
1214       default: llvm_unreachable("Unexpected opcode!");
1215       case ISD::STRICT_FCEIL:
1216       case ISD::FCEIL:      Imm = 0xA; break;
1217       case ISD::STRICT_FFLOOR:
1218       case ISD::FFLOOR:     Imm = 0x9; break;
1219       case ISD::STRICT_FTRUNC:
1220       case ISD::FTRUNC:     Imm = 0xB; break;
1221       case ISD::STRICT_FROUNDEVEN:
1222       case ISD::FROUNDEVEN: Imm = 0x8; break;
1223       case ISD::STRICT_FNEARBYINT:
1224       case ISD::FNEARBYINT: Imm = 0xC; break;
1225       case ISD::STRICT_FRINT:
1226       case ISD::FRINT:      Imm = 0x4; break;
1227       }
1228       SDLoc dl(N);
1229       bool IsStrict = N->isStrictFPOpcode();
1230       SDValue Res;
1231       if (IsStrict)
1232         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1233                               {N->getValueType(0), MVT::Other},
1234                               {N->getOperand(0), N->getOperand(1),
1235                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1236       else
1237         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1238                               N->getOperand(0),
1239                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1240       --I;
1241       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1242       ++I;
1243       MadeChange = true;
1244       continue;
1245     }
1246     case X86ISD::FANDN:
1247     case X86ISD::FAND:
1248     case X86ISD::FOR:
1249     case X86ISD::FXOR: {
1250       // Widen scalar fp logic ops to vector to reduce isel patterns.
1251       // FIXME: Can we do this during lowering/combine.
1252       MVT VT = N->getSimpleValueType(0);
1253       if (VT.isVector() || VT == MVT::f128)
1254         break;
1255 
1256       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
1257                   : VT == MVT::f32 ? MVT::v4f32
1258                                    : MVT::v8f16;
1259 
1260       SDLoc dl(N);
1261       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1262                                     N->getOperand(0));
1263       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1264                                     N->getOperand(1));
1265 
1266       SDValue Res;
1267       if (Subtarget->hasSSE2()) {
1268         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1269         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1270         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1271         unsigned Opc;
1272         switch (N->getOpcode()) {
1273         default: llvm_unreachable("Unexpected opcode!");
1274         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1275         case X86ISD::FAND:  Opc = ISD::AND;      break;
1276         case X86ISD::FOR:   Opc = ISD::OR;       break;
1277         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1278         }
1279         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1280         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1281       } else {
1282         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1283       }
1284       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1285                             CurDAG->getIntPtrConstant(0, dl));
1286       --I;
1287       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1288       ++I;
1289       MadeChange = true;
1290       continue;
1291     }
1292     }
1293 
1294     if (OptLevel != CodeGenOptLevel::None &&
1295         // Only do this when the target can fold the load into the call or
1296         // jmp.
1297         !Subtarget->useIndirectThunkCalls() &&
1298         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1299          (N->getOpcode() == X86ISD::TC_RETURN &&
1300           (Subtarget->is64Bit() ||
1301            !getTargetMachine().isPositionIndependent())))) {
1302       /// Also try moving call address load from outside callseq_start to just
1303       /// before the call to allow it to be folded.
1304       ///
1305       ///     [Load chain]
1306       ///         ^
1307       ///         |
1308       ///       [Load]
1309       ///       ^    ^
1310       ///       |    |
1311       ///      /      \--
1312       ///     /          |
1313       ///[CALLSEQ_START] |
1314       ///     ^          |
1315       ///     |          |
1316       /// [LOAD/C2Reg]   |
1317       ///     |          |
1318       ///      \        /
1319       ///       \      /
1320       ///       [CALL]
1321       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1322       SDValue Chain = N->getOperand(0);
1323       SDValue Load  = N->getOperand(1);
1324       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1325         continue;
1326       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1327       ++NumLoadMoved;
1328       MadeChange = true;
1329       continue;
1330     }
1331 
1332     // Lower fpround and fpextend nodes that target the FP stack to be store and
1333     // load to the stack.  This is a gross hack.  We would like to simply mark
1334     // these as being illegal, but when we do that, legalize produces these when
1335     // it expands calls, then expands these in the same legalize pass.  We would
1336     // like dag combine to be able to hack on these between the call expansion
1337     // and the node legalization.  As such this pass basically does "really
1338     // late" legalization of these inline with the X86 isel pass.
1339     // FIXME: This should only happen when not compiled with -O0.
1340     switch (N->getOpcode()) {
1341     default: continue;
1342     case ISD::FP_ROUND:
1343     case ISD::FP_EXTEND:
1344     {
1345       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1346       MVT DstVT = N->getSimpleValueType(0);
1347 
1348       // If any of the sources are vectors, no fp stack involved.
1349       if (SrcVT.isVector() || DstVT.isVector())
1350         continue;
1351 
1352       // If the source and destination are SSE registers, then this is a legal
1353       // conversion that should not be lowered.
1354       const X86TargetLowering *X86Lowering =
1355           static_cast<const X86TargetLowering *>(TLI);
1356       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1357       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1358       if (SrcIsSSE && DstIsSSE)
1359         continue;
1360 
1361       if (!SrcIsSSE && !DstIsSSE) {
1362         // If this is an FPStack extension, it is a noop.
1363         if (N->getOpcode() == ISD::FP_EXTEND)
1364           continue;
1365         // If this is a value-preserving FPStack truncation, it is a noop.
1366         if (N->getConstantOperandVal(1))
1367           continue;
1368       }
1369 
1370       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1371       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1372       // operations.  Based on this, decide what we want to do.
1373       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1374       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1375       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1376       MachinePointerInfo MPI =
1377           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1378       SDLoc dl(N);
1379 
1380       // FIXME: optimize the case where the src/dest is a load or store?
1381 
1382       SDValue Store = CurDAG->getTruncStore(
1383           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1384       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1385                                           MemTmp, MPI, MemVT);
1386 
1387       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1388       // extload we created.  This will cause general havok on the dag because
1389       // anything below the conversion could be folded into other existing nodes.
1390       // To avoid invalidating 'I', back it up to the convert node.
1391       --I;
1392       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1393       break;
1394     }
1395 
1396     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1397     //dealing with the chain differently, as there is already a preexisting chain.
1398     case ISD::STRICT_FP_ROUND:
1399     case ISD::STRICT_FP_EXTEND:
1400     {
1401       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1402       MVT DstVT = N->getSimpleValueType(0);
1403 
1404       // If any of the sources are vectors, no fp stack involved.
1405       if (SrcVT.isVector() || DstVT.isVector())
1406         continue;
1407 
1408       // If the source and destination are SSE registers, then this is a legal
1409       // conversion that should not be lowered.
1410       const X86TargetLowering *X86Lowering =
1411           static_cast<const X86TargetLowering *>(TLI);
1412       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1413       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1414       if (SrcIsSSE && DstIsSSE)
1415         continue;
1416 
1417       if (!SrcIsSSE && !DstIsSSE) {
1418         // If this is an FPStack extension, it is a noop.
1419         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1420           continue;
1421         // If this is a value-preserving FPStack truncation, it is a noop.
1422         if (N->getConstantOperandVal(2))
1423           continue;
1424       }
1425 
1426       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1427       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1428       // operations.  Based on this, decide what we want to do.
1429       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1430       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1431       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1432       MachinePointerInfo MPI =
1433           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1434       SDLoc dl(N);
1435 
1436       // FIXME: optimize the case where the src/dest is a load or store?
1437 
1438       //Since the operation is StrictFP, use the preexisting chain.
1439       SDValue Store, Result;
1440       if (!SrcIsSSE) {
1441         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1442         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1443         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1444                                             MPI, /*Align*/ std::nullopt,
1445                                             MachineMemOperand::MOStore);
1446         if (N->getFlags().hasNoFPExcept()) {
1447           SDNodeFlags Flags = Store->getFlags();
1448           Flags.setNoFPExcept(true);
1449           Store->setFlags(Flags);
1450         }
1451       } else {
1452         assert(SrcVT == MemVT && "Unexpected VT!");
1453         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1454                                  MPI);
1455       }
1456 
1457       if (!DstIsSSE) {
1458         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1459         SDValue Ops[] = {Store, MemTmp};
1460         Result = CurDAG->getMemIntrinsicNode(
1461             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1462             /*Align*/ std::nullopt, MachineMemOperand::MOLoad);
1463         if (N->getFlags().hasNoFPExcept()) {
1464           SDNodeFlags Flags = Result->getFlags();
1465           Flags.setNoFPExcept(true);
1466           Result->setFlags(Flags);
1467         }
1468       } else {
1469         assert(DstVT == MemVT && "Unexpected VT!");
1470         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1471       }
1472 
1473       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1474       // extload we created.  This will cause general havok on the dag because
1475       // anything below the conversion could be folded into other existing nodes.
1476       // To avoid invalidating 'I', back it up to the convert node.
1477       --I;
1478       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1479       break;
1480     }
1481     }
1482 
1483 
1484     // Now that we did that, the node is dead.  Increment the iterator to the
1485     // next node to process, then delete N.
1486     ++I;
1487     MadeChange = true;
1488   }
1489 
1490   // Remove any dead nodes that may have been left behind.
1491   if (MadeChange)
1492     CurDAG->RemoveDeadNodes();
1493 }
1494 
1495 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1496 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1497   unsigned Opc = N->getMachineOpcode();
1498   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1499       Opc != X86::MOVSX64rr8)
1500     return false;
1501 
1502   SDValue N0 = N->getOperand(0);
1503 
1504   // We need to be extracting the lower bit of an extend.
1505   if (!N0.isMachineOpcode() ||
1506       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1507       N0.getConstantOperandVal(1) != X86::sub_8bit)
1508     return false;
1509 
1510   // We're looking for either a movsx or movzx to match the original opcode.
1511   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1512                                                 : X86::MOVSX32rr8_NOREX;
1513   SDValue N00 = N0.getOperand(0);
1514   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1515     return false;
1516 
1517   if (Opc == X86::MOVSX64rr8) {
1518     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1519     // to 64.
1520     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1521                                                    MVT::i64, N00);
1522     ReplaceUses(N, Extend);
1523   } else {
1524     // Ok we can drop this extend and just use the original extend.
1525     ReplaceUses(N, N00.getNode());
1526   }
1527 
1528   return true;
1529 }
1530 
1531 void X86DAGToDAGISel::PostprocessISelDAG() {
1532   // Skip peepholes at -O0.
1533   if (TM.getOptLevel() == CodeGenOptLevel::None)
1534     return;
1535 
1536   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1537 
1538   bool MadeChange = false;
1539   while (Position != CurDAG->allnodes_begin()) {
1540     SDNode *N = &*--Position;
1541     // Skip dead nodes and any non-machine opcodes.
1542     if (N->use_empty() || !N->isMachineOpcode())
1543       continue;
1544 
1545     if (tryOptimizeRem8Extend(N)) {
1546       MadeChange = true;
1547       continue;
1548     }
1549 
1550     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1551     // the same. Rewrite to remove the AND.
1552     unsigned Opc = N->getMachineOpcode();
1553     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1554          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1555         N->getOperand(0) == N->getOperand(1) &&
1556         N->getOperand(0)->hasNUsesOfValue(2, N->getOperand(0).getResNo()) &&
1557         N->getOperand(0).isMachineOpcode()) {
1558       SDValue And = N->getOperand(0);
1559       unsigned N0Opc = And.getMachineOpcode();
1560       if ((N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1561            N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) &&
1562           !And->hasAnyUseOfValue(1)) {
1563         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1564                                                      MVT::i32,
1565                                                      And.getOperand(0),
1566                                                      And.getOperand(1));
1567         ReplaceUses(N, Test);
1568         MadeChange = true;
1569         continue;
1570       }
1571       if ((N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1572            N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) &&
1573           !And->hasAnyUseOfValue(1)) {
1574         unsigned NewOpc;
1575         switch (N0Opc) {
1576         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1577         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1578         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1579         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1580         }
1581 
1582         // Need to swap the memory and register operand.
1583         SDValue Ops[] = { And.getOperand(1),
1584                           And.getOperand(2),
1585                           And.getOperand(3),
1586                           And.getOperand(4),
1587                           And.getOperand(5),
1588                           And.getOperand(0),
1589                           And.getOperand(6)  /* Chain */ };
1590         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1591                                                      MVT::i32, MVT::Other, Ops);
1592         CurDAG->setNodeMemRefs(
1593             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1594         ReplaceUses(And.getValue(2), SDValue(Test, 1));
1595         ReplaceUses(SDValue(N, 0), SDValue(Test, 0));
1596         MadeChange = true;
1597         continue;
1598       }
1599     }
1600 
1601     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1602     // used. We're doing this late so we can prefer to fold the AND into masked
1603     // comparisons. Doing that can be better for the live range of the mask
1604     // register.
1605     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1606          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1607         N->getOperand(0) == N->getOperand(1) &&
1608         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1609         N->getOperand(0).isMachineOpcode() &&
1610         onlyUsesZeroFlag(SDValue(N, 0))) {
1611       SDValue And = N->getOperand(0);
1612       unsigned N0Opc = And.getMachineOpcode();
1613       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1614       // KAND instructions and KTEST use the same ISA feature.
1615       if (N0Opc == X86::KANDBrr ||
1616           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1617           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1618         unsigned NewOpc;
1619         switch (Opc) {
1620         default: llvm_unreachable("Unexpected opcode!");
1621         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1622         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1623         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1624         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1625         }
1626         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1627                                                       MVT::i32,
1628                                                       And.getOperand(0),
1629                                                       And.getOperand(1));
1630         ReplaceUses(N, KTest);
1631         MadeChange = true;
1632         continue;
1633       }
1634     }
1635 
1636     // Attempt to remove vectors moves that were inserted to zero upper bits.
1637     if (Opc != TargetOpcode::SUBREG_TO_REG)
1638       continue;
1639 
1640     unsigned SubRegIdx = N->getConstantOperandVal(2);
1641     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1642       continue;
1643 
1644     SDValue Move = N->getOperand(1);
1645     if (!Move.isMachineOpcode())
1646       continue;
1647 
1648     // Make sure its one of the move opcodes we recognize.
1649     switch (Move.getMachineOpcode()) {
1650     default:
1651       continue;
1652     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1653     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1654     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1655     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1656     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1657     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1658     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1659     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1660     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1661     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1662     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1663     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1664     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1665     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1666       break;
1667     }
1668 
1669     SDValue In = Move.getOperand(0);
1670     if (!In.isMachineOpcode() ||
1671         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1672       continue;
1673 
1674     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1675     // the SHA instructions which use a legacy encoding.
1676     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1677     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1678         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1679         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1680       continue;
1681 
1682     // Producing instruction is another vector instruction. We can drop the
1683     // move.
1684     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1685     MadeChange = true;
1686   }
1687 
1688   if (MadeChange)
1689     CurDAG->RemoveDeadNodes();
1690 }
1691 
1692 
1693 /// Emit any code that needs to be executed only in the main function.
1694 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1695   if (Subtarget->isTargetCygMing()) {
1696     TargetLowering::ArgListTy Args;
1697     auto &DL = CurDAG->getDataLayout();
1698 
1699     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1700     CLI.setChain(CurDAG->getRoot())
1701         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1702                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1703                    std::move(Args));
1704     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1705     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1706     CurDAG->setRoot(Result.second);
1707   }
1708 }
1709 
1710 void X86DAGToDAGISel::emitFunctionEntryCode() {
1711   // If this is main, emit special code for main.
1712   const Function &F = MF->getFunction();
1713   if (F.hasExternalLinkage() && F.getName() == "main")
1714     emitSpecialCodeForMain();
1715 }
1716 
1717 static bool isDispSafeForFrameIndex(int64_t Val) {
1718   // On 64-bit platforms, we can run into an issue where a frame index
1719   // includes a displacement that, when added to the explicit displacement,
1720   // will overflow the displacement field. Assuming that the frame index
1721   // displacement fits into a 31-bit integer  (which is only slightly more
1722   // aggressive than the current fundamental assumption that it fits into
1723   // a 32-bit integer), a 31-bit disp should always be safe.
1724   return isInt<31>(Val);
1725 }
1726 
1727 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1728                                             X86ISelAddressMode &AM) {
1729   // We may have already matched a displacement and the caller just added the
1730   // symbolic displacement. So we still need to do the checks even if Offset
1731   // is zero.
1732 
1733   int64_t Val = AM.Disp + Offset;
1734 
1735   // Cannot combine ExternalSymbol displacements with integer offsets.
1736   if (Val != 0 && (AM.ES || AM.MCSym))
1737     return true;
1738 
1739   CodeModel::Model M = TM.getCodeModel();
1740   if (Subtarget->is64Bit()) {
1741     if (Val != 0 &&
1742         !X86::isOffsetSuitableForCodeModel(Val, M,
1743                                            AM.hasSymbolicDisplacement()))
1744       return true;
1745     // In addition to the checks required for a register base, check that
1746     // we do not try to use an unsafe Disp with a frame index.
1747     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1748         !isDispSafeForFrameIndex(Val))
1749       return true;
1750     // In ILP32 (x32) mode, pointers are 32 bits and need to be zero-extended to
1751     // 64 bits. Instructions with 32-bit register addresses perform this zero
1752     // extension for us and we can safely ignore the high bits of Offset.
1753     // Instructions with only a 32-bit immediate address do not, though: they
1754     // sign extend instead. This means only address the low 2GB of address space
1755     // is directly addressable, we need indirect addressing for the high 2GB of
1756     // address space.
1757     // TODO: Some of the earlier checks may be relaxed for ILP32 mode as the
1758     // implicit zero extension of instructions would cover up any problem.
1759     // However, we have asserts elsewhere that get triggered if we do, so keep
1760     // the checks for now.
1761     // TODO: We would actually be able to accept these, as well as the same
1762     // addresses in LP64 mode, by adding the EIZ pseudo-register as an operand
1763     // to get an address size override to be emitted. However, this
1764     // pseudo-register is not part of any register class and therefore causes
1765     // MIR verification to fail.
1766     if (Subtarget->isTarget64BitILP32() && !isUInt<31>(Val) &&
1767         !AM.hasBaseOrIndexReg())
1768       return true;
1769   }
1770   AM.Disp = Val;
1771   return false;
1772 }
1773 
1774 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1775                                          bool AllowSegmentRegForX32) {
1776   SDValue Address = N->getOperand(1);
1777 
1778   // load gs:0 -> GS segment register.
1779   // load fs:0 -> FS segment register.
1780   //
1781   // This optimization is generally valid because the GNU TLS model defines that
1782   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1783   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1784   // zero-extended to 64 bits and then added it to the base address, which gives
1785   // unwanted results when the register holds a negative value.
1786   // For more information see http://people.redhat.com/drepper/tls.pdf
1787   if (isNullConstant(Address) && AM.Segment.getNode() == nullptr &&
1788       !IndirectTlsSegRefs &&
1789       (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1790        Subtarget->isTargetFuchsia())) {
1791     if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1792       return true;
1793     switch (N->getPointerInfo().getAddrSpace()) {
1794     case X86AS::GS:
1795       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1796       return false;
1797     case X86AS::FS:
1798       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1799       return false;
1800       // Address space X86AS::SS is not handled here, because it is not used to
1801       // address TLS areas.
1802     }
1803   }
1804 
1805   return true;
1806 }
1807 
1808 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1809 /// mode. These wrap things that will resolve down into a symbol reference.
1810 /// If no match is possible, this returns true, otherwise it returns false.
1811 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1812   // If the addressing mode already has a symbol as the displacement, we can
1813   // never match another symbol.
1814   if (AM.hasSymbolicDisplacement())
1815     return true;
1816 
1817   bool IsRIPRelTLS = false;
1818   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1819   if (IsRIPRel) {
1820     SDValue Val = N.getOperand(0);
1821     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1822       IsRIPRelTLS = true;
1823   }
1824 
1825   // We can't use an addressing mode in the 64-bit large code model.
1826   // Global TLS addressing is an exception. In the medium code model,
1827   // we use can use a mode when RIP wrappers are present.
1828   // That signifies access to globals that are known to be "near",
1829   // such as the GOT itself.
1830   CodeModel::Model M = TM.getCodeModel();
1831   if (Subtarget->is64Bit() && M == CodeModel::Large && !IsRIPRelTLS)
1832     return true;
1833 
1834   // Base and index reg must be 0 in order to use %rip as base.
1835   if (IsRIPRel && AM.hasBaseOrIndexReg())
1836     return true;
1837 
1838   // Make a local copy in case we can't do this fold.
1839   X86ISelAddressMode Backup = AM;
1840 
1841   int64_t Offset = 0;
1842   SDValue N0 = N.getOperand(0);
1843   if (auto *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1844     AM.GV = G->getGlobal();
1845     AM.SymbolFlags = G->getTargetFlags();
1846     Offset = G->getOffset();
1847   } else if (auto *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1848     AM.CP = CP->getConstVal();
1849     AM.Alignment = CP->getAlign();
1850     AM.SymbolFlags = CP->getTargetFlags();
1851     Offset = CP->getOffset();
1852   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1853     AM.ES = S->getSymbol();
1854     AM.SymbolFlags = S->getTargetFlags();
1855   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1856     AM.MCSym = S->getMCSymbol();
1857   } else if (auto *J = dyn_cast<JumpTableSDNode>(N0)) {
1858     AM.JT = J->getIndex();
1859     AM.SymbolFlags = J->getTargetFlags();
1860   } else if (auto *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1861     AM.BlockAddr = BA->getBlockAddress();
1862     AM.SymbolFlags = BA->getTargetFlags();
1863     Offset = BA->getOffset();
1864   } else
1865     llvm_unreachable("Unhandled symbol reference node.");
1866 
1867   // Can't use an addressing mode with large globals.
1868   if (Subtarget->is64Bit() && !IsRIPRel && AM.GV &&
1869       TM.isLargeGlobalValue(AM.GV)) {
1870     AM = Backup;
1871     return true;
1872   }
1873 
1874   if (foldOffsetIntoAddress(Offset, AM)) {
1875     AM = Backup;
1876     return true;
1877   }
1878 
1879   if (IsRIPRel)
1880     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1881 
1882   // Commit the changes now that we know this fold is safe.
1883   return false;
1884 }
1885 
1886 /// Add the specified node to the specified addressing mode, returning true if
1887 /// it cannot be done. This just pattern matches for the addressing mode.
1888 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1889   if (matchAddressRecursively(N, AM, 0))
1890     return true;
1891 
1892   // Post-processing: Make a second attempt to fold a load, if we now know
1893   // that there will not be any other register. This is only performed for
1894   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1895   // any foldable load the first time.
1896   if (Subtarget->isTarget64BitILP32() &&
1897       AM.BaseType == X86ISelAddressMode::RegBase &&
1898       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1899     SDValue Save_Base_Reg = AM.Base_Reg;
1900     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1901       AM.Base_Reg = SDValue();
1902       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1903         AM.Base_Reg = Save_Base_Reg;
1904     }
1905   }
1906 
1907   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1908   // a smaller encoding and avoids a scaled-index.
1909   if (AM.Scale == 2 &&
1910       AM.BaseType == X86ISelAddressMode::RegBase &&
1911       AM.Base_Reg.getNode() == nullptr) {
1912     AM.Base_Reg = AM.IndexReg;
1913     AM.Scale = 1;
1914   }
1915 
1916   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1917   // because it has a smaller encoding.
1918   if (TM.getCodeModel() != CodeModel::Large &&
1919       (!AM.GV || !TM.isLargeGlobalValue(AM.GV)) && Subtarget->is64Bit() &&
1920       AM.Scale == 1 && AM.BaseType == X86ISelAddressMode::RegBase &&
1921       AM.Base_Reg.getNode() == nullptr && AM.IndexReg.getNode() == nullptr &&
1922       AM.SymbolFlags == X86II::MO_NO_FLAG && AM.hasSymbolicDisplacement()) {
1923     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1924   }
1925 
1926   return false;
1927 }
1928 
1929 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1930                                unsigned Depth) {
1931   // Add an artificial use to this node so that we can keep track of
1932   // it if it gets CSE'd with a different node.
1933   HandleSDNode Handle(N);
1934 
1935   X86ISelAddressMode Backup = AM;
1936   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1937       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1938     return false;
1939   AM = Backup;
1940 
1941   // Try again after commutating the operands.
1942   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1943                                Depth + 1) &&
1944       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1945     return false;
1946   AM = Backup;
1947 
1948   // If we couldn't fold both operands into the address at the same time,
1949   // see if we can just put each operand into a register and fold at least
1950   // the add.
1951   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1952       !AM.Base_Reg.getNode() &&
1953       !AM.IndexReg.getNode()) {
1954     N = Handle.getValue();
1955     AM.Base_Reg = N.getOperand(0);
1956     AM.IndexReg = N.getOperand(1);
1957     AM.Scale = 1;
1958     return false;
1959   }
1960   N = Handle.getValue();
1961   return true;
1962 }
1963 
1964 // Insert a node into the DAG at least before the Pos node's position. This
1965 // will reposition the node as needed, and will assign it a node ID that is <=
1966 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1967 // IDs! The selection DAG must no longer depend on their uniqueness when this
1968 // is used.
1969 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1970   if (N->getNodeId() == -1 ||
1971       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1972        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1973     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1974     // Mark Node as invalid for pruning as after this it may be a successor to a
1975     // selected node but otherwise be in the same position of Pos.
1976     // Conservatively mark it with the same -abs(Id) to assure node id
1977     // invariant is preserved.
1978     N->setNodeId(Pos->getNodeId());
1979     SelectionDAGISel::InvalidateNodeId(N.getNode());
1980   }
1981 }
1982 
1983 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1984 // safe. This allows us to convert the shift and and into an h-register
1985 // extract and a scaled index. Returns false if the simplification is
1986 // performed.
1987 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1988                                       uint64_t Mask,
1989                                       SDValue Shift, SDValue X,
1990                                       X86ISelAddressMode &AM) {
1991   if (Shift.getOpcode() != ISD::SRL ||
1992       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1993       !Shift.hasOneUse())
1994     return true;
1995 
1996   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1997   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1998       Mask != (0xffu << ScaleLog))
1999     return true;
2000 
2001   MVT XVT = X.getSimpleValueType();
2002   MVT VT = N.getSimpleValueType();
2003   SDLoc DL(N);
2004   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
2005   SDValue NewMask = DAG.getConstant(0xff, DL, XVT);
2006   SDValue Srl = DAG.getNode(ISD::SRL, DL, XVT, X, Eight);
2007   SDValue And = DAG.getNode(ISD::AND, DL, XVT, Srl, NewMask);
2008   SDValue Ext = DAG.getZExtOrTrunc(And, DL, VT);
2009   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
2010   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Ext, ShlCount);
2011 
2012   // Insert the new nodes into the topological ordering. We must do this in
2013   // a valid topological ordering as nothing is going to go back and re-sort
2014   // these nodes. We continually insert before 'N' in sequence as this is
2015   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2016   // hierarchy left to express.
2017   insertDAGNode(DAG, N, Eight);
2018   insertDAGNode(DAG, N, NewMask);
2019   insertDAGNode(DAG, N, Srl);
2020   insertDAGNode(DAG, N, And);
2021   insertDAGNode(DAG, N, Ext);
2022   insertDAGNode(DAG, N, ShlCount);
2023   insertDAGNode(DAG, N, Shl);
2024   DAG.ReplaceAllUsesWith(N, Shl);
2025   DAG.RemoveDeadNode(N.getNode());
2026   AM.IndexReg = Ext;
2027   AM.Scale = (1 << ScaleLog);
2028   return false;
2029 }
2030 
2031 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
2032 // allows us to fold the shift into this addressing mode. Returns false if the
2033 // transform succeeded.
2034 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
2035                                         X86ISelAddressMode &AM) {
2036   SDValue Shift = N.getOperand(0);
2037 
2038   // Use a signed mask so that shifting right will insert sign bits. These
2039   // bits will be removed when we shift the result left so it doesn't matter
2040   // what we use. This might allow a smaller immediate encoding.
2041   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2042 
2043   // If we have an any_extend feeding the AND, look through it to see if there
2044   // is a shift behind it. But only if the AND doesn't use the extended bits.
2045   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
2046   bool FoundAnyExtend = false;
2047   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
2048       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
2049       isUInt<32>(Mask)) {
2050     FoundAnyExtend = true;
2051     Shift = Shift.getOperand(0);
2052   }
2053 
2054   if (Shift.getOpcode() != ISD::SHL ||
2055       !isa<ConstantSDNode>(Shift.getOperand(1)))
2056     return true;
2057 
2058   SDValue X = Shift.getOperand(0);
2059 
2060   // Not likely to be profitable if either the AND or SHIFT node has more
2061   // than one use (unless all uses are for address computation). Besides,
2062   // isel mechanism requires their node ids to be reused.
2063   if (!N.hasOneUse() || !Shift.hasOneUse())
2064     return true;
2065 
2066   // Verify that the shift amount is something we can fold.
2067   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2068   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
2069     return true;
2070 
2071   MVT VT = N.getSimpleValueType();
2072   SDLoc DL(N);
2073   if (FoundAnyExtend) {
2074     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
2075     insertDAGNode(DAG, N, NewX);
2076     X = NewX;
2077   }
2078 
2079   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
2080   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
2081   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
2082 
2083   // Insert the new nodes into the topological ordering. We must do this in
2084   // a valid topological ordering as nothing is going to go back and re-sort
2085   // these nodes. We continually insert before 'N' in sequence as this is
2086   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2087   // hierarchy left to express.
2088   insertDAGNode(DAG, N, NewMask);
2089   insertDAGNode(DAG, N, NewAnd);
2090   insertDAGNode(DAG, N, NewShift);
2091   DAG.ReplaceAllUsesWith(N, NewShift);
2092   DAG.RemoveDeadNode(N.getNode());
2093 
2094   AM.Scale = 1 << ShiftAmt;
2095   AM.IndexReg = NewAnd;
2096   return false;
2097 }
2098 
2099 // Implement some heroics to detect shifts of masked values where the mask can
2100 // be replaced by extending the shift and undoing that in the addressing mode
2101 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2102 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2103 // the addressing mode. This results in code such as:
2104 //
2105 //   int f(short *y, int *lookup_table) {
2106 //     ...
2107 //     return *y + lookup_table[*y >> 11];
2108 //   }
2109 //
2110 // Turning into:
2111 //   movzwl (%rdi), %eax
2112 //   movl %eax, %ecx
2113 //   shrl $11, %ecx
2114 //   addl (%rsi,%rcx,4), %eax
2115 //
2116 // Instead of:
2117 //   movzwl (%rdi), %eax
2118 //   movl %eax, %ecx
2119 //   shrl $9, %ecx
2120 //   andl $124, %rcx
2121 //   addl (%rsi,%rcx), %eax
2122 //
2123 // Note that this function assumes the mask is provided as a mask *after* the
2124 // value is shifted. The input chain may or may not match that, but computing
2125 // such a mask is trivial.
2126 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2127                                     uint64_t Mask,
2128                                     SDValue Shift, SDValue X,
2129                                     X86ISelAddressMode &AM) {
2130   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2131       !isa<ConstantSDNode>(Shift.getOperand(1)))
2132     return true;
2133 
2134   // We need to ensure that mask is a continuous run of bits.
2135   unsigned MaskIdx, MaskLen;
2136   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2137     return true;
2138   unsigned MaskLZ = 64 - (MaskIdx + MaskLen);
2139 
2140   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2141 
2142   // The amount of shift we're trying to fit into the addressing mode is taken
2143   // from the shifted mask index (number of trailing zeros of the mask).
2144   unsigned AMShiftAmt = MaskIdx;
2145 
2146   // There is nothing we can do here unless the mask is removing some bits.
2147   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2148   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2149 
2150   // Scale the leading zero count down based on the actual size of the value.
2151   // Also scale it down based on the size of the shift.
2152   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2153   if (MaskLZ < ScaleDown)
2154     return true;
2155   MaskLZ -= ScaleDown;
2156 
2157   // The final check is to ensure that any masked out high bits of X are
2158   // already known to be zero. Otherwise, the mask has a semantic impact
2159   // other than masking out a couple of low bits. Unfortunately, because of
2160   // the mask, zero extensions will be removed from operands in some cases.
2161   // This code works extra hard to look through extensions because we can
2162   // replace them with zero extensions cheaply if necessary.
2163   bool ReplacingAnyExtend = false;
2164   if (X.getOpcode() == ISD::ANY_EXTEND) {
2165     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2166                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2167     // Assume that we'll replace the any-extend with a zero-extend, and
2168     // narrow the search to the extended value.
2169     X = X.getOperand(0);
2170     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2171     ReplacingAnyExtend = true;
2172   }
2173   APInt MaskedHighBits =
2174     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2175   if (!DAG.MaskedValueIsZero(X, MaskedHighBits))
2176     return true;
2177 
2178   // We've identified a pattern that can be transformed into a single shift
2179   // and an addressing mode. Make it so.
2180   MVT VT = N.getSimpleValueType();
2181   if (ReplacingAnyExtend) {
2182     assert(X.getValueType() != VT);
2183     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2184     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2185     insertDAGNode(DAG, N, NewX);
2186     X = NewX;
2187   }
2188 
2189   MVT XVT = X.getSimpleValueType();
2190   SDLoc DL(N);
2191   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2192   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2193   SDValue NewExt = DAG.getZExtOrTrunc(NewSRL, DL, VT);
2194   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2195   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2196 
2197   // Insert the new nodes into the topological ordering. We must do this in
2198   // a valid topological ordering as nothing is going to go back and re-sort
2199   // these nodes. We continually insert before 'N' in sequence as this is
2200   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2201   // hierarchy left to express.
2202   insertDAGNode(DAG, N, NewSRLAmt);
2203   insertDAGNode(DAG, N, NewSRL);
2204   insertDAGNode(DAG, N, NewExt);
2205   insertDAGNode(DAG, N, NewSHLAmt);
2206   insertDAGNode(DAG, N, NewSHL);
2207   DAG.ReplaceAllUsesWith(N, NewSHL);
2208   DAG.RemoveDeadNode(N.getNode());
2209 
2210   AM.Scale = 1 << AMShiftAmt;
2211   AM.IndexReg = NewExt;
2212   return false;
2213 }
2214 
2215 // Transform "(X >> SHIFT) & (MASK << C1)" to
2216 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2217 // matched to a BEXTR later. Returns false if the simplification is performed.
2218 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2219                                    uint64_t Mask,
2220                                    SDValue Shift, SDValue X,
2221                                    X86ISelAddressMode &AM,
2222                                    const X86Subtarget &Subtarget) {
2223   if (Shift.getOpcode() != ISD::SRL ||
2224       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2225       !Shift.hasOneUse() || !N.hasOneUse())
2226     return true;
2227 
2228   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2229   if (!Subtarget.hasTBM() &&
2230       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2231     return true;
2232 
2233   // We need to ensure that mask is a continuous run of bits.
2234   unsigned MaskIdx, MaskLen;
2235   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2236     return true;
2237 
2238   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2239 
2240   // The amount of shift we're trying to fit into the addressing mode is taken
2241   // from the shifted mask index (number of trailing zeros of the mask).
2242   unsigned AMShiftAmt = MaskIdx;
2243 
2244   // There is nothing we can do here unless the mask is removing some bits.
2245   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2246   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2247 
2248   MVT XVT = X.getSimpleValueType();
2249   MVT VT = N.getSimpleValueType();
2250   SDLoc DL(N);
2251   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2252   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2253   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, XVT);
2254   SDValue NewAnd = DAG.getNode(ISD::AND, DL, XVT, NewSRL, NewMask);
2255   SDValue NewExt = DAG.getZExtOrTrunc(NewAnd, DL, VT);
2256   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2257   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2258 
2259   // Insert the new nodes into the topological ordering. We must do this in
2260   // a valid topological ordering as nothing is going to go back and re-sort
2261   // these nodes. We continually insert before 'N' in sequence as this is
2262   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2263   // hierarchy left to express.
2264   insertDAGNode(DAG, N, NewSRLAmt);
2265   insertDAGNode(DAG, N, NewSRL);
2266   insertDAGNode(DAG, N, NewMask);
2267   insertDAGNode(DAG, N, NewAnd);
2268   insertDAGNode(DAG, N, NewExt);
2269   insertDAGNode(DAG, N, NewSHLAmt);
2270   insertDAGNode(DAG, N, NewSHL);
2271   DAG.ReplaceAllUsesWith(N, NewSHL);
2272   DAG.RemoveDeadNode(N.getNode());
2273 
2274   AM.Scale = 1 << AMShiftAmt;
2275   AM.IndexReg = NewExt;
2276   return false;
2277 }
2278 
2279 // Attempt to peek further into a scaled index register, collecting additional
2280 // extensions / offsets / etc. Returns /p N if we can't peek any further.
2281 SDValue X86DAGToDAGISel::matchIndexRecursively(SDValue N,
2282                                                X86ISelAddressMode &AM,
2283                                                unsigned Depth) {
2284   assert(AM.IndexReg.getNode() == nullptr && "IndexReg already matched");
2285   assert((AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8) &&
2286          "Illegal index scale");
2287 
2288   // Limit recursion.
2289   if (Depth >= SelectionDAG::MaxRecursionDepth)
2290     return N;
2291 
2292   EVT VT = N.getValueType();
2293   unsigned Opc = N.getOpcode();
2294 
2295   // index: add(x,c) -> index: x, disp + c
2296   if (CurDAG->isBaseWithConstantOffset(N)) {
2297     auto *AddVal = cast<ConstantSDNode>(N.getOperand(1));
2298     uint64_t Offset = (uint64_t)AddVal->getSExtValue() * AM.Scale;
2299     if (!foldOffsetIntoAddress(Offset, AM))
2300       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2301   }
2302 
2303   // index: add(x,x) -> index: x, scale * 2
2304   if (Opc == ISD::ADD && N.getOperand(0) == N.getOperand(1)) {
2305     if (AM.Scale <= 4) {
2306       AM.Scale *= 2;
2307       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2308     }
2309   }
2310 
2311   // index: shl(x,i) -> index: x, scale * (1 << i)
2312   if (Opc == X86ISD::VSHLI) {
2313     uint64_t ShiftAmt = N.getConstantOperandVal(1);
2314     uint64_t ScaleAmt = 1ULL << ShiftAmt;
2315     if ((AM.Scale * ScaleAmt) <= 8) {
2316       AM.Scale *= ScaleAmt;
2317       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2318     }
2319   }
2320 
2321   // index: sext(add_nsw(x,c)) -> index: sext(x), disp + sext(c)
2322   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2323   if (Opc == ISD::SIGN_EXTEND && !VT.isVector() && N.hasOneUse()) {
2324     SDValue Src = N.getOperand(0);
2325     if (Src.getOpcode() == ISD::ADD && Src->getFlags().hasNoSignedWrap() &&
2326         Src.hasOneUse()) {
2327       if (CurDAG->isBaseWithConstantOffset(Src)) {
2328         SDValue AddSrc = Src.getOperand(0);
2329         auto *AddVal = cast<ConstantSDNode>(Src.getOperand(1));
2330         uint64_t Offset = (uint64_t)AddVal->getSExtValue();
2331         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2332           SDLoc DL(N);
2333           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2334           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2335           SDValue ExtAdd = CurDAG->getNode(ISD::ADD, DL, VT, ExtSrc, ExtVal);
2336           insertDAGNode(*CurDAG, N, ExtSrc);
2337           insertDAGNode(*CurDAG, N, ExtVal);
2338           insertDAGNode(*CurDAG, N, ExtAdd);
2339           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2340           CurDAG->RemoveDeadNode(N.getNode());
2341           return ExtSrc;
2342         }
2343       }
2344     }
2345   }
2346 
2347   // index: zext(add_nuw(x,c)) -> index: zext(x), disp + zext(c)
2348   // index: zext(addlike(x,c)) -> index: zext(x), disp + zext(c)
2349   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2350   if (Opc == ISD::ZERO_EXTEND && !VT.isVector() && N.hasOneUse()) {
2351     SDValue Src = N.getOperand(0);
2352     unsigned SrcOpc = Src.getOpcode();
2353     if (((SrcOpc == ISD::ADD && Src->getFlags().hasNoUnsignedWrap()) ||
2354          CurDAG->isADDLike(Src)) &&
2355         Src.hasOneUse()) {
2356       if (CurDAG->isBaseWithConstantOffset(Src)) {
2357         SDValue AddSrc = Src.getOperand(0);
2358         uint64_t Offset = Src.getConstantOperandVal(1);
2359         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2360           SDLoc DL(N);
2361           SDValue Res;
2362           // If we're also scaling, see if we can use that as well.
2363           if (AddSrc.getOpcode() == ISD::SHL &&
2364               isa<ConstantSDNode>(AddSrc.getOperand(1))) {
2365             SDValue ShVal = AddSrc.getOperand(0);
2366             uint64_t ShAmt = AddSrc.getConstantOperandVal(1);
2367             APInt HiBits =
2368                 APInt::getHighBitsSet(AddSrc.getScalarValueSizeInBits(), ShAmt);
2369             uint64_t ScaleAmt = 1ULL << ShAmt;
2370             if ((AM.Scale * ScaleAmt) <= 8 &&
2371                 (AddSrc->getFlags().hasNoUnsignedWrap() ||
2372                  CurDAG->MaskedValueIsZero(ShVal, HiBits))) {
2373               AM.Scale *= ScaleAmt;
2374               SDValue ExtShVal = CurDAG->getNode(Opc, DL, VT, ShVal);
2375               SDValue ExtShift = CurDAG->getNode(ISD::SHL, DL, VT, ExtShVal,
2376                                                  AddSrc.getOperand(1));
2377               insertDAGNode(*CurDAG, N, ExtShVal);
2378               insertDAGNode(*CurDAG, N, ExtShift);
2379               AddSrc = ExtShift;
2380               Res = ExtShVal;
2381             }
2382           }
2383           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2384           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2385           SDValue ExtAdd = CurDAG->getNode(SrcOpc, DL, VT, ExtSrc, ExtVal);
2386           insertDAGNode(*CurDAG, N, ExtSrc);
2387           insertDAGNode(*CurDAG, N, ExtVal);
2388           insertDAGNode(*CurDAG, N, ExtAdd);
2389           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2390           CurDAG->RemoveDeadNode(N.getNode());
2391           return Res ? Res : ExtSrc;
2392         }
2393       }
2394     }
2395   }
2396 
2397   // TODO: Handle extensions, shifted masks etc.
2398   return N;
2399 }
2400 
2401 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2402                                               unsigned Depth) {
2403   SDLoc dl(N);
2404   LLVM_DEBUG({
2405     dbgs() << "MatchAddress: ";
2406     AM.dump(CurDAG);
2407   });
2408   // Limit recursion.
2409   if (Depth >= SelectionDAG::MaxRecursionDepth)
2410     return matchAddressBase(N, AM);
2411 
2412   // If this is already a %rip relative address, we can only merge immediates
2413   // into it.  Instead of handling this in every case, we handle it here.
2414   // RIP relative addressing: %rip + 32-bit displacement!
2415   if (AM.isRIPRelative()) {
2416     // FIXME: JumpTable and ExternalSymbol address currently don't like
2417     // displacements.  It isn't very important, but this should be fixed for
2418     // consistency.
2419     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2420       return true;
2421 
2422     if (auto *Cst = dyn_cast<ConstantSDNode>(N))
2423       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2424         return false;
2425     return true;
2426   }
2427 
2428   switch (N.getOpcode()) {
2429   default: break;
2430   case ISD::LOCAL_RECOVER: {
2431     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2432       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2433         // Use the symbol and don't prefix it.
2434         AM.MCSym = ESNode->getMCSymbol();
2435         return false;
2436       }
2437     break;
2438   }
2439   case ISD::Constant: {
2440     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2441     if (!foldOffsetIntoAddress(Val, AM))
2442       return false;
2443     break;
2444   }
2445 
2446   case X86ISD::Wrapper:
2447   case X86ISD::WrapperRIP:
2448     if (!matchWrapper(N, AM))
2449       return false;
2450     break;
2451 
2452   case ISD::LOAD:
2453     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2454       return false;
2455     break;
2456 
2457   case ISD::FrameIndex:
2458     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2459         AM.Base_Reg.getNode() == nullptr &&
2460         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2461       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2462       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2463       return false;
2464     }
2465     break;
2466 
2467   case ISD::SHL:
2468     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2469       break;
2470 
2471     if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2472       unsigned Val = CN->getZExtValue();
2473       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2474       // that the base operand remains free for further matching. If
2475       // the base doesn't end up getting used, a post-processing step
2476       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2477       if (Val == 1 || Val == 2 || Val == 3) {
2478         SDValue ShVal = N.getOperand(0);
2479         AM.Scale = 1 << Val;
2480         AM.IndexReg = matchIndexRecursively(ShVal, AM, Depth + 1);
2481         return false;
2482       }
2483     }
2484     break;
2485 
2486   case ISD::SRL: {
2487     // Scale must not be used already.
2488     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2489 
2490     // We only handle up to 64-bit values here as those are what matter for
2491     // addressing mode optimizations.
2492     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2493            "Unexpected value size!");
2494 
2495     SDValue And = N.getOperand(0);
2496     if (And.getOpcode() != ISD::AND) break;
2497     SDValue X = And.getOperand(0);
2498 
2499     // The mask used for the transform is expected to be post-shift, but we
2500     // found the shift first so just apply the shift to the mask before passing
2501     // it down.
2502     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2503         !isa<ConstantSDNode>(And.getOperand(1)))
2504       break;
2505     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2506 
2507     // Try to fold the mask and shift into the scale, and return false if we
2508     // succeed.
2509     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2510       return false;
2511     break;
2512   }
2513 
2514   case ISD::SMUL_LOHI:
2515   case ISD::UMUL_LOHI:
2516     // A mul_lohi where we need the low part can be folded as a plain multiply.
2517     if (N.getResNo() != 0) break;
2518     [[fallthrough]];
2519   case ISD::MUL:
2520   case X86ISD::MUL_IMM:
2521     // X*[3,5,9] -> X+X*[2,4,8]
2522     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2523         AM.Base_Reg.getNode() == nullptr &&
2524         AM.IndexReg.getNode() == nullptr) {
2525       if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2526         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2527             CN->getZExtValue() == 9) {
2528           AM.Scale = unsigned(CN->getZExtValue())-1;
2529 
2530           SDValue MulVal = N.getOperand(0);
2531           SDValue Reg;
2532 
2533           // Okay, we know that we have a scale by now.  However, if the scaled
2534           // value is an add of something and a constant, we can fold the
2535           // constant into the disp field here.
2536           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2537               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2538             Reg = MulVal.getOperand(0);
2539             auto *AddVal = cast<ConstantSDNode>(MulVal.getOperand(1));
2540             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2541             if (foldOffsetIntoAddress(Disp, AM))
2542               Reg = N.getOperand(0);
2543           } else {
2544             Reg = N.getOperand(0);
2545           }
2546 
2547           AM.IndexReg = AM.Base_Reg = Reg;
2548           return false;
2549         }
2550     }
2551     break;
2552 
2553   case ISD::SUB: {
2554     // Given A-B, if A can be completely folded into the address and
2555     // the index field with the index field unused, use -B as the index.
2556     // This is a win if a has multiple parts that can be folded into
2557     // the address. Also, this saves a mov if the base register has
2558     // other uses, since it avoids a two-address sub instruction, however
2559     // it costs an additional mov if the index register has other uses.
2560 
2561     // Add an artificial use to this node so that we can keep track of
2562     // it if it gets CSE'd with a different node.
2563     HandleSDNode Handle(N);
2564 
2565     // Test if the LHS of the sub can be folded.
2566     X86ISelAddressMode Backup = AM;
2567     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2568       N = Handle.getValue();
2569       AM = Backup;
2570       break;
2571     }
2572     N = Handle.getValue();
2573     // Test if the index field is free for use.
2574     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2575       AM = Backup;
2576       break;
2577     }
2578 
2579     int Cost = 0;
2580     SDValue RHS = N.getOperand(1);
2581     // If the RHS involves a register with multiple uses, this
2582     // transformation incurs an extra mov, due to the neg instruction
2583     // clobbering its operand.
2584     if (!RHS.getNode()->hasOneUse() ||
2585         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2586         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2587         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2588         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2589          RHS.getOperand(0).getValueType() == MVT::i32))
2590       ++Cost;
2591     // If the base is a register with multiple uses, this
2592     // transformation may save a mov.
2593     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2594          !AM.Base_Reg.getNode()->hasOneUse()) ||
2595         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2596       --Cost;
2597     // If the folded LHS was interesting, this transformation saves
2598     // address arithmetic.
2599     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2600         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2601         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2602       --Cost;
2603     // If it doesn't look like it may be an overall win, don't do it.
2604     if (Cost >= 0) {
2605       AM = Backup;
2606       break;
2607     }
2608 
2609     // Ok, the transformation is legal and appears profitable. Go for it.
2610     // Negation will be emitted later to avoid creating dangling nodes if this
2611     // was an unprofitable LEA.
2612     AM.IndexReg = RHS;
2613     AM.NegateIndex = true;
2614     AM.Scale = 1;
2615     return false;
2616   }
2617 
2618   case ISD::OR:
2619   case ISD::XOR:
2620     // See if we can treat the OR/XOR node as an ADD node.
2621     if (!CurDAG->isADDLike(N))
2622       break;
2623     [[fallthrough]];
2624   case ISD::ADD:
2625     if (!matchAdd(N, AM, Depth))
2626       return false;
2627     break;
2628 
2629   case ISD::AND: {
2630     // Perform some heroic transforms on an and of a constant-count shift
2631     // with a constant to enable use of the scaled offset field.
2632 
2633     // Scale must not be used already.
2634     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2635 
2636     // We only handle up to 64-bit values here as those are what matter for
2637     // addressing mode optimizations.
2638     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2639            "Unexpected value size!");
2640 
2641     if (!isa<ConstantSDNode>(N.getOperand(1)))
2642       break;
2643 
2644     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2645       SDValue Shift = N.getOperand(0);
2646       SDValue X = Shift.getOperand(0);
2647 
2648       uint64_t Mask = N.getConstantOperandVal(1);
2649 
2650       // Try to fold the mask and shift into an extract and scale.
2651       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2652         return false;
2653 
2654       // Try to fold the mask and shift directly into the scale.
2655       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2656         return false;
2657 
2658       // Try to fold the mask and shift into BEXTR and scale.
2659       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2660         return false;
2661     }
2662 
2663     // Try to swap the mask and shift to place shifts which can be done as
2664     // a scale on the outside of the mask.
2665     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2666       return false;
2667 
2668     break;
2669   }
2670   case ISD::ZERO_EXTEND: {
2671     // Try to widen a zexted shift left to the same size as its use, so we can
2672     // match the shift as a scale factor.
2673     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2674       break;
2675 
2676     SDValue Src = N.getOperand(0);
2677 
2678     // See if we can match a zext(addlike(x,c)).
2679     // TODO: Move more ZERO_EXTEND patterns into matchIndexRecursively.
2680     if (Src.getOpcode() == ISD::ADD || Src.getOpcode() == ISD::OR)
2681       if (SDValue Index = matchIndexRecursively(N, AM, Depth + 1))
2682         if (Index != N) {
2683           AM.IndexReg = Index;
2684           return false;
2685         }
2686 
2687     // Peek through mask: zext(and(shl(x,c1),c2))
2688     APInt Mask = APInt::getAllOnes(Src.getScalarValueSizeInBits());
2689     if (Src.getOpcode() == ISD::AND && Src.hasOneUse())
2690       if (auto *MaskC = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
2691         Mask = MaskC->getAPIntValue();
2692         Src = Src.getOperand(0);
2693       }
2694 
2695     if (Src.getOpcode() == ISD::SHL && Src.hasOneUse()) {
2696       // Give up if the shift is not a valid scale factor [1,2,3].
2697       SDValue ShlSrc = Src.getOperand(0);
2698       SDValue ShlAmt = Src.getOperand(1);
2699       auto *ShAmtC = dyn_cast<ConstantSDNode>(ShlAmt);
2700       if (!ShAmtC)
2701         break;
2702       unsigned ShAmtV = ShAmtC->getZExtValue();
2703       if (ShAmtV > 3)
2704         break;
2705 
2706       // The narrow shift must only shift out zero bits (it must be 'nuw').
2707       // That makes it safe to widen to the destination type.
2708       APInt HighZeros =
2709           APInt::getHighBitsSet(ShlSrc.getValueSizeInBits(), ShAmtV);
2710       if (!Src->getFlags().hasNoUnsignedWrap() &&
2711           !CurDAG->MaskedValueIsZero(ShlSrc, HighZeros & Mask))
2712         break;
2713 
2714       // zext (shl nuw i8 %x, C1) to i32
2715       // --> shl (zext i8 %x to i32), (zext C1)
2716       // zext (and (shl nuw i8 %x, C1), C2) to i32
2717       // --> shl (zext i8 (and %x, C2 >> C1) to i32), (zext C1)
2718       MVT SrcVT = ShlSrc.getSimpleValueType();
2719       MVT VT = N.getSimpleValueType();
2720       SDLoc DL(N);
2721 
2722       SDValue Res = ShlSrc;
2723       if (!Mask.isAllOnes()) {
2724         Res = CurDAG->getConstant(Mask.lshr(ShAmtV), DL, SrcVT);
2725         insertDAGNode(*CurDAG, N, Res);
2726         Res = CurDAG->getNode(ISD::AND, DL, SrcVT, ShlSrc, Res);
2727         insertDAGNode(*CurDAG, N, Res);
2728       }
2729       SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Res);
2730       insertDAGNode(*CurDAG, N, Zext);
2731       SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, ShlAmt);
2732       insertDAGNode(*CurDAG, N, NewShl);
2733 
2734       // Convert the shift to scale factor.
2735       AM.Scale = 1 << ShAmtV;
2736       AM.IndexReg = Zext;
2737 
2738       CurDAG->ReplaceAllUsesWith(N, NewShl);
2739       CurDAG->RemoveDeadNode(N.getNode());
2740       return false;
2741     }
2742 
2743     if (Src.getOpcode() == ISD::SRL && !Mask.isAllOnes()) {
2744       // Try to fold the mask and shift into an extract and scale.
2745       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask.getZExtValue(), Src,
2746                                      Src.getOperand(0), AM))
2747         return false;
2748 
2749       // Try to fold the mask and shift directly into the scale.
2750       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask.getZExtValue(), Src,
2751                                    Src.getOperand(0), AM))
2752         return false;
2753 
2754       // Try to fold the mask and shift into BEXTR and scale.
2755       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask.getZExtValue(), Src,
2756                                   Src.getOperand(0), AM, *Subtarget))
2757         return false;
2758     }
2759 
2760     break;
2761   }
2762   }
2763 
2764   return matchAddressBase(N, AM);
2765 }
2766 
2767 /// Helper for MatchAddress. Add the specified node to the
2768 /// specified addressing mode without any further recursion.
2769 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2770   // Is the base register already occupied?
2771   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2772     // If so, check to see if the scale index register is set.
2773     if (!AM.IndexReg.getNode()) {
2774       AM.IndexReg = N;
2775       AM.Scale = 1;
2776       return false;
2777     }
2778 
2779     // Otherwise, we cannot select it.
2780     return true;
2781   }
2782 
2783   // Default, generate it as a register.
2784   AM.BaseType = X86ISelAddressMode::RegBase;
2785   AM.Base_Reg = N;
2786   return false;
2787 }
2788 
2789 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2790                                                     X86ISelAddressMode &AM,
2791                                                     unsigned Depth) {
2792   SDLoc dl(N);
2793   LLVM_DEBUG({
2794     dbgs() << "MatchVectorAddress: ";
2795     AM.dump(CurDAG);
2796   });
2797   // Limit recursion.
2798   if (Depth >= SelectionDAG::MaxRecursionDepth)
2799     return matchAddressBase(N, AM);
2800 
2801   // TODO: Support other operations.
2802   switch (N.getOpcode()) {
2803   case ISD::Constant: {
2804     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2805     if (!foldOffsetIntoAddress(Val, AM))
2806       return false;
2807     break;
2808   }
2809   case X86ISD::Wrapper:
2810     if (!matchWrapper(N, AM))
2811       return false;
2812     break;
2813   case ISD::ADD: {
2814     // Add an artificial use to this node so that we can keep track of
2815     // it if it gets CSE'd with a different node.
2816     HandleSDNode Handle(N);
2817 
2818     X86ISelAddressMode Backup = AM;
2819     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
2820         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2821                                        Depth + 1))
2822       return false;
2823     AM = Backup;
2824 
2825     // Try again after commuting the operands.
2826     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2827                                        Depth + 1) &&
2828         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
2829                                        Depth + 1))
2830       return false;
2831     AM = Backup;
2832 
2833     N = Handle.getValue();
2834     break;
2835   }
2836   }
2837 
2838   return matchAddressBase(N, AM);
2839 }
2840 
2841 /// Helper for selectVectorAddr. Handles things that can be folded into a
2842 /// gather/scatter address. The index register and scale should have already
2843 /// been handled.
2844 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2845   return matchVectorAddressRecursively(N, AM, 0);
2846 }
2847 
2848 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2849                                        SDValue IndexOp, SDValue ScaleOp,
2850                                        SDValue &Base, SDValue &Scale,
2851                                        SDValue &Index, SDValue &Disp,
2852                                        SDValue &Segment) {
2853   X86ISelAddressMode AM;
2854   AM.Scale = ScaleOp->getAsZExtVal();
2855 
2856   // Attempt to match index patterns, as long as we're not relying on implicit
2857   // sign-extension, which is performed BEFORE scale.
2858   if (IndexOp.getScalarValueSizeInBits() == BasePtr.getScalarValueSizeInBits())
2859     AM.IndexReg = matchIndexRecursively(IndexOp, AM, 0);
2860   else
2861     AM.IndexReg = IndexOp;
2862 
2863   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2864   if (AddrSpace == X86AS::GS)
2865     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2866   if (AddrSpace == X86AS::FS)
2867     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2868   if (AddrSpace == X86AS::SS)
2869     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2870 
2871   SDLoc DL(BasePtr);
2872   MVT VT = BasePtr.getSimpleValueType();
2873 
2874   // Try to match into the base and displacement fields.
2875   if (matchVectorAddress(BasePtr, AM))
2876     return false;
2877 
2878   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2879   return true;
2880 }
2881 
2882 /// Returns true if it is able to pattern match an addressing mode.
2883 /// It returns the operands which make up the maximal addressing mode it can
2884 /// match by reference.
2885 ///
2886 /// Parent is the parent node of the addr operand that is being matched.  It
2887 /// is always a load, store, atomic node, or null.  It is only null when
2888 /// checking memory operands for inline asm nodes.
2889 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2890                                  SDValue &Scale, SDValue &Index,
2891                                  SDValue &Disp, SDValue &Segment) {
2892   X86ISelAddressMode AM;
2893 
2894   if (Parent &&
2895       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2896       // that are not a MemSDNode, and thus don't have proper addrspace info.
2897       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2898       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2899       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2900       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2901       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2902       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2903       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2904     unsigned AddrSpace =
2905       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2906     if (AddrSpace == X86AS::GS)
2907       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2908     if (AddrSpace == X86AS::FS)
2909       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2910     if (AddrSpace == X86AS::SS)
2911       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2912   }
2913 
2914   // Save the DL and VT before calling matchAddress, it can invalidate N.
2915   SDLoc DL(N);
2916   MVT VT = N.getSimpleValueType();
2917 
2918   if (matchAddress(N, AM))
2919     return false;
2920 
2921   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2922   return true;
2923 }
2924 
2925 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2926   // Cannot use 32 bit constants to reference objects in kernel code model.
2927   // Cannot use 32 bit constants to reference objects in large PIC mode since
2928   // GOTOFF is 64 bits.
2929   if (TM.getCodeModel() == CodeModel::Kernel ||
2930       (TM.getCodeModel() == CodeModel::Large && TM.isPositionIndependent()))
2931     return false;
2932 
2933   // In static codegen with small code model, we can get the address of a label
2934   // into a register with 'movl'
2935   if (N->getOpcode() != X86ISD::Wrapper)
2936     return false;
2937 
2938   N = N.getOperand(0);
2939 
2940   // At least GNU as does not accept 'movl' for TPOFF relocations.
2941   // FIXME: We could use 'movl' when we know we are targeting MC.
2942   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2943     return false;
2944 
2945   Imm = N;
2946   // Small/medium code model can reference non-TargetGlobalAddress objects with
2947   // 32 bit constants.
2948   if (N->getOpcode() != ISD::TargetGlobalAddress) {
2949     return TM.getCodeModel() == CodeModel::Small ||
2950            TM.getCodeModel() == CodeModel::Medium;
2951   }
2952 
2953   const GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
2954   if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2955     return CR->getUnsignedMax().ult(1ull << 32);
2956 
2957   return !TM.isLargeGlobalValue(GV);
2958 }
2959 
2960 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2961                                          SDValue &Scale, SDValue &Index,
2962                                          SDValue &Disp, SDValue &Segment) {
2963   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2964   SDLoc DL(N);
2965 
2966   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2967     return false;
2968 
2969   auto *RN = dyn_cast<RegisterSDNode>(Base);
2970   if (RN && RN->getReg() == 0)
2971     Base = CurDAG->getRegister(0, MVT::i64);
2972   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2973     // Base could already be %rip, particularly in the x32 ABI.
2974     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2975                                                      MVT::i64), 0);
2976     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2977                                          Base);
2978   }
2979 
2980   RN = dyn_cast<RegisterSDNode>(Index);
2981   if (RN && RN->getReg() == 0)
2982     Index = CurDAG->getRegister(0, MVT::i64);
2983   else {
2984     assert(Index.getValueType() == MVT::i32 &&
2985            "Expect to be extending 32-bit registers for use in LEA");
2986     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2987                                                      MVT::i64), 0);
2988     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2989                                           Index);
2990   }
2991 
2992   return true;
2993 }
2994 
2995 /// Calls SelectAddr and determines if the maximal addressing
2996 /// mode it matches can be cost effectively emitted as an LEA instruction.
2997 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2998                                     SDValue &Base, SDValue &Scale,
2999                                     SDValue &Index, SDValue &Disp,
3000                                     SDValue &Segment) {
3001   X86ISelAddressMode AM;
3002 
3003   // Save the DL and VT before calling matchAddress, it can invalidate N.
3004   SDLoc DL(N);
3005   MVT VT = N.getSimpleValueType();
3006 
3007   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
3008   // segments.
3009   SDValue Copy = AM.Segment;
3010   SDValue T = CurDAG->getRegister(0, MVT::i32);
3011   AM.Segment = T;
3012   if (matchAddress(N, AM))
3013     return false;
3014   assert (T == AM.Segment);
3015   AM.Segment = Copy;
3016 
3017   unsigned Complexity = 0;
3018   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
3019     Complexity = 1;
3020   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
3021     Complexity = 4;
3022 
3023   if (AM.IndexReg.getNode())
3024     Complexity++;
3025 
3026   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
3027   // a simple shift.
3028   if (AM.Scale > 1)
3029     Complexity++;
3030 
3031   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
3032   // to a LEA. This is determined with some experimentation but is by no means
3033   // optimal (especially for code size consideration). LEA is nice because of
3034   // its three-address nature. Tweak the cost function again when we can run
3035   // convertToThreeAddress() at register allocation time.
3036   if (AM.hasSymbolicDisplacement()) {
3037     // For X86-64, always use LEA to materialize RIP-relative addresses.
3038     if (Subtarget->is64Bit())
3039       Complexity = 4;
3040     else
3041       Complexity += 2;
3042   }
3043 
3044   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
3045   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
3046   // duplicating flag-producing instructions later in the pipeline.
3047   if (N.getOpcode() == ISD::ADD) {
3048     auto isMathWithFlags = [](SDValue V) {
3049       switch (V.getOpcode()) {
3050       case X86ISD::ADD:
3051       case X86ISD::SUB:
3052       case X86ISD::ADC:
3053       case X86ISD::SBB:
3054       case X86ISD::SMUL:
3055       case X86ISD::UMUL:
3056       /* TODO: These opcodes can be added safely, but we may want to justify
3057                their inclusion for different reasons (better for reg-alloc).
3058       case X86ISD::OR:
3059       case X86ISD::XOR:
3060       case X86ISD::AND:
3061       */
3062         // Value 1 is the flag output of the node - verify it's not dead.
3063         return !SDValue(V.getNode(), 1).use_empty();
3064       default:
3065         return false;
3066       }
3067     };
3068     // TODO: We might want to factor in whether there's a load folding
3069     // opportunity for the math op that disappears with LEA.
3070     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
3071       Complexity++;
3072   }
3073 
3074   if (AM.Disp)
3075     Complexity++;
3076 
3077   // If it isn't worth using an LEA, reject it.
3078   if (Complexity <= 2)
3079     return false;
3080 
3081   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
3082   return true;
3083 }
3084 
3085 /// This is only run on TargetGlobalTLSAddress nodes.
3086 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
3087                                         SDValue &Scale, SDValue &Index,
3088                                         SDValue &Disp, SDValue &Segment) {
3089   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
3090   auto *GA = cast<GlobalAddressSDNode>(N);
3091 
3092   X86ISelAddressMode AM;
3093   AM.GV = GA->getGlobal();
3094   AM.Disp += GA->getOffset();
3095   AM.SymbolFlags = GA->getTargetFlags();
3096 
3097   if (Subtarget->is32Bit()) {
3098     AM.Scale = 1;
3099     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
3100   }
3101 
3102   MVT VT = N.getSimpleValueType();
3103   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
3104   return true;
3105 }
3106 
3107 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
3108   // Keep track of the original value type and whether this value was
3109   // truncated. If we see a truncation from pointer type to VT that truncates
3110   // bits that are known to be zero, we can use a narrow reference.
3111   EVT VT = N.getValueType();
3112   bool WasTruncated = false;
3113   if (N.getOpcode() == ISD::TRUNCATE) {
3114     WasTruncated = true;
3115     N = N.getOperand(0);
3116   }
3117 
3118   if (N.getOpcode() != X86ISD::Wrapper)
3119     return false;
3120 
3121   // We can only use non-GlobalValues as immediates if they were not truncated,
3122   // as we do not have any range information. If we have a GlobalValue and the
3123   // address was not truncated, we can select it as an operand directly.
3124   unsigned Opc = N.getOperand(0)->getOpcode();
3125   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
3126     Op = N.getOperand(0);
3127     // We can only select the operand directly if we didn't have to look past a
3128     // truncate.
3129     return !WasTruncated;
3130   }
3131 
3132   // Check that the global's range fits into VT.
3133   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
3134   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3135   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
3136     return false;
3137 
3138   // Okay, we can use a narrow reference.
3139   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
3140                                       GA->getOffset(), GA->getTargetFlags());
3141   return true;
3142 }
3143 
3144 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
3145                                   SDValue &Base, SDValue &Scale,
3146                                   SDValue &Index, SDValue &Disp,
3147                                   SDValue &Segment) {
3148   assert(Root && P && "Unknown root/parent nodes");
3149   if (!ISD::isNON_EXTLoad(N.getNode()) ||
3150       !IsProfitableToFold(N, P, Root) ||
3151       !IsLegalToFold(N, P, Root, OptLevel))
3152     return false;
3153 
3154   return selectAddr(N.getNode(),
3155                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3156 }
3157 
3158 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
3159                                        SDValue &Base, SDValue &Scale,
3160                                        SDValue &Index, SDValue &Disp,
3161                                        SDValue &Segment) {
3162   assert(Root && P && "Unknown root/parent nodes");
3163   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
3164       !IsProfitableToFold(N, P, Root) ||
3165       !IsLegalToFold(N, P, Root, OptLevel))
3166     return false;
3167 
3168   return selectAddr(N.getNode(),
3169                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3170 }
3171 
3172 /// Return an SDNode that returns the value of the global base register.
3173 /// Output instructions required to initialize the global base register,
3174 /// if necessary.
3175 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
3176   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
3177   auto &DL = MF->getDataLayout();
3178   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
3179 }
3180 
3181 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
3182   if (N->getOpcode() == ISD::TRUNCATE)
3183     N = N->getOperand(0).getNode();
3184   if (N->getOpcode() != X86ISD::Wrapper)
3185     return false;
3186 
3187   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
3188   if (!GA)
3189     return false;
3190 
3191   auto *GV = GA->getGlobal();
3192   std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange();
3193   if (CR)
3194     return CR->getSignedMin().sge(-1ull << Width) &&
3195            CR->getSignedMax().slt(1ull << Width);
3196   // In the kernel code model, globals are in the negative 2GB of the address
3197   // space, so globals can be a sign extended 32-bit immediate.
3198   // In other code models, small globals are in the low 2GB of the address
3199   // space, so sign extending them is equivalent to zero extending them.
3200   return Width == 32 && !TM.isLargeGlobalValue(GV);
3201 }
3202 
3203 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
3204   assert(N->isMachineOpcode() && "Unexpected node");
3205   unsigned Opc = N->getMachineOpcode();
3206   const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
3207   int CondNo = X86::getCondSrcNoFromDesc(MCID);
3208   if (CondNo < 0)
3209     return X86::COND_INVALID;
3210 
3211   return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo));
3212 }
3213 
3214 /// Test whether the given X86ISD::CMP node has any users that use a flag
3215 /// other than ZF.
3216 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
3217   // Examine each user of the node.
3218   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3219          UI != UE; ++UI) {
3220     // Only check things that use the flags.
3221     if (UI.getUse().getResNo() != Flags.getResNo())
3222       continue;
3223     // Only examine CopyToReg uses that copy to EFLAGS.
3224     if (UI->getOpcode() != ISD::CopyToReg ||
3225         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3226       return false;
3227     // Examine each user of the CopyToReg use.
3228     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3229            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3230       // Only examine the Flag result.
3231       if (FlagUI.getUse().getResNo() != 1) continue;
3232       // Anything unusual: assume conservatively.
3233       if (!FlagUI->isMachineOpcode()) return false;
3234       // Examine the condition code of the user.
3235       X86::CondCode CC = getCondFromNode(*FlagUI);
3236 
3237       switch (CC) {
3238       // Comparisons which only use the zero flag.
3239       case X86::COND_E: case X86::COND_NE:
3240         continue;
3241       // Anything else: assume conservatively.
3242       default:
3243         return false;
3244       }
3245     }
3246   }
3247   return true;
3248 }
3249 
3250 /// Test whether the given X86ISD::CMP node has any uses which require the SF
3251 /// flag to be accurate.
3252 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
3253   // Examine each user of the node.
3254   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3255          UI != UE; ++UI) {
3256     // Only check things that use the flags.
3257     if (UI.getUse().getResNo() != Flags.getResNo())
3258       continue;
3259     // Only examine CopyToReg uses that copy to EFLAGS.
3260     if (UI->getOpcode() != ISD::CopyToReg ||
3261         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3262       return false;
3263     // Examine each user of the CopyToReg use.
3264     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3265            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3266       // Only examine the Flag result.
3267       if (FlagUI.getUse().getResNo() != 1) continue;
3268       // Anything unusual: assume conservatively.
3269       if (!FlagUI->isMachineOpcode()) return false;
3270       // Examine the condition code of the user.
3271       X86::CondCode CC = getCondFromNode(*FlagUI);
3272 
3273       switch (CC) {
3274       // Comparisons which don't examine the SF flag.
3275       case X86::COND_A: case X86::COND_AE:
3276       case X86::COND_B: case X86::COND_BE:
3277       case X86::COND_E: case X86::COND_NE:
3278       case X86::COND_O: case X86::COND_NO:
3279       case X86::COND_P: case X86::COND_NP:
3280         continue;
3281       // Anything else: assume conservatively.
3282       default:
3283         return false;
3284       }
3285     }
3286   }
3287   return true;
3288 }
3289 
3290 static bool mayUseCarryFlag(X86::CondCode CC) {
3291   switch (CC) {
3292   // Comparisons which don't examine the CF flag.
3293   case X86::COND_O: case X86::COND_NO:
3294   case X86::COND_E: case X86::COND_NE:
3295   case X86::COND_S: case X86::COND_NS:
3296   case X86::COND_P: case X86::COND_NP:
3297   case X86::COND_L: case X86::COND_GE:
3298   case X86::COND_G: case X86::COND_LE:
3299     return false;
3300   // Anything else: assume conservatively.
3301   default:
3302     return true;
3303   }
3304 }
3305 
3306 /// Test whether the given node which sets flags has any uses which require the
3307 /// CF flag to be accurate.
3308  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3309   // Examine each user of the node.
3310   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3311          UI != UE; ++UI) {
3312     // Only check things that use the flags.
3313     if (UI.getUse().getResNo() != Flags.getResNo())
3314       continue;
3315 
3316     unsigned UIOpc = UI->getOpcode();
3317 
3318     if (UIOpc == ISD::CopyToReg) {
3319       // Only examine CopyToReg uses that copy to EFLAGS.
3320       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3321         return false;
3322       // Examine each user of the CopyToReg use.
3323       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3324            FlagUI != FlagUE; ++FlagUI) {
3325         // Only examine the Flag result.
3326         if (FlagUI.getUse().getResNo() != 1)
3327           continue;
3328         // Anything unusual: assume conservatively.
3329         if (!FlagUI->isMachineOpcode())
3330           return false;
3331         // Examine the condition code of the user.
3332         X86::CondCode CC = getCondFromNode(*FlagUI);
3333 
3334         if (mayUseCarryFlag(CC))
3335           return false;
3336       }
3337 
3338       // This CopyToReg is ok. Move on to the next user.
3339       continue;
3340     }
3341 
3342     // This might be an unselected node. So look for the pre-isel opcodes that
3343     // use flags.
3344     unsigned CCOpNo;
3345     switch (UIOpc) {
3346     default:
3347       // Something unusual. Be conservative.
3348       return false;
3349     case X86ISD::SETCC:       CCOpNo = 0; break;
3350     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3351     case X86ISD::CMOV:        CCOpNo = 2; break;
3352     case X86ISD::BRCOND:      CCOpNo = 2; break;
3353     }
3354 
3355     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
3356     if (mayUseCarryFlag(CC))
3357       return false;
3358   }
3359   return true;
3360 }
3361 
3362 /// Check whether or not the chain ending in StoreNode is suitable for doing
3363 /// the {load; op; store} to modify transformation.
3364 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3365                                         SDValue StoredVal, SelectionDAG *CurDAG,
3366                                         unsigned LoadOpNo,
3367                                         LoadSDNode *&LoadNode,
3368                                         SDValue &InputChain) {
3369   // Is the stored value result 0 of the operation?
3370   if (StoredVal.getResNo() != 0) return false;
3371 
3372   // Are there other uses of the operation other than the store?
3373   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3374 
3375   // Is the store non-extending and non-indexed?
3376   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3377     return false;
3378 
3379   SDValue Load = StoredVal->getOperand(LoadOpNo);
3380   // Is the stored value a non-extending and non-indexed load?
3381   if (!ISD::isNormalLoad(Load.getNode())) return false;
3382 
3383   // Return LoadNode by reference.
3384   LoadNode = cast<LoadSDNode>(Load);
3385 
3386   // Is store the only read of the loaded value?
3387   if (!Load.hasOneUse())
3388     return false;
3389 
3390   // Is the address of the store the same as the load?
3391   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3392       LoadNode->getOffset() != StoreNode->getOffset())
3393     return false;
3394 
3395   bool FoundLoad = false;
3396   SmallVector<SDValue, 4> ChainOps;
3397   SmallVector<const SDNode *, 4> LoopWorklist;
3398   SmallPtrSet<const SDNode *, 16> Visited;
3399   const unsigned int Max = 1024;
3400 
3401   //  Visualization of Load-Op-Store fusion:
3402   // -------------------------
3403   // Legend:
3404   //    *-lines = Chain operand dependencies.
3405   //    |-lines = Normal operand dependencies.
3406   //    Dependencies flow down and right. n-suffix references multiple nodes.
3407   //
3408   //        C                        Xn  C
3409   //        *                         *  *
3410   //        *                          * *
3411   //  Xn  A-LD    Yn                    TF         Yn
3412   //   *    * \   |                       *        |
3413   //    *   *  \  |                        *       |
3414   //     *  *   \ |             =>       A--LD_OP_ST
3415   //      * *    \|                                 \
3416   //       TF    OP                                  \
3417   //         *   | \                                  Zn
3418   //          *  |  \
3419   //         A-ST    Zn
3420   //
3421 
3422   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3423   //                                      #2: Yn -> LD
3424   //                                      #3: ST -> Zn
3425 
3426   // Ensure the transform is safe by checking for the dual
3427   // dependencies to make sure we do not induce a loop.
3428 
3429   // As LD is a predecessor to both OP and ST we can do this by checking:
3430   //  a). if LD is a predecessor to a member of Xn or Yn.
3431   //  b). if a Zn is a predecessor to ST.
3432 
3433   // However, (b) can only occur through being a chain predecessor to
3434   // ST, which is the same as Zn being a member or predecessor of Xn,
3435   // which is a subset of LD being a predecessor of Xn. So it's
3436   // subsumed by check (a).
3437 
3438   SDValue Chain = StoreNode->getChain();
3439 
3440   // Gather X elements in ChainOps.
3441   if (Chain == Load.getValue(1)) {
3442     FoundLoad = true;
3443     ChainOps.push_back(Load.getOperand(0));
3444   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3445     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3446       SDValue Op = Chain.getOperand(i);
3447       if (Op == Load.getValue(1)) {
3448         FoundLoad = true;
3449         // Drop Load, but keep its chain. No cycle check necessary.
3450         ChainOps.push_back(Load.getOperand(0));
3451         continue;
3452       }
3453       LoopWorklist.push_back(Op.getNode());
3454       ChainOps.push_back(Op);
3455     }
3456   }
3457 
3458   if (!FoundLoad)
3459     return false;
3460 
3461   // Worklist is currently Xn. Add Yn to worklist.
3462   for (SDValue Op : StoredVal->ops())
3463     if (Op.getNode() != LoadNode)
3464       LoopWorklist.push_back(Op.getNode());
3465 
3466   // Check (a) if Load is a predecessor to Xn + Yn
3467   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3468                                    true))
3469     return false;
3470 
3471   InputChain =
3472       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3473   return true;
3474 }
3475 
3476 // Change a chain of {load; op; store} of the same value into a simple op
3477 // through memory of that value, if the uses of the modified value and its
3478 // address are suitable.
3479 //
3480 // The tablegen pattern memory operand pattern is currently not able to match
3481 // the case where the EFLAGS on the original operation are used.
3482 //
3483 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3484 // be transferred from a node in the pattern to the result node, probably with
3485 // a new keyword. For example, we have this
3486 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3487 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3488 //   (implicit EFLAGS)]>;
3489 // but maybe need something like this
3490 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3491 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3492 //   (transferrable EFLAGS)]>;
3493 //
3494 // Until then, we manually fold these and instruction select the operation
3495 // here.
3496 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3497   auto *StoreNode = cast<StoreSDNode>(Node);
3498   SDValue StoredVal = StoreNode->getOperand(1);
3499   unsigned Opc = StoredVal->getOpcode();
3500 
3501   // Before we try to select anything, make sure this is memory operand size
3502   // and opcode we can handle. Note that this must match the code below that
3503   // actually lowers the opcodes.
3504   EVT MemVT = StoreNode->getMemoryVT();
3505   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3506       MemVT != MVT::i8)
3507     return false;
3508 
3509   bool IsCommutable = false;
3510   bool IsNegate = false;
3511   switch (Opc) {
3512   default:
3513     return false;
3514   case X86ISD::SUB:
3515     IsNegate = isNullConstant(StoredVal.getOperand(0));
3516     break;
3517   case X86ISD::SBB:
3518     break;
3519   case X86ISD::ADD:
3520   case X86ISD::ADC:
3521   case X86ISD::AND:
3522   case X86ISD::OR:
3523   case X86ISD::XOR:
3524     IsCommutable = true;
3525     break;
3526   }
3527 
3528   unsigned LoadOpNo = IsNegate ? 1 : 0;
3529   LoadSDNode *LoadNode = nullptr;
3530   SDValue InputChain;
3531   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3532                                    LoadNode, InputChain)) {
3533     if (!IsCommutable)
3534       return false;
3535 
3536     // This operation is commutable, try the other operand.
3537     LoadOpNo = 1;
3538     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3539                                      LoadNode, InputChain))
3540       return false;
3541   }
3542 
3543   SDValue Base, Scale, Index, Disp, Segment;
3544   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3545                   Segment))
3546     return false;
3547 
3548   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3549                           unsigned Opc8) {
3550     switch (MemVT.getSimpleVT().SimpleTy) {
3551     case MVT::i64:
3552       return Opc64;
3553     case MVT::i32:
3554       return Opc32;
3555     case MVT::i16:
3556       return Opc16;
3557     case MVT::i8:
3558       return Opc8;
3559     default:
3560       llvm_unreachable("Invalid size!");
3561     }
3562   };
3563 
3564   MachineSDNode *Result;
3565   switch (Opc) {
3566   case X86ISD::SUB:
3567     // Handle negate.
3568     if (IsNegate) {
3569       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3570                                      X86::NEG8m);
3571       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3572       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3573                                       MVT::Other, Ops);
3574       break;
3575     }
3576    [[fallthrough]];
3577   case X86ISD::ADD:
3578     // Try to match inc/dec.
3579     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3580       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3581       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3582       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3583       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3584         unsigned NewOpc =
3585           ((Opc == X86ISD::ADD) == IsOne)
3586               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3587               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3588         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3589         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3590                                         MVT::Other, Ops);
3591         break;
3592       }
3593     }
3594     [[fallthrough]];
3595   case X86ISD::ADC:
3596   case X86ISD::SBB:
3597   case X86ISD::AND:
3598   case X86ISD::OR:
3599   case X86ISD::XOR: {
3600     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3601       switch (Opc) {
3602       case X86ISD::ADD:
3603         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3604                             X86::ADD8mr);
3605       case X86ISD::ADC:
3606         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3607                             X86::ADC8mr);
3608       case X86ISD::SUB:
3609         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3610                             X86::SUB8mr);
3611       case X86ISD::SBB:
3612         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3613                             X86::SBB8mr);
3614       case X86ISD::AND:
3615         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3616                             X86::AND8mr);
3617       case X86ISD::OR:
3618         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3619       case X86ISD::XOR:
3620         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3621                             X86::XOR8mr);
3622       default:
3623         llvm_unreachable("Invalid opcode!");
3624       }
3625     };
3626     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3627       switch (Opc) {
3628       case X86ISD::ADD:
3629         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3630                             X86::ADD8mi);
3631       case X86ISD::ADC:
3632         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3633                             X86::ADC8mi);
3634       case X86ISD::SUB:
3635         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3636                             X86::SUB8mi);
3637       case X86ISD::SBB:
3638         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3639                             X86::SBB8mi);
3640       case X86ISD::AND:
3641         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3642                             X86::AND8mi);
3643       case X86ISD::OR:
3644         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3645                             X86::OR8mi);
3646       case X86ISD::XOR:
3647         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3648                             X86::XOR8mi);
3649       default:
3650         llvm_unreachable("Invalid opcode!");
3651       }
3652     };
3653 
3654     unsigned NewOpc = SelectRegOpcode(Opc);
3655     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3656 
3657     // See if the operand is a constant that we can fold into an immediate
3658     // operand.
3659     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3660       int64_t OperandV = OperandC->getSExtValue();
3661 
3662       // Check if we can shrink the operand enough to fit in an immediate (or
3663       // fit into a smaller immediate) by negating it and switching the
3664       // operation.
3665       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3666           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3667            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3668             isInt<32>(-OperandV))) &&
3669           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3670         OperandV = -OperandV;
3671         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3672       }
3673 
3674       if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3675         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3676         NewOpc = SelectImmOpcode(Opc);
3677       }
3678     }
3679 
3680     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3681       SDValue CopyTo =
3682           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3683                                StoredVal.getOperand(2), SDValue());
3684 
3685       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3686                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3687       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3688                                       Ops);
3689     } else {
3690       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3691                              Segment, Operand, InputChain};
3692       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3693                                       Ops);
3694     }
3695     break;
3696   }
3697   default:
3698     llvm_unreachable("Invalid opcode!");
3699   }
3700 
3701   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3702                                  LoadNode->getMemOperand()};
3703   CurDAG->setNodeMemRefs(Result, MemOps);
3704 
3705   // Update Load Chain uses as well.
3706   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3707   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3708   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3709   CurDAG->RemoveDeadNode(Node);
3710   return true;
3711 }
3712 
3713 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3714 // Where Mask is one of the following patterns:
3715 //   a) x &  (1 << nbits) - 1
3716 //   b) x & ~(-1 << nbits)
3717 //   c) x &  (-1 >> (32 - y))
3718 //   d) x << (32 - y) >> (32 - y)
3719 //   e) (1 << nbits) - 1
3720 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3721   assert(
3722       (Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::AND ||
3723        Node->getOpcode() == ISD::SRL) &&
3724       "Should be either an and-mask, or right-shift after clearing high bits.");
3725 
3726   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3727   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3728     return false;
3729 
3730   MVT NVT = Node->getSimpleValueType(0);
3731 
3732   // Only supported for 32 and 64 bits.
3733   if (NVT != MVT::i32 && NVT != MVT::i64)
3734     return false;
3735 
3736   SDValue NBits;
3737   bool NegateNBits;
3738 
3739   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3740   // Else, if we only have BMI1's BEXTR, we require one-use.
3741   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3742   auto checkUses = [AllowExtraUsesByDefault](
3743                        SDValue Op, unsigned NUses,
3744                        std::optional<bool> AllowExtraUses) {
3745     return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3746            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3747   };
3748   auto checkOneUse = [checkUses](SDValue Op,
3749                                  std::optional<bool> AllowExtraUses =
3750                                      std::nullopt) {
3751     return checkUses(Op, 1, AllowExtraUses);
3752   };
3753   auto checkTwoUse = [checkUses](SDValue Op,
3754                                  std::optional<bool> AllowExtraUses =
3755                                      std::nullopt) {
3756     return checkUses(Op, 2, AllowExtraUses);
3757   };
3758 
3759   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3760     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3761       assert(V.getSimpleValueType() == MVT::i32 &&
3762              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3763              "Expected i64 -> i32 truncation");
3764       V = V.getOperand(0);
3765     }
3766     return V;
3767   };
3768 
3769   // a) x & ((1 << nbits) + (-1))
3770   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3771                         &NegateNBits](SDValue Mask) -> bool {
3772     // Match `add`. Must only have one use!
3773     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3774       return false;
3775     // We should be adding all-ones constant (i.e. subtracting one.)
3776     if (!isAllOnesConstant(Mask->getOperand(1)))
3777       return false;
3778     // Match `1 << nbits`. Might be truncated. Must only have one use!
3779     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3780     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3781       return false;
3782     if (!isOneConstant(M0->getOperand(0)))
3783       return false;
3784     NBits = M0->getOperand(1);
3785     NegateNBits = false;
3786     return true;
3787   };
3788 
3789   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3790     V = peekThroughOneUseTruncation(V);
3791     return CurDAG->MaskedValueIsAllOnes(
3792         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3793                                 NVT.getSizeInBits()));
3794   };
3795 
3796   // b) x & ~(-1 << nbits)
3797   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3798                         &NBits, &NegateNBits](SDValue Mask) -> bool {
3799     // Match `~()`. Must only have one use!
3800     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3801       return false;
3802     // The -1 only has to be all-ones for the final Node's NVT.
3803     if (!isAllOnes(Mask->getOperand(1)))
3804       return false;
3805     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3806     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3807     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3808       return false;
3809     // The -1 only has to be all-ones for the final Node's NVT.
3810     if (!isAllOnes(M0->getOperand(0)))
3811       return false;
3812     NBits = M0->getOperand(1);
3813     NegateNBits = false;
3814     return true;
3815   };
3816 
3817   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3818   // or leave the shift amount as-is, but then we'll have to negate it.
3819   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3820                                                      unsigned Bitwidth) {
3821     NBits = ShiftAmt;
3822     NegateNBits = true;
3823     // Skip over a truncate of the shift amount, if any.
3824     if (NBits.getOpcode() == ISD::TRUNCATE)
3825       NBits = NBits.getOperand(0);
3826     // Try to match the shift amount as (bitwidth - y). It should go away, too.
3827     // If it doesn't match, that's fine, we'll just negate it ourselves.
3828     if (NBits.getOpcode() != ISD::SUB)
3829       return;
3830     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
3831     if (!V0 || V0->getZExtValue() != Bitwidth)
3832       return;
3833     NBits = NBits.getOperand(1);
3834     NegateNBits = false;
3835   };
3836 
3837   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
3838   //   or
3839   // c) x &  (-1 >> (32 - y))
3840   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3841                         canonicalizeShiftAmt](SDValue Mask) -> bool {
3842     // The mask itself may be truncated.
3843     Mask = peekThroughOneUseTruncation(Mask);
3844     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3845     // Match `l>>`. Must only have one use!
3846     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3847       return false;
3848     // We should be shifting truly all-ones constant.
3849     if (!isAllOnesConstant(Mask.getOperand(0)))
3850       return false;
3851     SDValue M1 = Mask.getOperand(1);
3852     // The shift amount should not be used externally.
3853     if (!checkOneUse(M1))
3854       return false;
3855     canonicalizeShiftAmt(M1, Bitwidth);
3856     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3857     // is no extra use of the mask. Clearly, there was one since we are here.
3858     // But at the same time, if we need to negate the shift amount,
3859     // then we don't want the mask to stick around, else it's unprofitable.
3860     return !NegateNBits;
3861   };
3862 
3863   SDValue X;
3864 
3865   // d) x << z >> z  but then we'll have to subtract z from bitwidth
3866   //   or
3867   // d) x << (32 - y) >> (32 - y)
3868   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3869                         AllowExtraUsesByDefault, &NegateNBits,
3870                         &X](SDNode *Node) -> bool {
3871     if (Node->getOpcode() != ISD::SRL)
3872       return false;
3873     SDValue N0 = Node->getOperand(0);
3874     if (N0->getOpcode() != ISD::SHL)
3875       return false;
3876     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3877     SDValue N1 = Node->getOperand(1);
3878     SDValue N01 = N0->getOperand(1);
3879     // Both of the shifts must be by the exact same value.
3880     if (N1 != N01)
3881       return false;
3882     canonicalizeShiftAmt(N1, Bitwidth);
3883     // There should not be any external uses of the inner shift / shift amount.
3884     // Note that while we are generally okay with external uses given BMI2,
3885     // iff we need to negate the shift amount, we are not okay with extra uses.
3886     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3887     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3888       return false;
3889     X = N0->getOperand(0);
3890     return true;
3891   };
3892 
3893   auto matchLowBitMask = [matchPatternA, matchPatternB,
3894                           matchPatternC](SDValue Mask) -> bool {
3895     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3896   };
3897 
3898   if (Node->getOpcode() == ISD::AND) {
3899     X = Node->getOperand(0);
3900     SDValue Mask = Node->getOperand(1);
3901 
3902     if (matchLowBitMask(Mask)) {
3903       // Great.
3904     } else {
3905       std::swap(X, Mask);
3906       if (!matchLowBitMask(Mask))
3907         return false;
3908     }
3909   } else if (matchLowBitMask(SDValue(Node, 0))) {
3910     X = CurDAG->getAllOnesConstant(SDLoc(Node), NVT);
3911   } else if (!matchPatternD(Node))
3912     return false;
3913 
3914   // If we need to negate the shift amount, require BMI2 BZHI support.
3915   // It's just too unprofitable for BMI1 BEXTR.
3916   if (NegateNBits && !Subtarget->hasBMI2())
3917     return false;
3918 
3919   SDLoc DL(Node);
3920 
3921   // Truncate the shift amount.
3922   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3923   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3924 
3925   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3926   // All the other bits are undefined, we do not care about them.
3927   SDValue ImplDef = SDValue(
3928       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3929   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3930 
3931   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3932   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3933   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3934                                          MVT::i32, ImplDef, NBits, SRIdxVal),
3935                   0);
3936   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3937 
3938   // We might have matched the amount of high bits to be cleared,
3939   // but we want the amount of low bits to be kept, so negate it then.
3940   if (NegateNBits) {
3941     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3942     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
3943 
3944     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3945     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3946   }
3947 
3948   if (Subtarget->hasBMI2()) {
3949     // Great, just emit the BZHI..
3950     if (NVT != MVT::i32) {
3951       // But have to place the bit count into the wide-enough register first.
3952       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3953       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3954     }
3955 
3956     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3957     ReplaceNode(Node, Extract.getNode());
3958     SelectCode(Extract.getNode());
3959     return true;
3960   }
3961 
3962   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3963   // *logically* shifted (potentially with one-use trunc inbetween),
3964   // and the truncation was the only use of the shift,
3965   // and if so look past one-use truncation.
3966   {
3967     SDValue RealX = peekThroughOneUseTruncation(X);
3968     // FIXME: only if the shift is one-use?
3969     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3970       X = RealX;
3971   }
3972 
3973   MVT XVT = X.getSimpleValueType();
3974 
3975   // Else, emitting BEXTR requires one more step.
3976   // The 'control' of BEXTR has the pattern of:
3977   // [15...8 bit][ 7...0 bit] location
3978   // [ bit count][     shift] name
3979   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3980 
3981   // Shift NBits left by 8 bits, thus producing 'control'.
3982   // This makes the low 8 bits to be zero.
3983   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3984   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3985   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3986   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3987 
3988   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3989   // FIXME: only if the shift is one-use?
3990   if (X.getOpcode() == ISD::SRL) {
3991     SDValue ShiftAmt = X.getOperand(1);
3992     X = X.getOperand(0);
3993 
3994     assert(ShiftAmt.getValueType() == MVT::i8 &&
3995            "Expected shift amount to be i8");
3996 
3997     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3998     // We could zext to i16 in some form, but we intentionally don't do that.
3999     SDValue OrigShiftAmt = ShiftAmt;
4000     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
4001     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
4002 
4003     // And now 'or' these low 8 bits of shift amount into the 'control'.
4004     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
4005     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4006   }
4007 
4008   // But have to place the 'control' into the wide-enough register first.
4009   if (XVT != MVT::i32) {
4010     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
4011     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4012   }
4013 
4014   // And finally, form the BEXTR itself.
4015   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
4016 
4017   // The 'X' was originally truncated. Do that now.
4018   if (XVT != NVT) {
4019     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
4020     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
4021   }
4022 
4023   ReplaceNode(Node, Extract.getNode());
4024   SelectCode(Extract.getNode());
4025 
4026   return true;
4027 }
4028 
4029 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
4030 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
4031   MVT NVT = Node->getSimpleValueType(0);
4032   SDLoc dl(Node);
4033 
4034   SDValue N0 = Node->getOperand(0);
4035   SDValue N1 = Node->getOperand(1);
4036 
4037   // If we have TBM we can use an immediate for the control. If we have BMI
4038   // we should only do this if the BEXTR instruction is implemented well.
4039   // Otherwise moving the control into a register makes this more costly.
4040   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
4041   // hoisting the move immediate would make it worthwhile with a less optimal
4042   // BEXTR?
4043   bool PreferBEXTR =
4044       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
4045   if (!PreferBEXTR && !Subtarget->hasBMI2())
4046     return nullptr;
4047 
4048   // Must have a shift right.
4049   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
4050     return nullptr;
4051 
4052   // Shift can't have additional users.
4053   if (!N0->hasOneUse())
4054     return nullptr;
4055 
4056   // Only supported for 32 and 64 bits.
4057   if (NVT != MVT::i32 && NVT != MVT::i64)
4058     return nullptr;
4059 
4060   // Shift amount and RHS of and must be constant.
4061   auto *MaskCst = dyn_cast<ConstantSDNode>(N1);
4062   auto *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
4063   if (!MaskCst || !ShiftCst)
4064     return nullptr;
4065 
4066   // And RHS must be a mask.
4067   uint64_t Mask = MaskCst->getZExtValue();
4068   if (!isMask_64(Mask))
4069     return nullptr;
4070 
4071   uint64_t Shift = ShiftCst->getZExtValue();
4072   uint64_t MaskSize = llvm::popcount(Mask);
4073 
4074   // Don't interfere with something that can be handled by extracting AH.
4075   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
4076   if (Shift == 8 && MaskSize == 8)
4077     return nullptr;
4078 
4079   // Make sure we are only using bits that were in the original value, not
4080   // shifted in.
4081   if (Shift + MaskSize > NVT.getSizeInBits())
4082     return nullptr;
4083 
4084   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
4085   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
4086   // does not fit into 32 bits. Load folding is not a sufficient reason.
4087   if (!PreferBEXTR && MaskSize <= 32)
4088     return nullptr;
4089 
4090   SDValue Control;
4091   unsigned ROpc, MOpc;
4092 
4093 #define GET_EGPR_IF_ENABLED(OPC) (Subtarget->hasEGPR() ? OPC##_EVEX : OPC)
4094   if (!PreferBEXTR) {
4095     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
4096     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
4097     // Let's perform the mask first, and apply shift later. Note that we need to
4098     // widen the mask to account for the fact that we'll apply shift afterwards!
4099     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
4100     ROpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BZHI64rr)
4101                            : GET_EGPR_IF_ENABLED(X86::BZHI32rr);
4102     MOpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BZHI64rm)
4103                            : GET_EGPR_IF_ENABLED(X86::BZHI32rm);
4104     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4105     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4106   } else {
4107     // The 'control' of BEXTR has the pattern of:
4108     // [15...8 bit][ 7...0 bit] location
4109     // [ bit count][     shift] name
4110     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
4111     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
4112     if (Subtarget->hasTBM()) {
4113       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
4114       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
4115     } else {
4116       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
4117       // BMI requires the immediate to placed in a register.
4118       ROpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BEXTR64rr)
4119                              : GET_EGPR_IF_ENABLED(X86::BEXTR32rr);
4120       MOpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BEXTR64rm)
4121                              : GET_EGPR_IF_ENABLED(X86::BEXTR32rm);
4122       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4123       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4124     }
4125   }
4126 
4127   MachineSDNode *NewNode;
4128   SDValue Input = N0->getOperand(0);
4129   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4130   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4131     SDValue Ops[] = {
4132         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
4133     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4134     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4135     // Update the chain.
4136     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
4137     // Record the mem-refs
4138     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
4139   } else {
4140     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
4141   }
4142 
4143   if (!PreferBEXTR) {
4144     // We still need to apply the shift.
4145     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
4146     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
4147     NewNode =
4148         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
4149   }
4150 
4151   return NewNode;
4152 }
4153 
4154 // Emit a PCMISTR(I/M) instruction.
4155 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
4156                                              bool MayFoldLoad, const SDLoc &dl,
4157                                              MVT VT, SDNode *Node) {
4158   SDValue N0 = Node->getOperand(0);
4159   SDValue N1 = Node->getOperand(1);
4160   SDValue Imm = Node->getOperand(2);
4161   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4162   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4163 
4164   // Try to fold a load. No need to check alignment.
4165   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4166   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4167     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4168                       N1.getOperand(0) };
4169     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
4170     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4171     // Update the chain.
4172     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
4173     // Record the mem-refs
4174     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4175     return CNode;
4176   }
4177 
4178   SDValue Ops[] = { N0, N1, Imm };
4179   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
4180   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4181   return CNode;
4182 }
4183 
4184 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
4185 // to emit a second instruction after this one. This is needed since we have two
4186 // copyToReg nodes glued before this and we need to continue that glue through.
4187 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
4188                                              bool MayFoldLoad, const SDLoc &dl,
4189                                              MVT VT, SDNode *Node,
4190                                              SDValue &InGlue) {
4191   SDValue N0 = Node->getOperand(0);
4192   SDValue N2 = Node->getOperand(2);
4193   SDValue Imm = Node->getOperand(4);
4194   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4195   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4196 
4197   // Try to fold a load. No need to check alignment.
4198   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4199   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4200     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4201                       N2.getOperand(0), InGlue };
4202     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
4203     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4204     InGlue = SDValue(CNode, 3);
4205     // Update the chain.
4206     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
4207     // Record the mem-refs
4208     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
4209     return CNode;
4210   }
4211 
4212   SDValue Ops[] = { N0, N2, Imm, InGlue };
4213   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
4214   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4215   InGlue = SDValue(CNode, 2);
4216   return CNode;
4217 }
4218 
4219 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
4220   EVT VT = N->getValueType(0);
4221 
4222   // Only handle scalar shifts.
4223   if (VT.isVector())
4224     return false;
4225 
4226   // Narrower shifts only mask to 5 bits in hardware.
4227   unsigned Size = VT == MVT::i64 ? 64 : 32;
4228 
4229   SDValue OrigShiftAmt = N->getOperand(1);
4230   SDValue ShiftAmt = OrigShiftAmt;
4231   SDLoc DL(N);
4232 
4233   // Skip over a truncate of the shift amount.
4234   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
4235     ShiftAmt = ShiftAmt->getOperand(0);
4236 
4237   // This function is called after X86DAGToDAGISel::matchBitExtract(),
4238   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
4239 
4240   SDValue NewShiftAmt;
4241   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB ||
4242       ShiftAmt->getOpcode() == ISD::XOR) {
4243     SDValue Add0 = ShiftAmt->getOperand(0);
4244     SDValue Add1 = ShiftAmt->getOperand(1);
4245     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
4246     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
4247     // If we are shifting by X+/-/^N where N == 0 mod Size, then just shift by X
4248     // to avoid the ADD/SUB/XOR.
4249     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
4250       NewShiftAmt = Add0;
4251 
4252     } else if (ShiftAmt->getOpcode() != ISD::ADD && ShiftAmt.hasOneUse() &&
4253                ((Add0C && Add0C->getAPIntValue().urem(Size) == Size - 1) ||
4254                 (Add1C && Add1C->getAPIntValue().urem(Size) == Size - 1))) {
4255       // If we are doing a NOT on just the lower bits with (Size*N-1) -/^ X
4256       // we can replace it with a NOT. In the XOR case it may save some code
4257       // size, in the SUB case it also may save a move.
4258       assert(Add0C == nullptr || Add1C == nullptr);
4259 
4260       // We can only do N-X, not X-N
4261       if (ShiftAmt->getOpcode() == ISD::SUB && Add0C == nullptr)
4262         return false;
4263 
4264       EVT OpVT = ShiftAmt.getValueType();
4265 
4266       SDValue AllOnes = CurDAG->getAllOnesConstant(DL, OpVT);
4267       NewShiftAmt = CurDAG->getNode(ISD::XOR, DL, OpVT,
4268                                     Add0C == nullptr ? Add0 : Add1, AllOnes);
4269       insertDAGNode(*CurDAG, OrigShiftAmt, AllOnes);
4270       insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4271       // If we are shifting by N-X where N == 0 mod Size, then just shift by
4272       // -X to generate a NEG instead of a SUB of a constant.
4273     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4274                Add0C->getZExtValue() != 0) {
4275       EVT SubVT = ShiftAmt.getValueType();
4276       SDValue X;
4277       if (Add0C->getZExtValue() % Size == 0)
4278         X = Add1;
4279       else if (ShiftAmt.hasOneUse() && Size == 64 &&
4280                Add0C->getZExtValue() % 32 == 0) {
4281         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4282         // This is mainly beneficial if we already compute (x+n*32).
4283         if (Add1.getOpcode() == ISD::TRUNCATE) {
4284           Add1 = Add1.getOperand(0);
4285           SubVT = Add1.getValueType();
4286         }
4287         if (Add0.getValueType() != SubVT) {
4288           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
4289           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
4290         }
4291 
4292         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
4293         insertDAGNode(*CurDAG, OrigShiftAmt, X);
4294       } else
4295         return false;
4296       // Insert a negate op.
4297       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4298       // that uses it that's not a shift.
4299       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
4300       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
4301       NewShiftAmt = Neg;
4302 
4303       // Insert these operands into a valid topological order so they can
4304       // get selected independently.
4305       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
4306       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
4307     } else
4308       return false;
4309   } else
4310     return false;
4311 
4312   if (NewShiftAmt.getValueType() != MVT::i8) {
4313     // Need to truncate the shift amount.
4314     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4315     // Add to a correct topological ordering.
4316     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4317   }
4318 
4319   // Insert a new mask to keep the shift amount legal. This should be removed
4320   // by isel patterns.
4321   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4322                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4323   // Place in a correct topological ordering.
4324   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4325 
4326   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
4327                                                    NewShiftAmt);
4328   if (UpdatedNode != N) {
4329     // If we found an existing node, we should replace ourselves with that node
4330     // and wait for it to be selected after its other users.
4331     ReplaceNode(N, UpdatedNode);
4332     return true;
4333   }
4334 
4335   // If the original shift amount is now dead, delete it so that we don't run
4336   // it through isel.
4337   if (OrigShiftAmt.getNode()->use_empty())
4338     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
4339 
4340   // Now that we've optimized the shift amount, defer to normal isel to get
4341   // load folding and legacy vs BMI2 selection without repeating it here.
4342   SelectCode(N);
4343   return true;
4344 }
4345 
4346 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4347   MVT NVT = N->getSimpleValueType(0);
4348   unsigned Opcode = N->getOpcode();
4349   SDLoc dl(N);
4350 
4351   // For operations of the form (x << C1) op C2, check if we can use a smaller
4352   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4353   SDValue Shift = N->getOperand(0);
4354   SDValue N1 = N->getOperand(1);
4355 
4356   auto *Cst = dyn_cast<ConstantSDNode>(N1);
4357   if (!Cst)
4358     return false;
4359 
4360   int64_t Val = Cst->getSExtValue();
4361 
4362   // If we have an any_extend feeding the AND, look through it to see if there
4363   // is a shift behind it. But only if the AND doesn't use the extended bits.
4364   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4365   bool FoundAnyExtend = false;
4366   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4367       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4368       isUInt<32>(Val)) {
4369     FoundAnyExtend = true;
4370     Shift = Shift.getOperand(0);
4371   }
4372 
4373   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4374     return false;
4375 
4376   // i8 is unshrinkable, i16 should be promoted to i32.
4377   if (NVT != MVT::i32 && NVT != MVT::i64)
4378     return false;
4379 
4380   auto *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
4381   if (!ShlCst)
4382     return false;
4383 
4384   uint64_t ShAmt = ShlCst->getZExtValue();
4385 
4386   // Make sure that we don't change the operation by removing bits.
4387   // This only matters for OR and XOR, AND is unaffected.
4388   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4389   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4390     return false;
4391 
4392   // Check the minimum bitwidth for the new constant.
4393   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4394   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4395     if (Opcode == ISD::AND) {
4396       // AND32ri is the same as AND64ri32 with zext imm.
4397       // Try this before sign extended immediates below.
4398       ShiftedVal = (uint64_t)Val >> ShAmt;
4399       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4400         return true;
4401       // Also swap order when the AND can become MOVZX.
4402       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4403         return true;
4404     }
4405     ShiftedVal = Val >> ShAmt;
4406     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
4407         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
4408       return true;
4409     if (Opcode != ISD::AND) {
4410       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4411       ShiftedVal = (uint64_t)Val >> ShAmt;
4412       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4413         return true;
4414     }
4415     return false;
4416   };
4417 
4418   int64_t ShiftedVal;
4419   if (!CanShrinkImmediate(ShiftedVal))
4420     return false;
4421 
4422   // Ok, we can reorder to get a smaller immediate.
4423 
4424   // But, its possible the original immediate allowed an AND to become MOVZX.
4425   // Doing this late due to avoid the MakedValueIsZero call as late as
4426   // possible.
4427   if (Opcode == ISD::AND) {
4428     // Find the smallest zext this could possibly be.
4429     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4430     ZExtWidth = llvm::bit_ceil(std::max(ZExtWidth, 8U));
4431 
4432     // Figure out which bits need to be zero to achieve that mask.
4433     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4434                                             ZExtWidth);
4435     NeededMask &= ~Cst->getAPIntValue();
4436 
4437     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4438       return false;
4439   }
4440 
4441   SDValue X = Shift.getOperand(0);
4442   if (FoundAnyExtend) {
4443     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4444     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4445     X = NewX;
4446   }
4447 
4448   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4449   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4450   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4451   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4452   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4453                                    Shift.getOperand(1));
4454   ReplaceNode(N, NewSHL.getNode());
4455   SelectCode(NewSHL.getNode());
4456   return true;
4457 }
4458 
4459 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4460                                      SDNode *ParentB, SDNode *ParentC,
4461                                      SDValue A, SDValue B, SDValue C,
4462                                      uint8_t Imm) {
4463   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4464          C.isOperandOf(ParentC) && "Incorrect parent node");
4465 
4466   auto tryFoldLoadOrBCast =
4467       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4468              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4469         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4470           return true;
4471 
4472         // Not a load, check for broadcast which may be behind a bitcast.
4473         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4474           P = L.getNode();
4475           L = L.getOperand(0);
4476         }
4477 
4478         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4479           return false;
4480 
4481         // Only 32 and 64 bit broadcasts are supported.
4482         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4483         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4484         if (Size != 32 && Size != 64)
4485           return false;
4486 
4487         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4488       };
4489 
4490   bool FoldedLoad = false;
4491   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4492   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4493     FoldedLoad = true;
4494   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4495                                 Tmp4)) {
4496     FoldedLoad = true;
4497     std::swap(A, C);
4498     // Swap bits 1/4 and 3/6.
4499     uint8_t OldImm = Imm;
4500     Imm = OldImm & 0xa5;
4501     if (OldImm & 0x02) Imm |= 0x10;
4502     if (OldImm & 0x10) Imm |= 0x02;
4503     if (OldImm & 0x08) Imm |= 0x40;
4504     if (OldImm & 0x40) Imm |= 0x08;
4505   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4506                                 Tmp4)) {
4507     FoldedLoad = true;
4508     std::swap(B, C);
4509     // Swap bits 1/2 and 5/6.
4510     uint8_t OldImm = Imm;
4511     Imm = OldImm & 0x99;
4512     if (OldImm & 0x02) Imm |= 0x04;
4513     if (OldImm & 0x04) Imm |= 0x02;
4514     if (OldImm & 0x20) Imm |= 0x40;
4515     if (OldImm & 0x40) Imm |= 0x20;
4516   }
4517 
4518   SDLoc DL(Root);
4519 
4520   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4521 
4522   MVT NVT = Root->getSimpleValueType(0);
4523 
4524   MachineSDNode *MNode;
4525   if (FoldedLoad) {
4526     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4527 
4528     unsigned Opc;
4529     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4530       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4531       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4532       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4533 
4534       bool UseD = EltSize == 32;
4535       if (NVT.is128BitVector())
4536         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4537       else if (NVT.is256BitVector())
4538         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4539       else if (NVT.is512BitVector())
4540         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4541       else
4542         llvm_unreachable("Unexpected vector size!");
4543     } else {
4544       bool UseD = NVT.getVectorElementType() == MVT::i32;
4545       if (NVT.is128BitVector())
4546         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4547       else if (NVT.is256BitVector())
4548         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4549       else if (NVT.is512BitVector())
4550         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4551       else
4552         llvm_unreachable("Unexpected vector size!");
4553     }
4554 
4555     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4556     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4557 
4558     // Update the chain.
4559     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4560     // Record the mem-refs
4561     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4562   } else {
4563     bool UseD = NVT.getVectorElementType() == MVT::i32;
4564     unsigned Opc;
4565     if (NVT.is128BitVector())
4566       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4567     else if (NVT.is256BitVector())
4568       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4569     else if (NVT.is512BitVector())
4570       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4571     else
4572       llvm_unreachable("Unexpected vector size!");
4573 
4574     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4575   }
4576 
4577   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4578   CurDAG->RemoveDeadNode(Root);
4579   return true;
4580 }
4581 
4582 // Try to match two logic ops to a VPTERNLOG.
4583 // FIXME: Handle more complex patterns that use an operand more than once?
4584 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4585   MVT NVT = N->getSimpleValueType(0);
4586 
4587   // Make sure we support VPTERNLOG.
4588   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4589       NVT.getVectorElementType() == MVT::i1)
4590     return false;
4591 
4592   // We need VLX for 128/256-bit.
4593   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4594     return false;
4595 
4596   SDValue N0 = N->getOperand(0);
4597   SDValue N1 = N->getOperand(1);
4598 
4599   auto getFoldableLogicOp = [](SDValue Op) {
4600     // Peek through single use bitcast.
4601     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4602       Op = Op.getOperand(0);
4603 
4604     if (!Op.hasOneUse())
4605       return SDValue();
4606 
4607     unsigned Opc = Op.getOpcode();
4608     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4609         Opc == X86ISD::ANDNP)
4610       return Op;
4611 
4612     return SDValue();
4613   };
4614 
4615   SDValue A, FoldableOp;
4616   if ((FoldableOp = getFoldableLogicOp(N1))) {
4617     A = N0;
4618   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4619     A = N1;
4620   } else
4621     return false;
4622 
4623   SDValue B = FoldableOp.getOperand(0);
4624   SDValue C = FoldableOp.getOperand(1);
4625   SDNode *ParentA = N;
4626   SDNode *ParentB = FoldableOp.getNode();
4627   SDNode *ParentC = FoldableOp.getNode();
4628 
4629   // We can build the appropriate control immediate by performing the logic
4630   // operation we're matching using these constants for A, B, and C.
4631   uint8_t TernlogMagicA = 0xf0;
4632   uint8_t TernlogMagicB = 0xcc;
4633   uint8_t TernlogMagicC = 0xaa;
4634 
4635   // Some of the inputs may be inverted, peek through them and invert the
4636   // magic values accordingly.
4637   // TODO: There may be a bitcast before the xor that we should peek through.
4638   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4639     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4640         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
4641       Magic = ~Magic;
4642       Parent = Op.getNode();
4643       Op = Op.getOperand(0);
4644     }
4645   };
4646 
4647   PeekThroughNot(A, ParentA, TernlogMagicA);
4648   PeekThroughNot(B, ParentB, TernlogMagicB);
4649   PeekThroughNot(C, ParentC, TernlogMagicC);
4650 
4651   uint8_t Imm;
4652   switch (FoldableOp.getOpcode()) {
4653   default: llvm_unreachable("Unexpected opcode!");
4654   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4655   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4656   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4657   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4658   }
4659 
4660   switch (N->getOpcode()) {
4661   default: llvm_unreachable("Unexpected opcode!");
4662   case X86ISD::ANDNP:
4663     if (A == N0)
4664       Imm &= ~TernlogMagicA;
4665     else
4666       Imm = ~(Imm) & TernlogMagicA;
4667     break;
4668   case ISD::AND: Imm &= TernlogMagicA; break;
4669   case ISD::OR:  Imm |= TernlogMagicA; break;
4670   case ISD::XOR: Imm ^= TernlogMagicA; break;
4671   }
4672 
4673   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
4674 }
4675 
4676 /// If the high bits of an 'and' operand are known zero, try setting the
4677 /// high bits of an 'and' constant operand to produce a smaller encoding by
4678 /// creating a small, sign-extended negative immediate rather than a large
4679 /// positive one. This reverses a transform in SimplifyDemandedBits that
4680 /// shrinks mask constants by clearing bits. There is also a possibility that
4681 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4682 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4683 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4684   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4685   // have immediate operands.
4686   MVT VT = And->getSimpleValueType(0);
4687   if (VT != MVT::i32 && VT != MVT::i64)
4688     return false;
4689 
4690   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4691   if (!And1C)
4692     return false;
4693 
4694   // Bail out if the mask constant is already negative. It's can't shrink more.
4695   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4696   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4697   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4698   // are negative too.
4699   APInt MaskVal = And1C->getAPIntValue();
4700   unsigned MaskLZ = MaskVal.countl_zero();
4701   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4702     return false;
4703 
4704   // Don't extend into the upper 32 bits of a 64 bit mask.
4705   if (VT == MVT::i64 && MaskLZ >= 32) {
4706     MaskLZ -= 32;
4707     MaskVal = MaskVal.trunc(32);
4708   }
4709 
4710   SDValue And0 = And->getOperand(0);
4711   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4712   APInt NegMaskVal = MaskVal | HighZeros;
4713 
4714   // If a negative constant would not allow a smaller encoding, there's no need
4715   // to continue. Only change the constant when we know it's a win.
4716   unsigned MinWidth = NegMaskVal.getSignificantBits();
4717   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getSignificantBits() <= 32))
4718     return false;
4719 
4720   // Extend masks if we truncated above.
4721   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4722     NegMaskVal = NegMaskVal.zext(64);
4723     HighZeros = HighZeros.zext(64);
4724   }
4725 
4726   // The variable operand must be all zeros in the top bits to allow using the
4727   // new, negative constant as the mask.
4728   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4729     return false;
4730 
4731   // Check if the mask is -1. In that case, this is an unnecessary instruction
4732   // that escaped earlier analysis.
4733   if (NegMaskVal.isAllOnes()) {
4734     ReplaceNode(And, And0.getNode());
4735     return true;
4736   }
4737 
4738   // A negative mask allows a smaller encoding. Create a new 'and' node.
4739   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4740   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4741   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4742   ReplaceNode(And, NewAnd.getNode());
4743   SelectCode(NewAnd.getNode());
4744   return true;
4745 }
4746 
4747 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4748                               bool FoldedBCast, bool Masked) {
4749 #define VPTESTM_CASE(VT, SUFFIX) \
4750 case MVT::VT: \
4751   if (Masked) \
4752     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4753   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4754 
4755 
4756 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4757 default: llvm_unreachable("Unexpected VT!"); \
4758 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4759 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4760 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4761 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4762 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4763 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4764 
4765 #define VPTESTM_FULL_CASES(SUFFIX) \
4766 VPTESTM_BROADCAST_CASES(SUFFIX) \
4767 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4768 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4769 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4770 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4771 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4772 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4773 
4774   if (FoldedBCast) {
4775     switch (TestVT.SimpleTy) {
4776     VPTESTM_BROADCAST_CASES(rmb)
4777     }
4778   }
4779 
4780   if (FoldedLoad) {
4781     switch (TestVT.SimpleTy) {
4782     VPTESTM_FULL_CASES(rm)
4783     }
4784   }
4785 
4786   switch (TestVT.SimpleTy) {
4787   VPTESTM_FULL_CASES(rr)
4788   }
4789 
4790 #undef VPTESTM_FULL_CASES
4791 #undef VPTESTM_BROADCAST_CASES
4792 #undef VPTESTM_CASE
4793 }
4794 
4795 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4796 // to form a masked operation.
4797 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4798                                  SDValue InMask) {
4799   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4800   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4801          "Unexpected VT!");
4802 
4803   // Look for equal and not equal compares.
4804   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4805   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4806     return false;
4807 
4808   SDValue SetccOp0 = Setcc.getOperand(0);
4809   SDValue SetccOp1 = Setcc.getOperand(1);
4810 
4811   // Canonicalize the all zero vector to the RHS.
4812   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4813     std::swap(SetccOp0, SetccOp1);
4814 
4815   // See if we're comparing against zero.
4816   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4817     return false;
4818 
4819   SDValue N0 = SetccOp0;
4820 
4821   MVT CmpVT = N0.getSimpleValueType();
4822   MVT CmpSVT = CmpVT.getVectorElementType();
4823 
4824   // Start with both operands the same. We'll try to refine this.
4825   SDValue Src0 = N0;
4826   SDValue Src1 = N0;
4827 
4828   {
4829     // Look through single use bitcasts.
4830     SDValue N0Temp = N0;
4831     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4832       N0Temp = N0.getOperand(0);
4833 
4834      // Look for single use AND.
4835     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4836       Src0 = N0Temp.getOperand(0);
4837       Src1 = N0Temp.getOperand(1);
4838     }
4839   }
4840 
4841   // Without VLX we need to widen the operation.
4842   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4843 
4844   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4845                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4846                                 SDValue &Disp, SDValue &Segment) {
4847     // If we need to widen, we can't fold the load.
4848     if (!Widen)
4849       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4850         return true;
4851 
4852     // If we didn't fold a load, try to match broadcast. No widening limitation
4853     // for this. But only 32 and 64 bit types are supported.
4854     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4855       return false;
4856 
4857     // Look through single use bitcasts.
4858     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4859       P = L.getNode();
4860       L = L.getOperand(0);
4861     }
4862 
4863     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4864       return false;
4865 
4866     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4867     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4868       return false;
4869 
4870     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4871   };
4872 
4873   // We can only fold loads if the sources are unique.
4874   bool CanFoldLoads = Src0 != Src1;
4875 
4876   bool FoldedLoad = false;
4877   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4878   if (CanFoldLoads) {
4879     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4880                                     Tmp3, Tmp4);
4881     if (!FoldedLoad) {
4882       // And is commutative.
4883       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4884                                       Tmp2, Tmp3, Tmp4);
4885       if (FoldedLoad)
4886         std::swap(Src0, Src1);
4887     }
4888   }
4889 
4890   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4891 
4892   bool IsMasked = InMask.getNode() != nullptr;
4893 
4894   SDLoc dl(Root);
4895 
4896   MVT ResVT = Setcc.getSimpleValueType();
4897   MVT MaskVT = ResVT;
4898   if (Widen) {
4899     // Widen the inputs using insert_subreg or copy_to_regclass.
4900     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4901     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4902     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4903     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4904     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4905     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4906                                                      CmpVT), 0);
4907     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4908 
4909     if (!FoldedBCast)
4910       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4911 
4912     if (IsMasked) {
4913       // Widen the mask.
4914       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4915       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4916       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4917                                               dl, MaskVT, InMask, RC), 0);
4918     }
4919   }
4920 
4921   bool IsTestN = CC == ISD::SETEQ;
4922   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4923                                IsMasked);
4924 
4925   MachineSDNode *CNode;
4926   if (FoldedLoad) {
4927     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4928 
4929     if (IsMasked) {
4930       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4931                         Src1.getOperand(0) };
4932       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4933     } else {
4934       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4935                         Src1.getOperand(0) };
4936       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4937     }
4938 
4939     // Update the chain.
4940     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4941     // Record the mem-refs
4942     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4943   } else {
4944     if (IsMasked)
4945       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4946     else
4947       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4948   }
4949 
4950   // If we widened, we need to shrink the mask VT.
4951   if (Widen) {
4952     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4953     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4954     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4955                                    dl, ResVT, SDValue(CNode, 0), RC);
4956   }
4957 
4958   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4959   CurDAG->RemoveDeadNode(Root);
4960   return true;
4961 }
4962 
4963 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4964 // into vpternlog.
4965 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4966   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4967 
4968   MVT NVT = N->getSimpleValueType(0);
4969 
4970   // Make sure we support VPTERNLOG.
4971   if (!NVT.isVector() || !Subtarget->hasAVX512())
4972     return false;
4973 
4974   // We need VLX for 128/256-bit.
4975   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4976     return false;
4977 
4978   SDValue N0 = N->getOperand(0);
4979   SDValue N1 = N->getOperand(1);
4980 
4981   // Canonicalize AND to LHS.
4982   if (N1.getOpcode() == ISD::AND)
4983     std::swap(N0, N1);
4984 
4985   if (N0.getOpcode() != ISD::AND ||
4986       N1.getOpcode() != X86ISD::ANDNP ||
4987       !N0.hasOneUse() || !N1.hasOneUse())
4988     return false;
4989 
4990   // ANDN is not commutable, use it to pick down A and C.
4991   SDValue A = N1.getOperand(0);
4992   SDValue C = N1.getOperand(1);
4993 
4994   // AND is commutable, if one operand matches A, the other operand is B.
4995   // Otherwise this isn't a match.
4996   SDValue B;
4997   if (N0.getOperand(0) == A)
4998     B = N0.getOperand(1);
4999   else if (N0.getOperand(1) == A)
5000     B = N0.getOperand(0);
5001   else
5002     return false;
5003 
5004   SDLoc dl(N);
5005   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
5006   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
5007   ReplaceNode(N, Ternlog.getNode());
5008 
5009   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
5010                         Ternlog.getNode(), A, B, C, 0xCA);
5011 }
5012 
5013 void X86DAGToDAGISel::Select(SDNode *Node) {
5014   MVT NVT = Node->getSimpleValueType(0);
5015   unsigned Opcode = Node->getOpcode();
5016   SDLoc dl(Node);
5017 
5018   if (Node->isMachineOpcode()) {
5019     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
5020     Node->setNodeId(-1);
5021     return;   // Already selected.
5022   }
5023 
5024   switch (Opcode) {
5025   default: break;
5026   case ISD::INTRINSIC_W_CHAIN: {
5027     unsigned IntNo = Node->getConstantOperandVal(1);
5028     switch (IntNo) {
5029     default: break;
5030     case Intrinsic::x86_encodekey128:
5031     case Intrinsic::x86_encodekey256: {
5032       if (!Subtarget->hasKL())
5033         break;
5034 
5035       unsigned Opcode;
5036       switch (IntNo) {
5037       default: llvm_unreachable("Impossible intrinsic");
5038       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
5039       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
5040       }
5041 
5042       SDValue Chain = Node->getOperand(0);
5043       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
5044                                    SDValue());
5045       if (Opcode == X86::ENCODEKEY256)
5046         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
5047                                      Chain.getValue(1));
5048 
5049       MachineSDNode *Res = CurDAG->getMachineNode(
5050           Opcode, dl, Node->getVTList(),
5051           {Node->getOperand(2), Chain, Chain.getValue(1)});
5052       ReplaceNode(Node, Res);
5053       return;
5054     }
5055     case Intrinsic::x86_tileloadd64_internal:
5056     case Intrinsic::x86_tileloaddt164_internal: {
5057       if (!Subtarget->hasAMXTILE())
5058         break;
5059       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
5060                          ? X86::PTILELOADDV
5061                          : X86::PTILELOADDT1V;
5062       // _tile_loadd_internal(row, col, buf, STRIDE)
5063       SDValue Base = Node->getOperand(4);
5064       SDValue Scale = getI8Imm(1, dl);
5065       SDValue Index = Node->getOperand(5);
5066       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5067       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5068       SDValue Chain = Node->getOperand(0);
5069       MachineSDNode *CNode;
5070       SDValue Ops[] = {Node->getOperand(2),
5071                        Node->getOperand(3),
5072                        Base,
5073                        Scale,
5074                        Index,
5075                        Disp,
5076                        Segment,
5077                        Chain};
5078       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
5079       ReplaceNode(Node, CNode);
5080       return;
5081     }
5082     }
5083     break;
5084   }
5085   case ISD::INTRINSIC_VOID: {
5086     unsigned IntNo = Node->getConstantOperandVal(1);
5087     switch (IntNo) {
5088     default: break;
5089     case Intrinsic::x86_sse3_monitor:
5090     case Intrinsic::x86_monitorx:
5091     case Intrinsic::x86_clzero: {
5092       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
5093 
5094       unsigned Opc = 0;
5095       switch (IntNo) {
5096       default: llvm_unreachable("Unexpected intrinsic!");
5097       case Intrinsic::x86_sse3_monitor:
5098         if (!Subtarget->hasSSE3())
5099           break;
5100         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
5101         break;
5102       case Intrinsic::x86_monitorx:
5103         if (!Subtarget->hasMWAITX())
5104           break;
5105         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
5106         break;
5107       case Intrinsic::x86_clzero:
5108         if (!Subtarget->hasCLZERO())
5109           break;
5110         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
5111         break;
5112       }
5113 
5114       if (Opc) {
5115         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
5116         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
5117                                              Node->getOperand(2), SDValue());
5118         SDValue InGlue = Chain.getValue(1);
5119 
5120         if (IntNo == Intrinsic::x86_sse3_monitor ||
5121             IntNo == Intrinsic::x86_monitorx) {
5122           // Copy the other two operands to ECX and EDX.
5123           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
5124                                        InGlue);
5125           InGlue = Chain.getValue(1);
5126           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
5127                                        InGlue);
5128           InGlue = Chain.getValue(1);
5129         }
5130 
5131         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
5132                                                       { Chain, InGlue});
5133         ReplaceNode(Node, CNode);
5134         return;
5135       }
5136 
5137       break;
5138     }
5139     case Intrinsic::x86_tilestored64_internal: {
5140       unsigned Opc = X86::PTILESTOREDV;
5141       // _tile_stored_internal(row, col, buf, STRIDE, c)
5142       SDValue Base = Node->getOperand(4);
5143       SDValue Scale = getI8Imm(1, dl);
5144       SDValue Index = Node->getOperand(5);
5145       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5146       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5147       SDValue Chain = Node->getOperand(0);
5148       MachineSDNode *CNode;
5149       SDValue Ops[] = {Node->getOperand(2),
5150                        Node->getOperand(3),
5151                        Base,
5152                        Scale,
5153                        Index,
5154                        Disp,
5155                        Segment,
5156                        Node->getOperand(6),
5157                        Chain};
5158       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5159       ReplaceNode(Node, CNode);
5160       return;
5161     }
5162     case Intrinsic::x86_tileloadd64:
5163     case Intrinsic::x86_tileloaddt164:
5164     case Intrinsic::x86_tilestored64: {
5165       if (!Subtarget->hasAMXTILE())
5166         break;
5167       unsigned Opc;
5168       switch (IntNo) {
5169       default: llvm_unreachable("Unexpected intrinsic!");
5170       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
5171       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
5172       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
5173       }
5174       // FIXME: Match displacement and scale.
5175       unsigned TIndex = Node->getConstantOperandVal(2);
5176       SDValue TReg = getI8Imm(TIndex, dl);
5177       SDValue Base = Node->getOperand(3);
5178       SDValue Scale = getI8Imm(1, dl);
5179       SDValue Index = Node->getOperand(4);
5180       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5181       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5182       SDValue Chain = Node->getOperand(0);
5183       MachineSDNode *CNode;
5184       if (Opc == X86::PTILESTORED) {
5185         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
5186         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5187       } else {
5188         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
5189         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5190       }
5191       ReplaceNode(Node, CNode);
5192       return;
5193     }
5194     }
5195     break;
5196   }
5197   case ISD::BRIND:
5198   case X86ISD::NT_BRIND: {
5199     if (Subtarget->isTargetNaCl())
5200       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
5201       // leave the instruction alone.
5202       break;
5203     if (Subtarget->isTarget64BitILP32()) {
5204       // Converts a 32-bit register to a 64-bit, zero-extended version of
5205       // it. This is needed because x86-64 can do many things, but jmp %r32
5206       // ain't one of them.
5207       SDValue Target = Node->getOperand(1);
5208       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
5209       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
5210       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
5211                                       Node->getOperand(0), ZextTarget);
5212       ReplaceNode(Node, Brind.getNode());
5213       SelectCode(ZextTarget.getNode());
5214       SelectCode(Brind.getNode());
5215       return;
5216     }
5217     break;
5218   }
5219   case X86ISD::GlobalBaseReg:
5220     ReplaceNode(Node, getGlobalBaseReg());
5221     return;
5222 
5223   case ISD::BITCAST:
5224     // Just drop all 128/256/512-bit bitcasts.
5225     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
5226         NVT == MVT::f128) {
5227       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
5228       CurDAG->RemoveDeadNode(Node);
5229       return;
5230     }
5231     break;
5232 
5233   case ISD::SRL:
5234     if (matchBitExtract(Node))
5235       return;
5236     [[fallthrough]];
5237   case ISD::SRA:
5238   case ISD::SHL:
5239     if (tryShiftAmountMod(Node))
5240       return;
5241     break;
5242 
5243   case X86ISD::VPTERNLOG: {
5244     uint8_t Imm = Node->getConstantOperandVal(3);
5245     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
5246                        Node->getOperand(1), Node->getOperand(2), Imm))
5247       return;
5248     break;
5249   }
5250 
5251   case X86ISD::ANDNP:
5252     if (tryVPTERNLOG(Node))
5253       return;
5254     break;
5255 
5256   case ISD::AND:
5257     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
5258       // Try to form a masked VPTESTM. Operands can be in either order.
5259       SDValue N0 = Node->getOperand(0);
5260       SDValue N1 = Node->getOperand(1);
5261       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
5262           tryVPTESTM(Node, N0, N1))
5263         return;
5264       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
5265           tryVPTESTM(Node, N1, N0))
5266         return;
5267     }
5268 
5269     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
5270       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5271       CurDAG->RemoveDeadNode(Node);
5272       return;
5273     }
5274     if (matchBitExtract(Node))
5275       return;
5276     if (AndImmShrink && shrinkAndImmediate(Node))
5277       return;
5278 
5279     [[fallthrough]];
5280   case ISD::OR:
5281   case ISD::XOR:
5282     if (tryShrinkShlLogicImm(Node))
5283       return;
5284     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
5285       return;
5286     if (tryVPTERNLOG(Node))
5287       return;
5288 
5289     [[fallthrough]];
5290   case ISD::ADD:
5291     if (Opcode == ISD::ADD && matchBitExtract(Node))
5292       return;
5293     [[fallthrough]];
5294   case ISD::SUB: {
5295     // Try to avoid folding immediates with multiple uses for optsize.
5296     // This code tries to select to register form directly to avoid going
5297     // through the isel table which might fold the immediate. We can't change
5298     // the patterns on the add/sub/and/or/xor with immediate paterns in the
5299     // tablegen files to check immediate use count without making the patterns
5300     // unavailable to the fast-isel table.
5301     if (!CurDAG->shouldOptForSize())
5302       break;
5303 
5304     // Only handle i8/i16/i32/i64.
5305     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5306       break;
5307 
5308     SDValue N0 = Node->getOperand(0);
5309     SDValue N1 = Node->getOperand(1);
5310 
5311     auto *Cst = dyn_cast<ConstantSDNode>(N1);
5312     if (!Cst)
5313       break;
5314 
5315     int64_t Val = Cst->getSExtValue();
5316 
5317     // Make sure its an immediate that is considered foldable.
5318     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5319     if (!isInt<8>(Val) && !isInt<32>(Val))
5320       break;
5321 
5322     // If this can match to INC/DEC, let it go.
5323     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5324       break;
5325 
5326     // Check if we should avoid folding this immediate.
5327     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
5328       break;
5329 
5330     // We should not fold the immediate. So we need a register form instead.
5331     unsigned ROpc, MOpc;
5332     switch (NVT.SimpleTy) {
5333     default: llvm_unreachable("Unexpected VT!");
5334     case MVT::i8:
5335       switch (Opcode) {
5336       default: llvm_unreachable("Unexpected opcode!");
5337       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
5338       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
5339       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
5340       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
5341       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
5342       }
5343       break;
5344     case MVT::i16:
5345       switch (Opcode) {
5346       default: llvm_unreachable("Unexpected opcode!");
5347       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
5348       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
5349       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
5350       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
5351       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
5352       }
5353       break;
5354     case MVT::i32:
5355       switch (Opcode) {
5356       default: llvm_unreachable("Unexpected opcode!");
5357       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
5358       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
5359       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
5360       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
5361       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
5362       }
5363       break;
5364     case MVT::i64:
5365       switch (Opcode) {
5366       default: llvm_unreachable("Unexpected opcode!");
5367       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
5368       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
5369       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
5370       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
5371       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
5372       }
5373       break;
5374     }
5375 
5376     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5377 
5378     // If this is a not a subtract, we can still try to fold a load.
5379     if (Opcode != ISD::SUB) {
5380       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5381       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5382         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5383         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5384         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5385         // Update the chain.
5386         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
5387         // Record the mem-refs
5388         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
5389         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5390         CurDAG->RemoveDeadNode(Node);
5391         return;
5392       }
5393     }
5394 
5395     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5396     return;
5397   }
5398 
5399   case X86ISD::SMUL:
5400     // i16/i32/i64 are handled with isel patterns.
5401     if (NVT != MVT::i8)
5402       break;
5403     [[fallthrough]];
5404   case X86ISD::UMUL: {
5405     SDValue N0 = Node->getOperand(0);
5406     SDValue N1 = Node->getOperand(1);
5407 
5408     unsigned LoReg, ROpc, MOpc;
5409     switch (NVT.SimpleTy) {
5410     default: llvm_unreachable("Unsupported VT!");
5411     case MVT::i8:
5412       LoReg = X86::AL;
5413       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5414       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5415       break;
5416     case MVT::i16:
5417       LoReg = X86::AX;
5418       ROpc = X86::MUL16r;
5419       MOpc = X86::MUL16m;
5420       break;
5421     case MVT::i32:
5422       LoReg = X86::EAX;
5423       ROpc = X86::MUL32r;
5424       MOpc = X86::MUL32m;
5425       break;
5426     case MVT::i64:
5427       LoReg = X86::RAX;
5428       ROpc = X86::MUL64r;
5429       MOpc = X86::MUL64m;
5430       break;
5431     }
5432 
5433     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5434     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5435     // Multiply is commutative.
5436     if (!FoldedLoad) {
5437       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5438       if (FoldedLoad)
5439         std::swap(N0, N1);
5440     }
5441 
5442     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5443                                           N0, SDValue()).getValue(1);
5444 
5445     MachineSDNode *CNode;
5446     if (FoldedLoad) {
5447       // i16/i32/i64 use an instruction that produces a low and high result even
5448       // though only the low result is used.
5449       SDVTList VTs;
5450       if (NVT == MVT::i8)
5451         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5452       else
5453         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5454 
5455       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5456                         InGlue };
5457       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5458 
5459       // Update the chain.
5460       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5461       // Record the mem-refs
5462       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5463     } else {
5464       // i16/i32/i64 use an instruction that produces a low and high result even
5465       // though only the low result is used.
5466       SDVTList VTs;
5467       if (NVT == MVT::i8)
5468         VTs = CurDAG->getVTList(NVT, MVT::i32);
5469       else
5470         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5471 
5472       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InGlue});
5473     }
5474 
5475     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5476     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5477     CurDAG->RemoveDeadNode(Node);
5478     return;
5479   }
5480 
5481   case ISD::SMUL_LOHI:
5482   case ISD::UMUL_LOHI: {
5483     SDValue N0 = Node->getOperand(0);
5484     SDValue N1 = Node->getOperand(1);
5485 
5486     unsigned Opc, MOpc;
5487     unsigned LoReg, HiReg;
5488     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5489     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5490     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5491     switch (NVT.SimpleTy) {
5492     default: llvm_unreachable("Unsupported VT!");
5493     case MVT::i32:
5494       Opc = UseMULXHi  ? X86::MULX32Hrr
5495             : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX32rr)
5496             : IsSigned ? X86::IMUL32r
5497                        : X86::MUL32r;
5498       MOpc = UseMULXHi  ? X86::MULX32Hrm
5499              : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX32rm)
5500              : IsSigned ? X86::IMUL32m
5501                         : X86::MUL32m;
5502       LoReg = UseMULX ? X86::EDX : X86::EAX;
5503       HiReg = X86::EDX;
5504       break;
5505     case MVT::i64:
5506       Opc = UseMULXHi  ? X86::MULX64Hrr
5507             : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX64rr)
5508             : IsSigned ? X86::IMUL64r
5509                        : X86::MUL64r;
5510       MOpc = UseMULXHi  ? X86::MULX64Hrm
5511              : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX64rm)
5512              : IsSigned ? X86::IMUL64m
5513                         : X86::MUL64m;
5514       LoReg = UseMULX ? X86::RDX : X86::RAX;
5515       HiReg = X86::RDX;
5516       break;
5517 #undef GET_EGPR_IF_ENABLED
5518     }
5519 
5520     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5521     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5522     // Multiply is commutative.
5523     if (!foldedLoad) {
5524       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5525       if (foldedLoad)
5526         std::swap(N0, N1);
5527     }
5528 
5529     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5530                                           N0, SDValue()).getValue(1);
5531     SDValue ResHi, ResLo;
5532     if (foldedLoad) {
5533       SDValue Chain;
5534       MachineSDNode *CNode = nullptr;
5535       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5536                         InGlue };
5537       if (UseMULXHi) {
5538         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5539         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5540         ResHi = SDValue(CNode, 0);
5541         Chain = SDValue(CNode, 1);
5542       } else if (UseMULX) {
5543         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5544         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5545         ResHi = SDValue(CNode, 0);
5546         ResLo = SDValue(CNode, 1);
5547         Chain = SDValue(CNode, 2);
5548       } else {
5549         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5550         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5551         Chain = SDValue(CNode, 0);
5552         InGlue = SDValue(CNode, 1);
5553       }
5554 
5555       // Update the chain.
5556       ReplaceUses(N1.getValue(1), Chain);
5557       // Record the mem-refs
5558       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5559     } else {
5560       SDValue Ops[] = { N1, InGlue };
5561       if (UseMULXHi) {
5562         SDVTList VTs = CurDAG->getVTList(NVT);
5563         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5564         ResHi = SDValue(CNode, 0);
5565       } else if (UseMULX) {
5566         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5567         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5568         ResHi = SDValue(CNode, 0);
5569         ResLo = SDValue(CNode, 1);
5570       } else {
5571         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5572         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5573         InGlue = SDValue(CNode, 0);
5574       }
5575     }
5576 
5577     // Copy the low half of the result, if it is needed.
5578     if (!SDValue(Node, 0).use_empty()) {
5579       if (!ResLo) {
5580         assert(LoReg && "Register for low half is not defined!");
5581         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5582                                        NVT, InGlue);
5583         InGlue = ResLo.getValue(2);
5584       }
5585       ReplaceUses(SDValue(Node, 0), ResLo);
5586       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5587                  dbgs() << '\n');
5588     }
5589     // Copy the high half of the result, if it is needed.
5590     if (!SDValue(Node, 1).use_empty()) {
5591       if (!ResHi) {
5592         assert(HiReg && "Register for high half is not defined!");
5593         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5594                                        NVT, InGlue);
5595         InGlue = ResHi.getValue(2);
5596       }
5597       ReplaceUses(SDValue(Node, 1), ResHi);
5598       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5599                  dbgs() << '\n');
5600     }
5601 
5602     CurDAG->RemoveDeadNode(Node);
5603     return;
5604   }
5605 
5606   case ISD::SDIVREM:
5607   case ISD::UDIVREM: {
5608     SDValue N0 = Node->getOperand(0);
5609     SDValue N1 = Node->getOperand(1);
5610 
5611     unsigned ROpc, MOpc;
5612     bool isSigned = Opcode == ISD::SDIVREM;
5613     if (!isSigned) {
5614       switch (NVT.SimpleTy) {
5615       default: llvm_unreachable("Unsupported VT!");
5616       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5617       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5618       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5619       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5620       }
5621     } else {
5622       switch (NVT.SimpleTy) {
5623       default: llvm_unreachable("Unsupported VT!");
5624       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5625       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5626       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5627       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5628       }
5629     }
5630 
5631     unsigned LoReg, HiReg, ClrReg;
5632     unsigned SExtOpcode;
5633     switch (NVT.SimpleTy) {
5634     default: llvm_unreachable("Unsupported VT!");
5635     case MVT::i8:
5636       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5637       SExtOpcode = 0; // Not used.
5638       break;
5639     case MVT::i16:
5640       LoReg = X86::AX;  HiReg = X86::DX;
5641       ClrReg = X86::DX;
5642       SExtOpcode = X86::CWD;
5643       break;
5644     case MVT::i32:
5645       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5646       SExtOpcode = X86::CDQ;
5647       break;
5648     case MVT::i64:
5649       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5650       SExtOpcode = X86::CQO;
5651       break;
5652     }
5653 
5654     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5655     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5656     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5657 
5658     SDValue InGlue;
5659     if (NVT == MVT::i8) {
5660       // Special case for div8, just use a move with zero extension to AX to
5661       // clear the upper 8 bits (AH).
5662       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5663       MachineSDNode *Move;
5664       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5665         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5666         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5667                                                     : X86::MOVZX16rm8;
5668         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5669         Chain = SDValue(Move, 1);
5670         ReplaceUses(N0.getValue(1), Chain);
5671         // Record the mem-refs
5672         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5673       } else {
5674         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5675                                                     : X86::MOVZX16rr8;
5676         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5677         Chain = CurDAG->getEntryNode();
5678       }
5679       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5680                                     SDValue());
5681       InGlue = Chain.getValue(1);
5682     } else {
5683       InGlue =
5684         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5685                              LoReg, N0, SDValue()).getValue(1);
5686       if (isSigned && !signBitIsZero) {
5687         // Sign extend the low part into the high part.
5688         InGlue =
5689           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InGlue),0);
5690       } else {
5691         // Zero out the high part, effectively zero extending the input.
5692         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5693         SDValue ClrNode = SDValue(
5694             CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
5695         switch (NVT.SimpleTy) {
5696         case MVT::i16:
5697           ClrNode =
5698               SDValue(CurDAG->getMachineNode(
5699                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5700                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5701                                                     MVT::i32)),
5702                       0);
5703           break;
5704         case MVT::i32:
5705           break;
5706         case MVT::i64:
5707           ClrNode =
5708               SDValue(CurDAG->getMachineNode(
5709                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5710                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5711                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5712                                                     MVT::i32)),
5713                       0);
5714           break;
5715         default:
5716           llvm_unreachable("Unexpected division source");
5717         }
5718 
5719         InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5720                                       ClrNode, InGlue).getValue(1);
5721       }
5722     }
5723 
5724     if (foldedLoad) {
5725       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5726                         InGlue };
5727       MachineSDNode *CNode =
5728         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5729       InGlue = SDValue(CNode, 1);
5730       // Update the chain.
5731       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5732       // Record the mem-refs
5733       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5734     } else {
5735       InGlue =
5736         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InGlue), 0);
5737     }
5738 
5739     // Prevent use of AH in a REX instruction by explicitly copying it to
5740     // an ABCD_L register.
5741     //
5742     // The current assumption of the register allocator is that isel
5743     // won't generate explicit references to the GR8_ABCD_H registers. If
5744     // the allocator and/or the backend get enhanced to be more robust in
5745     // that regard, this can be, and should be, removed.
5746     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5747       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5748       unsigned AHExtOpcode =
5749           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5750 
5751       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5752                                              MVT::Glue, AHCopy, InGlue);
5753       SDValue Result(RNode, 0);
5754       InGlue = SDValue(RNode, 1);
5755 
5756       Result =
5757           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5758 
5759       ReplaceUses(SDValue(Node, 1), Result);
5760       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5761                  dbgs() << '\n');
5762     }
5763     // Copy the division (low) result, if it is needed.
5764     if (!SDValue(Node, 0).use_empty()) {
5765       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5766                                                 LoReg, NVT, InGlue);
5767       InGlue = Result.getValue(2);
5768       ReplaceUses(SDValue(Node, 0), Result);
5769       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5770                  dbgs() << '\n');
5771     }
5772     // Copy the remainder (high) result, if it is needed.
5773     if (!SDValue(Node, 1).use_empty()) {
5774       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5775                                               HiReg, NVT, InGlue);
5776       InGlue = Result.getValue(2);
5777       ReplaceUses(SDValue(Node, 1), Result);
5778       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5779                  dbgs() << '\n');
5780     }
5781     CurDAG->RemoveDeadNode(Node);
5782     return;
5783   }
5784 
5785   case X86ISD::FCMP:
5786   case X86ISD::STRICT_FCMP:
5787   case X86ISD::STRICT_FCMPS: {
5788     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5789                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5790     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5791     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5792 
5793     // Save the original VT of the compare.
5794     MVT CmpVT = N0.getSimpleValueType();
5795 
5796     // Floating point needs special handling if we don't have FCOMI.
5797     if (Subtarget->canUseCMOV())
5798       break;
5799 
5800     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5801 
5802     unsigned Opc;
5803     switch (CmpVT.SimpleTy) {
5804     default: llvm_unreachable("Unexpected type!");
5805     case MVT::f32:
5806       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5807       break;
5808     case MVT::f64:
5809       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5810       break;
5811     case MVT::f80:
5812       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5813       break;
5814     }
5815 
5816     SDValue Chain =
5817         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5818     SDValue Glue;
5819     if (IsStrictCmp) {
5820       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5821       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5822       Glue = Chain.getValue(1);
5823     } else {
5824       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5825     }
5826 
5827     // Move FPSW to AX.
5828     SDValue FNSTSW =
5829         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5830 
5831     // Extract upper 8-bits of AX.
5832     SDValue Extract =
5833         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5834 
5835     // Move AH into flags.
5836     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5837     assert(Subtarget->canUseLAHFSAHF() &&
5838            "Target doesn't support SAHF or FCOMI?");
5839     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5840     Chain = AH;
5841     SDValue SAHF = SDValue(
5842         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5843 
5844     if (IsStrictCmp)
5845       ReplaceUses(SDValue(Node, 1), Chain);
5846 
5847     ReplaceUses(SDValue(Node, 0), SAHF);
5848     CurDAG->RemoveDeadNode(Node);
5849     return;
5850   }
5851 
5852   case X86ISD::CMP: {
5853     SDValue N0 = Node->getOperand(0);
5854     SDValue N1 = Node->getOperand(1);
5855 
5856     // Optimizations for TEST compares.
5857     if (!isNullConstant(N1))
5858       break;
5859 
5860     // Save the original VT of the compare.
5861     MVT CmpVT = N0.getSimpleValueType();
5862 
5863     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5864     // by a test instruction. The test should be removed later by
5865     // analyzeCompare if we are using only the zero flag.
5866     // TODO: Should we check the users and use the BEXTR flags directly?
5867     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5868       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5869         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5870                                              : X86::TEST32rr;
5871         SDValue BEXTR = SDValue(NewNode, 0);
5872         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5873         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5874         CurDAG->RemoveDeadNode(Node);
5875         return;
5876       }
5877     }
5878 
5879     // We can peek through truncates, but we need to be careful below.
5880     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5881       N0 = N0.getOperand(0);
5882 
5883     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5884     // use a smaller encoding.
5885     // Look past the truncate if CMP is the only use of it.
5886     if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5887         N0.getValueType() != MVT::i8) {
5888       auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5889       if (!MaskC)
5890         break;
5891 
5892       // We may have looked through a truncate so mask off any bits that
5893       // shouldn't be part of the compare.
5894       uint64_t Mask = MaskC->getZExtValue();
5895       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5896 
5897       // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5898       // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5899       // zero flag.
5900       if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5901           onlyUsesZeroFlag(SDValue(Node, 0))) {
5902         unsigned ShiftOpcode = ISD::DELETED_NODE;
5903         unsigned ShiftAmt;
5904         unsigned SubRegIdx;
5905         MVT SubRegVT;
5906         unsigned TestOpcode;
5907         unsigned LeadingZeros = llvm::countl_zero(Mask);
5908         unsigned TrailingZeros = llvm::countr_zero(Mask);
5909 
5910         // With leading/trailing zeros, the transform is profitable if we can
5911         // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5912         // incurring any extra register moves.
5913         bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse();
5914         if (LeadingZeros == 0 && SavesBytes) {
5915           // If the mask covers the most significant bit, then we can replace
5916           // TEST+AND with a SHR and check eflags.
5917           // This emits a redundant TEST which is subsequently eliminated.
5918           ShiftOpcode = X86::SHR64ri;
5919           ShiftAmt = TrailingZeros;
5920           SubRegIdx = 0;
5921           TestOpcode = X86::TEST64rr;
5922         } else if (TrailingZeros == 0 && SavesBytes) {
5923           // If the mask covers the least significant bit, then we can replace
5924           // TEST+AND with a SHL and check eflags.
5925           // This emits a redundant TEST which is subsequently eliminated.
5926           ShiftOpcode = X86::SHL64ri;
5927           ShiftAmt = LeadingZeros;
5928           SubRegIdx = 0;
5929           TestOpcode = X86::TEST64rr;
5930         } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) {
5931           // If the shifted mask extends into the high half and is 8/16/32 bits
5932           // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
5933           unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
5934           if (PopCount == 8) {
5935             ShiftOpcode = X86::SHR64ri;
5936             ShiftAmt = TrailingZeros;
5937             SubRegIdx = X86::sub_8bit;
5938             SubRegVT = MVT::i8;
5939             TestOpcode = X86::TEST8rr;
5940           } else if (PopCount == 16) {
5941             ShiftOpcode = X86::SHR64ri;
5942             ShiftAmt = TrailingZeros;
5943             SubRegIdx = X86::sub_16bit;
5944             SubRegVT = MVT::i16;
5945             TestOpcode = X86::TEST16rr;
5946           } else if (PopCount == 32) {
5947             ShiftOpcode = X86::SHR64ri;
5948             ShiftAmt = TrailingZeros;
5949             SubRegIdx = X86::sub_32bit;
5950             SubRegVT = MVT::i32;
5951             TestOpcode = X86::TEST32rr;
5952           }
5953         }
5954         if (ShiftOpcode != ISD::DELETED_NODE) {
5955           SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
5956           SDValue Shift = SDValue(
5957               CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
5958                                      N0.getOperand(0), ShiftC),
5959               0);
5960           if (SubRegIdx != 0) {
5961             Shift =
5962                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift);
5963           }
5964           MachineSDNode *Test =
5965               CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
5966           ReplaceNode(Node, Test);
5967           return;
5968         }
5969       }
5970 
5971       MVT VT;
5972       int SubRegOp;
5973       unsigned ROpc, MOpc;
5974 
5975       // For each of these checks we need to be careful if the sign flag is
5976       // being used. It is only safe to use the sign flag in two conditions,
5977       // either the sign bit in the shrunken mask is zero or the final test
5978       // size is equal to the original compare size.
5979 
5980       if (isUInt<8>(Mask) &&
5981           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5982            hasNoSignFlagUses(SDValue(Node, 0)))) {
5983         // For example, convert "testl %eax, $8" to "testb %al, $8"
5984         VT = MVT::i8;
5985         SubRegOp = X86::sub_8bit;
5986         ROpc = X86::TEST8ri;
5987         MOpc = X86::TEST8mi;
5988       } else if (OptForMinSize && isUInt<16>(Mask) &&
5989                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5990                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5991         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5992         // NOTE: We only want to form TESTW instructions if optimizing for
5993         // min size. Otherwise we only save one byte and possibly get a length
5994         // changing prefix penalty in the decoders.
5995         VT = MVT::i16;
5996         SubRegOp = X86::sub_16bit;
5997         ROpc = X86::TEST16ri;
5998         MOpc = X86::TEST16mi;
5999       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
6000                  ((!(Mask & 0x80000000) &&
6001                    // Without minsize 16-bit Cmps can get here so we need to
6002                    // be sure we calculate the correct sign flag if needed.
6003                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
6004                   CmpVT == MVT::i32 ||
6005                   hasNoSignFlagUses(SDValue(Node, 0)))) {
6006         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
6007         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
6008         // Otherwize, we find ourselves in a position where we have to do
6009         // promotion. If previous passes did not promote the and, we assume
6010         // they had a good reason not to and do not promote here.
6011         VT = MVT::i32;
6012         SubRegOp = X86::sub_32bit;
6013         ROpc = X86::TEST32ri;
6014         MOpc = X86::TEST32mi;
6015       } else {
6016         // No eligible transformation was found.
6017         break;
6018       }
6019 
6020       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
6021       SDValue Reg = N0.getOperand(0);
6022 
6023       // Emit a testl or testw.
6024       MachineSDNode *NewNode;
6025       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
6026       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
6027         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
6028           if (!LoadN->isSimple()) {
6029             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
6030             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
6031                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
6032                 (MOpc == X86::TEST32mi && NumVolBits != 32))
6033               break;
6034           }
6035         }
6036         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
6037                           Reg.getOperand(0) };
6038         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
6039         // Update the chain.
6040         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
6041         // Record the mem-refs
6042         CurDAG->setNodeMemRefs(NewNode,
6043                                {cast<LoadSDNode>(Reg)->getMemOperand()});
6044       } else {
6045         // Extract the subregister if necessary.
6046         if (N0.getValueType() != VT)
6047           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
6048 
6049         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
6050       }
6051       // Replace CMP with TEST.
6052       ReplaceNode(Node, NewNode);
6053       return;
6054     }
6055     break;
6056   }
6057   case X86ISD::PCMPISTR: {
6058     if (!Subtarget->hasSSE42())
6059       break;
6060 
6061     bool NeedIndex = !SDValue(Node, 0).use_empty();
6062     bool NeedMask = !SDValue(Node, 1).use_empty();
6063     // We can't fold a load if we are going to make two instructions.
6064     bool MayFoldLoad = !NeedIndex || !NeedMask;
6065 
6066     MachineSDNode *CNode;
6067     if (NeedMask) {
6068       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
6069       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
6070       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
6071       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6072     }
6073     if (NeedIndex || !NeedMask) {
6074       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
6075       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
6076       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
6077       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6078     }
6079 
6080     // Connect the flag usage to the last instruction created.
6081     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6082     CurDAG->RemoveDeadNode(Node);
6083     return;
6084   }
6085   case X86ISD::PCMPESTR: {
6086     if (!Subtarget->hasSSE42())
6087       break;
6088 
6089     // Copy the two implicit register inputs.
6090     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
6091                                           Node->getOperand(1),
6092                                           SDValue()).getValue(1);
6093     InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
6094                                   Node->getOperand(3), InGlue).getValue(1);
6095 
6096     bool NeedIndex = !SDValue(Node, 0).use_empty();
6097     bool NeedMask = !SDValue(Node, 1).use_empty();
6098     // We can't fold a load if we are going to make two instructions.
6099     bool MayFoldLoad = !NeedIndex || !NeedMask;
6100 
6101     MachineSDNode *CNode;
6102     if (NeedMask) {
6103       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
6104       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
6105       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
6106                            InGlue);
6107       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6108     }
6109     if (NeedIndex || !NeedMask) {
6110       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
6111       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
6112       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InGlue);
6113       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6114     }
6115     // Connect the flag usage to the last instruction created.
6116     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6117     CurDAG->RemoveDeadNode(Node);
6118     return;
6119   }
6120 
6121   case ISD::SETCC: {
6122     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
6123       return;
6124 
6125     break;
6126   }
6127 
6128   case ISD::STORE:
6129     if (foldLoadStoreIntoMemOperand(Node))
6130       return;
6131     break;
6132 
6133   case X86ISD::SETCC_CARRY: {
6134     MVT VT = Node->getSimpleValueType(0);
6135     SDValue Result;
6136     if (Subtarget->hasSBBDepBreaking()) {
6137       // We have to do this manually because tblgen will put the eflags copy in
6138       // the wrong place if we use an extract_subreg in the pattern.
6139       // Copy flags to the EFLAGS register and glue it to next node.
6140       SDValue EFLAGS =
6141           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
6142                                Node->getOperand(1), SDValue());
6143 
6144       // Create a 64-bit instruction if the result is 64-bits otherwise use the
6145       // 32-bit version.
6146       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
6147       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
6148       Result = SDValue(
6149           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
6150           0);
6151     } else {
6152       // The target does not recognize sbb with the same reg operand as a
6153       // no-source idiom, so we explicitly zero the input values.
6154       Result = getSBBZero(Node);
6155     }
6156 
6157     // For less than 32-bits we need to extract from the 32-bit node.
6158     if (VT == MVT::i8 || VT == MVT::i16) {
6159       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6160       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6161     }
6162 
6163     ReplaceUses(SDValue(Node, 0), Result);
6164     CurDAG->RemoveDeadNode(Node);
6165     return;
6166   }
6167   case X86ISD::SBB: {
6168     if (isNullConstant(Node->getOperand(0)) &&
6169         isNullConstant(Node->getOperand(1))) {
6170       SDValue Result = getSBBZero(Node);
6171 
6172       // Replace the flag use.
6173       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
6174 
6175       // Replace the result use.
6176       if (!SDValue(Node, 0).use_empty()) {
6177         // For less than 32-bits we need to extract from the 32-bit node.
6178         MVT VT = Node->getSimpleValueType(0);
6179         if (VT == MVT::i8 || VT == MVT::i16) {
6180           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6181           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6182         }
6183         ReplaceUses(SDValue(Node, 0), Result);
6184       }
6185 
6186       CurDAG->RemoveDeadNode(Node);
6187       return;
6188     }
6189     break;
6190   }
6191   case X86ISD::MGATHER: {
6192     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
6193     SDValue IndexOp = Mgt->getIndex();
6194     SDValue Mask = Mgt->getMask();
6195     MVT IndexVT = IndexOp.getSimpleValueType();
6196     MVT ValueVT = Node->getSimpleValueType(0);
6197     MVT MaskVT = Mask.getSimpleValueType();
6198 
6199     // This is just to prevent crashes if the nodes are malformed somehow. We're
6200     // otherwise only doing loose type checking in here based on type what
6201     // a type constraint would say just like table based isel.
6202     if (!ValueVT.isVector() || !MaskVT.isVector())
6203       break;
6204 
6205     unsigned NumElts = ValueVT.getVectorNumElements();
6206     MVT ValueSVT = ValueVT.getVectorElementType();
6207 
6208     bool IsFP = ValueSVT.isFloatingPoint();
6209     unsigned EltSize = ValueSVT.getSizeInBits();
6210 
6211     unsigned Opc = 0;
6212     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
6213     if (AVX512Gather) {
6214       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6215         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
6216       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6217         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
6218       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6219         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
6220       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6221         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
6222       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6223         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
6224       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6225         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
6226       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6227         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
6228       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6229         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
6230       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6231         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
6232       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6233         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
6234       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6235         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
6236       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6237         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
6238     } else {
6239       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
6240              "Unexpected mask VT!");
6241       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6242         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
6243       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6244         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
6245       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6246         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
6247       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6248         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
6249       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6250         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
6251       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6252         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
6253       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6254         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
6255       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6256         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
6257     }
6258 
6259     if (!Opc)
6260       break;
6261 
6262     SDValue Base, Scale, Index, Disp, Segment;
6263     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
6264                           Base, Scale, Index, Disp, Segment))
6265       break;
6266 
6267     SDValue PassThru = Mgt->getPassThru();
6268     SDValue Chain = Mgt->getChain();
6269     // Gather instructions have a mask output not in the ISD node.
6270     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
6271 
6272     MachineSDNode *NewNode;
6273     if (AVX512Gather) {
6274       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
6275                        Index,    Disp, Segment, Chain};
6276       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6277     } else {
6278       SDValue Ops[] = {PassThru, Base,    Scale, Index,
6279                        Disp,     Segment, Mask,  Chain};
6280       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6281     }
6282     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
6283     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
6284     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
6285     CurDAG->RemoveDeadNode(Node);
6286     return;
6287   }
6288   case X86ISD::MSCATTER: {
6289     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
6290     SDValue Value = Sc->getValue();
6291     SDValue IndexOp = Sc->getIndex();
6292     MVT IndexVT = IndexOp.getSimpleValueType();
6293     MVT ValueVT = Value.getSimpleValueType();
6294 
6295     // This is just to prevent crashes if the nodes are malformed somehow. We're
6296     // otherwise only doing loose type checking in here based on type what
6297     // a type constraint would say just like table based isel.
6298     if (!ValueVT.isVector())
6299       break;
6300 
6301     unsigned NumElts = ValueVT.getVectorNumElements();
6302     MVT ValueSVT = ValueVT.getVectorElementType();
6303 
6304     bool IsFP = ValueSVT.isFloatingPoint();
6305     unsigned EltSize = ValueSVT.getSizeInBits();
6306 
6307     unsigned Opc;
6308     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6309       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6310     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6311       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6312     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6313       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6314     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6315       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6316     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6317       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6318     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6319       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6320     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6321       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6322     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6323       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6324     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6325       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6326     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6327       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6328     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6329       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6330     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6331       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6332     else
6333       break;
6334 
6335     SDValue Base, Scale, Index, Disp, Segment;
6336     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
6337                           Base, Scale, Index, Disp, Segment))
6338       break;
6339 
6340     SDValue Mask = Sc->getMask();
6341     SDValue Chain = Sc->getChain();
6342     // Scatter instructions have a mask output not in the ISD node.
6343     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6344     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6345 
6346     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6347     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
6348     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
6349     CurDAG->RemoveDeadNode(Node);
6350     return;
6351   }
6352   case ISD::PREALLOCATED_SETUP: {
6353     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6354     auto CallId = MFI->getPreallocatedIdForCallSite(
6355         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6356     SDValue Chain = Node->getOperand(0);
6357     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6358     MachineSDNode *New = CurDAG->getMachineNode(
6359         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6360     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
6361     CurDAG->RemoveDeadNode(Node);
6362     return;
6363   }
6364   case ISD::PREALLOCATED_ARG: {
6365     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6366     auto CallId = MFI->getPreallocatedIdForCallSite(
6367         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6368     SDValue Chain = Node->getOperand(0);
6369     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6370     SDValue ArgIndex = Node->getOperand(2);
6371     SDValue Ops[3];
6372     Ops[0] = CallIdValue;
6373     Ops[1] = ArgIndex;
6374     Ops[2] = Chain;
6375     MachineSDNode *New = CurDAG->getMachineNode(
6376         TargetOpcode::PREALLOCATED_ARG, dl,
6377         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6378                           MVT::Other),
6379         Ops);
6380     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
6381     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
6382     CurDAG->RemoveDeadNode(Node);
6383     return;
6384   }
6385   case X86ISD::AESENCWIDE128KL:
6386   case X86ISD::AESDECWIDE128KL:
6387   case X86ISD::AESENCWIDE256KL:
6388   case X86ISD::AESDECWIDE256KL: {
6389     if (!Subtarget->hasWIDEKL())
6390       break;
6391 
6392     unsigned Opcode;
6393     switch (Node->getOpcode()) {
6394     default:
6395       llvm_unreachable("Unexpected opcode!");
6396     case X86ISD::AESENCWIDE128KL:
6397       Opcode = X86::AESENCWIDE128KL;
6398       break;
6399     case X86ISD::AESDECWIDE128KL:
6400       Opcode = X86::AESDECWIDE128KL;
6401       break;
6402     case X86ISD::AESENCWIDE256KL:
6403       Opcode = X86::AESENCWIDE256KL;
6404       break;
6405     case X86ISD::AESDECWIDE256KL:
6406       Opcode = X86::AESDECWIDE256KL;
6407       break;
6408     }
6409 
6410     SDValue Chain = Node->getOperand(0);
6411     SDValue Addr = Node->getOperand(1);
6412 
6413     SDValue Base, Scale, Index, Disp, Segment;
6414     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
6415       break;
6416 
6417     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6418                                  SDValue());
6419     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6420                                  Chain.getValue(1));
6421     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6422                                  Chain.getValue(1));
6423     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6424                                  Chain.getValue(1));
6425     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6426                                  Chain.getValue(1));
6427     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6428                                  Chain.getValue(1));
6429     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6430                                  Chain.getValue(1));
6431     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6432                                  Chain.getValue(1));
6433 
6434     MachineSDNode *Res = CurDAG->getMachineNode(
6435         Opcode, dl, Node->getVTList(),
6436         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
6437     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
6438     ReplaceNode(Node, Res);
6439     return;
6440   }
6441   }
6442 
6443   SelectCode(Node);
6444 }
6445 
6446 bool X86DAGToDAGISel::SelectInlineAsmMemoryOperand(
6447     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
6448     std::vector<SDValue> &OutOps) {
6449   SDValue Op0, Op1, Op2, Op3, Op4;
6450   switch (ConstraintID) {
6451   default:
6452     llvm_unreachable("Unexpected asm memory constraint");
6453   case InlineAsm::ConstraintCode::o: // offsetable        ??
6454   case InlineAsm::ConstraintCode::v: // not offsetable    ??
6455   case InlineAsm::ConstraintCode::m: // memory
6456   case InlineAsm::ConstraintCode::X:
6457   case InlineAsm::ConstraintCode::p: // address
6458     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6459       return true;
6460     break;
6461   }
6462 
6463   OutOps.push_back(Op0);
6464   OutOps.push_back(Op1);
6465   OutOps.push_back(Op2);
6466   OutOps.push_back(Op3);
6467   OutOps.push_back(Op4);
6468   return false;
6469 }
6470 
6471 /// This pass converts a legalized DAG into a X86-specific DAG,
6472 /// ready for instruction scheduling.
6473 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6474                                      CodeGenOptLevel OptLevel) {
6475   return new X86DAGToDAGISel(TM, OptLevel);
6476 }
6477