xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP4:
154     dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP5:
157     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   case MAP6:
160     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161     break;
162   case MAP7:
163     dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164     break;
165   }
166 
167   switch (dec->modrm_type) {
168   default:
169     llvm_unreachable("Corrupt table!  Unknown modrm_type");
170     return 0;
171   case MODRM_ONEENTRY:
172     return modRMTable[dec->instructionIDs];
173   case MODRM_SPLITRM:
174     if (modFromModRM(modRM) == 0x3)
175       return modRMTable[dec->instructionIDs + 1];
176     return modRMTable[dec->instructionIDs];
177   case MODRM_SPLITREG:
178     if (modFromModRM(modRM) == 0x3)
179       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181   case MODRM_SPLITMISC:
182     if (modFromModRM(modRM) == 0x3)
183       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185   case MODRM_FULL:
186     return modRMTable[dec->instructionIDs + modRM];
187   }
188 }
189 
190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191   uint64_t offset = insn->readerCursor - insn->startLocation;
192   if (offset >= insn->bytes.size())
193     return true;
194   byte = insn->bytes[offset];
195   return false;
196 }
197 
198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199   auto r = insn->bytes;
200   uint64_t offset = insn->readerCursor - insn->startLocation;
201   if (offset + sizeof(T) > r.size())
202     return true;
203   ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204   insn->readerCursor += sizeof(T);
205   return false;
206 }
207 
208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210 }
211 
212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213   return insn->mode == MODE_64BIT && prefix == 0xd5;
214 }
215 
216 // Consumes all of an instruction's prefix bytes, and marks the
217 // instruction as having them.  Also sets the instruction's default operand,
218 // address, and other relevant data sizes to report operands correctly.
219 //
220 // insn must not be empty.
221 static int readPrefixes(struct InternalInstruction *insn) {
222   bool isPrefix = true;
223   uint8_t byte = 0;
224   uint8_t nextByte;
225 
226   LLVM_DEBUG(dbgs() << "readPrefixes()");
227 
228   while (isPrefix) {
229     // If we fail reading prefixes, just stop here and let the opcode reader
230     // deal with it.
231     if (consume(insn, byte))
232       break;
233 
234     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235     // break and let it be disassembled as a normal "instruction".
236     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237       break;
238 
239     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241       // met:
242       // - it is followed by a LOCK (0xf0) prefix
243       // - it is followed by an xchg instruction
244       // then it should be disassembled as a xacquire/xrelease not repne/rep.
245       if (((nextByte == 0xf0) ||
246            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247         insn->xAcquireRelease = true;
248         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249           break;
250       }
251       // Also if the byte is 0xf3, and the following condition is met:
252       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254       // then it should be disassembled as an xrelease not rep.
255       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256                            nextByte == 0xc6 || nextByte == 0xc7)) {
257         insn->xAcquireRelease = true;
258         break;
259       }
260       if (isREX(insn, nextByte)) {
261         uint8_t nnextByte;
262         // Go to REX prefix after the current one
263         if (consume(insn, nnextByte))
264           return -1;
265         // We should be able to read next byte after REX prefix
266         if (peek(insn, nnextByte))
267           return -1;
268         --insn->readerCursor;
269       }
270     }
271 
272     switch (byte) {
273     case 0xf0: // LOCK
274       insn->hasLockPrefix = true;
275       break;
276     case 0xf2: // REPNE/REPNZ
277     case 0xf3: { // REP or REPE/REPZ
278       uint8_t nextByte;
279       if (peek(insn, nextByte))
280         break;
281       // TODO:
282       //  1. There could be several 0x66
283       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284       //      it's not mandatory prefix
285       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286       //     0x0f exactly after it to be mandatory prefix
287       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
288         // The last of 0xf2 /0xf3 is mandatory prefix
289         insn->mandatoryPrefix = byte;
290       insn->repeatPrefix = byte;
291       break;
292     }
293     case 0x2e: // CS segment override -OR- Branch not taken
294       insn->segmentOverride = SEG_OVERRIDE_CS;
295       break;
296     case 0x36: // SS segment override -OR- Branch taken
297       insn->segmentOverride = SEG_OVERRIDE_SS;
298       break;
299     case 0x3e: // DS segment override
300       insn->segmentOverride = SEG_OVERRIDE_DS;
301       break;
302     case 0x26: // ES segment override
303       insn->segmentOverride = SEG_OVERRIDE_ES;
304       break;
305     case 0x64: // FS segment override
306       insn->segmentOverride = SEG_OVERRIDE_FS;
307       break;
308     case 0x65: // GS segment override
309       insn->segmentOverride = SEG_OVERRIDE_GS;
310       break;
311     case 0x66: { // Operand-size override {
312       uint8_t nextByte;
313       insn->hasOpSize = true;
314       if (peek(insn, nextByte))
315         break;
316       // 0x66 can't overwrite existing mandatory prefix and should be ignored
317       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
318         insn->mandatoryPrefix = byte;
319       break;
320     }
321     case 0x67: // Address-size override
322       insn->hasAdSize = true;
323       break;
324     default: // Not a prefix byte
325       isPrefix = false;
326       break;
327     }
328 
329     if (isPrefix)
330       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
331   }
332 
333   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
334 
335   if (byte == 0x62) {
336     uint8_t byte1, byte2;
337     if (consume(insn, byte1)) {
338       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
339       return -1;
340     }
341 
342     if (peek(insn, byte2)) {
343       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
344       return -1;
345     }
346 
347     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
348       insn->vectorExtensionType = TYPE_EVEX;
349     } else {
350       --insn->readerCursor; // unconsume byte1
351       --insn->readerCursor; // unconsume byte
352     }
353 
354     if (insn->vectorExtensionType == TYPE_EVEX) {
355       insn->vectorExtensionPrefix[0] = byte;
356       insn->vectorExtensionPrefix[1] = byte1;
357       if (consume(insn, insn->vectorExtensionPrefix[2])) {
358         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
359         return -1;
360       }
361       if (consume(insn, insn->vectorExtensionPrefix[3])) {
362         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
363         return -1;
364       }
365 
366       if (insn->mode == MODE_64BIT) {
367         // We simulate the REX prefix for simplicity's sake
368         insn->rexPrefix = 0x40 |
369                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
370                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
371                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
372                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
373 
374         // We simulate the REX2 prefix for simplicity's sake
375         insn->rex2ExtensionPrefix[1] =
376             (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
377             (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
378             (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
379       }
380 
381       LLVM_DEBUG(
382           dbgs() << format(
383               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
384               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
385               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
386     }
387   } else if (byte == 0xc4) {
388     uint8_t byte1;
389     if (peek(insn, byte1)) {
390       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
391       return -1;
392     }
393 
394     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
395       insn->vectorExtensionType = TYPE_VEX_3B;
396     else
397       --insn->readerCursor;
398 
399     if (insn->vectorExtensionType == TYPE_VEX_3B) {
400       insn->vectorExtensionPrefix[0] = byte;
401       consume(insn, insn->vectorExtensionPrefix[1]);
402       consume(insn, insn->vectorExtensionPrefix[2]);
403 
404       // We simulate the REX prefix for simplicity's sake
405 
406       if (insn->mode == MODE_64BIT)
407         insn->rexPrefix = 0x40 |
408                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
409                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
410                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
411                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
412 
413       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
414                                   insn->vectorExtensionPrefix[0],
415                                   insn->vectorExtensionPrefix[1],
416                                   insn->vectorExtensionPrefix[2]));
417     }
418   } else if (byte == 0xc5) {
419     uint8_t byte1;
420     if (peek(insn, byte1)) {
421       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
422       return -1;
423     }
424 
425     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
426       insn->vectorExtensionType = TYPE_VEX_2B;
427     else
428       --insn->readerCursor;
429 
430     if (insn->vectorExtensionType == TYPE_VEX_2B) {
431       insn->vectorExtensionPrefix[0] = byte;
432       consume(insn, insn->vectorExtensionPrefix[1]);
433 
434       if (insn->mode == MODE_64BIT)
435         insn->rexPrefix =
436             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
437 
438       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
439       default:
440         break;
441       case VEX_PREFIX_66:
442         insn->hasOpSize = true;
443         break;
444       }
445 
446       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
447                                   insn->vectorExtensionPrefix[0],
448                                   insn->vectorExtensionPrefix[1]));
449     }
450   } else if (byte == 0x8f) {
451     uint8_t byte1;
452     if (peek(insn, byte1)) {
453       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
454       return -1;
455     }
456 
457     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
458       insn->vectorExtensionType = TYPE_XOP;
459     else
460       --insn->readerCursor;
461 
462     if (insn->vectorExtensionType == TYPE_XOP) {
463       insn->vectorExtensionPrefix[0] = byte;
464       consume(insn, insn->vectorExtensionPrefix[1]);
465       consume(insn, insn->vectorExtensionPrefix[2]);
466 
467       // We simulate the REX prefix for simplicity's sake
468 
469       if (insn->mode == MODE_64BIT)
470         insn->rexPrefix = 0x40 |
471                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
472                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
473                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
474                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
475 
476       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
477       default:
478         break;
479       case VEX_PREFIX_66:
480         insn->hasOpSize = true;
481         break;
482       }
483 
484       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
485                                   insn->vectorExtensionPrefix[0],
486                                   insn->vectorExtensionPrefix[1],
487                                   insn->vectorExtensionPrefix[2]));
488     }
489   } else if (isREX2(insn, byte)) {
490     uint8_t byte1;
491     if (peek(insn, byte1)) {
492       LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
493       return -1;
494     }
495     insn->rex2ExtensionPrefix[0] = byte;
496     consume(insn, insn->rex2ExtensionPrefix[1]);
497 
498     // We simulate the REX prefix for simplicity's sake
499     insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
500                       (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
501                       (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
502                       (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
503     LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
504                                 insn->rex2ExtensionPrefix[0],
505                                 insn->rex2ExtensionPrefix[1]));
506   } else if (isREX(insn, byte)) {
507     if (peek(insn, nextByte))
508       return -1;
509     insn->rexPrefix = byte;
510     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
511   } else
512     --insn->readerCursor;
513 
514   if (insn->mode == MODE_16BIT) {
515     insn->registerSize = (insn->hasOpSize ? 4 : 2);
516     insn->addressSize = (insn->hasAdSize ? 4 : 2);
517     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
518     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
519   } else if (insn->mode == MODE_32BIT) {
520     insn->registerSize = (insn->hasOpSize ? 2 : 4);
521     insn->addressSize = (insn->hasAdSize ? 2 : 4);
522     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
523     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
524   } else if (insn->mode == MODE_64BIT) {
525     insn->displacementSize = 4;
526     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
527       insn->registerSize = 8;
528       insn->addressSize = (insn->hasAdSize ? 4 : 8);
529       insn->immediateSize = 4;
530       insn->hasOpSize = false;
531     } else {
532       insn->registerSize = (insn->hasOpSize ? 2 : 4);
533       insn->addressSize = (insn->hasAdSize ? 4 : 8);
534       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
535     }
536   }
537 
538   return 0;
539 }
540 
541 // Consumes the SIB byte to determine addressing information.
542 static int readSIB(struct InternalInstruction *insn) {
543   SIBBase sibBaseBase = SIB_BASE_NONE;
544   uint8_t index, base;
545 
546   LLVM_DEBUG(dbgs() << "readSIB()");
547   switch (insn->addressSize) {
548   case 2:
549   default:
550     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
551   case 4:
552     insn->sibIndexBase = SIB_INDEX_EAX;
553     sibBaseBase = SIB_BASE_EAX;
554     break;
555   case 8:
556     insn->sibIndexBase = SIB_INDEX_RAX;
557     sibBaseBase = SIB_BASE_RAX;
558     break;
559   }
560 
561   if (consume(insn, insn->sib))
562     return -1;
563 
564   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
565           (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
566 
567   if (index == 0x4) {
568     insn->sibIndex = SIB_INDEX_NONE;
569   } else {
570     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
571   }
572 
573   insn->sibScale = 1 << scaleFromSIB(insn->sib);
574 
575   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
576          (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
577 
578   switch (base) {
579   case 0x5:
580   case 0xd:
581     switch (modFromModRM(insn->modRM)) {
582     case 0x0:
583       insn->eaDisplacement = EA_DISP_32;
584       insn->sibBase = SIB_BASE_NONE;
585       break;
586     case 0x1:
587       insn->eaDisplacement = EA_DISP_8;
588       insn->sibBase = (SIBBase)(sibBaseBase + base);
589       break;
590     case 0x2:
591       insn->eaDisplacement = EA_DISP_32;
592       insn->sibBase = (SIBBase)(sibBaseBase + base);
593       break;
594     default:
595       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
596     }
597     break;
598   default:
599     insn->sibBase = (SIBBase)(sibBaseBase + base);
600     break;
601   }
602 
603   return 0;
604 }
605 
606 static int readDisplacement(struct InternalInstruction *insn) {
607   int8_t d8;
608   int16_t d16;
609   int32_t d32;
610   LLVM_DEBUG(dbgs() << "readDisplacement()");
611 
612   insn->displacementOffset = insn->readerCursor - insn->startLocation;
613   switch (insn->eaDisplacement) {
614   case EA_DISP_NONE:
615     break;
616   case EA_DISP_8:
617     if (consume(insn, d8))
618       return -1;
619     insn->displacement = d8;
620     break;
621   case EA_DISP_16:
622     if (consume(insn, d16))
623       return -1;
624     insn->displacement = d16;
625     break;
626   case EA_DISP_32:
627     if (consume(insn, d32))
628       return -1;
629     insn->displacement = d32;
630     break;
631   }
632 
633   return 0;
634 }
635 
636 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
637 static int readModRM(struct InternalInstruction *insn) {
638   uint8_t mod, rm, reg;
639   LLVM_DEBUG(dbgs() << "readModRM()");
640 
641   if (insn->consumedModRM)
642     return 0;
643 
644   if (consume(insn, insn->modRM))
645     return -1;
646   insn->consumedModRM = true;
647 
648   mod = modFromModRM(insn->modRM);
649   rm = rmFromModRM(insn->modRM);
650   reg = regFromModRM(insn->modRM);
651 
652   // This goes by insn->registerSize to pick the correct register, which messes
653   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
654   // fixupReg().
655   switch (insn->registerSize) {
656   case 2:
657     insn->regBase = MODRM_REG_AX;
658     insn->eaRegBase = EA_REG_AX;
659     break;
660   case 4:
661     insn->regBase = MODRM_REG_EAX;
662     insn->eaRegBase = EA_REG_EAX;
663     break;
664   case 8:
665     insn->regBase = MODRM_REG_RAX;
666     insn->eaRegBase = EA_REG_RAX;
667     break;
668   }
669 
670   reg |= (rFromREX(insn->rexPrefix) << 3) |
671          (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
672   rm |= (bFromREX(insn->rexPrefix) << 3) |
673         (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
674 
675   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
676     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
677 
678   insn->reg = (Reg)(insn->regBase + reg);
679 
680   switch (insn->addressSize) {
681   case 2: {
682     EABase eaBaseBase = EA_BASE_BX_SI;
683 
684     switch (mod) {
685     case 0x0:
686       if (rm == 0x6) {
687         insn->eaBase = EA_BASE_NONE;
688         insn->eaDisplacement = EA_DISP_16;
689         if (readDisplacement(insn))
690           return -1;
691       } else {
692         insn->eaBase = (EABase)(eaBaseBase + rm);
693         insn->eaDisplacement = EA_DISP_NONE;
694       }
695       break;
696     case 0x1:
697       insn->eaBase = (EABase)(eaBaseBase + rm);
698       insn->eaDisplacement = EA_DISP_8;
699       insn->displacementSize = 1;
700       if (readDisplacement(insn))
701         return -1;
702       break;
703     case 0x2:
704       insn->eaBase = (EABase)(eaBaseBase + rm);
705       insn->eaDisplacement = EA_DISP_16;
706       if (readDisplacement(insn))
707         return -1;
708       break;
709     case 0x3:
710       insn->eaBase = (EABase)(insn->eaRegBase + rm);
711       if (readDisplacement(insn))
712         return -1;
713       break;
714     }
715     break;
716   }
717   case 4:
718   case 8: {
719     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
720 
721     switch (mod) {
722     case 0x0:
723       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
724       // In determining whether RIP-relative mode is used (rm=5),
725       // or whether a SIB byte is present (rm=4),
726       // the extension bits (REX.b and EVEX.x) are ignored.
727       switch (rm & 7) {
728       case 0x4: // SIB byte is present
729         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
730         if (readSIB(insn) || readDisplacement(insn))
731           return -1;
732         break;
733       case 0x5: // RIP-relative
734         insn->eaBase = EA_BASE_NONE;
735         insn->eaDisplacement = EA_DISP_32;
736         if (readDisplacement(insn))
737           return -1;
738         break;
739       default:
740         insn->eaBase = (EABase)(eaBaseBase + rm);
741         break;
742       }
743       break;
744     case 0x1:
745       insn->displacementSize = 1;
746       [[fallthrough]];
747     case 0x2:
748       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
749       switch (rm & 7) {
750       case 0x4: // SIB byte is present
751         insn->eaBase = EA_BASE_sib;
752         if (readSIB(insn) || readDisplacement(insn))
753           return -1;
754         break;
755       default:
756         insn->eaBase = (EABase)(eaBaseBase + rm);
757         if (readDisplacement(insn))
758           return -1;
759         break;
760       }
761       break;
762     case 0x3:
763       insn->eaDisplacement = EA_DISP_NONE;
764       insn->eaBase = (EABase)(insn->eaRegBase + rm);
765       break;
766     }
767     break;
768   }
769   } // switch (insn->addressSize)
770 
771   return 0;
772 }
773 
774 #define GENERIC_FIXUP_FUNC(name, base, prefix)                                 \
775   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
776                        uint8_t index, uint8_t *valid) {                        \
777     *valid = 1;                                                                \
778     switch (type) {                                                            \
779     default:                                                                   \
780       debug("Unhandled register type");                                        \
781       *valid = 0;                                                              \
782       return 0;                                                                \
783     case TYPE_Rv:                                                              \
784       return base + index;                                                     \
785     case TYPE_R8:                                                              \
786       if (insn->rexPrefix && index >= 4 && index <= 7)                         \
787         return prefix##_SPL + (index - 4);                                     \
788       else                                                                     \
789         return prefix##_AL + index;                                            \
790     case TYPE_R16:                                                             \
791       return prefix##_AX + index;                                              \
792     case TYPE_R32:                                                             \
793       return prefix##_EAX + index;                                             \
794     case TYPE_R64:                                                             \
795       return prefix##_RAX + index;                                             \
796     case TYPE_ZMM:                                                             \
797       return prefix##_ZMM0 + index;                                            \
798     case TYPE_YMM:                                                             \
799       return prefix##_YMM0 + index;                                            \
800     case TYPE_XMM:                                                             \
801       return prefix##_XMM0 + index;                                            \
802     case TYPE_TMM:                                                             \
803       if (index > 7)                                                           \
804         *valid = 0;                                                            \
805       return prefix##_TMM0 + index;                                            \
806     case TYPE_VK:                                                              \
807       index &= 0xf;                                                            \
808       if (index > 7)                                                           \
809         *valid = 0;                                                            \
810       return prefix##_K0 + index;                                              \
811     case TYPE_VK_PAIR:                                                         \
812       if (index > 7)                                                           \
813         *valid = 0;                                                            \
814       return prefix##_K0_K1 + (index / 2);                                     \
815     case TYPE_MM64:                                                            \
816       return prefix##_MM0 + (index & 0x7);                                     \
817     case TYPE_SEGMENTREG:                                                      \
818       if ((index & 7) > 5)                                                     \
819         *valid = 0;                                                            \
820       return prefix##_ES + (index & 7);                                        \
821     case TYPE_DEBUGREG:                                                        \
822       return prefix##_DR0 + index;                                             \
823     case TYPE_CONTROLREG:                                                      \
824       return prefix##_CR0 + index;                                             \
825     case TYPE_MVSIBX:                                                          \
826       return prefix##_XMM0 + index;                                            \
827     case TYPE_MVSIBY:                                                          \
828       return prefix##_YMM0 + index;                                            \
829     case TYPE_MVSIBZ:                                                          \
830       return prefix##_ZMM0 + index;                                            \
831     }                                                                          \
832   }
833 
834 // Consult an operand type to determine the meaning of the reg or R/M field. If
835 // the operand is an XMM operand, for example, an operand would be XMM0 instead
836 // of AX, which readModRM() would otherwise misinterpret it as.
837 //
838 // @param insn  - The instruction containing the operand.
839 // @param type  - The operand type.
840 // @param index - The existing value of the field as reported by readModRM().
841 // @param valid - The address of a uint8_t.  The target is set to 1 if the
842 //                field is valid for the register class; 0 if not.
843 // @return      - The proper value.
844 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
845 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
846 
847 // Consult an operand specifier to determine which of the fixup*Value functions
848 // to use in correcting readModRM()'ss interpretation.
849 //
850 // @param insn  - See fixup*Value().
851 // @param op    - The operand specifier.
852 // @return      - 0 if fixup was successful; -1 if the register returned was
853 //                invalid for its class.
854 static int fixupReg(struct InternalInstruction *insn,
855                     const struct OperandSpecifier *op) {
856   uint8_t valid;
857   LLVM_DEBUG(dbgs() << "fixupReg()");
858 
859   switch ((OperandEncoding)op->encoding) {
860   default:
861     debug("Expected a REG or R/M encoding in fixupReg");
862     return -1;
863   case ENCODING_VVVV:
864     insn->vvvv =
865         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
866     if (!valid)
867       return -1;
868     break;
869   case ENCODING_REG:
870     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
871                                    insn->reg - insn->regBase, &valid);
872     if (!valid)
873       return -1;
874     break;
875   CASE_ENCODING_RM:
876     if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
877         modFromModRM(insn->modRM) == 3) {
878       // EVEX_X can extend the register id to 32 for a non-GPR register that is
879       // encoded in RM.
880       // mode : MODE_64_BIT
881       //  Only 8 vector registers are available in 32 bit mode
882       // mod : 3
883       //  RM encodes a register
884       switch (op->type) {
885       case TYPE_Rv:
886       case TYPE_R8:
887       case TYPE_R16:
888       case TYPE_R32:
889       case TYPE_R64:
890         break;
891       default:
892         insn->eaBase =
893             (EABase)(insn->eaBase +
894                      (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
895         break;
896       }
897     }
898     [[fallthrough]];
899   case ENCODING_SIB:
900     if (insn->eaBase >= insn->eaRegBase) {
901       insn->eaBase = (EABase)fixupRMValue(
902           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
903       if (!valid)
904         return -1;
905     }
906     break;
907   }
908 
909   return 0;
910 }
911 
912 // Read the opcode (except the ModR/M byte in the case of extended or escape
913 // opcodes).
914 static bool readOpcode(struct InternalInstruction *insn) {
915   uint8_t current;
916   LLVM_DEBUG(dbgs() << "readOpcode()");
917 
918   insn->opcodeType = ONEBYTE;
919   if (insn->vectorExtensionType == TYPE_EVEX) {
920     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
921     default:
922       LLVM_DEBUG(
923           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
924                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
925       return true;
926     case VEX_LOB_0F:
927       insn->opcodeType = TWOBYTE;
928       return consume(insn, insn->opcode);
929     case VEX_LOB_0F38:
930       insn->opcodeType = THREEBYTE_38;
931       return consume(insn, insn->opcode);
932     case VEX_LOB_0F3A:
933       insn->opcodeType = THREEBYTE_3A;
934       return consume(insn, insn->opcode);
935     case VEX_LOB_MAP4:
936       insn->opcodeType = MAP4;
937       return consume(insn, insn->opcode);
938     case VEX_LOB_MAP5:
939       insn->opcodeType = MAP5;
940       return consume(insn, insn->opcode);
941     case VEX_LOB_MAP6:
942       insn->opcodeType = MAP6;
943       return consume(insn, insn->opcode);
944     }
945   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
946     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
947     default:
948       LLVM_DEBUG(
949           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
950                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
951       return true;
952     case VEX_LOB_0F:
953       insn->opcodeType = TWOBYTE;
954       return consume(insn, insn->opcode);
955     case VEX_LOB_0F38:
956       insn->opcodeType = THREEBYTE_38;
957       return consume(insn, insn->opcode);
958     case VEX_LOB_0F3A:
959       insn->opcodeType = THREEBYTE_3A;
960       return consume(insn, insn->opcode);
961     case VEX_LOB_MAP5:
962       insn->opcodeType = MAP5;
963       return consume(insn, insn->opcode);
964     case VEX_LOB_MAP6:
965       insn->opcodeType = MAP6;
966       return consume(insn, insn->opcode);
967     case VEX_LOB_MAP7:
968       insn->opcodeType = MAP7;
969       return consume(insn, insn->opcode);
970     }
971   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
972     insn->opcodeType = TWOBYTE;
973     return consume(insn, insn->opcode);
974   } else if (insn->vectorExtensionType == TYPE_XOP) {
975     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
976     default:
977       LLVM_DEBUG(
978           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
979                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
980       return true;
981     case XOP_MAP_SELECT_8:
982       insn->opcodeType = XOP8_MAP;
983       return consume(insn, insn->opcode);
984     case XOP_MAP_SELECT_9:
985       insn->opcodeType = XOP9_MAP;
986       return consume(insn, insn->opcode);
987     case XOP_MAP_SELECT_A:
988       insn->opcodeType = XOPA_MAP;
989       return consume(insn, insn->opcode);
990     }
991   } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
992     // m bit indicates opcode map 1
993     insn->opcodeType = TWOBYTE;
994     return consume(insn, insn->opcode);
995   }
996 
997   if (consume(insn, current))
998     return true;
999 
1000   if (current == 0x0f) {
1001     LLVM_DEBUG(
1002         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1003     if (consume(insn, current))
1004       return true;
1005 
1006     if (current == 0x38) {
1007       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1008                                   current));
1009       if (consume(insn, current))
1010         return true;
1011 
1012       insn->opcodeType = THREEBYTE_38;
1013     } else if (current == 0x3a) {
1014       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1015                                   current));
1016       if (consume(insn, current))
1017         return true;
1018 
1019       insn->opcodeType = THREEBYTE_3A;
1020     } else if (current == 0x0f) {
1021       LLVM_DEBUG(
1022           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1023 
1024       // Consume operands before the opcode to comply with the 3DNow encoding
1025       if (readModRM(insn))
1026         return true;
1027 
1028       if (consume(insn, current))
1029         return true;
1030 
1031       insn->opcodeType = THREEDNOW_MAP;
1032     } else {
1033       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1034       insn->opcodeType = TWOBYTE;
1035     }
1036   } else if (insn->mandatoryPrefix)
1037     // The opcode with mandatory prefix must start with opcode escape.
1038     // If not it's legacy repeat prefix
1039     insn->mandatoryPrefix = 0;
1040 
1041   // At this point we have consumed the full opcode.
1042   // Anything we consume from here on must be unconsumed.
1043   insn->opcode = current;
1044 
1045   return false;
1046 }
1047 
1048 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1049 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1050   for (int i = 0;; i++) {
1051     if (orig[i] == '\0' && equiv[i] == '\0')
1052       return true;
1053     if (orig[i] == '\0' || equiv[i] == '\0')
1054       return false;
1055     if (orig[i] != equiv[i]) {
1056       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1057         continue;
1058       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1059         continue;
1060       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1061         continue;
1062       return false;
1063     }
1064   }
1065 }
1066 
1067 // Determine whether this instruction is a 64-bit instruction.
1068 static bool is64Bit(const char *name) {
1069   for (int i = 0;; ++i) {
1070     if (name[i] == '\0')
1071       return false;
1072     if (name[i] == '6' && name[i + 1] == '4')
1073       return true;
1074   }
1075 }
1076 
1077 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1078 // for extended and escape opcodes, and using a supplied attribute mask.
1079 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1080                                         struct InternalInstruction *insn,
1081                                         uint16_t attrMask) {
1082   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1083   const ContextDecision *decision;
1084   switch (insn->opcodeType) {
1085   case ONEBYTE:
1086     decision = &ONEBYTE_SYM;
1087     break;
1088   case TWOBYTE:
1089     decision = &TWOBYTE_SYM;
1090     break;
1091   case THREEBYTE_38:
1092     decision = &THREEBYTE38_SYM;
1093     break;
1094   case THREEBYTE_3A:
1095     decision = &THREEBYTE3A_SYM;
1096     break;
1097   case XOP8_MAP:
1098     decision = &XOP8_MAP_SYM;
1099     break;
1100   case XOP9_MAP:
1101     decision = &XOP9_MAP_SYM;
1102     break;
1103   case XOPA_MAP:
1104     decision = &XOPA_MAP_SYM;
1105     break;
1106   case THREEDNOW_MAP:
1107     decision = &THREEDNOW_MAP_SYM;
1108     break;
1109   case MAP4:
1110     decision = &MAP4_SYM;
1111     break;
1112   case MAP5:
1113     decision = &MAP5_SYM;
1114     break;
1115   case MAP6:
1116     decision = &MAP6_SYM;
1117     break;
1118   case MAP7:
1119     decision = &MAP7_SYM;
1120     break;
1121   }
1122 
1123   if (decision->opcodeDecisions[insnCtx]
1124           .modRMDecisions[insn->opcode]
1125           .modrm_type != MODRM_ONEENTRY) {
1126     if (readModRM(insn))
1127       return -1;
1128     *instructionID =
1129         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1130   } else {
1131     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1132   }
1133 
1134   return 0;
1135 }
1136 
1137 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1138 // for extended and escape opcodes. Determines the attributes and context for
1139 // the instruction before doing so.
1140 static int getInstructionID(struct InternalInstruction *insn,
1141                             const MCInstrInfo *mii) {
1142   uint16_t attrMask;
1143   uint16_t instructionID;
1144 
1145   LLVM_DEBUG(dbgs() << "getID()");
1146 
1147   attrMask = ATTR_NONE;
1148 
1149   if (insn->mode == MODE_64BIT)
1150     attrMask |= ATTR_64BIT;
1151 
1152   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1153     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1154 
1155     if (insn->vectorExtensionType == TYPE_EVEX) {
1156       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1157       case VEX_PREFIX_66:
1158         attrMask |= ATTR_OPSIZE;
1159         break;
1160       case VEX_PREFIX_F3:
1161         attrMask |= ATTR_XS;
1162         break;
1163       case VEX_PREFIX_F2:
1164         attrMask |= ATTR_XD;
1165         break;
1166       }
1167 
1168       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1169         attrMask |= ATTR_EVEXKZ;
1170       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1171         attrMask |= ATTR_EVEXB;
1172       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1173         attrMask |= ATTR_EVEXK;
1174       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1175         attrMask |= ATTR_VEXL;
1176       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1177         attrMask |= ATTR_EVEXL2;
1178     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1179       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1180       case VEX_PREFIX_66:
1181         attrMask |= ATTR_OPSIZE;
1182         break;
1183       case VEX_PREFIX_F3:
1184         attrMask |= ATTR_XS;
1185         break;
1186       case VEX_PREFIX_F2:
1187         attrMask |= ATTR_XD;
1188         break;
1189       }
1190 
1191       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1192         attrMask |= ATTR_VEXL;
1193     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1194       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1195       case VEX_PREFIX_66:
1196         attrMask |= ATTR_OPSIZE;
1197         if (insn->hasAdSize)
1198           attrMask |= ATTR_ADSIZE;
1199         break;
1200       case VEX_PREFIX_F3:
1201         attrMask |= ATTR_XS;
1202         break;
1203       case VEX_PREFIX_F2:
1204         attrMask |= ATTR_XD;
1205         break;
1206       }
1207 
1208       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1209         attrMask |= ATTR_VEXL;
1210     } else if (insn->vectorExtensionType == TYPE_XOP) {
1211       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1212       case VEX_PREFIX_66:
1213         attrMask |= ATTR_OPSIZE;
1214         break;
1215       case VEX_PREFIX_F3:
1216         attrMask |= ATTR_XS;
1217         break;
1218       case VEX_PREFIX_F2:
1219         attrMask |= ATTR_XD;
1220         break;
1221       }
1222 
1223       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1224         attrMask |= ATTR_VEXL;
1225     } else {
1226       return -1;
1227     }
1228   } else if (!insn->mandatoryPrefix) {
1229     // If we don't have mandatory prefix we should use legacy prefixes here
1230     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1231       attrMask |= ATTR_OPSIZE;
1232     if (insn->hasAdSize)
1233       attrMask |= ATTR_ADSIZE;
1234     if (insn->opcodeType == ONEBYTE) {
1235       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1236         // Special support for PAUSE
1237         attrMask |= ATTR_XS;
1238     } else {
1239       if (insn->repeatPrefix == 0xf2)
1240         attrMask |= ATTR_XD;
1241       else if (insn->repeatPrefix == 0xf3)
1242         attrMask |= ATTR_XS;
1243     }
1244   } else {
1245     switch (insn->mandatoryPrefix) {
1246     case 0xf2:
1247       attrMask |= ATTR_XD;
1248       break;
1249     case 0xf3:
1250       attrMask |= ATTR_XS;
1251       break;
1252     case 0x66:
1253       if (insn->mode != MODE_16BIT)
1254         attrMask |= ATTR_OPSIZE;
1255       if (insn->hasAdSize)
1256         attrMask |= ATTR_ADSIZE;
1257       break;
1258     case 0x67:
1259       attrMask |= ATTR_ADSIZE;
1260       break;
1261     }
1262   }
1263 
1264   if (insn->rexPrefix & 0x08) {
1265     attrMask |= ATTR_REXW;
1266     attrMask &= ~ATTR_ADSIZE;
1267   }
1268 
1269   // Absolute jump and pushp/popp need special handling
1270   if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1271       (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1272     attrMask |= ATTR_REX2;
1273 
1274   if (insn->mode == MODE_16BIT) {
1275     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1276     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1277     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1278       attrMask ^= ATTR_ADSIZE;
1279     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1280     // prefix isn't present, we need to force the opsize attribute since the
1281     // prefix is inverted relative to 32-bit mode.
1282     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1283         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1284       attrMask |= ATTR_OPSIZE;
1285 
1286     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1287         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1288       attrMask |= ATTR_OPSIZE;
1289   }
1290 
1291 
1292   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1293     return -1;
1294 
1295   // The following clauses compensate for limitations of the tables.
1296 
1297   if (insn->mode != MODE_64BIT &&
1298       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1299     // The tables can't distinquish between cases where the W-bit is used to
1300     // select register size and cases where its a required part of the opcode.
1301     if ((insn->vectorExtensionType == TYPE_EVEX &&
1302          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1303         (insn->vectorExtensionType == TYPE_VEX_3B &&
1304          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1305         (insn->vectorExtensionType == TYPE_XOP &&
1306          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1307 
1308       uint16_t instructionIDWithREXW;
1309       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1310                                        attrMask | ATTR_REXW)) {
1311         insn->instructionID = instructionID;
1312         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1313         return 0;
1314       }
1315 
1316       auto SpecName = mii->getName(instructionIDWithREXW);
1317       // If not a 64-bit instruction. Switch the opcode.
1318       if (!is64Bit(SpecName.data())) {
1319         insn->instructionID = instructionIDWithREXW;
1320         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1321         return 0;
1322       }
1323     }
1324   }
1325 
1326   // Absolute moves, umonitor, and movdir64b need special handling.
1327   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1328   //  inverted w.r.t.
1329   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1330   //  any position.
1331   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1332       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1333       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1334       (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1335     // Make sure we observed the prefixes in any position.
1336     if (insn->hasAdSize)
1337       attrMask |= ATTR_ADSIZE;
1338     if (insn->hasOpSize)
1339       attrMask |= ATTR_OPSIZE;
1340 
1341     // In 16-bit, invert the attributes.
1342     if (insn->mode == MODE_16BIT) {
1343       attrMask ^= ATTR_ADSIZE;
1344 
1345       // The OpSize attribute is only valid with the absolute moves.
1346       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1347         attrMask ^= ATTR_OPSIZE;
1348     }
1349 
1350     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1351       return -1;
1352 
1353     insn->instructionID = instructionID;
1354     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1355     return 0;
1356   }
1357 
1358   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1359       !(attrMask & ATTR_OPSIZE)) {
1360     // The instruction tables make no distinction between instructions that
1361     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1362     // particular spot (i.e., many MMX operations). In general we're
1363     // conservative, but in the specific case where OpSize is present but not in
1364     // the right place we check if there's a 16-bit operation.
1365     const struct InstructionSpecifier *spec;
1366     uint16_t instructionIDWithOpsize;
1367     llvm::StringRef specName, specWithOpSizeName;
1368 
1369     spec = &INSTRUCTIONS_SYM[instructionID];
1370 
1371     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1372                                      attrMask | ATTR_OPSIZE)) {
1373       // ModRM required with OpSize but not present. Give up and return the
1374       // version without OpSize set.
1375       insn->instructionID = instructionID;
1376       insn->spec = spec;
1377       return 0;
1378     }
1379 
1380     specName = mii->getName(instructionID);
1381     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1382 
1383     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1384         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1385       insn->instructionID = instructionIDWithOpsize;
1386       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1387     } else {
1388       insn->instructionID = instructionID;
1389       insn->spec = spec;
1390     }
1391     return 0;
1392   }
1393 
1394   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1395       insn->rexPrefix & 0x01) {
1396     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1397     // as XCHG %r8, %eax.
1398     const struct InstructionSpecifier *spec;
1399     uint16_t instructionIDWithNewOpcode;
1400     const struct InstructionSpecifier *specWithNewOpcode;
1401 
1402     spec = &INSTRUCTIONS_SYM[instructionID];
1403 
1404     // Borrow opcode from one of the other XCHGar opcodes
1405     insn->opcode = 0x91;
1406 
1407     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1408                                      attrMask)) {
1409       insn->opcode = 0x90;
1410 
1411       insn->instructionID = instructionID;
1412       insn->spec = spec;
1413       return 0;
1414     }
1415 
1416     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1417 
1418     // Change back
1419     insn->opcode = 0x90;
1420 
1421     insn->instructionID = instructionIDWithNewOpcode;
1422     insn->spec = specWithNewOpcode;
1423 
1424     return 0;
1425   }
1426 
1427   insn->instructionID = instructionID;
1428   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1429 
1430   return 0;
1431 }
1432 
1433 // Read an operand from the opcode field of an instruction and interprets it
1434 // appropriately given the operand width. Handles AddRegFrm instructions.
1435 //
1436 // @param insn  - the instruction whose opcode field is to be read.
1437 // @param size  - The width (in bytes) of the register being specified.
1438 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1439 //                RAX.
1440 // @return      - 0 on success; nonzero otherwise.
1441 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1442   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1443 
1444   if (size == 0)
1445     size = insn->registerSize;
1446 
1447   auto setOpcodeRegister = [&](unsigned base) {
1448     insn->opcodeRegister =
1449         (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1450                       (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1451                       (insn->opcode & 7)));
1452   };
1453 
1454   switch (size) {
1455   case 1:
1456     setOpcodeRegister(MODRM_REG_AL);
1457     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1458         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1459       insn->opcodeRegister =
1460           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1461     }
1462 
1463     break;
1464   case 2:
1465     setOpcodeRegister(MODRM_REG_AX);
1466     break;
1467   case 4:
1468     setOpcodeRegister(MODRM_REG_EAX);
1469     break;
1470   case 8:
1471     setOpcodeRegister(MODRM_REG_RAX);
1472     break;
1473   }
1474 
1475   return 0;
1476 }
1477 
1478 // Consume an immediate operand from an instruction, given the desired operand
1479 // size.
1480 //
1481 // @param insn  - The instruction whose operand is to be read.
1482 // @param size  - The width (in bytes) of the operand.
1483 // @return      - 0 if the immediate was successfully consumed; nonzero
1484 //                otherwise.
1485 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1486   uint8_t imm8;
1487   uint16_t imm16;
1488   uint32_t imm32;
1489   uint64_t imm64;
1490 
1491   LLVM_DEBUG(dbgs() << "readImmediate()");
1492 
1493   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1494 
1495   insn->immediateSize = size;
1496   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1497 
1498   switch (size) {
1499   case 1:
1500     if (consume(insn, imm8))
1501       return -1;
1502     insn->immediates[insn->numImmediatesConsumed] = imm8;
1503     break;
1504   case 2:
1505     if (consume(insn, imm16))
1506       return -1;
1507     insn->immediates[insn->numImmediatesConsumed] = imm16;
1508     break;
1509   case 4:
1510     if (consume(insn, imm32))
1511       return -1;
1512     insn->immediates[insn->numImmediatesConsumed] = imm32;
1513     break;
1514   case 8:
1515     if (consume(insn, imm64))
1516       return -1;
1517     insn->immediates[insn->numImmediatesConsumed] = imm64;
1518     break;
1519   default:
1520     llvm_unreachable("invalid size");
1521   }
1522 
1523   insn->numImmediatesConsumed++;
1524 
1525   return 0;
1526 }
1527 
1528 // Consume vvvv from an instruction if it has a VEX prefix.
1529 static int readVVVV(struct InternalInstruction *insn) {
1530   LLVM_DEBUG(dbgs() << "readVVVV()");
1531 
1532   int vvvv;
1533   if (insn->vectorExtensionType == TYPE_EVEX)
1534     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1535             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1536   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1537     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1538   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1539     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1540   else if (insn->vectorExtensionType == TYPE_XOP)
1541     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1542   else
1543     return -1;
1544 
1545   if (insn->mode != MODE_64BIT)
1546     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1547 
1548   insn->vvvv = static_cast<Reg>(vvvv);
1549   return 0;
1550 }
1551 
1552 // Read an mask register from the opcode field of an instruction.
1553 //
1554 // @param insn    - The instruction whose opcode field is to be read.
1555 // @return        - 0 on success; nonzero otherwise.
1556 static int readMaskRegister(struct InternalInstruction *insn) {
1557   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1558 
1559   if (insn->vectorExtensionType != TYPE_EVEX)
1560     return -1;
1561 
1562   insn->writemask =
1563       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1564   return 0;
1565 }
1566 
1567 // Consults the specifier for an instruction and consumes all
1568 // operands for that instruction, interpreting them as it goes.
1569 static int readOperands(struct InternalInstruction *insn) {
1570   int hasVVVV, needVVVV;
1571   int sawRegImm = 0;
1572 
1573   LLVM_DEBUG(dbgs() << "readOperands()");
1574 
1575   // If non-zero vvvv specified, make sure one of the operands uses it.
1576   hasVVVV = !readVVVV(insn);
1577   needVVVV = hasVVVV && (insn->vvvv != 0);
1578 
1579   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1580     switch (Op.encoding) {
1581     case ENCODING_NONE:
1582     case ENCODING_SI:
1583     case ENCODING_DI:
1584       break;
1585     CASE_ENCODING_VSIB:
1586       // VSIB can use the V2 bit so check only the other bits.
1587       if (needVVVV)
1588         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1589       if (readModRM(insn))
1590         return -1;
1591 
1592       // Reject if SIB wasn't used.
1593       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1594         return -1;
1595 
1596       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1597       if (insn->sibIndex == SIB_INDEX_NONE)
1598         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1599 
1600       // If EVEX.v2 is set this is one of the 16-31 registers.
1601       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1602           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1603         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1604 
1605       // Adjust the index register to the correct size.
1606       switch ((OperandType)Op.type) {
1607       default:
1608         debug("Unhandled VSIB index type");
1609         return -1;
1610       case TYPE_MVSIBX:
1611         insn->sibIndex =
1612             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1613         break;
1614       case TYPE_MVSIBY:
1615         insn->sibIndex =
1616             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1617         break;
1618       case TYPE_MVSIBZ:
1619         insn->sibIndex =
1620             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1621         break;
1622       }
1623 
1624       // Apply the AVX512 compressed displacement scaling factor.
1625       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1626         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1627       break;
1628     case ENCODING_SIB:
1629       // Reject if SIB wasn't used.
1630       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1631         return -1;
1632       if (readModRM(insn))
1633         return -1;
1634       if (fixupReg(insn, &Op))
1635         return -1;
1636       break;
1637     case ENCODING_REG:
1638     CASE_ENCODING_RM:
1639       if (readModRM(insn))
1640         return -1;
1641       if (fixupReg(insn, &Op))
1642         return -1;
1643       // Apply the AVX512 compressed displacement scaling factor.
1644       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1645         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1646       break;
1647     case ENCODING_IB:
1648       if (sawRegImm) {
1649         // Saw a register immediate so don't read again and instead split the
1650         // previous immediate. FIXME: This is a hack.
1651         insn->immediates[insn->numImmediatesConsumed] =
1652             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1653         ++insn->numImmediatesConsumed;
1654         break;
1655       }
1656       if (readImmediate(insn, 1))
1657         return -1;
1658       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1659         sawRegImm = 1;
1660       break;
1661     case ENCODING_IW:
1662       if (readImmediate(insn, 2))
1663         return -1;
1664       break;
1665     case ENCODING_ID:
1666       if (readImmediate(insn, 4))
1667         return -1;
1668       break;
1669     case ENCODING_IO:
1670       if (readImmediate(insn, 8))
1671         return -1;
1672       break;
1673     case ENCODING_Iv:
1674       if (readImmediate(insn, insn->immediateSize))
1675         return -1;
1676       break;
1677     case ENCODING_Ia:
1678       if (readImmediate(insn, insn->addressSize))
1679         return -1;
1680       break;
1681     case ENCODING_IRC:
1682       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1683                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1684       break;
1685     case ENCODING_RB:
1686       if (readOpcodeRegister(insn, 1))
1687         return -1;
1688       break;
1689     case ENCODING_RW:
1690       if (readOpcodeRegister(insn, 2))
1691         return -1;
1692       break;
1693     case ENCODING_RD:
1694       if (readOpcodeRegister(insn, 4))
1695         return -1;
1696       break;
1697     case ENCODING_RO:
1698       if (readOpcodeRegister(insn, 8))
1699         return -1;
1700       break;
1701     case ENCODING_Rv:
1702       if (readOpcodeRegister(insn, 0))
1703         return -1;
1704       break;
1705     case ENCODING_CC:
1706       insn->immediates[1] = insn->opcode & 0xf;
1707       break;
1708     case ENCODING_FP:
1709       break;
1710     case ENCODING_VVVV:
1711       needVVVV = 0; // Mark that we have found a VVVV operand.
1712       if (!hasVVVV)
1713         return -1;
1714       if (insn->mode != MODE_64BIT)
1715         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1716       if (fixupReg(insn, &Op))
1717         return -1;
1718       break;
1719     case ENCODING_WRITEMASK:
1720       if (readMaskRegister(insn))
1721         return -1;
1722       break;
1723     case ENCODING_DUP:
1724       break;
1725     default:
1726       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1727       return -1;
1728     }
1729   }
1730 
1731   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1732   if (needVVVV)
1733     return -1;
1734 
1735   return 0;
1736 }
1737 
1738 namespace llvm {
1739 
1740 // Fill-ins to make the compiler happy. These constants are never actually
1741 // assigned; they are just filler to make an automatically-generated switch
1742 // statement work.
1743 namespace X86 {
1744   enum {
1745     BX_SI = 500,
1746     BX_DI = 501,
1747     BP_SI = 502,
1748     BP_DI = 503,
1749     sib   = 504,
1750     sib64 = 505
1751   };
1752 } // namespace X86
1753 
1754 } // namespace llvm
1755 
1756 static bool translateInstruction(MCInst &target,
1757                                 InternalInstruction &source,
1758                                 const MCDisassembler *Dis);
1759 
1760 namespace {
1761 
1762 /// Generic disassembler for all X86 platforms. All each platform class should
1763 /// have to do is subclass the constructor, and provide a different
1764 /// disassemblerMode value.
1765 class X86GenericDisassembler : public MCDisassembler {
1766   std::unique_ptr<const MCInstrInfo> MII;
1767 public:
1768   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1769                          std::unique_ptr<const MCInstrInfo> MII);
1770 public:
1771   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1772                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1773                               raw_ostream &cStream) const override;
1774 
1775 private:
1776   DisassemblerMode              fMode;
1777 };
1778 
1779 } // namespace
1780 
1781 X86GenericDisassembler::X86GenericDisassembler(
1782                                          const MCSubtargetInfo &STI,
1783                                          MCContext &Ctx,
1784                                          std::unique_ptr<const MCInstrInfo> MII)
1785   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1786   const FeatureBitset &FB = STI.getFeatureBits();
1787   if (FB[X86::Is16Bit]) {
1788     fMode = MODE_16BIT;
1789     return;
1790   } else if (FB[X86::Is32Bit]) {
1791     fMode = MODE_32BIT;
1792     return;
1793   } else if (FB[X86::Is64Bit]) {
1794     fMode = MODE_64BIT;
1795     return;
1796   }
1797 
1798   llvm_unreachable("Invalid CPU mode");
1799 }
1800 
1801 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1802     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1803     raw_ostream &CStream) const {
1804   CommentStream = &CStream;
1805 
1806   InternalInstruction Insn;
1807   memset(&Insn, 0, sizeof(InternalInstruction));
1808   Insn.bytes = Bytes;
1809   Insn.startLocation = Address;
1810   Insn.readerCursor = Address;
1811   Insn.mode = fMode;
1812 
1813   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1814       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1815       readOperands(&Insn)) {
1816     Size = Insn.readerCursor - Address;
1817     return Fail;
1818   }
1819 
1820   Insn.operands = x86OperandSets[Insn.spec->operands];
1821   Insn.length = Insn.readerCursor - Insn.startLocation;
1822   Size = Insn.length;
1823   if (Size > 15)
1824     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1825 
1826   bool Ret = translateInstruction(Instr, Insn, this);
1827   if (!Ret) {
1828     unsigned Flags = X86::IP_NO_PREFIX;
1829     if (Insn.hasAdSize)
1830       Flags |= X86::IP_HAS_AD_SIZE;
1831     if (!Insn.mandatoryPrefix) {
1832       if (Insn.hasOpSize)
1833         Flags |= X86::IP_HAS_OP_SIZE;
1834       if (Insn.repeatPrefix == 0xf2)
1835         Flags |= X86::IP_HAS_REPEAT_NE;
1836       else if (Insn.repeatPrefix == 0xf3 &&
1837                // It should not be 'pause' f3 90
1838                Insn.opcode != 0x90)
1839         Flags |= X86::IP_HAS_REPEAT;
1840       if (Insn.hasLockPrefix)
1841         Flags |= X86::IP_HAS_LOCK;
1842     }
1843     Instr.setFlags(Flags);
1844   }
1845   return (!Ret) ? Success : Fail;
1846 }
1847 
1848 //
1849 // Private code that translates from struct InternalInstructions to MCInsts.
1850 //
1851 
1852 /// translateRegister - Translates an internal register to the appropriate LLVM
1853 ///   register, and appends it as an operand to an MCInst.
1854 ///
1855 /// @param mcInst     - The MCInst to append to.
1856 /// @param reg        - The Reg to append.
1857 static void translateRegister(MCInst &mcInst, Reg reg) {
1858 #define ENTRY(x) X86::x,
1859   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1860 #undef ENTRY
1861 
1862   MCPhysReg llvmRegnum = llvmRegnums[reg];
1863   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1864 }
1865 
1866 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1867   0,        // SEG_OVERRIDE_NONE
1868   X86::CS,
1869   X86::SS,
1870   X86::DS,
1871   X86::ES,
1872   X86::FS,
1873   X86::GS
1874 };
1875 
1876 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1877 ///
1878 /// @param mcInst       - The MCInst to append to.
1879 /// @param insn         - The internal instruction.
1880 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1881   unsigned baseRegNo;
1882 
1883   if (insn.mode == MODE_64BIT)
1884     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1885   else if (insn.mode == MODE_32BIT)
1886     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1887   else {
1888     assert(insn.mode == MODE_16BIT);
1889     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1890   }
1891   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1892   mcInst.addOperand(baseReg);
1893 
1894   MCOperand segmentReg;
1895   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1896   mcInst.addOperand(segmentReg);
1897   return false;
1898 }
1899 
1900 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1901 ///
1902 /// @param mcInst       - The MCInst to append to.
1903 /// @param insn         - The internal instruction.
1904 
1905 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1906   unsigned baseRegNo;
1907 
1908   if (insn.mode == MODE_64BIT)
1909     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1910   else if (insn.mode == MODE_32BIT)
1911     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1912   else {
1913     assert(insn.mode == MODE_16BIT);
1914     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1915   }
1916   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1917   mcInst.addOperand(baseReg);
1918   return false;
1919 }
1920 
1921 /// translateImmediate  - Appends an immediate operand to an MCInst.
1922 ///
1923 /// @param mcInst       - The MCInst to append to.
1924 /// @param immediate    - The immediate value to append.
1925 /// @param operand      - The operand, as stored in the descriptor table.
1926 /// @param insn         - The internal instruction.
1927 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1928                                const OperandSpecifier &operand,
1929                                InternalInstruction &insn,
1930                                const MCDisassembler *Dis) {
1931   // Sign-extend the immediate if necessary.
1932 
1933   OperandType type = (OperandType)operand.type;
1934 
1935   bool isBranch = false;
1936   uint64_t pcrel = 0;
1937   if (type == TYPE_REL) {
1938     isBranch = true;
1939     pcrel = insn.startLocation + insn.length;
1940     switch (operand.encoding) {
1941     default:
1942       break;
1943     case ENCODING_Iv:
1944       switch (insn.displacementSize) {
1945       default:
1946         break;
1947       case 1:
1948         if(immediate & 0x80)
1949           immediate |= ~(0xffull);
1950         break;
1951       case 2:
1952         if(immediate & 0x8000)
1953           immediate |= ~(0xffffull);
1954         break;
1955       case 4:
1956         if(immediate & 0x80000000)
1957           immediate |= ~(0xffffffffull);
1958         break;
1959       case 8:
1960         break;
1961       }
1962       break;
1963     case ENCODING_IB:
1964       if(immediate & 0x80)
1965         immediate |= ~(0xffull);
1966       break;
1967     case ENCODING_IW:
1968       if(immediate & 0x8000)
1969         immediate |= ~(0xffffull);
1970       break;
1971     case ENCODING_ID:
1972       if(immediate & 0x80000000)
1973         immediate |= ~(0xffffffffull);
1974       break;
1975     }
1976   }
1977   // By default sign-extend all X86 immediates based on their encoding.
1978   else if (type == TYPE_IMM) {
1979     switch (operand.encoding) {
1980     default:
1981       break;
1982     case ENCODING_IB:
1983       if(immediate & 0x80)
1984         immediate |= ~(0xffull);
1985       break;
1986     case ENCODING_IW:
1987       if(immediate & 0x8000)
1988         immediate |= ~(0xffffull);
1989       break;
1990     case ENCODING_ID:
1991       if(immediate & 0x80000000)
1992         immediate |= ~(0xffffffffull);
1993       break;
1994     case ENCODING_IO:
1995       break;
1996     }
1997   }
1998 
1999   switch (type) {
2000   case TYPE_XMM:
2001     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2002     return;
2003   case TYPE_YMM:
2004     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2005     return;
2006   case TYPE_ZMM:
2007     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2008     return;
2009   default:
2010     // operand is 64 bits wide.  Do nothing.
2011     break;
2012   }
2013 
2014   if (!Dis->tryAddingSymbolicOperand(
2015           mcInst, immediate + pcrel, insn.startLocation, isBranch,
2016           insn.immediateOffset, insn.immediateSize, insn.length))
2017     mcInst.addOperand(MCOperand::createImm(immediate));
2018 
2019   if (type == TYPE_MOFFS) {
2020     MCOperand segmentReg;
2021     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2022     mcInst.addOperand(segmentReg);
2023   }
2024 }
2025 
2026 /// translateRMRegister - Translates a register stored in the R/M field of the
2027 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2028 /// @param mcInst       - The MCInst to append to.
2029 /// @param insn         - The internal instruction to extract the R/M field
2030 ///                       from.
2031 /// @return             - 0 on success; -1 otherwise
2032 static bool translateRMRegister(MCInst &mcInst,
2033                                 InternalInstruction &insn) {
2034   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2035     debug("A R/M register operand may not have a SIB byte");
2036     return true;
2037   }
2038 
2039   switch (insn.eaBase) {
2040   default:
2041     debug("Unexpected EA base register");
2042     return true;
2043   case EA_BASE_NONE:
2044     debug("EA_BASE_NONE for ModR/M base");
2045     return true;
2046 #define ENTRY(x) case EA_BASE_##x:
2047   ALL_EA_BASES
2048 #undef ENTRY
2049     debug("A R/M register operand may not have a base; "
2050           "the operand must be a register.");
2051     return true;
2052 #define ENTRY(x)                                                      \
2053   case EA_REG_##x:                                                    \
2054     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2055   ALL_REGS
2056 #undef ENTRY
2057   }
2058 
2059   return false;
2060 }
2061 
2062 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2063 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2064 ///   operand in LLVM's format, and appends it to an MCInst.
2065 ///
2066 /// @param mcInst       - The MCInst to append to.
2067 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2068 ///                       from.
2069 /// @param ForceSIB     - The instruction must use SIB.
2070 /// @return             - 0 on success; nonzero otherwise
2071 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2072                               const MCDisassembler *Dis,
2073                               bool ForceSIB = false) {
2074   // Addresses in an MCInst are represented as five operands:
2075   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2076   //                                SIB base
2077   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2078   //                                scale amount
2079   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2080   //                                the index (which is multiplied by the
2081   //                                scale amount)
2082   //   4. displacement  (immediate) 0, or the displacement if there is one
2083   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2084   //                                if we have segment overrides
2085 
2086   MCOperand baseReg;
2087   MCOperand scaleAmount;
2088   MCOperand indexReg;
2089   MCOperand displacement;
2090   MCOperand segmentReg;
2091   uint64_t pcrel = 0;
2092 
2093   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2094     if (insn.sibBase != SIB_BASE_NONE) {
2095       switch (insn.sibBase) {
2096       default:
2097         debug("Unexpected sibBase");
2098         return true;
2099 #define ENTRY(x)                                          \
2100       case SIB_BASE_##x:                                  \
2101         baseReg = MCOperand::createReg(X86::x); break;
2102       ALL_SIB_BASES
2103 #undef ENTRY
2104       }
2105     } else {
2106       baseReg = MCOperand::createReg(X86::NoRegister);
2107     }
2108 
2109     if (insn.sibIndex != SIB_INDEX_NONE) {
2110       switch (insn.sibIndex) {
2111       default:
2112         debug("Unexpected sibIndex");
2113         return true;
2114 #define ENTRY(x)                                          \
2115       case SIB_INDEX_##x:                                 \
2116         indexReg = MCOperand::createReg(X86::x); break;
2117       EA_BASES_32BIT
2118       EA_BASES_64BIT
2119       REGS_XMM
2120       REGS_YMM
2121       REGS_ZMM
2122 #undef ENTRY
2123       }
2124     } else {
2125       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2126       // but no index is used and modrm alone should have been enough.
2127       // -No base register in 32-bit mode. In 64-bit mode this is used to
2128       //  avoid rip-relative addressing.
2129       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2130       //  base always requires a SIB byte.
2131       // -A scale other than 1 is used.
2132       if (!ForceSIB &&
2133           (insn.sibScale != 1 ||
2134            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2135            (insn.sibBase != SIB_BASE_NONE &&
2136             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2137             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2138         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2139                                                                 X86::RIZ);
2140       } else
2141         indexReg = MCOperand::createReg(X86::NoRegister);
2142     }
2143 
2144     scaleAmount = MCOperand::createImm(insn.sibScale);
2145   } else {
2146     switch (insn.eaBase) {
2147     case EA_BASE_NONE:
2148       if (insn.eaDisplacement == EA_DISP_NONE) {
2149         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2150         return true;
2151       }
2152       if (insn.mode == MODE_64BIT){
2153         pcrel = insn.startLocation + insn.length;
2154         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2155                                              insn.startLocation +
2156                                                  insn.displacementOffset);
2157         // Section 2.2.1.6
2158         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2159                                                                X86::RIP);
2160       }
2161       else
2162         baseReg = MCOperand::createReg(X86::NoRegister);
2163 
2164       indexReg = MCOperand::createReg(X86::NoRegister);
2165       break;
2166     case EA_BASE_BX_SI:
2167       baseReg = MCOperand::createReg(X86::BX);
2168       indexReg = MCOperand::createReg(X86::SI);
2169       break;
2170     case EA_BASE_BX_DI:
2171       baseReg = MCOperand::createReg(X86::BX);
2172       indexReg = MCOperand::createReg(X86::DI);
2173       break;
2174     case EA_BASE_BP_SI:
2175       baseReg = MCOperand::createReg(X86::BP);
2176       indexReg = MCOperand::createReg(X86::SI);
2177       break;
2178     case EA_BASE_BP_DI:
2179       baseReg = MCOperand::createReg(X86::BP);
2180       indexReg = MCOperand::createReg(X86::DI);
2181       break;
2182     default:
2183       indexReg = MCOperand::createReg(X86::NoRegister);
2184       switch (insn.eaBase) {
2185       default:
2186         debug("Unexpected eaBase");
2187         return true;
2188         // Here, we will use the fill-ins defined above.  However,
2189         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2190         //   sib and sib64 were handled in the top-level if, so they're only
2191         //   placeholders to keep the compiler happy.
2192 #define ENTRY(x)                                        \
2193       case EA_BASE_##x:                                 \
2194         baseReg = MCOperand::createReg(X86::x); break;
2195       ALL_EA_BASES
2196 #undef ENTRY
2197 #define ENTRY(x) case EA_REG_##x:
2198       ALL_REGS
2199 #undef ENTRY
2200         debug("A R/M memory operand may not be a register; "
2201               "the base field must be a base.");
2202         return true;
2203       }
2204     }
2205 
2206     scaleAmount = MCOperand::createImm(1);
2207   }
2208 
2209   displacement = MCOperand::createImm(insn.displacement);
2210 
2211   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2212 
2213   mcInst.addOperand(baseReg);
2214   mcInst.addOperand(scaleAmount);
2215   mcInst.addOperand(indexReg);
2216 
2217   const uint8_t dispSize =
2218       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2219 
2220   if (!Dis->tryAddingSymbolicOperand(
2221           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2222           insn.displacementOffset, dispSize, insn.length))
2223     mcInst.addOperand(displacement);
2224   mcInst.addOperand(segmentReg);
2225   return false;
2226 }
2227 
2228 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2229 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2230 ///
2231 /// @param mcInst       - The MCInst to append to.
2232 /// @param operand      - The operand, as stored in the descriptor table.
2233 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2234 ///                       from.
2235 /// @return             - 0 on success; nonzero otherwise
2236 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2237                         InternalInstruction &insn, const MCDisassembler *Dis) {
2238   switch (operand.type) {
2239   default:
2240     debug("Unexpected type for a R/M operand");
2241     return true;
2242   case TYPE_R8:
2243   case TYPE_R16:
2244   case TYPE_R32:
2245   case TYPE_R64:
2246   case TYPE_Rv:
2247   case TYPE_MM64:
2248   case TYPE_XMM:
2249   case TYPE_YMM:
2250   case TYPE_ZMM:
2251   case TYPE_TMM:
2252   case TYPE_VK_PAIR:
2253   case TYPE_VK:
2254   case TYPE_DEBUGREG:
2255   case TYPE_CONTROLREG:
2256   case TYPE_BNDR:
2257     return translateRMRegister(mcInst, insn);
2258   case TYPE_M:
2259   case TYPE_MVSIBX:
2260   case TYPE_MVSIBY:
2261   case TYPE_MVSIBZ:
2262     return translateRMMemory(mcInst, insn, Dis);
2263   case TYPE_MSIB:
2264     return translateRMMemory(mcInst, insn, Dis, true);
2265   }
2266 }
2267 
2268 /// translateFPRegister - Translates a stack position on the FPU stack to its
2269 ///   LLVM form, and appends it to an MCInst.
2270 ///
2271 /// @param mcInst       - The MCInst to append to.
2272 /// @param stackPos     - The stack position to translate.
2273 static void translateFPRegister(MCInst &mcInst,
2274                                 uint8_t stackPos) {
2275   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2276 }
2277 
2278 /// translateMaskRegister - Translates a 3-bit mask register number to
2279 ///   LLVM form, and appends it to an MCInst.
2280 ///
2281 /// @param mcInst       - The MCInst to append to.
2282 /// @param maskRegNum   - Number of mask register from 0 to 7.
2283 /// @return             - false on success; true otherwise.
2284 static bool translateMaskRegister(MCInst &mcInst,
2285                                 uint8_t maskRegNum) {
2286   if (maskRegNum >= 8) {
2287     debug("Invalid mask register number");
2288     return true;
2289   }
2290 
2291   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2292   return false;
2293 }
2294 
2295 /// translateOperand - Translates an operand stored in an internal instruction
2296 ///   to LLVM's format and appends it to an MCInst.
2297 ///
2298 /// @param mcInst       - The MCInst to append to.
2299 /// @param operand      - The operand, as stored in the descriptor table.
2300 /// @param insn         - The internal instruction.
2301 /// @return             - false on success; true otherwise.
2302 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2303                              InternalInstruction &insn,
2304                              const MCDisassembler *Dis) {
2305   switch (operand.encoding) {
2306   default:
2307     debug("Unhandled operand encoding during translation");
2308     return true;
2309   case ENCODING_REG:
2310     translateRegister(mcInst, insn.reg);
2311     return false;
2312   case ENCODING_WRITEMASK:
2313     return translateMaskRegister(mcInst, insn.writemask);
2314   case ENCODING_SIB:
2315   CASE_ENCODING_RM:
2316   CASE_ENCODING_VSIB:
2317     return translateRM(mcInst, operand, insn, Dis);
2318   case ENCODING_IB:
2319   case ENCODING_IW:
2320   case ENCODING_ID:
2321   case ENCODING_IO:
2322   case ENCODING_Iv:
2323   case ENCODING_Ia:
2324     translateImmediate(mcInst,
2325                        insn.immediates[insn.numImmediatesTranslated++],
2326                        operand,
2327                        insn,
2328                        Dis);
2329     return false;
2330   case ENCODING_IRC:
2331     mcInst.addOperand(MCOperand::createImm(insn.RC));
2332     return false;
2333   case ENCODING_SI:
2334     return translateSrcIndex(mcInst, insn);
2335   case ENCODING_DI:
2336     return translateDstIndex(mcInst, insn);
2337   case ENCODING_RB:
2338   case ENCODING_RW:
2339   case ENCODING_RD:
2340   case ENCODING_RO:
2341   case ENCODING_Rv:
2342     translateRegister(mcInst, insn.opcodeRegister);
2343     return false;
2344   case ENCODING_CC:
2345     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2346     return false;
2347   case ENCODING_FP:
2348     translateFPRegister(mcInst, insn.modRM & 7);
2349     return false;
2350   case ENCODING_VVVV:
2351     translateRegister(mcInst, insn.vvvv);
2352     return false;
2353   case ENCODING_DUP:
2354     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2355                             insn, Dis);
2356   }
2357 }
2358 
2359 /// translateInstruction - Translates an internal instruction and all its
2360 ///   operands to an MCInst.
2361 ///
2362 /// @param mcInst       - The MCInst to populate with the instruction's data.
2363 /// @param insn         - The internal instruction.
2364 /// @return             - false on success; true otherwise.
2365 static bool translateInstruction(MCInst &mcInst,
2366                                 InternalInstruction &insn,
2367                                 const MCDisassembler *Dis) {
2368   if (!insn.spec) {
2369     debug("Instruction has no specification");
2370     return true;
2371   }
2372 
2373   mcInst.clear();
2374   mcInst.setOpcode(insn.instructionID);
2375   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2376   // prefix bytes should be disassembled as xrelease and xacquire then set the
2377   // opcode to those instead of the rep and repne opcodes.
2378   if (insn.xAcquireRelease) {
2379     if(mcInst.getOpcode() == X86::REP_PREFIX)
2380       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2381     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2382       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2383   }
2384 
2385   insn.numImmediatesTranslated = 0;
2386 
2387   for (const auto &Op : insn.operands) {
2388     if (Op.encoding != ENCODING_NONE) {
2389       if (translateOperand(mcInst, Op, insn, Dis)) {
2390         return true;
2391       }
2392     }
2393   }
2394 
2395   return false;
2396 }
2397 
2398 static MCDisassembler *createX86Disassembler(const Target &T,
2399                                              const MCSubtargetInfo &STI,
2400                                              MCContext &Ctx) {
2401   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2402   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2403 }
2404 
2405 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2406   // Register the disassembler.
2407   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2408                                          createX86Disassembler);
2409   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2410                                          createX86Disassembler);
2411 }
2412