1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp function 11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try 12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in 13 /// case of Emscripten SjLJ. 14 /// 15 /// * Emscripten exception handling 16 /// This pass lowers invokes and landingpads into library functions in JS glue 17 /// code. Invokes are lowered into function wrappers called invoke wrappers that 18 /// exist in JS side, which wraps the original function call with JS try-catch. 19 /// If an exception occurred, cxa_throw() function in JS side sets some 20 /// variables (see below) so we can check whether an exception occurred from 21 /// wasm code and handle it appropriately. 22 /// 23 /// * Emscripten setjmp-longjmp handling 24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 25 /// The idea is that each block with a setjmp is broken up into two parts: the 26 /// part containing setjmp and the part right after the setjmp. The latter part 27 /// is either reached from the setjmp, or later from a longjmp. To handle the 28 /// longjmp, all calls that might longjmp are also called using invoke wrappers 29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 30 /// we can check / whether a longjmp occurred from wasm code. Each block with a 31 /// function call that might longjmp is also split up after the longjmp call. 32 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 33 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 34 /// We assume setjmp-longjmp handling always run after EH handling, which means 35 /// we don't expect any exception-related instructions when SjLj runs. 36 /// FIXME Currently this scheme does not support indirect call of setjmp, 37 /// because of the limitation of the scheme itself. fastcomp does not support it 38 /// either. 39 /// 40 /// In detail, this pass does following things: 41 /// 42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 43 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 44 /// These variables are used for both exceptions and setjmp/longjmps. 45 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 46 /// means nothing occurred, 1 means an exception occurred, and other numbers 47 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 48 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 49 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 50 /// longjmp. 51 /// 52 /// * Emscripten exception handling 53 /// 54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 55 /// at link time. setThrew exists in Emscripten's compiler-rt: 56 /// 57 /// void setThrew(uintptr_t threw, int value) { 58 /// if (__THREW__ == 0) { 59 /// __THREW__ = threw; 60 /// __threwValue = value; 61 /// } 62 /// } 63 // 64 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 65 /// In exception handling, getTempRet0 indicates the type of an exception 66 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 67 /// function. 68 /// 69 /// 3) Lower 70 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 71 /// into 72 /// __THREW__ = 0; 73 /// call @__invoke_SIG(func, arg1, arg2) 74 /// %__THREW__.val = __THREW__; 75 /// __THREW__ = 0; 76 /// if (%__THREW__.val == 1) 77 /// goto %lpad 78 /// else 79 /// goto %invoke.cont 80 /// SIG is a mangled string generated based on the LLVM IR-level function 81 /// signature. After LLVM IR types are lowered to the target wasm types, 82 /// the names for these wrappers will change based on wasm types as well, 83 /// as in invoke_vi (function takes an int and returns void). The bodies of 84 /// these wrappers will be generated in JS glue code, and inside those 85 /// wrappers we use JS try-catch to generate actual exception effects. It 86 /// also calls the original callee function. An example wrapper in JS code 87 /// would look like this: 88 /// function invoke_vi(index,a1) { 89 /// try { 90 /// Module["dynCall_vi"](index,a1); // This calls original callee 91 /// } catch(e) { 92 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 93 /// _setThrew(1, 0); // setThrew is called here 94 /// } 95 /// } 96 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 97 /// so we can jump to the right BB based on this value. 98 /// 99 /// 4) Lower 100 /// %val = landingpad catch c1 catch c2 catch c3 ... 101 /// ... use %val ... 102 /// into 103 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 104 /// %val = {%fmc, getTempRet0()} 105 /// ... use %val ... 106 /// Here N is a number calculated based on the number of clauses. 107 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 108 /// 109 /// 5) Lower 110 /// resume {%a, %b} 111 /// into 112 /// call @__resumeException(%a) 113 /// where __resumeException() is a function in JS glue code. 114 /// 115 /// 6) Lower 116 /// call @llvm.eh.typeid.for(type) (intrinsic) 117 /// into 118 /// call @llvm_eh_typeid_for(type) 119 /// llvm_eh_typeid_for function will be generated in JS glue code. 120 /// 121 /// * Emscripten setjmp / longjmp handling 122 /// 123 /// If there are calls to longjmp() 124 /// 125 /// 1) Lower 126 /// longjmp(env, val) 127 /// into 128 /// emscripten_longjmp(env, val) 129 /// 130 /// If there are calls to setjmp() 131 /// 132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 133 /// sejmpTableSize as follows: 134 /// setjmpTableSize = 4; 135 /// setjmpTable = (int *) malloc(40); 136 /// setjmpTable[0] = 0; 137 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 138 /// Emscripten compiler-rt. 139 /// 140 /// 3) Lower 141 /// setjmp(env) 142 /// into 143 /// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 144 /// setjmpTableSize = getTempRet0(); 145 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 146 /// is incrementally assigned from 0) and its label (a unique number that 147 /// represents each callsite of setjmp). When we need more entries in 148 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 149 /// compiler-rt and it will return the new table address, and assign the new 150 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 151 /// the buffer 'env'. A BB with setjmp is split into two after setjmp call in 152 /// order to make the post-setjmp BB the possible destination of longjmp BB. 153 /// 154 /// 4) Lower every call that might longjmp into 155 /// __THREW__ = 0; 156 /// call @__invoke_SIG(func, arg1, arg2) 157 /// %__THREW__.val = __THREW__; 158 /// __THREW__ = 0; 159 /// %__threwValue.val = __threwValue; 160 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 161 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 162 /// setjmpTableSize); 163 /// if (%label == 0) 164 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 165 /// setTempRet0(%__threwValue.val); 166 /// } else { 167 /// %label = -1; 168 /// } 169 /// longjmp_result = getTempRet0(); 170 /// switch %label { 171 /// label 1: goto post-setjmp BB 1 172 /// label 2: goto post-setjmp BB 2 173 /// ... 174 /// default: goto splitted next BB 175 /// } 176 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 177 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 178 /// will be the address of matching jmp_buf buffer and __threwValue be the 179 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is 180 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 181 /// each setjmp callsite. Label 0 means this longjmp buffer does not 182 /// correspond to one of the setjmp callsites in this function, so in this 183 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 184 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 185 /// label. 186 /// 187 /// * Wasm setjmp / longjmp handling 188 /// This mode still uses some Emscripten library functions but not JavaScript's 189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics, 190 /// which will be lowered to exception handling instructions. 191 /// 192 /// If there are calls to longjmp() 193 /// 194 /// 1) Lower 195 /// longjmp(env, val) 196 /// into 197 /// __wasm_longjmp(env, val) 198 /// 199 /// If there are calls to setjmp() 200 /// 201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj. 202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite 203 /// transformation) 204 /// 205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value 206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this 207 /// struct: 208 /// 209 /// struct __WasmLongjmpArgs { 210 /// void *env; 211 /// int val; 212 /// }; 213 /// struct __WasmLongjmpArgs __wasm_longjmp_args; 214 /// 215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We 216 /// use this struct to transfer two values by throwing a single value. Wasm 217 /// throw and catch instructions are capable of throwing and catching multiple 218 /// values, but it also requires multivalue support that is currently not very 219 /// reliable. 220 /// TODO Switch to throwing and catching two values without using the struct 221 /// 222 /// All longjmpable function calls will be converted to an invoke that will 223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we 224 /// test the thrown values using testSetjmp function as we do for Emscripten 225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every 226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in 227 /// Wasm SjLj we do the testing in only one place, in this catchpad. 228 /// 229 /// After testing calling testSetjmp(), if the longjmp does not correspond to 230 /// one of the setjmps within the current function, it rethrows the longjmp 231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the 232 /// function, we jump to the beginning of the function, which contains a switch 233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for 234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of 235 /// the function. (after setjmpTable/setjmpTableSize initialization) 236 /// 237 /// The below is the pseudocode for what we have described 238 /// 239 /// entry: 240 /// Initialize setjmpTable and setjmpTableSize 241 /// 242 /// setjmp.dispatch: 243 /// switch %label { 244 /// label 1: goto post-setjmp BB 1 245 /// label 2: goto post-setjmp BB 2 246 /// ... 247 /// default: goto splitted next BB 248 /// } 249 /// ... 250 /// 251 /// bb: 252 /// invoke void @foo() ;; foo is a longjmpable function 253 /// to label %next unwind label %catch.dispatch.longjmp 254 /// ... 255 /// 256 /// catch.dispatch.longjmp: 257 /// %0 = catchswitch within none [label %catch.longjmp] unwind to caller 258 /// 259 /// catch.longjmp: 260 /// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs 261 /// %env = load 'env' field from __WasmLongjmpArgs 262 /// %val = load 'val' field from __WasmLongjmpArgs 263 /// %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 264 /// if (%label == 0) 265 /// __wasm_longjmp(%env, %val) 266 /// catchret to %setjmp.dispatch 267 /// 268 ///===----------------------------------------------------------------------===// 269 270 #include "Utils/WebAssemblyUtilities.h" 271 #include "WebAssembly.h" 272 #include "WebAssemblyTargetMachine.h" 273 #include "llvm/ADT/StringExtras.h" 274 #include "llvm/CodeGen/TargetPassConfig.h" 275 #include "llvm/CodeGen/WasmEHFuncInfo.h" 276 #include "llvm/IR/DebugInfoMetadata.h" 277 #include "llvm/IR/Dominators.h" 278 #include "llvm/IR/IRBuilder.h" 279 #include "llvm/IR/IntrinsicsWebAssembly.h" 280 #include "llvm/Support/CommandLine.h" 281 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 282 #include "llvm/Transforms/Utils/SSAUpdater.h" 283 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 284 285 using namespace llvm; 286 287 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 288 289 static cl::list<std::string> 290 EHAllowlist("emscripten-cxx-exceptions-allowed", 291 cl::desc("The list of function names in which Emscripten-style " 292 "exception handling is enabled (see emscripten " 293 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 294 cl::CommaSeparated); 295 296 namespace { 297 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 298 bool EnableEmEH; // Enable Emscripten exception handling 299 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 300 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 301 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 302 303 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 304 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 305 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 306 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 307 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 308 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 309 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 310 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten) 311 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten) 312 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten) 313 Function *CatchF = nullptr; // wasm.catch() (intrinsic) 314 315 // type of 'struct __WasmLongjmpArgs' defined in emscripten 316 Type *LongjmpArgsTy = nullptr; 317 318 // __cxa_find_matching_catch_N functions. 319 // Indexed by the number of clauses in an original landingpad instruction. 320 DenseMap<int, Function *> FindMatchingCatches; 321 // Map of <function signature string, invoke_ wrappers> 322 StringMap<Function *> InvokeWrappers; 323 // Set of allowed function names for exception handling 324 std::set<std::string> EHAllowlistSet; 325 // Functions that contains calls to setjmp 326 SmallPtrSet<Function *, 8> SetjmpUsers; 327 328 StringRef getPassName() const override { 329 return "WebAssembly Lower Emscripten Exceptions"; 330 } 331 332 using InstVector = SmallVectorImpl<Instruction *>; 333 bool runEHOnFunction(Function &F); 334 bool runSjLjOnFunction(Function &F); 335 void handleLongjmpableCallsForEmscriptenSjLj( 336 Function &F, InstVector &SetjmpTableInsts, 337 InstVector &SetjmpTableSizeInsts, 338 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 339 void 340 handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts, 341 InstVector &SetjmpTableSizeInsts, 342 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 343 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 344 345 Value *wrapInvoke(CallBase *CI); 346 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 347 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 348 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 349 PHINode *&CallEmLongjmpBBThrewPHI, 350 PHINode *&CallEmLongjmpBBThrewValuePHI, 351 BasicBlock *&EndBB); 352 Function *getInvokeWrapper(CallBase *CI); 353 354 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 355 bool supportsException(const Function *F) const { 356 return EnableEmEH && (areAllExceptionsAllowed() || 357 EHAllowlistSet.count(std::string(F->getName()))); 358 } 359 void replaceLongjmpWith(Function *LongjmpF, Function *NewF); 360 361 void rebuildSSA(Function &F); 362 363 public: 364 static char ID; 365 366 WebAssemblyLowerEmscriptenEHSjLj() 367 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH), 368 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj), 369 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) { 370 assert(!(EnableEmSjLj && EnableWasmSjLj) && 371 "Two SjLj modes cannot be turned on at the same time"); 372 assert(!(EnableEmEH && EnableWasmSjLj) && 373 "Wasm SjLj should be only used with Wasm EH"); 374 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 375 } 376 bool runOnModule(Module &M) override; 377 378 void getAnalysisUsage(AnalysisUsage &AU) const override { 379 AU.addRequired<DominatorTreeWrapperPass>(); 380 } 381 }; 382 } // End anonymous namespace 383 384 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 385 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 386 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 387 false, false) 388 389 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 390 return new WebAssemblyLowerEmscriptenEHSjLj(); 391 } 392 393 static bool canThrow(const Value *V) { 394 if (const auto *F = dyn_cast<const Function>(V)) { 395 // Intrinsics cannot throw 396 if (F->isIntrinsic()) 397 return false; 398 StringRef Name = F->getName(); 399 // leave setjmp and longjmp (mostly) alone, we process them properly later 400 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 401 return false; 402 return !F->doesNotThrow(); 403 } 404 // not a function, so an indirect call - can throw, we can't tell 405 return true; 406 } 407 408 // Get a global variable with the given name. If it doesn't exist declare it, 409 // which will generate an import and assume that it will exist at link time. 410 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 411 WebAssemblyTargetMachine &TM, 412 const char *Name) { 413 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 414 if (!GV) 415 report_fatal_error(Twine("unable to create global: ") + Name); 416 417 // If the target supports TLS, make this variable thread-local. We can't just 418 // unconditionally make it thread-local and depend on 419 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 420 // the side effect of disallowing the object from being linked into a 421 // shared-memory module, which we don't want to be responsible for. 422 auto *Subtarget = TM.getSubtargetImpl(); 423 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 424 ? GlobalValue::LocalExecTLSModel 425 : GlobalValue::NotThreadLocal; 426 GV->setThreadLocalMode(TLS); 427 return GV; 428 } 429 430 // Simple function name mangler. 431 // This function simply takes LLVM's string representation of parameter types 432 // and concatenate them with '_'. There are non-alphanumeric characters but llc 433 // is ok with it, and we need to postprocess these names after the lowering 434 // phase anyway. 435 static std::string getSignature(FunctionType *FTy) { 436 std::string Sig; 437 raw_string_ostream OS(Sig); 438 OS << *FTy->getReturnType(); 439 for (Type *ParamTy : FTy->params()) 440 OS << "_" << *ParamTy; 441 if (FTy->isVarArg()) 442 OS << "_..."; 443 Sig = OS.str(); 444 erase_if(Sig, isSpace); 445 // When s2wasm parses .s file, a comma means the end of an argument. So a 446 // mangled function name can contain any character but a comma. 447 std::replace(Sig.begin(), Sig.end(), ',', '.'); 448 return Sig; 449 } 450 451 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 452 Module *M) { 453 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 454 // Tell the linker that this function is expected to be imported from the 455 // 'env' module. 456 if (!F->hasFnAttribute("wasm-import-module")) { 457 llvm::AttrBuilder B; 458 B.addAttribute("wasm-import-module", "env"); 459 F->addFnAttrs(B); 460 } 461 if (!F->hasFnAttribute("wasm-import-name")) { 462 llvm::AttrBuilder B; 463 B.addAttribute("wasm-import-name", F->getName()); 464 F->addFnAttrs(B); 465 } 466 return F; 467 } 468 469 // Returns an integer type for the target architecture's address space. 470 // i32 for wasm32 and i64 for wasm64. 471 static Type *getAddrIntType(Module *M) { 472 IRBuilder<> IRB(M->getContext()); 473 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 474 } 475 476 // Returns an integer pointer type for the target architecture's address space. 477 // i32* for wasm32 and i64* for wasm64. 478 static Type *getAddrPtrType(Module *M) { 479 return Type::getIntNPtrTy(M->getContext(), 480 M->getDataLayout().getPointerSizeInBits()); 481 } 482 483 // Returns an integer whose type is the integer type for the target's address 484 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 485 // integer. 486 static Value *getAddrSizeInt(Module *M, uint64_t C) { 487 IRBuilder<> IRB(M->getContext()); 488 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 489 } 490 491 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 492 // This is because a landingpad instruction contains two more arguments, a 493 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 494 // functions are named after the number of arguments in the original landingpad 495 // instruction. 496 Function * 497 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 498 unsigned NumClauses) { 499 if (FindMatchingCatches.count(NumClauses)) 500 return FindMatchingCatches[NumClauses]; 501 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 502 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 503 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 504 Function *F = getEmscriptenFunction( 505 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 506 FindMatchingCatches[NumClauses] = F; 507 return F; 508 } 509 510 // Generate invoke wrapper seqence with preamble and postamble 511 // Preamble: 512 // __THREW__ = 0; 513 // Postamble: 514 // %__THREW__.val = __THREW__; __THREW__ = 0; 515 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 516 // whether longjmp occurred), for future use. 517 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 518 Module *M = CI->getModule(); 519 LLVMContext &C = M->getContext(); 520 521 IRBuilder<> IRB(C); 522 IRB.SetInsertPoint(CI); 523 524 // Pre-invoke 525 // __THREW__ = 0; 526 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 527 528 // Invoke function wrapper in JavaScript 529 SmallVector<Value *, 16> Args; 530 // Put the pointer to the callee as first argument, so it can be called 531 // within the invoke wrapper later 532 Args.push_back(CI->getCalledOperand()); 533 Args.append(CI->arg_begin(), CI->arg_end()); 534 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 535 NewCall->takeName(CI); 536 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 537 NewCall->setDebugLoc(CI->getDebugLoc()); 538 539 // Because we added the pointer to the callee as first argument, all 540 // argument attribute indices have to be incremented by one. 541 SmallVector<AttributeSet, 8> ArgAttributes; 542 const AttributeList &InvokeAL = CI->getAttributes(); 543 544 // No attributes for the callee pointer. 545 ArgAttributes.push_back(AttributeSet()); 546 // Copy the argument attributes from the original 547 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I) 548 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 549 550 AttrBuilder FnAttrs(InvokeAL.getFnAttrs()); 551 if (FnAttrs.contains(Attribute::AllocSize)) { 552 // The allocsize attribute (if any) referes to parameters by index and needs 553 // to be adjusted. 554 unsigned SizeArg; 555 Optional<unsigned> NEltArg; 556 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 557 SizeArg += 1; 558 if (NEltArg.hasValue()) 559 NEltArg = NEltArg.getValue() + 1; 560 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 561 } 562 563 // Reconstruct the AttributesList based on the vector we constructed. 564 AttributeList NewCallAL = AttributeList::get( 565 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 566 NewCall->setAttributes(NewCallAL); 567 568 CI->replaceAllUsesWith(NewCall); 569 570 // Post-invoke 571 // %__THREW__.val = __THREW__; __THREW__ = 0; 572 Value *Threw = 573 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 574 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 575 return Threw; 576 } 577 578 // Get matching invoke wrapper based on callee signature 579 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 580 Module *M = CI->getModule(); 581 SmallVector<Type *, 16> ArgTys; 582 FunctionType *CalleeFTy = CI->getFunctionType(); 583 584 std::string Sig = getSignature(CalleeFTy); 585 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 586 return InvokeWrappers[Sig]; 587 588 // Put the pointer to the callee as first argument 589 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 590 // Add argument types 591 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 592 593 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 594 CalleeFTy->isVarArg()); 595 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 596 InvokeWrappers[Sig] = F; 597 return F; 598 } 599 600 static bool canLongjmp(const Value *Callee) { 601 if (auto *CalleeF = dyn_cast<Function>(Callee)) 602 if (CalleeF->isIntrinsic()) 603 return false; 604 605 // Attempting to transform inline assembly will result in something like: 606 // call void @__invoke_void(void ()* asm ...) 607 // which is invalid because inline assembly blocks do not have addresses 608 // and can't be passed by pointer. The result is a crash with illegal IR. 609 if (isa<InlineAsm>(Callee)) 610 return false; 611 StringRef CalleeName = Callee->getName(); 612 613 // The reason we include malloc/free here is to exclude the malloc/free 614 // calls generated in setjmp prep / cleanup routines. 615 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 616 return false; 617 618 // There are functions in Emscripten's JS glue code or compiler-rt 619 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 620 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 621 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 622 return false; 623 624 // __cxa_find_matching_catch_N functions cannot longjmp 625 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 626 return false; 627 628 // Exception-catching related functions 629 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 630 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 631 CalleeName == "__clang_call_terminate") 632 return false; 633 634 // Otherwise we don't know 635 return true; 636 } 637 638 static bool isEmAsmCall(const Value *Callee) { 639 StringRef CalleeName = Callee->getName(); 640 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 641 return CalleeName == "emscripten_asm_const_int" || 642 CalleeName == "emscripten_asm_const_double" || 643 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 644 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 645 CalleeName == "emscripten_asm_const_async_on_main_thread"; 646 } 647 648 // Generate testSetjmp function call seqence with preamble and postamble. 649 // The code this generates is equivalent to the following JavaScript code: 650 // %__threwValue.val = __threwValue; 651 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 652 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 653 // if (%label == 0) 654 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 655 // setTempRet0(%__threwValue.val); 656 // } else { 657 // %label = -1; 658 // } 659 // %longjmp_result = getTempRet0(); 660 // 661 // As output parameters. returns %label, %longjmp_result, and the BB the last 662 // instruction (%longjmp_result = ...) is in. 663 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 664 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 665 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 666 BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI, 667 PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) { 668 Function *F = BB->getParent(); 669 Module *M = F->getParent(); 670 LLVMContext &C = M->getContext(); 671 IRBuilder<> IRB(C); 672 IRB.SetCurrentDebugLocation(DL); 673 674 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 675 IRB.SetInsertPoint(BB); 676 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 677 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 678 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 679 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 680 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 681 ThrewValueGV->getName() + ".val"); 682 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 683 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 684 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 685 686 // Generate call.em.longjmp BB once and share it within the function 687 if (!CallEmLongjmpBB) { 688 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 689 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F); 690 IRB.SetInsertPoint(CallEmLongjmpBB); 691 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi"); 692 CallEmLongjmpBBThrewValuePHI = 693 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi"); 694 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 695 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 696 IRB.CreateCall(EmLongjmpF, 697 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI}); 698 IRB.CreateUnreachable(); 699 } else { 700 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 701 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 702 } 703 704 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 705 // if (%label == 0) 706 IRB.SetInsertPoint(ThenBB1); 707 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 708 Value *ThrewPtr = 709 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 710 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 711 ThrewPtr->getName() + ".loaded"); 712 Value *ThenLabel = IRB.CreateCall( 713 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 714 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 715 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2); 716 717 // setTempRet0(%__threwValue.val); 718 IRB.SetInsertPoint(EndBB2); 719 IRB.CreateCall(SetTempRet0F, ThrewValue); 720 IRB.CreateBr(EndBB1); 721 722 IRB.SetInsertPoint(ElseBB1); 723 IRB.CreateBr(EndBB1); 724 725 // longjmp_result = getTempRet0(); 726 IRB.SetInsertPoint(EndBB1); 727 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 728 LabelPHI->addIncoming(ThenLabel, EndBB2); 729 730 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 731 732 // Output parameter assignment 733 Label = LabelPHI; 734 EndBB = EndBB1; 735 LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result"); 736 } 737 738 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 739 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 740 DT.recalculate(F); // CFG has been changed 741 742 SSAUpdaterBulk SSA; 743 for (BasicBlock &BB : F) { 744 for (Instruction &I : BB) { 745 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 746 // If a value is defined by an invoke instruction, it is only available in 747 // its normal destination and not in its unwind destination. 748 if (auto *II = dyn_cast<InvokeInst>(&I)) 749 SSA.AddAvailableValue(VarID, II->getNormalDest(), II); 750 else 751 SSA.AddAvailableValue(VarID, &BB, &I); 752 for (auto &U : I.uses()) { 753 auto *User = cast<Instruction>(U.getUser()); 754 if (auto *UserPN = dyn_cast<PHINode>(User)) 755 if (UserPN->getIncomingBlock(U) == &BB) 756 continue; 757 if (DT.dominates(&I, User)) 758 continue; 759 SSA.AddUse(VarID, &U); 760 } 761 } 762 } 763 SSA.RewriteAllUses(&DT); 764 } 765 766 // Replace uses of longjmp with a new longjmp function in Emscripten library. 767 // In Emscripten SjLj, the new function is 768 // void emscripten_longjmp(uintptr_t, i32) 769 // In Wasm SjLj, the new function is 770 // void __wasm_longjmp(i8*, i32) 771 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a 772 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will 773 // eventually be lowered to i32/i64 in the wasm backend. 774 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF, 775 Function *NewF) { 776 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF); 777 Module *M = LongjmpF->getParent(); 778 SmallVector<CallInst *, 8> ToErase; 779 LLVMContext &C = LongjmpF->getParent()->getContext(); 780 IRBuilder<> IRB(C); 781 782 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and 783 // cast its first argument (jmp_buf*) appropriately 784 for (User *U : LongjmpF->users()) { 785 auto *CI = dyn_cast<CallInst>(U); 786 if (CI && CI->getCalledFunction() == LongjmpF) { 787 IRB.SetInsertPoint(CI); 788 Value *Env = nullptr; 789 if (NewF == EmLongjmpF) 790 Env = 791 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 792 else // WasmLongjmpF 793 Env = 794 IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env"); 795 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)}); 796 ToErase.push_back(CI); 797 } 798 } 799 for (auto *I : ToErase) 800 I->eraseFromParent(); 801 802 // If we have any remaining uses of longjmp's function pointer, replace it 803 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp. 804 if (!LongjmpF->uses().empty()) { 805 Value *NewLongjmp = 806 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast"); 807 LongjmpF->replaceAllUsesWith(NewLongjmp); 808 } 809 } 810 811 static bool containsLongjmpableCalls(const Function *F) { 812 for (const auto &BB : *F) 813 for (const auto &I : BB) 814 if (const auto *CB = dyn_cast<CallBase>(&I)) 815 if (canLongjmp(CB->getCalledOperand())) 816 return true; 817 return false; 818 } 819 820 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 821 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 822 823 LLVMContext &C = M.getContext(); 824 IRBuilder<> IRB(C); 825 826 Function *SetjmpF = M.getFunction("setjmp"); 827 Function *LongjmpF = M.getFunction("longjmp"); 828 829 // In some platforms _setjmp and _longjmp are used instead. Change these to 830 // use setjmp/longjmp instead, because we later detect these functions by 831 // their names. 832 Function *SetjmpF2 = M.getFunction("_setjmp"); 833 Function *LongjmpF2 = M.getFunction("_longjmp"); 834 if (SetjmpF2) { 835 if (SetjmpF) { 836 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType()) 837 report_fatal_error("setjmp and _setjmp have different function types"); 838 } else { 839 SetjmpF = Function::Create(SetjmpF2->getFunctionType(), 840 GlobalValue::ExternalLinkage, "setjmp", M); 841 } 842 SetjmpF2->replaceAllUsesWith(SetjmpF); 843 } 844 if (LongjmpF2) { 845 if (LongjmpF) { 846 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType()) 847 report_fatal_error( 848 "longjmp and _longjmp have different function types"); 849 } else { 850 LongjmpF = Function::Create(LongjmpF2->getFunctionType(), 851 GlobalValue::ExternalLinkage, "setjmp", M); 852 } 853 LongjmpF2->replaceAllUsesWith(LongjmpF); 854 } 855 856 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 857 assert(TPC && "Expected a TargetPassConfig"); 858 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 859 860 // Declare (or get) global variables __THREW__, __threwValue, and 861 // getTempRet0/setTempRet0 function which are used in common for both 862 // exception handling and setjmp/longjmp handling 863 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 864 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 865 GetTempRet0F = getEmscriptenFunction( 866 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 867 SetTempRet0F = getEmscriptenFunction( 868 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 869 "setTempRet0", &M); 870 GetTempRet0F->setDoesNotThrow(); 871 SetTempRet0F->setDoesNotThrow(); 872 873 bool Changed = false; 874 875 // Function registration for exception handling 876 if (EnableEmEH) { 877 // Register __resumeException function 878 FunctionType *ResumeFTy = 879 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 880 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 881 ResumeF->addFnAttr(Attribute::NoReturn); 882 883 // Register llvm_eh_typeid_for function 884 FunctionType *EHTypeIDTy = 885 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 886 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 887 } 888 889 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) { 890 // Precompute setjmp users 891 for (User *U : SetjmpF->users()) { 892 if (auto *CB = dyn_cast<CallBase>(U)) { 893 auto *UserF = CB->getFunction(); 894 // If a function that calls setjmp does not contain any other calls that 895 // can longjmp, we don't need to do any transformation on that function, 896 // so can ignore it 897 if (containsLongjmpableCalls(UserF)) 898 SetjmpUsers.insert(UserF); 899 } else { 900 std::string S; 901 raw_string_ostream SS(S); 902 SS << *U; 903 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") + 904 SS.str()); 905 } 906 } 907 } 908 909 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 910 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 911 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed); 912 913 // Function registration and data pre-gathering for setjmp/longjmp handling 914 if (DoSjLj) { 915 assert(EnableEmSjLj || EnableWasmSjLj); 916 if (EnableEmSjLj) { 917 // Register emscripten_longjmp function 918 FunctionType *FTy = FunctionType::get( 919 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 920 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 921 EmLongjmpF->addFnAttr(Attribute::NoReturn); 922 } else { // EnableWasmSjLj 923 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp. 924 FunctionType *FTy = FunctionType::get( 925 IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false); 926 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M); 927 WasmLongjmpF->addFnAttr(Attribute::NoReturn); 928 } 929 930 if (SetjmpF) { 931 // Register saveSetjmp function 932 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 933 FunctionType *FTy = 934 FunctionType::get(Type::getInt32PtrTy(C), 935 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 936 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 937 false); 938 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 939 940 // Register testSetjmp function 941 FTy = FunctionType::get( 942 IRB.getInt32Ty(), 943 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 944 false); 945 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 946 947 // wasm.catch() will be lowered down to wasm 'catch' instruction in 948 // instruction selection. 949 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch); 950 // Type for struct __WasmLongjmpArgs 951 LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env 952 IRB.getInt32Ty() // val 953 ); 954 } 955 } 956 957 // Exception handling transformation 958 if (EnableEmEH) { 959 for (Function &F : M) { 960 if (F.isDeclaration()) 961 continue; 962 Changed |= runEHOnFunction(F); 963 } 964 } 965 966 // Setjmp/longjmp handling transformation 967 if (DoSjLj) { 968 Changed = true; // We have setjmp or longjmp somewhere 969 if (LongjmpF) 970 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF); 971 // Only traverse functions that uses setjmp in order not to insert 972 // unnecessary prep / cleanup code in every function 973 if (SetjmpF) 974 for (Function *F : SetjmpUsers) 975 runSjLjOnFunction(*F); 976 } 977 978 if (!Changed) { 979 // Delete unused global variables and functions 980 if (ResumeF) 981 ResumeF->eraseFromParent(); 982 if (EHTypeIDF) 983 EHTypeIDF->eraseFromParent(); 984 if (EmLongjmpF) 985 EmLongjmpF->eraseFromParent(); 986 if (SaveSetjmpF) 987 SaveSetjmpF->eraseFromParent(); 988 if (TestSetjmpF) 989 TestSetjmpF->eraseFromParent(); 990 return false; 991 } 992 993 return true; 994 } 995 996 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 997 Module &M = *F.getParent(); 998 LLVMContext &C = F.getContext(); 999 IRBuilder<> IRB(C); 1000 bool Changed = false; 1001 SmallVector<Instruction *, 64> ToErase; 1002 SmallPtrSet<LandingPadInst *, 32> LandingPads; 1003 1004 // rethrow.longjmp BB that will be shared within the function. 1005 BasicBlock *RethrowLongjmpBB = nullptr; 1006 // PHI node for the loaded value of __THREW__ global variable in 1007 // rethrow.longjmp BB 1008 PHINode *RethrowLongjmpBBThrewPHI = nullptr; 1009 1010 for (BasicBlock &BB : F) { 1011 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 1012 if (!II) 1013 continue; 1014 Changed = true; 1015 LandingPads.insert(II->getLandingPadInst()); 1016 IRB.SetInsertPoint(II); 1017 1018 const Value *Callee = II->getCalledOperand(); 1019 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 1020 if (NeedInvoke) { 1021 // Wrap invoke with invoke wrapper and generate preamble/postamble 1022 Value *Threw = wrapInvoke(II); 1023 ToErase.push_back(II); 1024 1025 // If setjmp/longjmp handling is enabled, the thrown value can be not an 1026 // exception but a longjmp. If the current function contains calls to 1027 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 1028 // if the function does not contain setjmp calls, we shouldn't silently 1029 // ignore longjmps; we should rethrow them so they can be correctly 1030 // handled in somewhere up the call chain where setjmp is. __THREW__'s 1031 // value is 0 when nothing happened, 1 when an exception is thrown, and 1032 // other values when longjmp is thrown. 1033 // 1034 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 1035 // goto %tail 1036 // else 1037 // goto %longjmp.rethrow 1038 // 1039 // rethrow.longjmp: ;; This is longjmp. Rethrow it 1040 // %__threwValue.val = __threwValue 1041 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 1042 // 1043 // tail: ;; Nothing happened or an exception is thrown 1044 // ... Continue exception handling ... 1045 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) && 1046 canLongjmp(Callee)) { 1047 // Create longjmp.rethrow BB once and share it within the function 1048 if (!RethrowLongjmpBB) { 1049 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F); 1050 IRB.SetInsertPoint(RethrowLongjmpBB); 1051 RethrowLongjmpBBThrewPHI = 1052 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi"); 1053 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1054 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 1055 ThrewValueGV->getName() + ".val"); 1056 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue}); 1057 IRB.CreateUnreachable(); 1058 } else { 1059 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1060 } 1061 1062 IRB.SetInsertPoint(II); // Restore the insert point back 1063 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 1064 Value *CmpEqOne = 1065 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1066 Value *CmpEqZero = 1067 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 1068 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 1069 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB); 1070 IRB.SetInsertPoint(Tail); 1071 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 1072 } 1073 1074 // Insert a branch based on __THREW__ variable 1075 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 1076 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 1077 1078 } else { 1079 // This can't throw, and we don't need this invoke, just replace it with a 1080 // call+branch 1081 SmallVector<Value *, 16> Args(II->args()); 1082 CallInst *NewCall = 1083 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 1084 NewCall->takeName(II); 1085 NewCall->setCallingConv(II->getCallingConv()); 1086 NewCall->setDebugLoc(II->getDebugLoc()); 1087 NewCall->setAttributes(II->getAttributes()); 1088 II->replaceAllUsesWith(NewCall); 1089 ToErase.push_back(II); 1090 1091 IRB.CreateBr(II->getNormalDest()); 1092 1093 // Remove any PHI node entries from the exception destination 1094 II->getUnwindDest()->removePredecessor(&BB); 1095 } 1096 } 1097 1098 // Process resume instructions 1099 for (BasicBlock &BB : F) { 1100 // Scan the body of the basic block for resumes 1101 for (Instruction &I : BB) { 1102 auto *RI = dyn_cast<ResumeInst>(&I); 1103 if (!RI) 1104 continue; 1105 Changed = true; 1106 1107 // Split the input into legal values 1108 Value *Input = RI->getValue(); 1109 IRB.SetInsertPoint(RI); 1110 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 1111 // Create a call to __resumeException function 1112 IRB.CreateCall(ResumeF, {Low}); 1113 // Add a terminator to the block 1114 IRB.CreateUnreachable(); 1115 ToErase.push_back(RI); 1116 } 1117 } 1118 1119 // Process llvm.eh.typeid.for intrinsics 1120 for (BasicBlock &BB : F) { 1121 for (Instruction &I : BB) { 1122 auto *CI = dyn_cast<CallInst>(&I); 1123 if (!CI) 1124 continue; 1125 const Function *Callee = CI->getCalledFunction(); 1126 if (!Callee) 1127 continue; 1128 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 1129 continue; 1130 Changed = true; 1131 1132 IRB.SetInsertPoint(CI); 1133 CallInst *NewCI = 1134 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 1135 CI->replaceAllUsesWith(NewCI); 1136 ToErase.push_back(CI); 1137 } 1138 } 1139 1140 // Look for orphan landingpads, can occur in blocks with no predecessors 1141 for (BasicBlock &BB : F) { 1142 Instruction *I = BB.getFirstNonPHI(); 1143 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 1144 LandingPads.insert(LPI); 1145 } 1146 Changed |= !LandingPads.empty(); 1147 1148 // Handle all the landingpad for this function together, as multiple invokes 1149 // may share a single lp 1150 for (LandingPadInst *LPI : LandingPads) { 1151 IRB.SetInsertPoint(LPI); 1152 SmallVector<Value *, 16> FMCArgs; 1153 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 1154 Constant *Clause = LPI->getClause(I); 1155 // TODO Handle filters (= exception specifications). 1156 // https://bugs.llvm.org/show_bug.cgi?id=50396 1157 if (LPI->isCatch(I)) 1158 FMCArgs.push_back(Clause); 1159 } 1160 1161 // Create a call to __cxa_find_matching_catch_N function 1162 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 1163 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 1164 Value *Undef = UndefValue::get(LPI->getType()); 1165 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 1166 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0"); 1167 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 1168 1169 LPI->replaceAllUsesWith(Pair1); 1170 ToErase.push_back(LPI); 1171 } 1172 1173 // Erase everything we no longer need in this function 1174 for (Instruction *I : ToErase) 1175 I->eraseFromParent(); 1176 1177 return Changed; 1178 } 1179 1180 // This tries to get debug info from the instruction before which a new 1181 // instruction will be inserted, and if there's no debug info in that 1182 // instruction, tries to get the info instead from the previous instruction (if 1183 // any). If none of these has debug info and a DISubprogram is provided, it 1184 // creates a dummy debug info with the first line of the function, because IR 1185 // verifier requires all inlinable callsites should have debug info when both a 1186 // caller and callee have DISubprogram. If none of these conditions are met, 1187 // returns empty info. 1188 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1189 DISubprogram *SP) { 1190 assert(InsertBefore); 1191 if (InsertBefore->getDebugLoc()) 1192 return InsertBefore->getDebugLoc(); 1193 const Instruction *Prev = InsertBefore->getPrevNode(); 1194 if (Prev && Prev->getDebugLoc()) 1195 return Prev->getDebugLoc(); 1196 if (SP) 1197 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1198 return DebugLoc(); 1199 } 1200 1201 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1202 assert(EnableEmSjLj || EnableWasmSjLj); 1203 Module &M = *F.getParent(); 1204 LLVMContext &C = F.getContext(); 1205 IRBuilder<> IRB(C); 1206 SmallVector<Instruction *, 64> ToErase; 1207 // Vector of %setjmpTable values 1208 SmallVector<Instruction *, 4> SetjmpTableInsts; 1209 // Vector of %setjmpTableSize values 1210 SmallVector<Instruction *, 4> SetjmpTableSizeInsts; 1211 1212 // Setjmp preparation 1213 1214 // This instruction effectively means %setjmpTableSize = 4. 1215 // We create this as an instruction intentionally, and we don't want to fold 1216 // this instruction to a constant 4, because this value will be used in 1217 // SSAUpdater.AddAvailableValue(...) later. 1218 BasicBlock *Entry = &F.getEntryBlock(); 1219 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1220 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1221 1222 BinaryOperator *SetjmpTableSize = 1223 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), 1224 "setjmpTableSize", Entry->getTerminator()); 1225 SetjmpTableSize->setDebugLoc(FirstDL); 1226 // setjmpTable = (int *) malloc(40); 1227 Instruction *SetjmpTable = CallInst::CreateMalloc( 1228 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 1229 nullptr, nullptr, "setjmpTable"); 1230 SetjmpTable->setDebugLoc(FirstDL); 1231 // CallInst::CreateMalloc may return a bitcast instruction if the result types 1232 // mismatch. We need to set the debug loc for the original call too. 1233 auto *MallocCall = SetjmpTable->stripPointerCasts(); 1234 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 1235 MallocCallI->setDebugLoc(FirstDL); 1236 } 1237 // setjmpTable[0] = 0; 1238 IRB.SetInsertPoint(SetjmpTableSize); 1239 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 1240 SetjmpTableInsts.push_back(SetjmpTable); 1241 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 1242 1243 // Setjmp transformation 1244 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1245 Function *SetjmpF = M.getFunction("setjmp"); 1246 for (User *U : SetjmpF->users()) { 1247 auto *CI = dyn_cast<CallInst>(U); 1248 // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but 1249 // we don't support two being used together yet. 1250 if (!CI) 1251 report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet"); 1252 BasicBlock *BB = CI->getParent(); 1253 if (BB->getParent() != &F) // in other function 1254 continue; 1255 1256 // The tail is everything right after the call, and will be reached once 1257 // when setjmp is called, and later when longjmp returns to the setjmp 1258 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1259 // Add a phi to the tail, which will be the output of setjmp, which 1260 // indicates if this is the first call or a longjmp back. The phi directly 1261 // uses the right value based on where we arrive from 1262 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 1263 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1264 1265 // setjmp initial call returns 0 1266 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1267 // The proper output is now this, not the setjmp call itself 1268 CI->replaceAllUsesWith(SetjmpRet); 1269 // longjmp returns to the setjmp will add themselves to this phi 1270 SetjmpRetPHIs.push_back(SetjmpRet); 1271 1272 // Fix call target 1273 // Our index in the function is our place in the array + 1 to avoid index 1274 // 0, because index 0 means the longjmp is not ours to handle. 1275 IRB.SetInsertPoint(CI); 1276 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1277 SetjmpTable, SetjmpTableSize}; 1278 Instruction *NewSetjmpTable = 1279 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1280 Instruction *NewSetjmpTableSize = 1281 IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize"); 1282 SetjmpTableInsts.push_back(NewSetjmpTable); 1283 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1284 ToErase.push_back(CI); 1285 } 1286 1287 // Handle longjmpable calls. 1288 if (EnableEmSjLj) 1289 handleLongjmpableCallsForEmscriptenSjLj( 1290 F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs); 1291 else // EnableWasmSjLj 1292 handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts, 1293 SetjmpRetPHIs); 1294 1295 // Erase everything we no longer need in this function 1296 for (Instruction *I : ToErase) 1297 I->eraseFromParent(); 1298 1299 // Free setjmpTable buffer before each return instruction + function-exiting 1300 // call 1301 SmallVector<Instruction *, 16> ExitingInsts; 1302 for (BasicBlock &BB : F) { 1303 Instruction *TI = BB.getTerminator(); 1304 if (isa<ReturnInst>(TI)) 1305 ExitingInsts.push_back(TI); 1306 // Any 'call' instruction with 'noreturn' attribute exits the function at 1307 // this point. If this throws but unwinds to another EH pad within this 1308 // function instead of exiting, this would have been an 'invoke', which 1309 // happens if we use Wasm EH or Wasm SjLJ. 1310 for (auto &I : BB) { 1311 if (auto *CI = dyn_cast<CallInst>(&I)) { 1312 bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn); 1313 if (Function *CalleeF = CI->getCalledFunction()) 1314 IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn); 1315 if (IsNoReturn) 1316 ExitingInsts.push_back(&I); 1317 } 1318 } 1319 } 1320 for (auto *I : ExitingInsts) { 1321 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram()); 1322 // If this existing instruction is a call within a catchpad, we should add 1323 // it as "funclet" to the operand bundle of 'free' call 1324 SmallVector<OperandBundleDef, 1> Bundles; 1325 if (auto *CB = dyn_cast<CallBase>(I)) 1326 if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet)) 1327 Bundles.push_back(OperandBundleDef(*Bundle)); 1328 auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I); 1329 Free->setDebugLoc(DL); 1330 // CallInst::CreateFree may create a bitcast instruction if its argument 1331 // types mismatch. We need to set the debug loc for the bitcast too. 1332 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1333 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1334 BitCastI->setDebugLoc(DL); 1335 } 1336 } 1337 1338 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1339 // (when buffer reallocation occurs) 1340 // entry: 1341 // setjmpTableSize = 4; 1342 // setjmpTable = (int *) malloc(40); 1343 // setjmpTable[0] = 0; 1344 // ... 1345 // somebb: 1346 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 1347 // setjmpTableSize = getTempRet0(); 1348 // So we need to make sure the SSA for these variables is valid so that every 1349 // saveSetjmp and testSetjmp calls have the correct arguments. 1350 SSAUpdater SetjmpTableSSA; 1351 SSAUpdater SetjmpTableSizeSSA; 1352 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1353 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1354 for (Instruction *I : SetjmpTableInsts) 1355 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1356 for (Instruction *I : SetjmpTableSizeInsts) 1357 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1358 1359 for (auto &U : make_early_inc_range(SetjmpTable->uses())) 1360 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1361 if (I->getParent() != Entry) 1362 SetjmpTableSSA.RewriteUse(U); 1363 for (auto &U : make_early_inc_range(SetjmpTableSize->uses())) 1364 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1365 if (I->getParent() != Entry) 1366 SetjmpTableSizeSSA.RewriteUse(U); 1367 1368 // Finally, our modifications to the cfg can break dominance of SSA variables. 1369 // For example, in this code, 1370 // if (x()) { .. setjmp() .. } 1371 // if (y()) { .. longjmp() .. } 1372 // We must split the longjmp block, and it can jump into the block splitted 1373 // from setjmp one. But that means that when we split the setjmp block, it's 1374 // first part no longer dominates its second part - there is a theoretically 1375 // possible control flow path where x() is false, then y() is true and we 1376 // reach the second part of the setjmp block, without ever reaching the first 1377 // part. So, we rebuild SSA form here. 1378 rebuildSSA(F); 1379 return true; 1380 } 1381 1382 // Update each call that can longjmp so it can return to the corresponding 1383 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the 1384 // comments at top of the file for details. 1385 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1386 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1387 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1388 Module &M = *F.getParent(); 1389 LLVMContext &C = F.getContext(); 1390 IRBuilder<> IRB(C); 1391 SmallVector<Instruction *, 64> ToErase; 1392 1393 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function. 1394 // These values are defined in the beginning of the function and also in each 1395 // setjmp callsite, but we don't know which values we should use at this 1396 // point. So here we arbitraily use the ones defined in the beginning of the 1397 // function, and SSAUpdater will later update them to the correct values. 1398 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1399 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1400 1401 // call.em.longjmp BB that will be shared within the function. 1402 BasicBlock *CallEmLongjmpBB = nullptr; 1403 // PHI node for the loaded value of __THREW__ global variable in 1404 // call.em.longjmp BB 1405 PHINode *CallEmLongjmpBBThrewPHI = nullptr; 1406 // PHI node for the loaded value of __threwValue global variable in 1407 // call.em.longjmp BB 1408 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr; 1409 // rethrow.exn BB that will be shared within the function. 1410 BasicBlock *RethrowExnBB = nullptr; 1411 1412 // Because we are creating new BBs while processing and don't want to make 1413 // all these newly created BBs candidates again for longjmp processing, we 1414 // first make the vector of candidate BBs. 1415 std::vector<BasicBlock *> BBs; 1416 for (BasicBlock &BB : F) 1417 BBs.push_back(&BB); 1418 1419 // BBs.size() will change within the loop, so we query it every time 1420 for (unsigned I = 0; I < BBs.size(); I++) { 1421 BasicBlock *BB = BBs[I]; 1422 for (Instruction &I : *BB) { 1423 if (isa<InvokeInst>(&I)) 1424 report_fatal_error("When using Wasm EH with Emscripten SjLj, there is " 1425 "a restriction that `setjmp` function call and " 1426 "exception cannot be used within the same function"); 1427 auto *CI = dyn_cast<CallInst>(&I); 1428 if (!CI) 1429 continue; 1430 1431 const Value *Callee = CI->getCalledOperand(); 1432 if (!canLongjmp(Callee)) 1433 continue; 1434 if (isEmAsmCall(Callee)) 1435 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1436 F.getName() + 1437 ". Please consider using EM_JS, or move the " 1438 "EM_ASM into another function.", 1439 false); 1440 1441 Value *Threw = nullptr; 1442 BasicBlock *Tail; 1443 if (Callee->getName().startswith("__invoke_")) { 1444 // If invoke wrapper has already been generated for this call in 1445 // previous EH phase, search for the load instruction 1446 // %__THREW__.val = __THREW__; 1447 // in postamble after the invoke wrapper call 1448 LoadInst *ThrewLI = nullptr; 1449 StoreInst *ThrewResetSI = nullptr; 1450 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1451 I != IE; ++I) { 1452 if (auto *LI = dyn_cast<LoadInst>(I)) 1453 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1454 if (GV == ThrewGV) { 1455 Threw = ThrewLI = LI; 1456 break; 1457 } 1458 } 1459 // Search for the store instruction after the load above 1460 // __THREW__ = 0; 1461 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1462 I != IE; ++I) { 1463 if (auto *SI = dyn_cast<StoreInst>(I)) { 1464 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1465 if (GV == ThrewGV && 1466 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1467 ThrewResetSI = SI; 1468 break; 1469 } 1470 } 1471 } 1472 } 1473 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1474 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1475 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1476 1477 } else { 1478 // Wrap call with invoke wrapper and generate preamble/postamble 1479 Threw = wrapInvoke(CI); 1480 ToErase.push_back(CI); 1481 Tail = SplitBlock(BB, CI->getNextNode()); 1482 1483 // If exception handling is enabled, the thrown value can be not a 1484 // longjmp but an exception, in which case we shouldn't silently ignore 1485 // exceptions; we should rethrow them. 1486 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1487 // thrown, other values when longjmp is thrown. 1488 // 1489 // if (%__THREW__.val == 1) 1490 // goto %eh.rethrow 1491 // else 1492 // goto %normal 1493 // 1494 // eh.rethrow: ;; Rethrow exception 1495 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1496 // __resumeException(%exn) 1497 // 1498 // normal: 1499 // <-- Insertion point. Will insert sjlj handling code from here 1500 // goto %tail 1501 // 1502 // tail: 1503 // ... 1504 if (supportsException(&F) && canThrow(Callee)) { 1505 // We will add a new conditional branch. So remove the branch created 1506 // when we split the BB 1507 ToErase.push_back(BB->getTerminator()); 1508 1509 // Generate rethrow.exn BB once and share it within the function 1510 if (!RethrowExnBB) { 1511 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F); 1512 IRB.SetInsertPoint(RethrowExnBB); 1513 CallInst *Exn = 1514 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1515 IRB.CreateCall(ResumeF, {Exn}); 1516 IRB.CreateUnreachable(); 1517 } 1518 1519 IRB.SetInsertPoint(CI); 1520 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1521 Value *CmpEqOne = 1522 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1523 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB); 1524 1525 IRB.SetInsertPoint(NormalBB); 1526 IRB.CreateBr(Tail); 1527 BB = NormalBB; // New insertion point to insert testSetjmp() 1528 } 1529 } 1530 1531 // We need to replace the terminator in Tail - SplitBlock makes BB go 1532 // straight to Tail, we need to check if a longjmp occurred, and go to the 1533 // right setjmp-tail if so 1534 ToErase.push_back(BB->getTerminator()); 1535 1536 // Generate a function call to testSetjmp function and preamble/postamble 1537 // code to figure out (1) whether longjmp occurred (2) if longjmp 1538 // occurred, which setjmp it corresponds to 1539 Value *Label = nullptr; 1540 Value *LongjmpResult = nullptr; 1541 BasicBlock *EndBB = nullptr; 1542 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1543 Label, LongjmpResult, CallEmLongjmpBB, 1544 CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI, 1545 EndBB); 1546 assert(Label && LongjmpResult && EndBB); 1547 1548 // Create switch instruction 1549 IRB.SetInsertPoint(EndBB); 1550 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1551 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1552 // -1 means no longjmp happened, continue normally (will hit the default 1553 // switch case). 0 means a longjmp that is not ours to handle, needs a 1554 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1555 // 0). 1556 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1557 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1558 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1559 } 1560 1561 // We are splitting the block here, and must continue to find other calls 1562 // in the block - which is now split. so continue to traverse in the Tail 1563 BBs.push_back(Tail); 1564 } 1565 } 1566 1567 for (Instruction *I : ToErase) 1568 I->eraseFromParent(); 1569 } 1570 1571 // Create a catchpad in which we catch a longjmp's env and val arguments, test 1572 // if the longjmp corresponds to one of setjmps in the current function, and if 1573 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp 1574 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at 1575 // top of the file for details. 1576 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj( 1577 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1578 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1579 Module &M = *F.getParent(); 1580 LLVMContext &C = F.getContext(); 1581 IRBuilder<> IRB(C); 1582 1583 // A function with catchswitch/catchpad instruction should have a personality 1584 // function attached to it. Search for the wasm personality function, and if 1585 // it exists, use it, and if it doesn't, create a dummy personality function. 1586 // (SjLj is not going to call it anyway.) 1587 if (!F.hasPersonalityFn()) { 1588 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX); 1589 FunctionType *PersType = 1590 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true); 1591 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee(); 1592 F.setPersonalityFn( 1593 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy()))); 1594 } 1595 1596 // Use the entry BB's debugloc as a fallback 1597 BasicBlock *Entry = &F.getEntryBlock(); 1598 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1599 IRB.SetCurrentDebugLocation(FirstDL); 1600 1601 // Arbitrarily use the ones defined in the beginning of the function. 1602 // SSAUpdater will later update them to the correct values. 1603 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1604 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1605 1606 // Add setjmp.dispatch BB right after the entry block. Because we have 1607 // initialized setjmpTable/setjmpTableSize in the entry block and split the 1608 // rest into another BB, here 'OrigEntry' is the function's original entry 1609 // block before the transformation. 1610 // 1611 // entry: 1612 // setjmpTable / setjmpTableSize initialization 1613 // setjmp.dispatch: 1614 // switch will be inserted here later 1615 // entry.split: (OrigEntry) 1616 // the original function starts here 1617 BasicBlock *OrigEntry = Entry->getNextNode(); 1618 BasicBlock *SetjmpDispatchBB = 1619 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry); 1620 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB); 1621 1622 // Create catch.dispatch.longjmp BB a catchswitch instruction 1623 BasicBlock *CatchSwitchBB = 1624 BasicBlock::Create(C, "catch.dispatch.longjmp", &F); 1625 IRB.SetInsertPoint(CatchSwitchBB); 1626 CatchSwitchInst *CatchSwitch = 1627 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1); 1628 1629 // Create catch.longjmp BB and a catchpad instruction 1630 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F); 1631 CatchSwitch->addHandler(CatchLongjmpBB); 1632 IRB.SetInsertPoint(CatchLongjmpBB); 1633 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitch, {}); 1634 1635 // Wasm throw and catch instructions can throw and catch multiple values, but 1636 // that requires multivalue support in the toolchain, which is currently not 1637 // very reliable. We instead throw and catch a pointer to a struct value of 1638 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten. 1639 Instruction *CatchCI = 1640 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown"); 1641 Value *LongjmpArgs = 1642 IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args"); 1643 Value *EnvField = 1644 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep"); 1645 Value *ValField = 1646 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep"); 1647 // void *env = __wasm_longjmp_args.env; 1648 Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env"); 1649 // int val = __wasm_longjmp_args.val; 1650 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val"); 1651 1652 // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 1653 // if (%label == 0) 1654 // __wasm_longjmp(%env, %val) 1655 // catchret to %setjmp.dispatch 1656 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F); 1657 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F); 1658 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p"); 1659 Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id"); 1660 Value *Label = 1661 IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize}, 1662 OperandBundleDef("funclet", CatchPad), "label"); 1663 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0)); 1664 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 1665 1666 IRB.SetInsertPoint(ThenBB); 1667 CallInst *WasmLongjmpCI = IRB.CreateCall( 1668 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad)); 1669 IRB.CreateUnreachable(); 1670 1671 IRB.SetInsertPoint(EndBB); 1672 // Jump to setjmp.dispatch block 1673 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB); 1674 1675 // Go back to setjmp.dispatch BB 1676 // setjmp.dispatch: 1677 // switch %label { 1678 // label 1: goto post-setjmp BB 1 1679 // label 2: goto post-setjmp BB 2 1680 // ... 1681 // default: goto splitted next BB 1682 // } 1683 IRB.SetInsertPoint(SetjmpDispatchBB); 1684 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi"); 1685 LabelPHI->addIncoming(Label, EndBB); 1686 LabelPHI->addIncoming(IRB.getInt32(-1), Entry); 1687 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size()); 1688 // -1 means no longjmp happened, continue normally (will hit the default 1689 // switch case). 0 means a longjmp that is not ours to handle, needs a 1690 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1691 // 0). 1692 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1693 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1694 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB); 1695 } 1696 1697 // Convert all longjmpable call instructions to invokes that unwind to the 1698 // newly created catch.dispatch.longjmp BB. 1699 SmallVector<Instruction *, 64> ToErase; 1700 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) { 1701 for (Instruction &I : *BB) { 1702 auto *CI = dyn_cast<CallInst>(&I); 1703 if (!CI) 1704 continue; 1705 const Value *Callee = CI->getCalledOperand(); 1706 if (!canLongjmp(Callee)) 1707 continue; 1708 if (isEmAsmCall(Callee)) 1709 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1710 F.getName() + 1711 ". Please consider using EM_JS, or move the " 1712 "EM_ASM into another function.", 1713 false); 1714 // This is __wasm_longjmp() call we inserted in this function, which 1715 // rethrows the longjmp when the longjmp does not correspond to one of 1716 // setjmps in this function. We should not convert this call to an invoke. 1717 if (CI == WasmLongjmpCI) 1718 continue; 1719 ToErase.push_back(CI); 1720 1721 // Even if the callee function has attribute 'nounwind', which is true for 1722 // all C functions, it can longjmp, which means it can throw a Wasm 1723 // exception now. 1724 CI->removeFnAttr(Attribute::NoUnwind); 1725 if (Function *CalleeF = CI->getCalledFunction()) { 1726 CalleeF->removeFnAttr(Attribute::NoUnwind); 1727 } 1728 1729 IRB.SetInsertPoint(CI); 1730 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1731 // We will add a new invoke. So remove the branch created when we split 1732 // the BB 1733 ToErase.push_back(BB->getTerminator()); 1734 SmallVector<Value *, 8> Args(CI->args()); 1735 InvokeInst *II = 1736 IRB.CreateInvoke(CI->getFunctionType(), CI->getCalledOperand(), Tail, 1737 CatchSwitchBB, Args); 1738 II->takeName(CI); 1739 II->setDebugLoc(CI->getDebugLoc()); 1740 II->setAttributes(CI->getAttributes()); 1741 CI->replaceAllUsesWith(II); 1742 } 1743 } 1744 1745 for (Instruction *I : ToErase) 1746 I->eraseFromParent(); 1747 } 1748