1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 } 58 59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 60 return !MF.getFrameInfo().hasVarSizedObjects() && 61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 63 } 64 65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 66 /// call frame pseudos can be simplified. Having a FP, as in the default 67 /// implementation, is not sufficient here since we can't always use it. 68 /// Use a more nuanced condition. 69 bool 70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 71 return hasReservedCallFrame(MF) || 72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 73 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 74 TRI->hasBasePointer(MF); 75 } 76 77 // needsFrameIndexResolution - Do we need to perform FI resolution for 78 // this function. Normally, this is required only when the function 79 // has any stack objects. However, FI resolution actually has another job, 80 // not apparent from the title - it resolves callframesetup/destroy 81 // that were not simplified earlier. 82 // So, this is required for x86 functions that have push sequences even 83 // when there are no stack objects. 84 bool 85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 86 return MF.getFrameInfo().hasStackObjects() || 87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 94 const MachineFrameInfo &MFI = MF.getFrameInfo(); 95 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 96 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 101 MFI.hasStackMap() || MFI.hasPatchPoint() || 102 MFI.hasCopyImplyingStackAdjustment()); 103 } 104 105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 106 if (IsLP64) { 107 if (isInt<8>(Imm)) 108 return X86::SUB64ri8; 109 return X86::SUB64ri32; 110 } else { 111 if (isInt<8>(Imm)) 112 return X86::SUB32ri8; 113 return X86::SUB32ri; 114 } 115 } 116 117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 118 if (IsLP64) { 119 if (isInt<8>(Imm)) 120 return X86::ADD64ri8; 121 return X86::ADD64ri32; 122 } else { 123 if (isInt<8>(Imm)) 124 return X86::ADD32ri8; 125 return X86::ADD32ri; 126 } 127 } 128 129 static unsigned getSUBrrOpcode(bool IsLP64) { 130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 131 } 132 133 static unsigned getADDrrOpcode(bool IsLP64) { 134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 135 } 136 137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 138 if (IsLP64) { 139 if (isInt<8>(Imm)) 140 return X86::AND64ri8; 141 return X86::AND64ri32; 142 } 143 if (isInt<8>(Imm)) 144 return X86::AND32ri8; 145 return X86::AND32ri; 146 } 147 148 static unsigned getLEArOpcode(bool IsLP64) { 149 return IsLP64 ? X86::LEA64r : X86::LEA32r; 150 } 151 152 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 153 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 154 unsigned Reg = RegMask.PhysReg; 155 156 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 157 Reg == X86::AH || Reg == X86::AL) 158 return true; 159 } 160 161 return false; 162 } 163 164 /// Check if the flags need to be preserved before the terminators. 165 /// This would be the case, if the eflags is live-in of the region 166 /// composed by the terminators or live-out of that region, without 167 /// being defined by a terminator. 168 static bool 169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 170 for (const MachineInstr &MI : MBB.terminators()) { 171 bool BreakNext = false; 172 for (const MachineOperand &MO : MI.operands()) { 173 if (!MO.isReg()) 174 continue; 175 Register Reg = MO.getReg(); 176 if (Reg != X86::EFLAGS) 177 continue; 178 179 // This terminator needs an eflags that is not defined 180 // by a previous another terminator: 181 // EFLAGS is live-in of the region composed by the terminators. 182 if (!MO.isDef()) 183 return true; 184 // This terminator defines the eflags, i.e., we don't need to preserve it. 185 // However, we still need to check this specific terminator does not 186 // read a live-in value. 187 BreakNext = true; 188 } 189 // We found a definition of the eflags, no need to preserve them. 190 if (BreakNext) 191 return false; 192 } 193 194 // None of the terminators use or define the eflags. 195 // Check if they are live-out, that would imply we need to preserve them. 196 for (const MachineBasicBlock *Succ : MBB.successors()) 197 if (Succ->isLiveIn(X86::EFLAGS)) 198 return true; 199 200 return false; 201 } 202 203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 204 /// stack pointer by a constant value. 205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 206 MachineBasicBlock::iterator &MBBI, 207 const DebugLoc &DL, 208 int64_t NumBytes, bool InEpilogue) const { 209 bool isSub = NumBytes < 0; 210 uint64_t Offset = isSub ? -NumBytes : NumBytes; 211 MachineInstr::MIFlag Flag = 212 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 213 214 uint64_t Chunk = (1LL << 31) - 1; 215 216 MachineFunction &MF = *MBB.getParent(); 217 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 218 const X86TargetLowering &TLI = *STI.getTargetLowering(); 219 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 220 221 // It's ok to not take into account large chunks when probing, as the 222 // allocation is split in smaller chunks anyway. 223 if (EmitInlineStackProbe && !InEpilogue) { 224 225 // This pseudo-instruction is going to be expanded, potentially using a 226 // loop, by inlineStackProbe(). 227 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 228 return; 229 } else if (Offset > Chunk) { 230 // Rather than emit a long series of instructions for large offsets, 231 // load the offset into a register and do one sub/add 232 unsigned Reg = 0; 233 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 234 235 if (isSub && !isEAXLiveIn(MBB)) 236 Reg = Rax; 237 else 238 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 239 240 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 241 unsigned AddSubRROpc = 242 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 243 if (Reg) { 244 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 245 .addImm(Offset) 246 .setMIFlag(Flag); 247 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 248 .addReg(StackPtr) 249 .addReg(Reg); 250 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 251 return; 252 } else if (Offset > 8 * Chunk) { 253 // If we would need more than 8 add or sub instructions (a >16GB stack 254 // frame), it's worth spilling RAX to materialize this immediate. 255 // pushq %rax 256 // movabsq +-$Offset+-SlotSize, %rax 257 // addq %rsp, %rax 258 // xchg %rax, (%rsp) 259 // movq (%rsp), %rsp 260 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 261 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 262 .addReg(Rax, RegState::Kill) 263 .setMIFlag(Flag); 264 // Subtract is not commutative, so negate the offset and always use add. 265 // Subtract 8 less and add 8 more to account for the PUSH we just did. 266 if (isSub) 267 Offset = -(Offset - SlotSize); 268 else 269 Offset = Offset + SlotSize; 270 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 271 .addImm(Offset) 272 .setMIFlag(Flag); 273 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 274 .addReg(Rax) 275 .addReg(StackPtr); 276 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 277 // Exchange the new SP in RAX with the top of the stack. 278 addRegOffset( 279 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 280 StackPtr, false, 0); 281 // Load new SP from the top of the stack into RSP. 282 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 283 StackPtr, false, 0); 284 return; 285 } 286 } 287 288 while (Offset) { 289 uint64_t ThisVal = std::min(Offset, Chunk); 290 if (ThisVal == SlotSize) { 291 // Use push / pop for slot sized adjustments as a size optimization. We 292 // need to find a dead register when using pop. 293 unsigned Reg = isSub 294 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 295 : TRI->findDeadCallerSavedReg(MBB, MBBI); 296 if (Reg) { 297 unsigned Opc = isSub 298 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 299 : (Is64Bit ? X86::POP64r : X86::POP32r); 300 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 301 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 302 .setMIFlag(Flag); 303 Offset -= ThisVal; 304 continue; 305 } 306 } 307 308 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 309 .setMIFlag(Flag); 310 311 Offset -= ThisVal; 312 } 313 } 314 315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 316 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 317 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 318 assert(Offset != 0 && "zero offset stack adjustment requested"); 319 320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 321 // is tricky. 322 bool UseLEA; 323 if (!InEpilogue) { 324 // Check if inserting the prologue at the beginning 325 // of MBB would require to use LEA operations. 326 // We need to use LEA operations if EFLAGS is live in, because 327 // it means an instruction will read it before it gets defined. 328 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 329 } else { 330 // If we can use LEA for SP but we shouldn't, check that none 331 // of the terminators uses the eflags. Otherwise we will insert 332 // a ADD that will redefine the eflags and break the condition. 333 // Alternatively, we could move the ADD, but this may not be possible 334 // and is an optimization anyway. 335 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 336 if (UseLEA && !STI.useLeaForSP()) 337 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 338 // If that assert breaks, that means we do not do the right thing 339 // in canUseAsEpilogue. 340 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 341 "We shouldn't have allowed this insertion point"); 342 } 343 344 MachineInstrBuilder MI; 345 if (UseLEA) { 346 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 347 TII.get(getLEArOpcode(Uses64BitFramePtr)), 348 StackPtr), 349 StackPtr, false, Offset); 350 } else { 351 bool IsSub = Offset < 0; 352 uint64_t AbsOffset = IsSub ? -Offset : Offset; 353 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 354 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 355 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 356 .addReg(StackPtr) 357 .addImm(AbsOffset); 358 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 359 } 360 return MI; 361 } 362 363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 364 MachineBasicBlock::iterator &MBBI, 365 bool doMergeWithPrevious) const { 366 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 367 (!doMergeWithPrevious && MBBI == MBB.end())) 368 return 0; 369 370 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 371 372 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 374 // instruction, and that there are no DBG_VALUE or other instructions between 375 // ADD/SUB/LEA and its corresponding CFI instruction. 376 /* TODO: Add support for the case where there are multiple CFI instructions 377 below the ADD/SUB/LEA, e.g.: 378 ... 379 add 380 cfi_def_cfa_offset 381 cfi_offset 382 ... 383 */ 384 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 385 PI = std::prev(PI); 386 387 unsigned Opc = PI->getOpcode(); 388 int Offset = 0; 389 390 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 391 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 392 PI->getOperand(0).getReg() == StackPtr){ 393 assert(PI->getOperand(1).getReg() == StackPtr); 394 Offset = PI->getOperand(2).getImm(); 395 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 396 PI->getOperand(0).getReg() == StackPtr && 397 PI->getOperand(1).getReg() == StackPtr && 398 PI->getOperand(2).getImm() == 1 && 399 PI->getOperand(3).getReg() == X86::NoRegister && 400 PI->getOperand(5).getReg() == X86::NoRegister) { 401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 402 Offset = PI->getOperand(4).getImm(); 403 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 404 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 405 PI->getOperand(0).getReg() == StackPtr) { 406 assert(PI->getOperand(1).getReg() == StackPtr); 407 Offset = -PI->getOperand(2).getImm(); 408 } else 409 return 0; 410 411 PI = MBB.erase(PI); 412 if (PI != MBB.end() && PI->isCFIInstruction()) { 413 auto CIs = MBB.getParent()->getFrameInstructions(); 414 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 415 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 416 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 417 PI = MBB.erase(PI); 418 } 419 if (!doMergeWithPrevious) 420 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 421 422 return Offset; 423 } 424 425 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 426 MachineBasicBlock::iterator MBBI, 427 const DebugLoc &DL, 428 const MCCFIInstruction &CFIInst) const { 429 MachineFunction &MF = *MBB.getParent(); 430 unsigned CFIIndex = MF.addFrameInst(CFIInst); 431 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 432 .addCFIIndex(CFIIndex); 433 } 434 435 /// Emits Dwarf Info specifying offsets of callee saved registers and 436 /// frame pointer. This is called only when basic block sections are enabled. 437 void X86FrameLowering::emitCalleeSavedFrameMoves( 438 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 439 MachineFunction &MF = *MBB.getParent(); 440 if (!hasFP(MF)) { 441 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 442 return; 443 } 444 const MachineModuleInfo &MMI = MF.getMMI(); 445 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 446 const Register FramePtr = TRI->getFrameRegister(MF); 447 const Register MachineFramePtr = 448 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 449 : FramePtr; 450 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 451 // Offset = space for return address + size of the frame pointer itself. 452 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 453 BuildCFI(MBB, MBBI, DebugLoc{}, 454 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 456 } 457 458 void X86FrameLowering::emitCalleeSavedFrameMoves( 459 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 460 const DebugLoc &DL, bool IsPrologue) const { 461 MachineFunction &MF = *MBB.getParent(); 462 MachineFrameInfo &MFI = MF.getFrameInfo(); 463 MachineModuleInfo &MMI = MF.getMMI(); 464 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 465 466 // Add callee saved registers to move list. 467 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 468 469 // Calculate offsets. 470 for (const CalleeSavedInfo &I : CSI) { 471 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 472 unsigned Reg = I.getReg(); 473 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 474 475 if (IsPrologue) { 476 BuildCFI(MBB, MBBI, DL, 477 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 478 } else { 479 BuildCFI(MBB, MBBI, DL, 480 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 481 } 482 } 483 } 484 485 void X86FrameLowering::emitStackProbe( 486 MachineFunction &MF, MachineBasicBlock &MBB, 487 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 488 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 489 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 490 if (STI.isTargetWindowsCoreCLR()) { 491 if (InProlog) { 492 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 493 .addImm(0 /* no explicit stack size */); 494 } else { 495 emitStackProbeInline(MF, MBB, MBBI, DL, false); 496 } 497 } else { 498 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 499 } 500 } 501 502 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 503 return STI.isOSWindows() && !STI.isTargetWin64(); 504 } 505 506 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 507 MachineBasicBlock &PrologMBB) const { 508 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 509 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 510 }); 511 if (Where != PrologMBB.end()) { 512 DebugLoc DL = PrologMBB.findDebugLoc(Where); 513 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 514 Where->eraseFromParent(); 515 } 516 } 517 518 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 519 MachineBasicBlock &MBB, 520 MachineBasicBlock::iterator MBBI, 521 const DebugLoc &DL, 522 bool InProlog) const { 523 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 524 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 525 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 526 else 527 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 528 } 529 530 void X86FrameLowering::emitStackProbeInlineGeneric( 531 MachineFunction &MF, MachineBasicBlock &MBB, 532 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 533 MachineInstr &AllocWithProbe = *MBBI; 534 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 535 536 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 537 const X86TargetLowering &TLI = *STI.getTargetLowering(); 538 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 539 "different expansion expected for CoreCLR 64 bit"); 540 541 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 542 uint64_t ProbeChunk = StackProbeSize * 8; 543 544 uint64_t MaxAlign = 545 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 546 547 // Synthesize a loop or unroll it, depending on the number of iterations. 548 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 549 // between the unaligned rsp and current rsp. 550 if (Offset > ProbeChunk) { 551 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 552 MaxAlign % StackProbeSize); 553 } else { 554 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 555 MaxAlign % StackProbeSize); 556 } 557 } 558 559 void X86FrameLowering::emitStackProbeInlineGenericBlock( 560 MachineFunction &MF, MachineBasicBlock &MBB, 561 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 562 uint64_t AlignOffset) const { 563 564 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 565 const bool HasFP = hasFP(MF); 566 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 567 const X86TargetLowering &TLI = *STI.getTargetLowering(); 568 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 569 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 570 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 571 572 uint64_t CurrentOffset = 0; 573 574 assert(AlignOffset < StackProbeSize); 575 576 // If the offset is so small it fits within a page, there's nothing to do. 577 if (StackProbeSize < Offset + AlignOffset) { 578 579 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 580 .addReg(StackPtr) 581 .addImm(StackProbeSize - AlignOffset) 582 .setMIFlag(MachineInstr::FrameSetup); 583 if (!HasFP && NeedsDwarfCFI) { 584 BuildCFI(MBB, MBBI, DL, 585 MCCFIInstruction::createAdjustCfaOffset( 586 nullptr, StackProbeSize - AlignOffset)); 587 } 588 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 589 590 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 591 .setMIFlag(MachineInstr::FrameSetup), 592 StackPtr, false, 0) 593 .addImm(0) 594 .setMIFlag(MachineInstr::FrameSetup); 595 NumFrameExtraProbe++; 596 CurrentOffset = StackProbeSize - AlignOffset; 597 } 598 599 // For the next N - 1 pages, just probe. I tried to take advantage of 600 // natural probes but it implies much more logic and there was very few 601 // interesting natural probes to interleave. 602 while (CurrentOffset + StackProbeSize < Offset) { 603 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 604 .addReg(StackPtr) 605 .addImm(StackProbeSize) 606 .setMIFlag(MachineInstr::FrameSetup); 607 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 608 609 if (!HasFP && NeedsDwarfCFI) { 610 BuildCFI( 611 MBB, MBBI, DL, 612 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 613 } 614 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 615 .setMIFlag(MachineInstr::FrameSetup), 616 StackPtr, false, 0) 617 .addImm(0) 618 .setMIFlag(MachineInstr::FrameSetup); 619 NumFrameExtraProbe++; 620 CurrentOffset += StackProbeSize; 621 } 622 623 // No need to probe the tail, it is smaller than a Page. 624 uint64_t ChunkSize = Offset - CurrentOffset; 625 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 626 .addReg(StackPtr) 627 .addImm(ChunkSize) 628 .setMIFlag(MachineInstr::FrameSetup); 629 // No need to adjust Dwarf CFA offset here, the last position of the stack has 630 // been defined 631 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 632 } 633 634 void X86FrameLowering::emitStackProbeInlineGenericLoop( 635 MachineFunction &MF, MachineBasicBlock &MBB, 636 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 637 uint64_t AlignOffset) const { 638 assert(Offset && "null offset"); 639 640 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 641 const X86TargetLowering &TLI = *STI.getTargetLowering(); 642 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 643 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 644 645 if (AlignOffset) { 646 if (AlignOffset < StackProbeSize) { 647 // Perform a first smaller allocation followed by a probe. 648 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 649 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 650 .addReg(StackPtr) 651 .addImm(AlignOffset) 652 .setMIFlag(MachineInstr::FrameSetup); 653 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 654 655 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 656 .setMIFlag(MachineInstr::FrameSetup), 657 StackPtr, false, 0) 658 .addImm(0) 659 .setMIFlag(MachineInstr::FrameSetup); 660 NumFrameExtraProbe++; 661 Offset -= AlignOffset; 662 } 663 } 664 665 // Synthesize a loop 666 NumFrameLoopProbe++; 667 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 668 669 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 670 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 671 672 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 673 MF.insert(MBBIter, testMBB); 674 MF.insert(MBBIter, tailMBB); 675 676 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 677 : Is64Bit ? X86::R11D 678 : X86::EAX; 679 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 680 .addReg(StackPtr) 681 .setMIFlag(MachineInstr::FrameSetup); 682 683 // save loop bound 684 { 685 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 686 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 687 .addReg(FinalStackProbed) 688 .addImm(Offset / StackProbeSize * StackProbeSize) 689 .setMIFlag(MachineInstr::FrameSetup); 690 } 691 692 // allocate a page 693 { 694 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 695 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 696 .addReg(StackPtr) 697 .addImm(StackProbeSize) 698 .setMIFlag(MachineInstr::FrameSetup); 699 } 700 701 // touch the page 702 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 703 .setMIFlag(MachineInstr::FrameSetup), 704 StackPtr, false, 0) 705 .addImm(0) 706 .setMIFlag(MachineInstr::FrameSetup); 707 708 // cmp with stack pointer bound 709 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 710 .addReg(StackPtr) 711 .addReg(FinalStackProbed) 712 .setMIFlag(MachineInstr::FrameSetup); 713 714 // jump 715 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 716 .addMBB(testMBB) 717 .addImm(X86::COND_NE) 718 .setMIFlag(MachineInstr::FrameSetup); 719 testMBB->addSuccessor(testMBB); 720 testMBB->addSuccessor(tailMBB); 721 722 // BB management 723 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 724 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 725 MBB.addSuccessor(testMBB); 726 727 // handle tail 728 unsigned TailOffset = Offset % StackProbeSize; 729 if (TailOffset) { 730 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 731 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 732 .addReg(StackPtr) 733 .addImm(TailOffset) 734 .setMIFlag(MachineInstr::FrameSetup); 735 } 736 737 // Update Live In information 738 recomputeLiveIns(*testMBB); 739 recomputeLiveIns(*tailMBB); 740 } 741 742 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 743 MachineFunction &MF, MachineBasicBlock &MBB, 744 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 745 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 746 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 747 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 748 const TargetInstrInfo &TII = *STI.getInstrInfo(); 749 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 750 751 // RAX contains the number of bytes of desired stack adjustment. 752 // The handling here assumes this value has already been updated so as to 753 // maintain stack alignment. 754 // 755 // We need to exit with RSP modified by this amount and execute suitable 756 // page touches to notify the OS that we're growing the stack responsibly. 757 // All stack probing must be done without modifying RSP. 758 // 759 // MBB: 760 // SizeReg = RAX; 761 // ZeroReg = 0 762 // CopyReg = RSP 763 // Flags, TestReg = CopyReg - SizeReg 764 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 765 // LimitReg = gs magic thread env access 766 // if FinalReg >= LimitReg goto ContinueMBB 767 // RoundBB: 768 // RoundReg = page address of FinalReg 769 // LoopMBB: 770 // LoopReg = PHI(LimitReg,ProbeReg) 771 // ProbeReg = LoopReg - PageSize 772 // [ProbeReg] = 0 773 // if (ProbeReg > RoundReg) goto LoopMBB 774 // ContinueMBB: 775 // RSP = RSP - RAX 776 // [rest of original MBB] 777 778 // Set up the new basic blocks 779 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 780 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 781 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 782 783 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 784 MF.insert(MBBIter, RoundMBB); 785 MF.insert(MBBIter, LoopMBB); 786 MF.insert(MBBIter, ContinueMBB); 787 788 // Split MBB and move the tail portion down to ContinueMBB. 789 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 790 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 791 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 792 793 // Some useful constants 794 const int64_t ThreadEnvironmentStackLimit = 0x10; 795 const int64_t PageSize = 0x1000; 796 const int64_t PageMask = ~(PageSize - 1); 797 798 // Registers we need. For the normal case we use virtual 799 // registers. For the prolog expansion we use RAX, RCX and RDX. 800 MachineRegisterInfo &MRI = MF.getRegInfo(); 801 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 802 const Register SizeReg = InProlog ? X86::RAX 803 : MRI.createVirtualRegister(RegClass), 804 ZeroReg = InProlog ? X86::RCX 805 : MRI.createVirtualRegister(RegClass), 806 CopyReg = InProlog ? X86::RDX 807 : MRI.createVirtualRegister(RegClass), 808 TestReg = InProlog ? X86::RDX 809 : MRI.createVirtualRegister(RegClass), 810 FinalReg = InProlog ? X86::RDX 811 : MRI.createVirtualRegister(RegClass), 812 RoundedReg = InProlog ? X86::RDX 813 : MRI.createVirtualRegister(RegClass), 814 LimitReg = InProlog ? X86::RCX 815 : MRI.createVirtualRegister(RegClass), 816 JoinReg = InProlog ? X86::RCX 817 : MRI.createVirtualRegister(RegClass), 818 ProbeReg = InProlog ? X86::RCX 819 : MRI.createVirtualRegister(RegClass); 820 821 // SP-relative offsets where we can save RCX and RDX. 822 int64_t RCXShadowSlot = 0; 823 int64_t RDXShadowSlot = 0; 824 825 // If inlining in the prolog, save RCX and RDX. 826 if (InProlog) { 827 // Compute the offsets. We need to account for things already 828 // pushed onto the stack at this point: return address, frame 829 // pointer (if used), and callee saves. 830 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 831 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 832 const bool HasFP = hasFP(MF); 833 834 // Check if we need to spill RCX and/or RDX. 835 // Here we assume that no earlier prologue instruction changes RCX and/or 836 // RDX, so checking the block live-ins is enough. 837 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 838 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 839 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 840 // Assign the initial slot to both registers, then change RDX's slot if both 841 // need to be spilled. 842 if (IsRCXLiveIn) 843 RCXShadowSlot = InitSlot; 844 if (IsRDXLiveIn) 845 RDXShadowSlot = InitSlot; 846 if (IsRDXLiveIn && IsRCXLiveIn) 847 RDXShadowSlot += 8; 848 // Emit the saves if needed. 849 if (IsRCXLiveIn) 850 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 851 RCXShadowSlot) 852 .addReg(X86::RCX); 853 if (IsRDXLiveIn) 854 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 855 RDXShadowSlot) 856 .addReg(X86::RDX); 857 } else { 858 // Not in the prolog. Copy RAX to a virtual reg. 859 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 860 } 861 862 // Add code to MBB to check for overflow and set the new target stack pointer 863 // to zero if so. 864 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 865 .addReg(ZeroReg, RegState::Undef) 866 .addReg(ZeroReg, RegState::Undef); 867 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 868 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 869 .addReg(CopyReg) 870 .addReg(SizeReg); 871 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 872 .addReg(TestReg) 873 .addReg(ZeroReg) 874 .addImm(X86::COND_B); 875 876 // FinalReg now holds final stack pointer value, or zero if 877 // allocation would overflow. Compare against the current stack 878 // limit from the thread environment block. Note this limit is the 879 // lowest touched page on the stack, not the point at which the OS 880 // will cause an overflow exception, so this is just an optimization 881 // to avoid unnecessarily touching pages that are below the current 882 // SP but already committed to the stack by the OS. 883 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 884 .addReg(0) 885 .addImm(1) 886 .addReg(0) 887 .addImm(ThreadEnvironmentStackLimit) 888 .addReg(X86::GS); 889 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 890 // Jump if the desired stack pointer is at or above the stack limit. 891 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 892 893 // Add code to roundMBB to round the final stack pointer to a page boundary. 894 RoundMBB->addLiveIn(FinalReg); 895 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 896 .addReg(FinalReg) 897 .addImm(PageMask); 898 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 899 900 // LimitReg now holds the current stack limit, RoundedReg page-rounded 901 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 902 // and probe until we reach RoundedReg. 903 if (!InProlog) { 904 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 905 .addReg(LimitReg) 906 .addMBB(RoundMBB) 907 .addReg(ProbeReg) 908 .addMBB(LoopMBB); 909 } 910 911 LoopMBB->addLiveIn(JoinReg); 912 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 913 false, -PageSize); 914 915 // Probe by storing a byte onto the stack. 916 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 917 .addReg(ProbeReg) 918 .addImm(1) 919 .addReg(0) 920 .addImm(0) 921 .addReg(0) 922 .addImm(0); 923 924 LoopMBB->addLiveIn(RoundedReg); 925 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 926 .addReg(RoundedReg) 927 .addReg(ProbeReg); 928 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 929 930 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 931 932 // If in prolog, restore RDX and RCX. 933 if (InProlog) { 934 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 935 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 936 TII.get(X86::MOV64rm), X86::RCX), 937 X86::RSP, false, RCXShadowSlot); 938 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 939 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 940 TII.get(X86::MOV64rm), X86::RDX), 941 X86::RSP, false, RDXShadowSlot); 942 } 943 944 // Now that the probing is done, add code to continueMBB to update 945 // the stack pointer for real. 946 ContinueMBB->addLiveIn(SizeReg); 947 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 948 .addReg(X86::RSP) 949 .addReg(SizeReg); 950 951 // Add the control flow edges we need. 952 MBB.addSuccessor(ContinueMBB); 953 MBB.addSuccessor(RoundMBB); 954 RoundMBB->addSuccessor(LoopMBB); 955 LoopMBB->addSuccessor(ContinueMBB); 956 LoopMBB->addSuccessor(LoopMBB); 957 958 // Mark all the instructions added to the prolog as frame setup. 959 if (InProlog) { 960 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 961 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 962 } 963 for (MachineInstr &MI : *RoundMBB) { 964 MI.setFlag(MachineInstr::FrameSetup); 965 } 966 for (MachineInstr &MI : *LoopMBB) { 967 MI.setFlag(MachineInstr::FrameSetup); 968 } 969 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 970 CMBBI != ContinueMBBI; ++CMBBI) { 971 CMBBI->setFlag(MachineInstr::FrameSetup); 972 } 973 } 974 } 975 976 void X86FrameLowering::emitStackProbeCall( 977 MachineFunction &MF, MachineBasicBlock &MBB, 978 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 979 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 980 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 981 982 // FIXME: Add indirect thunk support and remove this. 983 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 984 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 985 "code model and indirect thunks not yet implemented."); 986 987 unsigned CallOp; 988 if (Is64Bit) 989 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 990 else 991 CallOp = X86::CALLpcrel32; 992 993 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 994 995 MachineInstrBuilder CI; 996 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 997 998 // All current stack probes take AX and SP as input, clobber flags, and 999 // preserve all registers. x86_64 probes leave RSP unmodified. 1000 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1001 // For the large code model, we have to call through a register. Use R11, 1002 // as it is scratch in all supported calling conventions. 1003 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1004 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1005 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1006 } else { 1007 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1008 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1009 } 1010 1011 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1012 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1013 CI.addReg(AX, RegState::Implicit) 1014 .addReg(SP, RegState::Implicit) 1015 .addReg(AX, RegState::Define | RegState::Implicit) 1016 .addReg(SP, RegState::Define | RegState::Implicit) 1017 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1018 1019 MachineInstr *ModInst = CI; 1020 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1021 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1022 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1023 // themselves. They also does not clobber %rax so we can reuse it when 1024 // adjusting %rsp. 1025 // All other platforms do not specify a particular ABI for the stack probe 1026 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1027 ModInst = 1028 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1029 .addReg(SP) 1030 .addReg(AX); 1031 } 1032 1033 // DebugInfo variable locations -- if there's an instruction number for the 1034 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1035 // modifies SP. 1036 if (InstrNum) { 1037 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1038 // Label destination operand of the subtract. 1039 MF.makeDebugValueSubstitution(*InstrNum, 1040 {ModInst->getDebugInstrNum(), 0}); 1041 } else { 1042 // Label the call. The operand number is the penultimate operand, zero 1043 // based. 1044 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1045 MF.makeDebugValueSubstitution( 1046 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1047 } 1048 } 1049 1050 if (InProlog) { 1051 // Apply the frame setup flag to all inserted instrs. 1052 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1053 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1054 } 1055 } 1056 1057 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1058 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1059 // and might require smaller successive adjustments. 1060 const uint64_t Win64MaxSEHOffset = 128; 1061 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1062 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1063 return SEHFrameOffset & -16; 1064 } 1065 1066 // If we're forcing a stack realignment we can't rely on just the frame 1067 // info, we need to know the ABI stack alignment as well in case we 1068 // have a call out. Otherwise just make sure we have some alignment - we'll 1069 // go with the minimum SlotSize. 1070 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1071 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1072 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1073 Align StackAlign = getStackAlign(); 1074 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1075 if (MFI.hasCalls()) 1076 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1077 else if (MaxAlign < SlotSize) 1078 MaxAlign = Align(SlotSize); 1079 } 1080 return MaxAlign.value(); 1081 } 1082 1083 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1084 MachineBasicBlock::iterator MBBI, 1085 const DebugLoc &DL, unsigned Reg, 1086 uint64_t MaxAlign) const { 1087 uint64_t Val = -MaxAlign; 1088 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1089 1090 MachineFunction &MF = *MBB.getParent(); 1091 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1092 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1093 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1094 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1095 1096 // We want to make sure that (in worst case) less than StackProbeSize bytes 1097 // are not probed after the AND. This assumption is used in 1098 // emitStackProbeInlineGeneric. 1099 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1100 { 1101 NumFrameLoopProbe++; 1102 MachineBasicBlock *entryMBB = 1103 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1104 MachineBasicBlock *headMBB = 1105 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1106 MachineBasicBlock *bodyMBB = 1107 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1108 MachineBasicBlock *footMBB = 1109 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1110 1111 MachineFunction::iterator MBBIter = MBB.getIterator(); 1112 MF.insert(MBBIter, entryMBB); 1113 MF.insert(MBBIter, headMBB); 1114 MF.insert(MBBIter, bodyMBB); 1115 MF.insert(MBBIter, footMBB); 1116 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1117 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1118 : Is64Bit ? X86::R11D 1119 : X86::EAX; 1120 1121 // Setup entry block 1122 { 1123 1124 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1125 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1126 .addReg(StackPtr) 1127 .setMIFlag(MachineInstr::FrameSetup); 1128 MachineInstr *MI = 1129 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1130 .addReg(FinalStackProbed) 1131 .addImm(Val) 1132 .setMIFlag(MachineInstr::FrameSetup); 1133 1134 // The EFLAGS implicit def is dead. 1135 MI->getOperand(3).setIsDead(); 1136 1137 BuildMI(entryMBB, DL, 1138 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1139 .addReg(FinalStackProbed) 1140 .addReg(StackPtr) 1141 .setMIFlag(MachineInstr::FrameSetup); 1142 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1143 .addMBB(&MBB) 1144 .addImm(X86::COND_E) 1145 .setMIFlag(MachineInstr::FrameSetup); 1146 entryMBB->addSuccessor(headMBB); 1147 entryMBB->addSuccessor(&MBB); 1148 } 1149 1150 // Loop entry block 1151 1152 { 1153 const unsigned SUBOpc = 1154 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1155 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1156 .addReg(StackPtr) 1157 .addImm(StackProbeSize) 1158 .setMIFlag(MachineInstr::FrameSetup); 1159 1160 BuildMI(headMBB, DL, 1161 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1162 .addReg(FinalStackProbed) 1163 .addReg(StackPtr) 1164 .setMIFlag(MachineInstr::FrameSetup); 1165 1166 // jump 1167 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1168 .addMBB(footMBB) 1169 .addImm(X86::COND_B) 1170 .setMIFlag(MachineInstr::FrameSetup); 1171 1172 headMBB->addSuccessor(bodyMBB); 1173 headMBB->addSuccessor(footMBB); 1174 } 1175 1176 // setup loop body 1177 { 1178 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1179 .setMIFlag(MachineInstr::FrameSetup), 1180 StackPtr, false, 0) 1181 .addImm(0) 1182 .setMIFlag(MachineInstr::FrameSetup); 1183 1184 const unsigned SUBOpc = 1185 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1186 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1187 .addReg(StackPtr) 1188 .addImm(StackProbeSize) 1189 .setMIFlag(MachineInstr::FrameSetup); 1190 1191 // cmp with stack pointer bound 1192 BuildMI(bodyMBB, DL, 1193 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1194 .addReg(FinalStackProbed) 1195 .addReg(StackPtr) 1196 .setMIFlag(MachineInstr::FrameSetup); 1197 1198 // jump 1199 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1200 .addMBB(bodyMBB) 1201 .addImm(X86::COND_B) 1202 .setMIFlag(MachineInstr::FrameSetup); 1203 bodyMBB->addSuccessor(bodyMBB); 1204 bodyMBB->addSuccessor(footMBB); 1205 } 1206 1207 // setup loop footer 1208 { 1209 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1210 .addReg(FinalStackProbed) 1211 .setMIFlag(MachineInstr::FrameSetup); 1212 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1213 .setMIFlag(MachineInstr::FrameSetup), 1214 StackPtr, false, 0) 1215 .addImm(0) 1216 .setMIFlag(MachineInstr::FrameSetup); 1217 footMBB->addSuccessor(&MBB); 1218 } 1219 1220 recomputeLiveIns(*headMBB); 1221 recomputeLiveIns(*bodyMBB); 1222 recomputeLiveIns(*footMBB); 1223 recomputeLiveIns(MBB); 1224 } 1225 } else { 1226 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1227 .addReg(Reg) 1228 .addImm(Val) 1229 .setMIFlag(MachineInstr::FrameSetup); 1230 1231 // The EFLAGS implicit def is dead. 1232 MI->getOperand(3).setIsDead(); 1233 } 1234 } 1235 1236 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1237 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1238 // clobbered by any interrupt handler. 1239 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1240 "MF used frame lowering for wrong subtarget"); 1241 const Function &Fn = MF.getFunction(); 1242 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1243 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1244 } 1245 1246 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1247 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1248 } 1249 1250 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1251 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1252 } 1253 1254 /// emitPrologue - Push callee-saved registers onto the stack, which 1255 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1256 /// space for local variables. Also emit labels used by the exception handler to 1257 /// generate the exception handling frames. 1258 1259 /* 1260 Here's a gist of what gets emitted: 1261 1262 ; Establish frame pointer, if needed 1263 [if needs FP] 1264 push %rbp 1265 .cfi_def_cfa_offset 16 1266 .cfi_offset %rbp, -16 1267 .seh_pushreg %rpb 1268 mov %rsp, %rbp 1269 .cfi_def_cfa_register %rbp 1270 1271 ; Spill general-purpose registers 1272 [for all callee-saved GPRs] 1273 pushq %<reg> 1274 [if not needs FP] 1275 .cfi_def_cfa_offset (offset from RETADDR) 1276 .seh_pushreg %<reg> 1277 1278 ; If the required stack alignment > default stack alignment 1279 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1280 ; of unknown size in the stack frame. 1281 [if stack needs re-alignment] 1282 and $MASK, %rsp 1283 1284 ; Allocate space for locals 1285 [if target is Windows and allocated space > 4096 bytes] 1286 ; Windows needs special care for allocations larger 1287 ; than one page. 1288 mov $NNN, %rax 1289 call ___chkstk_ms/___chkstk 1290 sub %rax, %rsp 1291 [else] 1292 sub $NNN, %rsp 1293 1294 [if needs FP] 1295 .seh_stackalloc (size of XMM spill slots) 1296 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1297 [else] 1298 .seh_stackalloc NNN 1299 1300 ; Spill XMMs 1301 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1302 ; they may get spilled on any platform, if the current function 1303 ; calls @llvm.eh.unwind.init 1304 [if needs FP] 1305 [for all callee-saved XMM registers] 1306 movaps %<xmm reg>, -MMM(%rbp) 1307 [for all callee-saved XMM registers] 1308 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1309 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1310 [else] 1311 [for all callee-saved XMM registers] 1312 movaps %<xmm reg>, KKK(%rsp) 1313 [for all callee-saved XMM registers] 1314 .seh_savexmm %<xmm reg>, KKK 1315 1316 .seh_endprologue 1317 1318 [if needs base pointer] 1319 mov %rsp, %rbx 1320 [if needs to restore base pointer] 1321 mov %rsp, -MMM(%rbp) 1322 1323 ; Emit CFI info 1324 [if needs FP] 1325 [for all callee-saved registers] 1326 .cfi_offset %<reg>, (offset from %rbp) 1327 [else] 1328 .cfi_def_cfa_offset (offset from RETADDR) 1329 [for all callee-saved registers] 1330 .cfi_offset %<reg>, (offset from %rsp) 1331 1332 Notes: 1333 - .seh directives are emitted only for Windows 64 ABI 1334 - .cv_fpo directives are emitted on win32 when emitting CodeView 1335 - .cfi directives are emitted for all other ABIs 1336 - for 32-bit code, substitute %e?? registers for %r?? 1337 */ 1338 1339 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1340 MachineBasicBlock &MBB) const { 1341 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1342 "MF used frame lowering for wrong subtarget"); 1343 MachineBasicBlock::iterator MBBI = MBB.begin(); 1344 MachineFrameInfo &MFI = MF.getFrameInfo(); 1345 const Function &Fn = MF.getFunction(); 1346 MachineModuleInfo &MMI = MF.getMMI(); 1347 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1348 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1349 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1350 bool IsFunclet = MBB.isEHFuncletEntry(); 1351 EHPersonality Personality = EHPersonality::Unknown; 1352 if (Fn.hasPersonalityFn()) 1353 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1354 bool FnHasClrFunclet = 1355 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1356 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1357 bool HasFP = hasFP(MF); 1358 bool IsWin64Prologue = isWin64Prologue(MF); 1359 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1360 // FIXME: Emit FPO data for EH funclets. 1361 bool NeedsWinFPO = 1362 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1363 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1364 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1365 Register FramePtr = TRI->getFrameRegister(MF); 1366 const Register MachineFramePtr = 1367 STI.isTarget64BitILP32() 1368 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1369 Register BasePtr = TRI->getBaseRegister(); 1370 bool HasWinCFI = false; 1371 1372 // Debug location must be unknown since the first debug location is used 1373 // to determine the end of the prologue. 1374 DebugLoc DL; 1375 1376 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1377 // tail call. 1378 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1379 if (TailCallArgReserveSize && IsWin64Prologue) 1380 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1381 1382 const bool EmitStackProbeCall = 1383 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1384 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1385 1386 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1387 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1388 case SwiftAsyncFramePointerMode::DeploymentBased: 1389 if (STI.swiftAsyncContextIsDynamicallySet()) { 1390 // The special symbol below is absolute and has a *value* suitable to be 1391 // combined with the frame pointer directly. 1392 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1393 .addUse(MachineFramePtr) 1394 .addUse(X86::RIP) 1395 .addImm(1) 1396 .addUse(X86::NoRegister) 1397 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1398 X86II::MO_GOTPCREL) 1399 .addUse(X86::NoRegister); 1400 break; 1401 } 1402 LLVM_FALLTHROUGH; 1403 1404 case SwiftAsyncFramePointerMode::Always: 1405 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1406 .addUse(MachineFramePtr) 1407 .addImm(60) 1408 .setMIFlag(MachineInstr::FrameSetup); 1409 break; 1410 1411 case SwiftAsyncFramePointerMode::Never: 1412 break; 1413 } 1414 } 1415 1416 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1417 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1418 // stack alignment. 1419 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1420 Fn.arg_size() == 2) { 1421 StackSize += 8; 1422 MFI.setStackSize(StackSize); 1423 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1424 } 1425 1426 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1427 // function, and use up to 128 bytes of stack space, don't have a frame 1428 // pointer, calls, or dynamic alloca then we do not need to adjust the 1429 // stack pointer (we fit in the Red Zone). We also check that we don't 1430 // push and pop from the stack. 1431 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1432 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1433 !MFI.adjustsStack() && // No calls. 1434 !EmitStackProbeCall && // No stack probes. 1435 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1436 !MF.shouldSplitStack()) { // Regular stack 1437 uint64_t MinSize = 1438 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1439 if (HasFP) MinSize += SlotSize; 1440 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1441 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1442 MFI.setStackSize(StackSize); 1443 } 1444 1445 // Insert stack pointer adjustment for later moving of return addr. Only 1446 // applies to tail call optimized functions where the callee argument stack 1447 // size is bigger than the callers. 1448 if (TailCallArgReserveSize != 0) { 1449 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1450 /*InEpilogue=*/false) 1451 .setMIFlag(MachineInstr::FrameSetup); 1452 } 1453 1454 // Mapping for machine moves: 1455 // 1456 // DST: VirtualFP AND 1457 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1458 // ELSE => DW_CFA_def_cfa 1459 // 1460 // SRC: VirtualFP AND 1461 // DST: Register => DW_CFA_def_cfa_register 1462 // 1463 // ELSE 1464 // OFFSET < 0 => DW_CFA_offset_extended_sf 1465 // REG < 64 => DW_CFA_offset + Reg 1466 // ELSE => DW_CFA_offset_extended 1467 1468 uint64_t NumBytes = 0; 1469 int stackGrowth = -SlotSize; 1470 1471 // Find the funclet establisher parameter 1472 Register Establisher = X86::NoRegister; 1473 if (IsClrFunclet) 1474 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1475 else if (IsFunclet) 1476 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1477 1478 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1479 // Immediately spill establisher into the home slot. 1480 // The runtime cares about this. 1481 // MOV64mr %rdx, 16(%rsp) 1482 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1483 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1484 .addReg(Establisher) 1485 .setMIFlag(MachineInstr::FrameSetup); 1486 MBB.addLiveIn(Establisher); 1487 } 1488 1489 if (HasFP) { 1490 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1491 1492 // Calculate required stack adjustment. 1493 uint64_t FrameSize = StackSize - SlotSize; 1494 // If required, include space for extra hidden slot for stashing base pointer. 1495 if (X86FI->getRestoreBasePointer()) 1496 FrameSize += SlotSize; 1497 1498 NumBytes = FrameSize - 1499 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1500 1501 // Callee-saved registers are pushed on stack before the stack is realigned. 1502 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1503 NumBytes = alignTo(NumBytes, MaxAlign); 1504 1505 // Save EBP/RBP into the appropriate stack slot. 1506 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1507 .addReg(MachineFramePtr, RegState::Kill) 1508 .setMIFlag(MachineInstr::FrameSetup); 1509 1510 if (NeedsDwarfCFI) { 1511 // Mark the place where EBP/RBP was saved. 1512 // Define the current CFA rule to use the provided offset. 1513 assert(StackSize); 1514 BuildCFI(MBB, MBBI, DL, 1515 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1516 1517 // Change the rule for the FramePtr to be an "offset" rule. 1518 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1519 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1520 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1521 } 1522 1523 if (NeedsWinCFI) { 1524 HasWinCFI = true; 1525 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1526 .addImm(FramePtr) 1527 .setMIFlag(MachineInstr::FrameSetup); 1528 } 1529 1530 if (!IsFunclet) { 1531 if (X86FI->hasSwiftAsyncContext()) { 1532 const auto &Attrs = MF.getFunction().getAttributes(); 1533 1534 // Before we update the live frame pointer we have to ensure there's a 1535 // valid (or null) asynchronous context in its slot just before FP in 1536 // the frame record, so store it now. 1537 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1538 // We have an initial context in r14, store it just before the frame 1539 // pointer. 1540 MBB.addLiveIn(X86::R14); 1541 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1542 .addReg(X86::R14) 1543 .setMIFlag(MachineInstr::FrameSetup); 1544 } else { 1545 // No initial context, store null so that there's no pointer that 1546 // could be misused. 1547 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1548 .addImm(0) 1549 .setMIFlag(MachineInstr::FrameSetup); 1550 } 1551 1552 if (NeedsWinCFI) { 1553 HasWinCFI = true; 1554 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1555 .addImm(X86::R14) 1556 .setMIFlag(MachineInstr::FrameSetup); 1557 } 1558 1559 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1560 .addUse(X86::RSP) 1561 .addImm(1) 1562 .addUse(X86::NoRegister) 1563 .addImm(8) 1564 .addUse(X86::NoRegister) 1565 .setMIFlag(MachineInstr::FrameSetup); 1566 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1567 .addUse(X86::RSP) 1568 .addImm(8) 1569 .setMIFlag(MachineInstr::FrameSetup); 1570 } 1571 1572 if (!IsWin64Prologue && !IsFunclet) { 1573 // Update EBP with the new base value. 1574 if (!X86FI->hasSwiftAsyncContext()) 1575 BuildMI(MBB, MBBI, DL, 1576 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1577 FramePtr) 1578 .addReg(StackPtr) 1579 .setMIFlag(MachineInstr::FrameSetup); 1580 1581 if (NeedsDwarfCFI) { 1582 // Mark effective beginning of when frame pointer becomes valid. 1583 // Define the current CFA to use the EBP/RBP register. 1584 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1585 BuildCFI( 1586 MBB, MBBI, DL, 1587 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1588 } 1589 1590 if (NeedsWinFPO) { 1591 // .cv_fpo_setframe $FramePtr 1592 HasWinCFI = true; 1593 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1594 .addImm(FramePtr) 1595 .addImm(0) 1596 .setMIFlag(MachineInstr::FrameSetup); 1597 } 1598 } 1599 } 1600 } else { 1601 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1602 NumBytes = StackSize - 1603 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1604 } 1605 1606 // Update the offset adjustment, which is mainly used by codeview to translate 1607 // from ESP to VFRAME relative local variable offsets. 1608 if (!IsFunclet) { 1609 if (HasFP && TRI->hasStackRealignment(MF)) 1610 MFI.setOffsetAdjustment(-NumBytes); 1611 else 1612 MFI.setOffsetAdjustment(-StackSize); 1613 } 1614 1615 // For EH funclets, only allocate enough space for outgoing calls. Save the 1616 // NumBytes value that we would've used for the parent frame. 1617 unsigned ParentFrameNumBytes = NumBytes; 1618 if (IsFunclet) 1619 NumBytes = getWinEHFuncletFrameSize(MF); 1620 1621 // Skip the callee-saved push instructions. 1622 bool PushedRegs = false; 1623 int StackOffset = 2 * stackGrowth; 1624 1625 while (MBBI != MBB.end() && 1626 MBBI->getFlag(MachineInstr::FrameSetup) && 1627 (MBBI->getOpcode() == X86::PUSH32r || 1628 MBBI->getOpcode() == X86::PUSH64r)) { 1629 PushedRegs = true; 1630 Register Reg = MBBI->getOperand(0).getReg(); 1631 ++MBBI; 1632 1633 if (!HasFP && NeedsDwarfCFI) { 1634 // Mark callee-saved push instruction. 1635 // Define the current CFA rule to use the provided offset. 1636 assert(StackSize); 1637 BuildCFI(MBB, MBBI, DL, 1638 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1639 StackOffset += stackGrowth; 1640 } 1641 1642 if (NeedsWinCFI) { 1643 HasWinCFI = true; 1644 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1645 .addImm(Reg) 1646 .setMIFlag(MachineInstr::FrameSetup); 1647 } 1648 } 1649 1650 // Realign stack after we pushed callee-saved registers (so that we'll be 1651 // able to calculate their offsets from the frame pointer). 1652 // Don't do this for Win64, it needs to realign the stack after the prologue. 1653 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1654 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1655 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1656 1657 if (NeedsWinCFI) { 1658 HasWinCFI = true; 1659 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1660 .addImm(MaxAlign) 1661 .setMIFlag(MachineInstr::FrameSetup); 1662 } 1663 } 1664 1665 // If there is an SUB32ri of ESP immediately before this instruction, merge 1666 // the two. This can be the case when tail call elimination is enabled and 1667 // the callee has more arguments then the caller. 1668 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1669 1670 // Adjust stack pointer: ESP -= numbytes. 1671 1672 // Windows and cygwin/mingw require a prologue helper routine when allocating 1673 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1674 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1675 // stack and adjust the stack pointer in one go. The 64-bit version of 1676 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1677 // responsible for adjusting the stack pointer. Touching the stack at 4K 1678 // increments is necessary to ensure that the guard pages used by the OS 1679 // virtual memory manager are allocated in correct sequence. 1680 uint64_t AlignedNumBytes = NumBytes; 1681 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1682 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1683 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1684 assert(!X86FI->getUsesRedZone() && 1685 "The Red Zone is not accounted for in stack probes"); 1686 1687 // Check whether EAX is livein for this block. 1688 bool isEAXAlive = isEAXLiveIn(MBB); 1689 1690 if (isEAXAlive) { 1691 if (Is64Bit) { 1692 // Save RAX 1693 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1694 .addReg(X86::RAX, RegState::Kill) 1695 .setMIFlag(MachineInstr::FrameSetup); 1696 } else { 1697 // Save EAX 1698 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1699 .addReg(X86::EAX, RegState::Kill) 1700 .setMIFlag(MachineInstr::FrameSetup); 1701 } 1702 } 1703 1704 if (Is64Bit) { 1705 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1706 // Function prologue is responsible for adjusting the stack pointer. 1707 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1708 if (isUInt<32>(Alloc)) { 1709 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1710 .addImm(Alloc) 1711 .setMIFlag(MachineInstr::FrameSetup); 1712 } else if (isInt<32>(Alloc)) { 1713 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1714 .addImm(Alloc) 1715 .setMIFlag(MachineInstr::FrameSetup); 1716 } else { 1717 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1718 .addImm(Alloc) 1719 .setMIFlag(MachineInstr::FrameSetup); 1720 } 1721 } else { 1722 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1723 // We'll also use 4 already allocated bytes for EAX. 1724 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1725 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1726 .setMIFlag(MachineInstr::FrameSetup); 1727 } 1728 1729 // Call __chkstk, __chkstk_ms, or __alloca. 1730 emitStackProbe(MF, MBB, MBBI, DL, true); 1731 1732 if (isEAXAlive) { 1733 // Restore RAX/EAX 1734 MachineInstr *MI; 1735 if (Is64Bit) 1736 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1737 StackPtr, false, NumBytes - 8); 1738 else 1739 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1740 StackPtr, false, NumBytes - 4); 1741 MI->setFlag(MachineInstr::FrameSetup); 1742 MBB.insert(MBBI, MI); 1743 } 1744 } else if (NumBytes) { 1745 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1746 } 1747 1748 if (NeedsWinCFI && NumBytes) { 1749 HasWinCFI = true; 1750 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1751 .addImm(NumBytes) 1752 .setMIFlag(MachineInstr::FrameSetup); 1753 } 1754 1755 int SEHFrameOffset = 0; 1756 unsigned SPOrEstablisher; 1757 if (IsFunclet) { 1758 if (IsClrFunclet) { 1759 // The establisher parameter passed to a CLR funclet is actually a pointer 1760 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1761 // to find the root function establisher frame by loading the PSPSym from 1762 // the intermediate frame. 1763 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1764 MachinePointerInfo NoInfo; 1765 MBB.addLiveIn(Establisher); 1766 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1767 Establisher, false, PSPSlotOffset) 1768 .addMemOperand(MF.getMachineMemOperand( 1769 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1770 ; 1771 // Save the root establisher back into the current funclet's (mostly 1772 // empty) frame, in case a sub-funclet or the GC needs it. 1773 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1774 false, PSPSlotOffset) 1775 .addReg(Establisher) 1776 .addMemOperand(MF.getMachineMemOperand( 1777 NoInfo, 1778 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1779 SlotSize, Align(SlotSize))); 1780 } 1781 SPOrEstablisher = Establisher; 1782 } else { 1783 SPOrEstablisher = StackPtr; 1784 } 1785 1786 if (IsWin64Prologue && HasFP) { 1787 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1788 // this calculation on the incoming establisher, which holds the value of 1789 // RSP from the parent frame at the end of the prologue. 1790 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1791 if (SEHFrameOffset) 1792 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1793 SPOrEstablisher, false, SEHFrameOffset); 1794 else 1795 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1796 .addReg(SPOrEstablisher); 1797 1798 // If this is not a funclet, emit the CFI describing our frame pointer. 1799 if (NeedsWinCFI && !IsFunclet) { 1800 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1801 HasWinCFI = true; 1802 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1803 .addImm(FramePtr) 1804 .addImm(SEHFrameOffset) 1805 .setMIFlag(MachineInstr::FrameSetup); 1806 if (isAsynchronousEHPersonality(Personality)) 1807 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1808 } 1809 } else if (IsFunclet && STI.is32Bit()) { 1810 // Reset EBP / ESI to something good for funclets. 1811 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1812 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1813 // into the registration node so that the runtime will restore it for us. 1814 if (!MBB.isCleanupFuncletEntry()) { 1815 assert(Personality == EHPersonality::MSVC_CXX); 1816 Register FrameReg; 1817 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1818 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1819 // ESP is the first field, so no extra displacement is needed. 1820 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1821 false, EHRegOffset) 1822 .addReg(X86::ESP); 1823 } 1824 } 1825 1826 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1827 const MachineInstr &FrameInstr = *MBBI; 1828 ++MBBI; 1829 1830 if (NeedsWinCFI) { 1831 int FI; 1832 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1833 if (X86::FR64RegClass.contains(Reg)) { 1834 int Offset; 1835 Register IgnoredFrameReg; 1836 if (IsWin64Prologue && IsFunclet) 1837 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1838 else 1839 Offset = 1840 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1841 SEHFrameOffset; 1842 1843 HasWinCFI = true; 1844 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1845 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1846 .addImm(Reg) 1847 .addImm(Offset) 1848 .setMIFlag(MachineInstr::FrameSetup); 1849 } 1850 } 1851 } 1852 } 1853 1854 if (NeedsWinCFI && HasWinCFI) 1855 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1856 .setMIFlag(MachineInstr::FrameSetup); 1857 1858 if (FnHasClrFunclet && !IsFunclet) { 1859 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1860 // immediately after the prolog) into the PSPSlot so that funclets 1861 // and the GC can recover it. 1862 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1863 auto PSPInfo = MachinePointerInfo::getFixedStack( 1864 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1865 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1866 PSPSlotOffset) 1867 .addReg(StackPtr) 1868 .addMemOperand(MF.getMachineMemOperand( 1869 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1870 SlotSize, Align(SlotSize))); 1871 } 1872 1873 // Realign stack after we spilled callee-saved registers (so that we'll be 1874 // able to calculate their offsets from the frame pointer). 1875 // Win64 requires aligning the stack after the prologue. 1876 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 1877 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1878 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1879 } 1880 1881 // We already dealt with stack realignment and funclets above. 1882 if (IsFunclet && STI.is32Bit()) 1883 return; 1884 1885 // If we need a base pointer, set it up here. It's whatever the value 1886 // of the stack pointer is at this point. Any variable size objects 1887 // will be allocated after this, so we can still use the base pointer 1888 // to reference locals. 1889 if (TRI->hasBasePointer(MF)) { 1890 // Update the base pointer with the current stack pointer. 1891 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1892 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1893 .addReg(SPOrEstablisher) 1894 .setMIFlag(MachineInstr::FrameSetup); 1895 if (X86FI->getRestoreBasePointer()) { 1896 // Stash value of base pointer. Saving RSP instead of EBP shortens 1897 // dependence chain. Used by SjLj EH. 1898 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1899 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1900 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1901 .addReg(SPOrEstablisher) 1902 .setMIFlag(MachineInstr::FrameSetup); 1903 } 1904 1905 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1906 // Stash the value of the frame pointer relative to the base pointer for 1907 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1908 // it recovers the frame pointer from the base pointer rather than the 1909 // other way around. 1910 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1911 Register UsedReg; 1912 int Offset = 1913 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1914 .getFixed(); 1915 assert(UsedReg == BasePtr); 1916 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1917 .addReg(FramePtr) 1918 .setMIFlag(MachineInstr::FrameSetup); 1919 } 1920 } 1921 1922 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1923 // Mark end of stack pointer adjustment. 1924 if (!HasFP && NumBytes) { 1925 // Define the current CFA rule to use the provided offset. 1926 assert(StackSize); 1927 BuildCFI( 1928 MBB, MBBI, DL, 1929 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1930 } 1931 1932 // Emit DWARF info specifying the offsets of the callee-saved registers. 1933 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1934 } 1935 1936 // X86 Interrupt handling function cannot assume anything about the direction 1937 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1938 // in each prologue of interrupt handler function. 1939 // 1940 // FIXME: Create "cld" instruction only in these cases: 1941 // 1. The interrupt handling function uses any of the "rep" instructions. 1942 // 2. Interrupt handling function calls another function. 1943 // 1944 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1945 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1946 .setMIFlag(MachineInstr::FrameSetup); 1947 1948 // At this point we know if the function has WinCFI or not. 1949 MF.setHasWinCFI(HasWinCFI); 1950 } 1951 1952 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1953 const MachineFunction &MF) const { 1954 // We can't use LEA instructions for adjusting the stack pointer if we don't 1955 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1956 // to deallocate the stack. 1957 // This means that we can use LEA for SP in two situations: 1958 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1959 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1960 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1961 } 1962 1963 static bool isFuncletReturnInstr(MachineInstr &MI) { 1964 switch (MI.getOpcode()) { 1965 case X86::CATCHRET: 1966 case X86::CLEANUPRET: 1967 return true; 1968 default: 1969 return false; 1970 } 1971 llvm_unreachable("impossible"); 1972 } 1973 1974 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1975 // stack. It holds a pointer to the bottom of the root function frame. The 1976 // establisher frame pointer passed to a nested funclet may point to the 1977 // (mostly empty) frame of its parent funclet, but it will need to find 1978 // the frame of the root function to access locals. To facilitate this, 1979 // every funclet copies the pointer to the bottom of the root function 1980 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1981 // same offset for the PSPSym in the root function frame that's used in the 1982 // funclets' frames allows each funclet to dynamically accept any ancestor 1983 // frame as its establisher argument (the runtime doesn't guarantee the 1984 // immediate parent for some reason lost to history), and also allows the GC, 1985 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1986 // frame with only a single offset reported for the entire method. 1987 unsigned 1988 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1989 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1990 Register SPReg; 1991 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1992 /*IgnoreSPUpdates*/ true) 1993 .getFixed(); 1994 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1995 return static_cast<unsigned>(Offset); 1996 } 1997 1998 unsigned 1999 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2000 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2001 // This is the size of the pushed CSRs. 2002 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2003 // This is the size of callee saved XMMs. 2004 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2005 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2006 TRI->getSpillSize(X86::VR128RegClass); 2007 // This is the amount of stack a funclet needs to allocate. 2008 unsigned UsedSize; 2009 EHPersonality Personality = 2010 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2011 if (Personality == EHPersonality::CoreCLR) { 2012 // CLR funclets need to hold enough space to include the PSPSym, at the 2013 // same offset from the stack pointer (immediately after the prolog) as it 2014 // resides at in the main function. 2015 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2016 } else { 2017 // Other funclets just need enough stack for outgoing call arguments. 2018 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2019 } 2020 // RBP is not included in the callee saved register block. After pushing RBP, 2021 // everything is 16 byte aligned. Everything we allocate before an outgoing 2022 // call must also be 16 byte aligned. 2023 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2024 // Subtract out the size of the callee saved registers. This is how much stack 2025 // each funclet will allocate. 2026 return FrameSizeMinusRBP + XMMSize - CSSize; 2027 } 2028 2029 static bool isTailCallOpcode(unsigned Opc) { 2030 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2031 Opc == X86::TCRETURNmi || 2032 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2033 Opc == X86::TCRETURNmi64; 2034 } 2035 2036 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2037 MachineBasicBlock &MBB) const { 2038 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2039 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2040 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2041 MachineBasicBlock::iterator MBBI = Terminator; 2042 DebugLoc DL; 2043 if (MBBI != MBB.end()) 2044 DL = MBBI->getDebugLoc(); 2045 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2046 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2047 Register FramePtr = TRI->getFrameRegister(MF); 2048 Register MachineFramePtr = 2049 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2050 2051 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2052 bool NeedsWin64CFI = 2053 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2054 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2055 2056 // Get the number of bytes to allocate from the FrameInfo. 2057 uint64_t StackSize = MFI.getStackSize(); 2058 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2059 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2060 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2061 bool HasFP = hasFP(MF); 2062 uint64_t NumBytes = 0; 2063 2064 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2065 !MF.getTarget().getTargetTriple().isOSWindows()) && 2066 MF.needsFrameMoves(); 2067 2068 if (IsFunclet) { 2069 assert(HasFP && "EH funclets without FP not yet implemented"); 2070 NumBytes = getWinEHFuncletFrameSize(MF); 2071 } else if (HasFP) { 2072 // Calculate required stack adjustment. 2073 uint64_t FrameSize = StackSize - SlotSize; 2074 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2075 2076 // Callee-saved registers were pushed on stack before the stack was 2077 // realigned. 2078 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2079 NumBytes = alignTo(FrameSize, MaxAlign); 2080 } else { 2081 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2082 } 2083 uint64_t SEHStackAllocAmt = NumBytes; 2084 2085 // AfterPop is the position to insert .cfi_restore. 2086 MachineBasicBlock::iterator AfterPop = MBBI; 2087 if (HasFP) { 2088 if (X86FI->hasSwiftAsyncContext()) { 2089 // Discard the context. 2090 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2091 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2092 } 2093 // Pop EBP. 2094 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2095 MachineFramePtr) 2096 .setMIFlag(MachineInstr::FrameDestroy); 2097 2098 // We need to reset FP to its untagged state on return. Bit 60 is currently 2099 // used to show the presence of an extended frame. 2100 if (X86FI->hasSwiftAsyncContext()) { 2101 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2102 MachineFramePtr) 2103 .addUse(MachineFramePtr) 2104 .addImm(60) 2105 .setMIFlag(MachineInstr::FrameDestroy); 2106 } 2107 2108 if (NeedsDwarfCFI) { 2109 unsigned DwarfStackPtr = 2110 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2111 BuildCFI(MBB, MBBI, DL, 2112 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2113 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2114 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2115 BuildCFI(MBB, AfterPop, DL, 2116 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2117 --MBBI; 2118 --AfterPop; 2119 } 2120 --MBBI; 2121 } 2122 } 2123 2124 MachineBasicBlock::iterator FirstCSPop = MBBI; 2125 // Skip the callee-saved pop instructions. 2126 while (MBBI != MBB.begin()) { 2127 MachineBasicBlock::iterator PI = std::prev(MBBI); 2128 unsigned Opc = PI->getOpcode(); 2129 2130 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2131 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2132 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2133 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2134 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2135 break; 2136 FirstCSPop = PI; 2137 } 2138 2139 --MBBI; 2140 } 2141 MBBI = FirstCSPop; 2142 2143 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2144 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2145 2146 if (MBBI != MBB.end()) 2147 DL = MBBI->getDebugLoc(); 2148 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2149 // instruction, merge the two instructions. 2150 if (NumBytes || MFI.hasVarSizedObjects()) 2151 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2152 2153 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2154 // slot before popping them off! Same applies for the case, when stack was 2155 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2156 // will not do realignment or dynamic stack allocation. 2157 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2158 !IsFunclet) { 2159 if (TRI->hasStackRealignment(MF)) 2160 MBBI = FirstCSPop; 2161 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2162 uint64_t LEAAmount = 2163 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2164 2165 if (X86FI->hasSwiftAsyncContext()) 2166 LEAAmount -= 16; 2167 2168 // There are only two legal forms of epilogue: 2169 // - add SEHAllocationSize, %rsp 2170 // - lea SEHAllocationSize(%FramePtr), %rsp 2171 // 2172 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2173 // However, we may use this sequence if we have a frame pointer because the 2174 // effects of the prologue can safely be undone. 2175 if (LEAAmount != 0) { 2176 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2177 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2178 FramePtr, false, LEAAmount); 2179 --MBBI; 2180 } else { 2181 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2182 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2183 .addReg(FramePtr); 2184 --MBBI; 2185 } 2186 } else if (NumBytes) { 2187 // Adjust stack pointer back: ESP += numbytes. 2188 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2189 if (!HasFP && NeedsDwarfCFI) { 2190 // Define the current CFA rule to use the provided offset. 2191 BuildCFI(MBB, MBBI, DL, 2192 MCCFIInstruction::cfiDefCfaOffset( 2193 nullptr, CSSize + TailCallArgReserveSize + SlotSize)); 2194 } 2195 --MBBI; 2196 } 2197 2198 // Windows unwinder will not invoke function's exception handler if IP is 2199 // either in prologue or in epilogue. This behavior causes a problem when a 2200 // call immediately precedes an epilogue, because the return address points 2201 // into the epilogue. To cope with that, we insert an epilogue marker here, 2202 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2203 // final emitted code. 2204 if (NeedsWin64CFI && MF.hasWinCFI()) 2205 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2206 2207 if (!HasFP && NeedsDwarfCFI) { 2208 MBBI = FirstCSPop; 2209 int64_t Offset = -CSSize - SlotSize; 2210 // Mark callee-saved pop instruction. 2211 // Define the current CFA rule to use the provided offset. 2212 while (MBBI != MBB.end()) { 2213 MachineBasicBlock::iterator PI = MBBI; 2214 unsigned Opc = PI->getOpcode(); 2215 ++MBBI; 2216 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2217 Offset += SlotSize; 2218 BuildCFI(MBB, MBBI, DL, 2219 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2220 } 2221 } 2222 } 2223 2224 // Emit DWARF info specifying the restores of the callee-saved registers. 2225 // For epilogue with return inside or being other block without successor, 2226 // no need to generate .cfi_restore for callee-saved registers. 2227 if (NeedsDwarfCFI && !MBB.succ_empty()) 2228 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2229 2230 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2231 // Add the return addr area delta back since we are not tail calling. 2232 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2233 assert(Offset >= 0 && "TCDelta should never be positive"); 2234 if (Offset) { 2235 // Check for possible merge with preceding ADD instruction. 2236 Offset += mergeSPUpdates(MBB, Terminator, true); 2237 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2238 } 2239 } 2240 2241 // Emit tilerelease for AMX kernel. 2242 if (X86FI->hasVirtualTileReg()) 2243 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2244 } 2245 2246 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2247 int FI, 2248 Register &FrameReg) const { 2249 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2250 2251 bool IsFixed = MFI.isFixedObjectIndex(FI); 2252 // We can't calculate offset from frame pointer if the stack is realigned, 2253 // so enforce usage of stack/base pointer. The base pointer is used when we 2254 // have dynamic allocas in addition to dynamic realignment. 2255 if (TRI->hasBasePointer(MF)) 2256 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2257 else if (TRI->hasStackRealignment(MF)) 2258 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2259 else 2260 FrameReg = TRI->getFrameRegister(MF); 2261 2262 // Offset will hold the offset from the stack pointer at function entry to the 2263 // object. 2264 // We need to factor in additional offsets applied during the prologue to the 2265 // frame, base, and stack pointer depending on which is used. 2266 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2267 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2268 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2269 uint64_t StackSize = MFI.getStackSize(); 2270 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2271 int64_t FPDelta = 0; 2272 2273 // In an x86 interrupt, remove the offset we added to account for the return 2274 // address from any stack object allocated in the caller's frame. Interrupts 2275 // do not have a standard return address. Fixed objects in the current frame, 2276 // such as SSE register spills, should not get this treatment. 2277 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2278 Offset >= 0) { 2279 Offset += getOffsetOfLocalArea(); 2280 } 2281 2282 if (IsWin64Prologue) { 2283 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2284 2285 // Calculate required stack adjustment. 2286 uint64_t FrameSize = StackSize - SlotSize; 2287 // If required, include space for extra hidden slot for stashing base pointer. 2288 if (X86FI->getRestoreBasePointer()) 2289 FrameSize += SlotSize; 2290 uint64_t NumBytes = FrameSize - CSSize; 2291 2292 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2293 if (FI && FI == X86FI->getFAIndex()) 2294 return StackOffset::getFixed(-SEHFrameOffset); 2295 2296 // FPDelta is the offset from the "traditional" FP location of the old base 2297 // pointer followed by return address and the location required by the 2298 // restricted Win64 prologue. 2299 // Add FPDelta to all offsets below that go through the frame pointer. 2300 FPDelta = FrameSize - SEHFrameOffset; 2301 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2302 "FPDelta isn't aligned per the Win64 ABI!"); 2303 } 2304 2305 if (FrameReg == TRI->getFramePtr()) { 2306 // Skip saved EBP/RBP 2307 Offset += SlotSize; 2308 2309 // Account for restricted Windows prologue. 2310 Offset += FPDelta; 2311 2312 // Skip the RETADDR move area 2313 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2314 if (TailCallReturnAddrDelta < 0) 2315 Offset -= TailCallReturnAddrDelta; 2316 2317 return StackOffset::getFixed(Offset); 2318 } 2319 2320 // FrameReg is either the stack pointer or a base pointer. But the base is 2321 // located at the end of the statically known StackSize so the distinction 2322 // doesn't really matter. 2323 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2324 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2325 return StackOffset::getFixed(Offset + StackSize); 2326 } 2327 2328 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2329 Register &FrameReg) const { 2330 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2331 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2332 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2333 const auto it = WinEHXMMSlotInfo.find(FI); 2334 2335 if (it == WinEHXMMSlotInfo.end()) 2336 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2337 2338 FrameReg = TRI->getStackRegister(); 2339 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2340 it->second; 2341 } 2342 2343 StackOffset 2344 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2345 Register &FrameReg, 2346 int Adjustment) const { 2347 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2348 FrameReg = TRI->getStackRegister(); 2349 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2350 getOffsetOfLocalArea() + Adjustment); 2351 } 2352 2353 StackOffset 2354 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2355 int FI, Register &FrameReg, 2356 bool IgnoreSPUpdates) const { 2357 2358 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2359 // Does not include any dynamic realign. 2360 const uint64_t StackSize = MFI.getStackSize(); 2361 // LLVM arranges the stack as follows: 2362 // ... 2363 // ARG2 2364 // ARG1 2365 // RETADDR 2366 // PUSH RBP <-- RBP points here 2367 // PUSH CSRs 2368 // ~~~~~~~ <-- possible stack realignment (non-win64) 2369 // ... 2370 // STACK OBJECTS 2371 // ... <-- RSP after prologue points here 2372 // ~~~~~~~ <-- possible stack realignment (win64) 2373 // 2374 // if (hasVarSizedObjects()): 2375 // ... <-- "base pointer" (ESI/RBX) points here 2376 // DYNAMIC ALLOCAS 2377 // ... <-- RSP points here 2378 // 2379 // Case 1: In the simple case of no stack realignment and no dynamic 2380 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2381 // with fixed offsets from RSP. 2382 // 2383 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2384 // stack objects are addressed with RBP and regular stack objects with RSP. 2385 // 2386 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2387 // to address stack arguments for outgoing calls and nothing else. The "base 2388 // pointer" points to local variables, and RBP points to fixed objects. 2389 // 2390 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2391 // answer we give is relative to the SP after the prologue, and not the 2392 // SP in the middle of the function. 2393 2394 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2395 !STI.isTargetWin64()) 2396 return getFrameIndexReference(MF, FI, FrameReg); 2397 2398 // If !hasReservedCallFrame the function might have SP adjustement in the 2399 // body. So, even though the offset is statically known, it depends on where 2400 // we are in the function. 2401 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2402 return getFrameIndexReference(MF, FI, FrameReg); 2403 2404 // We don't handle tail calls, and shouldn't be seeing them either. 2405 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2406 "we don't handle this case!"); 2407 2408 // This is how the math works out: 2409 // 2410 // %rsp grows (i.e. gets lower) left to right. Each box below is 2411 // one word (eight bytes). Obj0 is the stack slot we're trying to 2412 // get to. 2413 // 2414 // ---------------------------------- 2415 // | BP | Obj0 | Obj1 | ... | ObjN | 2416 // ---------------------------------- 2417 // ^ ^ ^ ^ 2418 // A B C E 2419 // 2420 // A is the incoming stack pointer. 2421 // (B - A) is the local area offset (-8 for x86-64) [1] 2422 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2423 // 2424 // |(E - B)| is the StackSize (absolute value, positive). For a 2425 // stack that grown down, this works out to be (B - E). [3] 2426 // 2427 // E is also the value of %rsp after stack has been set up, and we 2428 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2429 // (C - E) == (C - A) - (B - A) + (B - E) 2430 // { Using [1], [2] and [3] above } 2431 // == getObjectOffset - LocalAreaOffset + StackSize 2432 2433 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2434 } 2435 2436 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2437 MachineFunction &MF, const TargetRegisterInfo *TRI, 2438 std::vector<CalleeSavedInfo> &CSI) const { 2439 MachineFrameInfo &MFI = MF.getFrameInfo(); 2440 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2441 2442 unsigned CalleeSavedFrameSize = 0; 2443 unsigned XMMCalleeSavedFrameSize = 0; 2444 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2445 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2446 2447 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2448 2449 if (TailCallReturnAddrDelta < 0) { 2450 // create RETURNADDR area 2451 // arg 2452 // arg 2453 // RETADDR 2454 // { ... 2455 // RETADDR area 2456 // ... 2457 // } 2458 // [EBP] 2459 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2460 TailCallReturnAddrDelta - SlotSize, true); 2461 } 2462 2463 // Spill the BasePtr if it's used. 2464 if (this->TRI->hasBasePointer(MF)) { 2465 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2466 if (MF.hasEHFunclets()) { 2467 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2468 X86FI->setHasSEHFramePtrSave(true); 2469 X86FI->setSEHFramePtrSaveIndex(FI); 2470 } 2471 } 2472 2473 if (hasFP(MF)) { 2474 // emitPrologue always spills frame register the first thing. 2475 SpillSlotOffset -= SlotSize; 2476 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2477 2478 // The async context lives directly before the frame pointer, and we 2479 // allocate a second slot to preserve stack alignment. 2480 if (X86FI->hasSwiftAsyncContext()) { 2481 SpillSlotOffset -= SlotSize; 2482 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2483 SpillSlotOffset -= SlotSize; 2484 } 2485 2486 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2487 // the frame register, we can delete it from CSI list and not have to worry 2488 // about avoiding it later. 2489 Register FPReg = TRI->getFrameRegister(MF); 2490 for (unsigned i = 0; i < CSI.size(); ++i) { 2491 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2492 CSI.erase(CSI.begin() + i); 2493 break; 2494 } 2495 } 2496 } 2497 2498 // Assign slots for GPRs. It increases frame size. 2499 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2500 unsigned Reg = I.getReg(); 2501 2502 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2503 continue; 2504 2505 SpillSlotOffset -= SlotSize; 2506 CalleeSavedFrameSize += SlotSize; 2507 2508 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2509 I.setFrameIdx(SlotIndex); 2510 } 2511 2512 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2513 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2514 2515 // Assign slots for XMMs. 2516 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2517 unsigned Reg = I.getReg(); 2518 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2519 continue; 2520 2521 // If this is k-register make sure we lookup via the largest legal type. 2522 MVT VT = MVT::Other; 2523 if (X86::VK16RegClass.contains(Reg)) 2524 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2525 2526 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2527 unsigned Size = TRI->getSpillSize(*RC); 2528 Align Alignment = TRI->getSpillAlign(*RC); 2529 // ensure alignment 2530 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2531 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2532 2533 // spill into slot 2534 SpillSlotOffset -= Size; 2535 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2536 I.setFrameIdx(SlotIndex); 2537 MFI.ensureMaxAlignment(Alignment); 2538 2539 // Save the start offset and size of XMM in stack frame for funclets. 2540 if (X86::VR128RegClass.contains(Reg)) { 2541 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2542 XMMCalleeSavedFrameSize += Size; 2543 } 2544 } 2545 2546 return true; 2547 } 2548 2549 bool X86FrameLowering::spillCalleeSavedRegisters( 2550 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2551 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2552 DebugLoc DL = MBB.findDebugLoc(MI); 2553 2554 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2555 // for us, and there are no XMM CSRs on Win32. 2556 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2557 return true; 2558 2559 // Push GPRs. It increases frame size. 2560 const MachineFunction &MF = *MBB.getParent(); 2561 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2562 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2563 unsigned Reg = I.getReg(); 2564 2565 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2566 continue; 2567 2568 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2569 bool isLiveIn = MRI.isLiveIn(Reg); 2570 if (!isLiveIn) 2571 MBB.addLiveIn(Reg); 2572 2573 // Decide whether we can add a kill flag to the use. 2574 bool CanKill = !isLiveIn; 2575 // Check if any subregister is live-in 2576 if (CanKill) { 2577 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2578 if (MRI.isLiveIn(*AReg)) { 2579 CanKill = false; 2580 break; 2581 } 2582 } 2583 } 2584 2585 // Do not set a kill flag on values that are also marked as live-in. This 2586 // happens with the @llvm-returnaddress intrinsic and with arguments 2587 // passed in callee saved registers. 2588 // Omitting the kill flags is conservatively correct even if the live-in 2589 // is not used after all. 2590 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2591 .setMIFlag(MachineInstr::FrameSetup); 2592 } 2593 2594 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2595 // It can be done by spilling XMMs to stack frame. 2596 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2597 unsigned Reg = I.getReg(); 2598 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2599 continue; 2600 2601 // If this is k-register make sure we lookup via the largest legal type. 2602 MVT VT = MVT::Other; 2603 if (X86::VK16RegClass.contains(Reg)) 2604 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2605 2606 // Add the callee-saved register as live-in. It's killed at the spill. 2607 MBB.addLiveIn(Reg); 2608 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2609 2610 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI); 2611 --MI; 2612 MI->setFlag(MachineInstr::FrameSetup); 2613 ++MI; 2614 } 2615 2616 return true; 2617 } 2618 2619 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2620 MachineBasicBlock::iterator MBBI, 2621 MachineInstr *CatchRet) const { 2622 // SEH shouldn't use catchret. 2623 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2624 MBB.getParent()->getFunction().getPersonalityFn())) && 2625 "SEH should not use CATCHRET"); 2626 const DebugLoc &DL = CatchRet->getDebugLoc(); 2627 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2628 2629 // Fill EAX/RAX with the address of the target block. 2630 if (STI.is64Bit()) { 2631 // LEA64r CatchRetTarget(%rip), %rax 2632 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2633 .addReg(X86::RIP) 2634 .addImm(0) 2635 .addReg(0) 2636 .addMBB(CatchRetTarget) 2637 .addReg(0); 2638 } else { 2639 // MOV32ri $CatchRetTarget, %eax 2640 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2641 .addMBB(CatchRetTarget); 2642 } 2643 2644 // Record that we've taken the address of CatchRetTarget and no longer just 2645 // reference it in a terminator. 2646 CatchRetTarget->setHasAddressTaken(); 2647 } 2648 2649 bool X86FrameLowering::restoreCalleeSavedRegisters( 2650 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2651 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2652 if (CSI.empty()) 2653 return false; 2654 2655 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2656 // Don't restore CSRs in 32-bit EH funclets. Matches 2657 // spillCalleeSavedRegisters. 2658 if (STI.is32Bit()) 2659 return true; 2660 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2661 // funclets. emitEpilogue transforms these to normal jumps. 2662 if (MI->getOpcode() == X86::CATCHRET) { 2663 const Function &F = MBB.getParent()->getFunction(); 2664 bool IsSEH = isAsynchronousEHPersonality( 2665 classifyEHPersonality(F.getPersonalityFn())); 2666 if (IsSEH) 2667 return true; 2668 } 2669 } 2670 2671 DebugLoc DL = MBB.findDebugLoc(MI); 2672 2673 // Reload XMMs from stack frame. 2674 for (const CalleeSavedInfo &I : CSI) { 2675 unsigned Reg = I.getReg(); 2676 if (X86::GR64RegClass.contains(Reg) || 2677 X86::GR32RegClass.contains(Reg)) 2678 continue; 2679 2680 // If this is k-register make sure we lookup via the largest legal type. 2681 MVT VT = MVT::Other; 2682 if (X86::VK16RegClass.contains(Reg)) 2683 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2684 2685 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2686 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI); 2687 } 2688 2689 // POP GPRs. 2690 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2691 for (const CalleeSavedInfo &I : CSI) { 2692 unsigned Reg = I.getReg(); 2693 if (!X86::GR64RegClass.contains(Reg) && 2694 !X86::GR32RegClass.contains(Reg)) 2695 continue; 2696 2697 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2698 .setMIFlag(MachineInstr::FrameDestroy); 2699 } 2700 return true; 2701 } 2702 2703 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2704 BitVector &SavedRegs, 2705 RegScavenger *RS) const { 2706 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2707 2708 // Spill the BasePtr if it's used. 2709 if (TRI->hasBasePointer(MF)){ 2710 Register BasePtr = TRI->getBaseRegister(); 2711 if (STI.isTarget64BitILP32()) 2712 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2713 SavedRegs.set(BasePtr); 2714 } 2715 } 2716 2717 static bool 2718 HasNestArgument(const MachineFunction *MF) { 2719 const Function &F = MF->getFunction(); 2720 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2721 I != E; I++) { 2722 if (I->hasNestAttr() && !I->use_empty()) 2723 return true; 2724 } 2725 return false; 2726 } 2727 2728 /// GetScratchRegister - Get a temp register for performing work in the 2729 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2730 /// and the properties of the function either one or two registers will be 2731 /// needed. Set primary to true for the first register, false for the second. 2732 static unsigned 2733 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2734 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2735 2736 // Erlang stuff. 2737 if (CallingConvention == CallingConv::HiPE) { 2738 if (Is64Bit) 2739 return Primary ? X86::R14 : X86::R13; 2740 else 2741 return Primary ? X86::EBX : X86::EDI; 2742 } 2743 2744 if (Is64Bit) { 2745 if (IsLP64) 2746 return Primary ? X86::R11 : X86::R12; 2747 else 2748 return Primary ? X86::R11D : X86::R12D; 2749 } 2750 2751 bool IsNested = HasNestArgument(&MF); 2752 2753 if (CallingConvention == CallingConv::X86_FastCall || 2754 CallingConvention == CallingConv::Fast || 2755 CallingConvention == CallingConv::Tail) { 2756 if (IsNested) 2757 report_fatal_error("Segmented stacks does not support fastcall with " 2758 "nested function."); 2759 return Primary ? X86::EAX : X86::ECX; 2760 } 2761 if (IsNested) 2762 return Primary ? X86::EDX : X86::EAX; 2763 return Primary ? X86::ECX : X86::EAX; 2764 } 2765 2766 // The stack limit in the TCB is set to this many bytes above the actual stack 2767 // limit. 2768 static const uint64_t kSplitStackAvailable = 256; 2769 2770 void X86FrameLowering::adjustForSegmentedStacks( 2771 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2772 MachineFrameInfo &MFI = MF.getFrameInfo(); 2773 uint64_t StackSize; 2774 unsigned TlsReg, TlsOffset; 2775 DebugLoc DL; 2776 2777 // To support shrink-wrapping we would need to insert the new blocks 2778 // at the right place and update the branches to PrologueMBB. 2779 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2780 2781 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2782 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2783 "Scratch register is live-in"); 2784 2785 if (MF.getFunction().isVarArg()) 2786 report_fatal_error("Segmented stacks do not support vararg functions."); 2787 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2788 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2789 !STI.isTargetDragonFly()) 2790 report_fatal_error("Segmented stacks not supported on this platform."); 2791 2792 // Eventually StackSize will be calculated by a link-time pass; which will 2793 // also decide whether checking code needs to be injected into this particular 2794 // prologue. 2795 StackSize = MFI.getStackSize(); 2796 2797 // Do not generate a prologue for leaf functions with a stack of size zero. 2798 // For non-leaf functions we have to allow for the possibility that the 2799 // callis to a non-split function, as in PR37807. This function could also 2800 // take the address of a non-split function. When the linker tries to adjust 2801 // its non-existent prologue, it would fail with an error. Mark the object 2802 // file so that such failures are not errors. See this Go language bug-report 2803 // https://go-review.googlesource.com/c/go/+/148819/ 2804 if (StackSize == 0 && !MFI.hasTailCall()) { 2805 MF.getMMI().setHasNosplitStack(true); 2806 return; 2807 } 2808 2809 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2810 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2811 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2812 bool IsNested = false; 2813 2814 // We need to know if the function has a nest argument only in 64 bit mode. 2815 if (Is64Bit) 2816 IsNested = HasNestArgument(&MF); 2817 2818 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2819 // allocMBB needs to be last (terminating) instruction. 2820 2821 for (const auto &LI : PrologueMBB.liveins()) { 2822 allocMBB->addLiveIn(LI); 2823 checkMBB->addLiveIn(LI); 2824 } 2825 2826 if (IsNested) 2827 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2828 2829 MF.push_front(allocMBB); 2830 MF.push_front(checkMBB); 2831 2832 // When the frame size is less than 256 we just compare the stack 2833 // boundary directly to the value of the stack pointer, per gcc. 2834 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2835 2836 // Read the limit off the current stacklet off the stack_guard location. 2837 if (Is64Bit) { 2838 if (STI.isTargetLinux()) { 2839 TlsReg = X86::FS; 2840 TlsOffset = IsLP64 ? 0x70 : 0x40; 2841 } else if (STI.isTargetDarwin()) { 2842 TlsReg = X86::GS; 2843 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2844 } else if (STI.isTargetWin64()) { 2845 TlsReg = X86::GS; 2846 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2847 } else if (STI.isTargetFreeBSD()) { 2848 TlsReg = X86::FS; 2849 TlsOffset = 0x18; 2850 } else if (STI.isTargetDragonFly()) { 2851 TlsReg = X86::FS; 2852 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2853 } else { 2854 report_fatal_error("Segmented stacks not supported on this platform."); 2855 } 2856 2857 if (CompareStackPointer) 2858 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2859 else 2860 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2861 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2862 2863 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2864 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2865 } else { 2866 if (STI.isTargetLinux()) { 2867 TlsReg = X86::GS; 2868 TlsOffset = 0x30; 2869 } else if (STI.isTargetDarwin()) { 2870 TlsReg = X86::GS; 2871 TlsOffset = 0x48 + 90*4; 2872 } else if (STI.isTargetWin32()) { 2873 TlsReg = X86::FS; 2874 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2875 } else if (STI.isTargetDragonFly()) { 2876 TlsReg = X86::FS; 2877 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2878 } else if (STI.isTargetFreeBSD()) { 2879 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2880 } else { 2881 report_fatal_error("Segmented stacks not supported on this platform."); 2882 } 2883 2884 if (CompareStackPointer) 2885 ScratchReg = X86::ESP; 2886 else 2887 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2888 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2889 2890 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2891 STI.isTargetDragonFly()) { 2892 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2893 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2894 } else if (STI.isTargetDarwin()) { 2895 2896 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2897 unsigned ScratchReg2; 2898 bool SaveScratch2; 2899 if (CompareStackPointer) { 2900 // The primary scratch register is available for holding the TLS offset. 2901 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2902 SaveScratch2 = false; 2903 } else { 2904 // Need to use a second register to hold the TLS offset 2905 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2906 2907 // Unfortunately, with fastcc the second scratch register may hold an 2908 // argument. 2909 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2910 } 2911 2912 // If Scratch2 is live-in then it needs to be saved. 2913 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2914 "Scratch register is live-in and not saved"); 2915 2916 if (SaveScratch2) 2917 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2918 .addReg(ScratchReg2, RegState::Kill); 2919 2920 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2921 .addImm(TlsOffset); 2922 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2923 .addReg(ScratchReg) 2924 .addReg(ScratchReg2).addImm(1).addReg(0) 2925 .addImm(0) 2926 .addReg(TlsReg); 2927 2928 if (SaveScratch2) 2929 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2930 } 2931 } 2932 2933 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2934 // It jumps to normal execution of the function body. 2935 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2936 2937 // On 32 bit we first push the arguments size and then the frame size. On 64 2938 // bit, we pass the stack frame size in r10 and the argument size in r11. 2939 if (Is64Bit) { 2940 // Functions with nested arguments use R10, so it needs to be saved across 2941 // the call to _morestack 2942 2943 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2944 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2945 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2946 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2947 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2948 2949 if (IsNested) 2950 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2951 2952 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2953 .addImm(StackSize); 2954 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2955 .addImm(X86FI->getArgumentStackSize()); 2956 } else { 2957 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2958 .addImm(X86FI->getArgumentStackSize()); 2959 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2960 .addImm(StackSize); 2961 } 2962 2963 // __morestack is in libgcc 2964 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2965 // Under the large code model, we cannot assume that __morestack lives 2966 // within 2^31 bytes of the call site, so we cannot use pc-relative 2967 // addressing. We cannot perform the call via a temporary register, 2968 // as the rax register may be used to store the static chain, and all 2969 // other suitable registers may be either callee-save or used for 2970 // parameter passing. We cannot use the stack at this point either 2971 // because __morestack manipulates the stack directly. 2972 // 2973 // To avoid these issues, perform an indirect call via a read-only memory 2974 // location containing the address. 2975 // 2976 // This solution is not perfect, as it assumes that the .rodata section 2977 // is laid out within 2^31 bytes of each function body, but this seems 2978 // to be sufficient for JIT. 2979 // FIXME: Add retpoline support and remove the error here.. 2980 if (STI.useIndirectThunkCalls()) 2981 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2982 "code model and thunks not yet implemented."); 2983 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2984 .addReg(X86::RIP) 2985 .addImm(0) 2986 .addReg(0) 2987 .addExternalSymbol("__morestack_addr") 2988 .addReg(0); 2989 MF.getMMI().setUsesMorestackAddr(true); 2990 } else { 2991 if (Is64Bit) 2992 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2993 .addExternalSymbol("__morestack"); 2994 else 2995 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2996 .addExternalSymbol("__morestack"); 2997 } 2998 2999 if (IsNested) 3000 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3001 else 3002 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3003 3004 allocMBB->addSuccessor(&PrologueMBB); 3005 3006 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3007 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3008 3009 #ifdef EXPENSIVE_CHECKS 3010 MF.verify(); 3011 #endif 3012 } 3013 3014 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3015 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3016 /// to fields it needs, through a named metadata node "hipe.literals" containing 3017 /// name-value pairs. 3018 static unsigned getHiPELiteral( 3019 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3020 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3021 MDNode *Node = HiPELiteralsMD->getOperand(i); 3022 if (Node->getNumOperands() != 2) continue; 3023 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3024 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3025 if (!NodeName || !NodeVal) continue; 3026 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3027 if (ValConst && NodeName->getString() == LiteralName) { 3028 return ValConst->getZExtValue(); 3029 } 3030 } 3031 3032 report_fatal_error("HiPE literal " + LiteralName 3033 + " required but not provided"); 3034 } 3035 3036 // Return true if there are no non-ehpad successors to MBB and there are no 3037 // non-meta instructions between MBBI and MBB.end(). 3038 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3039 MachineBasicBlock::const_iterator MBBI) { 3040 return llvm::all_of( 3041 MBB.successors(), 3042 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3043 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3044 return MI.isMetaInstruction(); 3045 }); 3046 } 3047 3048 /// Erlang programs may need a special prologue to handle the stack size they 3049 /// might need at runtime. That is because Erlang/OTP does not implement a C 3050 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3051 /// (for more information see Eric Stenman's Ph.D. thesis: 3052 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3053 /// 3054 /// CheckStack: 3055 /// temp0 = sp - MaxStack 3056 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3057 /// OldStart: 3058 /// ... 3059 /// IncStack: 3060 /// call inc_stack # doubles the stack space 3061 /// temp0 = sp - MaxStack 3062 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3063 void X86FrameLowering::adjustForHiPEPrologue( 3064 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3065 MachineFrameInfo &MFI = MF.getFrameInfo(); 3066 DebugLoc DL; 3067 3068 // To support shrink-wrapping we would need to insert the new blocks 3069 // at the right place and update the branches to PrologueMBB. 3070 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3071 3072 // HiPE-specific values 3073 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3074 ->getNamedMetadata("hipe.literals"); 3075 if (!HiPELiteralsMD) 3076 report_fatal_error( 3077 "Can't generate HiPE prologue without runtime parameters"); 3078 const unsigned HipeLeafWords 3079 = getHiPELiteral(HiPELiteralsMD, 3080 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3081 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3082 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3083 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3084 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3085 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3086 3087 assert(STI.isTargetLinux() && 3088 "HiPE prologue is only supported on Linux operating systems."); 3089 3090 // Compute the largest caller's frame that is needed to fit the callees' 3091 // frames. This 'MaxStack' is computed from: 3092 // 3093 // a) the fixed frame size, which is the space needed for all spilled temps, 3094 // b) outgoing on-stack parameter areas, and 3095 // c) the minimum stack space this function needs to make available for the 3096 // functions it calls (a tunable ABI property). 3097 if (MFI.hasCalls()) { 3098 unsigned MoreStackForCalls = 0; 3099 3100 for (auto &MBB : MF) { 3101 for (auto &MI : MBB) { 3102 if (!MI.isCall()) 3103 continue; 3104 3105 // Get callee operand. 3106 const MachineOperand &MO = MI.getOperand(0); 3107 3108 // Only take account of global function calls (no closures etc.). 3109 if (!MO.isGlobal()) 3110 continue; 3111 3112 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3113 if (!F) 3114 continue; 3115 3116 // Do not update 'MaxStack' for primitive and built-in functions 3117 // (encoded with names either starting with "erlang."/"bif_" or not 3118 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3119 // "_", such as the BIF "suspend_0") as they are executed on another 3120 // stack. 3121 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3122 F->getName().find_first_of("._") == StringRef::npos) 3123 continue; 3124 3125 unsigned CalleeStkArity = 3126 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3127 if (HipeLeafWords - 1 > CalleeStkArity) 3128 MoreStackForCalls = std::max(MoreStackForCalls, 3129 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3130 } 3131 } 3132 MaxStack += MoreStackForCalls; 3133 } 3134 3135 // If the stack frame needed is larger than the guaranteed then runtime checks 3136 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3137 if (MaxStack > Guaranteed) { 3138 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3139 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3140 3141 for (const auto &LI : PrologueMBB.liveins()) { 3142 stackCheckMBB->addLiveIn(LI); 3143 incStackMBB->addLiveIn(LI); 3144 } 3145 3146 MF.push_front(incStackMBB); 3147 MF.push_front(stackCheckMBB); 3148 3149 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3150 unsigned LEAop, CMPop, CALLop; 3151 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3152 if (Is64Bit) { 3153 SPReg = X86::RSP; 3154 PReg = X86::RBP; 3155 LEAop = X86::LEA64r; 3156 CMPop = X86::CMP64rm; 3157 CALLop = X86::CALL64pcrel32; 3158 } else { 3159 SPReg = X86::ESP; 3160 PReg = X86::EBP; 3161 LEAop = X86::LEA32r; 3162 CMPop = X86::CMP32rm; 3163 CALLop = X86::CALLpcrel32; 3164 } 3165 3166 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3167 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3168 "HiPE prologue scratch register is live-in"); 3169 3170 // Create new MBB for StackCheck: 3171 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3172 SPReg, false, -MaxStack); 3173 // SPLimitOffset is in a fixed heap location (pointed by BP). 3174 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3175 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3176 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3177 3178 // Create new MBB for IncStack: 3179 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3180 addExternalSymbol("inc_stack_0"); 3181 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3182 SPReg, false, -MaxStack); 3183 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3184 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3185 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3186 3187 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3188 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3189 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3190 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3191 } 3192 #ifdef EXPENSIVE_CHECKS 3193 MF.verify(); 3194 #endif 3195 } 3196 3197 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3198 MachineBasicBlock::iterator MBBI, 3199 const DebugLoc &DL, 3200 int Offset) const { 3201 if (Offset <= 0) 3202 return false; 3203 3204 if (Offset % SlotSize) 3205 return false; 3206 3207 int NumPops = Offset / SlotSize; 3208 // This is only worth it if we have at most 2 pops. 3209 if (NumPops != 1 && NumPops != 2) 3210 return false; 3211 3212 // Handle only the trivial case where the adjustment directly follows 3213 // a call. This is the most common one, anyway. 3214 if (MBBI == MBB.begin()) 3215 return false; 3216 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3217 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3218 return false; 3219 3220 unsigned Regs[2]; 3221 unsigned FoundRegs = 0; 3222 3223 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3224 const MachineOperand &RegMask = Prev->getOperand(1); 3225 3226 auto &RegClass = 3227 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3228 // Try to find up to NumPops free registers. 3229 for (auto Candidate : RegClass) { 3230 // Poor man's liveness: 3231 // Since we're immediately after a call, any register that is clobbered 3232 // by the call and not defined by it can be considered dead. 3233 if (!RegMask.clobbersPhysReg(Candidate)) 3234 continue; 3235 3236 // Don't clobber reserved registers 3237 if (MRI.isReserved(Candidate)) 3238 continue; 3239 3240 bool IsDef = false; 3241 for (const MachineOperand &MO : Prev->implicit_operands()) { 3242 if (MO.isReg() && MO.isDef() && 3243 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3244 IsDef = true; 3245 break; 3246 } 3247 } 3248 3249 if (IsDef) 3250 continue; 3251 3252 Regs[FoundRegs++] = Candidate; 3253 if (FoundRegs == (unsigned)NumPops) 3254 break; 3255 } 3256 3257 if (FoundRegs == 0) 3258 return false; 3259 3260 // If we found only one free register, but need two, reuse the same one twice. 3261 while (FoundRegs < (unsigned)NumPops) 3262 Regs[FoundRegs++] = Regs[0]; 3263 3264 for (int i = 0; i < NumPops; ++i) 3265 BuildMI(MBB, MBBI, DL, 3266 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3267 3268 return true; 3269 } 3270 3271 MachineBasicBlock::iterator X86FrameLowering:: 3272 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3273 MachineBasicBlock::iterator I) const { 3274 bool reserveCallFrame = hasReservedCallFrame(MF); 3275 unsigned Opcode = I->getOpcode(); 3276 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3277 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3278 uint64_t Amount = TII.getFrameSize(*I); 3279 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3280 I = MBB.erase(I); 3281 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3282 3283 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3284 // typically because the function is marked noreturn (abort, throw, 3285 // assert_fail, etc). 3286 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3287 return I; 3288 3289 if (!reserveCallFrame) { 3290 // If the stack pointer can be changed after prologue, turn the 3291 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3292 // adjcallstackdown instruction into 'add ESP, <amt>' 3293 3294 // We need to keep the stack aligned properly. To do this, we round the 3295 // amount of space needed for the outgoing arguments up to the next 3296 // alignment boundary. 3297 Amount = alignTo(Amount, getStackAlign()); 3298 3299 const Function &F = MF.getFunction(); 3300 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3301 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3302 3303 // If we have any exception handlers in this function, and we adjust 3304 // the SP before calls, we may need to indicate this to the unwinder 3305 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3306 // Amount == 0, because the preceding function may have set a non-0 3307 // GNU_ARGS_SIZE. 3308 // TODO: We don't need to reset this between subsequent functions, 3309 // if it didn't change. 3310 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3311 3312 if (HasDwarfEHHandlers && !isDestroy && 3313 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3314 BuildCFI(MBB, InsertPos, DL, 3315 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3316 3317 if (Amount == 0) 3318 return I; 3319 3320 // Factor out the amount that gets handled inside the sequence 3321 // (Pushes of argument for frame setup, callee pops for frame destroy) 3322 Amount -= InternalAmt; 3323 3324 // TODO: This is needed only if we require precise CFA. 3325 // If this is a callee-pop calling convention, emit a CFA adjust for 3326 // the amount the callee popped. 3327 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3328 BuildCFI(MBB, InsertPos, DL, 3329 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3330 3331 // Add Amount to SP to destroy a frame, or subtract to setup. 3332 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3333 3334 if (StackAdjustment) { 3335 // Merge with any previous or following adjustment instruction. Note: the 3336 // instructions merged with here do not have CFI, so their stack 3337 // adjustments do not feed into CfaAdjustment. 3338 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3339 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3340 3341 if (StackAdjustment) { 3342 if (!(F.hasMinSize() && 3343 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3344 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3345 /*InEpilogue=*/false); 3346 } 3347 } 3348 3349 if (DwarfCFI && !hasFP(MF)) { 3350 // If we don't have FP, but need to generate unwind information, 3351 // we need to set the correct CFA offset after the stack adjustment. 3352 // How much we adjust the CFA offset depends on whether we're emitting 3353 // CFI only for EH purposes or for debugging. EH only requires the CFA 3354 // offset to be correct at each call site, while for debugging we want 3355 // it to be more precise. 3356 3357 int64_t CfaAdjustment = -StackAdjustment; 3358 // TODO: When not using precise CFA, we also need to adjust for the 3359 // InternalAmt here. 3360 if (CfaAdjustment) { 3361 BuildCFI(MBB, InsertPos, DL, 3362 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3363 CfaAdjustment)); 3364 } 3365 } 3366 3367 return I; 3368 } 3369 3370 if (InternalAmt) { 3371 MachineBasicBlock::iterator CI = I; 3372 MachineBasicBlock::iterator B = MBB.begin(); 3373 while (CI != B && !std::prev(CI)->isCall()) 3374 --CI; 3375 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3376 } 3377 3378 return I; 3379 } 3380 3381 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3382 assert(MBB.getParent() && "Block is not attached to a function!"); 3383 const MachineFunction &MF = *MBB.getParent(); 3384 if (!MBB.isLiveIn(X86::EFLAGS)) 3385 return true; 3386 3387 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3388 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3389 } 3390 3391 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3392 assert(MBB.getParent() && "Block is not attached to a function!"); 3393 3394 // Win64 has strict requirements in terms of epilogue and we are 3395 // not taking a chance at messing with them. 3396 // I.e., unless this block is already an exit block, we can't use 3397 // it as an epilogue. 3398 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3399 return false; 3400 3401 // Swift async context epilogue has a BTR instruction that clobbers parts of 3402 // EFLAGS. 3403 const MachineFunction &MF = *MBB.getParent(); 3404 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3405 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3406 3407 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3408 return true; 3409 3410 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3411 // clobbers the EFLAGS. Check that we do not need to preserve it, 3412 // otherwise, conservatively assume this is not 3413 // safe to insert the epilogue here. 3414 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3415 } 3416 3417 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3418 // If we may need to emit frameless compact unwind information, give 3419 // up as this is currently broken: PR25614. 3420 bool CompactUnwind = 3421 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3422 nullptr; 3423 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3424 !CompactUnwind) && 3425 // The lowering of segmented stack and HiPE only support entry 3426 // blocks as prologue blocks: PR26107. This limitation may be 3427 // lifted if we fix: 3428 // - adjustForSegmentedStacks 3429 // - adjustForHiPEPrologue 3430 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3431 !MF.shouldSplitStack(); 3432 } 3433 3434 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3435 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3436 const DebugLoc &DL, bool RestoreSP) const { 3437 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3438 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3439 assert(STI.is32Bit() && !Uses64BitFramePtr && 3440 "restoring EBP/ESI on non-32-bit target"); 3441 3442 MachineFunction &MF = *MBB.getParent(); 3443 Register FramePtr = TRI->getFrameRegister(MF); 3444 Register BasePtr = TRI->getBaseRegister(); 3445 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3446 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3447 MachineFrameInfo &MFI = MF.getFrameInfo(); 3448 3449 // FIXME: Don't set FrameSetup flag in catchret case. 3450 3451 int FI = FuncInfo.EHRegNodeFrameIndex; 3452 int EHRegSize = MFI.getObjectSize(FI); 3453 3454 if (RestoreSP) { 3455 // MOV32rm -EHRegSize(%ebp), %esp 3456 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3457 X86::EBP, true, -EHRegSize) 3458 .setMIFlag(MachineInstr::FrameSetup); 3459 } 3460 3461 Register UsedReg; 3462 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3463 int EndOffset = -EHRegOffset - EHRegSize; 3464 FuncInfo.EHRegNodeEndOffset = EndOffset; 3465 3466 if (UsedReg == FramePtr) { 3467 // ADD $offset, %ebp 3468 unsigned ADDri = getADDriOpcode(false, EndOffset); 3469 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3470 .addReg(FramePtr) 3471 .addImm(EndOffset) 3472 .setMIFlag(MachineInstr::FrameSetup) 3473 ->getOperand(3) 3474 .setIsDead(); 3475 assert(EndOffset >= 0 && 3476 "end of registration object above normal EBP position!"); 3477 } else if (UsedReg == BasePtr) { 3478 // LEA offset(%ebp), %esi 3479 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3480 FramePtr, false, EndOffset) 3481 .setMIFlag(MachineInstr::FrameSetup); 3482 // MOV32rm SavedEBPOffset(%esi), %ebp 3483 assert(X86FI->getHasSEHFramePtrSave()); 3484 int Offset = 3485 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3486 .getFixed(); 3487 assert(UsedReg == BasePtr); 3488 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3489 UsedReg, true, Offset) 3490 .setMIFlag(MachineInstr::FrameSetup); 3491 } else { 3492 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3493 } 3494 return MBBI; 3495 } 3496 3497 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3498 return TRI->getSlotSize(); 3499 } 3500 3501 Register 3502 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3503 return TRI->getDwarfRegNum(StackPtr, true); 3504 } 3505 3506 namespace { 3507 // Struct used by orderFrameObjects to help sort the stack objects. 3508 struct X86FrameSortingObject { 3509 bool IsValid = false; // true if we care about this Object. 3510 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3511 unsigned ObjectSize = 0; // Size of Object in bytes. 3512 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3513 unsigned ObjectNumUses = 0; // Object static number of uses. 3514 }; 3515 3516 // The comparison function we use for std::sort to order our local 3517 // stack symbols. The current algorithm is to use an estimated 3518 // "density". This takes into consideration the size and number of 3519 // uses each object has in order to roughly minimize code size. 3520 // So, for example, an object of size 16B that is referenced 5 times 3521 // will get higher priority than 4 4B objects referenced 1 time each. 3522 // It's not perfect and we may be able to squeeze a few more bytes out of 3523 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3524 // fringe end can have special consideration, given their size is less 3525 // important, etc.), but the algorithmic complexity grows too much to be 3526 // worth the extra gains we get. This gets us pretty close. 3527 // The final order leaves us with objects with highest priority going 3528 // at the end of our list. 3529 struct X86FrameSortingComparator { 3530 inline bool operator()(const X86FrameSortingObject &A, 3531 const X86FrameSortingObject &B) const { 3532 uint64_t DensityAScaled, DensityBScaled; 3533 3534 // For consistency in our comparison, all invalid objects are placed 3535 // at the end. This also allows us to stop walking when we hit the 3536 // first invalid item after it's all sorted. 3537 if (!A.IsValid) 3538 return false; 3539 if (!B.IsValid) 3540 return true; 3541 3542 // The density is calculated by doing : 3543 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3544 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3545 // Since this approach may cause inconsistencies in 3546 // the floating point <, >, == comparisons, depending on the floating 3547 // point model with which the compiler was built, we're going 3548 // to scale both sides by multiplying with 3549 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3550 // the division and, with it, the need for any floating point 3551 // arithmetic. 3552 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3553 static_cast<uint64_t>(B.ObjectSize); 3554 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3555 static_cast<uint64_t>(A.ObjectSize); 3556 3557 // If the two densities are equal, prioritize highest alignment 3558 // objects. This allows for similar alignment objects 3559 // to be packed together (given the same density). 3560 // There's room for improvement here, also, since we can pack 3561 // similar alignment (different density) objects next to each 3562 // other to save padding. This will also require further 3563 // complexity/iterations, and the overall gain isn't worth it, 3564 // in general. Something to keep in mind, though. 3565 if (DensityAScaled == DensityBScaled) 3566 return A.ObjectAlignment < B.ObjectAlignment; 3567 3568 return DensityAScaled < DensityBScaled; 3569 } 3570 }; 3571 } // namespace 3572 3573 // Order the symbols in the local stack. 3574 // We want to place the local stack objects in some sort of sensible order. 3575 // The heuristic we use is to try and pack them according to static number 3576 // of uses and size of object in order to minimize code size. 3577 void X86FrameLowering::orderFrameObjects( 3578 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3579 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3580 3581 // Don't waste time if there's nothing to do. 3582 if (ObjectsToAllocate.empty()) 3583 return; 3584 3585 // Create an array of all MFI objects. We won't need all of these 3586 // objects, but we're going to create a full array of them to make 3587 // it easier to index into when we're counting "uses" down below. 3588 // We want to be able to easily/cheaply access an object by simply 3589 // indexing into it, instead of having to search for it every time. 3590 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3591 3592 // Walk the objects we care about and mark them as such in our working 3593 // struct. 3594 for (auto &Obj : ObjectsToAllocate) { 3595 SortingObjects[Obj].IsValid = true; 3596 SortingObjects[Obj].ObjectIndex = Obj; 3597 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3598 // Set the size. 3599 int ObjectSize = MFI.getObjectSize(Obj); 3600 if (ObjectSize == 0) 3601 // Variable size. Just use 4. 3602 SortingObjects[Obj].ObjectSize = 4; 3603 else 3604 SortingObjects[Obj].ObjectSize = ObjectSize; 3605 } 3606 3607 // Count the number of uses for each object. 3608 for (auto &MBB : MF) { 3609 for (auto &MI : MBB) { 3610 if (MI.isDebugInstr()) 3611 continue; 3612 for (const MachineOperand &MO : MI.operands()) { 3613 // Check to see if it's a local stack symbol. 3614 if (!MO.isFI()) 3615 continue; 3616 int Index = MO.getIndex(); 3617 // Check to see if it falls within our range, and is tagged 3618 // to require ordering. 3619 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3620 SortingObjects[Index].IsValid) 3621 SortingObjects[Index].ObjectNumUses++; 3622 } 3623 } 3624 } 3625 3626 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3627 // info). 3628 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3629 3630 // Now modify the original list to represent the final order that 3631 // we want. The order will depend on whether we're going to access them 3632 // from the stack pointer or the frame pointer. For SP, the list should 3633 // end up with the END containing objects that we want with smaller offsets. 3634 // For FP, it should be flipped. 3635 int i = 0; 3636 for (auto &Obj : SortingObjects) { 3637 // All invalid items are sorted at the end, so it's safe to stop. 3638 if (!Obj.IsValid) 3639 break; 3640 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3641 } 3642 3643 // Flip it if we're accessing off of the FP. 3644 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3645 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3646 } 3647 3648 3649 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3650 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3651 unsigned Offset = 16; 3652 // RBP is immediately pushed. 3653 Offset += SlotSize; 3654 // All callee-saved registers are then pushed. 3655 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3656 // Every funclet allocates enough stack space for the largest outgoing call. 3657 Offset += getWinEHFuncletFrameSize(MF); 3658 return Offset; 3659 } 3660 3661 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3662 MachineFunction &MF, RegScavenger *RS) const { 3663 // Mark the function as not having WinCFI. We will set it back to true in 3664 // emitPrologue if it gets called and emits CFI. 3665 MF.setHasWinCFI(false); 3666 3667 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3668 // aligned. The format doesn't support misaligned stack adjustments. 3669 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3670 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3671 3672 // If this function isn't doing Win64-style C++ EH, we don't need to do 3673 // anything. 3674 if (STI.is64Bit() && MF.hasEHFunclets() && 3675 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3676 EHPersonality::MSVC_CXX) { 3677 adjustFrameForMsvcCxxEh(MF); 3678 } 3679 } 3680 3681 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3682 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3683 // relative to RSP after the prologue. Find the offset of the last fixed 3684 // object, so that we can allocate a slot immediately following it. If there 3685 // were no fixed objects, use offset -SlotSize, which is immediately after the 3686 // return address. Fixed objects have negative frame indices. 3687 MachineFrameInfo &MFI = MF.getFrameInfo(); 3688 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3689 int64_t MinFixedObjOffset = -SlotSize; 3690 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3691 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3692 3693 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3694 for (WinEHHandlerType &H : TBME.HandlerArray) { 3695 int FrameIndex = H.CatchObj.FrameIndex; 3696 if (FrameIndex != INT_MAX) { 3697 // Ensure alignment. 3698 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3699 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3700 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3701 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3702 } 3703 } 3704 } 3705 3706 // Ensure alignment. 3707 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3708 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3709 int UnwindHelpFI = 3710 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3711 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3712 3713 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3714 // other frame setup instructions. 3715 MachineBasicBlock &MBB = MF.front(); 3716 auto MBBI = MBB.begin(); 3717 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3718 ++MBBI; 3719 3720 DebugLoc DL = MBB.findDebugLoc(MBBI); 3721 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3722 UnwindHelpFI) 3723 .addImm(-2); 3724 } 3725 3726 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3727 MachineFunction &MF, RegScavenger *RS) const { 3728 if (STI.is32Bit() && MF.hasEHFunclets()) 3729 restoreWinEHStackPointersInParent(MF); 3730 } 3731 3732 void X86FrameLowering::restoreWinEHStackPointersInParent( 3733 MachineFunction &MF) const { 3734 // 32-bit functions have to restore stack pointers when control is transferred 3735 // back to the parent function. These blocks are identified as eh pads that 3736 // are not funclet entries. 3737 bool IsSEH = isAsynchronousEHPersonality( 3738 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3739 for (MachineBasicBlock &MBB : MF) { 3740 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3741 if (NeedsRestore) 3742 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3743 /*RestoreSP=*/IsSEH); 3744 } 3745 } 3746