xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "Utils/WebAssemblyUtilities.h"
271 #include "WebAssembly.h"
272 #include "WebAssemblyTargetMachine.h"
273 #include "llvm/ADT/StringExtras.h"
274 #include "llvm/CodeGen/TargetPassConfig.h"
275 #include "llvm/CodeGen/WasmEHFuncInfo.h"
276 #include "llvm/IR/DebugInfoMetadata.h"
277 #include "llvm/IR/Dominators.h"
278 #include "llvm/IR/IRBuilder.h"
279 #include "llvm/IR/IntrinsicsWebAssembly.h"
280 #include "llvm/Support/CommandLine.h"
281 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
282 #include "llvm/Transforms/Utils/SSAUpdater.h"
283 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
284 
285 using namespace llvm;
286 
287 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
288 
289 static cl::list<std::string>
290     EHAllowlist("emscripten-cxx-exceptions-allowed",
291                 cl::desc("The list of function names in which Emscripten-style "
292                          "exception handling is enabled (see emscripten "
293                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
294                 cl::CommaSeparated);
295 
296 namespace {
297 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
298   bool EnableEmEH;     // Enable Emscripten exception handling
299   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
300   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
301   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
302 
303   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
304   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
305   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
306   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
307   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
308   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
309   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
310   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
311   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
312   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
313   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
314 
315   // type of 'struct __WasmLongjmpArgs' defined in emscripten
316   Type *LongjmpArgsTy = nullptr;
317 
318   // __cxa_find_matching_catch_N functions.
319   // Indexed by the number of clauses in an original landingpad instruction.
320   DenseMap<int, Function *> FindMatchingCatches;
321   // Map of <function signature string, invoke_ wrappers>
322   StringMap<Function *> InvokeWrappers;
323   // Set of allowed function names for exception handling
324   std::set<std::string> EHAllowlistSet;
325   // Functions that contains calls to setjmp
326   SmallPtrSet<Function *, 8> SetjmpUsers;
327 
328   StringRef getPassName() const override {
329     return "WebAssembly Lower Emscripten Exceptions";
330   }
331 
332   using InstVector = SmallVectorImpl<Instruction *>;
333   bool runEHOnFunction(Function &F);
334   bool runSjLjOnFunction(Function &F);
335   void handleLongjmpableCallsForEmscriptenSjLj(
336       Function &F, InstVector &SetjmpTableInsts,
337       InstVector &SetjmpTableSizeInsts,
338       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
339   void
340   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
341                                     InstVector &SetjmpTableSizeInsts,
342                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
343   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
344 
345   Value *wrapInvoke(CallBase *CI);
346   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
347                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
348                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
349                       PHINode *&CallEmLongjmpBBThrewPHI,
350                       PHINode *&CallEmLongjmpBBThrewValuePHI,
351                       BasicBlock *&EndBB);
352   Function *getInvokeWrapper(CallBase *CI);
353 
354   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
355   bool supportsException(const Function *F) const {
356     return EnableEmEH && (areAllExceptionsAllowed() ||
357                           EHAllowlistSet.count(std::string(F->getName())));
358   }
359   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
360 
361   void rebuildSSA(Function &F);
362 
363 public:
364   static char ID;
365 
366   WebAssemblyLowerEmscriptenEHSjLj()
367       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
368         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
369         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
370     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
371            "Two SjLj modes cannot be turned on at the same time");
372     assert(!(EnableEmEH && EnableWasmSjLj) &&
373            "Wasm SjLj should be only used with Wasm EH");
374     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
375   }
376   bool runOnModule(Module &M) override;
377 
378   void getAnalysisUsage(AnalysisUsage &AU) const override {
379     AU.addRequired<DominatorTreeWrapperPass>();
380   }
381 };
382 } // End anonymous namespace
383 
384 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
385 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
386                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
387                 false, false)
388 
389 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
390   return new WebAssemblyLowerEmscriptenEHSjLj();
391 }
392 
393 static bool canThrow(const Value *V) {
394   if (const auto *F = dyn_cast<const Function>(V)) {
395     // Intrinsics cannot throw
396     if (F->isIntrinsic())
397       return false;
398     StringRef Name = F->getName();
399     // leave setjmp and longjmp (mostly) alone, we process them properly later
400     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
401       return false;
402     return !F->doesNotThrow();
403   }
404   // not a function, so an indirect call - can throw, we can't tell
405   return true;
406 }
407 
408 // Get a global variable with the given name. If it doesn't exist declare it,
409 // which will generate an import and assume that it will exist at link time.
410 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
411                                          WebAssemblyTargetMachine &TM,
412                                          const char *Name) {
413   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
414   if (!GV)
415     report_fatal_error(Twine("unable to create global: ") + Name);
416 
417   // If the target supports TLS, make this variable thread-local. We can't just
418   // unconditionally make it thread-local and depend on
419   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
420   // the side effect of disallowing the object from being linked into a
421   // shared-memory module, which we don't want to be responsible for.
422   auto *Subtarget = TM.getSubtargetImpl();
423   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
424                  ? GlobalValue::LocalExecTLSModel
425                  : GlobalValue::NotThreadLocal;
426   GV->setThreadLocalMode(TLS);
427   return GV;
428 }
429 
430 // Simple function name mangler.
431 // This function simply takes LLVM's string representation of parameter types
432 // and concatenate them with '_'. There are non-alphanumeric characters but llc
433 // is ok with it, and we need to postprocess these names after the lowering
434 // phase anyway.
435 static std::string getSignature(FunctionType *FTy) {
436   std::string Sig;
437   raw_string_ostream OS(Sig);
438   OS << *FTy->getReturnType();
439   for (Type *ParamTy : FTy->params())
440     OS << "_" << *ParamTy;
441   if (FTy->isVarArg())
442     OS << "_...";
443   Sig = OS.str();
444   erase_if(Sig, isSpace);
445   // When s2wasm parses .s file, a comma means the end of an argument. So a
446   // mangled function name can contain any character but a comma.
447   std::replace(Sig.begin(), Sig.end(), ',', '.');
448   return Sig;
449 }
450 
451 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
452                                        Module *M) {
453   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
454   // Tell the linker that this function is expected to be imported from the
455   // 'env' module.
456   if (!F->hasFnAttribute("wasm-import-module")) {
457     llvm::AttrBuilder B;
458     B.addAttribute("wasm-import-module", "env");
459     F->addFnAttrs(B);
460   }
461   if (!F->hasFnAttribute("wasm-import-name")) {
462     llvm::AttrBuilder B;
463     B.addAttribute("wasm-import-name", F->getName());
464     F->addFnAttrs(B);
465   }
466   return F;
467 }
468 
469 // Returns an integer type for the target architecture's address space.
470 // i32 for wasm32 and i64 for wasm64.
471 static Type *getAddrIntType(Module *M) {
472   IRBuilder<> IRB(M->getContext());
473   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
474 }
475 
476 // Returns an integer pointer type for the target architecture's address space.
477 // i32* for wasm32 and i64* for wasm64.
478 static Type *getAddrPtrType(Module *M) {
479   return Type::getIntNPtrTy(M->getContext(),
480                             M->getDataLayout().getPointerSizeInBits());
481 }
482 
483 // Returns an integer whose type is the integer type for the target's address
484 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
485 // integer.
486 static Value *getAddrSizeInt(Module *M, uint64_t C) {
487   IRBuilder<> IRB(M->getContext());
488   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
489 }
490 
491 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
492 // This is because a landingpad instruction contains two more arguments, a
493 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
494 // functions are named after the number of arguments in the original landingpad
495 // instruction.
496 Function *
497 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
498                                                        unsigned NumClauses) {
499   if (FindMatchingCatches.count(NumClauses))
500     return FindMatchingCatches[NumClauses];
501   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
502   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
503   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
504   Function *F = getEmscriptenFunction(
505       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
506   FindMatchingCatches[NumClauses] = F;
507   return F;
508 }
509 
510 // Generate invoke wrapper seqence with preamble and postamble
511 // Preamble:
512 // __THREW__ = 0;
513 // Postamble:
514 // %__THREW__.val = __THREW__; __THREW__ = 0;
515 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
516 // whether longjmp occurred), for future use.
517 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
518   Module *M = CI->getModule();
519   LLVMContext &C = M->getContext();
520 
521   IRBuilder<> IRB(C);
522   IRB.SetInsertPoint(CI);
523 
524   // Pre-invoke
525   // __THREW__ = 0;
526   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
527 
528   // Invoke function wrapper in JavaScript
529   SmallVector<Value *, 16> Args;
530   // Put the pointer to the callee as first argument, so it can be called
531   // within the invoke wrapper later
532   Args.push_back(CI->getCalledOperand());
533   Args.append(CI->arg_begin(), CI->arg_end());
534   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
535   NewCall->takeName(CI);
536   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
537   NewCall->setDebugLoc(CI->getDebugLoc());
538 
539   // Because we added the pointer to the callee as first argument, all
540   // argument attribute indices have to be incremented by one.
541   SmallVector<AttributeSet, 8> ArgAttributes;
542   const AttributeList &InvokeAL = CI->getAttributes();
543 
544   // No attributes for the callee pointer.
545   ArgAttributes.push_back(AttributeSet());
546   // Copy the argument attributes from the original
547   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
548     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
549 
550   AttrBuilder FnAttrs(InvokeAL.getFnAttrs());
551   if (FnAttrs.contains(Attribute::AllocSize)) {
552     // The allocsize attribute (if any) referes to parameters by index and needs
553     // to be adjusted.
554     unsigned SizeArg;
555     Optional<unsigned> NEltArg;
556     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
557     SizeArg += 1;
558     if (NEltArg.hasValue())
559       NEltArg = NEltArg.getValue() + 1;
560     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
561   }
562 
563   // Reconstruct the AttributesList based on the vector we constructed.
564   AttributeList NewCallAL = AttributeList::get(
565       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
566   NewCall->setAttributes(NewCallAL);
567 
568   CI->replaceAllUsesWith(NewCall);
569 
570   // Post-invoke
571   // %__THREW__.val = __THREW__; __THREW__ = 0;
572   Value *Threw =
573       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
574   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
575   return Threw;
576 }
577 
578 // Get matching invoke wrapper based on callee signature
579 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
580   Module *M = CI->getModule();
581   SmallVector<Type *, 16> ArgTys;
582   FunctionType *CalleeFTy = CI->getFunctionType();
583 
584   std::string Sig = getSignature(CalleeFTy);
585   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
586     return InvokeWrappers[Sig];
587 
588   // Put the pointer to the callee as first argument
589   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
590   // Add argument types
591   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
592 
593   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
594                                         CalleeFTy->isVarArg());
595   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
596   InvokeWrappers[Sig] = F;
597   return F;
598 }
599 
600 static bool canLongjmp(const Value *Callee) {
601   if (auto *CalleeF = dyn_cast<Function>(Callee))
602     if (CalleeF->isIntrinsic())
603       return false;
604 
605   // Attempting to transform inline assembly will result in something like:
606   //     call void @__invoke_void(void ()* asm ...)
607   // which is invalid because inline assembly blocks do not have addresses
608   // and can't be passed by pointer. The result is a crash with illegal IR.
609   if (isa<InlineAsm>(Callee))
610     return false;
611   StringRef CalleeName = Callee->getName();
612 
613   // The reason we include malloc/free here is to exclude the malloc/free
614   // calls generated in setjmp prep / cleanup routines.
615   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
616     return false;
617 
618   // There are functions in Emscripten's JS glue code or compiler-rt
619   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
620       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
621       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
622     return false;
623 
624   // __cxa_find_matching_catch_N functions cannot longjmp
625   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
626     return false;
627 
628   // Exception-catching related functions
629   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
630       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
631       CalleeName == "__clang_call_terminate")
632     return false;
633 
634   // Otherwise we don't know
635   return true;
636 }
637 
638 static bool isEmAsmCall(const Value *Callee) {
639   StringRef CalleeName = Callee->getName();
640   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
641   return CalleeName == "emscripten_asm_const_int" ||
642          CalleeName == "emscripten_asm_const_double" ||
643          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
644          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
645          CalleeName == "emscripten_asm_const_async_on_main_thread";
646 }
647 
648 // Generate testSetjmp function call seqence with preamble and postamble.
649 // The code this generates is equivalent to the following JavaScript code:
650 // %__threwValue.val = __threwValue;
651 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
652 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
653 //   if (%label == 0)
654 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
655 //   setTempRet0(%__threwValue.val);
656 // } else {
657 //   %label = -1;
658 // }
659 // %longjmp_result = getTempRet0();
660 //
661 // As output parameters. returns %label, %longjmp_result, and the BB the last
662 // instruction (%longjmp_result = ...) is in.
663 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
664     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
665     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
666     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
667     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
668   Function *F = BB->getParent();
669   Module *M = F->getParent();
670   LLVMContext &C = M->getContext();
671   IRBuilder<> IRB(C);
672   IRB.SetCurrentDebugLocation(DL);
673 
674   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
675   IRB.SetInsertPoint(BB);
676   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
677   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
678   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
679   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
680   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
681                                      ThrewValueGV->getName() + ".val");
682   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
683   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
684   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
685 
686   // Generate call.em.longjmp BB once and share it within the function
687   if (!CallEmLongjmpBB) {
688     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
689     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
690     IRB.SetInsertPoint(CallEmLongjmpBB);
691     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
692     CallEmLongjmpBBThrewValuePHI =
693         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
694     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
695     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
696     IRB.CreateCall(EmLongjmpF,
697                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
698     IRB.CreateUnreachable();
699   } else {
700     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
701     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
702   }
703 
704   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
705   // if (%label == 0)
706   IRB.SetInsertPoint(ThenBB1);
707   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
708   Value *ThrewPtr =
709       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
710   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
711                                       ThrewPtr->getName() + ".loaded");
712   Value *ThenLabel = IRB.CreateCall(
713       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
714   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
715   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
716 
717   // setTempRet0(%__threwValue.val);
718   IRB.SetInsertPoint(EndBB2);
719   IRB.CreateCall(SetTempRet0F, ThrewValue);
720   IRB.CreateBr(EndBB1);
721 
722   IRB.SetInsertPoint(ElseBB1);
723   IRB.CreateBr(EndBB1);
724 
725   // longjmp_result = getTempRet0();
726   IRB.SetInsertPoint(EndBB1);
727   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
728   LabelPHI->addIncoming(ThenLabel, EndBB2);
729 
730   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
731 
732   // Output parameter assignment
733   Label = LabelPHI;
734   EndBB = EndBB1;
735   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
736 }
737 
738 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
739   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
740   DT.recalculate(F); // CFG has been changed
741 
742   SSAUpdaterBulk SSA;
743   for (BasicBlock &BB : F) {
744     for (Instruction &I : BB) {
745       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
746       // If a value is defined by an invoke instruction, it is only available in
747       // its normal destination and not in its unwind destination.
748       if (auto *II = dyn_cast<InvokeInst>(&I))
749         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
750       else
751         SSA.AddAvailableValue(VarID, &BB, &I);
752       for (auto &U : I.uses()) {
753         auto *User = cast<Instruction>(U.getUser());
754         if (auto *UserPN = dyn_cast<PHINode>(User))
755           if (UserPN->getIncomingBlock(U) == &BB)
756             continue;
757         if (DT.dominates(&I, User))
758           continue;
759         SSA.AddUse(VarID, &U);
760       }
761     }
762   }
763   SSA.RewriteAllUses(&DT);
764 }
765 
766 // Replace uses of longjmp with a new longjmp function in Emscripten library.
767 // In Emscripten SjLj, the new function is
768 //   void emscripten_longjmp(uintptr_t, i32)
769 // In Wasm SjLj, the new function is
770 //   void __wasm_longjmp(i8*, i32)
771 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
772 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
773 // eventually be lowered to i32/i64 in the wasm backend.
774 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
775                                                           Function *NewF) {
776   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
777   Module *M = LongjmpF->getParent();
778   SmallVector<CallInst *, 8> ToErase;
779   LLVMContext &C = LongjmpF->getParent()->getContext();
780   IRBuilder<> IRB(C);
781 
782   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
783   // cast its first argument (jmp_buf*) appropriately
784   for (User *U : LongjmpF->users()) {
785     auto *CI = dyn_cast<CallInst>(U);
786     if (CI && CI->getCalledFunction() == LongjmpF) {
787       IRB.SetInsertPoint(CI);
788       Value *Env = nullptr;
789       if (NewF == EmLongjmpF)
790         Env =
791             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
792       else // WasmLongjmpF
793         Env =
794             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
795       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
796       ToErase.push_back(CI);
797     }
798   }
799   for (auto *I : ToErase)
800     I->eraseFromParent();
801 
802   // If we have any remaining uses of longjmp's function pointer, replace it
803   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
804   if (!LongjmpF->uses().empty()) {
805     Value *NewLongjmp =
806         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
807     LongjmpF->replaceAllUsesWith(NewLongjmp);
808   }
809 }
810 
811 static bool containsLongjmpableCalls(const Function *F) {
812   for (const auto &BB : *F)
813     for (const auto &I : BB)
814       if (const auto *CB = dyn_cast<CallBase>(&I))
815         if (canLongjmp(CB->getCalledOperand()))
816           return true;
817   return false;
818 }
819 
820 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
821   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
822 
823   LLVMContext &C = M.getContext();
824   IRBuilder<> IRB(C);
825 
826   Function *SetjmpF = M.getFunction("setjmp");
827   Function *LongjmpF = M.getFunction("longjmp");
828 
829   // In some platforms _setjmp and _longjmp are used instead. Change these to
830   // use setjmp/longjmp instead, because we later detect these functions by
831   // their names.
832   Function *SetjmpF2 = M.getFunction("_setjmp");
833   Function *LongjmpF2 = M.getFunction("_longjmp");
834   if (SetjmpF2) {
835     if (SetjmpF) {
836       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
837         report_fatal_error("setjmp and _setjmp have different function types");
838     } else {
839       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
840                                  GlobalValue::ExternalLinkage, "setjmp", M);
841     }
842     SetjmpF2->replaceAllUsesWith(SetjmpF);
843   }
844   if (LongjmpF2) {
845     if (LongjmpF) {
846       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
847         report_fatal_error(
848             "longjmp and _longjmp have different function types");
849     } else {
850       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
851                                   GlobalValue::ExternalLinkage, "setjmp", M);
852     }
853     LongjmpF2->replaceAllUsesWith(LongjmpF);
854   }
855 
856   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
857   assert(TPC && "Expected a TargetPassConfig");
858   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
859 
860   // Declare (or get) global variables __THREW__, __threwValue, and
861   // getTempRet0/setTempRet0 function which are used in common for both
862   // exception handling and setjmp/longjmp handling
863   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
864   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
865   GetTempRet0F = getEmscriptenFunction(
866       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
867   SetTempRet0F = getEmscriptenFunction(
868       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
869       "setTempRet0", &M);
870   GetTempRet0F->setDoesNotThrow();
871   SetTempRet0F->setDoesNotThrow();
872 
873   bool Changed = false;
874 
875   // Function registration for exception handling
876   if (EnableEmEH) {
877     // Register __resumeException function
878     FunctionType *ResumeFTy =
879         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
880     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
881     ResumeF->addFnAttr(Attribute::NoReturn);
882 
883     // Register llvm_eh_typeid_for function
884     FunctionType *EHTypeIDTy =
885         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
886     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
887   }
888 
889   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
890     // Precompute setjmp users
891     for (User *U : SetjmpF->users()) {
892       if (auto *CB = dyn_cast<CallBase>(U)) {
893         auto *UserF = CB->getFunction();
894         // If a function that calls setjmp does not contain any other calls that
895         // can longjmp, we don't need to do any transformation on that function,
896         // so can ignore it
897         if (containsLongjmpableCalls(UserF))
898           SetjmpUsers.insert(UserF);
899       } else {
900         std::string S;
901         raw_string_ostream SS(S);
902         SS << *U;
903         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
904                            SS.str());
905       }
906     }
907   }
908 
909   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
910   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
911   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
912 
913   // Function registration and data pre-gathering for setjmp/longjmp handling
914   if (DoSjLj) {
915     assert(EnableEmSjLj || EnableWasmSjLj);
916     if (EnableEmSjLj) {
917       // Register emscripten_longjmp function
918       FunctionType *FTy = FunctionType::get(
919           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
920       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
921       EmLongjmpF->addFnAttr(Attribute::NoReturn);
922     } else { // EnableWasmSjLj
923       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
924       FunctionType *FTy = FunctionType::get(
925           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
926       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
927       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
928     }
929 
930     if (SetjmpF) {
931       // Register saveSetjmp function
932       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
933       FunctionType *FTy =
934           FunctionType::get(Type::getInt32PtrTy(C),
935                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
936                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
937                             false);
938       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
939 
940       // Register testSetjmp function
941       FTy = FunctionType::get(
942           IRB.getInt32Ty(),
943           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
944           false);
945       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
946 
947       // wasm.catch() will be lowered down to wasm 'catch' instruction in
948       // instruction selection.
949       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
950       // Type for struct __WasmLongjmpArgs
951       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
952                                       IRB.getInt32Ty()    // val
953       );
954     }
955   }
956 
957   // Exception handling transformation
958   if (EnableEmEH) {
959     for (Function &F : M) {
960       if (F.isDeclaration())
961         continue;
962       Changed |= runEHOnFunction(F);
963     }
964   }
965 
966   // Setjmp/longjmp handling transformation
967   if (DoSjLj) {
968     Changed = true; // We have setjmp or longjmp somewhere
969     if (LongjmpF)
970       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
971     // Only traverse functions that uses setjmp in order not to insert
972     // unnecessary prep / cleanup code in every function
973     if (SetjmpF)
974       for (Function *F : SetjmpUsers)
975         runSjLjOnFunction(*F);
976   }
977 
978   if (!Changed) {
979     // Delete unused global variables and functions
980     if (ResumeF)
981       ResumeF->eraseFromParent();
982     if (EHTypeIDF)
983       EHTypeIDF->eraseFromParent();
984     if (EmLongjmpF)
985       EmLongjmpF->eraseFromParent();
986     if (SaveSetjmpF)
987       SaveSetjmpF->eraseFromParent();
988     if (TestSetjmpF)
989       TestSetjmpF->eraseFromParent();
990     return false;
991   }
992 
993   return true;
994 }
995 
996 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
997   Module &M = *F.getParent();
998   LLVMContext &C = F.getContext();
999   IRBuilder<> IRB(C);
1000   bool Changed = false;
1001   SmallVector<Instruction *, 64> ToErase;
1002   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1003 
1004   // rethrow.longjmp BB that will be shared within the function.
1005   BasicBlock *RethrowLongjmpBB = nullptr;
1006   // PHI node for the loaded value of __THREW__ global variable in
1007   // rethrow.longjmp BB
1008   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1009 
1010   for (BasicBlock &BB : F) {
1011     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1012     if (!II)
1013       continue;
1014     Changed = true;
1015     LandingPads.insert(II->getLandingPadInst());
1016     IRB.SetInsertPoint(II);
1017 
1018     const Value *Callee = II->getCalledOperand();
1019     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1020     if (NeedInvoke) {
1021       // Wrap invoke with invoke wrapper and generate preamble/postamble
1022       Value *Threw = wrapInvoke(II);
1023       ToErase.push_back(II);
1024 
1025       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1026       // exception but a longjmp. If the current function contains calls to
1027       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1028       // if the function does not contain setjmp calls, we shouldn't silently
1029       // ignore longjmps; we should rethrow them so they can be correctly
1030       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1031       // value is 0 when nothing happened, 1 when an exception is thrown, and
1032       // other values when longjmp is thrown.
1033       //
1034       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1035       //   goto %tail
1036       // else
1037       //   goto %longjmp.rethrow
1038       //
1039       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1040       //   %__threwValue.val = __threwValue
1041       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1042       //
1043       // tail: ;; Nothing happened or an exception is thrown
1044       //   ... Continue exception handling ...
1045       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1046           canLongjmp(Callee)) {
1047         // Create longjmp.rethrow BB once and share it within the function
1048         if (!RethrowLongjmpBB) {
1049           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1050           IRB.SetInsertPoint(RethrowLongjmpBB);
1051           RethrowLongjmpBBThrewPHI =
1052               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1053           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1054           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1055                                              ThrewValueGV->getName() + ".val");
1056           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1057           IRB.CreateUnreachable();
1058         } else {
1059           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1060         }
1061 
1062         IRB.SetInsertPoint(II); // Restore the insert point back
1063         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1064         Value *CmpEqOne =
1065             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1066         Value *CmpEqZero =
1067             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1068         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1069         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1070         IRB.SetInsertPoint(Tail);
1071         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1072       }
1073 
1074       // Insert a branch based on __THREW__ variable
1075       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1076       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1077 
1078     } else {
1079       // This can't throw, and we don't need this invoke, just replace it with a
1080       // call+branch
1081       SmallVector<Value *, 16> Args(II->args());
1082       CallInst *NewCall =
1083           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
1084       NewCall->takeName(II);
1085       NewCall->setCallingConv(II->getCallingConv());
1086       NewCall->setDebugLoc(II->getDebugLoc());
1087       NewCall->setAttributes(II->getAttributes());
1088       II->replaceAllUsesWith(NewCall);
1089       ToErase.push_back(II);
1090 
1091       IRB.CreateBr(II->getNormalDest());
1092 
1093       // Remove any PHI node entries from the exception destination
1094       II->getUnwindDest()->removePredecessor(&BB);
1095     }
1096   }
1097 
1098   // Process resume instructions
1099   for (BasicBlock &BB : F) {
1100     // Scan the body of the basic block for resumes
1101     for (Instruction &I : BB) {
1102       auto *RI = dyn_cast<ResumeInst>(&I);
1103       if (!RI)
1104         continue;
1105       Changed = true;
1106 
1107       // Split the input into legal values
1108       Value *Input = RI->getValue();
1109       IRB.SetInsertPoint(RI);
1110       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1111       // Create a call to __resumeException function
1112       IRB.CreateCall(ResumeF, {Low});
1113       // Add a terminator to the block
1114       IRB.CreateUnreachable();
1115       ToErase.push_back(RI);
1116     }
1117   }
1118 
1119   // Process llvm.eh.typeid.for intrinsics
1120   for (BasicBlock &BB : F) {
1121     for (Instruction &I : BB) {
1122       auto *CI = dyn_cast<CallInst>(&I);
1123       if (!CI)
1124         continue;
1125       const Function *Callee = CI->getCalledFunction();
1126       if (!Callee)
1127         continue;
1128       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1129         continue;
1130       Changed = true;
1131 
1132       IRB.SetInsertPoint(CI);
1133       CallInst *NewCI =
1134           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1135       CI->replaceAllUsesWith(NewCI);
1136       ToErase.push_back(CI);
1137     }
1138   }
1139 
1140   // Look for orphan landingpads, can occur in blocks with no predecessors
1141   for (BasicBlock &BB : F) {
1142     Instruction *I = BB.getFirstNonPHI();
1143     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1144       LandingPads.insert(LPI);
1145   }
1146   Changed |= !LandingPads.empty();
1147 
1148   // Handle all the landingpad for this function together, as multiple invokes
1149   // may share a single lp
1150   for (LandingPadInst *LPI : LandingPads) {
1151     IRB.SetInsertPoint(LPI);
1152     SmallVector<Value *, 16> FMCArgs;
1153     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1154       Constant *Clause = LPI->getClause(I);
1155       // TODO Handle filters (= exception specifications).
1156       // https://bugs.llvm.org/show_bug.cgi?id=50396
1157       if (LPI->isCatch(I))
1158         FMCArgs.push_back(Clause);
1159     }
1160 
1161     // Create a call to __cxa_find_matching_catch_N function
1162     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1163     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1164     Value *Undef = UndefValue::get(LPI->getType());
1165     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1166     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1167     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1168 
1169     LPI->replaceAllUsesWith(Pair1);
1170     ToErase.push_back(LPI);
1171   }
1172 
1173   // Erase everything we no longer need in this function
1174   for (Instruction *I : ToErase)
1175     I->eraseFromParent();
1176 
1177   return Changed;
1178 }
1179 
1180 // This tries to get debug info from the instruction before which a new
1181 // instruction will be inserted, and if there's no debug info in that
1182 // instruction, tries to get the info instead from the previous instruction (if
1183 // any). If none of these has debug info and a DISubprogram is provided, it
1184 // creates a dummy debug info with the first line of the function, because IR
1185 // verifier requires all inlinable callsites should have debug info when both a
1186 // caller and callee have DISubprogram. If none of these conditions are met,
1187 // returns empty info.
1188 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1189                                     DISubprogram *SP) {
1190   assert(InsertBefore);
1191   if (InsertBefore->getDebugLoc())
1192     return InsertBefore->getDebugLoc();
1193   const Instruction *Prev = InsertBefore->getPrevNode();
1194   if (Prev && Prev->getDebugLoc())
1195     return Prev->getDebugLoc();
1196   if (SP)
1197     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1198   return DebugLoc();
1199 }
1200 
1201 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1202   assert(EnableEmSjLj || EnableWasmSjLj);
1203   Module &M = *F.getParent();
1204   LLVMContext &C = F.getContext();
1205   IRBuilder<> IRB(C);
1206   SmallVector<Instruction *, 64> ToErase;
1207   // Vector of %setjmpTable values
1208   SmallVector<Instruction *, 4> SetjmpTableInsts;
1209   // Vector of %setjmpTableSize values
1210   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1211 
1212   // Setjmp preparation
1213 
1214   // This instruction effectively means %setjmpTableSize = 4.
1215   // We create this as an instruction intentionally, and we don't want to fold
1216   // this instruction to a constant 4, because this value will be used in
1217   // SSAUpdater.AddAvailableValue(...) later.
1218   BasicBlock *Entry = &F.getEntryBlock();
1219   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1220   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1221 
1222   BinaryOperator *SetjmpTableSize =
1223       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1224                              "setjmpTableSize", Entry->getTerminator());
1225   SetjmpTableSize->setDebugLoc(FirstDL);
1226   // setjmpTable = (int *) malloc(40);
1227   Instruction *SetjmpTable = CallInst::CreateMalloc(
1228       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1229       nullptr, nullptr, "setjmpTable");
1230   SetjmpTable->setDebugLoc(FirstDL);
1231   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1232   // mismatch. We need to set the debug loc for the original call too.
1233   auto *MallocCall = SetjmpTable->stripPointerCasts();
1234   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1235     MallocCallI->setDebugLoc(FirstDL);
1236   }
1237   // setjmpTable[0] = 0;
1238   IRB.SetInsertPoint(SetjmpTableSize);
1239   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1240   SetjmpTableInsts.push_back(SetjmpTable);
1241   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1242 
1243   // Setjmp transformation
1244   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1245   Function *SetjmpF = M.getFunction("setjmp");
1246   for (User *U : SetjmpF->users()) {
1247     auto *CI = dyn_cast<CallInst>(U);
1248     // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but
1249     // we don't support two being used together yet.
1250     if (!CI)
1251       report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet");
1252     BasicBlock *BB = CI->getParent();
1253     if (BB->getParent() != &F) // in other function
1254       continue;
1255 
1256     // The tail is everything right after the call, and will be reached once
1257     // when setjmp is called, and later when longjmp returns to the setjmp
1258     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1259     // Add a phi to the tail, which will be the output of setjmp, which
1260     // indicates if this is the first call or a longjmp back. The phi directly
1261     // uses the right value based on where we arrive from
1262     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1263     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1264 
1265     // setjmp initial call returns 0
1266     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1267     // The proper output is now this, not the setjmp call itself
1268     CI->replaceAllUsesWith(SetjmpRet);
1269     // longjmp returns to the setjmp will add themselves to this phi
1270     SetjmpRetPHIs.push_back(SetjmpRet);
1271 
1272     // Fix call target
1273     // Our index in the function is our place in the array + 1 to avoid index
1274     // 0, because index 0 means the longjmp is not ours to handle.
1275     IRB.SetInsertPoint(CI);
1276     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1277                      SetjmpTable, SetjmpTableSize};
1278     Instruction *NewSetjmpTable =
1279         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1280     Instruction *NewSetjmpTableSize =
1281         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1282     SetjmpTableInsts.push_back(NewSetjmpTable);
1283     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1284     ToErase.push_back(CI);
1285   }
1286 
1287   // Handle longjmpable calls.
1288   if (EnableEmSjLj)
1289     handleLongjmpableCallsForEmscriptenSjLj(
1290         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1291   else // EnableWasmSjLj
1292     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1293                                       SetjmpRetPHIs);
1294 
1295   // Erase everything we no longer need in this function
1296   for (Instruction *I : ToErase)
1297     I->eraseFromParent();
1298 
1299   // Free setjmpTable buffer before each return instruction + function-exiting
1300   // call
1301   SmallVector<Instruction *, 16> ExitingInsts;
1302   for (BasicBlock &BB : F) {
1303     Instruction *TI = BB.getTerminator();
1304     if (isa<ReturnInst>(TI))
1305       ExitingInsts.push_back(TI);
1306     // Any 'call' instruction with 'noreturn' attribute exits the function at
1307     // this point. If this throws but unwinds to another EH pad within this
1308     // function instead of exiting, this would have been an 'invoke', which
1309     // happens if we use Wasm EH or Wasm SjLJ.
1310     for (auto &I : BB) {
1311       if (auto *CI = dyn_cast<CallInst>(&I)) {
1312         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1313         if (Function *CalleeF = CI->getCalledFunction())
1314           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1315         if (IsNoReturn)
1316           ExitingInsts.push_back(&I);
1317       }
1318     }
1319   }
1320   for (auto *I : ExitingInsts) {
1321     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1322     // If this existing instruction is a call within a catchpad, we should add
1323     // it as "funclet" to the operand bundle of 'free' call
1324     SmallVector<OperandBundleDef, 1> Bundles;
1325     if (auto *CB = dyn_cast<CallBase>(I))
1326       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1327         Bundles.push_back(OperandBundleDef(*Bundle));
1328     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1329     Free->setDebugLoc(DL);
1330     // CallInst::CreateFree may create a bitcast instruction if its argument
1331     // types mismatch. We need to set the debug loc for the bitcast too.
1332     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1333       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1334         BitCastI->setDebugLoc(DL);
1335     }
1336   }
1337 
1338   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1339   // (when buffer reallocation occurs)
1340   // entry:
1341   //   setjmpTableSize = 4;
1342   //   setjmpTable = (int *) malloc(40);
1343   //   setjmpTable[0] = 0;
1344   // ...
1345   // somebb:
1346   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1347   //   setjmpTableSize = getTempRet0();
1348   // So we need to make sure the SSA for these variables is valid so that every
1349   // saveSetjmp and testSetjmp calls have the correct arguments.
1350   SSAUpdater SetjmpTableSSA;
1351   SSAUpdater SetjmpTableSizeSSA;
1352   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1353   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1354   for (Instruction *I : SetjmpTableInsts)
1355     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1356   for (Instruction *I : SetjmpTableSizeInsts)
1357     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1358 
1359   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1360     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1361       if (I->getParent() != Entry)
1362         SetjmpTableSSA.RewriteUse(U);
1363   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1364     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1365       if (I->getParent() != Entry)
1366         SetjmpTableSizeSSA.RewriteUse(U);
1367 
1368   // Finally, our modifications to the cfg can break dominance of SSA variables.
1369   // For example, in this code,
1370   // if (x()) { .. setjmp() .. }
1371   // if (y()) { .. longjmp() .. }
1372   // We must split the longjmp block, and it can jump into the block splitted
1373   // from setjmp one. But that means that when we split the setjmp block, it's
1374   // first part no longer dominates its second part - there is a theoretically
1375   // possible control flow path where x() is false, then y() is true and we
1376   // reach the second part of the setjmp block, without ever reaching the first
1377   // part. So, we rebuild SSA form here.
1378   rebuildSSA(F);
1379   return true;
1380 }
1381 
1382 // Update each call that can longjmp so it can return to the corresponding
1383 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1384 // comments at top of the file for details.
1385 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1386     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1387     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1388   Module &M = *F.getParent();
1389   LLVMContext &C = F.getContext();
1390   IRBuilder<> IRB(C);
1391   SmallVector<Instruction *, 64> ToErase;
1392 
1393   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1394   // These values are defined in the beginning of the function and also in each
1395   // setjmp callsite, but we don't know which values we should use at this
1396   // point. So here we arbitraily use the ones defined in the beginning of the
1397   // function, and SSAUpdater will later update them to the correct values.
1398   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1399   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1400 
1401   // call.em.longjmp BB that will be shared within the function.
1402   BasicBlock *CallEmLongjmpBB = nullptr;
1403   // PHI node for the loaded value of __THREW__ global variable in
1404   // call.em.longjmp BB
1405   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1406   // PHI node for the loaded value of __threwValue global variable in
1407   // call.em.longjmp BB
1408   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1409   // rethrow.exn BB that will be shared within the function.
1410   BasicBlock *RethrowExnBB = nullptr;
1411 
1412   // Because we are creating new BBs while processing and don't want to make
1413   // all these newly created BBs candidates again for longjmp processing, we
1414   // first make the vector of candidate BBs.
1415   std::vector<BasicBlock *> BBs;
1416   for (BasicBlock &BB : F)
1417     BBs.push_back(&BB);
1418 
1419   // BBs.size() will change within the loop, so we query it every time
1420   for (unsigned I = 0; I < BBs.size(); I++) {
1421     BasicBlock *BB = BBs[I];
1422     for (Instruction &I : *BB) {
1423       if (isa<InvokeInst>(&I))
1424         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1425                            "a restriction that `setjmp` function call and "
1426                            "exception cannot be used within the same function");
1427       auto *CI = dyn_cast<CallInst>(&I);
1428       if (!CI)
1429         continue;
1430 
1431       const Value *Callee = CI->getCalledOperand();
1432       if (!canLongjmp(Callee))
1433         continue;
1434       if (isEmAsmCall(Callee))
1435         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1436                                F.getName() +
1437                                ". Please consider using EM_JS, or move the "
1438                                "EM_ASM into another function.",
1439                            false);
1440 
1441       Value *Threw = nullptr;
1442       BasicBlock *Tail;
1443       if (Callee->getName().startswith("__invoke_")) {
1444         // If invoke wrapper has already been generated for this call in
1445         // previous EH phase, search for the load instruction
1446         // %__THREW__.val = __THREW__;
1447         // in postamble after the invoke wrapper call
1448         LoadInst *ThrewLI = nullptr;
1449         StoreInst *ThrewResetSI = nullptr;
1450         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1451              I != IE; ++I) {
1452           if (auto *LI = dyn_cast<LoadInst>(I))
1453             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1454               if (GV == ThrewGV) {
1455                 Threw = ThrewLI = LI;
1456                 break;
1457               }
1458         }
1459         // Search for the store instruction after the load above
1460         // __THREW__ = 0;
1461         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1462              I != IE; ++I) {
1463           if (auto *SI = dyn_cast<StoreInst>(I)) {
1464             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1465               if (GV == ThrewGV &&
1466                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1467                 ThrewResetSI = SI;
1468                 break;
1469               }
1470             }
1471           }
1472         }
1473         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1474         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1475         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1476 
1477       } else {
1478         // Wrap call with invoke wrapper and generate preamble/postamble
1479         Threw = wrapInvoke(CI);
1480         ToErase.push_back(CI);
1481         Tail = SplitBlock(BB, CI->getNextNode());
1482 
1483         // If exception handling is enabled, the thrown value can be not a
1484         // longjmp but an exception, in which case we shouldn't silently ignore
1485         // exceptions; we should rethrow them.
1486         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1487         // thrown, other values when longjmp is thrown.
1488         //
1489         // if (%__THREW__.val == 1)
1490         //   goto %eh.rethrow
1491         // else
1492         //   goto %normal
1493         //
1494         // eh.rethrow: ;; Rethrow exception
1495         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1496         //   __resumeException(%exn)
1497         //
1498         // normal:
1499         //   <-- Insertion point. Will insert sjlj handling code from here
1500         //   goto %tail
1501         //
1502         // tail:
1503         //   ...
1504         if (supportsException(&F) && canThrow(Callee)) {
1505           // We will add a new conditional branch. So remove the branch created
1506           // when we split the BB
1507           ToErase.push_back(BB->getTerminator());
1508 
1509           // Generate rethrow.exn BB once and share it within the function
1510           if (!RethrowExnBB) {
1511             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1512             IRB.SetInsertPoint(RethrowExnBB);
1513             CallInst *Exn =
1514                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1515             IRB.CreateCall(ResumeF, {Exn});
1516             IRB.CreateUnreachable();
1517           }
1518 
1519           IRB.SetInsertPoint(CI);
1520           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1521           Value *CmpEqOne =
1522               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1523           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1524 
1525           IRB.SetInsertPoint(NormalBB);
1526           IRB.CreateBr(Tail);
1527           BB = NormalBB; // New insertion point to insert testSetjmp()
1528         }
1529       }
1530 
1531       // We need to replace the terminator in Tail - SplitBlock makes BB go
1532       // straight to Tail, we need to check if a longjmp occurred, and go to the
1533       // right setjmp-tail if so
1534       ToErase.push_back(BB->getTerminator());
1535 
1536       // Generate a function call to testSetjmp function and preamble/postamble
1537       // code to figure out (1) whether longjmp occurred (2) if longjmp
1538       // occurred, which setjmp it corresponds to
1539       Value *Label = nullptr;
1540       Value *LongjmpResult = nullptr;
1541       BasicBlock *EndBB = nullptr;
1542       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1543                      Label, LongjmpResult, CallEmLongjmpBB,
1544                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1545                      EndBB);
1546       assert(Label && LongjmpResult && EndBB);
1547 
1548       // Create switch instruction
1549       IRB.SetInsertPoint(EndBB);
1550       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1551       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1552       // -1 means no longjmp happened, continue normally (will hit the default
1553       // switch case). 0 means a longjmp that is not ours to handle, needs a
1554       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1555       // 0).
1556       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1557         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1558         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1559       }
1560 
1561       // We are splitting the block here, and must continue to find other calls
1562       // in the block - which is now split. so continue to traverse in the Tail
1563       BBs.push_back(Tail);
1564     }
1565   }
1566 
1567   for (Instruction *I : ToErase)
1568     I->eraseFromParent();
1569 }
1570 
1571 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1572 // if the longjmp corresponds to one of setjmps in the current function, and if
1573 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1574 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1575 // top of the file for details.
1576 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1577     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1578     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1579   Module &M = *F.getParent();
1580   LLVMContext &C = F.getContext();
1581   IRBuilder<> IRB(C);
1582 
1583   // A function with catchswitch/catchpad instruction should have a personality
1584   // function attached to it. Search for the wasm personality function, and if
1585   // it exists, use it, and if it doesn't, create a dummy personality function.
1586   // (SjLj is not going to call it anyway.)
1587   if (!F.hasPersonalityFn()) {
1588     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1589     FunctionType *PersType =
1590         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1591     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1592     F.setPersonalityFn(
1593         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1594   }
1595 
1596   // Use the entry BB's debugloc as a fallback
1597   BasicBlock *Entry = &F.getEntryBlock();
1598   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1599   IRB.SetCurrentDebugLocation(FirstDL);
1600 
1601   // Arbitrarily use the ones defined in the beginning of the function.
1602   // SSAUpdater will later update them to the correct values.
1603   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1604   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1605 
1606   // Add setjmp.dispatch BB right after the entry block. Because we have
1607   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1608   // rest into another BB, here 'OrigEntry' is the function's original entry
1609   // block before the transformation.
1610   //
1611   // entry:
1612   //   setjmpTable / setjmpTableSize initialization
1613   // setjmp.dispatch:
1614   //   switch will be inserted here later
1615   // entry.split: (OrigEntry)
1616   //   the original function starts here
1617   BasicBlock *OrigEntry = Entry->getNextNode();
1618   BasicBlock *SetjmpDispatchBB =
1619       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1620   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1621 
1622   // Create catch.dispatch.longjmp BB a catchswitch instruction
1623   BasicBlock *CatchSwitchBB =
1624       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1625   IRB.SetInsertPoint(CatchSwitchBB);
1626   CatchSwitchInst *CatchSwitch =
1627       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1628 
1629   // Create catch.longjmp BB and a catchpad instruction
1630   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1631   CatchSwitch->addHandler(CatchLongjmpBB);
1632   IRB.SetInsertPoint(CatchLongjmpBB);
1633   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitch, {});
1634 
1635   // Wasm throw and catch instructions can throw and catch multiple values, but
1636   // that requires multivalue support in the toolchain, which is currently not
1637   // very reliable. We instead throw and catch a pointer to a struct value of
1638   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1639   Instruction *CatchCI =
1640       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1641   Value *LongjmpArgs =
1642       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1643   Value *EnvField =
1644       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1645   Value *ValField =
1646       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1647   // void *env = __wasm_longjmp_args.env;
1648   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1649   // int val = __wasm_longjmp_args.val;
1650   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1651 
1652   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1653   // if (%label == 0)
1654   //   __wasm_longjmp(%env, %val)
1655   // catchret to %setjmp.dispatch
1656   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1657   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1658   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1659   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1660   Value *Label =
1661       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1662                      OperandBundleDef("funclet", CatchPad), "label");
1663   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1664   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1665 
1666   IRB.SetInsertPoint(ThenBB);
1667   CallInst *WasmLongjmpCI = IRB.CreateCall(
1668       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1669   IRB.CreateUnreachable();
1670 
1671   IRB.SetInsertPoint(EndBB);
1672   // Jump to setjmp.dispatch block
1673   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1674 
1675   // Go back to setjmp.dispatch BB
1676   // setjmp.dispatch:
1677   //   switch %label {
1678   //     label 1: goto post-setjmp BB 1
1679   //     label 2: goto post-setjmp BB 2
1680   //     ...
1681   //     default: goto splitted next BB
1682   //   }
1683   IRB.SetInsertPoint(SetjmpDispatchBB);
1684   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1685   LabelPHI->addIncoming(Label, EndBB);
1686   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1687   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1688   // -1 means no longjmp happened, continue normally (will hit the default
1689   // switch case). 0 means a longjmp that is not ours to handle, needs a
1690   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1691   // 0).
1692   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1693     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1694     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1695   }
1696 
1697   // Convert all longjmpable call instructions to invokes that unwind to the
1698   // newly created catch.dispatch.longjmp BB.
1699   SmallVector<Instruction *, 64> ToErase;
1700   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1701     for (Instruction &I : *BB) {
1702       auto *CI = dyn_cast<CallInst>(&I);
1703       if (!CI)
1704         continue;
1705       const Value *Callee = CI->getCalledOperand();
1706       if (!canLongjmp(Callee))
1707         continue;
1708       if (isEmAsmCall(Callee))
1709         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1710                                F.getName() +
1711                                ". Please consider using EM_JS, or move the "
1712                                "EM_ASM into another function.",
1713                            false);
1714       // This is __wasm_longjmp() call we inserted in this function, which
1715       // rethrows the longjmp when the longjmp does not correspond to one of
1716       // setjmps in this function. We should not convert this call to an invoke.
1717       if (CI == WasmLongjmpCI)
1718         continue;
1719       ToErase.push_back(CI);
1720 
1721       // Even if the callee function has attribute 'nounwind', which is true for
1722       // all C functions, it can longjmp, which means it can throw a Wasm
1723       // exception now.
1724       CI->removeFnAttr(Attribute::NoUnwind);
1725       if (Function *CalleeF = CI->getCalledFunction()) {
1726         CalleeF->removeFnAttr(Attribute::NoUnwind);
1727       }
1728 
1729       IRB.SetInsertPoint(CI);
1730       BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1731       // We will add a new invoke. So remove the branch created when we split
1732       // the BB
1733       ToErase.push_back(BB->getTerminator());
1734       SmallVector<Value *, 8> Args(CI->args());
1735       InvokeInst *II =
1736           IRB.CreateInvoke(CI->getFunctionType(), CI->getCalledOperand(), Tail,
1737                            CatchSwitchBB, Args);
1738       II->takeName(CI);
1739       II->setDebugLoc(CI->getDebugLoc());
1740       II->setAttributes(CI->getAttributes());
1741       CI->replaceAllUsesWith(II);
1742     }
1743   }
1744 
1745   for (Instruction *I : ToErase)
1746     I->eraseFromParent();
1747 }
1748