1 //===--- X86DomainReassignment.cpp - Selectively switch register classes---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass attempts to find instruction chains (closures) in one domain, 10 // and convert them to equivalent instructions in a different domain, 11 // if profitable. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86InstrInfo.h" 17 #include "X86Subtarget.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetRegisterInfo.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/Printable.h" 29 #include <bitset> 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "x86-domain-reassignment" 34 35 STATISTIC(NumClosuresConverted, "Number of closures converted by the pass"); 36 37 static cl::opt<bool> DisableX86DomainReassignment( 38 "disable-x86-domain-reassignment", cl::Hidden, 39 cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false)); 40 41 namespace { 42 enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains }; 43 44 static bool isGPR(const TargetRegisterClass *RC) { 45 return X86::GR64RegClass.hasSubClassEq(RC) || 46 X86::GR32RegClass.hasSubClassEq(RC) || 47 X86::GR16RegClass.hasSubClassEq(RC) || 48 X86::GR8RegClass.hasSubClassEq(RC); 49 } 50 51 static bool isMask(const TargetRegisterClass *RC, 52 const TargetRegisterInfo *TRI) { 53 return X86::VK16RegClass.hasSubClassEq(RC); 54 } 55 56 static RegDomain getDomain(const TargetRegisterClass *RC, 57 const TargetRegisterInfo *TRI) { 58 if (isGPR(RC)) 59 return GPRDomain; 60 if (isMask(RC, TRI)) 61 return MaskDomain; 62 return OtherDomain; 63 } 64 65 /// Return a register class equivalent to \p SrcRC, in \p Domain. 66 static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC, 67 RegDomain Domain) { 68 assert(Domain == MaskDomain && "add domain"); 69 if (X86::GR8RegClass.hasSubClassEq(SrcRC)) 70 return &X86::VK8RegClass; 71 if (X86::GR16RegClass.hasSubClassEq(SrcRC)) 72 return &X86::VK16RegClass; 73 if (X86::GR32RegClass.hasSubClassEq(SrcRC)) 74 return &X86::VK32RegClass; 75 if (X86::GR64RegClass.hasSubClassEq(SrcRC)) 76 return &X86::VK64RegClass; 77 llvm_unreachable("add register class"); 78 return nullptr; 79 } 80 81 /// Abstract Instruction Converter class. 82 class InstrConverterBase { 83 protected: 84 unsigned SrcOpcode; 85 86 public: 87 InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {} 88 89 virtual ~InstrConverterBase() = default; 90 91 /// \returns true if \p MI is legal to convert. 92 virtual bool isLegal(const MachineInstr *MI, 93 const TargetInstrInfo *TII) const { 94 assert(MI->getOpcode() == SrcOpcode && 95 "Wrong instruction passed to converter"); 96 return true; 97 } 98 99 /// Applies conversion to \p MI. 100 /// 101 /// \returns true if \p MI is no longer need, and can be deleted. 102 virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, 103 MachineRegisterInfo *MRI) const = 0; 104 105 /// \returns the cost increment incurred by converting \p MI. 106 virtual double getExtraCost(const MachineInstr *MI, 107 MachineRegisterInfo *MRI) const = 0; 108 }; 109 110 /// An Instruction Converter which ignores the given instruction. 111 /// For example, PHI instructions can be safely ignored since only the registers 112 /// need to change. 113 class InstrIgnore : public InstrConverterBase { 114 public: 115 InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {} 116 117 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, 118 MachineRegisterInfo *MRI) const override { 119 assert(isLegal(MI, TII) && "Cannot convert instruction"); 120 return false; 121 } 122 123 double getExtraCost(const MachineInstr *MI, 124 MachineRegisterInfo *MRI) const override { 125 return 0; 126 } 127 }; 128 129 /// An Instruction Converter which replaces an instruction with another. 130 class InstrReplacer : public InstrConverterBase { 131 public: 132 /// Opcode of the destination instruction. 133 unsigned DstOpcode; 134 135 InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode) 136 : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {} 137 138 bool isLegal(const MachineInstr *MI, 139 const TargetInstrInfo *TII) const override { 140 if (!InstrConverterBase::isLegal(MI, TII)) 141 return false; 142 // It's illegal to replace an instruction that implicitly defines a register 143 // with an instruction that doesn't, unless that register dead. 144 for (const auto &MO : MI->implicit_operands()) 145 if (MO.isReg() && MO.isDef() && !MO.isDead() && 146 !TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg())) 147 return false; 148 return true; 149 } 150 151 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, 152 MachineRegisterInfo *MRI) const override { 153 assert(isLegal(MI, TII) && "Cannot convert instruction"); 154 MachineInstrBuilder Bld = 155 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode)); 156 // Transfer explicit operands from original instruction. Implicit operands 157 // are handled by BuildMI. 158 for (auto &Op : MI->explicit_operands()) 159 Bld.add(Op); 160 return true; 161 } 162 163 double getExtraCost(const MachineInstr *MI, 164 MachineRegisterInfo *MRI) const override { 165 // Assuming instructions have the same cost. 166 return 0; 167 } 168 }; 169 170 /// An Instruction Converter which replaces an instruction with another, and 171 /// adds a COPY from the new instruction's destination to the old one's. 172 class InstrReplacerDstCOPY : public InstrConverterBase { 173 public: 174 unsigned DstOpcode; 175 176 InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode) 177 : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {} 178 179 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, 180 MachineRegisterInfo *MRI) const override { 181 assert(isLegal(MI, TII) && "Cannot convert instruction"); 182 MachineBasicBlock *MBB = MI->getParent(); 183 const DebugLoc &DL = MI->getDebugLoc(); 184 185 Register Reg = MRI->createVirtualRegister( 186 TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(), 187 *MBB->getParent())); 188 MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg); 189 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) 190 Bld.add(MO); 191 192 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY)) 193 .add(MI->getOperand(0)) 194 .addReg(Reg); 195 196 return true; 197 } 198 199 double getExtraCost(const MachineInstr *MI, 200 MachineRegisterInfo *MRI) const override { 201 // Assuming instructions have the same cost, and that COPY is in the same 202 // domain so it will be eliminated. 203 return 0; 204 } 205 }; 206 207 /// An Instruction Converter for replacing COPY instructions. 208 class InstrCOPYReplacer : public InstrReplacer { 209 public: 210 RegDomain DstDomain; 211 212 InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode) 213 : InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {} 214 215 bool isLegal(const MachineInstr *MI, 216 const TargetInstrInfo *TII) const override { 217 if (!InstrConverterBase::isLegal(MI, TII)) 218 return false; 219 220 // Don't allow copies to/flow GR8/GR16 physical registers. 221 // FIXME: Is there some better way to support this? 222 Register DstReg = MI->getOperand(0).getReg(); 223 if (DstReg.isPhysical() && (X86::GR8RegClass.contains(DstReg) || 224 X86::GR16RegClass.contains(DstReg))) 225 return false; 226 Register SrcReg = MI->getOperand(1).getReg(); 227 if (SrcReg.isPhysical() && (X86::GR8RegClass.contains(SrcReg) || 228 X86::GR16RegClass.contains(SrcReg))) 229 return false; 230 231 return true; 232 } 233 234 double getExtraCost(const MachineInstr *MI, 235 MachineRegisterInfo *MRI) const override { 236 assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY"); 237 238 for (const auto &MO : MI->operands()) { 239 // Physical registers will not be converted. Assume that converting the 240 // COPY to the destination domain will eventually result in a actual 241 // instruction. 242 if (MO.getReg().isPhysical()) 243 return 1; 244 245 RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()), 246 MRI->getTargetRegisterInfo()); 247 // Converting a cross domain COPY to a same domain COPY should eliminate 248 // an insturction 249 if (OpDomain == DstDomain) 250 return -1; 251 } 252 return 0; 253 } 254 }; 255 256 /// An Instruction Converter which replaces an instruction with a COPY. 257 class InstrReplaceWithCopy : public InstrConverterBase { 258 public: 259 // Source instruction operand Index, to be used as the COPY source. 260 unsigned SrcOpIdx; 261 262 InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx) 263 : InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {} 264 265 bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, 266 MachineRegisterInfo *MRI) const override { 267 assert(isLegal(MI, TII) && "Cannot convert instruction"); 268 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 269 TII->get(TargetOpcode::COPY)) 270 .add({MI->getOperand(0), MI->getOperand(SrcOpIdx)}); 271 return true; 272 } 273 274 double getExtraCost(const MachineInstr *MI, 275 MachineRegisterInfo *MRI) const override { 276 return 0; 277 } 278 }; 279 280 // Key type to be used by the Instruction Converters map. 281 // A converter is identified by <destination domain, source opcode> 282 typedef std::pair<int, unsigned> InstrConverterBaseKeyTy; 283 284 typedef DenseMap<InstrConverterBaseKeyTy, std::unique_ptr<InstrConverterBase>> 285 InstrConverterBaseMap; 286 287 /// A closure is a set of virtual register representing all of the edges in 288 /// the closure, as well as all of the instructions connected by those edges. 289 /// 290 /// A closure may encompass virtual registers in the same register bank that 291 /// have different widths. For example, it may contain 32-bit GPRs as well as 292 /// 64-bit GPRs. 293 /// 294 /// A closure that computes an address (i.e. defines a virtual register that is 295 /// used in a memory operand) excludes the instructions that contain memory 296 /// operands using the address. Such an instruction will be included in a 297 /// different closure that manipulates the loaded or stored value. 298 class Closure { 299 private: 300 /// Virtual registers in the closure. 301 DenseSet<Register> Edges; 302 303 /// Instructions in the closure. 304 SmallVector<MachineInstr *, 8> Instrs; 305 306 /// Domains which this closure can legally be reassigned to. 307 std::bitset<NumDomains> LegalDstDomains; 308 309 /// An ID to uniquely identify this closure, even when it gets 310 /// moved around 311 unsigned ID; 312 313 public: 314 Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) { 315 for (RegDomain D : LegalDstDomainList) 316 LegalDstDomains.set(D); 317 } 318 319 /// Mark this closure as illegal for reassignment to all domains. 320 void setAllIllegal() { LegalDstDomains.reset(); } 321 322 /// \returns true if this closure has domains which are legal to reassign to. 323 bool hasLegalDstDomain() const { return LegalDstDomains.any(); } 324 325 /// \returns true if is legal to reassign this closure to domain \p RD. 326 bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; } 327 328 /// Mark this closure as illegal for reassignment to domain \p RD. 329 void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; } 330 331 bool empty() const { return Edges.empty(); } 332 333 bool insertEdge(Register Reg) { return Edges.insert(Reg).second; } 334 335 using const_edge_iterator = DenseSet<Register>::const_iterator; 336 iterator_range<const_edge_iterator> edges() const { 337 return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end()); 338 } 339 340 void addInstruction(MachineInstr *I) { 341 Instrs.push_back(I); 342 } 343 344 ArrayRef<MachineInstr *> instructions() const { 345 return Instrs; 346 } 347 348 LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const { 349 dbgs() << "Registers: "; 350 bool First = true; 351 for (Register Reg : Edges) { 352 if (!First) 353 dbgs() << ", "; 354 First = false; 355 dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI); 356 } 357 dbgs() << "\n" << "Instructions:"; 358 for (MachineInstr *MI : Instrs) { 359 dbgs() << "\n "; 360 MI->print(dbgs()); 361 } 362 dbgs() << "\n"; 363 } 364 365 unsigned getID() const { 366 return ID; 367 } 368 369 }; 370 371 class X86DomainReassignment : public MachineFunctionPass { 372 const X86Subtarget *STI = nullptr; 373 MachineRegisterInfo *MRI = nullptr; 374 const X86InstrInfo *TII = nullptr; 375 376 /// All edges that are included in some closure 377 BitVector EnclosedEdges{8, false}; 378 379 /// All instructions that are included in some closure. 380 DenseMap<MachineInstr *, unsigned> EnclosedInstrs; 381 382 public: 383 static char ID; 384 385 X86DomainReassignment() : MachineFunctionPass(ID) { } 386 387 bool runOnMachineFunction(MachineFunction &MF) override; 388 389 void getAnalysisUsage(AnalysisUsage &AU) const override { 390 AU.setPreservesCFG(); 391 MachineFunctionPass::getAnalysisUsage(AU); 392 } 393 394 StringRef getPassName() const override { 395 return "X86 Domain Reassignment Pass"; 396 } 397 398 private: 399 /// A map of available Instruction Converters. 400 InstrConverterBaseMap Converters; 401 402 /// Initialize Converters map. 403 void initConverters(); 404 405 /// Starting from \Reg, expand the closure as much as possible. 406 void buildClosure(Closure &, Register Reg); 407 408 /// Enqueue \p Reg to be considered for addition to the closure. 409 void visitRegister(Closure &, Register Reg, RegDomain &Domain, 410 SmallVectorImpl<unsigned> &Worklist); 411 412 /// Reassign the closure to \p Domain. 413 void reassign(const Closure &C, RegDomain Domain) const; 414 415 /// Add \p MI to the closure. 416 void encloseInstr(Closure &C, MachineInstr *MI); 417 418 /// /returns true if it is profitable to reassign the closure to \p Domain. 419 bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const; 420 421 /// Calculate the total cost of reassigning the closure to \p Domain. 422 double calculateCost(const Closure &C, RegDomain Domain) const; 423 }; 424 425 char X86DomainReassignment::ID = 0; 426 427 } // End anonymous namespace. 428 429 void X86DomainReassignment::visitRegister(Closure &C, Register Reg, 430 RegDomain &Domain, 431 SmallVectorImpl<unsigned> &Worklist) { 432 if (!Reg.isVirtual()) 433 return; 434 435 if (EnclosedEdges.test(Register::virtReg2Index(Reg))) 436 return; 437 438 if (!MRI->hasOneDef(Reg)) 439 return; 440 441 RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo()); 442 // First edge in closure sets the domain. 443 if (Domain == NoDomain) 444 Domain = RD; 445 446 if (Domain != RD) 447 return; 448 449 Worklist.push_back(Reg); 450 } 451 452 void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) { 453 auto I = EnclosedInstrs.find(MI); 454 if (I != EnclosedInstrs.end()) { 455 if (I->second != C.getID()) 456 // Instruction already belongs to another closure, avoid conflicts between 457 // closure and mark this closure as illegal. 458 C.setAllIllegal(); 459 return; 460 } 461 462 EnclosedInstrs[MI] = C.getID(); 463 C.addInstruction(MI); 464 465 // Mark closure as illegal for reassignment to domains, if there is no 466 // converter for the instruction or if the converter cannot convert the 467 // instruction. 468 for (int i = 0; i != NumDomains; ++i) { 469 if (C.isLegal((RegDomain)i)) { 470 auto I = Converters.find({i, MI->getOpcode()}); 471 if (I == Converters.end() || !I->second->isLegal(MI, TII)) 472 C.setIllegal((RegDomain)i); 473 } 474 } 475 } 476 477 double X86DomainReassignment::calculateCost(const Closure &C, 478 RegDomain DstDomain) const { 479 assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure"); 480 481 double Cost = 0.0; 482 for (auto *MI : C.instructions()) 483 Cost += Converters.find({DstDomain, MI->getOpcode()}) 484 ->second->getExtraCost(MI, MRI); 485 return Cost; 486 } 487 488 bool X86DomainReassignment::isReassignmentProfitable(const Closure &C, 489 RegDomain Domain) const { 490 return calculateCost(C, Domain) < 0.0; 491 } 492 493 void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const { 494 assert(C.isLegal(Domain) && "Cannot convert illegal closure"); 495 496 // Iterate all instructions in the closure, convert each one using the 497 // appropriate converter. 498 SmallVector<MachineInstr *, 8> ToErase; 499 for (auto *MI : C.instructions()) 500 if (Converters.find({Domain, MI->getOpcode()}) 501 ->second->convertInstr(MI, TII, MRI)) 502 ToErase.push_back(MI); 503 504 // Iterate all registers in the closure, replace them with registers in the 505 // destination domain. 506 for (Register Reg : C.edges()) { 507 MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain)); 508 for (auto &MO : MRI->use_operands(Reg)) { 509 if (MO.isReg()) 510 // Remove all subregister references as they are not valid in the 511 // destination domain. 512 MO.setSubReg(0); 513 } 514 } 515 516 for (auto *MI : ToErase) 517 MI->eraseFromParent(); 518 } 519 520 /// \returns true when \p Reg is used as part of an address calculation in \p 521 /// MI. 522 static bool usedAsAddr(const MachineInstr &MI, Register Reg, 523 const TargetInstrInfo *TII) { 524 if (!MI.mayLoadOrStore()) 525 return false; 526 527 const MCInstrDesc &Desc = TII->get(MI.getOpcode()); 528 int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags); 529 if (MemOpStart == -1) 530 return false; 531 532 MemOpStart += X86II::getOperandBias(Desc); 533 for (unsigned MemOpIdx = MemOpStart, 534 MemOpEnd = MemOpStart + X86::AddrNumOperands; 535 MemOpIdx < MemOpEnd; ++MemOpIdx) { 536 const MachineOperand &Op = MI.getOperand(MemOpIdx); 537 if (Op.isReg() && Op.getReg() == Reg) 538 return true; 539 } 540 return false; 541 } 542 543 void X86DomainReassignment::buildClosure(Closure &C, Register Reg) { 544 SmallVector<unsigned, 4> Worklist; 545 RegDomain Domain = NoDomain; 546 visitRegister(C, Reg, Domain, Worklist); 547 while (!Worklist.empty()) { 548 unsigned CurReg = Worklist.pop_back_val(); 549 550 // Register already in this closure. 551 if (!C.insertEdge(CurReg)) 552 continue; 553 EnclosedEdges.set(Register::virtReg2Index(Reg)); 554 555 MachineInstr *DefMI = MRI->getVRegDef(CurReg); 556 encloseInstr(C, DefMI); 557 558 // Add register used by the defining MI to the worklist. 559 // Do not add registers which are used in address calculation, they will be 560 // added to a different closure. 561 int OpEnd = DefMI->getNumOperands(); 562 const MCInstrDesc &Desc = DefMI->getDesc(); 563 int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags); 564 if (MemOp != -1) 565 MemOp += X86II::getOperandBias(Desc); 566 for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) { 567 if (OpIdx == MemOp) { 568 // skip address calculation. 569 OpIdx += (X86::AddrNumOperands - 1); 570 continue; 571 } 572 auto &Op = DefMI->getOperand(OpIdx); 573 if (!Op.isReg() || !Op.isUse()) 574 continue; 575 visitRegister(C, Op.getReg(), Domain, Worklist); 576 } 577 578 // Expand closure through register uses. 579 for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) { 580 // We would like to avoid converting closures which calculare addresses, 581 // as this should remain in GPRs. 582 if (usedAsAddr(UseMI, CurReg, TII)) { 583 C.setAllIllegal(); 584 continue; 585 } 586 encloseInstr(C, &UseMI); 587 588 for (auto &DefOp : UseMI.defs()) { 589 if (!DefOp.isReg()) 590 continue; 591 592 Register DefReg = DefOp.getReg(); 593 if (!DefReg.isVirtual()) { 594 C.setAllIllegal(); 595 continue; 596 } 597 visitRegister(C, DefReg, Domain, Worklist); 598 } 599 } 600 } 601 } 602 603 void X86DomainReassignment::initConverters() { 604 Converters[{MaskDomain, TargetOpcode::PHI}] = 605 std::make_unique<InstrIgnore>(TargetOpcode::PHI); 606 607 Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] = 608 std::make_unique<InstrIgnore>(TargetOpcode::IMPLICIT_DEF); 609 610 Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] = 611 std::make_unique<InstrReplaceWithCopy>(TargetOpcode::INSERT_SUBREG, 2); 612 613 Converters[{MaskDomain, TargetOpcode::COPY}] = 614 std::make_unique<InstrCOPYReplacer>(TargetOpcode::COPY, MaskDomain, 615 TargetOpcode::COPY); 616 617 auto createReplacerDstCOPY = [&](unsigned From, unsigned To) { 618 Converters[{MaskDomain, From}] = 619 std::make_unique<InstrReplacerDstCOPY>(From, To); 620 }; 621 622 bool HasEGPR = STI->hasEGPR(); 623 createReplacerDstCOPY(X86::MOVZX32rm16, 624 HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm); 625 createReplacerDstCOPY(X86::MOVZX64rm16, 626 HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm); 627 628 createReplacerDstCOPY(X86::MOVZX32rr16, 629 HasEGPR ? X86::KMOVWkk_EVEX : X86::KMOVWkk); 630 createReplacerDstCOPY(X86::MOVZX64rr16, 631 HasEGPR ? X86::KMOVWkk_EVEX : X86::KMOVWkk); 632 633 if (STI->hasDQI()) { 634 createReplacerDstCOPY(X86::MOVZX16rm8, 635 HasEGPR ? X86::KMOVBkm_EVEX : X86::KMOVBkm); 636 createReplacerDstCOPY(X86::MOVZX32rm8, 637 HasEGPR ? X86::KMOVBkm_EVEX : X86::KMOVBkm); 638 createReplacerDstCOPY(X86::MOVZX64rm8, 639 HasEGPR ? X86::KMOVBkm_EVEX : X86::KMOVBkm); 640 641 createReplacerDstCOPY(X86::MOVZX16rr8, 642 HasEGPR ? X86::KMOVBkk_EVEX : X86::KMOVBkk); 643 createReplacerDstCOPY(X86::MOVZX32rr8, 644 HasEGPR ? X86::KMOVBkk_EVEX : X86::KMOVBkk); 645 createReplacerDstCOPY(X86::MOVZX64rr8, 646 HasEGPR ? X86::KMOVBkk_EVEX : X86::KMOVBkk); 647 } 648 649 auto createReplacer = [&](unsigned From, unsigned To) { 650 Converters[{MaskDomain, From}] = std::make_unique<InstrReplacer>(From, To); 651 }; 652 653 createReplacer(X86::MOV16rm, HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm); 654 createReplacer(X86::MOV16mr, HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk); 655 createReplacer(X86::MOV16rr, HasEGPR ? X86::KMOVWkk_EVEX : X86::KMOVWkk); 656 createReplacer(X86::SHR16ri, X86::KSHIFTRWri); 657 createReplacer(X86::SHL16ri, X86::KSHIFTLWri); 658 createReplacer(X86::NOT16r, X86::KNOTWrr); 659 createReplacer(X86::OR16rr, X86::KORWrr); 660 createReplacer(X86::AND16rr, X86::KANDWrr); 661 createReplacer(X86::XOR16rr, X86::KXORWrr); 662 663 if (STI->hasBWI()) { 664 createReplacer(X86::MOV32rm, HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm); 665 createReplacer(X86::MOV64rm, HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm); 666 667 createReplacer(X86::MOV32mr, HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk); 668 createReplacer(X86::MOV64mr, HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk); 669 670 createReplacer(X86::MOV32rr, HasEGPR ? X86::KMOVDkk_EVEX : X86::KMOVDkk); 671 createReplacer(X86::MOV64rr, HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk); 672 673 createReplacer(X86::SHR32ri, X86::KSHIFTRDri); 674 createReplacer(X86::SHR64ri, X86::KSHIFTRQri); 675 676 createReplacer(X86::SHL32ri, X86::KSHIFTLDri); 677 createReplacer(X86::SHL64ri, X86::KSHIFTLQri); 678 679 createReplacer(X86::ADD32rr, X86::KADDDrr); 680 createReplacer(X86::ADD64rr, X86::KADDQrr); 681 682 createReplacer(X86::NOT32r, X86::KNOTDrr); 683 createReplacer(X86::NOT64r, X86::KNOTQrr); 684 685 createReplacer(X86::OR32rr, X86::KORDrr); 686 createReplacer(X86::OR64rr, X86::KORQrr); 687 688 createReplacer(X86::AND32rr, X86::KANDDrr); 689 createReplacer(X86::AND64rr, X86::KANDQrr); 690 691 createReplacer(X86::ANDN32rr, X86::KANDNDrr); 692 createReplacer(X86::ANDN64rr, X86::KANDNQrr); 693 694 createReplacer(X86::XOR32rr, X86::KXORDrr); 695 createReplacer(X86::XOR64rr, X86::KXORQrr); 696 697 // TODO: KTEST is not a replacement for TEST due to flag differences. Need 698 // to prove only Z flag is used. 699 //createReplacer(X86::TEST32rr, X86::KTESTDrr); 700 //createReplacer(X86::TEST64rr, X86::KTESTQrr); 701 } 702 703 if (STI->hasDQI()) { 704 createReplacer(X86::ADD8rr, X86::KADDBrr); 705 createReplacer(X86::ADD16rr, X86::KADDWrr); 706 707 createReplacer(X86::AND8rr, X86::KANDBrr); 708 709 createReplacer(X86::MOV8rm, HasEGPR ? X86::KMOVBkm_EVEX : X86::KMOVBkm); 710 createReplacer(X86::MOV8mr, HasEGPR ? X86::KMOVBmk_EVEX : X86::KMOVBmk); 711 createReplacer(X86::MOV8rr, HasEGPR ? X86::KMOVBkk_EVEX : X86::KMOVBkk); 712 713 createReplacer(X86::NOT8r, X86::KNOTBrr); 714 715 createReplacer(X86::OR8rr, X86::KORBrr); 716 717 createReplacer(X86::SHR8ri, X86::KSHIFTRBri); 718 createReplacer(X86::SHL8ri, X86::KSHIFTLBri); 719 720 // TODO: KTEST is not a replacement for TEST due to flag differences. Need 721 // to prove only Z flag is used. 722 //createReplacer(X86::TEST8rr, X86::KTESTBrr); 723 //createReplacer(X86::TEST16rr, X86::KTESTWrr); 724 725 createReplacer(X86::XOR8rr, X86::KXORBrr); 726 } 727 } 728 729 bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) { 730 if (skipFunction(MF.getFunction())) 731 return false; 732 if (DisableX86DomainReassignment) 733 return false; 734 735 LLVM_DEBUG( 736 dbgs() << "***** Machine Function before Domain Reassignment *****\n"); 737 LLVM_DEBUG(MF.print(dbgs())); 738 739 STI = &MF.getSubtarget<X86Subtarget>(); 740 // GPR->K is the only transformation currently supported, bail out early if no 741 // AVX512. 742 // TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and 743 // VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register 744 // coalescer doesn't clean it up and we generate a spill we will crash. 745 if (!STI->hasAVX512() || !STI->hasBWI()) 746 return false; 747 748 MRI = &MF.getRegInfo(); 749 assert(MRI->isSSA() && "Expected MIR to be in SSA form"); 750 751 TII = STI->getInstrInfo(); 752 initConverters(); 753 bool Changed = false; 754 755 EnclosedEdges.clear(); 756 EnclosedEdges.resize(MRI->getNumVirtRegs()); 757 EnclosedInstrs.clear(); 758 759 std::vector<Closure> Closures; 760 761 // Go over all virtual registers and calculate a closure. 762 unsigned ClosureID = 0; 763 for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) { 764 Register Reg = Register::index2VirtReg(Idx); 765 766 // GPR only current source domain supported. 767 if (!isGPR(MRI->getRegClass(Reg))) 768 continue; 769 770 // Register already in closure. 771 if (EnclosedEdges.test(Idx)) 772 continue; 773 774 // Calculate closure starting with Reg. 775 Closure C(ClosureID++, {MaskDomain}); 776 buildClosure(C, Reg); 777 778 // Collect all closures that can potentially be converted. 779 if (!C.empty() && C.isLegal(MaskDomain)) 780 Closures.push_back(std::move(C)); 781 } 782 783 for (Closure &C : Closures) { 784 LLVM_DEBUG(C.dump(MRI)); 785 if (isReassignmentProfitable(C, MaskDomain)) { 786 reassign(C, MaskDomain); 787 ++NumClosuresConverted; 788 Changed = true; 789 } 790 } 791 792 LLVM_DEBUG( 793 dbgs() << "***** Machine Function after Domain Reassignment *****\n"); 794 LLVM_DEBUG(MF.print(dbgs())); 795 796 return Changed; 797 } 798 799 INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment", 800 "X86 Domain Reassignment Pass", false, false) 801 802 /// Returns an instance of the Domain Reassignment pass. 803 FunctionPass *llvm::createX86DomainReassignmentPass() { 804 return new X86DomainReassignment(); 805 } 806