xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/X86/X86FloatingPoint.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions.  This pass uses live
11 // variable information to indicate where the FPn registers are used and their
12 // lifetimes.
13 //
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
19 //
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "X86.h"
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-codegen"
53 
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP  , "Number of floating point instructions");
56 
57 namespace {
58   const unsigned ScratchFPReg = 7;
59 
60   struct FPS : public MachineFunctionPass {
61     static char ID;
62     FPS() : MachineFunctionPass(ID) {
63       // This is really only to keep valgrind quiet.
64       // The logic in isLive() is too much for it.
65       memset(Stack, 0, sizeof(Stack));
66       memset(RegMap, 0, sizeof(RegMap));
67     }
68 
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<EdgeBundles>();
72       AU.addPreservedID(MachineLoopInfoID);
73       AU.addPreservedID(MachineDominatorsID);
74       MachineFunctionPass::getAnalysisUsage(AU);
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78 
79     MachineFunctionProperties getRequiredProperties() const override {
80       return MachineFunctionProperties().set(
81           MachineFunctionProperties::Property::NoVRegs);
82     }
83 
84     StringRef getPassName() const override { return "X86 FP Stackifier"; }
85 
86   private:
87     const TargetInstrInfo *TII = nullptr; // Machine instruction info.
88 
89     // Two CFG edges are related if they leave the same block, or enter the same
90     // block. The transitive closure of an edge under this relation is a
91     // LiveBundle. It represents a set of CFG edges where the live FP stack
92     // registers must be allocated identically in the x87 stack.
93     //
94     // A LiveBundle is usually all the edges leaving a block, or all the edges
95     // entering a block, but it can contain more edges if critical edges are
96     // present.
97     //
98     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99     // but the exact mapping of FP registers to stack slots is fixed later.
100     struct LiveBundle {
101       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
102       unsigned Mask;
103 
104       // Number of pre-assigned live registers in FixStack. This is 0 when the
105       // stack order has not yet been fixed.
106       unsigned FixCount;
107 
108       // Assigned stack order for live-in registers.
109       // FixStack[i] == getStackEntry(i) for all i < FixCount.
110       unsigned char FixStack[8];
111 
112       LiveBundle() : Mask(0), FixCount(0) {}
113 
114       // Have the live registers been assigned a stack order yet?
115       bool isFixed() const { return !Mask || FixCount; }
116     };
117 
118     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119     // with no live FP registers.
120     SmallVector<LiveBundle, 8> LiveBundles;
121 
122     // The edge bundle analysis provides indices into the LiveBundles vector.
123     EdgeBundles *Bundles = nullptr;
124 
125     // Return a bitmask of FP registers in block's live-in list.
126     static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
127       unsigned Mask = 0;
128       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
129            I != MBB->livein_end(); ) {
130         MCPhysReg Reg = I->PhysReg;
131         static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
132         if (Reg >= X86::FP0 && Reg <= X86::FP6) {
133           Mask |= 1 << (Reg - X86::FP0);
134           if (RemoveFPs) {
135             I = MBB->removeLiveIn(I);
136             continue;
137           }
138         }
139         ++I;
140       }
141       return Mask;
142     }
143 
144     // Partition all the CFG edges into LiveBundles.
145     void bundleCFGRecomputeKillFlags(MachineFunction &MF);
146 
147     MachineBasicBlock *MBB = nullptr;     // Current basic block
148 
149     // The hardware keeps track of how many FP registers are live, so we have
150     // to model that exactly. Usually, each live register corresponds to an
151     // FP<n> register, but when dealing with calls, returns, and inline
152     // assembly, it is sometimes necessary to have live scratch registers.
153     unsigned Stack[8];          // FP<n> Registers in each stack slot...
154     unsigned StackTop = 0;      // The current top of the FP stack.
155 
156     enum {
157       NumFPRegs = 8             // Including scratch pseudo-registers.
158     };
159 
160     // For each live FP<n> register, point to its Stack[] entry.
161     // The first entries correspond to FP0-FP6, the rest are scratch registers
162     // used when we need slightly different live registers than what the
163     // register allocator thinks.
164     unsigned RegMap[NumFPRegs];
165 
166     // Set up our stack model to match the incoming registers to MBB.
167     void setupBlockStack();
168 
169     // Shuffle live registers to match the expectations of successor blocks.
170     void finishBlockStack();
171 
172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
173     void dumpStack() const {
174       dbgs() << "Stack contents:";
175       for (unsigned i = 0; i != StackTop; ++i) {
176         dbgs() << " FP" << Stack[i];
177         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
178       }
179     }
180 #endif
181 
182     /// getSlot - Return the stack slot number a particular register number is
183     /// in.
184     unsigned getSlot(unsigned RegNo) const {
185       assert(RegNo < NumFPRegs && "Regno out of range!");
186       return RegMap[RegNo];
187     }
188 
189     /// isLive - Is RegNo currently live in the stack?
190     bool isLive(unsigned RegNo) const {
191       unsigned Slot = getSlot(RegNo);
192       return Slot < StackTop && Stack[Slot] == RegNo;
193     }
194 
195     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
196     unsigned getStackEntry(unsigned STi) const {
197       if (STi >= StackTop)
198         report_fatal_error("Access past stack top!");
199       return Stack[StackTop-1-STi];
200     }
201 
202     /// getSTReg - Return the X86::ST(i) register which contains the specified
203     /// FP<RegNo> register.
204     unsigned getSTReg(unsigned RegNo) const {
205       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
206     }
207 
208     // pushReg - Push the specified FP<n> register onto the stack.
209     void pushReg(unsigned Reg) {
210       assert(Reg < NumFPRegs && "Register number out of range!");
211       if (StackTop >= 8)
212         report_fatal_error("Stack overflow!");
213       Stack[StackTop] = Reg;
214       RegMap[Reg] = StackTop++;
215     }
216 
217     // popReg - Pop a register from the stack.
218     void popReg() {
219       if (StackTop == 0)
220         report_fatal_error("Cannot pop empty stack!");
221       RegMap[Stack[--StackTop]] = ~0;     // Update state
222     }
223 
224     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
225     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
226       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
227       if (isAtTop(RegNo)) return;
228 
229       unsigned STReg = getSTReg(RegNo);
230       unsigned RegOnTop = getStackEntry(0);
231 
232       // Swap the slots the regs are in.
233       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
234 
235       // Swap stack slot contents.
236       if (RegMap[RegOnTop] >= StackTop)
237         report_fatal_error("Access past stack top!");
238       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
239 
240       // Emit an fxch to update the runtime processors version of the state.
241       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
242       ++NumFXCH;
243     }
244 
245     void duplicateToTop(unsigned RegNo, unsigned AsReg,
246                         MachineBasicBlock::iterator I) {
247       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
248       unsigned STReg = getSTReg(RegNo);
249       pushReg(AsReg);   // New register on top of stack
250 
251       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
252     }
253 
254     /// popStackAfter - Pop the current value off of the top of the FP stack
255     /// after the specified instruction.
256     void popStackAfter(MachineBasicBlock::iterator &I);
257 
258     /// freeStackSlotAfter - Free the specified register from the register
259     /// stack, so that it is no longer in a register.  If the register is
260     /// currently at the top of the stack, we just pop the current instruction,
261     /// otherwise we store the current top-of-stack into the specified slot,
262     /// then pop the top of stack.
263     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
264 
265     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
266     /// instruction.
267     MachineBasicBlock::iterator
268     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
269 
270     /// Adjust the live registers to be the set in Mask.
271     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
272 
273     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
274     /// st(0), FP reg FixStack[1] is st(1) etc.
275     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
276                          MachineBasicBlock::iterator I);
277 
278     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
279 
280     void handleCall(MachineBasicBlock::iterator &I);
281     void handleReturn(MachineBasicBlock::iterator &I);
282     void handleZeroArgFP(MachineBasicBlock::iterator &I);
283     void handleOneArgFP(MachineBasicBlock::iterator &I);
284     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
285     void handleTwoArgFP(MachineBasicBlock::iterator &I);
286     void handleCompareFP(MachineBasicBlock::iterator &I);
287     void handleCondMovFP(MachineBasicBlock::iterator &I);
288     void handleSpecialFP(MachineBasicBlock::iterator &I);
289 
290     // Check if a COPY instruction is using FP registers.
291     static bool isFPCopy(MachineInstr &MI) {
292       Register DstReg = MI.getOperand(0).getReg();
293       Register SrcReg = MI.getOperand(1).getReg();
294 
295       return X86::RFP80RegClass.contains(DstReg) ||
296         X86::RFP80RegClass.contains(SrcReg);
297     }
298 
299     void setKillFlags(MachineBasicBlock &MBB) const;
300   };
301 }
302 
303 char FPS::ID = 0;
304 
305 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
306                       false, false)
307 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
308 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
309                     false, false)
310 
311 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
312 
313 /// getFPReg - Return the X86::FPx register number for the specified operand.
314 /// For example, this returns 3 for X86::FP3.
315 static unsigned getFPReg(const MachineOperand &MO) {
316   assert(MO.isReg() && "Expected an FP register!");
317   Register Reg = MO.getReg();
318   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
319   return Reg - X86::FP0;
320 }
321 
322 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
323 /// register references into FP stack references.
324 ///
325 bool FPS::runOnMachineFunction(MachineFunction &MF) {
326   // We only need to run this pass if there are any FP registers used in this
327   // function.  If it is all integer, there is nothing for us to do!
328   bool FPIsUsed = false;
329 
330   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
331   const MachineRegisterInfo &MRI = MF.getRegInfo();
332   for (unsigned i = 0; i <= 6; ++i)
333     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
334       FPIsUsed = true;
335       break;
336     }
337 
338   // Early exit.
339   if (!FPIsUsed) return false;
340 
341   Bundles = &getAnalysis<EdgeBundles>();
342   TII = MF.getSubtarget().getInstrInfo();
343 
344   // Prepare cross-MBB liveness.
345   bundleCFGRecomputeKillFlags(MF);
346 
347   StackTop = 0;
348 
349   // Process the function in depth first order so that we process at least one
350   // of the predecessors for every reachable block in the function.
351   df_iterator_default_set<MachineBasicBlock*> Processed;
352   MachineBasicBlock *Entry = &MF.front();
353 
354   LiveBundle &Bundle =
355     LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
356 
357   // In regcall convention, some FP registers may not be passed through
358   // the stack, so they will need to be assigned to the stack first
359   if ((Entry->getParent()->getFunction().getCallingConv() ==
360     CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
361     // In the register calling convention, up to one FP argument could be
362     // saved in the first FP register.
363     // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
364     // that the FP registers contain arguments.
365     // The actual value is passed in FP0.
366     // Here we fix the stack and mark FP0 as pre-assigned register.
367     assert((Bundle.Mask & 0xFE) == 0 &&
368       "Only FP0 could be passed as an argument");
369     Bundle.FixCount = 1;
370     Bundle.FixStack[0] = 0;
371   }
372 
373   bool Changed = false;
374   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
375     Changed |= processBasicBlock(MF, *BB);
376 
377   // Process any unreachable blocks in arbitrary order now.
378   if (MF.size() != Processed.size())
379     for (MachineBasicBlock &BB : MF)
380       if (Processed.insert(&BB).second)
381         Changed |= processBasicBlock(MF, BB);
382 
383   LiveBundles.clear();
384 
385   return Changed;
386 }
387 
388 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
389 /// live-out sets for the FP registers. Consistent means that the set of
390 /// registers live-out from a block is identical to the live-in set of all
391 /// successors. This is not enforced by the normal live-in lists since
392 /// registers may be implicitly defined, or not used by all successors.
393 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
394   assert(LiveBundles.empty() && "Stale data in LiveBundles");
395   LiveBundles.resize(Bundles->getNumBundles());
396 
397   // Gather the actual live-in masks for all MBBs.
398   for (MachineBasicBlock &MBB : MF) {
399     setKillFlags(MBB);
400 
401     const unsigned Mask = calcLiveInMask(&MBB, false);
402     if (!Mask)
403       continue;
404     // Update MBB ingoing bundle mask.
405     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
406   }
407 }
408 
409 /// processBasicBlock - Loop over all of the instructions in the basic block,
410 /// transforming FP instructions into their stack form.
411 ///
412 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
413   bool Changed = false;
414   MBB = &BB;
415 
416   setupBlockStack();
417 
418   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
419     MachineInstr &MI = *I;
420     uint64_t Flags = MI.getDesc().TSFlags;
421 
422     unsigned FPInstClass = Flags & X86II::FPTypeMask;
423     if (MI.isInlineAsm())
424       FPInstClass = X86II::SpecialFP;
425 
426     if (MI.isCopy() && isFPCopy(MI))
427       FPInstClass = X86II::SpecialFP;
428 
429     if (MI.isImplicitDef() &&
430         X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
431       FPInstClass = X86II::SpecialFP;
432 
433     if (MI.isCall())
434       FPInstClass = X86II::SpecialFP;
435 
436     if (FPInstClass == X86II::NotFP)
437       continue;  // Efficiently ignore non-fp insts!
438 
439     MachineInstr *PrevMI = nullptr;
440     if (I != BB.begin())
441       PrevMI = &*std::prev(I);
442 
443     ++NumFP;  // Keep track of # of pseudo instrs
444     LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
445 
446     // Get dead variables list now because the MI pointer may be deleted as part
447     // of processing!
448     SmallVector<unsigned, 8> DeadRegs;
449     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
450       const MachineOperand &MO = MI.getOperand(i);
451       if (MO.isReg() && MO.isDead())
452         DeadRegs.push_back(MO.getReg());
453     }
454 
455     switch (FPInstClass) {
456     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
457     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
458     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
459     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
460     case X86II::CompareFP:  handleCompareFP(I); break;
461     case X86II::CondMovFP:  handleCondMovFP(I); break;
462     case X86II::SpecialFP:  handleSpecialFP(I); break;
463     default: llvm_unreachable("Unknown FP Type!");
464     }
465 
466     // Check to see if any of the values defined by this instruction are dead
467     // after definition.  If so, pop them.
468     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
469       unsigned Reg = DeadRegs[i];
470       // Check if Reg is live on the stack. An inline-asm register operand that
471       // is in the clobber list and marked dead might not be live on the stack.
472       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
473       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
474         LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
475         freeStackSlotAfter(I, Reg-X86::FP0);
476       }
477     }
478 
479     // Print out all of the instructions expanded to if -debug
480     LLVM_DEBUG({
481       MachineBasicBlock::iterator PrevI = PrevMI;
482       if (I == PrevI) {
483         dbgs() << "Just deleted pseudo instruction\n";
484       } else {
485         MachineBasicBlock::iterator Start = I;
486         // Rewind to first instruction newly inserted.
487         while (Start != BB.begin() && std::prev(Start) != PrevI)
488           --Start;
489         dbgs() << "Inserted instructions:\n\t";
490         Start->print(dbgs());
491         while (++Start != std::next(I)) {
492         }
493       }
494       dumpStack();
495     });
496     (void)PrevMI;
497 
498     Changed = true;
499   }
500 
501   finishBlockStack();
502 
503   return Changed;
504 }
505 
506 /// setupBlockStack - Use the live bundles to set up our model of the stack
507 /// to match predecessors' live out stack.
508 void FPS::setupBlockStack() {
509   LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
510                     << " derived from " << MBB->getName() << ".\n");
511   StackTop = 0;
512   // Get the live-in bundle for MBB.
513   const LiveBundle &Bundle =
514     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
515 
516   if (!Bundle.Mask) {
517     LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
518     return;
519   }
520 
521   // Depth-first iteration should ensure that we always have an assigned stack.
522   assert(Bundle.isFixed() && "Reached block before any predecessors");
523 
524   // Push the fixed live-in registers.
525   for (unsigned i = Bundle.FixCount; i > 0; --i) {
526     LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
527                       << unsigned(Bundle.FixStack[i - 1]) << '\n');
528     pushReg(Bundle.FixStack[i-1]);
529   }
530 
531   // Kill off unwanted live-ins. This can happen with a critical edge.
532   // FIXME: We could keep these live registers around as zombies. They may need
533   // to be revived at the end of a short block. It might save a few instrs.
534   unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
535   adjustLiveRegs(Mask, MBB->begin());
536   LLVM_DEBUG(MBB->dump());
537 }
538 
539 /// finishBlockStack - Revive live-outs that are implicitly defined out of
540 /// MBB. Shuffle live registers to match the expected fixed stack of any
541 /// predecessors, and ensure that all predecessors are expecting the same
542 /// stack.
543 void FPS::finishBlockStack() {
544   // The RET handling below takes care of return blocks for us.
545   if (MBB->succ_empty())
546     return;
547 
548   LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
549                     << " derived from " << MBB->getName() << ".\n");
550 
551   // Get MBB's live-out bundle.
552   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
553   LiveBundle &Bundle = LiveBundles[BundleIdx];
554 
555   // We may need to kill and define some registers to match successors.
556   // FIXME: This can probably be combined with the shuffle below.
557   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
558   adjustLiveRegs(Bundle.Mask, Term);
559 
560   if (!Bundle.Mask) {
561     LLVM_DEBUG(dbgs() << "No live-outs.\n");
562     return;
563   }
564 
565   // Has the stack order been fixed yet?
566   LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
567   if (Bundle.isFixed()) {
568     LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
569     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
570   } else {
571     // Not fixed yet, we get to choose.
572     LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
573     Bundle.FixCount = StackTop;
574     for (unsigned i = 0; i < StackTop; ++i)
575       Bundle.FixStack[i] = getStackEntry(i);
576   }
577 }
578 
579 
580 //===----------------------------------------------------------------------===//
581 // Efficient Lookup Table Support
582 //===----------------------------------------------------------------------===//
583 
584 namespace {
585   struct TableEntry {
586     uint16_t from;
587     uint16_t to;
588     bool operator<(const TableEntry &TE) const { return from < TE.from; }
589     friend bool operator<(const TableEntry &TE, unsigned V) {
590       return TE.from < V;
591     }
592     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
593                                                 const TableEntry &TE) {
594       return V < TE.from;
595     }
596   };
597 }
598 
599 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
600   const TableEntry *I = llvm::lower_bound(Table, Opcode);
601   if (I != Table.end() && I->from == Opcode)
602     return I->to;
603   return -1;
604 }
605 
606 #ifdef NDEBUG
607 #define ASSERT_SORTED(TABLE)
608 #else
609 #define ASSERT_SORTED(TABLE)                                                   \
610   {                                                                            \
611     static std::atomic<bool> TABLE##Checked(false);                            \
612     if (!TABLE##Checked.load(std::memory_order_relaxed)) {                     \
613       assert(is_sorted(TABLE) &&                                               \
614              "All lookup tables must be sorted for efficient access!");        \
615       TABLE##Checked.store(true, std::memory_order_relaxed);                   \
616     }                                                                          \
617   }
618 #endif
619 
620 //===----------------------------------------------------------------------===//
621 // Register File -> Register Stack Mapping Methods
622 //===----------------------------------------------------------------------===//
623 
624 // OpcodeTable - Sorted map of register instructions to their stack version.
625 // The first element is an register file pseudo instruction, the second is the
626 // concrete X86 instruction which uses the register stack.
627 //
628 static const TableEntry OpcodeTable[] = {
629   { X86::ABS_Fp32     , X86::ABS_F     },
630   { X86::ABS_Fp64     , X86::ABS_F     },
631   { X86::ABS_Fp80     , X86::ABS_F     },
632   { X86::ADD_Fp32m    , X86::ADD_F32m  },
633   { X86::ADD_Fp64m    , X86::ADD_F64m  },
634   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
635   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
636   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
637   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
638   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
639   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
640   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
641   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
642   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
643   { X86::CHS_Fp32     , X86::CHS_F     },
644   { X86::CHS_Fp64     , X86::CHS_F     },
645   { X86::CHS_Fp80     , X86::CHS_F     },
646   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
647   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
648   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
649   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
650   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
651   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
652   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
653   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
654   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
655   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
656   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
657   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
658   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
659   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
660   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
661   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
662   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
663   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
664   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
665   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
666   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
667   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
668   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
669   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
670   { X86::COM_FpIr32   , X86::COM_FIr   },
671   { X86::COM_FpIr64   , X86::COM_FIr   },
672   { X86::COM_FpIr80   , X86::COM_FIr   },
673   { X86::COM_Fpr32    , X86::COM_FST0r },
674   { X86::COM_Fpr64    , X86::COM_FST0r },
675   { X86::COM_Fpr80    , X86::COM_FST0r },
676   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
677   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
678   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
679   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
680   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
681   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
682   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
683   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
684   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
685   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
686   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
687   { X86::DIV_Fp32m    , X86::DIV_F32m  },
688   { X86::DIV_Fp64m    , X86::DIV_F64m  },
689   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
690   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
691   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
692   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
693   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
694   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
695   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
696   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
697   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
698   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
699   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
700   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
701   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
702   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
703   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
704   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
705   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
706   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
707   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
708   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
709   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
710   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
711   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
712   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
713   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
714   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
715   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
716   { X86::IST_Fp16m32  , X86::IST_F16m  },
717   { X86::IST_Fp16m64  , X86::IST_F16m  },
718   { X86::IST_Fp16m80  , X86::IST_F16m  },
719   { X86::IST_Fp32m32  , X86::IST_F32m  },
720   { X86::IST_Fp32m64  , X86::IST_F32m  },
721   { X86::IST_Fp32m80  , X86::IST_F32m  },
722   { X86::IST_Fp64m32  , X86::IST_FP64m },
723   { X86::IST_Fp64m64  , X86::IST_FP64m },
724   { X86::IST_Fp64m80  , X86::IST_FP64m },
725   { X86::LD_Fp032     , X86::LD_F0     },
726   { X86::LD_Fp064     , X86::LD_F0     },
727   { X86::LD_Fp080     , X86::LD_F0     },
728   { X86::LD_Fp132     , X86::LD_F1     },
729   { X86::LD_Fp164     , X86::LD_F1     },
730   { X86::LD_Fp180     , X86::LD_F1     },
731   { X86::LD_Fp32m     , X86::LD_F32m   },
732   { X86::LD_Fp32m64   , X86::LD_F32m   },
733   { X86::LD_Fp32m80   , X86::LD_F32m   },
734   { X86::LD_Fp64m     , X86::LD_F64m   },
735   { X86::LD_Fp64m80   , X86::LD_F64m   },
736   { X86::LD_Fp80m     , X86::LD_F80m   },
737   { X86::MUL_Fp32m    , X86::MUL_F32m  },
738   { X86::MUL_Fp64m    , X86::MUL_F64m  },
739   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
740   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
741   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
742   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
743   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
744   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
745   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
746   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
747   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
748   { X86::SQRT_Fp32    , X86::SQRT_F    },
749   { X86::SQRT_Fp64    , X86::SQRT_F    },
750   { X86::SQRT_Fp80    , X86::SQRT_F    },
751   { X86::ST_Fp32m     , X86::ST_F32m   },
752   { X86::ST_Fp64m     , X86::ST_F64m   },
753   { X86::ST_Fp64m32   , X86::ST_F32m   },
754   { X86::ST_Fp80m32   , X86::ST_F32m   },
755   { X86::ST_Fp80m64   , X86::ST_F64m   },
756   { X86::ST_FpP80m    , X86::ST_FP80m  },
757   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
758   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
759   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
760   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
761   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
762   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
763   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
764   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
765   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
766   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
767   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
768   { X86::SUB_Fp32m    , X86::SUB_F32m  },
769   { X86::SUB_Fp64m    , X86::SUB_F64m  },
770   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
771   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
772   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
773   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
774   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
775   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
776   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
777   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
778   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
779   { X86::TST_Fp32     , X86::TST_F     },
780   { X86::TST_Fp64     , X86::TST_F     },
781   { X86::TST_Fp80     , X86::TST_F     },
782   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
783   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
784   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
785   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
786   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
787   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
788   { X86::XAM_Fp32     , X86::XAM_F     },
789   { X86::XAM_Fp64     , X86::XAM_F     },
790   { X86::XAM_Fp80     , X86::XAM_F     },
791 };
792 
793 static unsigned getConcreteOpcode(unsigned Opcode) {
794   ASSERT_SORTED(OpcodeTable);
795   int Opc = Lookup(OpcodeTable, Opcode);
796   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
797   return Opc;
798 }
799 
800 //===----------------------------------------------------------------------===//
801 // Helper Methods
802 //===----------------------------------------------------------------------===//
803 
804 // PopTable - Sorted map of instructions to their popping version.  The first
805 // element is an instruction, the second is the version which pops.
806 //
807 static const TableEntry PopTable[] = {
808   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
809 
810   { X86::COMP_FST0r, X86::FCOMPP      },
811   { X86::COM_FIr   , X86::COM_FIPr    },
812   { X86::COM_FST0r , X86::COMP_FST0r  },
813 
814   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
815   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
816 
817   { X86::IST_F16m  , X86::IST_FP16m   },
818   { X86::IST_F32m  , X86::IST_FP32m   },
819 
820   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
821 
822   { X86::ST_F32m   , X86::ST_FP32m    },
823   { X86::ST_F64m   , X86::ST_FP64m    },
824   { X86::ST_Frr    , X86::ST_FPrr     },
825 
826   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
827   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
828 
829   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
830 
831   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
832   { X86::UCOM_Fr   , X86::UCOM_FPr    },
833 };
834 
835 static bool doesInstructionSetFPSW(MachineInstr &MI) {
836   if (const MachineOperand *MO = MI.findRegisterDefOperand(X86::FPSW))
837     if (!MO->isDead())
838       return true;
839   return false;
840 }
841 
842 static MachineBasicBlock::iterator
843 getNextFPInstruction(MachineBasicBlock::iterator I) {
844   MachineBasicBlock &MBB = *I->getParent();
845   while (++I != MBB.end()) {
846     MachineInstr &MI = *I;
847     if (X86::isX87Instruction(MI))
848       return I;
849   }
850   return MBB.end();
851 }
852 
853 /// popStackAfter - Pop the current value off of the top of the FP stack after
854 /// the specified instruction.  This attempts to be sneaky and combine the pop
855 /// into the instruction itself if possible.  The iterator is left pointing to
856 /// the last instruction, be it a new pop instruction inserted, or the old
857 /// instruction if it was modified in place.
858 ///
859 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
860   MachineInstr &MI = *I;
861   const DebugLoc &dl = MI.getDebugLoc();
862   ASSERT_SORTED(PopTable);
863 
864   popReg();
865 
866   // Check to see if there is a popping version of this instruction...
867   int Opcode = Lookup(PopTable, I->getOpcode());
868   if (Opcode != -1) {
869     I->setDesc(TII->get(Opcode));
870     if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
871       I->RemoveOperand(0);
872     MI.dropDebugNumber();
873   } else {    // Insert an explicit pop
874     // If this instruction sets FPSW, which is read in following instruction,
875     // insert pop after that reader.
876     if (doesInstructionSetFPSW(MI)) {
877       MachineBasicBlock &MBB = *MI.getParent();
878       MachineBasicBlock::iterator Next = getNextFPInstruction(I);
879       if (Next != MBB.end() && Next->readsRegister(X86::FPSW))
880         I = Next;
881     }
882     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
883   }
884 }
885 
886 /// freeStackSlotAfter - Free the specified register from the register stack, so
887 /// that it is no longer in a register.  If the register is currently at the top
888 /// of the stack, we just pop the current instruction, otherwise we store the
889 /// current top-of-stack into the specified slot, then pop the top of stack.
890 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
891   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
892     popStackAfter(I);
893     return;
894   }
895 
896   // Otherwise, store the top of stack into the dead slot, killing the operand
897   // without having to add in an explicit xchg then pop.
898   //
899   I = freeStackSlotBefore(++I, FPRegNo);
900 }
901 
902 /// freeStackSlotBefore - Free the specified register without trying any
903 /// folding.
904 MachineBasicBlock::iterator
905 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
906   unsigned STReg    = getSTReg(FPRegNo);
907   unsigned OldSlot  = getSlot(FPRegNo);
908   unsigned TopReg   = Stack[StackTop-1];
909   Stack[OldSlot]    = TopReg;
910   RegMap[TopReg]    = OldSlot;
911   RegMap[FPRegNo]   = ~0;
912   Stack[--StackTop] = ~0;
913   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
914       .addReg(STReg)
915       .getInstr();
916 }
917 
918 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
919 /// registers with a bit in Mask are live.
920 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
921   unsigned Defs = Mask;
922   unsigned Kills = 0;
923   for (unsigned i = 0; i < StackTop; ++i) {
924     unsigned RegNo = Stack[i];
925     if (!(Defs & (1 << RegNo)))
926       // This register is live, but we don't want it.
927       Kills |= (1 << RegNo);
928     else
929       // We don't need to imp-def this live register.
930       Defs &= ~(1 << RegNo);
931   }
932   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
933 
934   // Produce implicit-defs for free by using killed registers.
935   while (Kills && Defs) {
936     unsigned KReg = countTrailingZeros(Kills);
937     unsigned DReg = countTrailingZeros(Defs);
938     LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
939                       << "\n");
940     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
941     std::swap(RegMap[KReg], RegMap[DReg]);
942     Kills &= ~(1 << KReg);
943     Defs &= ~(1 << DReg);
944   }
945 
946   // Kill registers by popping.
947   if (Kills && I != MBB->begin()) {
948     MachineBasicBlock::iterator I2 = std::prev(I);
949     while (StackTop) {
950       unsigned KReg = getStackEntry(0);
951       if (!(Kills & (1 << KReg)))
952         break;
953       LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
954       popStackAfter(I2);
955       Kills &= ~(1 << KReg);
956     }
957   }
958 
959   // Manually kill the rest.
960   while (Kills) {
961     unsigned KReg = countTrailingZeros(Kills);
962     LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
963     freeStackSlotBefore(I, KReg);
964     Kills &= ~(1 << KReg);
965   }
966 
967   // Load zeros for all the imp-defs.
968   while(Defs) {
969     unsigned DReg = countTrailingZeros(Defs);
970     LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
971     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
972     pushReg(DReg);
973     Defs &= ~(1 << DReg);
974   }
975 
976   // Now we should have the correct registers live.
977   LLVM_DEBUG(dumpStack());
978   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
979 }
980 
981 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
982 /// FixCount entries into the order given by FixStack.
983 /// FIXME: Is there a better algorithm than insertion sort?
984 void FPS::shuffleStackTop(const unsigned char *FixStack,
985                           unsigned FixCount,
986                           MachineBasicBlock::iterator I) {
987   // Move items into place, starting from the desired stack bottom.
988   while (FixCount--) {
989     // Old register at position FixCount.
990     unsigned OldReg = getStackEntry(FixCount);
991     // Desired register at position FixCount.
992     unsigned Reg = FixStack[FixCount];
993     if (Reg == OldReg)
994       continue;
995     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
996     moveToTop(Reg, I);
997     if (FixCount > 0)
998       moveToTop(OldReg, I);
999   }
1000   LLVM_DEBUG(dumpStack());
1001 }
1002 
1003 
1004 //===----------------------------------------------------------------------===//
1005 // Instruction transformation implementation
1006 //===----------------------------------------------------------------------===//
1007 
1008 void FPS::handleCall(MachineBasicBlock::iterator &I) {
1009   MachineInstr &MI = *I;
1010   unsigned STReturns = 0;
1011 
1012   bool ClobbersFPStack = false;
1013   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1014     MachineOperand &Op = MI.getOperand(i);
1015     // Check if this call clobbers the FP stack.
1016     // is sufficient.
1017     if (Op.isRegMask()) {
1018       bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
1019 #ifndef NDEBUG
1020       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
1021       for (unsigned i = 1; i != 8; ++i)
1022         assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
1023                "Inconsistent FP register clobber");
1024 #endif
1025 
1026       if (ClobbersFP0)
1027         ClobbersFPStack = true;
1028     }
1029 
1030     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1031       continue;
1032 
1033     assert(Op.isImplicit() && "Expected implicit def/use");
1034 
1035     if (Op.isDef())
1036       STReturns |= 1 << getFPReg(Op);
1037 
1038     // Remove the operand so that later passes don't see it.
1039     MI.RemoveOperand(i);
1040     --i;
1041     --e;
1042   }
1043 
1044   // Most calls should have a regmask that clobbers the FP registers. If it
1045   // isn't present then the register allocator didn't spill the FP registers
1046   // so they are still on the stack.
1047   assert((ClobbersFPStack || STReturns == 0) &&
1048          "ST returns without FP stack clobber");
1049   if (!ClobbersFPStack)
1050     return;
1051 
1052   unsigned N = countTrailingOnes(STReturns);
1053 
1054   // FP registers used for function return must be consecutive starting at
1055   // FP0
1056   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1057 
1058   // Reset the FP Stack - It is required because of possible leftovers from
1059   // passed arguments. The caller should assume that the FP stack is
1060   // returned empty (unless the callee returns values on FP stack).
1061   while (StackTop > 0)
1062     popReg();
1063 
1064   for (unsigned I = 0; I < N; ++I)
1065     pushReg(N - I - 1);
1066 
1067   // If this call has been modified, drop all variable values defined by it.
1068   // We can't track them once they've been stackified.
1069   if (STReturns)
1070     I->dropDebugNumber();
1071 }
1072 
1073 /// If RET has an FP register use operand, pass the first one in ST(0) and
1074 /// the second one in ST(1).
1075 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1076   MachineInstr &MI = *I;
1077 
1078   // Find the register operands.
1079   unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1080   unsigned LiveMask = 0;
1081 
1082   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1083     MachineOperand &Op = MI.getOperand(i);
1084     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1085       continue;
1086     // FP Register uses must be kills unless there are two uses of the same
1087     // register, in which case only one will be a kill.
1088     assert(Op.isUse() &&
1089            (Op.isKill() ||                    // Marked kill.
1090             getFPReg(Op) == FirstFPRegOp ||   // Second instance.
1091             MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1092            "Ret only defs operands, and values aren't live beyond it");
1093 
1094     if (FirstFPRegOp == ~0U)
1095       FirstFPRegOp = getFPReg(Op);
1096     else {
1097       assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1098       SecondFPRegOp = getFPReg(Op);
1099     }
1100     LiveMask |= (1 << getFPReg(Op));
1101 
1102     // Remove the operand so that later passes don't see it.
1103     MI.RemoveOperand(i);
1104     --i;
1105     --e;
1106   }
1107 
1108   // We may have been carrying spurious live-ins, so make sure only the
1109   // returned registers are left live.
1110   adjustLiveRegs(LiveMask, MI);
1111   if (!LiveMask) return;  // Quick check to see if any are possible.
1112 
1113   // There are only four possibilities here:
1114   // 1) we are returning a single FP value.  In this case, it has to be in
1115   //    ST(0) already, so just declare success by removing the value from the
1116   //    FP Stack.
1117   if (SecondFPRegOp == ~0U) {
1118     // Assert that the top of stack contains the right FP register.
1119     assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1120            "Top of stack not the right register for RET!");
1121 
1122     // Ok, everything is good, mark the value as not being on the stack
1123     // anymore so that our assertion about the stack being empty at end of
1124     // block doesn't fire.
1125     StackTop = 0;
1126     return;
1127   }
1128 
1129   // Otherwise, we are returning two values:
1130   // 2) If returning the same value for both, we only have one thing in the FP
1131   //    stack.  Consider:  RET FP1, FP1
1132   if (StackTop == 1) {
1133     assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1134            "Stack misconfiguration for RET!");
1135 
1136     // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1137     // register to hold it.
1138     unsigned NewReg = ScratchFPReg;
1139     duplicateToTop(FirstFPRegOp, NewReg, MI);
1140     FirstFPRegOp = NewReg;
1141   }
1142 
1143   /// Okay we know we have two different FPx operands now:
1144   assert(StackTop == 2 && "Must have two values live!");
1145 
1146   /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1147   ///    in ST(1).  In this case, emit an fxch.
1148   if (getStackEntry(0) == SecondFPRegOp) {
1149     assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1150     moveToTop(FirstFPRegOp, MI);
1151   }
1152 
1153   /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1154   /// ST(1).  Just remove both from our understanding of the stack and return.
1155   assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1156   assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1157   StackTop = 0;
1158 }
1159 
1160 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
1161 ///
1162 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1163   MachineInstr &MI = *I;
1164   unsigned DestReg = getFPReg(MI.getOperand(0));
1165 
1166   // Change from the pseudo instruction to the concrete instruction.
1167   MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1168   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1169   MI.addOperand(
1170       MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1171 
1172   // Result gets pushed on the stack.
1173   pushReg(DestReg);
1174 
1175   MI.dropDebugNumber();
1176 }
1177 
1178 /// handleOneArgFP - fst <mem>, ST(0)
1179 ///
1180 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1181   MachineInstr &MI = *I;
1182   unsigned NumOps = MI.getDesc().getNumOperands();
1183   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1184          "Can only handle fst* & ftst instructions!");
1185 
1186   // Is this the last use of the source register?
1187   unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1188   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1189 
1190   // FISTP64m is strange because there isn't a non-popping versions.
1191   // If we have one _and_ we don't want to pop the operand, duplicate the value
1192   // on the stack instead of moving it.  This ensure that popping the value is
1193   // always ok.
1194   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1195   //
1196   if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1197                     MI.getOpcode() == X86::ISTT_Fp16m32 ||
1198                     MI.getOpcode() == X86::ISTT_Fp32m32 ||
1199                     MI.getOpcode() == X86::ISTT_Fp64m32 ||
1200                     MI.getOpcode() == X86::IST_Fp64m64 ||
1201                     MI.getOpcode() == X86::ISTT_Fp16m64 ||
1202                     MI.getOpcode() == X86::ISTT_Fp32m64 ||
1203                     MI.getOpcode() == X86::ISTT_Fp64m64 ||
1204                     MI.getOpcode() == X86::IST_Fp64m80 ||
1205                     MI.getOpcode() == X86::ISTT_Fp16m80 ||
1206                     MI.getOpcode() == X86::ISTT_Fp32m80 ||
1207                     MI.getOpcode() == X86::ISTT_Fp64m80 ||
1208                     MI.getOpcode() == X86::ST_FpP80m)) {
1209     duplicateToTop(Reg, ScratchFPReg, I);
1210   } else {
1211     moveToTop(Reg, I);            // Move to the top of the stack...
1212   }
1213 
1214   // Convert from the pseudo instruction to the concrete instruction.
1215   MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1216   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1217   MI.addOperand(
1218       MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1219 
1220   if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1221       MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1222       MI.getOpcode() == X86::ST_FP80m) {
1223     if (StackTop == 0)
1224       report_fatal_error("Stack empty??");
1225     --StackTop;
1226   } else if (KillsSrc) { // Last use of operand?
1227     popStackAfter(I);
1228   }
1229 
1230   MI.dropDebugNumber();
1231 }
1232 
1233 
1234 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1235 /// replace the value with a newly computed value.  These instructions may have
1236 /// non-fp operands after their FP operands.
1237 ///
1238 ///  Examples:
1239 ///     R1 = fchs R2
1240 ///     R1 = fadd R2, [mem]
1241 ///
1242 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1243   MachineInstr &MI = *I;
1244 #ifndef NDEBUG
1245   unsigned NumOps = MI.getDesc().getNumOperands();
1246   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1247 #endif
1248 
1249   // Is this the last use of the source register?
1250   unsigned Reg = getFPReg(MI.getOperand(1));
1251   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1252 
1253   if (KillsSrc) {
1254     // If this is the last use of the source register, just make sure it's on
1255     // the top of the stack.
1256     moveToTop(Reg, I);
1257     if (StackTop == 0)
1258       report_fatal_error("Stack cannot be empty!");
1259     --StackTop;
1260     pushReg(getFPReg(MI.getOperand(0)));
1261   } else {
1262     // If this is not the last use of the source register, _copy_ it to the top
1263     // of the stack.
1264     duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1265   }
1266 
1267   // Change from the pseudo instruction to the concrete instruction.
1268   MI.RemoveOperand(1); // Drop the source operand.
1269   MI.RemoveOperand(0); // Drop the destination operand.
1270   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1271   MI.dropDebugNumber();
1272 }
1273 
1274 
1275 //===----------------------------------------------------------------------===//
1276 // Define tables of various ways to map pseudo instructions
1277 //
1278 
1279 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1280 static const TableEntry ForwardST0Table[] = {
1281   { X86::ADD_Fp32  , X86::ADD_FST0r },
1282   { X86::ADD_Fp64  , X86::ADD_FST0r },
1283   { X86::ADD_Fp80  , X86::ADD_FST0r },
1284   { X86::DIV_Fp32  , X86::DIV_FST0r },
1285   { X86::DIV_Fp64  , X86::DIV_FST0r },
1286   { X86::DIV_Fp80  , X86::DIV_FST0r },
1287   { X86::MUL_Fp32  , X86::MUL_FST0r },
1288   { X86::MUL_Fp64  , X86::MUL_FST0r },
1289   { X86::MUL_Fp80  , X86::MUL_FST0r },
1290   { X86::SUB_Fp32  , X86::SUB_FST0r },
1291   { X86::SUB_Fp64  , X86::SUB_FST0r },
1292   { X86::SUB_Fp80  , X86::SUB_FST0r },
1293 };
1294 
1295 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1296 static const TableEntry ReverseST0Table[] = {
1297   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1298   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1299   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1300   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1301   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1302   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1303   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1304   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1305   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1306   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1307   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1308   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1309 };
1310 
1311 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1312 static const TableEntry ForwardSTiTable[] = {
1313   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1314   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1315   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1316   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1317   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1318   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1319   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1320   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1321   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1322   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1323   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1324   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1325 };
1326 
1327 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1328 static const TableEntry ReverseSTiTable[] = {
1329   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1330   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1331   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1332   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1333   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1334   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1335   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1336   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1337   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1338   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1339   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1340   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1341 };
1342 
1343 
1344 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1345 /// instructions which need to be simplified and possibly transformed.
1346 ///
1347 /// Result: ST(0) = fsub  ST(0), ST(i)
1348 ///         ST(i) = fsub  ST(0), ST(i)
1349 ///         ST(0) = fsubr ST(0), ST(i)
1350 ///         ST(i) = fsubr ST(0), ST(i)
1351 ///
1352 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1353   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1354   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1355   MachineInstr &MI = *I;
1356 
1357   unsigned NumOperands = MI.getDesc().getNumOperands();
1358   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1359   unsigned Dest = getFPReg(MI.getOperand(0));
1360   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1361   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1362   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1363   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1364   const DebugLoc &dl = MI.getDebugLoc();
1365 
1366   unsigned TOS = getStackEntry(0);
1367 
1368   // One of our operands must be on the top of the stack.  If neither is yet, we
1369   // need to move one.
1370   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1371     // We can choose to move either operand to the top of the stack.  If one of
1372     // the operands is killed by this instruction, we want that one so that we
1373     // can update right on top of the old version.
1374     if (KillsOp0) {
1375       moveToTop(Op0, I);         // Move dead operand to TOS.
1376       TOS = Op0;
1377     } else if (KillsOp1) {
1378       moveToTop(Op1, I);
1379       TOS = Op1;
1380     } else {
1381       // All of the operands are live after this instruction executes, so we
1382       // cannot update on top of any operand.  Because of this, we must
1383       // duplicate one of the stack elements to the top.  It doesn't matter
1384       // which one we pick.
1385       //
1386       duplicateToTop(Op0, Dest, I);
1387       Op0 = TOS = Dest;
1388       KillsOp0 = true;
1389     }
1390   } else if (!KillsOp0 && !KillsOp1) {
1391     // If we DO have one of our operands at the top of the stack, but we don't
1392     // have a dead operand, we must duplicate one of the operands to a new slot
1393     // on the stack.
1394     duplicateToTop(Op0, Dest, I);
1395     Op0 = TOS = Dest;
1396     KillsOp0 = true;
1397   }
1398 
1399   // Now we know that one of our operands is on the top of the stack, and at
1400   // least one of our operands is killed by this instruction.
1401   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1402          "Stack conditions not set up right!");
1403 
1404   // We decide which form to use based on what is on the top of the stack, and
1405   // which operand is killed by this instruction.
1406   ArrayRef<TableEntry> InstTable;
1407   bool isForward = TOS == Op0;
1408   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1409   if (updateST0) {
1410     if (isForward)
1411       InstTable = ForwardST0Table;
1412     else
1413       InstTable = ReverseST0Table;
1414   } else {
1415     if (isForward)
1416       InstTable = ForwardSTiTable;
1417     else
1418       InstTable = ReverseSTiTable;
1419   }
1420 
1421   int Opcode = Lookup(InstTable, MI.getOpcode());
1422   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1423 
1424   // NotTOS - The register which is not on the top of stack...
1425   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1426 
1427   // Replace the old instruction with a new instruction
1428   MBB->remove(&*I++);
1429   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1430 
1431   if (!MI.mayRaiseFPException())
1432     I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1433 
1434   // If both operands are killed, pop one off of the stack in addition to
1435   // overwriting the other one.
1436   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1437     assert(!updateST0 && "Should have updated other operand!");
1438     popStackAfter(I);   // Pop the top of stack
1439   }
1440 
1441   // Update stack information so that we know the destination register is now on
1442   // the stack.
1443   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1444   assert(UpdatedSlot < StackTop && Dest < 7);
1445   Stack[UpdatedSlot]   = Dest;
1446   RegMap[Dest]         = UpdatedSlot;
1447   MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1448 }
1449 
1450 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1451 /// register arguments and no explicit destinations.
1452 ///
1453 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1454   MachineInstr &MI = *I;
1455 
1456   unsigned NumOperands = MI.getDesc().getNumOperands();
1457   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1458   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1459   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1460   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1461   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1462 
1463   // Make sure the first operand is on the top of stack, the other one can be
1464   // anywhere.
1465   moveToTop(Op0, I);
1466 
1467   // Change from the pseudo instruction to the concrete instruction.
1468   MI.getOperand(0).setReg(getSTReg(Op1));
1469   MI.RemoveOperand(1);
1470   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1471   MI.dropDebugNumber();
1472 
1473   // If any of the operands are killed by this instruction, free them.
1474   if (KillsOp0) freeStackSlotAfter(I, Op0);
1475   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1476 }
1477 
1478 /// handleCondMovFP - Handle two address conditional move instructions.  These
1479 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1480 /// instructions require that the first operand is at the top of the stack, but
1481 /// otherwise don't modify the stack at all.
1482 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1483   MachineInstr &MI = *I;
1484 
1485   unsigned Op0 = getFPReg(MI.getOperand(0));
1486   unsigned Op1 = getFPReg(MI.getOperand(2));
1487   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1488 
1489   // The first operand *must* be on the top of the stack.
1490   moveToTop(Op0, I);
1491 
1492   // Change the second operand to the stack register that the operand is in.
1493   // Change from the pseudo instruction to the concrete instruction.
1494   MI.RemoveOperand(0);
1495   MI.RemoveOperand(1);
1496   MI.getOperand(0).setReg(getSTReg(Op1));
1497   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1498   MI.dropDebugNumber();
1499 
1500   // If we kill the second operand, make sure to pop it from the stack.
1501   if (Op0 != Op1 && KillsOp1) {
1502     // Get this value off of the register stack.
1503     freeStackSlotAfter(I, Op1);
1504   }
1505 }
1506 
1507 
1508 /// handleSpecialFP - Handle special instructions which behave unlike other
1509 /// floating point instructions.  This is primarily intended for use by pseudo
1510 /// instructions.
1511 ///
1512 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1513   MachineInstr &MI = *Inst;
1514 
1515   if (MI.isCall()) {
1516     handleCall(Inst);
1517     return;
1518   }
1519 
1520   if (MI.isReturn()) {
1521     handleReturn(Inst);
1522     return;
1523   }
1524 
1525   switch (MI.getOpcode()) {
1526   default: llvm_unreachable("Unknown SpecialFP instruction!");
1527   case TargetOpcode::COPY: {
1528     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1529     const MachineOperand &MO1 = MI.getOperand(1);
1530     const MachineOperand &MO0 = MI.getOperand(0);
1531     bool KillsSrc = MI.killsRegister(MO1.getReg());
1532 
1533     // FP <- FP copy.
1534     unsigned DstFP = getFPReg(MO0);
1535     unsigned SrcFP = getFPReg(MO1);
1536     assert(isLive(SrcFP) && "Cannot copy dead register");
1537     if (KillsSrc) {
1538       // If the input operand is killed, we can just change the owner of the
1539       // incoming stack slot into the result.
1540       unsigned Slot = getSlot(SrcFP);
1541       Stack[Slot] = DstFP;
1542       RegMap[DstFP] = Slot;
1543     } else {
1544       // For COPY we just duplicate the specified value to a new stack slot.
1545       // This could be made better, but would require substantial changes.
1546       duplicateToTop(SrcFP, DstFP, Inst);
1547     }
1548     break;
1549   }
1550 
1551   case TargetOpcode::IMPLICIT_DEF: {
1552     // All FP registers must be explicitly defined, so load a 0 instead.
1553     unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1554     LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1555     BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1556     pushReg(Reg);
1557     break;
1558   }
1559 
1560   case TargetOpcode::INLINEASM:
1561   case TargetOpcode::INLINEASM_BR: {
1562     // The inline asm MachineInstr currently only *uses* FP registers for the
1563     // 'f' constraint.  These should be turned into the current ST(x) register
1564     // in the machine instr.
1565     //
1566     // There are special rules for x87 inline assembly. The compiler must know
1567     // exactly how many registers are popped and pushed implicitly by the asm.
1568     // Otherwise it is not possible to restore the stack state after the inline
1569     // asm.
1570     //
1571     // There are 3 kinds of input operands:
1572     //
1573     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1574     //    popped input operand must be in a fixed stack slot, and it is either
1575     //    tied to an output operand, or in the clobber list. The MI has ST use
1576     //    and def operands for these inputs.
1577     //
1578     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1579     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1580     //    following the popped inputs. A fixed input operand cannot be tied to
1581     //    an output or appear in the clobber list. The MI has ST use operands
1582     //    and no defs for these inputs.
1583     //
1584     // 3. Preserved inputs. These inputs use the "f" constraint which is
1585     //    represented as an FP register. The inline asm won't change these
1586     //    stack slots.
1587     //
1588     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1589     // registers do not count as output operands. The inline asm changes the
1590     // stack as if it popped all the popped inputs and then pushed all the
1591     // output operands.
1592 
1593     // Scan the assembly for ST registers used, defined and clobbered. We can
1594     // only tell clobbers from defs by looking at the asm descriptor.
1595     unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1596     unsigned NumOps = 0;
1597     SmallSet<unsigned, 1> FRegIdx;
1598     unsigned RCID;
1599 
1600     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1601          i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1602       unsigned Flags = MI.getOperand(i).getImm();
1603 
1604       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1605       if (NumOps != 1)
1606         continue;
1607       const MachineOperand &MO = MI.getOperand(i + 1);
1608       if (!MO.isReg())
1609         continue;
1610       unsigned STReg = MO.getReg() - X86::FP0;
1611       if (STReg >= 8)
1612         continue;
1613 
1614       // If the flag has a register class constraint, this must be an operand
1615       // with constraint "f". Record its index and continue.
1616       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1617         FRegIdx.insert(i + 1);
1618         continue;
1619       }
1620 
1621       switch (InlineAsm::getKind(Flags)) {
1622       case InlineAsm::Kind_RegUse:
1623         STUses |= (1u << STReg);
1624         break;
1625       case InlineAsm::Kind_RegDef:
1626       case InlineAsm::Kind_RegDefEarlyClobber:
1627         STDefs |= (1u << STReg);
1628         break;
1629       case InlineAsm::Kind_Clobber:
1630         STClobbers |= (1u << STReg);
1631         break;
1632       default:
1633         break;
1634       }
1635     }
1636 
1637     if (STUses && !isMask_32(STUses))
1638       MI.emitError("fixed input regs must be last on the x87 stack");
1639     unsigned NumSTUses = countTrailingOnes(STUses);
1640 
1641     // Defs must be contiguous from the stack top. ST0-STn.
1642     if (STDefs && !isMask_32(STDefs)) {
1643       MI.emitError("output regs must be last on the x87 stack");
1644       STDefs = NextPowerOf2(STDefs) - 1;
1645     }
1646     unsigned NumSTDefs = countTrailingOnes(STDefs);
1647 
1648     // So must the clobbered stack slots. ST0-STm, m >= n.
1649     if (STClobbers && !isMask_32(STDefs | STClobbers))
1650       MI.emitError("clobbers must be last on the x87 stack");
1651 
1652     // Popped inputs are the ones that are also clobbered or defined.
1653     unsigned STPopped = STUses & (STDefs | STClobbers);
1654     if (STPopped && !isMask_32(STPopped))
1655       MI.emitError("implicitly popped regs must be last on the x87 stack");
1656     unsigned NumSTPopped = countTrailingOnes(STPopped);
1657 
1658     LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1659                       << NumSTPopped << ", and defines " << NumSTDefs
1660                       << " regs.\n");
1661 
1662 #ifndef NDEBUG
1663     // If any input operand uses constraint "f", all output register
1664     // constraints must be early-clobber defs.
1665     for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1666       if (FRegIdx.count(I)) {
1667         assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1668                "Operands with constraint \"f\" cannot overlap with defs");
1669       }
1670 #endif
1671 
1672     // Collect all FP registers (register operands with constraints "t", "u",
1673     // and "f") to kill afer the instruction.
1674     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1675     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1676       MachineOperand &Op = MI.getOperand(i);
1677       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1678         continue;
1679       unsigned FPReg = getFPReg(Op);
1680 
1681       // If we kill this operand, make sure to pop it from the stack after the
1682       // asm.  We just remember it for now, and pop them all off at the end in
1683       // a batch.
1684       if (Op.isUse() && Op.isKill())
1685         FPKills |= 1U << FPReg;
1686     }
1687 
1688     // Do not include registers that are implicitly popped by defs/clobbers.
1689     FPKills &= ~(STDefs | STClobbers);
1690 
1691     // Now we can rearrange the live registers to match what was requested.
1692     unsigned char STUsesArray[8];
1693 
1694     for (unsigned I = 0; I < NumSTUses; ++I)
1695       STUsesArray[I] = I;
1696 
1697     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1698     LLVM_DEBUG({
1699       dbgs() << "Before asm: ";
1700       dumpStack();
1701     });
1702 
1703     // With the stack layout fixed, rewrite the FP registers.
1704     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1705       MachineOperand &Op = MI.getOperand(i);
1706       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1707         continue;
1708 
1709       unsigned FPReg = getFPReg(Op);
1710 
1711       if (FRegIdx.count(i))
1712         // Operand with constraint "f".
1713         Op.setReg(getSTReg(FPReg));
1714       else
1715         // Operand with a single register class constraint ("t" or "u").
1716         Op.setReg(X86::ST0 + FPReg);
1717     }
1718 
1719     // Simulate the inline asm popping its inputs and pushing its outputs.
1720     StackTop -= NumSTPopped;
1721 
1722     for (unsigned i = 0; i < NumSTDefs; ++i)
1723       pushReg(NumSTDefs - i - 1);
1724 
1725     // If this asm kills any FP registers (is the last use of them) we must
1726     // explicitly emit pop instructions for them.  Do this now after the asm has
1727     // executed so that the ST(x) numbers are not off (which would happen if we
1728     // did this inline with operand rewriting).
1729     //
1730     // Note: this might be a non-optimal pop sequence.  We might be able to do
1731     // better by trying to pop in stack order or something.
1732     while (FPKills) {
1733       unsigned FPReg = countTrailingZeros(FPKills);
1734       if (isLive(FPReg))
1735         freeStackSlotAfter(Inst, FPReg);
1736       FPKills &= ~(1U << FPReg);
1737     }
1738 
1739     // Don't delete the inline asm!
1740     return;
1741   }
1742   }
1743 
1744   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1745 
1746   // We want to leave I pointing to the previous instruction, but what if we
1747   // just erased the first instruction?
1748   if (Inst == MBB->begin()) {
1749     LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1750     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1751   } else
1752     --Inst;
1753 }
1754 
1755 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1756   const TargetRegisterInfo &TRI =
1757       *MBB.getParent()->getSubtarget().getRegisterInfo();
1758   LivePhysRegs LPR(TRI);
1759 
1760   LPR.addLiveOuts(MBB);
1761 
1762   for (MachineInstr &MI : llvm::reverse(MBB)) {
1763     if (MI.isDebugInstr())
1764       continue;
1765 
1766     std::bitset<8> Defs;
1767     SmallVector<MachineOperand *, 2> Uses;
1768 
1769     for (auto &MO : MI.operands()) {
1770       if (!MO.isReg())
1771         continue;
1772 
1773       unsigned Reg = MO.getReg() - X86::FP0;
1774 
1775       if (Reg >= 8)
1776         continue;
1777 
1778       if (MO.isDef()) {
1779         Defs.set(Reg);
1780         if (!LPR.contains(MO.getReg()))
1781           MO.setIsDead();
1782       } else
1783         Uses.push_back(&MO);
1784     }
1785 
1786     for (auto *MO : Uses)
1787       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1788         MO->setIsKill();
1789 
1790     LPR.stepBackward(MI);
1791   }
1792 }
1793