xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/IntrinsicsX86.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44 
45 namespace {
46 
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51 
52   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53   /// floating point ops.
54   /// When SSE is available, use it for f32 operations.
55   /// When SSE2 is available, use it for f64 operations.
56   bool X86ScalarSSEf64;
57   bool X86ScalarSSEf32;
58 
59 public:
60   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61                        const TargetLibraryInfo *libInfo)
62       : FastISel(funcInfo, libInfo) {
63     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
64     X86ScalarSSEf64 = Subtarget->hasSSE2();
65     X86ScalarSSEf32 = Subtarget->hasSSE1();
66   }
67 
68   bool fastSelectInstruction(const Instruction *I) override;
69 
70   /// The specified machine instr operand is a vreg, and that
71   /// vreg is being provided by the specified load instruction.  If possible,
72   /// try to fold the load as an operand to the instruction, returning true if
73   /// possible.
74   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
75                            const LoadInst *LI) override;
76 
77   bool fastLowerArguments() override;
78   bool fastLowerCall(CallLoweringInfo &CLI) override;
79   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
80 
81 #include "X86GenFastISel.inc"
82 
83 private:
84   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
85                           const DebugLoc &DL);
86 
87   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
88                        unsigned &ResultReg, unsigned Alignment = 1);
89 
90   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
91                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
92   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
93                         X86AddressMode &AM,
94                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
95 
96   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97                          unsigned &ResultReg);
98 
99   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
101 
102   bool X86SelectLoad(const Instruction *I);
103 
104   bool X86SelectStore(const Instruction *I);
105 
106   bool X86SelectRet(const Instruction *I);
107 
108   bool X86SelectCmp(const Instruction *I);
109 
110   bool X86SelectZExt(const Instruction *I);
111 
112   bool X86SelectSExt(const Instruction *I);
113 
114   bool X86SelectBranch(const Instruction *I);
115 
116   bool X86SelectShift(const Instruction *I);
117 
118   bool X86SelectDivRem(const Instruction *I);
119 
120   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
121 
122   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
123 
124   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
125 
126   bool X86SelectSelect(const Instruction *I);
127 
128   bool X86SelectTrunc(const Instruction *I);
129 
130   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
131                                const TargetRegisterClass *RC);
132 
133   bool X86SelectFPExt(const Instruction *I);
134   bool X86SelectFPTrunc(const Instruction *I);
135   bool X86SelectSIToFP(const Instruction *I);
136   bool X86SelectUIToFP(const Instruction *I);
137   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
138 
139   const X86InstrInfo *getInstrInfo() const {
140     return Subtarget->getInstrInfo();
141   }
142   const X86TargetMachine *getTargetMachine() const {
143     return static_cast<const X86TargetMachine *>(&TM);
144   }
145 
146   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
147 
148   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
149   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
150   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
151   unsigned fastMaterializeConstant(const Constant *C) override;
152 
153   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
154 
155   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
156 
157   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
158   /// computed in an SSE register, not on the X87 floating point stack.
159   bool isScalarFPTypeInSSEReg(EVT VT) const {
160     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
161       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
162   }
163 
164   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
165 
166   bool IsMemcpySmall(uint64_t Len);
167 
168   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
169                           X86AddressMode SrcAM, uint64_t Len);
170 
171   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
172                             const Value *Cond);
173 
174   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
175                                             X86AddressMode &AM);
176 
177   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
178                              const TargetRegisterClass *RC, unsigned Op0,
179                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
180                              unsigned Op2, bool Op2IsKill, unsigned Op3,
181                              bool Op3IsKill);
182 };
183 
184 } // end anonymous namespace.
185 
186 static std::pair<unsigned, bool>
187 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
188   unsigned CC;
189   bool NeedSwap = false;
190 
191   // SSE Condition code mapping:
192   //  0 - EQ
193   //  1 - LT
194   //  2 - LE
195   //  3 - UNORD
196   //  4 - NEQ
197   //  5 - NLT
198   //  6 - NLE
199   //  7 - ORD
200   switch (Predicate) {
201   default: llvm_unreachable("Unexpected predicate");
202   case CmpInst::FCMP_OEQ: CC = 0;          break;
203   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
204   case CmpInst::FCMP_OLT: CC = 1;          break;
205   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
206   case CmpInst::FCMP_OLE: CC = 2;          break;
207   case CmpInst::FCMP_UNO: CC = 3;          break;
208   case CmpInst::FCMP_UNE: CC = 4;          break;
209   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
210   case CmpInst::FCMP_UGE: CC = 5;          break;
211   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
212   case CmpInst::FCMP_UGT: CC = 6;          break;
213   case CmpInst::FCMP_ORD: CC = 7;          break;
214   case CmpInst::FCMP_UEQ: CC = 8;          break;
215   case CmpInst::FCMP_ONE: CC = 12;         break;
216   }
217 
218   return std::make_pair(CC, NeedSwap);
219 }
220 
221 /// Adds a complex addressing mode to the given machine instr builder.
222 /// Note, this will constrain the index register.  If its not possible to
223 /// constrain the given index register, then a new one will be created.  The
224 /// IndexReg field of the addressing mode will be updated to match in this case.
225 const MachineInstrBuilder &
226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
227                             X86AddressMode &AM) {
228   // First constrain the index register.  It needs to be a GR64_NOSP.
229   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
230                                          MIB->getNumOperands() +
231                                          X86::AddrIndexReg);
232   return ::addFullAddress(MIB, AM);
233 }
234 
235 /// Check if it is possible to fold the condition from the XALU intrinsic
236 /// into the user. The condition code will only be updated on success.
237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
238                                        const Value *Cond) {
239   if (!isa<ExtractValueInst>(Cond))
240     return false;
241 
242   const auto *EV = cast<ExtractValueInst>(Cond);
243   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
244     return false;
245 
246   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
247   MVT RetVT;
248   const Function *Callee = II->getCalledFunction();
249   Type *RetTy =
250     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
251   if (!isTypeLegal(RetTy, RetVT))
252     return false;
253 
254   if (RetVT != MVT::i32 && RetVT != MVT::i64)
255     return false;
256 
257   X86::CondCode TmpCC;
258   switch (II->getIntrinsicID()) {
259   default: return false;
260   case Intrinsic::sadd_with_overflow:
261   case Intrinsic::ssub_with_overflow:
262   case Intrinsic::smul_with_overflow:
263   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
264   case Intrinsic::uadd_with_overflow:
265   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
266   }
267 
268   // Check if both instructions are in the same basic block.
269   if (II->getParent() != I->getParent())
270     return false;
271 
272   // Make sure nothing is in the way
273   BasicBlock::const_iterator Start(I);
274   BasicBlock::const_iterator End(II);
275   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
276     // We only expect extractvalue instructions between the intrinsic and the
277     // instruction to be selected.
278     if (!isa<ExtractValueInst>(Itr))
279       return false;
280 
281     // Check that the extractvalue operand comes from the intrinsic.
282     const auto *EVI = cast<ExtractValueInst>(Itr);
283     if (EVI->getAggregateOperand() != II)
284       return false;
285   }
286 
287   CC = TmpCC;
288   return true;
289 }
290 
291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
292   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
293   if (evt == MVT::Other || !evt.isSimple())
294     // Unhandled type. Halt "fast" selection and bail.
295     return false;
296 
297   VT = evt.getSimpleVT();
298   // For now, require SSE/SSE2 for performing floating-point operations,
299   // since x87 requires additional work.
300   if (VT == MVT::f64 && !X86ScalarSSEf64)
301     return false;
302   if (VT == MVT::f32 && !X86ScalarSSEf32)
303     return false;
304   // Similarly, no f80 support yet.
305   if (VT == MVT::f80)
306     return false;
307   // We only handle legal types. For example, on x86-32 the instruction
308   // selector contains all of the 64-bit instructions from x86-64,
309   // under the assumption that i64 won't be used if the target doesn't
310   // support it.
311   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
312 }
313 
314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
316 /// Return true and the result register by reference if it is possible.
317 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
318                                   MachineMemOperand *MMO, unsigned &ResultReg,
319                                   unsigned Alignment) {
320   bool HasSSE41 = Subtarget->hasSSE41();
321   bool HasAVX = Subtarget->hasAVX();
322   bool HasAVX2 = Subtarget->hasAVX2();
323   bool HasAVX512 = Subtarget->hasAVX512();
324   bool HasVLX = Subtarget->hasVLX();
325   bool IsNonTemporal = MMO && MMO->isNonTemporal();
326 
327   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
328   if (VT == MVT::i1)
329     VT = MVT::i8;
330 
331   // Get opcode and regclass of the output for the given load instruction.
332   unsigned Opc = 0;
333   switch (VT.SimpleTy) {
334   default: return false;
335   case MVT::i8:
336     Opc = X86::MOV8rm;
337     break;
338   case MVT::i16:
339     Opc = X86::MOV16rm;
340     break;
341   case MVT::i32:
342     Opc = X86::MOV32rm;
343     break;
344   case MVT::i64:
345     // Must be in x86-64 mode.
346     Opc = X86::MOV64rm;
347     break;
348   case MVT::f32:
349     if (X86ScalarSSEf32)
350       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
351             HasAVX    ? X86::VMOVSSrm_alt :
352                         X86::MOVSSrm_alt;
353     else
354       Opc = X86::LD_Fp32m;
355     break;
356   case MVT::f64:
357     if (X86ScalarSSEf64)
358       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
359             HasAVX    ? X86::VMOVSDrm_alt :
360                         X86::MOVSDrm_alt;
361     else
362       Opc = X86::LD_Fp64m;
363     break;
364   case MVT::f80:
365     // No f80 support yet.
366     return false;
367   case MVT::v4f32:
368     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
369       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
370             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
371     else if (Alignment >= 16)
372       Opc = HasVLX ? X86::VMOVAPSZ128rm :
373             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
374     else
375       Opc = HasVLX ? X86::VMOVUPSZ128rm :
376             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
377     break;
378   case MVT::v2f64:
379     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
380       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
381             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
382     else if (Alignment >= 16)
383       Opc = HasVLX ? X86::VMOVAPDZ128rm :
384             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
385     else
386       Opc = HasVLX ? X86::VMOVUPDZ128rm :
387             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
388     break;
389   case MVT::v4i32:
390   case MVT::v2i64:
391   case MVT::v8i16:
392   case MVT::v16i8:
393     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
394       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
395             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
396     else if (Alignment >= 16)
397       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
398             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
399     else
400       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
401             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
402     break;
403   case MVT::v8f32:
404     assert(HasAVX);
405     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
406       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
407     else if (IsNonTemporal && Alignment >= 16)
408       return false; // Force split for X86::VMOVNTDQArm
409     else if (Alignment >= 32)
410       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
411     else
412       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
413     break;
414   case MVT::v4f64:
415     assert(HasAVX);
416     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
417       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
418     else if (IsNonTemporal && Alignment >= 16)
419       return false; // Force split for X86::VMOVNTDQArm
420     else if (Alignment >= 32)
421       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
422     else
423       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
424     break;
425   case MVT::v8i32:
426   case MVT::v4i64:
427   case MVT::v16i16:
428   case MVT::v32i8:
429     assert(HasAVX);
430     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
431       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
432     else if (IsNonTemporal && Alignment >= 16)
433       return false; // Force split for X86::VMOVNTDQArm
434     else if (Alignment >= 32)
435       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
436     else
437       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
438     break;
439   case MVT::v16f32:
440     assert(HasAVX512);
441     if (IsNonTemporal && Alignment >= 64)
442       Opc = X86::VMOVNTDQAZrm;
443     else
444       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
445     break;
446   case MVT::v8f64:
447     assert(HasAVX512);
448     if (IsNonTemporal && Alignment >= 64)
449       Opc = X86::VMOVNTDQAZrm;
450     else
451       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
452     break;
453   case MVT::v8i64:
454   case MVT::v16i32:
455   case MVT::v32i16:
456   case MVT::v64i8:
457     assert(HasAVX512);
458     // Note: There are a lot more choices based on type with AVX-512, but
459     // there's really no advantage when the load isn't masked.
460     if (IsNonTemporal && Alignment >= 64)
461       Opc = X86::VMOVNTDQAZrm;
462     else
463       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
464     break;
465   }
466 
467   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
468 
469   ResultReg = createResultReg(RC);
470   MachineInstrBuilder MIB =
471     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
472   addFullAddress(MIB, AM);
473   if (MMO)
474     MIB->addMemOperand(*FuncInfo.MF, MMO);
475   return true;
476 }
477 
478 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
479 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
480 /// and a displacement offset, or a GlobalAddress,
481 /// i.e. V. Return true if it is possible.
482 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
483                                    X86AddressMode &AM,
484                                    MachineMemOperand *MMO, bool Aligned) {
485   bool HasSSE1 = Subtarget->hasSSE1();
486   bool HasSSE2 = Subtarget->hasSSE2();
487   bool HasSSE4A = Subtarget->hasSSE4A();
488   bool HasAVX = Subtarget->hasAVX();
489   bool HasAVX512 = Subtarget->hasAVX512();
490   bool HasVLX = Subtarget->hasVLX();
491   bool IsNonTemporal = MMO && MMO->isNonTemporal();
492 
493   // Get opcode and regclass of the output for the given store instruction.
494   unsigned Opc = 0;
495   switch (VT.getSimpleVT().SimpleTy) {
496   case MVT::f80: // No f80 support yet.
497   default: return false;
498   case MVT::i1: {
499     // Mask out all but lowest bit.
500     Register AndResult = createResultReg(&X86::GR8RegClass);
501     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
502             TII.get(X86::AND8ri), AndResult)
503       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
504     ValReg = AndResult;
505     LLVM_FALLTHROUGH; // handle i1 as i8.
506   }
507   case MVT::i8:  Opc = X86::MOV8mr;  break;
508   case MVT::i16: Opc = X86::MOV16mr; break;
509   case MVT::i32:
510     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
511     break;
512   case MVT::i64:
513     // Must be in x86-64 mode.
514     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
515     break;
516   case MVT::f32:
517     if (X86ScalarSSEf32) {
518       if (IsNonTemporal && HasSSE4A)
519         Opc = X86::MOVNTSS;
520       else
521         Opc = HasAVX512 ? X86::VMOVSSZmr :
522               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
523     } else
524       Opc = X86::ST_Fp32m;
525     break;
526   case MVT::f64:
527     if (X86ScalarSSEf32) {
528       if (IsNonTemporal && HasSSE4A)
529         Opc = X86::MOVNTSD;
530       else
531         Opc = HasAVX512 ? X86::VMOVSDZmr :
532               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
533     } else
534       Opc = X86::ST_Fp64m;
535     break;
536   case MVT::x86mmx:
537     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
538     break;
539   case MVT::v4f32:
540     if (Aligned) {
541       if (IsNonTemporal)
542         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
543               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
544       else
545         Opc = HasVLX ? X86::VMOVAPSZ128mr :
546               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
547     } else
548       Opc = HasVLX ? X86::VMOVUPSZ128mr :
549             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
550     break;
551   case MVT::v2f64:
552     if (Aligned) {
553       if (IsNonTemporal)
554         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
555               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
556       else
557         Opc = HasVLX ? X86::VMOVAPDZ128mr :
558               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
559     } else
560       Opc = HasVLX ? X86::VMOVUPDZ128mr :
561             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
562     break;
563   case MVT::v4i32:
564   case MVT::v2i64:
565   case MVT::v8i16:
566   case MVT::v16i8:
567     if (Aligned) {
568       if (IsNonTemporal)
569         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
570               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
571       else
572         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
573               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
574     } else
575       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
576             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
577     break;
578   case MVT::v8f32:
579     assert(HasAVX);
580     if (Aligned) {
581       if (IsNonTemporal)
582         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
583       else
584         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
585     } else
586       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
587     break;
588   case MVT::v4f64:
589     assert(HasAVX);
590     if (Aligned) {
591       if (IsNonTemporal)
592         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
593       else
594         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
595     } else
596       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
597     break;
598   case MVT::v8i32:
599   case MVT::v4i64:
600   case MVT::v16i16:
601   case MVT::v32i8:
602     assert(HasAVX);
603     if (Aligned) {
604       if (IsNonTemporal)
605         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
606       else
607         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
608     } else
609       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
610     break;
611   case MVT::v16f32:
612     assert(HasAVX512);
613     if (Aligned)
614       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
615     else
616       Opc = X86::VMOVUPSZmr;
617     break;
618   case MVT::v8f64:
619     assert(HasAVX512);
620     if (Aligned) {
621       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
622     } else
623       Opc = X86::VMOVUPDZmr;
624     break;
625   case MVT::v8i64:
626   case MVT::v16i32:
627   case MVT::v32i16:
628   case MVT::v64i8:
629     assert(HasAVX512);
630     // Note: There are a lot more choices based on type with AVX-512, but
631     // there's really no advantage when the store isn't masked.
632     if (Aligned)
633       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
634     else
635       Opc = X86::VMOVDQU64Zmr;
636     break;
637   }
638 
639   const MCInstrDesc &Desc = TII.get(Opc);
640   // Some of the instructions in the previous switch use FR128 instead
641   // of FR32 for ValReg. Make sure the register we feed the instruction
642   // matches its register class constraints.
643   // Note: This is fine to do a copy from FR32 to FR128, this is the
644   // same registers behind the scene and actually why it did not trigger
645   // any bugs before.
646   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
647   MachineInstrBuilder MIB =
648       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
649   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
650   if (MMO)
651     MIB->addMemOperand(*FuncInfo.MF, MMO);
652 
653   return true;
654 }
655 
656 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
657                                    X86AddressMode &AM,
658                                    MachineMemOperand *MMO, bool Aligned) {
659   // Handle 'null' like i32/i64 0.
660   if (isa<ConstantPointerNull>(Val))
661     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
662 
663   // If this is a store of a simple constant, fold the constant into the store.
664   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
665     unsigned Opc = 0;
666     bool Signed = true;
667     switch (VT.getSimpleVT().SimpleTy) {
668     default: break;
669     case MVT::i1:
670       Signed = false;
671       LLVM_FALLTHROUGH; // Handle as i8.
672     case MVT::i8:  Opc = X86::MOV8mi;  break;
673     case MVT::i16: Opc = X86::MOV16mi; break;
674     case MVT::i32: Opc = X86::MOV32mi; break;
675     case MVT::i64:
676       // Must be a 32-bit sign extended value.
677       if (isInt<32>(CI->getSExtValue()))
678         Opc = X86::MOV64mi32;
679       break;
680     }
681 
682     if (Opc) {
683       MachineInstrBuilder MIB =
684         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
685       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
686                                             : CI->getZExtValue());
687       if (MMO)
688         MIB->addMemOperand(*FuncInfo.MF, MMO);
689       return true;
690     }
691   }
692 
693   Register ValReg = getRegForValue(Val);
694   if (ValReg == 0)
695     return false;
696 
697   bool ValKill = hasTrivialKill(Val);
698   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
699 }
700 
701 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
702 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
703 /// ISD::SIGN_EXTEND).
704 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
705                                     unsigned Src, EVT SrcVT,
706                                     unsigned &ResultReg) {
707   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
708                            Src, /*TODO: Kill=*/false);
709   if (RR == 0)
710     return false;
711 
712   ResultReg = RR;
713   return true;
714 }
715 
716 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
717   // Handle constant address.
718   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
719     // Can't handle alternate code models yet.
720     if (TM.getCodeModel() != CodeModel::Small)
721       return false;
722 
723     // Can't handle TLS yet.
724     if (GV->isThreadLocal())
725       return false;
726 
727     // Can't handle !absolute_symbol references yet.
728     if (GV->isAbsoluteSymbolRef())
729       return false;
730 
731     // RIP-relative addresses can't have additional register operands, so if
732     // we've already folded stuff into the addressing mode, just force the
733     // global value into its own register, which we can use as the basereg.
734     if (!Subtarget->isPICStyleRIPRel() ||
735         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
736       // Okay, we've committed to selecting this global. Set up the address.
737       AM.GV = GV;
738 
739       // Allow the subtarget to classify the global.
740       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
741 
742       // If this reference is relative to the pic base, set it now.
743       if (isGlobalRelativeToPICBase(GVFlags)) {
744         // FIXME: How do we know Base.Reg is free??
745         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
746       }
747 
748       // Unless the ABI requires an extra load, return a direct reference to
749       // the global.
750       if (!isGlobalStubReference(GVFlags)) {
751         if (Subtarget->isPICStyleRIPRel()) {
752           // Use rip-relative addressing if we can.  Above we verified that the
753           // base and index registers are unused.
754           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
755           AM.Base.Reg = X86::RIP;
756         }
757         AM.GVOpFlags = GVFlags;
758         return true;
759       }
760 
761       // Ok, we need to do a load from a stub.  If we've already loaded from
762       // this stub, reuse the loaded pointer, otherwise emit the load now.
763       DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
764       Register LoadReg;
765       if (I != LocalValueMap.end() && I->second) {
766         LoadReg = I->second;
767       } else {
768         // Issue load from stub.
769         unsigned Opc = 0;
770         const TargetRegisterClass *RC = nullptr;
771         X86AddressMode StubAM;
772         StubAM.Base.Reg = AM.Base.Reg;
773         StubAM.GV = GV;
774         StubAM.GVOpFlags = GVFlags;
775 
776         // Prepare for inserting code in the local-value area.
777         SavePoint SaveInsertPt = enterLocalValueArea();
778 
779         if (TLI.getPointerTy(DL) == MVT::i64) {
780           Opc = X86::MOV64rm;
781           RC  = &X86::GR64RegClass;
782         } else {
783           Opc = X86::MOV32rm;
784           RC  = &X86::GR32RegClass;
785         }
786 
787         if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL)
788           StubAM.Base.Reg = X86::RIP;
789 
790         LoadReg = createResultReg(RC);
791         MachineInstrBuilder LoadMI =
792           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
793         addFullAddress(LoadMI, StubAM);
794 
795         // Ok, back to normal mode.
796         leaveLocalValueArea(SaveInsertPt);
797 
798         // Prevent loading GV stub multiple times in same MBB.
799         LocalValueMap[V] = LoadReg;
800       }
801 
802       // Now construct the final address. Note that the Disp, Scale,
803       // and Index values may already be set here.
804       AM.Base.Reg = LoadReg;
805       AM.GV = nullptr;
806       return true;
807     }
808   }
809 
810   // If all else fails, try to materialize the value in a register.
811   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
812     if (AM.Base.Reg == 0) {
813       AM.Base.Reg = getRegForValue(V);
814       return AM.Base.Reg != 0;
815     }
816     if (AM.IndexReg == 0) {
817       assert(AM.Scale == 1 && "Scale with no index!");
818       AM.IndexReg = getRegForValue(V);
819       return AM.IndexReg != 0;
820     }
821   }
822 
823   return false;
824 }
825 
826 /// X86SelectAddress - Attempt to fill in an address from the given value.
827 ///
828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829   SmallVector<const Value *, 32> GEPs;
830 redo_gep:
831   const User *U = nullptr;
832   unsigned Opcode = Instruction::UserOp1;
833   if (const Instruction *I = dyn_cast<Instruction>(V)) {
834     // Don't walk into other basic blocks; it's possible we haven't
835     // visited them yet, so the instructions may not yet be assigned
836     // virtual registers.
837     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
838         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
839       Opcode = I->getOpcode();
840       U = I;
841     }
842   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
843     Opcode = C->getOpcode();
844     U = C;
845   }
846 
847   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
848     if (Ty->getAddressSpace() > 255)
849       // Fast instruction selection doesn't support the special
850       // address spaces.
851       return false;
852 
853   switch (Opcode) {
854   default: break;
855   case Instruction::BitCast:
856     // Look past bitcasts.
857     return X86SelectAddress(U->getOperand(0), AM);
858 
859   case Instruction::IntToPtr:
860     // Look past no-op inttoptrs.
861     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
862         TLI.getPointerTy(DL))
863       return X86SelectAddress(U->getOperand(0), AM);
864     break;
865 
866   case Instruction::PtrToInt:
867     // Look past no-op ptrtoints.
868     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
869       return X86SelectAddress(U->getOperand(0), AM);
870     break;
871 
872   case Instruction::Alloca: {
873     // Do static allocas.
874     const AllocaInst *A = cast<AllocaInst>(V);
875     DenseMap<const AllocaInst *, int>::iterator SI =
876       FuncInfo.StaticAllocaMap.find(A);
877     if (SI != FuncInfo.StaticAllocaMap.end()) {
878       AM.BaseType = X86AddressMode::FrameIndexBase;
879       AM.Base.FrameIndex = SI->second;
880       return true;
881     }
882     break;
883   }
884 
885   case Instruction::Add: {
886     // Adds of constants are common and easy enough.
887     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
888       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
889       // They have to fit in the 32-bit signed displacement field though.
890       if (isInt<32>(Disp)) {
891         AM.Disp = (uint32_t)Disp;
892         return X86SelectAddress(U->getOperand(0), AM);
893       }
894     }
895     break;
896   }
897 
898   case Instruction::GetElementPtr: {
899     X86AddressMode SavedAM = AM;
900 
901     // Pattern-match simple GEPs.
902     uint64_t Disp = (int32_t)AM.Disp;
903     unsigned IndexReg = AM.IndexReg;
904     unsigned Scale = AM.Scale;
905     gep_type_iterator GTI = gep_type_begin(U);
906     // Iterate through the indices, folding what we can. Constants can be
907     // folded, and one dynamic index can be handled, if the scale is supported.
908     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
909          i != e; ++i, ++GTI) {
910       const Value *Op = *i;
911       if (StructType *STy = GTI.getStructTypeOrNull()) {
912         const StructLayout *SL = DL.getStructLayout(STy);
913         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
914         continue;
915       }
916 
917       // A array/variable index is always of the form i*S where S is the
918       // constant scale size.  See if we can push the scale into immediates.
919       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
920       for (;;) {
921         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
922           // Constant-offset addressing.
923           Disp += CI->getSExtValue() * S;
924           break;
925         }
926         if (canFoldAddIntoGEP(U, Op)) {
927           // A compatible add with a constant operand. Fold the constant.
928           ConstantInt *CI =
929             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
930           Disp += CI->getSExtValue() * S;
931           // Iterate on the other operand.
932           Op = cast<AddOperator>(Op)->getOperand(0);
933           continue;
934         }
935         if (IndexReg == 0 &&
936             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
937             (S == 1 || S == 2 || S == 4 || S == 8)) {
938           // Scaled-index addressing.
939           Scale = S;
940           IndexReg = getRegForGEPIndex(Op).first;
941           if (IndexReg == 0)
942             return false;
943           break;
944         }
945         // Unsupported.
946         goto unsupported_gep;
947       }
948     }
949 
950     // Check for displacement overflow.
951     if (!isInt<32>(Disp))
952       break;
953 
954     AM.IndexReg = IndexReg;
955     AM.Scale = Scale;
956     AM.Disp = (uint32_t)Disp;
957     GEPs.push_back(V);
958 
959     if (const GetElementPtrInst *GEP =
960           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
961       // Ok, the GEP indices were covered by constant-offset and scaled-index
962       // addressing. Update the address state and move on to examining the base.
963       V = GEP;
964       goto redo_gep;
965     } else if (X86SelectAddress(U->getOperand(0), AM)) {
966       return true;
967     }
968 
969     // If we couldn't merge the gep value into this addr mode, revert back to
970     // our address and just match the value instead of completely failing.
971     AM = SavedAM;
972 
973     for (const Value *I : reverse(GEPs))
974       if (handleConstantAddresses(I, AM))
975         return true;
976 
977     return false;
978   unsupported_gep:
979     // Ok, the GEP indices weren't all covered.
980     break;
981   }
982   }
983 
984   return handleConstantAddresses(V, AM);
985 }
986 
987 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
988 ///
989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
990   const User *U = nullptr;
991   unsigned Opcode = Instruction::UserOp1;
992   const Instruction *I = dyn_cast<Instruction>(V);
993   // Record if the value is defined in the same basic block.
994   //
995   // This information is crucial to know whether or not folding an
996   // operand is valid.
997   // Indeed, FastISel generates or reuses a virtual register for all
998   // operands of all instructions it selects. Obviously, the definition and
999   // its uses must use the same virtual register otherwise the produced
1000   // code is incorrect.
1001   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1002   // registers for values that are alive across basic blocks. This ensures
1003   // that the values are consistently set between across basic block, even
1004   // if different instruction selection mechanisms are used (e.g., a mix of
1005   // SDISel and FastISel).
1006   // For values local to a basic block, the instruction selection process
1007   // generates these virtual registers with whatever method is appropriate
1008   // for its needs. In particular, FastISel and SDISel do not share the way
1009   // local virtual registers are set.
1010   // Therefore, this is impossible (or at least unsafe) to share values
1011   // between basic blocks unless they use the same instruction selection
1012   // method, which is not guarantee for X86.
1013   // Moreover, things like hasOneUse could not be used accurately, if we
1014   // allow to reference values across basic blocks whereas they are not
1015   // alive across basic blocks initially.
1016   bool InMBB = true;
1017   if (I) {
1018     Opcode = I->getOpcode();
1019     U = I;
1020     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1021   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1022     Opcode = C->getOpcode();
1023     U = C;
1024   }
1025 
1026   switch (Opcode) {
1027   default: break;
1028   case Instruction::BitCast:
1029     // Look past bitcasts if its operand is in the same BB.
1030     if (InMBB)
1031       return X86SelectCallAddress(U->getOperand(0), AM);
1032     break;
1033 
1034   case Instruction::IntToPtr:
1035     // Look past no-op inttoptrs if its operand is in the same BB.
1036     if (InMBB &&
1037         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1038             TLI.getPointerTy(DL))
1039       return X86SelectCallAddress(U->getOperand(0), AM);
1040     break;
1041 
1042   case Instruction::PtrToInt:
1043     // Look past no-op ptrtoints if its operand is in the same BB.
1044     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1045       return X86SelectCallAddress(U->getOperand(0), AM);
1046     break;
1047   }
1048 
1049   // Handle constant address.
1050   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1051     // Can't handle alternate code models yet.
1052     if (TM.getCodeModel() != CodeModel::Small)
1053       return false;
1054 
1055     // RIP-relative addresses can't have additional register operands.
1056     if (Subtarget->isPICStyleRIPRel() &&
1057         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1058       return false;
1059 
1060     // Can't handle TLS.
1061     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1062       if (GVar->isThreadLocal())
1063         return false;
1064 
1065     // Okay, we've committed to selecting this global. Set up the basic address.
1066     AM.GV = GV;
1067 
1068     // Return a direct reference to the global. Fastisel can handle calls to
1069     // functions that require loads, such as dllimport and nonlazybind
1070     // functions.
1071     if (Subtarget->isPICStyleRIPRel()) {
1072       // Use rip-relative addressing if we can.  Above we verified that the
1073       // base and index registers are unused.
1074       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1075       AM.Base.Reg = X86::RIP;
1076     } else {
1077       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1078     }
1079 
1080     return true;
1081   }
1082 
1083   // If all else fails, try to materialize the value in a register.
1084   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1085     auto GetCallRegForValue = [this](const Value *V) {
1086       Register Reg = getRegForValue(V);
1087 
1088       // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1089       if (Reg && Subtarget->isTarget64BitILP32()) {
1090         Register CopyReg = createResultReg(&X86::GR32RegClass);
1091         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32rr),
1092                 CopyReg)
1093             .addReg(Reg);
1094 
1095         Register ExtReg = createResultReg(&X86::GR64RegClass);
1096         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1097                 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1098             .addImm(0)
1099             .addReg(CopyReg)
1100             .addImm(X86::sub_32bit);
1101         Reg = ExtReg;
1102       }
1103 
1104       return Reg;
1105     };
1106 
1107     if (AM.Base.Reg == 0) {
1108       AM.Base.Reg = GetCallRegForValue(V);
1109       return AM.Base.Reg != 0;
1110     }
1111     if (AM.IndexReg == 0) {
1112       assert(AM.Scale == 1 && "Scale with no index!");
1113       AM.IndexReg = GetCallRegForValue(V);
1114       return AM.IndexReg != 0;
1115     }
1116   }
1117 
1118   return false;
1119 }
1120 
1121 
1122 /// X86SelectStore - Select and emit code to implement store instructions.
1123 bool X86FastISel::X86SelectStore(const Instruction *I) {
1124   // Atomic stores need special handling.
1125   const StoreInst *S = cast<StoreInst>(I);
1126 
1127   if (S->isAtomic())
1128     return false;
1129 
1130   const Value *PtrV = I->getOperand(1);
1131   if (TLI.supportSwiftError()) {
1132     // Swifterror values can come from either a function parameter with
1133     // swifterror attribute or an alloca with swifterror attribute.
1134     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1135       if (Arg->hasSwiftErrorAttr())
1136         return false;
1137     }
1138 
1139     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1140       if (Alloca->isSwiftError())
1141         return false;
1142     }
1143   }
1144 
1145   const Value *Val = S->getValueOperand();
1146   const Value *Ptr = S->getPointerOperand();
1147 
1148   MVT VT;
1149   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1150     return false;
1151 
1152   Align Alignment = S->getAlign();
1153   Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1154   bool Aligned = Alignment >= ABIAlignment;
1155 
1156   X86AddressMode AM;
1157   if (!X86SelectAddress(Ptr, AM))
1158     return false;
1159 
1160   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1161 }
1162 
1163 /// X86SelectRet - Select and emit code to implement ret instructions.
1164 bool X86FastISel::X86SelectRet(const Instruction *I) {
1165   const ReturnInst *Ret = cast<ReturnInst>(I);
1166   const Function &F = *I->getParent()->getParent();
1167   const X86MachineFunctionInfo *X86MFInfo =
1168       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1169 
1170   if (!FuncInfo.CanLowerReturn)
1171     return false;
1172 
1173   if (TLI.supportSwiftError() &&
1174       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1175     return false;
1176 
1177   if (TLI.supportSplitCSR(FuncInfo.MF))
1178     return false;
1179 
1180   CallingConv::ID CC = F.getCallingConv();
1181   if (CC != CallingConv::C &&
1182       CC != CallingConv::Fast &&
1183       CC != CallingConv::Tail &&
1184       CC != CallingConv::X86_FastCall &&
1185       CC != CallingConv::X86_StdCall &&
1186       CC != CallingConv::X86_ThisCall &&
1187       CC != CallingConv::X86_64_SysV &&
1188       CC != CallingConv::Win64)
1189     return false;
1190 
1191   // Don't handle popping bytes if they don't fit the ret's immediate.
1192   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1193     return false;
1194 
1195   // fastcc with -tailcallopt is intended to provide a guaranteed
1196   // tail call optimization. Fastisel doesn't know how to do that.
1197   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1198       CC == CallingConv::Tail)
1199     return false;
1200 
1201   // Let SDISel handle vararg functions.
1202   if (F.isVarArg())
1203     return false;
1204 
1205   // Build a list of return value registers.
1206   SmallVector<unsigned, 4> RetRegs;
1207 
1208   if (Ret->getNumOperands() > 0) {
1209     SmallVector<ISD::OutputArg, 4> Outs;
1210     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1211 
1212     // Analyze operands of the call, assigning locations to each operand.
1213     SmallVector<CCValAssign, 16> ValLocs;
1214     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1215     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1216 
1217     const Value *RV = Ret->getOperand(0);
1218     Register Reg = getRegForValue(RV);
1219     if (Reg == 0)
1220       return false;
1221 
1222     // Only handle a single return value for now.
1223     if (ValLocs.size() != 1)
1224       return false;
1225 
1226     CCValAssign &VA = ValLocs[0];
1227 
1228     // Don't bother handling odd stuff for now.
1229     if (VA.getLocInfo() != CCValAssign::Full)
1230       return false;
1231     // Only handle register returns for now.
1232     if (!VA.isRegLoc())
1233       return false;
1234 
1235     // The calling-convention tables for x87 returns don't tell
1236     // the whole story.
1237     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1238       return false;
1239 
1240     unsigned SrcReg = Reg + VA.getValNo();
1241     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1242     EVT DstVT = VA.getValVT();
1243     // Special handling for extended integers.
1244     if (SrcVT != DstVT) {
1245       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1246         return false;
1247 
1248       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1249         return false;
1250 
1251       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1252 
1253       if (SrcVT == MVT::i1) {
1254         if (Outs[0].Flags.isSExt())
1255           return false;
1256         // TODO
1257         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*Op0IsKill=*/false);
1258         SrcVT = MVT::i8;
1259       }
1260       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1261                                              ISD::SIGN_EXTEND;
1262       // TODO
1263       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg,
1264                           /*Op0IsKill=*/false);
1265     }
1266 
1267     // Make the copy.
1268     Register DstReg = VA.getLocReg();
1269     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1270     // Avoid a cross-class copy. This is very unlikely.
1271     if (!SrcRC->contains(DstReg))
1272       return false;
1273     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1274             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1275 
1276     // Add register to return instruction.
1277     RetRegs.push_back(VA.getLocReg());
1278   }
1279 
1280   // Swift calling convention does not require we copy the sret argument
1281   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1282 
1283   // All x86 ABIs require that for returning structs by value we copy
1284   // the sret argument into %rax/%eax (depending on ABI) for the return.
1285   // We saved the argument into a virtual register in the entry block,
1286   // so now we copy the value out and into %rax/%eax.
1287   if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1288     Register Reg = X86MFInfo->getSRetReturnReg();
1289     assert(Reg &&
1290            "SRetReturnReg should have been set in LowerFormalArguments()!");
1291     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1292     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1293             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1294     RetRegs.push_back(RetReg);
1295   }
1296 
1297   // Now emit the RET.
1298   MachineInstrBuilder MIB;
1299   if (X86MFInfo->getBytesToPopOnReturn()) {
1300     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1301                   TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1302               .addImm(X86MFInfo->getBytesToPopOnReturn());
1303   } else {
1304     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1305                   TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1306   }
1307   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1308     MIB.addReg(RetRegs[i], RegState::Implicit);
1309   return true;
1310 }
1311 
1312 /// X86SelectLoad - Select and emit code to implement load instructions.
1313 ///
1314 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1315   const LoadInst *LI = cast<LoadInst>(I);
1316 
1317   // Atomic loads need special handling.
1318   if (LI->isAtomic())
1319     return false;
1320 
1321   const Value *SV = I->getOperand(0);
1322   if (TLI.supportSwiftError()) {
1323     // Swifterror values can come from either a function parameter with
1324     // swifterror attribute or an alloca with swifterror attribute.
1325     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1326       if (Arg->hasSwiftErrorAttr())
1327         return false;
1328     }
1329 
1330     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1331       if (Alloca->isSwiftError())
1332         return false;
1333     }
1334   }
1335 
1336   MVT VT;
1337   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1338     return false;
1339 
1340   const Value *Ptr = LI->getPointerOperand();
1341 
1342   X86AddressMode AM;
1343   if (!X86SelectAddress(Ptr, AM))
1344     return false;
1345 
1346   unsigned ResultReg = 0;
1347   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1348                        LI->getAlign().value()))
1349     return false;
1350 
1351   updateValueMap(I, ResultReg);
1352   return true;
1353 }
1354 
1355 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1356   bool HasAVX512 = Subtarget->hasAVX512();
1357   bool HasAVX = Subtarget->hasAVX();
1358   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1359   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1360 
1361   switch (VT.getSimpleVT().SimpleTy) {
1362   default:       return 0;
1363   case MVT::i8:  return X86::CMP8rr;
1364   case MVT::i16: return X86::CMP16rr;
1365   case MVT::i32: return X86::CMP32rr;
1366   case MVT::i64: return X86::CMP64rr;
1367   case MVT::f32:
1368     return X86ScalarSSEf32
1369                ? (HasAVX512 ? X86::VUCOMISSZrr
1370                             : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1371                : 0;
1372   case MVT::f64:
1373     return X86ScalarSSEf64
1374                ? (HasAVX512 ? X86::VUCOMISDZrr
1375                             : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1376                : 0;
1377   }
1378 }
1379 
1380 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1381 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1382 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1383   int64_t Val = RHSC->getSExtValue();
1384   switch (VT.getSimpleVT().SimpleTy) {
1385   // Otherwise, we can't fold the immediate into this comparison.
1386   default:
1387     return 0;
1388   case MVT::i8:
1389     return X86::CMP8ri;
1390   case MVT::i16:
1391     if (isInt<8>(Val))
1392       return X86::CMP16ri8;
1393     return X86::CMP16ri;
1394   case MVT::i32:
1395     if (isInt<8>(Val))
1396       return X86::CMP32ri8;
1397     return X86::CMP32ri;
1398   case MVT::i64:
1399     if (isInt<8>(Val))
1400       return X86::CMP64ri8;
1401     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1402     // field.
1403     if (isInt<32>(Val))
1404       return X86::CMP64ri32;
1405     return 0;
1406   }
1407 }
1408 
1409 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1410                                      const DebugLoc &CurDbgLoc) {
1411   Register Op0Reg = getRegForValue(Op0);
1412   if (Op0Reg == 0) return false;
1413 
1414   // Handle 'null' like i32/i64 0.
1415   if (isa<ConstantPointerNull>(Op1))
1416     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1417 
1418   // We have two options: compare with register or immediate.  If the RHS of
1419   // the compare is an immediate that we can fold into this compare, use
1420   // CMPri, otherwise use CMPrr.
1421   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1422     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1423       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1424         .addReg(Op0Reg)
1425         .addImm(Op1C->getSExtValue());
1426       return true;
1427     }
1428   }
1429 
1430   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1431   if (CompareOpc == 0) return false;
1432 
1433   Register Op1Reg = getRegForValue(Op1);
1434   if (Op1Reg == 0) return false;
1435   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1436     .addReg(Op0Reg)
1437     .addReg(Op1Reg);
1438 
1439   return true;
1440 }
1441 
1442 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1443   const CmpInst *CI = cast<CmpInst>(I);
1444 
1445   MVT VT;
1446   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1447     return false;
1448 
1449   // Try to optimize or fold the cmp.
1450   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1451   unsigned ResultReg = 0;
1452   switch (Predicate) {
1453   default: break;
1454   case CmpInst::FCMP_FALSE: {
1455     ResultReg = createResultReg(&X86::GR32RegClass);
1456     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1457             ResultReg);
1458     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg,
1459                                            /*Op0IsKill=*/true, X86::sub_8bit);
1460     if (!ResultReg)
1461       return false;
1462     break;
1463   }
1464   case CmpInst::FCMP_TRUE: {
1465     ResultReg = createResultReg(&X86::GR8RegClass);
1466     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1467             ResultReg).addImm(1);
1468     break;
1469   }
1470   }
1471 
1472   if (ResultReg) {
1473     updateValueMap(I, ResultReg);
1474     return true;
1475   }
1476 
1477   const Value *LHS = CI->getOperand(0);
1478   const Value *RHS = CI->getOperand(1);
1479 
1480   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1481   // We don't have to materialize a zero constant for this case and can just use
1482   // %x again on the RHS.
1483   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1484     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1485     if (RHSC && RHSC->isNullValue())
1486       RHS = LHS;
1487   }
1488 
1489   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1490   static const uint16_t SETFOpcTable[2][3] = {
1491     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1492     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1493   };
1494   const uint16_t *SETFOpc = nullptr;
1495   switch (Predicate) {
1496   default: break;
1497   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1498   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1499   }
1500 
1501   ResultReg = createResultReg(&X86::GR8RegClass);
1502   if (SETFOpc) {
1503     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1504       return false;
1505 
1506     Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1507     Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1508     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1509             FlagReg1).addImm(SETFOpc[0]);
1510     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1511             FlagReg2).addImm(SETFOpc[1]);
1512     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1513             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1514     updateValueMap(I, ResultReg);
1515     return true;
1516   }
1517 
1518   X86::CondCode CC;
1519   bool SwapArgs;
1520   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1521   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1522 
1523   if (SwapArgs)
1524     std::swap(LHS, RHS);
1525 
1526   // Emit a compare of LHS/RHS.
1527   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1528     return false;
1529 
1530   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1531           ResultReg).addImm(CC);
1532   updateValueMap(I, ResultReg);
1533   return true;
1534 }
1535 
1536 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1537   EVT DstVT = TLI.getValueType(DL, I->getType());
1538   if (!TLI.isTypeLegal(DstVT))
1539     return false;
1540 
1541   Register ResultReg = getRegForValue(I->getOperand(0));
1542   if (ResultReg == 0)
1543     return false;
1544 
1545   // Handle zero-extension from i1 to i8, which is common.
1546   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1547   if (SrcVT == MVT::i1) {
1548     // Set the high bits to zero.
1549     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1550     SrcVT = MVT::i8;
1551 
1552     if (ResultReg == 0)
1553       return false;
1554   }
1555 
1556   if (DstVT == MVT::i64) {
1557     // Handle extension to 64-bits via sub-register shenanigans.
1558     unsigned MovInst;
1559 
1560     switch (SrcVT.SimpleTy) {
1561     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1562     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1563     case MVT::i32: MovInst = X86::MOV32rr;     break;
1564     default: llvm_unreachable("Unexpected zext to i64 source type");
1565     }
1566 
1567     Register Result32 = createResultReg(&X86::GR32RegClass);
1568     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1569       .addReg(ResultReg);
1570 
1571     ResultReg = createResultReg(&X86::GR64RegClass);
1572     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1573             ResultReg)
1574       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1575   } else if (DstVT == MVT::i16) {
1576     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1577     // extend to 32-bits and then extract down to 16-bits.
1578     Register Result32 = createResultReg(&X86::GR32RegClass);
1579     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1580             Result32).addReg(ResultReg);
1581 
1582     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32,
1583                                            /*Op0IsKill=*/true, X86::sub_16bit);
1584   } else if (DstVT != MVT::i8) {
1585     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1586                            ResultReg, /*Op0IsKill=*/true);
1587     if (ResultReg == 0)
1588       return false;
1589   }
1590 
1591   updateValueMap(I, ResultReg);
1592   return true;
1593 }
1594 
1595 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1596   EVT DstVT = TLI.getValueType(DL, I->getType());
1597   if (!TLI.isTypeLegal(DstVT))
1598     return false;
1599 
1600   Register ResultReg = getRegForValue(I->getOperand(0));
1601   if (ResultReg == 0)
1602     return false;
1603 
1604   // Handle sign-extension from i1 to i8.
1605   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1606   if (SrcVT == MVT::i1) {
1607     // Set the high bits to zero.
1608     Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1609                                           /*TODO: Kill=*/false);
1610     if (ZExtReg == 0)
1611       return false;
1612 
1613     // Negate the result to make an 8-bit sign extended value.
1614     ResultReg = createResultReg(&X86::GR8RegClass);
1615     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1616             ResultReg).addReg(ZExtReg);
1617 
1618     SrcVT = MVT::i8;
1619   }
1620 
1621   if (DstVT == MVT::i16) {
1622     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1623     // extend to 32-bits and then extract down to 16-bits.
1624     Register Result32 = createResultReg(&X86::GR32RegClass);
1625     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1626             Result32).addReg(ResultReg);
1627 
1628     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32,
1629                                            /*Op0IsKill=*/true, X86::sub_16bit);
1630   } else if (DstVT != MVT::i8) {
1631     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1632                            ResultReg, /*Op0IsKill=*/true);
1633     if (ResultReg == 0)
1634       return false;
1635   }
1636 
1637   updateValueMap(I, ResultReg);
1638   return true;
1639 }
1640 
1641 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1642   // Unconditional branches are selected by tablegen-generated code.
1643   // Handle a conditional branch.
1644   const BranchInst *BI = cast<BranchInst>(I);
1645   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1646   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1647 
1648   // Fold the common case of a conditional branch with a comparison
1649   // in the same block (values defined on other blocks may not have
1650   // initialized registers).
1651   X86::CondCode CC;
1652   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1653     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1654       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1655 
1656       // Try to optimize or fold the cmp.
1657       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1658       switch (Predicate) {
1659       default: break;
1660       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1661       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1662       }
1663 
1664       const Value *CmpLHS = CI->getOperand(0);
1665       const Value *CmpRHS = CI->getOperand(1);
1666 
1667       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1668       // 0.0.
1669       // We don't have to materialize a zero constant for this case and can just
1670       // use %x again on the RHS.
1671       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1672         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1673         if (CmpRHSC && CmpRHSC->isNullValue())
1674           CmpRHS = CmpLHS;
1675       }
1676 
1677       // Try to take advantage of fallthrough opportunities.
1678       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1679         std::swap(TrueMBB, FalseMBB);
1680         Predicate = CmpInst::getInversePredicate(Predicate);
1681       }
1682 
1683       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1684       // code check. Instead two branch instructions are required to check all
1685       // the flags. First we change the predicate to a supported condition code,
1686       // which will be the first branch. Later one we will emit the second
1687       // branch.
1688       bool NeedExtraBranch = false;
1689       switch (Predicate) {
1690       default: break;
1691       case CmpInst::FCMP_OEQ:
1692         std::swap(TrueMBB, FalseMBB);
1693         LLVM_FALLTHROUGH;
1694       case CmpInst::FCMP_UNE:
1695         NeedExtraBranch = true;
1696         Predicate = CmpInst::FCMP_ONE;
1697         break;
1698       }
1699 
1700       bool SwapArgs;
1701       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1702       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1703 
1704       if (SwapArgs)
1705         std::swap(CmpLHS, CmpRHS);
1706 
1707       // Emit a compare of the LHS and RHS, setting the flags.
1708       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1709         return false;
1710 
1711       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1712         .addMBB(TrueMBB).addImm(CC);
1713 
1714       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1715       // to UNE above).
1716       if (NeedExtraBranch) {
1717         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1718           .addMBB(TrueMBB).addImm(X86::COND_P);
1719       }
1720 
1721       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1722       return true;
1723     }
1724   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1725     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1726     // typically happen for _Bool and C++ bools.
1727     MVT SourceVT;
1728     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1729         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1730       unsigned TestOpc = 0;
1731       switch (SourceVT.SimpleTy) {
1732       default: break;
1733       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1734       case MVT::i16: TestOpc = X86::TEST16ri; break;
1735       case MVT::i32: TestOpc = X86::TEST32ri; break;
1736       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1737       }
1738       if (TestOpc) {
1739         Register OpReg = getRegForValue(TI->getOperand(0));
1740         if (OpReg == 0) return false;
1741 
1742         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1743           .addReg(OpReg).addImm(1);
1744 
1745         unsigned JmpCond = X86::COND_NE;
1746         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1747           std::swap(TrueMBB, FalseMBB);
1748           JmpCond = X86::COND_E;
1749         }
1750 
1751         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1752           .addMBB(TrueMBB).addImm(JmpCond);
1753 
1754         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1755         return true;
1756       }
1757     }
1758   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1759     // Fake request the condition, otherwise the intrinsic might be completely
1760     // optimized away.
1761     Register TmpReg = getRegForValue(BI->getCondition());
1762     if (TmpReg == 0)
1763       return false;
1764 
1765     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1766       .addMBB(TrueMBB).addImm(CC);
1767     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1768     return true;
1769   }
1770 
1771   // Otherwise do a clumsy setcc and re-test it.
1772   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1773   // in an explicit cast, so make sure to handle that correctly.
1774   Register OpReg = getRegForValue(BI->getCondition());
1775   if (OpReg == 0) return false;
1776 
1777   // In case OpReg is a K register, COPY to a GPR
1778   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1779     unsigned KOpReg = OpReg;
1780     OpReg = createResultReg(&X86::GR32RegClass);
1781     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1782             TII.get(TargetOpcode::COPY), OpReg)
1783         .addReg(KOpReg);
1784     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Op0IsKill=*/true,
1785                                        X86::sub_8bit);
1786   }
1787   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1788       .addReg(OpReg)
1789       .addImm(1);
1790   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1791     .addMBB(TrueMBB).addImm(X86::COND_NE);
1792   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1793   return true;
1794 }
1795 
1796 bool X86FastISel::X86SelectShift(const Instruction *I) {
1797   unsigned CReg = 0, OpReg = 0;
1798   const TargetRegisterClass *RC = nullptr;
1799   if (I->getType()->isIntegerTy(8)) {
1800     CReg = X86::CL;
1801     RC = &X86::GR8RegClass;
1802     switch (I->getOpcode()) {
1803     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1804     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1805     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1806     default: return false;
1807     }
1808   } else if (I->getType()->isIntegerTy(16)) {
1809     CReg = X86::CX;
1810     RC = &X86::GR16RegClass;
1811     switch (I->getOpcode()) {
1812     default: llvm_unreachable("Unexpected shift opcode");
1813     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1814     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1815     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1816     }
1817   } else if (I->getType()->isIntegerTy(32)) {
1818     CReg = X86::ECX;
1819     RC = &X86::GR32RegClass;
1820     switch (I->getOpcode()) {
1821     default: llvm_unreachable("Unexpected shift opcode");
1822     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1823     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1824     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1825     }
1826   } else if (I->getType()->isIntegerTy(64)) {
1827     CReg = X86::RCX;
1828     RC = &X86::GR64RegClass;
1829     switch (I->getOpcode()) {
1830     default: llvm_unreachable("Unexpected shift opcode");
1831     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1832     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1833     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1834     }
1835   } else {
1836     return false;
1837   }
1838 
1839   MVT VT;
1840   if (!isTypeLegal(I->getType(), VT))
1841     return false;
1842 
1843   Register Op0Reg = getRegForValue(I->getOperand(0));
1844   if (Op0Reg == 0) return false;
1845 
1846   Register Op1Reg = getRegForValue(I->getOperand(1));
1847   if (Op1Reg == 0) return false;
1848   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1849           CReg).addReg(Op1Reg);
1850 
1851   // The shift instruction uses X86::CL. If we defined a super-register
1852   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1853   if (CReg != X86::CL)
1854     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1855             TII.get(TargetOpcode::KILL), X86::CL)
1856       .addReg(CReg, RegState::Kill);
1857 
1858   Register ResultReg = createResultReg(RC);
1859   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1860     .addReg(Op0Reg);
1861   updateValueMap(I, ResultReg);
1862   return true;
1863 }
1864 
1865 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1866   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1867   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1868   const static bool S = true;  // IsSigned
1869   const static bool U = false; // !IsSigned
1870   const static unsigned Copy = TargetOpcode::COPY;
1871   // For the X86 DIV/IDIV instruction, in most cases the dividend
1872   // (numerator) must be in a specific register pair highreg:lowreg,
1873   // producing the quotient in lowreg and the remainder in highreg.
1874   // For most data types, to set up the instruction, the dividend is
1875   // copied into lowreg, and lowreg is sign-extended or zero-extended
1876   // into highreg.  The exception is i8, where the dividend is defined
1877   // as a single register rather than a register pair, and we
1878   // therefore directly sign-extend or zero-extend the dividend into
1879   // lowreg, instead of copying, and ignore the highreg.
1880   const static struct DivRemEntry {
1881     // The following portion depends only on the data type.
1882     const TargetRegisterClass *RC;
1883     unsigned LowInReg;  // low part of the register pair
1884     unsigned HighInReg; // high part of the register pair
1885     // The following portion depends on both the data type and the operation.
1886     struct DivRemResult {
1887     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1888     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1889                               // highreg, or copying a zero into highreg.
1890     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1891                               // zero/sign-extending into lowreg for i8.
1892     unsigned DivRemResultReg; // Register containing the desired result.
1893     bool IsOpSigned;          // Whether to use signed or unsigned form.
1894     } ResultTable[NumOps];
1895   } OpTable[NumTypes] = {
1896     { &X86::GR8RegClass,  X86::AX,  0, {
1897         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1898         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1899         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1900         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1901       }
1902     }, // i8
1903     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1904         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1905         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1906         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1907         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1908       }
1909     }, // i16
1910     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1911         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1912         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1913         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1914         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1915       }
1916     }, // i32
1917     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1918         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1919         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1920         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1921         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1922       }
1923     }, // i64
1924   };
1925 
1926   MVT VT;
1927   if (!isTypeLegal(I->getType(), VT))
1928     return false;
1929 
1930   unsigned TypeIndex, OpIndex;
1931   switch (VT.SimpleTy) {
1932   default: return false;
1933   case MVT::i8:  TypeIndex = 0; break;
1934   case MVT::i16: TypeIndex = 1; break;
1935   case MVT::i32: TypeIndex = 2; break;
1936   case MVT::i64: TypeIndex = 3;
1937     if (!Subtarget->is64Bit())
1938       return false;
1939     break;
1940   }
1941 
1942   switch (I->getOpcode()) {
1943   default: llvm_unreachable("Unexpected div/rem opcode");
1944   case Instruction::SDiv: OpIndex = 0; break;
1945   case Instruction::SRem: OpIndex = 1; break;
1946   case Instruction::UDiv: OpIndex = 2; break;
1947   case Instruction::URem: OpIndex = 3; break;
1948   }
1949 
1950   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1951   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1952   Register Op0Reg = getRegForValue(I->getOperand(0));
1953   if (Op0Reg == 0)
1954     return false;
1955   Register Op1Reg = getRegForValue(I->getOperand(1));
1956   if (Op1Reg == 0)
1957     return false;
1958 
1959   // Move op0 into low-order input register.
1960   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1961           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1962   // Zero-extend or sign-extend into high-order input register.
1963   if (OpEntry.OpSignExtend) {
1964     if (OpEntry.IsOpSigned)
1965       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1966               TII.get(OpEntry.OpSignExtend));
1967     else {
1968       Register Zero32 = createResultReg(&X86::GR32RegClass);
1969       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1970               TII.get(X86::MOV32r0), Zero32);
1971 
1972       // Copy the zero into the appropriate sub/super/identical physical
1973       // register. Unfortunately the operations needed are not uniform enough
1974       // to fit neatly into the table above.
1975       if (VT == MVT::i16) {
1976         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1977                 TII.get(Copy), TypeEntry.HighInReg)
1978           .addReg(Zero32, 0, X86::sub_16bit);
1979       } else if (VT == MVT::i32) {
1980         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1981                 TII.get(Copy), TypeEntry.HighInReg)
1982             .addReg(Zero32);
1983       } else if (VT == MVT::i64) {
1984         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1985                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1986             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1987       }
1988     }
1989   }
1990   // Generate the DIV/IDIV instruction.
1991   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1993   // For i8 remainder, we can't reference ah directly, as we'll end
1994   // up with bogus copies like %r9b = COPY %ah. Reference ax
1995   // instead to prevent ah references in a rex instruction.
1996   //
1997   // The current assumption of the fast register allocator is that isel
1998   // won't generate explicit references to the GR8_NOREX registers. If
1999   // the allocator and/or the backend get enhanced to be more robust in
2000   // that regard, this can be, and should be, removed.
2001   unsigned ResultReg = 0;
2002   if ((I->getOpcode() == Instruction::SRem ||
2003        I->getOpcode() == Instruction::URem) &&
2004       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2005     Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
2006     Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
2007     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2008             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2009 
2010     // Shift AX right by 8 bits instead of using AH.
2011     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2012             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2013 
2014     // Now reference the 8-bit subreg of the result.
2015     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2016                                            /*Op0IsKill=*/true, X86::sub_8bit);
2017   }
2018   // Copy the result out of the physreg if we haven't already.
2019   if (!ResultReg) {
2020     ResultReg = createResultReg(TypeEntry.RC);
2021     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2022         .addReg(OpEntry.DivRemResultReg);
2023   }
2024   updateValueMap(I, ResultReg);
2025 
2026   return true;
2027 }
2028 
2029 /// Emit a conditional move instruction (if the are supported) to lower
2030 /// the select.
2031 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2032   // Check if the subtarget supports these instructions.
2033   if (!Subtarget->hasCMov())
2034     return false;
2035 
2036   // FIXME: Add support for i8.
2037   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2038     return false;
2039 
2040   const Value *Cond = I->getOperand(0);
2041   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2042   bool NeedTest = true;
2043   X86::CondCode CC = X86::COND_NE;
2044 
2045   // Optimize conditions coming from a compare if both instructions are in the
2046   // same basic block (values defined in other basic blocks may not have
2047   // initialized registers).
2048   const auto *CI = dyn_cast<CmpInst>(Cond);
2049   if (CI && (CI->getParent() == I->getParent())) {
2050     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2051 
2052     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2053     static const uint16_t SETFOpcTable[2][3] = {
2054       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2055       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2056     };
2057     const uint16_t *SETFOpc = nullptr;
2058     switch (Predicate) {
2059     default: break;
2060     case CmpInst::FCMP_OEQ:
2061       SETFOpc = &SETFOpcTable[0][0];
2062       Predicate = CmpInst::ICMP_NE;
2063       break;
2064     case CmpInst::FCMP_UNE:
2065       SETFOpc = &SETFOpcTable[1][0];
2066       Predicate = CmpInst::ICMP_NE;
2067       break;
2068     }
2069 
2070     bool NeedSwap;
2071     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2072     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2073 
2074     const Value *CmpLHS = CI->getOperand(0);
2075     const Value *CmpRHS = CI->getOperand(1);
2076     if (NeedSwap)
2077       std::swap(CmpLHS, CmpRHS);
2078 
2079     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2080     // Emit a compare of the LHS and RHS, setting the flags.
2081     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2082       return false;
2083 
2084     if (SETFOpc) {
2085       Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2086       Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2087       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2088               FlagReg1).addImm(SETFOpc[0]);
2089       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2090               FlagReg2).addImm(SETFOpc[1]);
2091       auto const &II = TII.get(SETFOpc[2]);
2092       if (II.getNumDefs()) {
2093         Register TmpReg = createResultReg(&X86::GR8RegClass);
2094         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2095           .addReg(FlagReg2).addReg(FlagReg1);
2096       } else {
2097         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2098           .addReg(FlagReg2).addReg(FlagReg1);
2099       }
2100     }
2101     NeedTest = false;
2102   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2103     // Fake request the condition, otherwise the intrinsic might be completely
2104     // optimized away.
2105     Register TmpReg = getRegForValue(Cond);
2106     if (TmpReg == 0)
2107       return false;
2108 
2109     NeedTest = false;
2110   }
2111 
2112   if (NeedTest) {
2113     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2114     // garbage. Indeed, only the less significant bit is supposed to be
2115     // accurate. If we read more than the lsb, we may see non-zero values
2116     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2117     // the select. This is achieved by performing TEST against 1.
2118     Register CondReg = getRegForValue(Cond);
2119     if (CondReg == 0)
2120       return false;
2121     bool CondIsKill = hasTrivialKill(Cond);
2122 
2123     // In case OpReg is a K register, COPY to a GPR
2124     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2125       unsigned KCondReg = CondReg;
2126       CondReg = createResultReg(&X86::GR32RegClass);
2127       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2128               TII.get(TargetOpcode::COPY), CondReg)
2129           .addReg(KCondReg, getKillRegState(CondIsKill));
2130       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Op0IsKill=*/true,
2131                                            X86::sub_8bit);
2132     }
2133     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2134         .addReg(CondReg, getKillRegState(CondIsKill))
2135         .addImm(1);
2136   }
2137 
2138   const Value *LHS = I->getOperand(1);
2139   const Value *RHS = I->getOperand(2);
2140 
2141   Register RHSReg = getRegForValue(RHS);
2142   bool RHSIsKill = hasTrivialKill(RHS);
2143 
2144   Register LHSReg = getRegForValue(LHS);
2145   bool LHSIsKill = hasTrivialKill(LHS);
2146 
2147   if (!LHSReg || !RHSReg)
2148     return false;
2149 
2150   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2151   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2152   Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill,
2153                                         LHSReg, LHSIsKill, CC);
2154   updateValueMap(I, ResultReg);
2155   return true;
2156 }
2157 
2158 /// Emit SSE or AVX instructions to lower the select.
2159 ///
2160 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2161 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2162 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2163 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2164   // Optimize conditions coming from a compare if both instructions are in the
2165   // same basic block (values defined in other basic blocks may not have
2166   // initialized registers).
2167   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2168   if (!CI || (CI->getParent() != I->getParent()))
2169     return false;
2170 
2171   if (I->getType() != CI->getOperand(0)->getType() ||
2172       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2173         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2174     return false;
2175 
2176   const Value *CmpLHS = CI->getOperand(0);
2177   const Value *CmpRHS = CI->getOperand(1);
2178   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2179 
2180   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2181   // We don't have to materialize a zero constant for this case and can just use
2182   // %x again on the RHS.
2183   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2184     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2185     if (CmpRHSC && CmpRHSC->isNullValue())
2186       CmpRHS = CmpLHS;
2187   }
2188 
2189   unsigned CC;
2190   bool NeedSwap;
2191   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2192   if (CC > 7 && !Subtarget->hasAVX())
2193     return false;
2194 
2195   if (NeedSwap)
2196     std::swap(CmpLHS, CmpRHS);
2197 
2198   const Value *LHS = I->getOperand(1);
2199   const Value *RHS = I->getOperand(2);
2200 
2201   Register LHSReg = getRegForValue(LHS);
2202   bool LHSIsKill = hasTrivialKill(LHS);
2203 
2204   Register RHSReg = getRegForValue(RHS);
2205   bool RHSIsKill = hasTrivialKill(RHS);
2206 
2207   Register CmpLHSReg = getRegForValue(CmpLHS);
2208   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2209 
2210   Register CmpRHSReg = getRegForValue(CmpRHS);
2211   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2212 
2213   if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2214     return false;
2215 
2216   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2217   unsigned ResultReg;
2218 
2219   if (Subtarget->hasAVX512()) {
2220     // If we have AVX512 we can use a mask compare and masked movss/sd.
2221     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2222     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2223 
2224     unsigned CmpOpcode =
2225       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2226     Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2227                                        CmpRHSReg, CmpRHSIsKill, CC);
2228 
2229     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2230     // bits of the result register since its not based on any of the inputs.
2231     Register ImplicitDefReg = createResultReg(VR128X);
2232     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2233             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2234 
2235     // Place RHSReg is the passthru of the masked movss/sd operation and put
2236     // LHS in the input. The mask input comes from the compare.
2237     unsigned MovOpcode =
2238       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2239     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2240                                         CmpReg, true, ImplicitDefReg, true,
2241                                         LHSReg, LHSIsKill);
2242 
2243     ResultReg = createResultReg(RC);
2244     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2245             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2246 
2247   } else if (Subtarget->hasAVX()) {
2248     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2249 
2250     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2251     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2252     // uses XMM0 as the selection register. That may need just as many
2253     // instructions as the AND/ANDN/OR sequence due to register moves, so
2254     // don't bother.
2255     unsigned CmpOpcode =
2256       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2257     unsigned BlendOpcode =
2258       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2259 
2260     Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2261                                        CmpRHSReg, CmpRHSIsKill, CC);
2262     Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2263                                           LHSReg, LHSIsKill, CmpReg, true);
2264     ResultReg = createResultReg(RC);
2265     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2266             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2267   } else {
2268     // Choose the SSE instruction sequence based on data type (float or double).
2269     static const uint16_t OpcTable[2][4] = {
2270       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2271       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2272     };
2273 
2274     const uint16_t *Opc = nullptr;
2275     switch (RetVT.SimpleTy) {
2276     default: return false;
2277     case MVT::f32: Opc = &OpcTable[0][0]; break;
2278     case MVT::f64: Opc = &OpcTable[1][0]; break;
2279     }
2280 
2281     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2282     Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2283                                        CmpRHSReg, CmpRHSIsKill, CC);
2284     Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg,
2285                                       /*Op0IsKill=*/false, LHSReg, LHSIsKill);
2286     Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg,
2287                                        /*Op0IsKill=*/true, RHSReg, RHSIsKill);
2288     Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*Op0IsKill=*/true,
2289                                      AndReg, /*Op1IsKill=*/true);
2290     ResultReg = createResultReg(RC);
2291     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2292             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2293   }
2294   updateValueMap(I, ResultReg);
2295   return true;
2296 }
2297 
2298 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2299   // These are pseudo CMOV instructions and will be later expanded into control-
2300   // flow.
2301   unsigned Opc;
2302   switch (RetVT.SimpleTy) {
2303   default: return false;
2304   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
2305   case MVT::i16: Opc = X86::CMOV_GR16; break;
2306   case MVT::i32: Opc = X86::CMOV_GR32; break;
2307   case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
2308                                               : X86::CMOV_FR32; break;
2309   case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
2310                                               : X86::CMOV_FR64; break;
2311   }
2312 
2313   const Value *Cond = I->getOperand(0);
2314   X86::CondCode CC = X86::COND_NE;
2315 
2316   // Optimize conditions coming from a compare if both instructions are in the
2317   // same basic block (values defined in other basic blocks may not have
2318   // initialized registers).
2319   const auto *CI = dyn_cast<CmpInst>(Cond);
2320   if (CI && (CI->getParent() == I->getParent())) {
2321     bool NeedSwap;
2322     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2323     if (CC > X86::LAST_VALID_COND)
2324       return false;
2325 
2326     const Value *CmpLHS = CI->getOperand(0);
2327     const Value *CmpRHS = CI->getOperand(1);
2328 
2329     if (NeedSwap)
2330       std::swap(CmpLHS, CmpRHS);
2331 
2332     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2333     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2334       return false;
2335   } else {
2336     Register CondReg = getRegForValue(Cond);
2337     if (CondReg == 0)
2338       return false;
2339     bool CondIsKill = hasTrivialKill(Cond);
2340 
2341     // In case OpReg is a K register, COPY to a GPR
2342     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2343       unsigned KCondReg = CondReg;
2344       CondReg = createResultReg(&X86::GR32RegClass);
2345       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2346               TII.get(TargetOpcode::COPY), CondReg)
2347           .addReg(KCondReg, getKillRegState(CondIsKill));
2348       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Op0IsKill=*/true,
2349                                            X86::sub_8bit);
2350     }
2351     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2352         .addReg(CondReg, getKillRegState(CondIsKill))
2353         .addImm(1);
2354   }
2355 
2356   const Value *LHS = I->getOperand(1);
2357   const Value *RHS = I->getOperand(2);
2358 
2359   Register LHSReg = getRegForValue(LHS);
2360   bool LHSIsKill = hasTrivialKill(LHS);
2361 
2362   Register RHSReg = getRegForValue(RHS);
2363   bool RHSIsKill = hasTrivialKill(RHS);
2364 
2365   if (!LHSReg || !RHSReg)
2366     return false;
2367 
2368   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2369 
2370   Register ResultReg =
2371     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2372   updateValueMap(I, ResultReg);
2373   return true;
2374 }
2375 
2376 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2377   MVT RetVT;
2378   if (!isTypeLegal(I->getType(), RetVT))
2379     return false;
2380 
2381   // Check if we can fold the select.
2382   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2383     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2384     const Value *Opnd = nullptr;
2385     switch (Predicate) {
2386     default:                              break;
2387     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2388     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2389     }
2390     // No need for a select anymore - this is an unconditional move.
2391     if (Opnd) {
2392       Register OpReg = getRegForValue(Opnd);
2393       if (OpReg == 0)
2394         return false;
2395       bool OpIsKill = hasTrivialKill(Opnd);
2396       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2397       Register ResultReg = createResultReg(RC);
2398       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2399               TII.get(TargetOpcode::COPY), ResultReg)
2400         .addReg(OpReg, getKillRegState(OpIsKill));
2401       updateValueMap(I, ResultReg);
2402       return true;
2403     }
2404   }
2405 
2406   // First try to use real conditional move instructions.
2407   if (X86FastEmitCMoveSelect(RetVT, I))
2408     return true;
2409 
2410   // Try to use a sequence of SSE instructions to simulate a conditional move.
2411   if (X86FastEmitSSESelect(RetVT, I))
2412     return true;
2413 
2414   // Fall-back to pseudo conditional move instructions, which will be later
2415   // converted to control-flow.
2416   if (X86FastEmitPseudoSelect(RetVT, I))
2417     return true;
2418 
2419   return false;
2420 }
2421 
2422 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2423 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2424   // The target-independent selection algorithm in FastISel already knows how
2425   // to select a SINT_TO_FP if the target is SSE but not AVX.
2426   // Early exit if the subtarget doesn't have AVX.
2427   // Unsigned conversion requires avx512.
2428   bool HasAVX512 = Subtarget->hasAVX512();
2429   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2430     return false;
2431 
2432   // TODO: We could sign extend narrower types.
2433   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2434   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2435     return false;
2436 
2437   // Select integer to float/double conversion.
2438   Register OpReg = getRegForValue(I->getOperand(0));
2439   if (OpReg == 0)
2440     return false;
2441 
2442   unsigned Opcode;
2443 
2444   static const uint16_t SCvtOpc[2][2][2] = {
2445     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2446       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2447     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2448       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2449   };
2450   static const uint16_t UCvtOpc[2][2] = {
2451     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2452     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2453   };
2454   bool Is64Bit = SrcVT == MVT::i64;
2455 
2456   if (I->getType()->isDoubleTy()) {
2457     // s/uitofp int -> double
2458     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2459   } else if (I->getType()->isFloatTy()) {
2460     // s/uitofp int -> float
2461     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2462   } else
2463     return false;
2464 
2465   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2466   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2467   Register ImplicitDefReg = createResultReg(RC);
2468   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2469           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2470   Register ResultReg =
2471       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2472   updateValueMap(I, ResultReg);
2473   return true;
2474 }
2475 
2476 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2477   return X86SelectIntToFP(I, /*IsSigned*/true);
2478 }
2479 
2480 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2481   return X86SelectIntToFP(I, /*IsSigned*/false);
2482 }
2483 
2484 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2485 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2486                                           unsigned TargetOpc,
2487                                           const TargetRegisterClass *RC) {
2488   assert((I->getOpcode() == Instruction::FPExt ||
2489           I->getOpcode() == Instruction::FPTrunc) &&
2490          "Instruction must be an FPExt or FPTrunc!");
2491   bool HasAVX = Subtarget->hasAVX();
2492 
2493   Register OpReg = getRegForValue(I->getOperand(0));
2494   if (OpReg == 0)
2495     return false;
2496 
2497   unsigned ImplicitDefReg;
2498   if (HasAVX) {
2499     ImplicitDefReg = createResultReg(RC);
2500     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2501             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2502 
2503   }
2504 
2505   Register ResultReg = createResultReg(RC);
2506   MachineInstrBuilder MIB;
2507   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2508                 ResultReg);
2509 
2510   if (HasAVX)
2511     MIB.addReg(ImplicitDefReg);
2512 
2513   MIB.addReg(OpReg);
2514   updateValueMap(I, ResultReg);
2515   return true;
2516 }
2517 
2518 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2519   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2520       I->getOperand(0)->getType()->isFloatTy()) {
2521     bool HasAVX512 = Subtarget->hasAVX512();
2522     // fpext from float to double.
2523     unsigned Opc =
2524         HasAVX512 ? X86::VCVTSS2SDZrr
2525                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2526     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2527   }
2528 
2529   return false;
2530 }
2531 
2532 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2533   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2534       I->getOperand(0)->getType()->isDoubleTy()) {
2535     bool HasAVX512 = Subtarget->hasAVX512();
2536     // fptrunc from double to float.
2537     unsigned Opc =
2538         HasAVX512 ? X86::VCVTSD2SSZrr
2539                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2540     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2541   }
2542 
2543   return false;
2544 }
2545 
2546 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2547   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2548   EVT DstVT = TLI.getValueType(DL, I->getType());
2549 
2550   // This code only handles truncation to byte.
2551   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2552     return false;
2553   if (!TLI.isTypeLegal(SrcVT))
2554     return false;
2555 
2556   Register InputReg = getRegForValue(I->getOperand(0));
2557   if (!InputReg)
2558     // Unhandled operand.  Halt "fast" selection and bail.
2559     return false;
2560 
2561   if (SrcVT == MVT::i8) {
2562     // Truncate from i8 to i1; no code needed.
2563     updateValueMap(I, InputReg);
2564     return true;
2565   }
2566 
2567   // Issue an extract_subreg.
2568   Register ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2569                                                   InputReg, false,
2570                                                   X86::sub_8bit);
2571   if (!ResultReg)
2572     return false;
2573 
2574   updateValueMap(I, ResultReg);
2575   return true;
2576 }
2577 
2578 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2579   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2580 }
2581 
2582 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2583                                      X86AddressMode SrcAM, uint64_t Len) {
2584 
2585   // Make sure we don't bloat code by inlining very large memcpy's.
2586   if (!IsMemcpySmall(Len))
2587     return false;
2588 
2589   bool i64Legal = Subtarget->is64Bit();
2590 
2591   // We don't care about alignment here since we just emit integer accesses.
2592   while (Len) {
2593     MVT VT;
2594     if (Len >= 8 && i64Legal)
2595       VT = MVT::i64;
2596     else if (Len >= 4)
2597       VT = MVT::i32;
2598     else if (Len >= 2)
2599       VT = MVT::i16;
2600     else
2601       VT = MVT::i8;
2602 
2603     unsigned Reg;
2604     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2605     RV &= X86FastEmitStore(VT, Reg, /*ValIsKill=*/true, DestAM);
2606     assert(RV && "Failed to emit load or store??");
2607 
2608     unsigned Size = VT.getSizeInBits()/8;
2609     Len -= Size;
2610     DestAM.Disp += Size;
2611     SrcAM.Disp += Size;
2612   }
2613 
2614   return true;
2615 }
2616 
2617 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2618   // FIXME: Handle more intrinsics.
2619   switch (II->getIntrinsicID()) {
2620   default: return false;
2621   case Intrinsic::convert_from_fp16:
2622   case Intrinsic::convert_to_fp16: {
2623     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2624       return false;
2625 
2626     const Value *Op = II->getArgOperand(0);
2627     Register InputReg = getRegForValue(Op);
2628     if (InputReg == 0)
2629       return false;
2630 
2631     // F16C only allows converting from float to half and from half to float.
2632     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2633     if (IsFloatToHalf) {
2634       if (!Op->getType()->isFloatTy())
2635         return false;
2636     } else {
2637       if (!II->getType()->isFloatTy())
2638         return false;
2639     }
2640 
2641     unsigned ResultReg = 0;
2642     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2643     if (IsFloatToHalf) {
2644       // 'InputReg' is implicitly promoted from register class FR32 to
2645       // register class VR128 by method 'constrainOperandRegClass' which is
2646       // directly called by 'fastEmitInst_ri'.
2647       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2648       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2649       // It's consistent with the other FP instructions, which are usually
2650       // controlled by MXCSR.
2651       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2652                                          : X86::VCVTPS2PHrr;
2653       InputReg = fastEmitInst_ri(Opc, RC, InputReg, false, 4);
2654 
2655       // Move the lower 32-bits of ResultReg to another register of class GR32.
2656       Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2657                                    : X86::VMOVPDI2DIrr;
2658       ResultReg = createResultReg(&X86::GR32RegClass);
2659       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2660           .addReg(InputReg, RegState::Kill);
2661 
2662       // The result value is in the lower 16-bits of ResultReg.
2663       unsigned RegIdx = X86::sub_16bit;
2664       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2665     } else {
2666       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2667       // Explicitly zero-extend the input to 32-bit.
2668       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg,
2669                             /*Op0IsKill=*/false);
2670 
2671       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2672       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2673                             InputReg, /*Op0IsKill=*/true);
2674 
2675       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2676                                          : X86::VCVTPH2PSrr;
2677       InputReg = fastEmitInst_r(Opc, RC, InputReg, /*Op0IsKill=*/true);
2678 
2679       // The result value is in the lower 32-bits of ResultReg.
2680       // Emit an explicit copy from register class VR128 to register class FR32.
2681       ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2682       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2683               TII.get(TargetOpcode::COPY), ResultReg)
2684           .addReg(InputReg, RegState::Kill);
2685     }
2686 
2687     updateValueMap(II, ResultReg);
2688     return true;
2689   }
2690   case Intrinsic::frameaddress: {
2691     MachineFunction *MF = FuncInfo.MF;
2692     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2693       return false;
2694 
2695     Type *RetTy = II->getCalledFunction()->getReturnType();
2696 
2697     MVT VT;
2698     if (!isTypeLegal(RetTy, VT))
2699       return false;
2700 
2701     unsigned Opc;
2702     const TargetRegisterClass *RC = nullptr;
2703 
2704     switch (VT.SimpleTy) {
2705     default: llvm_unreachable("Invalid result type for frameaddress.");
2706     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2707     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2708     }
2709 
2710     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2711     // we get the wrong frame register.
2712     MachineFrameInfo &MFI = MF->getFrameInfo();
2713     MFI.setFrameAddressIsTaken(true);
2714 
2715     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2716     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2717     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2718             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2719            "Invalid Frame Register!");
2720 
2721     // Always make a copy of the frame register to a vreg first, so that we
2722     // never directly reference the frame register (the TwoAddressInstruction-
2723     // Pass doesn't like that).
2724     Register SrcReg = createResultReg(RC);
2725     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2726             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2727 
2728     // Now recursively load from the frame address.
2729     // movq (%rbp), %rax
2730     // movq (%rax), %rax
2731     // movq (%rax), %rax
2732     // ...
2733     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2734     while (Depth--) {
2735       Register DestReg = createResultReg(RC);
2736       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2737                            TII.get(Opc), DestReg), SrcReg);
2738       SrcReg = DestReg;
2739     }
2740 
2741     updateValueMap(II, SrcReg);
2742     return true;
2743   }
2744   case Intrinsic::memcpy: {
2745     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2746     // Don't handle volatile or variable length memcpys.
2747     if (MCI->isVolatile())
2748       return false;
2749 
2750     if (isa<ConstantInt>(MCI->getLength())) {
2751       // Small memcpy's are common enough that we want to do them
2752       // without a call if possible.
2753       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2754       if (IsMemcpySmall(Len)) {
2755         X86AddressMode DestAM, SrcAM;
2756         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2757             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2758           return false;
2759         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2760         return true;
2761       }
2762     }
2763 
2764     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2765     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2766       return false;
2767 
2768     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2769       return false;
2770 
2771     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2772   }
2773   case Intrinsic::memset: {
2774     const MemSetInst *MSI = cast<MemSetInst>(II);
2775 
2776     if (MSI->isVolatile())
2777       return false;
2778 
2779     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2780     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2781       return false;
2782 
2783     if (MSI->getDestAddressSpace() > 255)
2784       return false;
2785 
2786     return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2787   }
2788   case Intrinsic::stackprotector: {
2789     // Emit code to store the stack guard onto the stack.
2790     EVT PtrTy = TLI.getPointerTy(DL);
2791 
2792     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2793     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2794 
2795     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2796 
2797     // Grab the frame index.
2798     X86AddressMode AM;
2799     if (!X86SelectAddress(Slot, AM)) return false;
2800     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2801     return true;
2802   }
2803   case Intrinsic::dbg_declare: {
2804     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2805     X86AddressMode AM;
2806     assert(DI->getAddress() && "Null address should be checked earlier!");
2807     if (!X86SelectAddress(DI->getAddress(), AM))
2808       return false;
2809     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2810     // FIXME may need to add RegState::Debug to any registers produced,
2811     // although ESP/EBP should be the only ones at the moment.
2812     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2813            "Expected inlined-at fields to agree");
2814     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2815         .addImm(0)
2816         .addMetadata(DI->getVariable())
2817         .addMetadata(DI->getExpression());
2818     return true;
2819   }
2820   case Intrinsic::trap: {
2821     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2822     return true;
2823   }
2824   case Intrinsic::sqrt: {
2825     if (!Subtarget->hasSSE1())
2826       return false;
2827 
2828     Type *RetTy = II->getCalledFunction()->getReturnType();
2829 
2830     MVT VT;
2831     if (!isTypeLegal(RetTy, VT))
2832       return false;
2833 
2834     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2835     // is not generated by FastISel yet.
2836     // FIXME: Update this code once tablegen can handle it.
2837     static const uint16_t SqrtOpc[3][2] = {
2838       { X86::SQRTSSr,   X86::SQRTSDr },
2839       { X86::VSQRTSSr,  X86::VSQRTSDr },
2840       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2841     };
2842     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2843                         Subtarget->hasAVX()    ? 1 :
2844                                                  0;
2845     unsigned Opc;
2846     switch (VT.SimpleTy) {
2847     default: return false;
2848     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2849     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2850     }
2851 
2852     const Value *SrcVal = II->getArgOperand(0);
2853     Register SrcReg = getRegForValue(SrcVal);
2854 
2855     if (SrcReg == 0)
2856       return false;
2857 
2858     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2859     unsigned ImplicitDefReg = 0;
2860     if (AVXLevel > 0) {
2861       ImplicitDefReg = createResultReg(RC);
2862       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2863               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2864     }
2865 
2866     Register ResultReg = createResultReg(RC);
2867     MachineInstrBuilder MIB;
2868     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2869                   ResultReg);
2870 
2871     if (ImplicitDefReg)
2872       MIB.addReg(ImplicitDefReg);
2873 
2874     MIB.addReg(SrcReg);
2875 
2876     updateValueMap(II, ResultReg);
2877     return true;
2878   }
2879   case Intrinsic::sadd_with_overflow:
2880   case Intrinsic::uadd_with_overflow:
2881   case Intrinsic::ssub_with_overflow:
2882   case Intrinsic::usub_with_overflow:
2883   case Intrinsic::smul_with_overflow:
2884   case Intrinsic::umul_with_overflow: {
2885     // This implements the basic lowering of the xalu with overflow intrinsics
2886     // into add/sub/mul followed by either seto or setb.
2887     const Function *Callee = II->getCalledFunction();
2888     auto *Ty = cast<StructType>(Callee->getReturnType());
2889     Type *RetTy = Ty->getTypeAtIndex(0U);
2890     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2891            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2892            "Overflow value expected to be an i1");
2893 
2894     MVT VT;
2895     if (!isTypeLegal(RetTy, VT))
2896       return false;
2897 
2898     if (VT < MVT::i8 || VT > MVT::i64)
2899       return false;
2900 
2901     const Value *LHS = II->getArgOperand(0);
2902     const Value *RHS = II->getArgOperand(1);
2903 
2904     // Canonicalize immediate to the RHS.
2905     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2906       std::swap(LHS, RHS);
2907 
2908     unsigned BaseOpc, CondCode;
2909     switch (II->getIntrinsicID()) {
2910     default: llvm_unreachable("Unexpected intrinsic!");
2911     case Intrinsic::sadd_with_overflow:
2912       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2913     case Intrinsic::uadd_with_overflow:
2914       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2915     case Intrinsic::ssub_with_overflow:
2916       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2917     case Intrinsic::usub_with_overflow:
2918       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2919     case Intrinsic::smul_with_overflow:
2920       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2921     case Intrinsic::umul_with_overflow:
2922       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2923     }
2924 
2925     Register LHSReg = getRegForValue(LHS);
2926     if (LHSReg == 0)
2927       return false;
2928     bool LHSIsKill = hasTrivialKill(LHS);
2929 
2930     unsigned ResultReg = 0;
2931     // Check if we have an immediate version.
2932     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2933       static const uint16_t Opc[2][4] = {
2934         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2935         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2936       };
2937 
2938       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2939           CondCode == X86::COND_O) {
2940         // We can use INC/DEC.
2941         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2942         bool IsDec = BaseOpc == ISD::SUB;
2943         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2944                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2945           .addReg(LHSReg, getKillRegState(LHSIsKill));
2946       } else
2947         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2948                                 CI->getZExtValue());
2949     }
2950 
2951     unsigned RHSReg;
2952     bool RHSIsKill;
2953     if (!ResultReg) {
2954       RHSReg = getRegForValue(RHS);
2955       if (RHSReg == 0)
2956         return false;
2957       RHSIsKill = hasTrivialKill(RHS);
2958       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2959                               RHSIsKill);
2960     }
2961 
2962     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2963     // it manually.
2964     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2965       static const uint16_t MULOpc[] =
2966         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2967       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2968       // First copy the first operand into RAX, which is an implicit input to
2969       // the X86::MUL*r instruction.
2970       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2971               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2972         .addReg(LHSReg, getKillRegState(LHSIsKill));
2973       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2974                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2975     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2976       static const uint16_t MULOpc[] =
2977         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2978       if (VT == MVT::i8) {
2979         // Copy the first operand into AL, which is an implicit input to the
2980         // X86::IMUL8r instruction.
2981         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2982                TII.get(TargetOpcode::COPY), X86::AL)
2983           .addReg(LHSReg, getKillRegState(LHSIsKill));
2984         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2985                                    RHSIsKill);
2986       } else
2987         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2988                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2989                                     RHSReg, RHSIsKill);
2990     }
2991 
2992     if (!ResultReg)
2993       return false;
2994 
2995     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2996     Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2997     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2998     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2999             ResultReg2).addImm(CondCode);
3000 
3001     updateValueMap(II, ResultReg, 2);
3002     return true;
3003   }
3004   case Intrinsic::x86_sse_cvttss2si:
3005   case Intrinsic::x86_sse_cvttss2si64:
3006   case Intrinsic::x86_sse2_cvttsd2si:
3007   case Intrinsic::x86_sse2_cvttsd2si64: {
3008     bool IsInputDouble;
3009     switch (II->getIntrinsicID()) {
3010     default: llvm_unreachable("Unexpected intrinsic.");
3011     case Intrinsic::x86_sse_cvttss2si:
3012     case Intrinsic::x86_sse_cvttss2si64:
3013       if (!Subtarget->hasSSE1())
3014         return false;
3015       IsInputDouble = false;
3016       break;
3017     case Intrinsic::x86_sse2_cvttsd2si:
3018     case Intrinsic::x86_sse2_cvttsd2si64:
3019       if (!Subtarget->hasSSE2())
3020         return false;
3021       IsInputDouble = true;
3022       break;
3023     }
3024 
3025     Type *RetTy = II->getCalledFunction()->getReturnType();
3026     MVT VT;
3027     if (!isTypeLegal(RetTy, VT))
3028       return false;
3029 
3030     static const uint16_t CvtOpc[3][2][2] = {
3031       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
3032         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
3033       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
3034         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
3035       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3036         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3037     };
3038     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3039                         Subtarget->hasAVX()    ? 1 :
3040                                                  0;
3041     unsigned Opc;
3042     switch (VT.SimpleTy) {
3043     default: llvm_unreachable("Unexpected result type.");
3044     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3045     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3046     }
3047 
3048     // Check if we can fold insertelement instructions into the convert.
3049     const Value *Op = II->getArgOperand(0);
3050     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3051       const Value *Index = IE->getOperand(2);
3052       if (!isa<ConstantInt>(Index))
3053         break;
3054       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3055 
3056       if (Idx == 0) {
3057         Op = IE->getOperand(1);
3058         break;
3059       }
3060       Op = IE->getOperand(0);
3061     }
3062 
3063     Register Reg = getRegForValue(Op);
3064     if (Reg == 0)
3065       return false;
3066 
3067     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3068     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3069       .addReg(Reg);
3070 
3071     updateValueMap(II, ResultReg);
3072     return true;
3073   }
3074   }
3075 }
3076 
3077 bool X86FastISel::fastLowerArguments() {
3078   if (!FuncInfo.CanLowerReturn)
3079     return false;
3080 
3081   const Function *F = FuncInfo.Fn;
3082   if (F->isVarArg())
3083     return false;
3084 
3085   CallingConv::ID CC = F->getCallingConv();
3086   if (CC != CallingConv::C)
3087     return false;
3088 
3089   if (Subtarget->isCallingConvWin64(CC))
3090     return false;
3091 
3092   if (!Subtarget->is64Bit())
3093     return false;
3094 
3095   if (Subtarget->useSoftFloat())
3096     return false;
3097 
3098   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3099   unsigned GPRCnt = 0;
3100   unsigned FPRCnt = 0;
3101   for (auto const &Arg : F->args()) {
3102     if (Arg.hasAttribute(Attribute::ByVal) ||
3103         Arg.hasAttribute(Attribute::InReg) ||
3104         Arg.hasAttribute(Attribute::StructRet) ||
3105         Arg.hasAttribute(Attribute::SwiftSelf) ||
3106         Arg.hasAttribute(Attribute::SwiftError) ||
3107         Arg.hasAttribute(Attribute::Nest))
3108       return false;
3109 
3110     Type *ArgTy = Arg.getType();
3111     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3112       return false;
3113 
3114     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3115     if (!ArgVT.isSimple()) return false;
3116     switch (ArgVT.getSimpleVT().SimpleTy) {
3117     default: return false;
3118     case MVT::i32:
3119     case MVT::i64:
3120       ++GPRCnt;
3121       break;
3122     case MVT::f32:
3123     case MVT::f64:
3124       if (!Subtarget->hasSSE1())
3125         return false;
3126       ++FPRCnt;
3127       break;
3128     }
3129 
3130     if (GPRCnt > 6)
3131       return false;
3132 
3133     if (FPRCnt > 8)
3134       return false;
3135   }
3136 
3137   static const MCPhysReg GPR32ArgRegs[] = {
3138     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3139   };
3140   static const MCPhysReg GPR64ArgRegs[] = {
3141     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3142   };
3143   static const MCPhysReg XMMArgRegs[] = {
3144     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3145     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3146   };
3147 
3148   unsigned GPRIdx = 0;
3149   unsigned FPRIdx = 0;
3150   for (auto const &Arg : F->args()) {
3151     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3152     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3153     unsigned SrcReg;
3154     switch (VT.SimpleTy) {
3155     default: llvm_unreachable("Unexpected value type.");
3156     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3157     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3158     case MVT::f32: LLVM_FALLTHROUGH;
3159     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3160     }
3161     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3162     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3163     // Without this, EmitLiveInCopies may eliminate the livein if its only
3164     // use is a bitcast (which isn't turned into an instruction).
3165     Register ResultReg = createResultReg(RC);
3166     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3167             TII.get(TargetOpcode::COPY), ResultReg)
3168       .addReg(DstReg, getKillRegState(true));
3169     updateValueMap(&Arg, ResultReg);
3170   }
3171   return true;
3172 }
3173 
3174 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3175                                                   CallingConv::ID CC,
3176                                                   const CallBase *CB) {
3177   if (Subtarget->is64Bit())
3178     return 0;
3179   if (Subtarget->getTargetTriple().isOSMSVCRT())
3180     return 0;
3181   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3182       CC == CallingConv::HiPE || CC == CallingConv::Tail)
3183     return 0;
3184 
3185   if (CB)
3186     if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3187         CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3188       return 0;
3189 
3190   return 4;
3191 }
3192 
3193 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3194   auto &OutVals       = CLI.OutVals;
3195   auto &OutFlags      = CLI.OutFlags;
3196   auto &OutRegs       = CLI.OutRegs;
3197   auto &Ins           = CLI.Ins;
3198   auto &InRegs        = CLI.InRegs;
3199   CallingConv::ID CC  = CLI.CallConv;
3200   bool &IsTailCall    = CLI.IsTailCall;
3201   bool IsVarArg       = CLI.IsVarArg;
3202   const Value *Callee = CLI.Callee;
3203   MCSymbol *Symbol = CLI.Symbol;
3204 
3205   bool Is64Bit        = Subtarget->is64Bit();
3206   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3207 
3208   const CallInst *CI = dyn_cast_or_null<CallInst>(CLI.CB);
3209   const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3210 
3211   // Call / invoke instructions with NoCfCheck attribute require special
3212   // handling.
3213   const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CB);
3214   if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3215     return false;
3216 
3217   // Functions with no_caller_saved_registers that need special handling.
3218   if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3219       (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3220     return false;
3221 
3222   // Functions using thunks for indirect calls need to use SDISel.
3223   if (Subtarget->useIndirectThunkCalls())
3224     return false;
3225 
3226   // Handle only C, fastcc, and webkit_js calling conventions for now.
3227   switch (CC) {
3228   default: return false;
3229   case CallingConv::C:
3230   case CallingConv::Fast:
3231   case CallingConv::Tail:
3232   case CallingConv::WebKit_JS:
3233   case CallingConv::Swift:
3234   case CallingConv::X86_FastCall:
3235   case CallingConv::X86_StdCall:
3236   case CallingConv::X86_ThisCall:
3237   case CallingConv::Win64:
3238   case CallingConv::X86_64_SysV:
3239   case CallingConv::CFGuard_Check:
3240     break;
3241   }
3242 
3243   // Allow SelectionDAG isel to handle tail calls.
3244   if (IsTailCall)
3245     return false;
3246 
3247   // fastcc with -tailcallopt is intended to provide a guaranteed
3248   // tail call optimization. Fastisel doesn't know how to do that.
3249   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3250       CC == CallingConv::Tail)
3251     return false;
3252 
3253   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3254   // x86-32. Special handling for x86-64 is implemented.
3255   if (IsVarArg && IsWin64)
3256     return false;
3257 
3258   // Don't know about inalloca yet.
3259   if (CLI.CB && CLI.CB->hasInAllocaArgument())
3260     return false;
3261 
3262   for (auto Flag : CLI.OutFlags)
3263     if (Flag.isSwiftError() || Flag.isPreallocated())
3264       return false;
3265 
3266   SmallVector<MVT, 16> OutVTs;
3267   SmallVector<unsigned, 16> ArgRegs;
3268 
3269   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3270   // instruction. This is safe because it is common to all FastISel supported
3271   // calling conventions on x86.
3272   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3273     Value *&Val = OutVals[i];
3274     ISD::ArgFlagsTy Flags = OutFlags[i];
3275     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3276       if (CI->getBitWidth() < 32) {
3277         if (Flags.isSExt())
3278           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3279         else
3280           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3281       }
3282     }
3283 
3284     // Passing bools around ends up doing a trunc to i1 and passing it.
3285     // Codegen this as an argument + "and 1".
3286     MVT VT;
3287     auto *TI = dyn_cast<TruncInst>(Val);
3288     unsigned ResultReg;
3289     if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3290         (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3291       Value *PrevVal = TI->getOperand(0);
3292       ResultReg = getRegForValue(PrevVal);
3293 
3294       if (!ResultReg)
3295         return false;
3296 
3297       if (!isTypeLegal(PrevVal->getType(), VT))
3298         return false;
3299 
3300       ResultReg =
3301         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3302     } else {
3303       if (!isTypeLegal(Val->getType(), VT) ||
3304           (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3305         return false;
3306       ResultReg = getRegForValue(Val);
3307     }
3308 
3309     if (!ResultReg)
3310       return false;
3311 
3312     ArgRegs.push_back(ResultReg);
3313     OutVTs.push_back(VT);
3314   }
3315 
3316   // Analyze operands of the call, assigning locations to each operand.
3317   SmallVector<CCValAssign, 16> ArgLocs;
3318   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3319 
3320   // Allocate shadow area for Win64
3321   if (IsWin64)
3322     CCInfo.AllocateStack(32, Align(8));
3323 
3324   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3325 
3326   // Get a count of how many bytes are to be pushed on the stack.
3327   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3328 
3329   // Issue CALLSEQ_START
3330   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3331   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3332     .addImm(NumBytes).addImm(0).addImm(0);
3333 
3334   // Walk the register/memloc assignments, inserting copies/loads.
3335   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3336   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3337     CCValAssign const &VA = ArgLocs[i];
3338     const Value *ArgVal = OutVals[VA.getValNo()];
3339     MVT ArgVT = OutVTs[VA.getValNo()];
3340 
3341     if (ArgVT == MVT::x86mmx)
3342       return false;
3343 
3344     unsigned ArgReg = ArgRegs[VA.getValNo()];
3345 
3346     // Promote the value if needed.
3347     switch (VA.getLocInfo()) {
3348     case CCValAssign::Full: break;
3349     case CCValAssign::SExt: {
3350       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3351              "Unexpected extend");
3352 
3353       if (ArgVT == MVT::i1)
3354         return false;
3355 
3356       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3357                                        ArgVT, ArgReg);
3358       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3359       ArgVT = VA.getLocVT();
3360       break;
3361     }
3362     case CCValAssign::ZExt: {
3363       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3364              "Unexpected extend");
3365 
3366       // Handle zero-extension from i1 to i8, which is common.
3367       if (ArgVT == MVT::i1) {
3368         // Set the high bits to zero.
3369         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3370         ArgVT = MVT::i8;
3371 
3372         if (ArgReg == 0)
3373           return false;
3374       }
3375 
3376       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3377                                        ArgVT, ArgReg);
3378       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3379       ArgVT = VA.getLocVT();
3380       break;
3381     }
3382     case CCValAssign::AExt: {
3383       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3384              "Unexpected extend");
3385       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3386                                        ArgVT, ArgReg);
3387       if (!Emitted)
3388         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3389                                     ArgVT, ArgReg);
3390       if (!Emitted)
3391         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3392                                     ArgVT, ArgReg);
3393 
3394       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3395       ArgVT = VA.getLocVT();
3396       break;
3397     }
3398     case CCValAssign::BCvt: {
3399       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3400                           /*TODO: Kill=*/false);
3401       assert(ArgReg && "Failed to emit a bitcast!");
3402       ArgVT = VA.getLocVT();
3403       break;
3404     }
3405     case CCValAssign::VExt:
3406       // VExt has not been implemented, so this should be impossible to reach
3407       // for now.  However, fallback to Selection DAG isel once implemented.
3408       return false;
3409     case CCValAssign::AExtUpper:
3410     case CCValAssign::SExtUpper:
3411     case CCValAssign::ZExtUpper:
3412     case CCValAssign::FPExt:
3413     case CCValAssign::Trunc:
3414       llvm_unreachable("Unexpected loc info!");
3415     case CCValAssign::Indirect:
3416       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3417       // support this.
3418       return false;
3419     }
3420 
3421     if (VA.isRegLoc()) {
3422       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3423               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3424       OutRegs.push_back(VA.getLocReg());
3425     } else {
3426       assert(VA.isMemLoc() && "Unknown value location!");
3427 
3428       // Don't emit stores for undef values.
3429       if (isa<UndefValue>(ArgVal))
3430         continue;
3431 
3432       unsigned LocMemOffset = VA.getLocMemOffset();
3433       X86AddressMode AM;
3434       AM.Base.Reg = RegInfo->getStackRegister();
3435       AM.Disp = LocMemOffset;
3436       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3437       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3438       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3439           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3440           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3441       if (Flags.isByVal()) {
3442         X86AddressMode SrcAM;
3443         SrcAM.Base.Reg = ArgReg;
3444         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3445           return false;
3446       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3447         // If this is a really simple value, emit this with the Value* version
3448         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3449         // as it can cause us to reevaluate the argument.
3450         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3451           return false;
3452       } else {
3453         bool ValIsKill = hasTrivialKill(ArgVal);
3454         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3455           return false;
3456       }
3457     }
3458   }
3459 
3460   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3461   // GOT pointer.
3462   if (Subtarget->isPICStyleGOT()) {
3463     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3464     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3465             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3466   }
3467 
3468   if (Is64Bit && IsVarArg && !IsWin64) {
3469     // From AMD64 ABI document:
3470     // For calls that may call functions that use varargs or stdargs
3471     // (prototype-less calls or calls to functions containing ellipsis (...) in
3472     // the declaration) %al is used as hidden argument to specify the number
3473     // of SSE registers used. The contents of %al do not need to match exactly
3474     // the number of registers, but must be an ubound on the number of SSE
3475     // registers used and is in the range 0 - 8 inclusive.
3476 
3477     // Count the number of XMM registers allocated.
3478     static const MCPhysReg XMMArgRegs[] = {
3479       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3480       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3481     };
3482     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3483     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3484            && "SSE registers cannot be used when SSE is disabled");
3485     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3486             X86::AL).addImm(NumXMMRegs);
3487   }
3488 
3489   // Materialize callee address in a register. FIXME: GV address can be
3490   // handled with a CALLpcrel32 instead.
3491   X86AddressMode CalleeAM;
3492   if (!X86SelectCallAddress(Callee, CalleeAM))
3493     return false;
3494 
3495   unsigned CalleeOp = 0;
3496   const GlobalValue *GV = nullptr;
3497   if (CalleeAM.GV != nullptr) {
3498     GV = CalleeAM.GV;
3499   } else if (CalleeAM.Base.Reg != 0) {
3500     CalleeOp = CalleeAM.Base.Reg;
3501   } else
3502     return false;
3503 
3504   // Issue the call.
3505   MachineInstrBuilder MIB;
3506   if (CalleeOp) {
3507     // Register-indirect call.
3508     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3509     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3510       .addReg(CalleeOp);
3511   } else {
3512     // Direct call.
3513     assert(GV && "Not a direct call");
3514     // See if we need any target-specific flags on the GV operand.
3515     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3516 
3517     // This will be a direct call, or an indirect call through memory for
3518     // NonLazyBind calls or dllimport calls.
3519     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3520                     OpFlags == X86II::MO_GOTPCREL ||
3521                     OpFlags == X86II::MO_COFFSTUB;
3522     unsigned CallOpc = NeedLoad
3523                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3524                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3525 
3526     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3527     if (NeedLoad)
3528       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3529     if (Symbol)
3530       MIB.addSym(Symbol, OpFlags);
3531     else
3532       MIB.addGlobalAddress(GV, 0, OpFlags);
3533     if (NeedLoad)
3534       MIB.addReg(0);
3535   }
3536 
3537   // Add a register mask operand representing the call-preserved registers.
3538   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3539   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3540 
3541   // Add an implicit use GOT pointer in EBX.
3542   if (Subtarget->isPICStyleGOT())
3543     MIB.addReg(X86::EBX, RegState::Implicit);
3544 
3545   if (Is64Bit && IsVarArg && !IsWin64)
3546     MIB.addReg(X86::AL, RegState::Implicit);
3547 
3548   // Add implicit physical register uses to the call.
3549   for (auto Reg : OutRegs)
3550     MIB.addReg(Reg, RegState::Implicit);
3551 
3552   // Issue CALLSEQ_END
3553   unsigned NumBytesForCalleeToPop =
3554       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3555                        TM.Options.GuaranteedTailCallOpt)
3556           ? NumBytes // Callee pops everything.
3557           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3558   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3559   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3560     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3561 
3562   // Now handle call return values.
3563   SmallVector<CCValAssign, 16> RVLocs;
3564   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3565                     CLI.RetTy->getContext());
3566   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3567 
3568   // Copy all of the result registers out of their specified physreg.
3569   Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3570   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3571     CCValAssign &VA = RVLocs[i];
3572     EVT CopyVT = VA.getValVT();
3573     unsigned CopyReg = ResultReg + i;
3574     Register SrcReg = VA.getLocReg();
3575 
3576     // If this is x86-64, and we disabled SSE, we can't return FP values
3577     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3578         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3579       report_fatal_error("SSE register return with SSE disabled");
3580     }
3581 
3582     // If we prefer to use the value in xmm registers, copy it out as f80 and
3583     // use a truncate to move it from fp stack reg to xmm reg.
3584     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3585         isScalarFPTypeInSSEReg(VA.getValVT())) {
3586       CopyVT = MVT::f80;
3587       CopyReg = createResultReg(&X86::RFP80RegClass);
3588     }
3589 
3590     // Copy out the result.
3591     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3592             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3593     InRegs.push_back(VA.getLocReg());
3594 
3595     // Round the f80 to the right size, which also moves it to the appropriate
3596     // xmm register. This is accomplished by storing the f80 value in memory
3597     // and then loading it back.
3598     if (CopyVT != VA.getValVT()) {
3599       EVT ResVT = VA.getValVT();
3600       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3601       unsigned MemSize = ResVT.getSizeInBits()/8;
3602       int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3603       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3604                                 TII.get(Opc)), FI)
3605         .addReg(CopyReg);
3606       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3607       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3608                                 TII.get(Opc), ResultReg + i), FI);
3609     }
3610   }
3611 
3612   CLI.ResultReg = ResultReg;
3613   CLI.NumResultRegs = RVLocs.size();
3614   CLI.Call = MIB;
3615 
3616   return true;
3617 }
3618 
3619 bool
3620 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3621   switch (I->getOpcode()) {
3622   default: break;
3623   case Instruction::Load:
3624     return X86SelectLoad(I);
3625   case Instruction::Store:
3626     return X86SelectStore(I);
3627   case Instruction::Ret:
3628     return X86SelectRet(I);
3629   case Instruction::ICmp:
3630   case Instruction::FCmp:
3631     return X86SelectCmp(I);
3632   case Instruction::ZExt:
3633     return X86SelectZExt(I);
3634   case Instruction::SExt:
3635     return X86SelectSExt(I);
3636   case Instruction::Br:
3637     return X86SelectBranch(I);
3638   case Instruction::LShr:
3639   case Instruction::AShr:
3640   case Instruction::Shl:
3641     return X86SelectShift(I);
3642   case Instruction::SDiv:
3643   case Instruction::UDiv:
3644   case Instruction::SRem:
3645   case Instruction::URem:
3646     return X86SelectDivRem(I);
3647   case Instruction::Select:
3648     return X86SelectSelect(I);
3649   case Instruction::Trunc:
3650     return X86SelectTrunc(I);
3651   case Instruction::FPExt:
3652     return X86SelectFPExt(I);
3653   case Instruction::FPTrunc:
3654     return X86SelectFPTrunc(I);
3655   case Instruction::SIToFP:
3656     return X86SelectSIToFP(I);
3657   case Instruction::UIToFP:
3658     return X86SelectUIToFP(I);
3659   case Instruction::IntToPtr: // Deliberate fall-through.
3660   case Instruction::PtrToInt: {
3661     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3662     EVT DstVT = TLI.getValueType(DL, I->getType());
3663     if (DstVT.bitsGT(SrcVT))
3664       return X86SelectZExt(I);
3665     if (DstVT.bitsLT(SrcVT))
3666       return X86SelectTrunc(I);
3667     Register Reg = getRegForValue(I->getOperand(0));
3668     if (Reg == 0) return false;
3669     updateValueMap(I, Reg);
3670     return true;
3671   }
3672   case Instruction::BitCast: {
3673     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3674     if (!Subtarget->hasSSE2())
3675       return false;
3676 
3677     MVT SrcVT, DstVT;
3678     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3679         !isTypeLegal(I->getType(), DstVT))
3680       return false;
3681 
3682     // Only allow vectors that use xmm/ymm/zmm.
3683     if (!SrcVT.isVector() || !DstVT.isVector() ||
3684         SrcVT.getVectorElementType() == MVT::i1 ||
3685         DstVT.getVectorElementType() == MVT::i1)
3686       return false;
3687 
3688     Register Reg = getRegForValue(I->getOperand(0));
3689     if (!Reg)
3690       return false;
3691 
3692     // Emit a reg-reg copy so we don't propagate cached known bits information
3693     // with the wrong VT if we fall out of fast isel after selecting this.
3694     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3695     Register ResultReg = createResultReg(DstClass);
3696     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3697               TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3698 
3699     updateValueMap(I, ResultReg);
3700     return true;
3701   }
3702   }
3703 
3704   return false;
3705 }
3706 
3707 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3708   if (VT > MVT::i64)
3709     return 0;
3710 
3711   uint64_t Imm = CI->getZExtValue();
3712   if (Imm == 0) {
3713     Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3714     switch (VT.SimpleTy) {
3715     default: llvm_unreachable("Unexpected value type");
3716     case MVT::i1:
3717     case MVT::i8:
3718       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Op0IsKill=*/true,
3719                                         X86::sub_8bit);
3720     case MVT::i16:
3721       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Op0IsKill=*/true,
3722                                         X86::sub_16bit);
3723     case MVT::i32:
3724       return SrcReg;
3725     case MVT::i64: {
3726       Register ResultReg = createResultReg(&X86::GR64RegClass);
3727       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3728               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3729         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3730       return ResultReg;
3731     }
3732     }
3733   }
3734 
3735   unsigned Opc = 0;
3736   switch (VT.SimpleTy) {
3737   default: llvm_unreachable("Unexpected value type");
3738   case MVT::i1:
3739     VT = MVT::i8;
3740     LLVM_FALLTHROUGH;
3741   case MVT::i8:  Opc = X86::MOV8ri;  break;
3742   case MVT::i16: Opc = X86::MOV16ri; break;
3743   case MVT::i32: Opc = X86::MOV32ri; break;
3744   case MVT::i64: {
3745     if (isUInt<32>(Imm))
3746       Opc = X86::MOV32ri64;
3747     else if (isInt<32>(Imm))
3748       Opc = X86::MOV64ri32;
3749     else
3750       Opc = X86::MOV64ri;
3751     break;
3752   }
3753   }
3754   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3755 }
3756 
3757 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3758   if (CFP->isNullValue())
3759     return fastMaterializeFloatZero(CFP);
3760 
3761   // Can't handle alternate code models yet.
3762   CodeModel::Model CM = TM.getCodeModel();
3763   if (CM != CodeModel::Small && CM != CodeModel::Large)
3764     return 0;
3765 
3766   // Get opcode and regclass of the output for the given load instruction.
3767   unsigned Opc = 0;
3768   bool HasAVX = Subtarget->hasAVX();
3769   bool HasAVX512 = Subtarget->hasAVX512();
3770   switch (VT.SimpleTy) {
3771   default: return 0;
3772   case MVT::f32:
3773     if (X86ScalarSSEf32)
3774       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
3775             HasAVX    ? X86::VMOVSSrm_alt :
3776                         X86::MOVSSrm_alt;
3777     else
3778       Opc = X86::LD_Fp32m;
3779     break;
3780   case MVT::f64:
3781     if (X86ScalarSSEf64)
3782       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
3783             HasAVX    ? X86::VMOVSDrm_alt :
3784                         X86::MOVSDrm_alt;
3785     else
3786       Opc = X86::LD_Fp64m;
3787     break;
3788   case MVT::f80:
3789     // No f80 support yet.
3790     return 0;
3791   }
3792 
3793   // MachineConstantPool wants an explicit alignment.
3794   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3795 
3796   // x86-32 PIC requires a PIC base register for constant pools.
3797   unsigned PICBase = 0;
3798   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3799   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3800     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3801   else if (OpFlag == X86II::MO_GOTOFF)
3802     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3803   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3804     PICBase = X86::RIP;
3805 
3806   // Create the load from the constant pool.
3807   unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3808   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3809 
3810   // Large code model only applies to 64-bit mode.
3811   if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3812     Register AddrReg = createResultReg(&X86::GR64RegClass);
3813     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3814             AddrReg)
3815       .addConstantPoolIndex(CPI, 0, OpFlag);
3816     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3817                                       TII.get(Opc), ResultReg);
3818     addRegReg(MIB, AddrReg, false, PICBase, false);
3819     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3820         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3821         MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3822     MIB->addMemOperand(*FuncInfo.MF, MMO);
3823     return ResultReg;
3824   }
3825 
3826   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3827                                    TII.get(Opc), ResultReg),
3828                            CPI, PICBase, OpFlag);
3829   return ResultReg;
3830 }
3831 
3832 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3833   // Can't handle alternate code models yet.
3834   if (TM.getCodeModel() != CodeModel::Small)
3835     return 0;
3836 
3837   // Materialize addresses with LEA/MOV instructions.
3838   X86AddressMode AM;
3839   if (X86SelectAddress(GV, AM)) {
3840     // If the expression is just a basereg, then we're done, otherwise we need
3841     // to emit an LEA.
3842     if (AM.BaseType == X86AddressMode::RegBase &&
3843         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3844       return AM.Base.Reg;
3845 
3846     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3847     if (TM.getRelocationModel() == Reloc::Static &&
3848         TLI.getPointerTy(DL) == MVT::i64) {
3849       // The displacement code could be more than 32 bits away so we need to use
3850       // an instruction with a 64 bit immediate
3851       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3852               ResultReg)
3853         .addGlobalAddress(GV);
3854     } else {
3855       unsigned Opc =
3856           TLI.getPointerTy(DL) == MVT::i32
3857               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3858               : X86::LEA64r;
3859       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3860                              TII.get(Opc), ResultReg), AM);
3861     }
3862     return ResultReg;
3863   }
3864   return 0;
3865 }
3866 
3867 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3868   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3869 
3870   // Only handle simple types.
3871   if (!CEVT.isSimple())
3872     return 0;
3873   MVT VT = CEVT.getSimpleVT();
3874 
3875   if (const auto *CI = dyn_cast<ConstantInt>(C))
3876     return X86MaterializeInt(CI, VT);
3877   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3878     return X86MaterializeFP(CFP, VT);
3879   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3880     return X86MaterializeGV(GV, VT);
3881 
3882   return 0;
3883 }
3884 
3885 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3886   // Fail on dynamic allocas. At this point, getRegForValue has already
3887   // checked its CSE maps, so if we're here trying to handle a dynamic
3888   // alloca, we're not going to succeed. X86SelectAddress has a
3889   // check for dynamic allocas, because it's called directly from
3890   // various places, but targetMaterializeAlloca also needs a check
3891   // in order to avoid recursion between getRegForValue,
3892   // X86SelectAddrss, and targetMaterializeAlloca.
3893   if (!FuncInfo.StaticAllocaMap.count(C))
3894     return 0;
3895   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3896 
3897   X86AddressMode AM;
3898   if (!X86SelectAddress(C, AM))
3899     return 0;
3900   unsigned Opc =
3901       TLI.getPointerTy(DL) == MVT::i32
3902           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3903           : X86::LEA64r;
3904   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3905   Register ResultReg = createResultReg(RC);
3906   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3907                          TII.get(Opc), ResultReg), AM);
3908   return ResultReg;
3909 }
3910 
3911 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3912   MVT VT;
3913   if (!isTypeLegal(CF->getType(), VT))
3914     return 0;
3915 
3916   // Get opcode and regclass for the given zero.
3917   bool HasAVX512 = Subtarget->hasAVX512();
3918   unsigned Opc = 0;
3919   switch (VT.SimpleTy) {
3920   default: return 0;
3921   case MVT::f32:
3922     if (X86ScalarSSEf32)
3923       Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3924     else
3925       Opc = X86::LD_Fp032;
3926     break;
3927   case MVT::f64:
3928     if (X86ScalarSSEf64)
3929       Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3930     else
3931       Opc = X86::LD_Fp064;
3932     break;
3933   case MVT::f80:
3934     // No f80 support yet.
3935     return 0;
3936   }
3937 
3938   Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3939   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3940   return ResultReg;
3941 }
3942 
3943 
3944 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3945                                       const LoadInst *LI) {
3946   const Value *Ptr = LI->getPointerOperand();
3947   X86AddressMode AM;
3948   if (!X86SelectAddress(Ptr, AM))
3949     return false;
3950 
3951   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3952 
3953   unsigned Size = DL.getTypeAllocSize(LI->getType());
3954 
3955   SmallVector<MachineOperand, 8> AddrOps;
3956   AM.getFullAddress(AddrOps);
3957 
3958   MachineInstr *Result = XII.foldMemoryOperandImpl(
3959       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
3960       /*AllowCommute=*/true);
3961   if (!Result)
3962     return false;
3963 
3964   // The index register could be in the wrong register class.  Unfortunately,
3965   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3966   // to just look at OpNo + the offset to the index reg.  We actually need to
3967   // scan the instruction to find the index reg and see if its the correct reg
3968   // class.
3969   unsigned OperandNo = 0;
3970   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3971        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3972     MachineOperand &MO = *I;
3973     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3974       continue;
3975     // Found the index reg, now try to rewrite it.
3976     Register IndexReg = constrainOperandRegClass(Result->getDesc(),
3977                                                  MO.getReg(), OperandNo);
3978     if (IndexReg == MO.getReg())
3979       continue;
3980     MO.setReg(IndexReg);
3981   }
3982 
3983   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3984   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3985   MachineBasicBlock::iterator I(MI);
3986   removeDeadCode(I, std::next(I));
3987   return true;
3988 }
3989 
3990 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3991                                         const TargetRegisterClass *RC,
3992                                         unsigned Op0, bool Op0IsKill,
3993                                         unsigned Op1, bool Op1IsKill,
3994                                         unsigned Op2, bool Op2IsKill,
3995                                         unsigned Op3, bool Op3IsKill) {
3996   const MCInstrDesc &II = TII.get(MachineInstOpcode);
3997 
3998   Register ResultReg = createResultReg(RC);
3999   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4000   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4001   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4002   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4003 
4004   if (II.getNumDefs() >= 1)
4005     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
4006         .addReg(Op0, getKillRegState(Op0IsKill))
4007         .addReg(Op1, getKillRegState(Op1IsKill))
4008         .addReg(Op2, getKillRegState(Op2IsKill))
4009         .addReg(Op3, getKillRegState(Op3IsKill));
4010   else {
4011     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
4012         .addReg(Op0, getKillRegState(Op0IsKill))
4013         .addReg(Op1, getKillRegState(Op1IsKill))
4014         .addReg(Op2, getKillRegState(Op2IsKill))
4015         .addReg(Op3, getKillRegState(Op3IsKill));
4016     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4017             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4018   }
4019   return ResultReg;
4020 }
4021 
4022 
4023 namespace llvm {
4024   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4025                                 const TargetLibraryInfo *libInfo) {
4026     return new X86FastISel(funcInfo, libInfo);
4027   }
4028 }
4029